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Abstract

We present a new approach, the GeoQuorums approach, for implementing atomic read/write shared memory

in mobile ad hoc networks. Our approach is based on associating abstract atomic objects with certain geographic

locations. We assume the existence of focal points, geographic areas that are normally “populated” by mobile nodes.

For example, a focal point may be a road junction, a scenic observation point, or a water resource in the desert. Mobile

nodes that happen to populate a focal point participate in implementing a shared atomic object, using a replicated state

machine approach. These objects, which we call focal point objects, are then used to implement atomic read/write

operations on a virtual shared object, using our new GeoQuorums algorithm. The GeoQuorums algorithm uses a

quorum-based strategy in which each each quorum consists of a set of focal point objects. The quorums are used to

maintain the consistency of the shared memory and to tolerate limited failures of the focal point objects, caused by

depopulation of the corresponding geographic areas. We present a mechanism for changing the set of quorums on

the fly, thus improving efficiency. Overall, the new GeoQuorums algorithm efficiently implements read and write

operations in a highly dynamic, mobile network.

1 Introduction

In this paper, we introduce a new approach to designing algorithms for mobile ad hoc networks. An ad hoc net-

work uses no pre-existing infrastructure, unlike cellular networks that depend on fixed, wired base stations. Instead,

the network is formed by the mobile nodes themselves, which cooperate to route communication from sources to

destinations.

Ad hoc communication networks are, by nature, highly dynamic. Mobile nodes are often small devices with limited

energy that spontaneously join and leave the network. As a mobile node moves, the set of neighbors with which it can

directly communicate may change completely.

The nature of ad hoc networks makes it challenging to solve the standard problems encountered in mobile com-

puting, such as location management (e.g., [7]), using classical tools. The difficulties arise from the lack of a fixed

infrastructure to serve as the backbone of the network. In this paper, we begin to develop a new approach that allows

existing distributed algorithms to be adapted for highly dynamic ad hoc environments.

Providing atomic [20] (or linearizable [17]) read/write shared memory is a fundamental problem in distributed

computing, with applications in mobile ad hoc networks. Atomic memory is a basic service that facilitates the im-

plementation of many higher-level algorithms. For example, one might construct a location service by requiring each
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mobile node to periodically write its current location to the memory. Alternatively, a shared memory could be used to

collect real-time statistics, for example, recording the number of people in a building. We present here a new algorithm

for atomic multi-writer/multi-reader memory in mobile ad hoc networks.

The GeoQuorums Approach. We divide the problem of implementing atomic read/write memory into two parts.

First, we define a static system model, the Focal Point Object Model, that associates abstract objects with certain fixed

geographic locales. The mobile nodes implement this model using a replicated state machine approach. In this way,

the dynamic nature of the ad hoc network is masked by a static model. Second, we present an algorithm to implement

read/write atomic memory using the Focal Point Object Model.

The implementation of the Focal Point Object Model depends on a set of physical regions, known as focal points.

The mobile nodes within a focal point cooperate to simulate a single virtual object, known as a focal point object.

Each focal point supports a local broadcast service, LBcast, which provides reliable, totally ordered broadcast. This

service allows each node in the focal point to communicate reliably with every other node in the focal point. The local

broadcast service is used to implement a type of replicated state machine, one that tolerates joins and leaves of mobile

nodes. If every mobile node leaves the focal point, the focal point object fails.

The atomic read/write memory algorithm is implemented on top of the geographic abstraction, that is, on top of the

Focal Point Object Model. Nodes implementing the atomic memory algorithm use a GeoCast service (as in [26, 4]) to

communicate with the focal point objects. In order to achieve fault tolerance and availability, the algorithm replicates

the read/write shared memory at a number of focal point objects. In order to maintain consistency, accessing the shared

memory requires updating certain sets of focal points, known as quorums [13, 30, 31, 2, 27]. An important and novel

aspect of our approach is that the members of our quorums are focal points, not mobile nodes.

The algorithm uses two sets of quorums: (i) get-quorums, and (ii) put-quorums, with the property that every

get-quorum intersects every put-quorum.1 There is no requirement that put-quorums intersect other put-quorums, or

get-quorums intersect other get-quorums. The use of quorums allows the algorithm to tolerate the failure of a limited

number of focal point objects.

Our algorithm uses a Global Position System (GPS) time service, allowing it to process write operations using

a single phase; prior single-phase write algorithms made other strong assumptions, for example, relying either on

synchrony [31] or single writers [2]. Our algorithm guarantees that all read operations complete within two phases,

but allows for some reads to be completed using a single phase: the atomic memory algorithm flags the completion of

a previous read or write operation to avoid using additional phases, and propagates this information to various focal

point objects. As far as we know, this is an improvement on previous quorum-based algorithms.

For performance reasons, at different times it may be desirable to use different sets of get-quorums and put-

quorums. For example, during intervals when there are many more read operations than write operations, it may be

preferable to use smaller get-quorums that are well distributed, and larger put-quorums that are sparsely distributed.

In this case, a client can rapidly communicate with a get-quorum, while communicating with a put-quorum may be

slow. If the operational statistics change, it may be useful to reverse the situation.

The algorithm presented here includes a limited reconfiguration capability: it can switch between a finite number

of predetermined configurations. As a result of the static underlying Focal Point Object Model, in which focal point

objects neither join nor leave, this is not a severe limitation. The resulting reconfiguration algorithm, however, is quite

efficient compared to prior reconfigurable atomic memory algorithms [25, 14]. Reconfiguration does not significantly

delay read or write operations, and, as no consensus service is required (as in [25]), reconfiguration terminates rapidly.

This paper contains three primary contributions. First, we introduce the Focal Point Object Model, a geographic

abstraction model which allows simple, static algorithms to be adapted for highly dynamic environments. Second, we

provide an implementation of the Focal Point Object Model using mobile nodes. Third, we implement a reconfigurable

atomic read/write shared memory, using the static Focal Point Object Model.

An extended abstract of this work was previously published in the 17th International Symposium on Distributed

Computing (DISC 2003) [9]. In this paper, we more formally separate the algorithm into two distinct components,

defining a Focal Point Object Model, which can be used as the basis for other algorithms in mobile networks. We also

include complete proofs of correctness that were omitted in the prior version.

1Elsewhere, these are usually referred to as read-quorums and write-quorums. The operations performed by the objects in these quorums,

however, are not typical read and write operations. Therefore we use the put/get terminology.
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Other Approaches. Quorum systems are widely used to implement atomic memory in static distributed systems [13,

30, 31, 2, 12, 16]. More recent research has pursued application of similar techniques to highly dynamic environments,

like ad hoc networks. Many algorithms depend on reconfiguring the quorum systems in order to tolerate frequent joins

and leaves and changes in network topology. Some of these [10, 6, 16, 27] require the new configurations to be related

to the old configurations, limiting their utility in ad hoc networks. Englert and Shvartsman [11] showed that using

any two quorum systems concurrently preserves atomicity during more general reconfiguration. Recently, Lynch and

Shvartsman introduced RAMBO [25] (extended in [14]), an algorithm designed to support distributed shared memory in

a highly dynamic environment. The RAMBO algorithms allow arbitrary reconfiguration, supporting a changing set of

(potentially mobile) participants. The GeoQuorums approach handles the dynamic aspects of the network by creating

a geographic abstraction, thus simplifying the atomic memory algorithm. While prior algorithms use reconfiguration

to provide fault tolerance in a highly dynamic setting, the GeoQuorums approach depends on reconfiguration primarily

for performance optimization. This allows a simpler, and therefore more efficient, reconfiguration mechanism.

Haas and Liang [15] also address the problem of implementing quorum systems in a mobile network. Instead of

considering reconfiguration, they focus on the problem of constructing and maintaining quorum systems for storing

location information. Special participants are designed to perform administrative functions. Thus, the backbone is

formed by unreliable, ad hoc nodes that serve as members of quorum groups. Stojmenovic and Pena [29] choose

nodes to update using a geographically aware approach. They propose a heuristic that sends location updates to

a north-south column of nodes, while a location search proceeds along an east-west row of nodes. Note that the

north-south nodes may move during the update, so it is possible that the location search may fail. Karumanchi et

al. [18] focus on the problem of efficiently utilizing quorum systems in a highly dynamic environment. The nodes are

partitioned into fixed quorums, and every operation updates a randomly selected group, thus balancing the load. Lee

et al. [21] and Bhattacharya [3] have done simulation studies comparing the use of probabilistic quorum systems and

traditional quorum systems in implementing location services for mobile ad hoc networks.

Document Structure. The rest of the paper is organized as follows. The system model appears in Section 2. In

Section 3, we formally define an atomic object, and provide some machinery to prove that an algorithm implements

an atomic object. In Section 4, we define the Focal Point Object Model, and provide a brief overview of the algorithm.

Section 5 then presents the Operation Manager, an implementation of read/write atomic memory based on the Focal

Point Object Model, and Section 6 proves it correct. Section 7 then presents the Focal Point Emulator, an imple-

mentation of the Focal Point Object Model, and Section 8 includes a proof of correctness. Section 9 discusses the

performance of the algorithm, and Section 10 concludes and presents some areas for future research.

2 System Model

In this section, we describe the underlying theoretical model, and discuss the practical justifications. Figure 1 defines

some of the mathematical notation used throughout this paper.

2.1 Theoretical Model

Our world model consists of a bounded region of a two-dimensional plane, populated by mobile nodes. Each mobile

node is assigned a unique identifier from a set, I . The mobile nodes may join and leave the system, and may fail at

any time. (We treat leaves as failures.) The mobile nodes can move on any continuous path in the plane, with speed

bounded by a constant. We assume there exists at least one node, i
0

2 I .

Mobile Nodes. We model the location and motion of specific mobile nodes using a (hybrid) RealWorld automaton

(see [23, 24] for a formal presentation of hybrid automata). The RealWorld automaton represents a part of the en-

vironment, and is outside the control of the algorithm. It maintains in its state the current location of every mobile

node.

In order to model nodes joining and leaving the system, the RealWorld automaton also maintains in its state an

indication for each mobile node whether it has joined the system or failed. Formally, when the execution begins, the

RealWorld automaton is initialized with a set, A � I , of active nodes. Each mobile node is similarly initialized with

an indicator as to whether it begins the execution awake or asleep. A new node i is activated when the RealWorld
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Mathematical Notation:

– I , the totally-ordered set of node identifiers

– i

0

2 I , a distinguished node identifier in I that is smaller than all other identifiers in I

– S, the set of port identifiers, defined as N>0 �OP � I , where OP = fget; put; on�rm; reon-doneg

– O, the totally-ordered, finite set of focal point identifiers

– T , the set of tags, defined as R�0

� I

– U , the set of operation identifiers, defined as R�0

� S

– X , the set of memory locations

– For each x 2 X :

� V

x

, the set of values for x

� v

0;x

, the initial value of x

– M , a totally-ordered set of configuration names

– 

0

2M , a distinguished configuration in M that is smaller than all other names in M

– C, totally-ordered set of configuration identifiers, defined as R�0

� I �M

– L, set of locations in the plane , defined as R � R

Figure 1: Notation used through this paper.

automaton sends a wakeup

i

action to node i, and adds i to A. A node i fails when the RealWorld automaton sends a

fail

i

action to node i and removes i from A. Throughout this paper, for clarity of presentation we omit these details.

Each automaton described in this paper can be trivially transformed to only perform operations when it is awake and

not yet failed.

The RealWorld automaton contains a Geosensor component that maintains the current location of each mobile

node. It also maintains the current real time. The time is represented as a nonnegative real number.

The computation at each mobile node is modeled by a set of asynchronous (hybrid) automata (interacting via

shared actions), each formed by augmenting a regular I/O automaton with continuous inputs from the Geosensor

component of the RealWorld, along with the fail and wakeup actions.

Focal Points. While we make no assumptions about the motion of the mobile nodes, we do assume that certain

regions are usually “populated” by mobile nodes. We assume that there exists a collection of non-intersecting regions

in the plane, called focal points, such that (i) “most” focal points remain “populated” during an execution, and (ii)

the mobile nodes in each focal point are able to implement a reliable, atomic broadcast service. We define these

properties more formally in the next paragraph. Condition (i) is used to ensure that sufficiently many focal points

remain available. Once a focal point becomes unavailable due to “depopulation”, we do not allow it to recover if it

is repopulated. Condition (ii) ensures that all mobile nodes within a focal point can communicate reliably with each

other, and that messages are totally ordered. We assume that each mobile node knows about all the focal points.

More formally, a focal point consists of a unique identifier, chosen from the set O, and a contiguous geographic

region in the plane. No two focal points intersect. A node is in a focal point at some point in the execution if (according

to the RealWorld automaton) its location is within the region defined by the focal point. A focal point is populated

throughout an execution if there exists a sequence, j
0

; : : : ; j

k

of mobile nodes with the following properties:

� Node j
0

is in the focal point when the execution begins. That is, the location of node j
0

at the beginning of the

execution (as determined by the RealWorld automaton) is within the region specified for the focal point.

� For all ` < k, node j
`+1

enters the focal point sufficiently far in advance before node j
`

leaves the focal point.

Node j
`+1

remains in the focal point sufficiently long after node j
`

leaves the focal point.

� Node j
k

is in the focal point at the end of the execution.
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focal point

cluster

mobile node

Figure 2: Clusters

Notice that this definition requires that a mobile node joins a focal point “sufficiently prior” to the earlier node leaving

and remains in the focal point “sufficiently long” after the earlier node leaves. We intentionally avoid defining “suf-

ficiently prior and “sufficiently long” precisely; however, this time interval must be long enough for the focal point

join protocol to complete. This protocol requires two messages to be broadcast, and therefore this “sufficient” time

will be proportional to a small number of message broadcast time intervals. If a focal point is populated throughout an

execution, it said to be correct. If a focal point is not correct, it is said to fail. We assume that at most f focal points

fail during an execution.

LBcast Service. For each focal point, we assume a reliable, atomic broadcast service. The atomic broadcast service

for focal point h, LBcast
h

, supports the following actions for each mobile node i:

� Input lbast(m)

h;i

� Output lbast-rv(m)

h;i

where m is an arbitrary message to be sent. (Notice that the first index of the action indicates the focal point; the

second index indicates the node at which the action takes place.) The LBcast service satisfies the usual requirements

of a reliable, atomic broadcast service, with the exception that its guarantees hold only for mobile nodes that are in the

focal point. Specifically, for any arbitrary focal point, h, the following hold:

Reliable Delivery: Assume that mobile node i performs an lbast(m)

h;i

event using the LBcast
h;i

service, and that

node i is in focal point h when the lbast occurs. Then for every mobile node, j (potentially the same as node

i), that is in focal point h when the message is sent, and remains in the focal point forever thereafter2 and does

not fail (i.e., receive a failure notification from the RealWorld automaton), a lbast-rv(m)

h;j

event eventually

occurs delivering the message to node j.

Integrity: For any LBcast message m and mobile node i, if an lbast-rv(m)

h;i

event occurs, then (1) node i is in

focal point h when the message is received, and (2) an lbast(m)

h;`

event precedes it, for some mobile node `,

and this node ` is in focal point h when the lbast occurs.

No Duplication: For any message m and mobile node i, if at most one lbast(m)

h;�

event occurs, then at most one

lbast-rv(m)

h;i

event occurs.

2Note that after the message is received, node j may of course leave the focal point.
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Total Order: There exists a total ordering, m
1

; : : : ;m

k

of all messages sent on the LBcast
h

service during the execu-

tion such that if some mobile node, i, receives messages m
r

and m
t

, then i receives m
r

prior to m
t

if and only

if r < t. Notice that there is no requirement that this total ordering relate in any way to the real time order in

which the messages were sent.

GeoCast Service. Mobile nodes also depend on a global message delivery service, GeoCast. The GeoCast service

delivers a message to a specified destination point in the plane and every node within a certain radius of that destination.

