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1 IntrodutionFuture large sale ivilian resue and military deployment operations will involve large numbers ofommuniation and omputing devies operating in highly dynami network substrates. Suessfuloordination and marshaling of human resoures and equipment involves olleting informationabout a omplex real-world situation using sensors and input devies, gathering the information insurvivable repositories, and providing appropriate and oherent information to the stakeholders.Data objets with atomi (linearizable) read/write semantis ommonly our in suh settings.Repliation of objets is a prerequisite for fault-tolerane and availability, and with repliationomes the need to maintain onsisteny. Additionally, in dynami settings where partiipants mayjoin and leave the environment, may fail, and where the physial objets migrate, one needs to beable to e�etively move the orresponding data objets from one set of data owners to another.Lynh and Shvartsman developed a reon�gurable atomi read/write memory algorithm for dy-nami networks [12, 13℄. The algorithm, alled Rambo, guarantees atomiity for arbitrary patternsof asynhrony, message loss, and node rashes. Conditional performane analysis of the algorithmshows that when the environment timing stabilizes, when failures are within spei� parameters,and when the reon�gurations are not frequent and not bursty, then read and write operationshave small lateny bounded in terms of the maximum message delay and the periodi gossip inter-val. However when the reon�gurations are frequent or bursty, this algorithm may perform poorlybeause of the inherently sequential proessing of the new on�gurations one they beome deter-mined by the algorithm. In partiular, the number of on�gurations maintained by the algorithmmay grow without bound, leading to the unbounded number of messages neessary in proessingthe read and write operations. Suh situations may arise due to failures or asynhrony, yet theseare not the only reasons. Even in synhronous failure-free environments the world dynamis mayrequire that frequent reon�gurations are performed to keep trak of the rapidly moving physialobjets or rapidly hanging set of stakeholders.This paper presents a new algorithm, Rambo II, integrated with Rambo, that implementsa radially di�erent approah to installing new on�gurations: instead of operating sequentially,the new algorithm reon�gures \aggressively", transferring information from old on�gurations inparallel. This improvement substantially redues the time neessary to proess new on�gurationsand to remove obsolete on�gurations from the system, whih in turn substantially inreases fault-tolerane. This is due to the fat that one a on�guration is removed, the system no longer dependson it, and as soon as the on�guration is removed, it is allowed to fail. The proess exeuting thenew algorithm ahieves a linear speed-up in the number of old on�gurations known to the proess.For example, our onditional performane analysis shows that if a proess knows about a sequeneof h on�gurations, then the it an eliminates all but one of these on�gurations in time O(1), asompared to the original Rambo, where this takes �(h) time. Additionally, the new algorithmredues the number of messages neessary to proess these on�gurationsThis paper presents a formal spei�ation of the new algorithm, a orretness proof, and aonditional analysis of its performane. Preliminary empirial studies performed using LAN imple-mentations of Rambo and the new algorithm illustrate the advantages of the new algorithm.Bakground. Starting with the work of Gi�ord [6℄ and Thomas [18℄, interseting olletions ofsets found use in several algorithms providing onsistent data in distributed settings. Depend-ing on the algorithm and its setting, suh olletions of sets, alled quorums when any two havenon-empty intersetion, represent either sets of proessors or their knowledge. Upfal and Wigder-son [19℄ use majority sets of readers and writers to emulate shared memory in a distributed setting.3



Vit�anyi and Awerbuh [20℄ implement multi-writer/multi-reader registers using matries of single-writer/single-reader registers where the rows and the olumns are written and respetively readby spei� proessors. Attiya, Bar-Noy and Dolev [1℄ use majorities of proessors to implementsingle-writer/multi-reader objets in message passing systems. Suh algorithms assume a statiproessor universe and rely on stati stati quorum systems.In long-lived systems where proessors may dynamially join and leave the system, it is impor-tant to reon�gure a quorum system to adapt it to the new set of proessors [8, 4, 7, 17℄. Priorapproahes required that the new quorum system inlude proessors from the old quorum system.This is stated as a stati onstraint on the quorum system that needs to be satis�ed during or evenbefore the reon�guration. In our work on reon�gurable atomi memory [15, 5, 12℄ we replaethe spae-domain requirement on suessive quorum system intersetions with the time-domain re-quirement that some quorums from the old and the new system are involved in the reon�gurationalgorithm. Suh systems are more dynami beause they allow for more hoies of new quorumsystems and do not require that suessive on�gurations interset.Reon�guration in Highly Dynami Settings. Lynh and Shvartsman's earlier algorithms [15,5℄ allowed a single distinguished proess to at as the quorum system reon�gurer. The advantageof the single-reon�gurer approah is its relative simpliity and eÆieny: any proess maintains atmost two on�gurations, the urrent on�guration and the proposed new on�guration. The dis-advantage of the single reon�gurer is that it is a single point of failure { no further reon�gurationis possible if the reon�gurer fails.The Rambo algorithm [12, 13℄ removed the requirement of having a single reon�gurer, thusenabling any proess within its own urrent on�guration to begin reon�guration to a new quorumsystem supplied by the environment. The algorithm implements atomi shared memory suitable foruse in highly dynami settings, and it guarantees atomiity in any asynhronous exeution and inthe presene of arbitrary proess and network failures. However the multiple-reon�gurer approahintrodues the problem of maintaining multiple on�gurations and removing old on�gurationsfrom the system. Rambo implements a sequential \garbage-olletion" algorithm where proessesremove obsolete on�gurations one-at-a-time. Con�guration removal requires that information ispropagated from the earliest known on�guration to its suessor. Sine arbitrarily many newon�gurations may be introdued this leads to an unbounded number of old on�gurations thatneed to be sequentially removed.The environment may introdue new on�gurations for several reasons: (i) due to failuresand network instability that endanger installed on�gurations, (ii) due to the mobility of thephysial objets represented by the abstrat memory objets and the mobility of the proessesmaintaining the objet replias, and (iii) due to the need to rebalane loads on proesses withininstalled on�gurations. Frequent or bursty reon�guration an substantially inrease the numberof installed on�gurations and, sine a proess performing a read or a write operation potentiallyneeds to ontat quorums in all on�gurations known to it, this leads to the orresponding inreasein the number of messages needed to perform the operation.The New Algorithm. The primary ontribution of this paper is a new algorithm for reon�g-urable atomi memory, based on the original Rambo, that implements an aggressive on�guration-replaement protool where any loally-known ontiguous sequene of on�gurations is replaed bythe last on�guration in the sequene. The removal of the old on�gurations is done in parallel,while preserving all other properties of the original Rambo. Spei�ally, we maintain a loose ou-pling between the reon�guration algorithms and the original Rambo algorithms implementing the4



read and write operations.In order to ahieve availability in the presene of failures, the objets are repliated at severalnetwork loations. In order to maintain memory onsisteny in the presene of small and transienthanges, the algorithm uses on�gurations, eah of whih onsists of a set of members plus sets ofread-quorums and write-quorums. In order to aommodate larger and more permanent hanges,the algorithm supports reon�guration, by whih the set of members and the sets of quorums aremodi�ed. Suh hanges do not ause violations of atomiity. Any quorum on�guration may beinstalled at any time|no intersetion requirement is imposed on the sets of members or on thequorums of distint on�gurations.The algorithm is omposed of a main algorithm, whih handles reading, writing, and replae-ment of old on�gurations with a suessor on�guration, and a global on�guration announementservie, Reon , whih provides the main algorithm with a onsistent sequene of on�gurations.Several on�gurations may be known to the algorithm at one time, and read and write operationsan use them all without any harm.The main algorithm performs read and write operations requested by lients using a two-phasestrategy, where the �rst phase gathers information from read-quorums of ative on�gurationsand the seond phase propagates information to write-quorums of ative on�gurations. Thisommuniation is arried out using bakground gossiping, whih allows the algorithm to maintainonly a small amount of protool state information. Eah phase is terminated by a �xed pointondition that involves a quorum from eah ative on�guration. Di�erent read and write operationsmay exeute onurrently: the restrited semantis of reads and writes permit the e�ets of thisonurreny to be sorted out afterward.The main algorithm provides a new on�guration-replaement algorithm that removes oldon�gurations while ensuring that their use is no longer neessary for maintaining onsisteny.Con�guration-replaement also uses a two-phase strategy, where the �rst phase ommuniates inparallel with all old on�gurations being removed and the seond phase ommuniates with a newon�guration. A on�guration-replaement operation ensures that both a read-quorum and a write-quorum of eah old on�guration learn about the new on�guration, and that the latest value fromall old on�gurations is onveyed to a write-quorum of the new on�guration. The strength ofthe new algorithm is that it proeeds aggressively in parallel. An arbitrary number of old on�g-urations an be replaed in onstant time (assuming bounded message lateny and non-failure ofative on�gurations).The on�guration announement servie is implemented by a distributed algorithm that usesdistributed onsensus to agree on the suessive on�gurations. Any member of the latest on�g-uration  may propose a new on�guration at any time; di�erent proposals are reoniled by anexeution of onsensus among the members of . Consensus is, in turn, implemented using a versionof the Paxos algorithm [9℄, as desribed formally in [3℄. Although suh onsensus exeutions maybe slow|in fat, in some situations, they may not even terminate|they do not ause any delaysfor read and write operations.All servies and algorithms, and their interations, are spei�ed using I/O automata. Weshow orretness (atomiity) of the algorithm for arbitrary patterns of asynhrony and failures.On the other hand, we analyze performane onditionally , based on ertain failure and timingassumptions. For example, assuming that gossip and on�guration-replaement our periodially,and that quorums of ative on�gurations do not fail, we show that read and write operationsomplete within time 8d, where d is the maximum message lateny. Note that the original Ramboalgorithm also had to assume also that garbage-olletion is able to keep up|this assumption isnot neessary in the new algorithm due to the new on�guration replaement algorithm. For the5



on�guration replaement algorithm we show that any number of on�gurations an be replaedby their suessor in onstant time.At the same time, all the performane results of the original Rambo algorithm still hold; ininstanes where the network is reliable and timely throughout the exeution, the bounds desribedin the previous Rambo papers [12, 13℄ still hold.Implementations of Rambo and Rambo II on a LAN are urrently being ompleted [16℄.Preliminary empirial studies performed using this implementation illustrate the advantages of thenew algorithm over the previous one.Doument Struture. In Setion 2 we desribe the original Rambo algorithm of Lynh andShvartsman, and then in Setion 3 present and disuss the formal spei�ation of Rambo II. InSetion 4 we present some notation, and restate some basi lemmas, only slightly modi�ed fromRambo. In Setion 5 we prove that the new algorithm guarantees atomi onsisteny. In Setion 6we present the reon�guration servie. In Setion 7 we analyze the performane of Rambo II, anddisuss in detail the areas in whih this algorithm improves over the original Rambo algorithm. InSetion 8 we disuss the preliminary performane results. Finally, in Setion 9 we summarize theresults, and areas for future researh.2 The Original Rambo AlgorithmIn this setion, we present the original Rambo algorithm, on whih the new algorithm Rambo IIis based. Rambo is an algorithm designed to support read/write operations on an atomi sharedmemory.In order to ahieve fault tolerane and availability, Rambo repliates data at several networkloations. The algorithm uses on�gurations to maintain onsisteny in the presene of small andtransient hanges. Eah on�guration onsists of a set of members plus sets of read-quorums andwrite-quorums. The quorum intersetion property requires that every read-quorum interset everywrite-quorum. Read and write operations are implemented as a two-phase protool, in whih eahphase aesses a set of read or write quorums.Rambo supports reon�guration, whih modi�es the set of members and the sets of quorums,thereby aommodating larger and more permanent hanges without violating atomiity. In thisway, failed nodes an be removed from ative quorums, and newly joined nodes an be integratedinto the system. Any quorum on�guration may be installed at any time { no intersetion require-ment is imposed on the sets of members or on the quorums of distint on�gurations.The Rambo algorithm onsists of three kinds of automata:� Joiner automata, whih handle join requests,� Reon automata, whih handle reon�guration requests, and generate a totally ordered se-quene of on�gurations, and� Reader-Writer automata, whih handle read and write requests, manage garbage olletion,and send and reeive gossip messages.In this paper, we disuss only the Reader-Writer automaton. The Joiner automaton is quitesimple; it sends a join message when node i joins, and sends a join-ak message in response to joinmessages. The Reon automaton depends on a onsensus servie, implemented using Paxos [9℄, toagree on a total ordering of on�gurations. However, we assume that this total ordering exists, and6