Formally, then, the GeoCast service is parameterized by some constant R which determines the size of the destination

region. The constant R is chosen to be larger than the radius of the largest focal point, where the “radius” of a focal

point is defined in the natural way as the smallest distance such that for some “center” of the focal point the entire

region is circumscribed by a circle with the specified radius. Therefore, a GeoCast message can be sent to every mobile

node in a focal point by sending a message to the center of the focal point.

For mobile node i, the GeoCast service supports the following two actions:

� Input geoast(m; d)

i

� Output geoast-rv(m; d)

i

where m is an arbitrary message to be sent and d 2 L is the destination location.

If the message is destined for all the nodes in a focal point, then d is the center of the focal point. Alternatively,

if the message is destined for an individual mobile node j, then d is some location that (hopefully) is near to node j.

The GeoCast service has the following properties:

Reliable Delivery: Assume that the mobile node i performs a geoast(m; d)

i

action. Then for every mobile node j

that is within distance R of location d when the message is sent, and remains within distance R of location d

forever thereafter and does not fail, a geoast-rv(m; d)

j

event eventually occurs, delivering the message to

node j.

Integrity: For any GeoCast message m and mobile node i, if a geoast-rv(m; d)

i

event occurs, then (1) node i is

within distance R of location d when the message is received, and (2) a geoast(m; d)

`

event precedes it, for

some mobile node `.

No Duplication: For any message m and mobile node i, if at most one geoast(m)

�

event occurs, then at most one

geoast-rv(m)

i

event occurs.

Delivery Time: Each message takes some time > 0 to be delivered.

Configurations. We assume a fixed set of configurations that is finite and ordered and known to all mobile nodes.

Each configuration is assigned a name in M (the set of configuration names), and is defined to be a set of members and

two sets of quorums. Configuration  consists of a set of focal point identifiers in O, members(), and the following

sets of quorums: get-quorums() and put-quorums(). Each quorum in get-quorums() and put-quorums() is a

subset of members(), that is, a set of focal point identifiers. The quorums have the following intersection property:

if G 2 get-quorums() and P 2 put-quorums(), then

G \ P 6= ; :

Additionally, for any configuration  and any set of f focal point identifiers, F , there exists G 2 get-quorums() and

P 2 put-quorums() such that:

� F \ G = ;

� F \ P = ;.

In other words, no matter what set of f focal points might fail, there is always at least one get-quorum and at least

on put-quorum that does not contain any of the failed focal points. Thus, an algorithm based on these quorums can

tolerate f focal points failing.
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Client i

iGeosensor

j

LBcast kLBcast h

Geosensor

Client

j

GeoCast Service

geo−update

RealWorld

geocast−rcv geocast

geocast

geocast−rcvgeocast

geocast−rcvgeocastgeocast−rcv

lbcast−rcvlbcastlbcastlbcast−rcv

geo−update

wakeup fail wakeup fail

lbcast lbcast

lbcast−rcv
lbcast−rcv

Figure 3: Architecture of the theoretical system model. The shaded boxes represent two mobile nodes, i and j,

operating in a highly dynamic environment. Everything inside the shaded area represents programs running on the

mobile node. Everything outside the shaded area represents the general system model, including the GeoCast service,

multiple LBcast services (one per focal point), and the Geosensor components of the RealWorld for nodes i and j.

The RealWorld automaton represents the physical world in which the other automata operate.

Whenever a configuration is used, it is identified by a configuration identifier in C. A configuration identifier con-

sists of three components: a time (2 R

�0) when the configuration identifier is created, a node identifier (2 I) for the

mobile node that initiates the use of the configuration, and a configuration name (2M ) that identifies the configuration

being used. As long as no mobile node proposes more than one configuration at a given instant, then every configura-

tion identifier created during an execution is unique. The configuration identifiers are ordered lexicographically, based

first on comparing the time components, then comparing the process identifiers, and then comparing the configuration

names.

2.2 Practical Aspects

This theoretical model represents a wide class of real mobile systems. First, there are a number of ways to provide

location and time services, as represented by the Geosensor. GPS is perhaps the most common means, but others,

like Cricket [28], are being developed to remedy the weaknesses in GPS, such as the inability to operate indoors. Our

algorithms can tolerate small errors in the time or location, though we do not discuss this.

Second, the broadcast services specified here are reasonable. Consider the implementation of the LBcast service.

If a focal point is small enough, it should be easy to ensure that a single wireless broadcast, with appropriate error

correction, reaches every mobile node at the focal point. If the broadcast service uses a time-division/multiple-access

(TDMA) protocol, which allocates each node a time slot in which to broadcast, then it is easy to determine a total

ordering of the messages. A node joining the focal point might use a separate reservation channel to compete for a

time slot on the main TDMA communication channel, with a fixed, finite number of time slots. This would eliminate

collisions on the main channel, while slightly prolonging the process of joining a focal point.

A GeoCast service is also a common communication service in mobile networks: a number of algorithms have been
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developed to solve this problem, originally for the internet protocol [26] and later for ad hoc networks (e.g., [19, 4]).

We propose one set of configurations that may be particularly useful in practical implementations. In this case,

we use two configuration 

0

and 

1

. We take advantage of the fact that accessing nearby focal points is usually

faster than accessing distant focal points. The focal points can be grouped into clusters, using some geographic

technique [5]. Figure 2 illustrates the relationship among mobile nodes, focal points, and clusters. For configuration



0

, the get-quorums are defined to be the clusters. The put-quorums consist of every set containing one focal point

from each cluster. Configuration 
1

is defined in the opposite manner. Assume, for example, that read operations are

more common than write operations (and most read operations only require one phase). If the clusters are relatively

small and are well distributed (so that every mobile node is near to every focal point in some cluster), then configuration



0

is quite efficient. On the other hand, if write operations are more common than read operations, configuration 
1

is

quite efficient. Our algorithm allows the system to switch safely between two such configurations.

Another difficulty in implementation might be agreeing on the focal points and ensuring that every mobile node

has an accurate list of all the focal points and configurations. Some strategies have been proposed to choose focal

points: for example, the mobile nodes might send a token on a random walk, to collect information on geographic

density [8]. The simplest way to ensure that a mobile node has access to a list of focal points and configurations is to

depend on a centralized server, through transmissions from a satellite or a cell-phone tower. Alternatively, the GeoCast

service itself might facilitate finding other mobile nodes, at which point the definitive list can be discovered.

3 Atomic Objects

Atomic objects play an important role in this paper. The main result of this paper is an algorithm that implements

a highly fault-tolerant read/write atomic object that can tolerate a highly dynamic environment. We also discuss

implementing arbitrary atomic objects, using focal points. In this section, we formally define an atomic object, as

specified by a variable type. We specify the variable type for a read/write object, formally describe an atomic object,

and discuss what it means to implement an atomic object.

3.1 Variable Types

An atomic object is specified by a variable type that describes its sequential behavior. The definition here is adapted

from [22] and [1]. A variable type, � , consists of the following components:

� V , a set of legal values (i.e., states) for the object

� v

0

2 V , an initial value (i.e., state) for the object

� invoations , a set of invocations

� responses , a set of responses

� Æ, the transition function, a mapping from:

(invoations � V )! (responses � V )

that maps every invocation and state to a response and a new state.

We now specify a variable type for a read/write object. (In Section 5 we present a more complicated variable type

as part of our algorithm.) A read/write object has the following variable type:

� V , an arbitrary set of values for the atomic object

� v

0

2 V , an arbitrary initial value

� invoations = freadg [ fwrite(v) : v 2 V g

� responses = fread-ak(v) : v 2 V g [ fwrite-akg

� Æ is defined as follows:
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Clienti Clientj

Clients

Read/Write Object

write−ackwrite

readread−ack

read−ackread

writewrite−ack

Figure 4: Abstract Read/Write Object

– Æ(read; v)! hread-ak(v); vi

– Æ(write(v

0

); v)! hwrite-ak; v

0

i

In programmatic style (used later in this paper), the read/write variable type is expressed as the sequential specification

presented in Figure 5.

3.2 Canonical Atomic Objects

While the variable type specifies the sequential behavior of an object, it does not specify how the object behaves when

it receives concurrent invocations. We therefore specify a canonical atomic object automaton that indicates the legal

behaviors of an object of a given variable type. Figure 6 presents the automaton for an atomic object of type

� = hV; v

0

; invoations ; responses ; Æi

with ports in Q, using the I/O automata formalism (see [22] for more details).

The input and output actions are of the form

invoke(inv)

p

and

respond(resp)

p

;

Read/Write Sequential Specification

State

2 value, initially v

0

4 Operations

read()

6 return read-ack(value)

8 write(new-value)

value new-value

10 return write-ack()

Figure 5: Read/Write Sequential Specification.
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Canonical Atomic Object of Type � = hV; v

0

; invoations ; responses ; Æi, for the set, Q, of ports

Signature:

Input:

invoke(inv)
p

, inv 2 invocations, p 2 Q, the invocations defined by the variable type �

Output:

respond(resp)
p

, resp 2 responses, p 2 Q, the responses defined by the variable type �

Internal:

perform(inv, v, resp, v0)
p

, inv 2 invocations, resp 2 responses, v,v0 2 V, p 2 Q, performs the transitions defined by the variable type �

State:

val 2 V, a value, initially v

0

inv-buffer, a set of pairs hinv; pi for invocations, inv 2 invoations , by port p; p 2 Q, initially ;

resp-buffer, a set of pairs hresp; pi for responses, resp 2 responses , to port p; p 2 Q, initially ;

Transitions:

Input invoke(inv)
p

Effect:

inv-buffer inv-buffer [ fhinv, pig

Output respond(resp)
p

Precondition:

hresp, pi 2 resp-buffer

Effect:

resp-buffer resp-buffer n fhresp, pig

Internal perform(inv, v, resp, v0)
p

Precondition:

hinv, pi 2 inv-buffer

v = val

Æ(inv, v) = (resp, v0)

Effect:

val v0

inv-buffer inv-buffer n fhinv, pig

resp-buffer resp-buffer [ fhresp, pig

Figure 6: Canonical Atomic Object Specification

where inv 2 invoations , resp 2 responses , and p 2 Q. Each invocation and response takes place on a port, and

each port can support only one operation at a time. Notice that the set of ports of the atomic object is a parameter of

the canonical object.

Here Q is a parameter of the canonical automaton; different instantiations of the automaton will uses different sets

for Q. In some cases, Q may simply be I , the set of node identifiers, in which case each mobile node has one port on

the atomic object. In other cases, Q may be S = N

>0

�OP � I , where OP is some set of operation identifiers (see

Figure 1), giving each mobile node a countably infinite number of ports on the object, which allows each mobile node

more concurrent access to the object. We will show in more detail why this is useful in Section 5, where we present

the Operation Manager, an algorithm that makes use of objects with ports in S.

Figure 4 depicts the atomic object derived from the read/write variable type. In diagrams like Figure 4, for clarity

of presentation, instead of writing invoke(read) and the corresponding respond(read-ak), we simply say read and

read-ak, as the direction of the arrows makes clear the action involved. We also omit the parameters to the invocations

and responses.

Notice that the canonical automaton is not a distributed algorithm; it assumes centralized state that all the nodes

can access. It does, however, support concurrent read and write invocations on different ports. The automaton simply

performs the operations in some order. This is consistent with the usual notion that an atomic object serializes all of
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its operations.

The canonical automaton is presented with no liveness conditions. Often (as in [22]), there is an additional fail
p

action, for each port in Q, and a “tasks” specification requires that as long as no fail

p

action occurs, each invocation

on p eventually leads to a response. In this paper, we focus on formally proving the safety properties (in particular,

atomicity) of our algorithms, and discuss liveness less formally.

3.3 Implementing Canonical Objects

We say that an automaton, U , is a well-formed environment for an atomic object if:

1. Its outputs are exactly the invocations of the object, and its inputs are exactly the responses of the object.

2. In every execution, for every port p, the automaton never performs two consecutive invocations on port pwithout

an intervening response on port p.

We then say that an automaton, S, implements the canonical (abstract) object, A, if:

1. S has the same input and output actions as A, the canonical object.

2. If U is a well-formed environment, then any trace of S ÆU is also a trace of AÆU . This implies that S preserves

the well-formedness and safety guarantees of A .

(Informally, a trace of an automaton is the sequence of input and output actions occurring in an execution. The

symbol Æ represents the composition of automata, as defined in [22])

The most common way of showing that an algorithm implements an atomic object is to show that in every execution

there exists a total ordering of the operations with certain properties. This ordering reflects the order in which the

operations are performed in the canonical automaton. The following theorem is a variant of Lemmas 13.10 and 13.16

in [22]3.

Theorem 3.1 Let A be a canonical atomic object of some variable type, and assume that S is an automaton with the

same inputs and outputs as A, and that U is any well-formed environment. For every execution � of S Æ U in which

every operation completes, assume that the following holds:

Let � be the set of operations in �. Assume that there exists a total ordering, �, on all the operations in � with

the following properties:

1. The total order is consistent with the external order of invocations and responses. That is, if � completes before

�

0 begins, then � � �

0.

2. Fix some � 2 �. Let inv
1

; inv

2

; � � � ; inv

k

be the invocations of the operations preceding � in the total ordering,

indexed according to the total ordering. Let inv(�) be the invocation that initiates �, and resp(�) be the

response that concludes �.

Let v be the value of the variable type that results from starting with the initial value, v
0

, and processing the

following invocations:

inv

1

; inv

2

; : : : ; inv

k

:

Then the response to operation� is consistent with the object being in state v. That is, consider the respond(resp(�))

event that occurs in �. Then for some value v0 of the variable type,

hresp(�); v

0

i = Æ(inv (�); v) :

Then traes(S Æ U) � traes(A Æ U).

3Lemmas 13.10 and 13.16 in [22] are presented for a setting with only finitely many ports, while here we allow there to be a countably infinite

number of ports. However, nothing in the lemmas or their proofs depends on the number of ports being finite, so the results carry over for our

setting.
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Since U is an arbitrary environment, this implies that S implements A.

Property 1 requires that the total ordering be consistent with the real-world ordering of operations. Consider the

example of a read/write atomic object: this property requires that if a write operation successfully completes and

writes some value, val , then a later read operation cannot return an earlier value.

Property 2 requires that the total ordering of operations be consistent with the actual responses sent during the

execution, since the total ordering is supposed to represent the order in which operations appear to happen. Consider

again the example of a read/write atomic object: Property 2 guarantees that if, in the real execution, a read operation

returns some value, val , then the closest preceding write operation (in the total order) must write that same value val .

The proof of Theorem 3.1 is similar to that of Lemma 13.16 in [22]:

Proof (sketch). The proof involves choosing a serialization point for each operation: the earliest point after which the

operation has begun and every operation preceding it in the total order has begun, where ties are ordered consistently

with the total order. Property 1 ensures that the serialization point occurs before the operation completes and Property 2

ensures that the serialized execution has the same responses as the real execution. �

In the case of a read/write atomic object, it is necessary to determine only a partial ordering of the operations. The

following theorem, then, is the analogue of Theorem 3.1, and is proved in [22], Lemmas 13.10 and Lemma 13.164:

Theorem 3.2 Let A be a canonical atomic read/write object (i.e., an object of the variable type presented in Figure 5),

and assume that S is an automaton with the same inputs and outputs as A, and thatU is any well-formed environment.

For every execution � of S Æ U in which every operation completes, assume that the following holds:

Let � be the set of operations in �. Assume that there exists a partial ordering, �, on all the operations in � with

the following properties:

1. All write operations are totally ordered, and every read operation is ordered with respect to all the writes.

2. The partial order is consistent with the external order of invocations and responses, that is, there do not exist

read or write operations �
1

and �
2

such that �
1

completes before �
2

starts, yet �
2

� �

1

.

3. Every read operation that is ordered after any writes returns the value of the last write preceding it in the partial

order; any read operation ordered before all writes returns v
0

.

Then traes(S Æ U) � traes(A Æ U).

Again, since U is an arbitrary environment, this implies that S implements A.