therefore need not disuss this automaton any further. For more details of these two automata, seethe original Rambo paper [12, 13℄.The omplete implementation S is the omposition of all the automata desribed above|theJoiner i, Reader-Writer i, and Reon i automata for all i, and all the hannels, with all the ationsthat are not external ations of the Rambo spei�ation hidden.Input:join(rambo; J)x;i, J a �nite subset of I � fig, x 2 X, i 2 I,suh that if i = (i0)x then J = ;readx;i, x 2 X, i 2 Iwrite(v)x;i, v 2 Vx, x 2 X, i 2 Ireon(; 0)x;i, ; 0 2 C, i 2 members(), x 2 X, i 2 Ifaili, i 2 I
Output:join-ak(rambo)x;i, x 2 X, i 2 Iread-ak(v)x;i, v 2 Vx, x 2 X, i 2 Iwrite-akx;i, x 2 X, i 2 Ireon-ak(b)x;i, b 2 fok; nokg; x 2 X; i 2 Ireport()x;i,  2 C;  2 X; i 2 IFigure 1: Rambo(x): External signatureThe external signature for Rambo appears in Figure 1. The algorithm is spei�ed for a singlememory loation, and extended to implement a omplete shared memory. A lient uses the joiniation to join the system. After reeiving a join-aki, the lient an issue readi and writei requests,whih results in read-aki and write-aki responses. The lient an issue a reoni request to proposea new on�guration. Finally, the faili ation is used to model node i failing.The signature and state for the Reader-Writer automata is presented in Figure 2. The odefor the Reader-Writer automata is presented in Figure 3. All three operations, read, write, andgarbage-ollet, are implemented using gossip messages. Unlike in many other algorithms, there areno direted messages spei�ed in this algorithm; at no point does a given node, say i, deide to senda message spei�ally to node j. Instead, at regular intervals node i will non-deterministially sendall of its publi state to other nodes. Progress in an operation ours when enough informationhas been exhanged. After initiating an operation, the automaton waits until it an be sure that ithas shared state with enough other nodes (using gossip messages), and then delares the operationomplete. The phase numbering regime, implemented using pnum1 and pnum2 is used to determinewhen enough ommuniation has ompleted.Every node maintains a tag and a value for the data objet. Every new value is assigned aunique tag, with ties broken by proess-ids. These tags are used to determine an ordering of thewrite operations, and therefore determine the value that a read operation should return.Read and write operations require two phases, a query phase and a propagation phase, eahof whih aesses ertain quorums of replias. Assume the operation is initiated at node i. SeeFigure 5 for a summary of the two phases. First, in the query phase, node i ontats read quorumsto determine the most reent available tag and value. Then, in the propagation phase, node iontats write quorums. If the operation is a read operation, the seond phase propagates thelargest tag disovered in the query phase, and its assoiated value. If the operation is a writeoperation, node i hooses a new tag, stritly larger than every tag disovered in the query phaseand propagates the new tag and the new value to the write quorums. Note that every operationaesses both read and write quorums.During a phase of an operation, whenever node i reeives a gossip message from node j, itompares the largest phase number j has reeived from i (by examining pns) to the loal phasenumber when the operation began. If j initiated the gossip message after reeiving a message fromi sent after the phase began, then i adds j to the a set. In e�et, there has been a round-tripmessage sent from i to j bak to i. Also, i then updates its op:map if neessary.Garbage olletion operations remove old on�gurations from the system. A garbage olletion7



Signature:Input:readiwrite(v)i, v 2 Vnew-on�g(; k)i,  2 C; k 2 N+rev(join)j;i, j 2 I � figrev(m)j;i, m 2M , j 2 Ijoin(rw)ifailiOutput:join-ak(rw)iread-ak(v)i, v 2 Vwrite-akisend(m)i;j , m 2M , j 2 I
Internal:query-�xiprop-�xig(k)i, k 2 Ng-query-�x(k)i, k 2 Ng-prop-�x(k)i, k 2 Ng-ak(k)i, k 2 N