4 GeoQuorums Overview

In this section, we present an overview of the GeoQuorums algorithm. The algorithm consists of two independent

components: the Focal Point Emulator, which implements the Focal Point Object Model in a highly dynamic environ-

ment (described in Section 2), and the Operation Manager, an algorithm that implements an atomic read/write object in

the Focal Point Object Model. The GeoQuorums algorithm is the composition of these two sub-algorithms, resulting

in an atomic read/write object, with port set Q = I , implemented in a mobile ad hoc network.

Our implementation is described for a single object, x 2 X ; the composition of all the read/write objects results

in a distributed shared read/write memory.

We first define the Focal Point Object Model (Section 4.1) and then provide a brief overview of the Operation

Manager (Section 4.3) and the Focal Point Emulator (Section 4.4). A detailed description of the Operation Manager

and a proof of correctness appear in Sections 5 and 6. A detailed description of the Focal Point Emulator and a proof

of correctness appear in Sections 7 and 8.

4.1 Focal Point Object Model

The Focal Point Object Model is a simple model that hides much of the highly dynamic behavior of the system. It

is therefore much easier to specify correct algorithms for the Focal Point Object Model than for the general highly

dynamic environment described in Section 2.

4In [22], a fourth property is included, assuming that each operation is preceded by only finitely many other operation. This is unnecessary, as

it is implied by Property 2.
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Figure 7: Focal Point Object Model. The application automata are running on the mobile nodes, and receive inputs

and send outputs to external clients of the service. The application automata communicate by invoking operations on

the focal point objects. (The RealWorld component of the model is omitted for clarity.)

The Focal Point Object Model is a shared memory model. The model consists of two types of entities: ap-

plication components running on mobile nodes, specified by (hybrid) I/O automata, and atomic objects, specified

by variable types. The clients communicate only through their interactions with the atomic objects; there is no

message-passing network. We call these objects “focal point objects”, hinting at how we later implement them.

Each client has a countably infinite number of ports onto each shared object, allowing it to invoke concurrent opera-

tions on an object. That is, the port set, Q of each object is S = N

>0

� OP � I , where OP is a set of operations:

get; put; on�rm; and reon-done. As is usual in shared memory models, the clients can invoke only one operation at

a time on each port of an object.

The Focal Point Object Model also guarantees that the response to an invocation on a focal point object comes at a

strictly later time (according to the clock available to the mobile nodes) than the invocation. This technical requirement

indicates that the clock provides sufficient resolution to measure the time of an operation.

This model is presented schematically in Figure 7, where an arbitrary application interacts with a set of focal point

objects. The Focal Point Object Model guarantees that no more than f focal point objects fail in any execution.

4.2 Example Algorithm

As an example of an algorithm that uses the Focal Point Object Model, consider the problem of implementing an

unreliable atomic read/write memory in the Focal Point Object Model. In this simple example, we use only a single

focal point object, obj , with port set Q = I . The focal point object implements the read/write memory variable type

presented in Figure 5. Let p = i, a port for client i on object obj . When a client, i, receives a read request, it simply

invokes the read operation on the focal point object. It does this by performing the following action:

invoke(hreadi)

p

Notice that the operation is invoked on port p = i. In this example, there is no reason to use more than a single port

per mobile node. Eventually, the focal point object performs the following action:

respond(hread-ak; vali)

p

At this point, the client i can return the value. A write operation proceeds similarly, invoking the write operation on

the focal point object.
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Figure 8: Implementing atomic read/write memory in the Focal Point Object Model. This figure depicts how the

Operation Manager is implemented in the Focal Point Object Model (as depicted in Figure 7). The dotted oval depicts

the boundary between the Focal Point Object Model and the external clients. The solid oval depicts the boundary of

the read/write atomic memory. The application automata of Figure 7 are here the OM Clients (Operation Manager

Clients), and the focal point objects are put/get objects. (The RealWorld component of the model is omitted for clarity.)

This simple algorithm solves the problem of implementing unreliable read/write atomic memory in the Focal

Point Object Model. This algorithm is, effectively, a centralized solution. If the focal point object, obj , fails (either

because a focal point itself fails, or because of message loss in the network), then the read/write memory itself fails.

In Sections 4.3 and 5 we describe a fault-tolerant algorithm for read/write atomic memory in the Focal Point Object

Model.

4.3 Operation Manager Overview

The Operation Manager is an algorithm designed to implement a read/write atomic object (with port set Q = I) in the

Focal Point Object Model. Using this model significantly simplifies the algorithm. There is no notion of mobility in the

Focal Point Object Model, and as a result, the Operation Manager avoids much of the complexity usually associated

with an ad hoc mobile network. There is no need to handle nodes joining and leaving in any special way, as the only

interprocess communication is through the focal point objects. The read/write atomic object is robust, guaranteeing

ongoing operation, if at most f focal point objects fail.

The Operation Manager is a quorum-based algorithm for read/write memory. By replicating data at multiple focal

point objects, and performing read and write operations on quorums of focal point objects, the Operation Manager

ensures that the data is maintained reliably and consistently.

The Operation Manager relies on the variable type of the focal point objects, which we call the put=get variable

type. These objects support specially defined operations, put, get, and two others, that allow clients to send information

to the objects and retrieve information from the objects, thus exchanging information.

Each read and write operation uses a different port on the focal point objects, so that earlier operations do not inter-

fere with later ones. (In fact, an operation may use two different ports for two different phases during the operation.)

This allows for improved performance, since even if a given object is very slow during one operation (perhaps never

responding, due to a lost or severely delayed message), it may be used in a later operation.

Figure 8 depicts the various components of the Operation Manager. The dashed black oval represents the boundary

interface of the Operation Manager. Notice that this interface includes three operations: read, write and reon. Our

goal is to show that the GeoQuorums algorithm implements an atomic read/write object; the reon interface should be

hidden from the external environment that will use this is a read/write object.
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We therefore assume that there exists a set of reconfiguration automata, one for each mobile node, calledReonClient
i

,

for all i in I . These reconfiguration automata generate reon requests, and receive reon-ak responses. They are not

a part of the algorithm presented in this paper, but rather a component specified by a client of the GeoQuorums algo-

rithm. We place only one restriction on the ReonClient automata: the reconfiguration clients are required to respect

the environmental well-formedness requirement that a reon request is issued only if there is no ongoing read, write,

or reconfiguration. (It would be a relatively simple modification to completely decouple the ReonClient automata

from the read/write environment, by allowing concurrent reconfigurations and read/write operations, as is done in

RAMBO [25]. We impose this restriction primarily for simplicity of presentation.)

When the Operation Manager is composed with both the ReonClient automata and the focal point objects, the

reon and reon-ak actions are hidden, as are the invoke and respond actions on the put/get objects. This results in

an external interface consisting only of read=read-ak and write=write-ak actions, as depicted by the solid black oval

in Figure 8. This matches the external signature of a read/write object, as specified in Figure 5 (with port set Q = I).

4.4 Focal Point Emulator Overview

The Focal Point Emulator implements the Focal Point Object Model in an ad hoc mobile network. The nodes in a focal

point (i.e., in the specified physical region) collaborate to implement a focal point object. They take advantage of the

powerful LBcast service to implement a replicated state machine that tolerates nodes continually joining and leaving.

This replicated state machine consistently maintains the state of the atomic object, ensuring that the invocations are

performed in a consistent order at every mobile node.

5 Operation Manager

In this section we present the Operation Manager (OM), an algorithm built on the Focal Point Object Model. As the

Focal Point Object Model contains two entities, focal point objects and mobile nodes, we present two specifications,

one for the objects (each depicted as a “Focal Point Object” in Figure 7) and one for the application running on the

mobile nodes (each depicted as an “Application” in Figure 7):

� put=get variable type (Figure 10): the variable type of the focal point objects in the Focal Point Object Model.

� Operation Manager Client (Figures 9, 11, and 12): an automaton that receives read, write, and reon requests

from clients and manages quorum accesses to implement these operations.

Figure 8 depicts the various Operation Manager components. The Operation Manager (OM) is the collection of all

the Operation Manager Clients (OM

i

, for all i in I). It is composed with the focal point objects, each of which is an

atomic object with the put=get variable type.

5.1 The put=get Variable Type

The put=get variable type supports four operations: put, get, on�rm, and reon-done. The variable type is specified

in Figure 10. The put and get operations are used to set and retrieve the value. We first describe the various state

components of the variable type, and then explain the different operations and how they modify the state.

Variable Type State Components. The put=get variable type is used to maintain a value , which is therefore the

primary component of its state. The variable type also contains a tag component in its state. Each tag consists of a

nonnegative real number (the time at which the tag was determined) and a unique process identifier (i.e., T = R

�0

�I ,

see Figure 1). A tag is associated with every value, and the tags determine an ordering on the values that are stored

by the put invocations (the only invocations that modify the value component of the state). Ordering these values

allows us to order the high-level write operations that create these values, which is necessary for guaranteeing atomic

consistency. The put and get invocations take a configuration identifier, new-on�g-id , as a parameter (Figure 10,

Lines 10 and 19). The put=get variable type includes a on�g-id in its state, corresponding to the largest configuration

identifier that any put or get invocation has used. The on�rmed-set is a set of tags, indicating whether a tag has been

confirmed. We explain later in Section 5.2 when a tag is confirmed. The reon-ip flag indicates whether the focal point

object believes that a reconfiguration is in progress; this is set to true when the object learns about a new configuration,

and is set to false when a reon-done indicates that the configuration is fully installed.
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Signature:

Input:

write(val)
i

, val 2 V

read()
i

recon(cid)
i

, cid 2 C

respond(resp)
obj ;p

, resp 2 responses (� ), obj 2 O, p = h�, �, ii 2 S

geo-update(t, l)
i

, t 2 R�0, l 2 L

Output:

write-ack()
i

read-ack(val)
i

, val 2 V

recon-ack(cid)
i

, cid 2 C

invoke(inv)
obj ;p

, inv 2 invoations(� ), obj 2 O, p = h�, �, ii 2 S

Internal:

read-2()
i

recon-2(cid)
i

, cid 2 C

State:

confirmed � T, a set of tag ids, initially ;

conf-id 2 C, a configuration id, initially h0; i
0

; 

0

i

recon-ip, a Boolean flag, initially false

clock 2 R�0 , a time, initially 0

ongoing-invocations � O � S, a set of objects and ports, initially ;

current-port-number 2 N>0 , used to invoke objects, initially 1

op, a record with the following components:

type 2 fread,write,recong, initially read

phase 2 fidle,get,putg, initially idle

tag 2 T, initially h0; i
0

i

value 2 V, initially v

0

recon-ip, a Boolean flag, initially false

recon-conf-id 2 C, a configuration id, initially h0; i
0

; 

0

i

acc � O, a set of data objects, initially ;

Figure 9: Operation Manager Client Signature and State for Node i in I , where � is the put=get variable type.

Variable Type Transitions. The put=get variable type supports four types of invocations and responses. A put

invocation includes three parameters: the new-value, a value to be stored in the state, as well as new-tag , a tag,

and new-on�g-id , a configuration identifier. The put invocation modifies the value component of the state only

if the invocation’s tag, new-tag , is larger than the tag stored in the state (i.e., the tag of the last successful put

invocation, Figure 10, Line 11). The put invocation also modifies on�g-id if the invocation’s configuration identifier,

new-on�g-id , is larger than the on�g-id stored in the state (Line 14). Whenever the put invocation causes on�g-id

to be modified, we assume that a reconfiguration is in progress and set reon-ip to true (Line 16).

A put invocation results in a put-ak response. The response includes the configuration identifier stored in the

state, on�g-id , and an indication of whether a reconfiguration is in progress, reon-ip.

A get invocation includes one parameter: new-on�g-id , a configuration identifier. The get invocation modifies

the state only if the invocation’s configuration identifier, new-on�g-id , is larger than the on�g-id stored in the state.

In this case, the on�g-id component of the state is set to the invocation’s configuration identifier, new-on�g-id . As

in the case of a put invocation, if the on�g-id is modified, reon-ip is set to true.

A get invocation results in a get-ak response. This response includes the tag and value stored in the state, as

well as the on�g-id and an indication of whether a reconfiguration is in progress, that is, reon-ip. It also includes a
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boolean flag indicating whether the tag is confirmed. That is, it returns true if the tag is in the on�rmed-set stored

in the state. Effectively, this indicates whether a on�rm invocation has previously indicated that the tag is confirmed.

A on�rm invocation takes one parameter: a new-tag . The on�rmed-set component of the state is modified,

adding the tag new-tag to this set. The on�rm invocation results in a on�rm-ak response.

A reon-done invocation includes a single parameter: a new-on�g-id , a configuration identifier. The reon-ip

component of the state is modified if the configuration identifier, new-on�g-id , matches the on�g-id stored in the

state. In this case, reon-ip is set to false. This indicates that the configuration associated with that configuration

identifier is installed, that is, that the reconfiguration that proposed the configuration identifier is complete. This

invocation results in a reon-done-ak response. (Note that if new-on�g-id is not equal to on�g-id , stored in the

state, the invocation is ignored. While it may improve performance to allow the reon-done action to modify on�g-id ,

we do not do this in the interests of simplicity.)

5.2 Operation Manager Client Specification

The Operation Manager Client uses the atomic objects (with the put=get variable type) provided by the Focal Point

Object Model as replicas, invoking put operations to update the focal point objects and get operations to retrieve the

value (and associated information) from the focal point objects. Replication allows the Operation Manager Clients to

put=get Variable Type �

State

2 tag 2 T, initially h0; i
0

i

value 2 V, initially v

0

4 config-id 2 C, initially h0; i
0

; 

0

i

confirmed-set � T, initially ;

6 recon-ip, a Boolean, initially false

8 Operations

10 put(new-tag, new-value, new-config-id)

if (new-tag > tag) then

12 value new-value

tag new-tag

14 if (new-config-id > config-id) then

config-id new-config-id

16 recon-ip true

return put-ack(config-id, recon-ip)

18

get(new-config-id)

20 if (new-config-id > config-id) then

config-id new-config-id

22 recon-ip true

confirmed (tag 2 confirmed-set)

24 return get-ack(tag, value, confirmed, config-id, recon-ip)

26 confirm(new-tag)

confirmed-set confirmed-set [ fnew-tagg

28 return confirm-ack()

30 recon-done(new-config-id)

if (new-config-id = config-id) then

32 recon-ip false

return recon-done-ack()

Figure 10: Definition of the put=get Variable Type � .
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Operation Manager Client Transitions

Output invoke(hget, config-idi)
obj ;p

2 Precondition:

p = hcurrent-port-number, get, ii

4 hobj, pi =2 ongoing-invocations

obj =2 op.acc

6 op.phase = get

config-id = conf-id

8 Effect:

ongoing-invocations ongoing-invocations [ fhobj, pig

10

Output invoke(hput, tag, value, config-idi)
obj ;p

12 Precondition:

p = hcurrent-port-number, put, ii

14 hobj, pi =2 ongoing-invocations

obj =2 op.acc

16 op.phase = put

tag = op.tag

18 value = op.value

config-id = conf-id

20 Effect:

ongoing-invocations ongoing-invocations [ fhobj, pig

22

Output invoke(hconfirm, tagi)
obj ;p

24 Precondition:

p = hk, confirm, ii

26 hobj, pi =2 ongoing-invocations

tag 2 confirmed

28 Effect:

ongoing-invocations ongoing-invocations [ fhobj, pig

30

Output invoke(hrecon-done, config-idi)
obj ;p

32 Precondition:

p = hk, recon-done, ii

34 hobj, pi =2 ongoing-invocations

recon-ip = false

36 config-id = conf-id

38 ongoing-invocations ongoing-invocations [ fhobj, pig

40 Input respond(hget-ack, tag, value, confirmed, new-cid, new-ripi)
obj ;p

Effect:

42 if (hcurrent-port-number, get, ii = p) then

op.acc op.acc [ fobjg

44 if (tag > op.tag) then

op.tag tag

46 op.value value

if (new-cid > conf-id) then

48 conf-id new-cid

op.recon-ip true

50 recon-ip new-rip

else if (new-cid = conf-id) then

52 recon-ip recon-ip ^ new-rip

if (confirm = true) then

54 confirmed confirmed [ ftagg

ongoing-invocations ongoing-invocations n fhobj, pig

56

Input respond(hput-ack, new-cid, new-ripi)
obj ;p

58 Effect:

if (hcurrent-port-number, put, ii = p) then

60 op.acc op.acc [ fobjg

if (new-cid > conf-id) then

62 conf-id new-cid

op.recon-ip true

64 recon-ip new-rip

else if (new-cid = conf-id) then

66 recon-ip recon-ip ^ new-rip

ongoing-invocations ongoing-invocations n fhobj, pig

68

Input respond(hconfirm-acki)
obj ;p

70 Effect:

ongoing-invocations ongoing-invocations n fhobj, pig

72

Input respond(hrecon-done-acki)
obj ;p

74 Effect:

ongoing-invocations ongoing-invocations n fhobj, pig

Figure 11: Operation Manager Client invoke/respond Transitions for Node i.
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Operation Manager Client Transitions

Input write(val)
i

2 Effect:

current-port-number current-port-number + 1

4 op hwrite, put, hclock, ii, val, recon-ip, h0, i
0

, c
0

i, ;i

6 Output write-ack()
i

Precondition:

8 conf-id = htime-stamp, pid, ci

if op.recon-ip then

10 8c0 2 M, 9 P 2 put-quorums(c0) : P � op.acc

else

12 9 P 2 put-quorums(c) : P � op.acc

op.phase = put

14 op.type = write

Effect:

16 op.phase idle

confirmed confirmed [ fop.tagg

18

Input read()
i

20 Effect:

current-port-number current-port-number + 1

22 op hread, get, ?, ?, recon-ip, h0, i
0

, c
0

i, ;i

24 Output read-ack(v)
i

Precondition:

26 conf-id = htime-stamp, pid, ci

if op.recon-ip then

28 8c0 2 M, 9 P 2 put-quorums(c0) : P � op.acc

else

30 9 P 2 put-quorums(c) such that P � op.acc

op.phase = put

32 op.type = read

v = op.value

34 Effect:

op.phase idle

36 confirmed confirmed [ fop.tagg

38 Internal read-2()
i

Precondition:

40 conf-id = htime-stamp, pid, ci

if op.recon-ip then

42 8c0 2 M, 9 G 2 get-quorums(c0) : G � op.acc

else

44 9 G 2 get-quorums(c) : G � op.acc

op.phase = get

46 op.type = read

op.tag =2 confirmed

48 Effect:

current-port-number current-port-number + 1

50 op.phase put

op.recon-ip recon-ip

52 op.acc ;

54 Output read-ack(v)
i

Precondition:

56 conf-id = htime-stamp, pid, ci

if op.recon-ip then

58 8c0 2 M, 9 G 2 get-quorums(c0) : G � op.acc

else

60 9 G 2 get-quorums(c) such that G � op.acc

op.phase = get

62 op.type = read

op.tag 2 confirmed

64 v = op.value

Effect:

66 op.phase idle

68 Input recon(conf-name)
i

Effect:

70 conf-id hclock, i, conf-namei

recon-ip true

72 current-port-number current-port-number + 1

op hrecon, get, ?, ?, true, conf-id, ;i

74

Internal recon-2(cid)
i

76 Precondition

8c0 2 M, 9 G 2 get-quorums(c0) : G � op.acc

78 8c0 2 M, 9 P 2 put-quorums(c0) : P � op.acc

op.type = recon

80 op.phase = get

cid = op.recon-conf-id

82 Effect:

current-port-number current-port-number + 1

84 op.phase put

op.acc ;

86

Output recon-ack(c)
i

88 Precondition:

cid = op.recon-conf-id

90 cid = htime-stamp, pid, ci

9 P 2 put-quorums(c) such that P � op.acc

92 op.type = recon

op.phase = put

94 Effect:

if (conf-id = op.recon-conf-id) then

96 recon-ip false

op.phase idle

98

Input geo-update(t, l)
i

100 Effect:

clock t

Figure 12: Operation Manager Client read/write/recon and geo-update Transitions for Node i.
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guarantee fault-tolerance, tolerating the failure of up to f focal point objects. Figure 8 depicts the implementation of

a read/write atomic object in the Focal Point Object Model.

Signature. We first describe the signature of the Operation Manager Client, contained in Figure 9. The external

signature consists of read, write, and reon actions, to initiate the appropriate operations, and read-ak, write-ak, and

reon-ak actions to indicate that the operation have completed.

The external signature also includes invoke and respond actions, to communicate with the focal point objects. Each

of these actions is performed on some port, p, for some object, obj .

There are also two internal actions: read-2 and reon-2. The first of these begins the second phase of a read

operation. The latter begins the second phase of a reconfiguration operation. (We describe these operations later in

this section.)

The Operation Manager Clients are composed with two sets of automata: the focal point objects and the ReonClient

automata. The invoke/respond actions allow the Operation Manager to communicate with the focal point objects. The

reon and reon-ak allow the Operation Manager to communicate with the ReonClient automata.

State. The state of an Operation Manager Client consists of two parts: some general state that is maintained through-

out the execution, and the op record, which maintains state specific to an ongoing operation.

The on�rmed-set is a set of tags associated with operations that have completed. That is, if a tag is in on�rmed-set ,

then some read or write operation associated with that tag has completed.

The onf-id is the largest configuration identifier that the Operation Manager Client has received. The Operation

Manager Client receives configuration identifiers from respond actions for get-ak and put-ak responses.

The reon-ip flag indicates whether the Operation Manager Client believes that a reconfiguration is in progress.

The Operation Manager Client sets this flag to true whenever it receives a new, larger configuration identifier (from

a respond action), and sets it to false when it receives an indication that the reconfiguration is complete (also from a

respond action).

The lok is the current real time, as specified by the Geosensor component of the RealWorld.

The ongoing-operations is a set of objects and ports, indicating that an operation has been invoked on the specified

port of that object, and that a response has not yet occurred. This is used to ensure the well-formedness condition that

atomic objects require: there is only one operation ongoing at any given time on a given port of a given object.

Each invocation of a focal point objects uses a port, which consists of a sequence number, an operation identifier,

and a node identifier. The urrent-port-number stores the sequence number component of the port. An invocation

by node i, then, uses the port identified by hurrent-port-number ; op; ii, where op is either put, get, on�rm, or

reon-done.

Every time a new phase of an operation is begun, the urrent-port-number is incremented. Since only one

operation can take place on a port at a time, incrementing the port number allows the new phase to perform invocations,

even if old invocations on the prior port have not completed.

The op record maintains information specific to a given operation. The op:type field indicates the type of the

ongoing operation. The op:phase field indicates the phase of the operation. (Operations may go through two phases:

a get phase and a put phase; a write operation performs only a put phase.) The op:tag field indicates the largest tag

discovered during the get phase of an operation. The op:value field indicates the value associated with that tag.

The op:reon-ip field indicates whether a reconfiguration is in progress. Notice that, unlike the general reon-ip

flag, the op:reon-ip flag is never reset to false until the phase completes. Once a reconfiguration occurs concurrently

with some phase of an operation (and some Operation Manager Client receives information about this reconfiguration),

the op:reon-ip flag is set to true for the rest of the phase.

The op:reon-onf-id field is used to keep track of the configuration being installed by an ongoing reconfiguration.

While the reconfiguration occurs, a new reconfiguration may be initiated at some other mobile node. This may cause

onf-id to be modified. The op:reon-onf-id , however, is not modified until the ongoing reconfiguration is complete.

The op:a set is an accumulator that maintains the set of object identifiers of objects that have performed a

respond during the phase of an operation. A phase completes when op:a contains a large enough set of object

identifiers; in particular, it completes when object identifiers associated with appropriate quorums are contained within

the op:a set.
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Read/Write Operations. The code for read/write operations is presented in Figures 11 and 12. We first explain how

a write operation proceeds, and then go on to explain read operations.

Each read and write operation consists of either one or two phases. A write operation requires only a single phase,

a “put phase” that propagates the new value to at least one quorum of focal point objects. Some read operations require

only a single phase, a “get phase”, that retrieves the value from at least one quorum of focal point objects. Other read

operations require two phases: a “get phase” followed by a “put phase”.

Assume that the read or write operation is initiated at node i. During each phase of the operation, node i invokes

put and get operations on the focal point objects. Each invocation and subsequent response uses a port.

Each phase of each operation uses a unique port. When a phase begins, node i chooses a new port to use during

that phase by incrementing the urrent-port-number (for example, Figure 12, Line 3).

The choice of port serves two purposes. First, it ensures that the Operation Manager Client respects the well-

formedness requirement of the focal point objects. Only one operation may occur at a time on each port of each

object. By choosing a new port for each phase, we ensure that node i can perform invocations during that phase while

respecting the well-formedness requirement.

Second, the use of a unique port for each phase allows, node i to be sure that any response received on port p is the

result of an invocation during the phase associated with port p. Any response on any other port (i.e., a port that is not

identified by urrent-port-number) is ignored (see Figure 11, Line 42, for example), since it results from an earlier

(completed) phase.

A write operation begins at node i when OM

i

receives a write(val)

i

request. Node i then examines its clock to

choose a new tag for the operation (Figure 12, Line 4). For example, if the write is initiated at time t, then the tag

is chosen to be ht; ii. At this point, the urrent-port-number is incremented, choosing port p for this phase of the

operation.

The OM

i

automaton then begins a put phase, which performs put invocations on the focal point objects (Figure 11,

Lines 11–21). We allow invocations to happen, nondeterminstically, on all the focal point objects. In some cases, of

course, there is no need to contact all the focal point objects; it is simpler, however, to allow invocations on all of them,

and assume that in an optimized implementation invocations occur only on a small set of focal point objects.

The phase completes when the OM

i

automaton receives sufficient responses from the objects for operations that

it invoked on port p (Figure 11, Lines 57–67). Assume that when the operation begins, the automaton is in the

configuration identified by id = h�; �; i (i.e., id = onf-id

i

). If all responses indicate that  is the most recent

configuration identifier, and as a result no reconfiguration is in progress, then the operation terminates when OM

i

receives at least one response from each object in some P 2 put-quorums() (Figure 12, Line 12).

On the other hand, if any response indicates that a reconfiguration is in progress, then OM

i

waits until it receives

responses from objects in quorums of every configuration. Specifically, the phase completes when for every config-

uration 

0 in M , there is some quorum, P 2 put-quorums(

0

) such that every object in P has responded to node i

during the phase (Figure 12, Line 10).

After the operation the OM

i

may notify objects that the tag has been confirmed, indicating that the previous oper-

ation is complete (Figure 11, Lines 23–29). The on�rm invocation uses the port hurrent-port-number ; on�rm; ii,

thus ensuring that it does not conflict with put and get invocations.

When the OM

i

automaton receives a read request, it first begins a get phase (Figure 12, Line 22) and performs

get invocations on the atomic objects (Figure 11, Lines 1–9). Again, assume that when the operation begins, the

automaton is in the configuration identified by id = h�; �; i (i.e., id = onf-id

i

).

As for write operations, if all responses indicate that  is the most recent configuration identifier, then the get

phase terminates when OM

i

receives a response from each object in some G 2 get-quorums(). Otherwise, the

phase completes when for every configuration 0 in M , OM

i

receives a response from each object in some quorum

G 2 get-quorums(

0

).

At this point, OM

i

chooses the value associated with the largest tag from any of the responses. If the chosen tag

has been confirmed, then the operation completes (Figure 12, Lines 54–66). Otherwise, OM

i

begins a second phase,

a put phase, which is identical to the protocol for the write operation (Figure 12, Lines 38–52).

The knowledge of the confirmed tags is used to short-circuit the second phase of certain read operations. The

second phase is required only when a prior operation with the same tag has not yet completed. By notifying objects

when the tag has been confirmed, the algorithm allows later operations to discover that a second phase is unnecessary.
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Reconfiguration. The code for the reconfiguration algorithm is presented in Figure 11 (where Lines 31–38 are used

by the reconfiguration mechanism, while the rest is used also by the read/write mechanism) and Figure 12, Lines 68–

97.

The reconfiguration algorithm differs from the reconfiguration processing presented in the RAMBO algorithm [25,

14]. The new algorithm eliminates the Recon service and the associated consensus service, while limiting the number

of configurations the system can support. In RAMBO, an arbitrary new configuration can be proposed, while upgrading

to the new configuration requires knowledge about all active preceding configurations. The Recon service in RAMBO

uses consensus to agree on the order of configurations, while the configuration-upgrade operation in RAMBO uses the

knowledge of the order and local information about active configurations.

The new reconfiguration algorithm works with a known finite set of possible configurations. The algorithm does

not use consensus because all possible preceding configurations are known. The configuration identifiers determine

a total ordering on the installed configurations, however it is not necessary that a mobile node be aware of all prior

configuration identifiers in the total order. It is sufficient for the reconfiguration algorithm to simply contact all configu-

rations in order to ensure that all configurations preceding it in the total order are contacted. Because this simplification

obviates the need for a consensus service, it significantly improves efficiency.

A reconfiguration operation is a two-phase operation similar to a two-phase read operation; it includes a get phase

and a put phase. In each phase it requires contacting appropriate quorums of objects from certain configurations.

A reconfiguration begins when the Operation Manager Client receives a reon() input, where  names one of the

configurations in M . For the sake of this discussion, assume that the reon is initiated at mobile node i.

First, the Operation Manager Client chooses a new, unique configuration identifier, by examining the local clock,

and using its node identifier (i.e., node i) and the name of the new configuration (i.e., configuration ). Specifically,

if the reon()

i

occurs at time t, then the configuration identifier is id = ht; i; i (Figure 12, Line 70). At the same

time, node i sets its onf-id
i

to the new configuration identifier (ht; i; i) and sets reon-ip
i

to true, to indicate that a

reconfiguration is in progress (Figure 12, Line 71).

The Operation Manager Client then chooses a new port, incrementing urrent-port-number

i

(Figure 12, Line 72).

This starts a get phase. During the get phase, invoke(get; : : :)
obj ;p

events occur (Figure 11, Lines 1–9) for objects obj

in quorums of all configurations in M .

When a respond(get-ak; : : :)

obj ;p

event occurs (on the same port p), obj is added to op:a . The phase completes

when i has received a response from every object in at least one put-quorum and one get-quorum of each configuration

in M .

At this point, a reon-2(id)

i

occurs (Figure 12, Lines 75–85), a new port, p0, is chosen (Figure 12, Line 83), and

the put phase begins. During the put phase, respond(put; : : :)
obj ;p

0 events occur (Figure 11, Lines 11–21) for objects

obj in quorums of the new configuration, .

When respond(put-ak; : : :)

obj ;p

0 events occur (on the same port p0), obj is added to op:a. The phase completes

when i has received responses from every object in at least one put-quorum of the new configuration,  (Figure 12,

Line 91).

At this point, a reon-ak(id)

i

occurs (Figure 12, Lines 87–97), ending the reconfiguration.

If onf-id
i

is equal to op:reon-onf-id , then reon-ip

i

is set to false (Figure 12, Line 96). Otherwise, a new

configuration with a larger configuration identifier has been discovered by node i, and a reconfiguration for this new

configuration identifier may be in progress elsewhere. Therefore, in this case, reon-ip
i

is left unchanged.

When a reconfiguration is not in progress, node i may notify focal point objects that the reconfiguration for a

certain configuration identifier is done, with reon-done invocations (Figure 11, Lines 31–38).

Finally, notice that the reconfiguration algorithm proceeds in the same way, regardless of whether the newly pro-

posed configuration (i.e., the configuration with name ) is the same as the old configuration: whenever the new

configuration identifier is different from the old one, a reconfiguration occurs.