State:status 2 fidle; joining; ative; failedg, initially idleworld , a �nite subset of I, initially ;value 2 V , initially v0tag 2 T , initially (0; i0)map 2 CMap, initially map(0) = 0,map(k) = ? for k � 1pnum1 2 N, initially 0pnum2 , a mapping from I to N, initiallyeverywhere 0failed , a Boolean, initially false
op, a reord with �elds:type 2 fread;writegphase 2 fidle; query; prop; doneg, initially idlepnum 2 Nmap 2 CMapa, a �nite subset of Ivalue 2 Vg, a reord with �elds:phase 2 fidle; query; propg, initially idlepnum 2 Na, a �nite subset of Imap 2 CMapindex 2 NFigure 2: Reader-Writer i: Signature and stateoperation involves two on�gurations: the old on�guration being removed and the new on�g-uration being established. See Figure 6 for a summary of the two phases. A garbage olletionoperation requires two phases, a query phase and a propagation phase. The �rst phase ontatsa read-quorum and a write-quorum from the old on�guration, and the seond phase ontats awrite-quorum from the new on�guration.Note that, unlike a read or write operation, the �rst phase of the garbage-olletion operationmust ontat two types of quorums: a read-quorum and a write-quorum for the on�guration beinggarbage-olleted. This ensures that enough nodes are aware of the new on�gurations, and ensuresthat any ongoing read/write operations will inlude the new, larger, on�guration.The map is a mapping from integer indies to on�gurations [f?;�g, that initially maps everyindex to ?. The map traks whih on�gurations are ative, whih are not de�ned, indiated by?, and whih are removed, indiated by �. The total ordering on on�gurations determined bythe Reon automata ensures that all nodes agree on whih on�guration is stored in eah positionin the array. We de�ne (k) to be the on�guration assoiated with index k.The reord op stores information about the urrent phase of an ongoing read or write operation,while g stores information about an ongoing garbage olletion operation. (A node an proess8



Output send(hW; v; t; m; pns; pnri)i;jPreondition::failedstatus = ativej 2 worldhW;v; t; m; pns; pnri =hworld ; value; tag ; map; pnum1 ; pnum2 (j)iE�et:noneInput rev(hW;v; t; m; pns; pnri)j;iE�et:if :failed thenif status 6= idle thenstatus  ativeworld  world [Wif t > tag then (value; tag) (v; t)map  update(map; m)pnum2 (j) max(pnum2 (j); pns)if op:phase 2 fquery; propg and pnr � op:pnum thenop:map  extend (op:map; trunate (m))if op:map 2 Trunated thenop:a  op:a [ fjgelseop:a  ;op:map  trunate(map)if g:phase 2 fquery; propg and pnr � g:pnum theng:a  g:a [ fjgInput new-on�g(; k)iE�et:if :failed thenif status 6= idle thenmap(k) update(map(k); )Input readiE�et:if :failed thenif status 6= idle thenpnum1  pnum1 + 1hop:pnum; op:type ; op:phase ; op:map; op:ai hpnum1 ; read; query; trunate(map); ;iInput write(v)iE�et:if :failed thenif status 6= idle thenpnum1  pnum1 + 1hop:pnum; op:type ; op:phase ; op:map; op:a; op:valuei hpnum1 ;write; query; trunate(map); ;; vi

Internal query-�xiPreondition::failedstatus = ativeop:type 2 fread;writegop:phase = query8k 2 N;  2 C : op:map(k) = ) 9R 2 read-quorums() : R � op:aE�et:if op:type = read then op:value  valueelse value  op:valuetag  htag :seq + 1; iipnum1  pnum1 + 1op:pnum  pnum1op:phase  propop:map  trunate(map)op:a  ;Internal prop-�xiPreondition::failedstatus = ativeop:type 2 fread;writegop:phase = prop8k 2 N;  2 C : op:map(k) = ) 9W 2 write-quorums() :W � op:aE�et:op:phase = doneOutput read-ak(v)iPreondition::failedstatus = ativeop:type = readop:phase = donev = op:valueE�et:op:phase = idleOutput write-akiPreondition::failedstatus = ativeop:type = writeop:phase = doneE�et:op:phase = idleFigure 3: Reader-Writer i: Read/write transitions9



Internal g(k)iPreondition::failedstatus = ativeg:phase = idlemap(k) 2 Cmap(k + 1) 2 Ck = 0 or map(k � 1) = �E�et:pnum1  pnum1 + 1g:pnum  pnum1g:phase  queryg:a  ;g:index  kInternal g-query-�x(k)iPreondition::failedstatus = ativeg:phase = queryg:index = kmap(k) 6= �9R 2 read-quorums(map(k)) :9W 2 write-quorums (map(k)) :R [W � g:aE�et:pnum1  pnum1 + 1g:pnum  pnum1g:phase  propg:a  ;

Internal g-prop-�x(k)iPreondition::failedstatus = ativeg:phase = propg:index = k9W 2 write-quorums(map(k + 1)) :W � g:aE�et:map(k) �Internal g-ak(k)iPreondition::failedstatus = ativeg:index = kmap(k) = �E�et:g:phase = idle

Figure 4: Reader-Writer i: Rambo Garbage-olletion transitionsread and write operations even when a garbage olletion operation is ongoing.) The op:mapsub�eld reords the on�guration map for an operation. This onsists of the node's map whena phase begins, augmented by any new on�gurations disovered during the phase. A phase anomplete only when the initiator has exhanged information with quorums from every non-removedon�guration in op:map . The pnum sub�eld reords the phase number when the phase begins,allowing the initiator to determine whih responses orrespond to the urrent phase. The asub�eld reords whih nodes from whih quorums have responded during the urrent phase.In Rambo, on�gurations go through three phases: proposal, installation, and upgrade. First,a on�guration is proposed by a reon event. Next, if the proposal is suessful, the Reon servieahieves onsensus on the new on�guration, and noti�es partiipants with deide events. Whenevery non-failed member of the previous on�guration has been noti�ed, the on�guration is in-stalled . The on�guration is upgraded when every on�guration with a smaller index has beenremoved at some proess in the system. One a on�guration has been upgraded, it is responsiblefor maintaining the data.3 Formal Spei�ation of Rambo IIIn this setion we present the new algorithm in detail, and disuss how it di�ers from the Ramboalgorithm. The omplete implementation, S, is the omposition of all the automata desribed|the10



Operation initiated by readi or write(v)iPhase 1 :� Node i ommuniates with a read-quorum from eah on�guration in op:map in order to determine thelargest value/tag pair.Phase 2 :� Node i ommuniates with a write-quorum from eah on�guration in in op:map to notify it of theurrent largest value/tag pair (or the new value/tag pair, if it is a write operation).Figure 5: Summary of two phase read or write operationJoiner i and Reon i automata desribed in Rambo, the new Reader-Writer i automaton desribedhere, for all i, and all the hannels { with all the ations that are not external ations of the RamboII spei�ation hidden.The key problem that prevents rapid stabilization in the original algorithm is the sequentialnature of the on�guration upgrade mehanism: in Rambo, on�gurations are upgraded one ata time, in order. (Reall that in Rambo, a on�guration is upgraded when every on�gurationwith a smaller index has been garbage olleted.) Con�guration (k) an be upgraded only ifon�guration (k � 1) has previously been upgraded. This requirement arises from the need toensure that information is preserved as on�gurations are hanged. As in Rambo, a on�gurationin Rambo II is upgraded when every on�guration with a smaller index has been removed at someproess in the system. Rambo II, however, implements a new reon�guration protool that anupgrade any on�guration, even if on�gurations with smaller indies have not been upgraded.Unlike in Rambo, then, there may be on�gurations that are not upgraded until they themselvesare removed, at the same instant that some on�guration with a larger index is upgraded.After Rambo II ompletes an upgrade operation for some on�guration, all on�gurationswith smaller indies an be removed. Thus a single upgrade operation in Rambo II potentiallyhas the e�et of many garbage olletion operations in Rambo, eah of whih an only removea single on�guration. The name has been hanged to emphasize the operation's ative role inon�guration management: on�guration upgrade is an inherent part of preparing a on�gurationto assume responsibility for the data. The ode for the new on�guration management mehanismOperation initiated by g(k)iPhase 1 :� Node i ommuniates with a read-quorum from on�guration (k) in order to determine the largestvalue/tag pair.� Node i ommuniates with a write-quorum from on�guration (k) in order to notify it of on�gurationk + 1.Phase 2 :� Node i ommuniates with a write-quorum from on�guration (k+1) to notify it of the urrent largestvalue/tag pair.Figure 6: Summary of two phase garbage-olletion operation
11



Signature:As in Rambo, with the following modi�ations:Internal:fg-upgrade(k)i, k 2 N>0fg-upg-query-�x(k)i, k 2 N>0fg-upg-prop-�x(k)i, k 2 N>0fg-upgrade-ak(k)i, k 2 N>0
Con�guration Management State:As in Rambo, with the following replaing the greord:upg , a reord with �elds:phase 2 fidle; query; propg, initially idlepnum 2 Nmap 2 CMap,a, a �nite subset of Itarget 2 NCon�guration Management Transitions:

(A)(B)(C)
(D)(E)(F)(G)
(H)(I)(J)

Internal fg-upgrade(k)iPreondition::failedstatus = ativeupg :phase = idlemap(k) 2 Cmap(k � 1) 2 C18` 2 N; ` < k : map(`) 6= ?E�et:pnum1  pnum1 + 1upg  hquery; pnum1 ; map; ;; kiInternal fg-upg-query-�x(k)iPreondition::failedstatus = ativeupg :phase = queryupg :target = k8` 2 N; ` < k : upg :map(`) 2 C) 9R 2 read-quorums(upg :map(`)) :9W 2 write-quorums(upg :map(`)) :R [W � upg :aE�et:pnum1  pnum1 + 1upg :pnum  pnum1upg :phase  propupg :a  ;Internal fg-upg-prop-�x(k)iPreondition::failedstatus = ativeupg :phase = propupg :target = k9W 2 write-quorums(upg :map(k)) : W � upg :aE�et:for ` 2 N : ` < k domap(`) �

Internal fg-upgrade-ak(k)iPreondition::failedstatus = ativeupg :target = k8` 2 N; ` < k : map(`) = �E�et:upg :phase = idleOutput send(hW;v; t; m; pns; pnri)i;jPreondition::failedstatus = ativej 2 worldhW;v; t; m; pns; pnri =hworld ; value; tag ; map; pnum1 ; pnum2 (j)iE�et:noneInput rev(hW;v; t; m; pns; pnri)j;iE�et:if :failed thenif status 6= idle thenstatus  ativeworld  world [Wif t > tag then (value; tag) (v; t)map  update(map; m)pnum2 (j) max(pnum2 (j); pns)if op:phase 2 fquery; propg and pnr � op:pnum thenop:map  extend(op:map; trunate(m))if op:map 2 Trunated thenop:a  op:a [ fjgelseop:a  ;op:map  trunate(map)if upg :phase 2 fquery; propg and pnr � upg :pnum thenupg :a  upg :a [ fjgFigure 7: Reader-Writer i: Con�guration Management transitions12