6 The Operation Manager Implements a Read/Write Object

In this section, we show that the Operation Manager guarantees atomic consistency. We show that the Operation

Manager correctly implements an atomic read/write object by showing that a partial ordering of operations exists with

the properties required by Theorem 3.2. We first define some notation, in Section 6.1. We then define a partial order,

in Section 6.2. Next, we prove some preliminary lemmas, in Section 6.3. We then outline the main part of the proof in

Section 6.4, and then move on to the main body of the proof in Section 6.5.
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6.1 Notation

We first define some notation that we use during the proof. Throughout this section, we fix � to be an execution of

the entire system: the Operation Manager, the focal point objects, the reconfiguration clients, and the well-formed

environment,U . Additionally, we assume that every read and write operation in � completes. Let � be the set of read

and write operations in �.

There are two ways in which a read operation may conclude: after two phases (see Figure 12, Lines 24–36), or

after a single phase (see Figure 12, Lines 54–64). In the first case, at the end of the read operation when the read-ak

occurs, op:phase = put, indicating that a “put” phase has completed. In the second case, at the end of the read

operation, op:phase = get, indicating that only a single phase, a “get” phase, has completed. In this case, op:tag is

in the set on�rmed immediately before the read completes, so the operation completes after only the get phase.

Every read operation begins with a read action and ends with a read-ak action. We say that a read operation

� 2 � that takes place at node i is a two-phase read operation if a read-2

i

event occurs between the read

i

event and

read-ak

i

event. Operation � is a one-phase read operation if no read

2

i

event occurs.

We now associate a configuration identifier with each phase of a read or write operation, �, based on the value of

the onf-id of the operation’s initiator at the end of that phase. Specifically, if � is a one-phase read operation initiated

by node i, then the “get configuration” of �, get-onf-id (�), is the value of onf-id
i

when �’s read-ak
i

event occurs,

ending the get phase. If � is a two-phase read operation, then get-onf-id(�) is the value of onf-id
i

when �’s read-2
i

event occurs, ending the get phase. (If � is a write operation, then � has no get phase, so get-onf-id(�) is undefined.)

If for some operation �, get-onf-id (�) = ht; i; i, then we define get-onf (�) to be , the name of the configura-

tion identified by the get-onf-id (�). We say the get-onf (�) is the “get configuration” of �.

If � is a two-phase read operation (respectively, a write operation), then the “put configuration identifier” of �,

the put-onf-id(�), is the value of onf-id

i

when �’s read-ak

i

(respectively, write-ak
i

) event occurs. If � is a

reconfiguration operation, then put-onf-id(�) is the value of op:onf-id
i

when the reon-ak event occurs. (If � is

a one-phase read operation, then � has no put phase, so put-onf-id(�) is undefined.)

If for some operation �, put-onf-id(�) = ht; i; i, then we define put-onf (�) to be , the name of the configu-

ration identified by the put-onf-id(�). We say the put-onf (�) is the “put configuration” of �.

Next, we associate a “recon-in-progress” flag with each phase of a read or write operation, based on the value of

op:reon-ip at the end of that phase. Specifically, if � is a one-phase read operation initiated by node i, then we define

get-rip(�) to be the value of op:reon-ip
i

when �’s read-ak

i

event occurs, ending the get phase. If � is a two-phase

read operation, then get-rip(�) is the value of op:reon-ip
i

when �’s read-2

i

event occurs, ending the get phase.

If � is either a two-phase read operation or a write operation, then we define put-rip(�) to be the value of

op:reon-ip

i

when �’s read-ak

i

or write-ak
i

event occurs.

The get-rip and put-rip flags indicate whether node i detects a reconfiguration in progress during the get or put

phase of the operation. It is sufficient to consider the value of the op:reon-ip flag at the end of the phase, since the flag

is never set to false during the phase: none of the invoke=respond actions set op:reon-ip to false, only the write, read,

read-2, reon, and reon-2 event might have this effect, if reon-ip is true. If at any time during the phase reon-ip is

set to true, which happens only during a respond event, then op:reon-ip is set to true at the same time (for example,

Figure 11, Lines 49 and 50), and it is therefore true at the end of the phase.

During the proof, if s is a state during the execution and obj is a focal point object, we use the terminology s :obj

to refer to the state of the object. If x is a component of the state of the object, we use the terminology s :obj :�eld to

refer to the �eld component of the object. For example, s :obj :tag refers to the tag of the object obj in state s.

6.2 Partial Order

We now construct an appropriate partial ordering, and then show that it meets the necessary requirements of Theo-

rem 3.2. For a read or write operation, � 2 �, initiated at mobile node i, we define tag(�) as follows: tag(�) =

op:tag

i

immediately after the acknowledgment of � occurs, that is, when the read-ak

i

or write-ak
i

event occurs. (In

fact, the tag is often fixed earlier in the operation, as we show in Lemma 6.1.) For a reconfiguration operation, �, we

define tag(�) = op:tag

i

immediately after the reon-2 event occurs. We then define the partial order�:

� For any two operations �
1

and �
2

:

if tag(�
1

) < tag(�

2

) then �
1

� �

2

:
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� For any write operation �
1

, and any read operation �
2

:

if tag(�
1

) = tag(�

2

) then �
1

� �

2

:

We show in Theorem 6.16 that this partial order,�, satisfies the three conditions of Theorem 3.2. The key condition

to prove about the partial ordering is that it is consistent with the ordering of operations in �. That is, we need to show

Property 2 of Theorem 3.2, that if �
1

and �
2

are two operations, and �
1

completes before �
2

begins, then �
2

does not

precede �
1

in the partial order.

6.3 Preliminary Lemmas

Before beginning the main part of the proof, we prove a few preliminary lemmas. First we examine when during an

operation the tag of the operation is fixed. Then we prove some general lemmas about the propagation of tags and

values during a put phase and the retrieval of tags and values during a get phase.

Recall that for operation � at node i, tag(�) is defined as the value of op:tag
i

when the operation completes. In

fact, if the operation has a put phase, the tag is fixed prior to the put phase of the operation.

Lemma 6.1 If � is a write operation at node i, then tag(�) = op:tag

i

immediately after the write

i

event. If � is a

two-phase read operation, then tag(�) = op:tag

i

immediately after the read-2

i

event.

Proof. Assume � is a write operation. In this case, OM

i

performs only put invocations. Notice that the

respond(put-ak; : : :)

i

action does not update op:tag
i

Therefore op:tag
i

does not change after the write

i

event until the write-ak

i

event that

concludes the operation and defines the tag(�).

Assume � is a read operation. Similarly, after the read-2

i

event, the OM

i

only performs put invocations, so

again op:tag

i

does not change after the read-2

i

event, until the read-ak

i

that concludes the operation and defines the

tag(�). �

We next note that the tag component of the focal point object’s state is nondecreasing:

Lemma 6.2 For every focal point object, obj , the tag of obj is nondecreasing. If s and s

0 are two states during

execution �, and s precedes s0, then s :obj :tag � s

0

:obj :tag .

Proof. Immediate by examination of the code that modifies tag . The tag is modified only in Figure 10, Line 13,

which is executed only if new-tag > tag . �

Next we consider how tag information is propagated during read and write operations to focal point objects. We

show that after the put phase of an operation completes, there exists a specific quorum of objects each of which has a

tag no smaller than that of the operation.

Lemma 6.3 Let � be a two-phase read operation, a write operation, or a reconfiguration that occurs at node i. Then

there exists a put-quorum, P , in put-onf (�) such that for every object, obj , in P ,

tag(�) � obj :tag

anytime after � completes.

Proof. This lemma follows from the termination condition of the put phase of an operation. Assume that when the

put phase of � begins (i.e., immediately after the write, read-2, or reon-2 event), p = hurrent-port-number ; put; ii,

the port number that is used throughout the phase. Also, assume that id = put-onf-id(�) = h�; �; i.

We divide the proof of into two subcases: the case where put-rip(�) = false, and where put-rip(�) = true.

First, consider the case where put-rip(�) = false. Recall that if � is a read or write operation, then id , the

put-onf-id(�), is equal to the configuration identified by onf-id

i

when the operation completes; if � is a reconfigu-

ration, then id is equal to the configuration identifier op:onf-id
i

when the operation completes. (Notice that our use

of  is consistent with the notation used in Figure 12, Lines 8, 26 and 90.)
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Then the precondition for the put phase ending is that there exists a put-quorum P 2 put-quorums() such that

P � op:a

i

(see Figure 12, Lines 12, 30 and 91.

An object obj is added to op:a only when a

respond(put-ak; : : :)

obj ;p

event occurs (Figure 11, Lines 57–67). The focal point object model guarantees that each respond event is caused by

a unique preceding invoke event:

invoke(put; t ; v ; id)

obj ;p

Since the invocation takes place on port p, this means that it must occur after the beginning of the put phase. Therefore,

the tag, t , is in fact equal to tag(�), the tag at the beginning of the put phase, by Lemma 6.1 and the definition of

tag(�). The focal point object model guarantees that at some point between the invocation and the response, the put

transition was executed on the object’s state, thus ensuring that the tag of the object is no smaller than t.

We conclude, then, by Lemma 6.2, that for each object, obj 2 P , tag(�) � obj :tag after operation � completes.

We now consider the case where put-rip(�) = true. Assume, then, that � is a two-phase read operation or a

write operation. In this case, the precondition for the put phase ending is that for every configuration 0, there exists a

put-quorum P 2 put-quorums(

0

) such that P � op:a

i

(see Figure 12, Lines 10 and 28). Fix 0 = .

By the same argument as before, we can conclude that for every object, obj 2 P , tag(�) � obj :tag when

operation � completes. �

When put-rip is true there is a stronger version of this lemma for read and write operations: there exists at least

one put-quorum for each configuration where every object in the put-quorum has a tag no smaller than the tag of the

operation.

Lemma 6.4 Let � be a two-phase read operation or a write operation that occurs at node i. If put-rip(�) = true,

then for every  2M , there exists a put-quorum, P 2 put-quorums(), such that for every object, obj , in P ,

tag(�) � obj :tag

anytime after � completes.

Proof. This lemma follows from the termination condition of the put phase of an operation. Assume that when the

put phase of � begins (i.e., immediately after the write, read-2, or reon-2 event), p = hurrent-port-number ; put; ii,

the port that is used throughout the phase. Fix any arbitrary  2M .

The precondition for the put phase ending is that there exists a put-quorum P 2 put-quorums() such that

P � op:a

i

(see Figure 12, Lines 10 and 28).

An object, obj is added to op:a only when a

respond(put-ak; : : :)

obj ;p

event occurs (Figure 11, Lines 57–67). The focal point object model guarantees that each respond event is caused by

a unique preceding invoke event:

invoke(put; t ; v ; )

obj ;p

Since the invocation takes place on port p, this means that it must occur after the beginning of the put phase. Therefore,

the tag, t , is in fact equal to tag(�), the tag at the beginning of the put phase, by Lemma 6.1 and the definition of

tag(�). The focal point object model guarantees that at some point between the invocation and the response, the put

transition was executed on the object’s state, thus ensuring that the tag of the object is no smaller than t.

We conclude, then, by Lemma 6.2, that for each object, obj 2 P , tag(�) � obj :tag after operation � completes.

Since for every  2M there exists such a put-quorum, P , the lemma holds. �

We next show that a get phase effectively retrieves information on the tags from a quorum of a certain configuration.

Lemma 6.5 Let � be a two-phase read operation that occurs at node i. Then there exists a get-quorum, G, in

get-onf (�) such that for every object, obj in G,

obj :tag when � begins is � tag(�) :
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Proof. This lemma is similar to Lemma 6.3, and follows from the termination condition of the get phase of an

operation.

Assume that when the get phase of � begins (i.e., immediately after the read event), p = hurrent-port-number ; get; ii,

the port that is used throughout the phase. Also, assume that id = get-onf-id(�) = h�; �; i.

We divide the proof into two subcases: the case where get-rip(�) = false, and where get-rip(�) = true.

First, consider the case where get-rip(�) = false. Recall that id , the get-onf-id (�), is equal to the configuration

identifier onf-id
i

when the get phase of the operation completes. (Notice that our use of  is consistent with the

notation used in Figure 12, Line 40.)

Then the precondition for the get phase ending is that there exists a get-quorum G 2 put-quorums() such that

G � op:a

i

(see Figure 12, Line 44).

An object, obj is added to op:a only when a

respond(get-ak; t; v; : : :)

obj ;p

event occurs (Figure 11, Lines 40–55). The focal point object model guarantees that each respond event is caused by

a unique preceding invoke event:

invoke(get; : : :)

obj ;p

Since the invocation takes place on port p, this means that it must occur after the beginning of the get phase.

The focal point object model guarantees that the get transition occurs sometime after the invocation and prior to the

response. Therefore, the tag t in the response is greater than or equal to obj :tag when the invocation occurs. We

therefore conclude, by observing Figure 11, Lines 44–45, that obj :tag � tag(�) when the phase begins.

We now consider the case where get-rip(�) = true. In this case, the precondition for the get phase ending is that

for every configuration 0, and in particular for the case where 0 = , there exists a get-quorumG 2 get-quorums(

0

)

such that G � op:a

i

(see Figure 12, Line 42).

By the same argument as before, we can conclude that for every object, obj 2 G, obj :tag � tag(�) when the

phase begins. �

Again, in the case where get-rip(�) is true, we can show a stronger property: the get phase retrieves tag information

from at least one get-quorum of each configuration.

Lemma 6.6 Let � be a two-phase read operation that occurs at node i. If reon-ip
i

= true at the end of the get phase,

then for every configuration  2 M , there exists a get-quorum, G 2 get-quorums() such that for every object, obj

in G,

obj :tag when � begins is � tag(�) :

Proof. This lemma is similar to Lemma 6.4, and follows from the termination condition of the get phase of an

operation.

Assume that when the get phase of � begins (i.e., immediately after the read event), p = hurrent-port-number ; get; ii,

the port that is used throughout the phase. Fix any arbitrary  2M .

The precondition for the get phase ending is that there exists a get-quorum G 2 get-quorums() such that G �

op:a

i

(see Figure 12, Line 42).

An object, obj is added to op:a only when a

respond(get-ak; t; v; : : :)

obj ;p

event occurs (Figure 11, Lines 40–55). The focal point object model guarantees that each respond event is caused by

a unique preceding invoke event:

invoke(get; : : :)

obj ;p

Since the invocation takes place on port p, this means that it must occur after the beginning of the get phase.

The focal point object model guarantees that the get transition occurs sometime after the invocation and prior to the

response. Therefore, the tag t in the response is greater than or equal to obj :tag when the invocation occurs. We

therefore conclude, by observing Figure 11, Lines 44–45, that obj :tag � tag(�) when the phase begins. Since for

every  2M there exists such a get-quorum, G, the lemma holds. �
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6.4 Outline of the Operation Manager Proof

Our goal is to show that if we have two operations, �
1

and �
2

, and �
1

completes before �
2

begins, then �
2

� �

1

. We

break this proof into a number of cases:

1. Operation �
2

is a write operation (Lemma 6.7).

2. Operation �
2

is a read operation and operation �
1

is either a two-phase read operation or a write operation.

(a) put-ip(�

1

)_ get-ip(�

2

) = true. Either the put phase of �
1

or the get phase of �
2

detects a reconfiguration

in progress (Lemma 6.8).

(b) put-ip(�

1

)_get-ip(�

2

) = false. Neither the put phase of �
1

nor the get phase of �
2

detect a reconfiguration

in progress.

i. put-onf-id(�

2

) = get-onf-id (�

2

). The put configuration identifer of �
2

is equal to the get configu-

ration identifer of �
2

(Lemma 6.9).

ii. put-onf-id(�

1

) > get-onf-id(�

2

). The put configuration identifier of �
1

is larger than the get

configuration identifier of �
2

(Lemma 6.11).

iii. put-onf-id(�

1

) < get-onf-id (�

2

). The put configuration identifier of �
1

is smaller than the get

configuration identifier of �
2

(Lemma 6.12).

3. Operation �
2

is a read operation and operation �
1

is a one-phase read operation (Lemma 6.14).

6.5 Proving the Operation Manager Correct

We now proceed to examine the various cases, as outlined above.

Case 1: Write Operation. We first consider the case where �
2

is a write operation:

Lemma 6.7 If �
1

is a read or write operation, and �
2

is a write operation, and �
1

completes before �
2

begins, then

�

1

� �

2

.

Proof. Assume that operation �
2

occurs at node i. The result follows immediately by the choice of tag(�
2

). The tag

op:tag

i

is chosen during the write(v)

i

action (see Figure 12, Line 4). It is chosen using the real-time clock (along with

a process identifier to break ties). The tag of �
1

must have been chosen at the beginning of a prior write operation, or

must be the initial value. If the tag of �
1

is the initial value, then the tag of �
2

is necessarily larger. Assume, then, that

the tag of �
1

originates with a prior write operation.

This prior write operation must take some time strictly greater than zero to complete, since the write operation

requires performing at least one invocation on a focal point object and receiving a response from that invocation. The

focal point object model guarantees that each operation consisting of an invocation and a response on a focal point

object takes some time to complete: the invocation and the response do not occur at the same time. Therefore the write

operation must take some time strictly greater than zero to complete. Since �
2

begins after �
1

ends, it begins at some

time strictly greater than zero after the prior write operation begins.

This ensures that tag(�
1

) < tag(�

2

), which immediately implies that �
1

� �

2

, as desired. �

For the rest of the proof we assume that �
2

is a read operation.

Case 2: Two-Phase Read and Write Operations. We now consider the case where �
1

is either a two-phase read

operation or a write operation, and �

2

is a read operation. We postpone until later the case where �
1

is a one-phase

read operation.

There are two subcases to consider, depending on whether at least one of the flags put-rip(�
1

) or get-rip(�
2

) is

true (Case 2(a)), or both flags are false (Case 2(b)).

We first consider the case where at least one of the put phase of �
1

or the get phase of �
2

detects a reconfiguration

in progress (Case 2(a)). That is, if i initiates operation �
1

and j initiates �
2

, then we assume that at least one of the

following two conditions holds:
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� At the end of the put phase of �
1

, op:reon-ip
i

= true.

� At the end of the get phase of �
2

, op:reon-ip
j

= true.

Lemma 6.8 (Case 2(a)) Assume operation �
1

is a two-phase read or write operation at node i. Assume that �
2

is a

read operation initiated at node j, and that �
1

completes before �
2

begins. Assume that at least one of the following

is true:

� put-rip(�

1

) = true, or

� get-rip(�

2

) = true.

Then tag(�
1

) � tag(�

2

), and as a result �
2

� �

1

.

Proof. In this case, at least one of the two nodes detects a reconfiguration in progress: node i during the put phase

and/or node j during the get phase. We divide this case into two subcases, depending on whether it is node i or node

j that detects the reconfiguration.

Subcase 1:. First, assume that:

put-rip(�

1

) = true :

This implies that node i detects the reconfiguration during the put phase of �
1

.

Choose 0 = get-onf (�

2

). Lemma 6.4 guarantees that there exists a put-quorum, P 2 put-quorums(

0

), such

that for every object, obj 2 P , tag(�
1

) � obj :tag when �
1

completes (since it guarantees this for every 0 2M ).

Lemma 6.5 guarantees that there exists a get-quorum, G, in get-quorums(

0

), the get configuration of �
2

, such

that for every object, obj 2 G, obj :tag � tag(�

2

) when �
2

begins.

Then there must exist an object, obj 2 G \ P , since both are quorums of the same configuration 0 and one is a

get-quorum and the other is a put-quorum.

We already know that tag(�
1

) � obj :tag when �
1

completes. And obj :tag when �
2

begins is � tag(�

2

). Since

�

1

completes before �
2

begins, we conclude that tag(�
1

) � tag(�

2

).

Subcase 2:. Next, assume that:

get-rip(�

2

) = true :

This implies that node j detects the reconfiguration during the get phase of �
2

.

Choose 

0

= put-onf (�

1

). Lemma 6.6 guarantees that for every 

0

2 M , there exists a get-quorum, G 2

get-quorums(

0

), such that for every object, obj 2 G, obj :tag � tag(�

2

) when �
2

begins (since it guarantees this for

every 0 2M ).

Lemma 6.3 guarantees that there exists a put-quorum, P , in put-quorums(

0

), the put configuration of �
1

, such

that for every object, obj 2 P , tag(�
1

) � obj :tag when �
1

completes.

Then there must exist an object, obj 2 G \ P , since both are quorums of the same configuration 0 and one is a

get-quorum and the other is a put-quorum.

We already know that tag(�
1

) � obj :tag when �
1

completes. And obj :tag � tag(�

2

) when �
2

begins. Since �
1

completes before �
2

begins, we conclude that tag(�
1

) � tag(�

2

). �

In the next case (Case 2(b)), we assume that neither the put phase of operation �
1

nor the get phase of operation �
2

detects the reconfiguration in progress. Thus for the next set of lemmas, we assume that put-rip(�
1

) and get-rip(�

2

)

are both false. This case has three subcases, depending on the relationship of the put configuration identifier of �
2

and

the get configuration identifier of �
1

. First, we assume that these configurations identifiers are the same.

Lemma 6.9 (Case 2(b).i) Assume that operation �
1

is a two-phase read operation or a write operation at node i, and

that �
2

is a read operation at node j. Assume that �
1

completes before �
2

begins.

Also, assume that put-rip(�
1

) and get-rip(�

2

) are both false and that:

put-onf-id(�

1

) = get-onf-id(�

2

) :

Then tag(�

1

) � tag(�

2

), and as a result, �
2

� �

1

.
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Proof. Let id = put-onf-id(�

2

) = get-onf-id(�

1

). Assume that id = h�; �; i.

Lemma 6.3 guarantees that there exists a put-quorum, P such that for every object, obj 2 P , tag(�
1

) � obj :tag

when �
1

completes.

Lemma 6.6 guarantees that there exists a get-quorum, G 2 get-quorums() such that for every object, obj 2 G,

obj :tag � tag(�

2

) when �
2

begins.

Since P is a put-quorum and G is a get-quorum of the configuration identified by , there must exist some object,

obj 2 P \G.

We already know that tag(�
1

) � obj :tag when �
1

completes. And obj :tag � tag(�

2

) when �
2

begins. Since �
1

completes before �
2

begins, we conclude that tag(�
1

) � tag(�

2

). �

We now consider the case (Case 2(b).ii) where the put configuration identifier of �
1

is larger than the get configu-

ration identifier of �
2

, that is, put-onf-id(�
1

) > get-onf-id(�

2

). It turns out that this case cannot occur.

We first need to show that when the reon-ip flag at node i is set to false, this correctly indicates that the configu-

ration identified by onf-id is fully installed, meaning that the reconfiguration that created onf-id has completed.

Since we assume in this case (Case 2(b).ii) that get-rip(�
2

) is false, this lemma shows that the configuration

identified by get-onf-id (�

2

) is fully installed prior to the start of �
2

.

Lemma 6.10 Let �0 be a prefix of �, and let  be some configuration that is not the initial configuration:

 6= h0; i

0

; 

0

i :

Assume that at the end of �0, onf-id
i

= id = h�; �; i and reon-ip

i

= false: Then for some node j, a

reon-ak(id )

j

event occurs in �0.

Proof. Assume, without loss of generality, that �0 is the shortest prefix of � such that for any node k, onf-id
k

= id

and reon-ip

k

= false at the end of �0.

There are only two ways in which i can have onf-id

i

= id and reon-ip

i

set to false: either i performs a

reon-ak(id )

i

action (see Figure 12, Line 96), or i receives a put-ak or get-ak response from an object specifying

configuration  and new-rip = false (see Figure 11, Lines 50 and 64). (The reon()

i

event does result in onf-id

i

=

id , however reon-ip
i

is set to true.)

Assume, however, that i receives a put-ak or get-ak from some object, obj , specifying configuration new-id

and new-rip set to false. Then a

invoke(reon-done;new-id)

obj ;h�;j

0

i

must occur prior to the put-ak or get-ak from obj , as this is the only event that can set obj :reon-ip to false.

But we assumed that i was the first node to be in this state (i.e., �0 is the shortest prefix ending with some node i

in this state), so this reon-done invocation cannot occur. Therefore i must perform a reon-ak(id )

i

. The node i,

then, satisfies the required properties of node j. �

We can now show that the get configuration identifier of �
2

is always greater than or equal to the put configuration

identifier of �
1

. Therefore, the second case (Case 2(b).ii) can never occur.

Lemma 6.11 (Case 2(b).ii) Assume operation �
1

occurs in � at node i before operation �
2

begins at node j. Assume

that �
1

is a two phase read or write operation, and �
2

is a read operation.

Assume that put-rip(�
1

) and get-rip(�

2

) are both false. Then put-onf-id(�

1

) � get-onf-id(�

2

).

Proof. If put-onf-id(�
1

) = h0; i

0

; 

0

i (the smallest possible value for a configuration identifier), then clearly this

result is true. Assume, therefore, that put-onf-id(�
1

) > h0; i

0

; 

0

i.

It is clear that reon-ip
i

is false at the end of the put phase of �
1

, since op:reon-ip

i

= false: whenever reon-ip
i

is set to true, so is op:reon-ip
i

, and op:reon-ip is not reset to false until the phase is completed.

Lemma 6.10 then indicates that for some node, k, a

reon-ak(put-onf-id(�

1

))

k
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event occurs prior to the end of the second phase of �
1

. In particular, the reon-ak occurs prior to the beginning of

�

2

.

In order for the reon to complete, a reon-2 must occur. This event completes the get phase of reconfiguration.

The precondition of reon-2 requires that for every configuration 0 2M , there exists a quorumP 2 put-quorums(

0

)

such that P � op:a. This implies that each object in quorum P responds to a get invocation in the first phase of the

reon operation. (Notice that during a reconfiguration, there are get invocations made on objects in put-quorums. This

is the one exception to the general rule that get operations are invoked on objects in get quorums and put operations

are invoked on objects in put quorums.)

Choose 0 = get-onf (�

2

), and let P 2 put-quorums(

0

) be the put-quorum (described above) contacted by node

k prior to the reon-2 event, and therefore prior to the start of �
2

.

When the get phase of �
2

completes, there exists some put-quorum of objects, G 2 put-quorums(get-onf (�

2

)),

such that every object, obj 2 G has responded to a get invocation during the first phase of �
2

.

There must be some object obj in G \ P , as both G and P are quorums of the same configuration, get-onf (�
2

),

and one is a get-quorum and the other is a put-quorum.

Recall that the reconfiguration in question is installing the configuration put-onf-id(�

1

). As a result of the

invocation of object obj during the get phase of the reconfiguration, it is clear that at the end of the get phase,

put-onf-id(�

1

) � obj :on�g-id .

As a result of the response of object obj during the get phase of �
2

, it is clear that obj :on�g-id � get-onf-id(�

2

)

at the beginning of the get phase.

Therefore, we conclude that:

put-onf-id(�

1

) � get-onf-id(�

2

) :

�

The next case to consider is when the put configuration identifier of �
1

is strictly smaller than the get config-

uration identifier of �
2

. This is the most complicated part of the proof, and relies on showing that an intervening

reconfiguration operation – the one that creates configuration get-onf-id (�

2

) – relays information from �

1

to �
2

.

Lemma 6.12 (Case 2(b).iii) Assume operation �
1

is a two-phase read or write operation at node i. Assume that �
2

is a read operation initiated at node j, and that �
1

completes before �
2

begins.

Also, assume that put-onf-id(�
1

) < get-onf-id (�

2

). Finally, assume that put-rip(�
1

) and get-rip(�

2

) both

equal false. Then tag(�
1

) � tag(�

2

), and as a result �
2

� �

1

.

Proof. Some reconfiguration must occur in order to create configuration get-onf-id (�

2

). We first identify the

reconfiguration, �, that creates the new configuration. We then show that tag(�) � tag(�

2

). Finally, we show that

tag(�

1

) � tag(�), concluding the proof.

Notice that get-onf-id(�
2

) 6= h0; i

0

; 

0

i, since it is strictly larger than put-onf-id(�

1

), and h0; i
0

; 

0

i is the

smallest possible value for configuration identifier put-onf-id(�
1

).

Since op:reon-ip
j

= false at the end of the get phase of �
2

, this means that reon-ip
j

= false at the beginning of

the get phase of �
2

: this is because no action resets op:reon-ip
j

to true during an operation.

Consider the prefix �

0 of � whose last event is the read event that begins �
2

. Then by Lemma 6.10, there exists

some node k that performs a reon-ak(get-onf (�

2

))

k

in �

0, that is, prior to the read

j

of �
2

. Let � be the reon

operation concluding with this reon-ak event.

We now show that tag(�) � tag(�

2

). Lemma 6.3 guarantees that there exists some put-quorum, P , in the put

configuration of � such that for each object, obj 2 P , tag(�) � obj :tag at the end of the reconfiguration. Note that P

is in put-quorums(), where

h�; �; i = put-onf-id(�) = get-onf-id(�

2

) :

Lemma 6.5 guarantees that there exists some get-quorum, G 2 get-quorums() such that for every object, obj 2

G, obj :tag � tag(�

2

) when �
2

begins.

Since G is a get-quorum and P is a put-quorum of the configuration identified by get-onf-id(�

2

), there exists an

object, obj
1

2 G \ P .

We have already shown that tag(�) � obj

1

:tag when � completes. And we have already shown that obj
1

:tag when

�

2

begins is � tag(�

2

). Since � completes before �
2

begins, we conclude from Lemma 6.2 that tag(�) � tag(�

2

).
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We next show that tag(�
1

) � tag(�). Consider the

reon-2(get-onf-id (�

2

))

k

event that occurs as part of reconfiguration �, ending the get phase of the reconfiguration. The precondition for the

reon-2 action requires that for every configuration 0 2 M , there exists a get-quorums G 2 get-quorums(

0

) such

that G � op:a

k

when the event occurs. This implies that for every object, obj 2 G, an

invoke(get; : : :)

obj ;p

event and a

respond(get-ak; : : :)

obj ;p

event occur during the get phase, where p is the port number during the get phase of the reconfiguration. As part of

this get operation, a perform event occurs at the automaton for obj .

Choose 0 = put-onf-id(�

1

), and let G be the get-quorum determined by the end of the get phase of the reconfig-

uration. Lemma 6.3 guarantees that there exists some put-quorum, P 2 put-quorums(

0

) such that for every object,

obj 2 P , tag(�
1

) � obj :tag at the end of �
1

.

Since G is a get-quorum and P is a put-quorum of the configuration identified by 

0, there exists some object,

obj

2

2 G \ P . We know that tag(�
1

) � obj

2

:tag when �

1

completes, since an invocation during the put phase

ensure that obj
2

:tag is at least tag(�
1

). And we know that obj
2

:tag � tag(�) when � begins.

At this point, however, we do not know which event came first: the invocation during the put phase of �
1

or the

response during the get phase of �.

Since obj

2

is an atomic object, it must process these two invocations – doing perform steps in the canonical

automaton – in one order or the other. Assume that obj
2

processes the invocation by � first, that is, the perform step

in response to � precedes the perform step in response to �
1

. In this case, the response to �
1

includes a configuration

identifier no smaller than get-onf-id (�

2

), the configuration being installed by �. As a result:

put-onf-id(�

1

) � get-onf-id(�

2

) :

This contradicts our assumption that the put configuration identifier of �
1

is less than the get configuration identifier

for �
2

.

Therefore, we can conclude that the invocation of obj
2

for �
1

precedes the response of obj
2

for �
2

. Therefore,

tag(�

1

) � tag(�). Combining the two inequalities, we conclude that

tag(�

1

) � tag(�

2

) ;

which implies that �
2

� �

1

. �

Case 3: One-Phase Read Operations. We now address the case of single-phase read operations. We assume that

�

1

is a one-phase read operation, that is, it does not have a put phase.