appears in Figure 7. All labeled lines in this setion refer to the ode therein.We now desribe in more detail the on�guration upgrade operation, whih is at the heart ofRambo II. A on�guration upgrade is a two-phase operation, muh like the garbage-olletionoperation in Rambo. See Figure 8 for a summary of the two phases. An upgrade operation isinitiated at node i with a fg-upgrade(k) event. When this happens, map(k) must be de�ned, thatis, must be a valid on�guration 2 C (line A). Additionally, for every on�guration ` < k, map(`)must be either 2 C or removed, that is, � (line B).We refer to on�guration (k) as the target of the upgrade operation, and we refer to the setof on�gurations to be removed, f(`) : ` < k ^ upg :map(`) 2 Cg, as the removal-set of theon�guration upgrade operation. The on�guration management mehanism guarantees that theremoval-set onsists of on�gurations with a ontiguous set of indies.As a result of the fg-upgrade event, node i initializes its upg state (line C), and begins thequery phase of the upgrade operation. In partiular, node i stores its urrent map in upg :map ,whih reords the on�gurations that are urrently ative. Only these on�gurations (and, in fat,only those with index smaller than k) matter during the operation; new on�gurations are ignored.The query phase ontinues until node i reeives responses from enough nodes. In partiular,for every on�guration (`) with index less than k in upg :map, there must exist a read-quorum,R, of on�guration (`), and a write-quorum, W , of on�guration (`) suh that i has reeived aresponse (that is, a reent gossip message) from every node in R [W (lines D{E).When the query phase ompletes, a fg-upg-query-�x event ours. When this event ours,node i then has the most reent tag and value disovered by operations using on�gurations withindex smaller than k. Further, all on�gurations with indies smaller than k have been noti�ed ofon�guration (k). Node i then reinitializes upg to begin the propagation phase (lines F{G).The propagation phase ontinues until node i reeives responses from a write-quorum in on-�guration (k). In partiular, there must exist a write-quorum, W , of on�guration (k), suh thati has reeived a response from every node in W (line H).When the propagation phase ompletes, a fg-upg-prop-�x event ours, whih veri�es the ter-mination ondition. At this point node i has ensured that on�guration (k) has reeived the mostreent value known to i, whih, as a result of the query phase, is itself a reent value. At this point,the on�gurations with index < k are no longer needed, and node i removes these on�gurationsfrom its loal map, setting map(`) = � for all ` < k (line I{J). Gossip messages may eventuallynotify other proesses that these on�gurations have been removed.Finally, a fg-upgrade-ak(k) event noti�es the lient that on�guration (k) has been suess-fully upgraded.Notie that the algorithm allows a nondeterministi hoie of whih on�guration to upgrade{ and therefore whih on�gurations to remove. Therefore it is possible to restrit the algorithmso that it removes only the smallest on�guration, upgrading the on�gurations one at a time. Inthis ase the algorithm progresses exatly as the original Rambo algorithm. Therefore it is learlypossible, by restriting the nondeterminism appropriately, to implement Rambo II in suh a wayas to guarantee equivalent performane as Rambo. However we will show that by allowing greaterexibility we an ahieve equivalent safety results and improved performane.The new algorithm introdues several diÆulties not present in Rambo. Consider, for example,a nie property guaranteed by the sequential garbage olletion algorithm in Rambo: every on-�guration is upgraded before it is removed. In Rambo II, on the other hand, some on�gurations1In the onferene version of the paper, this line was omitted. The removal of this line has no detrimental e�eton the algorithm, sine the operation then ompletes in zero time. However for larity sake it is inluded.13



Operation initiated by fg-upgrade(k)i:Phase 1 :� Node i ommuniates with a read-quorum from eah on�guration being removed in order to determinethe largest value/tag pair.� Node i ommuniates with a write-quorum from eah on�guration being removed to notify it of thenew, ative on�guration.Phase 2 :� Node i ommuniates with a write-quorum from the target on�guration being upgraded, to notify it ofthe urrent largest value/tag pair.Figure 8: Summary of two phase on�guration upgrade operationnever reeive up to date information; a on�guration may be upgraded at the same instant it isremoved.As a result of this fat, a number of plausible improvements fail. Assume that during anongoing upgrade operation for on�guration (k) initiated by node i, node i reeives a messageindiating that on�guration (k0) has been removed, for some k0 < k. In Rambo II, node i setsmap(k0) = �, but does not hange upg :map. Consider the following inorret modi�ation to theon�guration management mehanism. When node i reeives suh a message, it sets upg :map(k0)to �. Sine the on�guration has been removed, it seems plausible that the on�guration upgradeoperation an safely ignore it, thus ompleting more quikly. It turns out, however, that thisimprovement results in a rae ondition that an lead to data loss. The on�guration upgradeoperation that removes on�guration (k0) might our onurrently with the operation at nodei upgrading on�guration (k). This onurreny might result in data being propagated fromon�guration (k0) to a on�guration (k00) : k0 < k00 < k that has already been proessed by theupgrade operation at node i. The data thus propagated might then be lost.4 Notation and Basi LemmasThis setion is, to a large extent, a restatement of notation and results from the original Rambopaper [13℄. Some of the notation in the proofs has been slightly modi�ed to aount for the newon�guration management mehanism, and some of the proofs have therefore been updated, butthe results are essentially unhanged. Muh of this setion is taken diretly from [13℄.4.1 Good ExeutionsThroughout the rest of this paper, we will talk about \good" exeutions of the algorithm. In thissetion, we present a set of environment assumptions that de�ne a \good" exeution. In general,the assumptions we will present require well-formed requests: lients follow the protool to join andto initiate reon�gurations; lients initiate only one operation at a time; lients wait for appropriateaknowledgments before proeeding.We onsider exeutions of S (reall that S is the entire system ombining Reader-Writer , Reonand Joiner automata) whose traes satisfy ertain assumptions about the environment. We allthese good exeutions. In partiular, an \invariant" is a statement that is true of all states thatare reahable in good exeutions of S. The environment assumptions are simple \well-formedness"14



onditions:� Well-formedness for Reader-Writer:{ For every x and i:� No join(rambo; �)x;i, readx;i, write(�)x;i, or reon(�; �)x;i event is preeded by a failievent.� At most one join(rambo; �)x;i event ours.� Any readx;i, write(�)x;i, or reon(�; �)x;i event is preeded by a join-ak(rambo)x;ievent.� Any readx;i, write(�)x;i, or reon(�; �)x;i event is preeded by an -ak event for anypreeding event of any of these kinds.{ For every x and , at most one reon(�; )x;� event ours. (This says that on�gurationidenti�ers that are proposed in reon events are unique. It does not say that the mem-bership and/or quorum sets are unique|just the identi�ers. The same membershipand quorum sets may be assoiated with di�erent on�guration identi�ers.) Unique-ness of on�guration identi�ers is ahievable using loal proess identi�ers and sequenenumbers.{ For every , 0, x, and i, if a reon(; 0)x;i event ours, then it is preeded by:� A report()x;i event, and� A join-ak(rambo)x;j event for every j 2 members(0).� Well-formedness for Reon:2{ For every i:� No join(reon)i or reon(�; �)i event is preeded by a faili event.� At most one join(reon)i event ours.� Any reon(�; �)i event is preeded by a join-ak(reon)i event.� Any reon(�; �)i event is preeded by an -ak for any preeding reon(�; �)i event.{ For every , at most one reon(�; )� event ours.{ For every , 0, x, and i, if a reon(; 0)i event ours, then it is preeded by:� A report()i event, and� A join-ak(reon)j for every j 2 members(0).4.2 Notational onventionsIn this setion, we introdue some de�nitions and notational onventions, and we add ertain historyvariables to the global state of the system S.De�nitions:� update , a binary funtion on C�, de�ned by update(; 0) = max(; 0) if  and 0 are ompa-rable (in the augmented partial ordering of C�), update(; 0) =  otherwise.� extend , a binary funtion on C�, de�ned by extend(; 0) = 0 if  = ? and 0 2 C, andextend(; 0) =  otherwise.2The following properties appear in Setion 6, but we repeat them here for ompleteness.15



� CMap, the set of on�guration maps, de�ned as the set of mappings from N to C�. Theupdate and extend operators are extended element-wise to binary operations on CMap.� trunate , a unary funtion on CMap, de�ned by trunate(m)(k) = ? if there exists ` � ksuh that m(`) = ?, trunate(m)(k) = m(k) otherwise. This trunates on�guration mapm by removing all the on�guration identi�ers that follow a ?.� Trunated , the subset of CMap suh that m 2 Trunated if and only if trunate(m) = m.� Usable, the subset of CMap suh that m 2 Usable i� the pattern ourring in m onsistsof a pre�x of �nitely many �s, followed by an element of C, followed by an in�nite sequeneof elements of C [ f?g in whih all but �nitely many elements are ?.An operation is a pair (n; i) onsisting of a natural number n and an index i 2 I. Here, i is theindex of the proess running the operation, and n is the value of pnum1 i just after the read, write,or fg-upgrade event of the operation ours.We introdue the following history variables:� in-transit , a set of messages, initially ;.A message is added to the set when it is sent by any Reader-Writer i to any Reader-Writer j .No message is ever removed from this set.� For every k 2 N:1. (k) 2 C, initially unde�ned.This is set when the �rst new-on�g(; k)i ours, for some  and i. It is set to the  thatappears as the �rst argument of this ation.� For every operation �:1. tag(�) 2 T , initially unde�ned.This is set to the value of tag at the proess running �, at the point right after �'s query-�xor fg-upg-query-�x event ours. If � is a read or on�guration upgrade operation, thisis the highest tag that it enounters during the query phase. If � is a write operation,this is the new tag that is seleted for performing the write.� For every read or write operation �:1. query-map(�), a CMap, initially unde�ned.This is set in the query-�x step of �, to the value of op:map in the pre-state.2. R(�; k), for k 2 N, a subset of I, initially unde�ned.This is set in the query-�x step of �, for eah k suh that query-map(�)(k) 2 C. It isset to an arbitrary R 2 read-quorums((k)) suh that R � op:a in the pre-state.3. prop-map(�), a CMap, initially unde�ned.This is set in the prop-�x step of �, to the value of op:map in the pre-state.4. W (�; k), for k 2 N, a subset of I, initially unde�ned.This is set in the prop-�x step of �, for eah k suh that prop-map(�)(k) 2 C. It is setto an arbitrary W 2 write-quorums((k)) suh that W � op:a in the pre-state.� For every on�guration upgrade operation  for k:16



1. removal-set(), a subset of N, initially unde�ned.This is set in the fg-upgrade step of , to the set f` : ` < k; map(`) 6= �g.2. R(; `), for ` 2 N, a subset of I, initially unde�ned.This is set in the fg-upg-query-�x step of , for eah ` 2 removal-set (), to an arbitraryR 2 read-quorums((`)) suh that R � upg :a in the pre-state.3. W1(; `), for ` 2 N, a subset of I, initially unde�ned.This is set in the fg-upg-query-�x step of , for eah ` 2 removal-set (), to an arbitraryW 2 write-quorums((`)) suh that W � upg :a in the pre-state.4. W2(), a subset of I, initially unde�ned.This is set in the fg-upg-prop-�x step of , to an arbitrary W 2 write-quorums((k))suh that W � upg :a in the pre-state.In any good exeution �, we de�ne the following events (more preisely, we are giving additionalnames to some existing events):1. For every read or write operation �:(a) query-phase-start(�) , initially unde�ned.This is de�ned in the query-�x step of �, to be the unique earlier event at whih theolletion of query results was started and not subsequently restarted. This is either aread, write, or rev event.(b) prop-phase-start(�), initially unde�ned.This is de�ned in the prop-�x step of �, to be the unique earlier event at whih theolletion of propagation results was started and not subsequently restarted. This iseither a query-�x or rev event.4.3 Con�guration map invariantsIn this setion, we give invariants desribing the kinds of on�guration maps that may appear invarious plaes in the state of S. We begin with a lemma saying that various operations yield orpreserve the \usable" property:Lemma 4.1 1. If m ; m 0 2 Usable then update(m ; m 0) 2 Usable.2. If m 2 Usable, k 2 N ,  2 C, and m 0 is idential to m exept that m 0(k) = update(m(k); ),then m 0 2 Usable.3. If m; m 0 2 Usable then extend(m ; m 0) 2 Usable.4. If m 2 Usable then trunate(m) 2 Usable.Proof. Part 1 is shown using a ase analysis based on whih of m and m 0 has a longer pre�xof �s. Part 2 uses a ase analysis based on where k is with respet to the pre�x of �s. Part 3 andPart 4 are also straightforward. �The next invariant (reall from Setion 4.1 that this means a property of all states that arisein good exeutions of S) desribes some properties of mapi that hold while Reader-Writer i isonduting a on�guration upgrade operation:Invariant 4.2 If upg :phase i 6= idle and upg :target i = k, then:17