Notice that in Lemma 6.12, we depended significantly on �
1

propagating its tag to a put-quorum of objects. Since

a one-phase read operation has no put phase, we cannot use this.

Instead, we rely on the fact that a one-phase read operation, � occurs only when the tag of operation � is confirmed,

indicating that another two-phase operation, �0 has already propagated the tag of � to a put-quorum.

We first need a lemma showing that if a tag, t, is confirmed, then there exists a two-phase operation that propagated

tag t to a put-quorum.

Lemma 6.13 Let �0 be a prefix of �, and assume that at some node i, at the end of �0, the tag t 2 on�rmed

i

.

Then there exists an operation, �, in �

0 such that tag(�) = t and � is either a two phase read-operation or a write

operation.

Proof. Without loss of generality, assume that �0 is the shortest prefix of � such that at the end of �0, for some node

i, t 2 on�rmed

i

.

There are two ways in which a tag can be added to the confirmed set of i: either a response from some object

indicates that a tag is confirmed (see Figure 11, Line 54), or i itself completes a two-phase operation and adds t to the

confirmed set (see Figure 12, Lines 36 and 17).
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In the first case, this implies that there exists some object, obj , that has t 2 obj :on�rmed-set at some point in

�

0. However, this would imply that some other node k had performed a on�rm invocation on obj (see Figure 10,

Line 27) in �0, as this is the only way in which a tag can be added to an object’s confirmed set.

This, then, implies that t 2 on�rmed

k

in �

0, when the on�rm invocation occurs. This violates the assumption

that �0 is the shortest prefix to end with some node, i, containing t in on�rmed

i

.

Therefore, node i must perform a read-ak

i

or write-ak
i

in �0 that adds t to on�rmed

i

(see Figure 12, Lines 36

and 17). The value op:tag

i

must be equal to t, because t is added to on�rmed

i

. Further, if the operation is a read

operation, then a precondition of the read-ak

i

is that op:phase = put, implying that it is a two-phase read operation.

The node i, then, satisfies all the required properties of node j. �

Now we can show that with one-phase reads, the partial ordering induced by the tags is consistent with the real ordering

of the operations:

Lemma 6.14 (Case 3) Assume operation �
1

is a one-phase read operation, and occurs at node i. Assume that �
2

is a

read operation initiated at node j, and that �
1

completes before �
2

begins. Then tag(�
1

) � tag(�

2

), and as a result

�

2

� �

1

.

Proof. Since �
1

is a one-phase read operation, tag(�
1

) 2 on�rmed

i

when the read-ak

i

event occurs (see Fig-

ure 12, Line 63). Recall that tag(�
1

) is the value of tag
i

when the read-ak

i

event occurs.

By Lemma 6.13, a two-phase operation �0 must complete prior to the read-ak

i

event of �
1

and tag(�
1

) = tag(�

0

),

the tag
i

when the read-ak

i

event occurs.

Since �0 completes before the end of �
1

, it also completes before �
2

begins. Therefore, by Lemma 6.12, tag(�0) �

tag(�

2

); as a result, tag(�
1

) � tag(�

2

). �

Main Result. Combining the lemmas from all the cases (Lemma 6.7, Lemma 6.8, Lemma 6.9, Lemma 6.11,

Lemma 6.12, and Lemma 6.14), we conclude:

Theorem 6.15 If �
1

and �
2

are two operations, and �
1

completes before �
2

begins, then �
2

� �

1

.

We now claim that the Operation Manager, composed with the focal point objects, the ReconClients, and a well-formed

environment, implements a read/write atomic object.

Theorem 6.16 Let U be a well-formed environment. Let S be the composition of the Operation Manager, the focal

point objects, the ReonClients and the environment, U , where all input and output actions are hidden except for

read, read-ak, write, and write-ak. Let A be the canonical atomic read/write object, an object of the variable type

presented in Figure 5. Then:

traes(S Æ U) � traes(A Æ U)) :

Proof. First, notice that S has the appropriate input and output actions. Next, we go through the three conditions

required by Theorem 3.2:

1. Follows from the uniqueness of the tags: each is chosen by examining the local clock, and using process identi-

fiers to break ties.

2. Follows from Theorem 6.15.

3. Follows from the way in which the partial order is defined, as a read operation is ordered directly after the write

operation whose value it returns.

�

7 Focal Point Emulator

In this section we present an algorithm to implement the Focal Point Object Model. The algorithm allows mobile nodes

moving in and out of focal points, communicating with distributed clients through the GeoCast service, to implement
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Signature:

Input:

geocast-rcv(hinvoke, inv, oid, loci)
obj;i

, inv 2 invocations, oid 2 U, loc 2 L

lbcast-rcv(hjoin-req, jidi)
obj;i

, jid 2 T

lbcast-rcv(hjoin-ack, jid, vi)
obj;i

, jid 2 T, v 2 V

lbcast-rcv(hinvoke, inv, oid, loci)
obj;i

, inv 2 invocations, oid 2 U, loc 2 L

geo-update(l, t)
obj;i

, l 2 L, t 2 R>0

Output:

geocast(hresponse, resp, oid, loci)
obj;i

, resp 2 responses, oid 2 U, loc 2 L

lbcast(hjoin-req, jidi)
obj;i

, jid 2 T

lbcast(hjoin-ack, jid, vi)
obj;i

, jid 2 T, v 2 V

lbcast(hinvoke, inv, oid, loci)
obj;i

, inv 2 invocations, oid 2 U, loc 2 L

Internal:

join()
obj;i

leave()
obj;i

simulate-op(inv)
obj;i

, inv 2 invocations

State:

fp-location 2 2

L, constant, locations defining the focal point under consideration

clock 2 R

�0, the current time, initially 0, updated by the geosensor

location 2 L, the current physical location, updated by the geosensor

status 2 fidle,joining,listening,activeg, initially ative if node is in fp-loation and idle otherwise

join-id 2 T, unique id for current join request, initially h0; i
0

i

lbcast-queue, a queue of messages to be sent by the LBcast, initially ;

geocast-queue, a queue of messages to be sent by the GeoCast, initially ;

anwered-join-reqs, set of ids of join requests that have already been answered, initially ;

val 2 V, holds current value of the simulated atomic object, initially v

0

pending-ops, queue of operations waiting to be simulated, initially ;

completed-ops, queue of operations that have been simulated, initially ;

Figure 13: FPE Server Signature and State for Node i and Object obj of variable type � =

hV; v

0

; invoations ; responses ; Æi

an atomic object (with port set Q = S) corresponding to a particular focal point. We refer to this algorithm as the

Focal Point Emulator (FPE).

Figure 15 depicts the various components of the FPE. The clients (on the left) send invocations and receive re-

sponses from the FPE Client, which simply attaches a tag to every request and then broadcasts the request (using the

GeoCast service) to a focal point, where it is received by multiple FPE Servers. The FPE Servers then coordinate

among themselves, using the LBcast service to determine an ordering of the requests. They then update their local

replicas of the data object, and broadcast a response back. The FPE Client then removes duplicates, and sends the

response to the client. The FPE Client runs on every mobile node that wants to access this particular atomic object; the

FPE Server runs on every node and is active when that node is in the focal point corresponding to the atomic object.

FPE Client. The code for the FPE Client is presented in Figure 16. The FPE Client has three basic purposes. First,

it ensures that each invocation receives at most one response (eliminating duplicates). Second, it abstracts away the

GeoCast communication, providing a simple invoke/respond interface to the mobile node. Third, it provides each

mobile node with multiple ports to the focal point object; the number of ports depends on the atomic object being

implemented.

FPE Server. The FPE Server is the automaton that allows the mobile nodes in a focal point to simulate a single

replica. The FPE Server implements a replicated state machine, using the totally ordered local broadcast to ensure
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consistency. Figure 13 contains the signature and state of the FPE. The remaining code for the FPE Server is in

Figure 17.

When a node enters the focal point, it broadcasts a join-request message using the LBcast service and waits for

a response. The other nodes in the focal point respond to a join-request by sending the current state of the simulated

object using the LBcast service. As an optimization, to avoid unnecessary message traffic and collisions, if a node

observes that someone else has already responded to a join-request, then it does not respond. Once a node has received

the response to its join-request, then it starts participating in the simulation, by becoming active.

When a node receives a GeoCast message containing an operation invocation, it resends it with the LBcast service

to the focal point, thus causing the invocation to become ordered with respect to the other LBcast messages (which

are join-request messages, responses to join requests, and operation invocations). Since it is possible that a GeoCast

is received by more than one node in the focal point, there is some bookkeeping to make sure that only one copy of

the same invocation is actually processed by the nodes. We include an optimization that if a node observes that an

invocation has already been sent with the LBcast service, then it does not do so.

Active nodes keep track of operation invocations in the order in which they receive them over the LBcast service.

Duplicates are discarded using the unique operation ids. The operations are performed on the simulated state in order.

After each one, a GeoCast is sent back to the invoking node with the response. Operations complete when the invoking

node remains in the same region as when it sent the invocation, allowing the GeoCast to find it.

When a node leaves the focal point, it re-initializes its variables.

A subtle point is to decide when a node should start collecting invocations to be applied to its replica of the object

state. A node receives a snapshot of the state when it joins. However by the time the snapshot is received, it might be

out of date, since there may have been some intervening messages from the LBcast service that have been received

since the snapshot was sent. Therefore the joining node must record all the operation invocations that are broadcast

after its join request was broadcast but before it received the snapshot. This is accomplished by having the joining

node enter a “listening” state once it receives its own join-request message; all invocations received when a node is in

either the listening or the active state are recorded, and actual processing of the invocations can start once the node has

received the snapshot and has the active status.

A precondition for performing most of these actions is that the node is in the relevant focal point. This property

is covered in most cases by the integrity requirements of the LBcast and GeoCast services, which imply that these

actions only happen when the node is in the appropriate focal point.

8 The FPE Implements the Focal Point Object Model

In this section, we show that the Focal Point Emulator correctly implements the Focal Point Object Model. We focus

on a single focal point, interacting with some environment. Since atomic objects can be composed, it suffices to show

that the focal point implements an atomic object. Fix obj to be this focal point object.

The body of the proof consists primarily of determining a total ordering on all operations of the atomic object

respond

invoke

respond

invoke

respond

invoke

Object
Atomic

Figure 14: Individual Focal Point Object, which implements an atomic object that responds to invocations.
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invoke

invoke

respond

respond

invoke
FPE

Client

FPE

Client

Client

Network

GeoCast

FPE
geocast−rcv

geocast−rcv

geocast

geocast−rcv

geocast

geocast−rcv

geocast

geocast−rcv

geocast

geocast−rcv

geocast

Object
Replica

FPE

Server

Object
Replica

geocast

FPE

Server

Object
Replica

FPE

Server lbcast−rcv

lbcast

lbcast−rcv

lbcast

lbcast−rcv

lbcast

Network

LBcast

Figure 15: Components of the Focal Point Emulator. When an FPE Client (on the left) receives an invocation, it sens

the request to all the FPE Servers using the GeoCast service. At least one of the FPE Servers broadcasts the request to

all the other FPE Servers in the focal point, using the LBcast service. Each FPE Server then updates its Object Replica

as a result of the request. At this point, at least one FPE Server send a response to the FPE Client, using the GeoCast

service.

for an arbitrary execution in which all the operations complete, as per Theorem 3.1. Let � be some such execution.

The total ordering is shown to have the necessary properties, allowing us to conclude that the algorithm correctly

implements an atomic object. In particular, we need to show that the devised ordering is consistent with the real-time

ordering of operations, and that the ordering is consistent with the responses sent during the execution.

Let A be the abstract system consisting of an atomic object (of an arbitrary variable type). See Figure 14. Let S

be the system consisting of a set of FPE Clients, composed with the GeoCast network, composed with an FPE Server,

each containing an object replica. See Figure 15.

Let U be a well-formed environment. Our goal, then, is to show that traes(S ÆU) � traes(A ÆU). We consider

an arbitrary execution, �, of the system S Æ U in which every operation completes. Let � be the set of operations in

�. Since every operation completes, we know that for every � 2 �, for some p 2 P , an invoke(�)

obj ;p

event occurs,

followed by a respond(�)

obj ;p

event.

Preliminaries. We now define some preliminary notation, and then specify a total ordering of operations in execution

� on the atomic object.

Each operation, � 2 �, is assigned a unique identifier by the FPE Client before it is GeoCast to the FPE Servers

(see Figure 16, Line 3). We refer to this identifier as id (�).

The LBcast service guarantees a total ordering on all messages sent within a focal point. For any execution, or

prefix of an execution, �, let IM (�) be the set of invoke messages sent (and later delivered) by the LBcast service in

�.

(For the purposes of discussion, we will consider a “message” to consist of the tuple: hinv ; oid ; loi, the last

three parameters in a lbast(hinvoke; inv ; oid ; loi) action or in a lbast-rv(hinvoke; inv ; oid ; loi) action whose

first parameter is invoke.) T

he set IM (�) contains one message for every lbast(m) event in �. Notice that this same message is delivered by

multiple lbast-rv(m)

i

events, each at a different node i.

The definition of the LBcast service guarantees that there exists a total ordering of the messages in IM (�) that is

consistent with the order in which each mobile node receives the messages. That is, if node i receives two messages

m

r

and m
t

in that order, then m
r

� m

t

in this ordering.

Each of the invoke messages sent by the LBcast service include an identifier, oid . Let id(m) be the identifier

associated with message m. This identifier is closely related to the identifier associated with operation, id (�) that led
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to this message.

For all of the invoke messages, the oid is set to the unique identifier of an operation associated with that message.

(See Figure 17, Line 8, and notice that the enqueued LBcast message uses the identifier from the received GeoCast

request). This allows us to say that certain LBcast messages are associated with each operation. However, it also means

that these identifiers are not unique: two LBcast messages may have the same identifier, because the two messages are

created as a result of the same operation.

We define a total ordering on operations � 2 � as follows, using the ordering determined by the LBcast service.

Let �
i

and �
j

be two operations in �. For operation �
i

, let m
1

be the first message in IM (�), the LBcast messages

sent in �, associated with operation �
i

: id (m
1

) = id(�

i

). The message m
1

is the first message delivered by LBcast

in � that was generated by operation �
i

.

Similarly, for operation �
j

, let m
2

be the first message in IM (�) such that id (m
2

) = id (�

j

). We say that �
i

� �

j

if m
1

� m

2

. Since operation identifiers are unique, and an operation can only be associated in this way with a single

message (i.e., the first), this defines a total ordering.

Properties of the Total Order. The most difficult property of Theorem 3.1 to show is Property 2. We need to show

that the total ordering is consistent with the responses sent by the FPE Servers.

Let �0 be any finite prefix of execution �, and let i be any node. Of all the LBcast messages ordered in IM (�

0

),

choose m to be the largest message received by node i in �0 and not in pending-ops

i

at the end of �0. More formally,

choose m such that:

1. 8m0

2 IM (�

0

); m

0

� m

2. lbast-rv(m)

i

occurs in �0

3. m =2 `state(�

0

):pending-ops

i

.

Here `state(�0

) denotes the last state in �0. The message m is, in effect, the most recent message that has been pro-

cessed by node i (if i has completed the join protocol): all prior messages have been received, added to pending-ops

i

,

and removed; all later messages are in pending-ops

i

, or have not yet been received.

We define (�0

; i) to be the state of the atomic object after beginning in the initial state, v
0

, and processing all the

invoke messages for node i in IM (�

0

), stopping at message m (while skipping the “duplicate” messages, referring to

the same operation, that might occur in IM (�

0

)). In particular, this means that (�0

; i) is the state after processing the

operations, �
1

; �

2

; : : : ; �

t

, where �
t

is the most recent operation that i has processed in �0.

We show that for all prefixes �0 of execution �, if node i has completed the join protocol, then the state of the

replica at node i is equal to (�0

; i). That is, the state of the replica at node i is consistent with all prior operations in

IM (�

0

) having occurred. If node i has itself received all the messages in IM (�

0

), this claim is immediate. In the case

that node i has joined the focal point during the execution, however, node i may have only received some suffix of the

sequence. As a result, the main difficulty in proving the invariant is showing that the join protocol works, i.e. that after

a node sets its status to ative, it has correctly acquired a good snapshot of the state of the world.

Invariant 1 Let �0 be any finite prefix of execution �. If:

`state(�

0

):status

i

= ative ;

then:

`state(�

0

):val

i

= (�

0

; i) :

Proof. We show this by induction on the length of �0. For the base case, consider the initial state of the system,

before any actions occur in �. Let �0 be this empty prefix of �. If i is not in any focal point, then status

i

= idle, and

the result is trivial. If i is in some focal point, then the state of val
i

is v
0

. However, in this case IM (�

0

) is empty, and

as a result (�0; i) also equals v
0

.

For the inductive step, let s and s0 be the states before and after the new event, respectively. Let � be the previous

prefix of �, that is, s = `state(�). Let �0 be the new prefix of �, that is, s0 = `state(�

0

).

We know, inductively, that for any finite prefix �0 of �, for any node j, if `state(�0

):status

j

= ative, then:

`state(�

0

):val

j

= (�

0

; j)) :
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We need to show that

`state(�

0

):val

i

= (�

0

; i) :

We now consider the various actions relevant to this claim.

� lbast-rv(invoke; inv ; oid; lo)

i

: (See Figure 17, Lines 24–28.)

Recall that the sequence IM (�

0

; i) only includes messages that have been sent in �

0, received by i, and are no

longer in pending-ops

i

. As a result of this action, the message, m, is added to pending-ops

i

, and therefore the

sequence IM (�

0

; i) is equal to IM (�; i), and as a result, (�0; i) = (�; i). By induction, we already know that

(�; i) = `state(�):val

i

. The state of the replicated object is also unchanged, that is:

`state(�

0

):val

i

= `state(�):val

i

:

The result then follows.

� simulate-op(inv)

i

: (See Figure 17, Lines 36–43.)

First, when this action occurs, status
i

= ative, since that is a precondition to this action (see Figure 17,

Line 38). The invoke operation removes the message from the set pending-ops
i

, and therefore adds the associ-

ated invocation to IM (�; i). That is, IM (�

0

; i) = IM (�; i) [ fmg. Therefore:

(�

0

; i) = Æ(m; (�; i)) ;

since the total ordering of the LBcast service ensures that the message m is ordered after every message in

IM (�; i).

The state of val
i

was initially (�; i) in state s, by induction. After this action, val
i

is set to:

Æ(m; (�; i)) ;

as this is the definition of how the object responds to invocations. This maintains the desired invariant.

� leave

i

: (See Figure 17, Line 45.)

In this case, status
i

 idle, and the claim is trivially true.

� lbast-rv(join-ak; jid; v)

i

: (See Figure 17, Lines 17–22.)

This is the main interesting case of this proof. In this action, node i sets status to ative (see Figure 17, Line 21),

if the message is a response to an outstanding join-req previously sent by i. (If this is not the case, then this

action causes no change to status

i

, pending-ops
i

, or val
i

, and the invariant is trivially maintained.)

We know, then, that some node, j, must have previously performed an lbast-send

j

action to send a copy of the

state of val
j

to i. More specifically, an

lbast-rv(join-req; jid)

j

action occurs, causing the message hjoin-ak; jid; val
j

)i to be added to the LBcast queue. This then leads to

an lbast of this message, which is received by this action. The LBcast service guarantees that every message

received was earlier sent, and the message existing in the queue lbast-queue ensures that the message was

received. Let �00 be the prefix of � ending with the

lbast-rv(join-req; jid)

j

action.

Inductively, we know that the state of the replicated object sent by j (i.e., the current value v of val
j

) is equal to

(�

00

; j).

Since val
i

is set to v when the join-ak message is received, we only need to show that:

(�

0

; i) = (�

00

; j) ; (1)

and we can conclude that val
i

= (�

0

; i), as desired.
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Let m be the largest message in IM (�

0

) received by i that is not in s0:pending-ops
i

. Every message ordered by

the LBcast service prior to i’s join request precedes m. This is because i must receive its own join request, as it

entered the focal point prior to sending the join request, and i does not respond to its own join request.

Next, every message that i receives in �

0 that is ordered after i’s join request comes after m in the LBcast

message ordering. This is because when i receives its own join request, it sets its status

i

to listening (see

Figure 17, Line 13). Every message received after the join request is therefore added to pending-ops

i

(as

status

i

is listening). No messages are removed from pending-ops , as all such actions have status
i

= ative as

a precondition (see Figure 17, Line 38).

Therefore m must correspond to i’s join request. As a result, (�0; i) is the state reached after processing all

messages prior to m, i.e., prior to i’s join request.

Notice, though, that i’s join request is exactly the last message processed by j in �00 before sending a response

to j. In particular, then, (�00; j) is the state reached on processing every message in IM (�

00 prior to i’s join

request.

Therefore, Equation 1 holds, and the lemma holds in state s0.

The rest of the cases are straightforward, having no effect on the status of i, the elements of pending-ops
i

, or the state

of the replicated object. �

We can now show that the two properties required by Theorem 3.1 hold for the total ordering we have defined, and

as a result, the Focal Point Emulator, S, is a correct implementation of the Focal Point Object Model, A.

Theorem 8.1 For all executions, traes(S Æ U) � traes(A Æ U).

Proof. We consider the properties from Theorem 3.1 in order:

1. This follows from Invariant 1. Let � 2 � be an operation. The client that performs the response for � does so

because it receives a GeoCast with a response for � from a server, say i, for the first time. Let �0 be the prefix

of � ending just before the simulate-op action that caused i to enqueue the GeoCast response. The value v

determined by starting in state v
0

and handling all the invoke(�

r

) operations prior to � is exactly (�0

; i): every

preceding operation is associated with an earlier LBcast message (by the way in which the total ordering is

defined); at the time when node i invokes operation �, it has removed all prior messages from the pending-ops

queue, and therefore the message associated with operation � is exactly the largest message that i has received

in �0 that is not in pending-ops

i

. Invariant 1 shows that the state of val
i

prior to operation � is equal to (�0

; i).

Therefore the response to operation � is exactly that obtained by applying � to (�0

; i).

2. Let message m

1

be the first message associated with operation �

i

, and let message m

2

be the first message

associated with operation �
j

. Since �
i

completes before �
j

begins, the message m
1

must be received before the

message m
2

is sent, and therefore m
1

precedes m
2

. This then implies that �
i

precedes �
j

, as needed.

Therefore this theorem follows from Theorem 3.1. �

9 Performance Discussion

The performance of the GeoQuorums algorithm stems from the performance of the Operation Manager and the per-

formance of the Focal Point Emulator.

We first examine the performance of read and write operations, as executed by the Operation Manager. Assume

that the Focal Point Object Model guarantees that all invocations result in a response within time T . Then if no more

than f focal point objects fail, each read or write operations takes at most time 2T : each operation requires at most two

phases, and each phase can be completed in time T , as all the objects can be invoked concurrently. A write operation,

however requires on a single phase. Similarly, many read operations only require a single phase. These operations

requires at most time T . Similarly, a reconfiguration operation takes at most time 2T .

We next discuss the performance of the Focal Point Emulator to determine the maximum time required for an

invocation to receive a response. We consider a focal point object that does not fail, and we assume that a mobile node
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Signature:

Input:

invoke(inv)
obj;p

, inv 2 invocations, p 2 Q

geocast-rcv(hresponse, resp, oid, loci)
obj;i

, resp 2 responses, oid 2 U

geo-update(l, t)
obj;i

, l 2 L, t 2 R>0

Output:

geocast(m)

obj;i

, m 2 invoke� invocations � U � L � L

respond(resp)
obj;p

, resp 2 responses, p 2 Q

State:

fp-location 2 2

L, a constant, the locations of the focal point

clock 2 R

�0, the current time, initially 0, updated by the geosensor

location 2 L, the current physical location, updated by the geosensor

ready-responses � Q � responses, a set of an operation responses, initially ;

geocast-queue, a queue of messages to be geocast

ongoing-oids � U, a set of operation identifiers, initially ;

Transitions:

Input invoke(inv)
obj;p

2 Effect:

new-oid hclock, pi

4 Enqueue(geocast-queue, hinvoke, inv, new-oid, location, fp-locationi)

ongoing-oids ongoing-oids [ fnew-oidg

6

Input geocast-rcv(hresponse, resp, oid, loci)
obj;i

8 Effect:

if (oid 2 ongoing-oids) then

10 hc, pi  oid

ready-responses ready-responses [ fhp, respig

12 ongoing-oids ongoing-oids n foidg

14 Input geo-update(l, t)
obj;i

Effect:

16 location l

clock t

Output geocast(m)

obj;i

20 Precondition:

Peek(geocast-queue) = m

22 Effect:

Dequeue(geocast-queue)

24

Output respond(resp)
obj;p

26 Precondition:

hp, respi 2 ready-responses

28 Effect:

ready-responses ready-responses n fhp, respig

Figure 16: FPE Client for Client i and Object obj of variable type � = hV; v

0

; invoations ; responses ; Æi
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Focal Point Emulator Server Transitions

Internal join()
obj;i

2 Precondition:

location 2 fp-location

4 status = idle

Effect:

6 join-id hclock, ii

status joining

8 Enqueue(lbcast-queue, hjoin-req, join-idi)

10 Input lbcast-rcv(hjoin-req, jidi)
obj;i

Effect:

12 if ((status = joining) ^ (jid = join-id)) then

status listening

14 if ((status = active) ^ (jid 62 answered-join-reqs)) then

Enqueue(lbcast-queue,hjoin-ack,jid,vali)

16

Input lbcast-rcv(hjoin-ack, jid, vi)
obj;i

18 Effect:

answered-join-reqs answered-join-reqs [ fjidg

20 if ((status = listening) ^ (jid = join-id)) then

status active

22 val v

24 Input geocast-rcv(hinvoke, inv, oid, loc, fp-loci)
obj;i

Effect:

26 if (fp-loc = fp-location) then

if (hinv, oid, loci 62 pending-ops [ completed-ops) then

28 Enqueue(lbcast-queue, hinvoke, inv, oid, loci)

30 Input lbcast-rcv(hinvoke, inv, oid, loci)
obj;i

Effect:

32 if ((status = listening _ active) ^

(hinv, oid, loci 62 pending-ops [ completed-ops)) then

34 Enqueue(pending-ops, hinv, oid, loci)

36 Internal simulate-op(inv)
obj;i

Precondition:

38 status = active

Peek(pending-ops) = hinv, oid, loci

40 Effect:

(val,resp) Æ(inv,val)

42 Enqueue(geocast-queue, hresponse, resp, oid, loci)

Enqueue(completed-ops, Dequeue(pending-ops))

44

Internal leave()
obj;i

46 Precondition:

location 62 fp-location

48 status 6= idle

Effect:

50 status idle

join-id h0, i
0

i

52 val v

0

answered-join-reqs ;

54 pending-ops ;

completed-ops ;

56 lbcast-queue ;

geocast-queue ;

58

Output lbcast(m)

obj;i

60 Precondition:

Peek(lbcast-queue) = m

62 Effect:

Dequeue(lbcast-queue)

64

Output geocast(m)

obj;i

66 Precondition:

Peek(geocast-queue) = m

68 Effect:

Dequeue(geocast-queue)

70

Input geo-update(l, t)
obj;i

72 Effect:

location l

74 clock t

Figure 17: FPE Server Transitions for Client i and Object obj of variable type � = hV; v

0

; invoations ; responses ; Æi
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performing an invocation does not move too far until a response is received. In particular, such a mobile node moves

no further than distance R, as defined by the GeoCast service.

The performance of the focal point objects is directly dependent on the performance of the two communication

services. Assume that every GeoCast message is delivered within time d
G

, and every LBcast message is delivered

within time d
LB

; let d = d

G

+ d

LB

. Then every invocation receives a response within time 2d: each phase takes at

most two round-trip messages. (An extra round of communication may be caused by the discovery during the first

round that a reconfiguration is in progress.)

We then conclude that if a mobile node, i, initiates a read or write operation, and no more than f focal points fail,

and node i does not move further than distance R after the operation begins (until the operation completes), then the

operation completes within time 8d. A write operation, or a one-phase read operation, completes within time 4d.

The algorithm as specified also allows the implementation to trade-off message complexity and latency. In each

phase of a read or write operation, the node initiating the operation must perform invocations on a quorum of focal

point objects; each invocation is going to cause message traffic in the network. It can achieve this goal by performing

invocations on all focal point object concurrently, thereby ensuring the fastest result, at the expense of a high message

complexity. Alternatively, the node can invoke only the focal point objects in a single quorum. If some of these

focal point objects have failed, and they do not all respond, the node can perform invocations on another quorum, and

continue until it receives a response from every object in some quorum. This leads to lower message complexity, but

may take longer.

10 Conclusions and Future Work

We have presented a new approach, the GeoQuorums approach, to implementing algorithms in mobile ad hoc net-

works. We have presented a geographic abstraction model, the Focal Point Object Model, and an algorithm, the Focal

Point Emulator, that implements it using mobile nodes. We have presented the Operation Manager, which uses the

static model to implement an efficient, reconfigurable atomic read/write memory.

The GeoQuorums approach transforms a highly dynamic, ad hoc environment into a static setting. This approach

should facilitate the adaptation of classical distributed algorithms to ad hoc networks.

We also believe that our approach will be useful in studying hybrid networks, consisting of both mobile nodes and

fixed infrastructure. In areas where there are non-mobile, fixed participants, simpler and more efficient versions of the

FPE can be used. When nodes enter areas with no infrastructure, the more dynamic algorithm can seamlessly take

over.

A major open area of research, then, is to determine other uses of the Focal Point Object Model, and other algo-

rithms that rely on focal point objects. For example, it seems possible to build mobile routing services using focal

point objects to maintain routes. Similarly, the use of the Focal Point Object Model should facilitate the design of

resource allocation and task allocation algorithms.

There are many open questions relating to the geographic abstraction itself.

It would be a natural extension to allow focal points to recover. Currently, once a focal point object fails, it cannot

recover, even when new mobile nodes reenter it. Allowing a focal point to recover would improve the fault-tolerance

of the system.

We would also like to determine whether we can implement something more general than atomic objects using

focal points. For example, it seems possible to implement arbitrary automata using a similar technique to that of the

Focal Point Emulator.

It is an interesting question to consider the implementation of the ReonClient automata. Since there are only

a finite number of configurations to choose from, it should be possible for the mobile nodes to determine which

configuration is optimal for a given set of read and write operations. Using the techniques of competitive analysis

it may be possible to determine the optimal configuration for a sequence of read and write operations, even without

knowing the sequence in advance.

It would also be interesting to consider other implementations of the Focal Point Object Model. The implemen-

tation presented in this paper has two major drawbacks. First, it requires the participation of every mobile node in

a focal point. It is easy to relax this requirement, by allowing a mobile node to choose not to participate, as long as

it is sure that other nodes are participating. It may improve performance and energy efficiency to allow only a small

number of mobile nodes – in particular, those that tend to reside the most within the focal point – to maintain the focal

point. If a very reliable node remains continuously in the focal point (for example, a fixed, non-mobile base station),
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then there is no reason to burden too many other nodes. Second, the Focal Point Emulator relies on a powerful local

broadcast service, LBcast. Considering the highly local nature of a focal point, there may be implementations of the

Focal Point Object model that rely only on a weaker communication service.

We would therefore like to consider implementations of the Focal Point Object Model that depend on a leader

election algorithm to determine a primary copy of the data in a focal point object. It may also be possible to implement

a focal point object based on the Rambo algorithms ([25]). This would be useful in settings where global time is not

available, or where a local broadcast service was unavailable.

We have assumed a static definition of focal points and configurations. It remains an open question to determine

how to choose a good set of focal points, how to construct a map of focal points in a distributed fashion, and how to

modify the set of focal points dynamically.
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