1. 8` : ` � k ) map(`)i 2 C [ f�g.2. If k1 = minf` : ` � k and upg :map(`) 6= �g then k1 = 0 or map(k1 � 1)i = �.Proof. By the preondition of fg-upgrade(k)i and monotoniity of all the hanges to mapi. �We next proeed to desribe the patterns of C, ?, and � values that may our in on�gurationmaps in various plaes in the system state.Invariant 4.3 Let m be a CMap that appears as one of the following:1. The m omponent of some message in in-transit .2. mapi for any i 2 I.3. op:map i for some i 2 I for whih op:phase 6= idle.4. query-map(�) or prop-map(�) for any operation �.5. upg :map i for some i 2 I for whih upg :phase 6= idle.Then m 2 Usable.In the following proof and elsewhere, we use dot notation to indiate omponents of a state, forexample, s:mapi indiates the value of mapi in state s.Proof. By indution on the length of a �nite good exeution.Base: Part 1 holds beause initially, in-transit is empty. Part 2 holds beause initially, for ev-ery i, map(0)i = 0 and map(k)i = ?; the resulting CMap is in Usable. Part 3 and Part 5hold vauously, beause in the initial state, all op:phase and upg :phase values are idle. Part 4 alsoholds vauously, beause in the initial state, all query-map and prop-map variables are unde�ned.Indutive step: Let s and s0 be the states before and after the new event, respetively. We onsiderParts 1{5 one by one.For Part 1, the interesting ase is a sendi event that puts a message ontaining m in in-transit .The preondition on the send ation implies that m is set to s:mapi. The indutive hypothesis,Part 2, implies that s:mapi 2 Usable, whih suÆes.For Part 2, �x i. The interesting ases are those that may hange mapi, namely, new-on�gi, revifor a gossip (non-join) message, and fg-upg-prop-�xi. The latter ase is the only one modi�ed fromthe original Rambo algorithm.1. new-on�g(; �)i.By indutive hypothesis, s:mapi 2 Usable. The only hange this an make is hanging a ?to . Then Lemma 4.1, Part 2, implies that s0:mapi 2 Usable.2. rev(h�; �; m ; �; �i)i.By indutive hypothesis, m 2 Usable and s:mapi 2 Usable. The step sets s0:mapi toupdate(s:mapi; m). Lemma 4.1, Part 1, then implies that s0:mapi 2 Usable.18



3. fg-upg-prop-�x(k)i.This sets map(`)i to � for all ` < k. By the de�nition of this step, s0:map(`)i = � for` < k.If s:map(k � 1)i = �, then the operation has no e�et, and s0:mapi = s:mapi 2 Usable.Assume, then, that s:map(k � 1)i 2 C [ f?g. This implies, by the indutive hypothesisshowing s:mapi 2 Usable, that s:map(`)i 2 C [ f?g for all ` � k � 1. By Invariant 4.2, weknow that s:map(k)i 2 C [ f�g, and therefore s:map(k)i 2 C. Therefore s0:map(k)i 2 Cand s0:map(`)i 2 C [ f?g for all ` > k, sine the fg-upg-prop-�x does not hange entriesin the map larger than k � 1. Further, there are only �nitely many entries in s:mapi thatare in C (by the indutive hypothesis), and so there are still only �nitely many entries ins0:mapi. Therefore, s0:mapi 2 Usable.For Part 3, the interesting ations to onsider are those that modify op:map , namely, readi, writei,revi, and query-�xi.1. readi, writei, or query-�xi.By indutive hypothesis, s:mapi 2 Usable. The new step sets s0:op:map i to trunate(s:mapi);sine s:mapi 2 Usable, Lemma 4.1, Part 4, implies that this is also usable.2. rev(h�; �; m ; �; �i)i.This step may alter op:mapi only if s:op:phase 2 fquery ; propg, and then in only two ways:by setting it either to extend(s:op:map i; trunate(m)) or to trunate(update(s:mapi; m)).The indutive hypothesis implies that s:op:map i, mapi, and m are all inUsable. Lemma 4.1implies that trunate , extend , and update all preserve usability. Therefore, s0:op:map i 2Usable.For Part 4, the ations to onsider are query-�xi and prop-�xi.1. query-�xi.This sets s0:query-mapi to the value of s:op:mapi. Sine by indutive hypothesis the latteris usable, so is s0:query-mapi.2. prop-�xi.This sets s0:prop-map i to the value of s:op:mapi. Sine by indutive hypothesis, the latteris usable, so is s0:prop-map i.For Part 5, the ations to onsider are fg-upgrade(k)i and fg-upg-query-�x(k)i. These set s0:upg :map ito the value of s:mapi. Sine by the indutive hypothesis the latter is usable, so is s0:upg :map i.�We now strengthen Invariant 4.3 to say more about the form of the CMaps that are used forread and write operations:Invariant 4.4 Let m be a CMap that appears as op:map i for some i 2 I for whih op:phase i 6=idle, or as query-map(�) or prop-map(�) for any operation �. Then:1. m 2 Trunated .2. m onsists of �nitely many � entries followed by �nitely many C entries followed by anin�nite number of ? entries. 19



Proof. We prove that the desired properties hold for a m that is op:map i. The same propertiesfor query-mapi and prop-map i follow by the way they are de�ned, from op:map i.To prove Part 1 we proeed by indution. In the initial state, op:phase i = idle, whih makesthe laim vauously true. For the indutive step we onsider all ations that alter op:mapi:1. readi, writei, or query-�x i.These set op:map i to trunate(mapi), whih is neessarily in Trunated .2. revi.This �rst sets op:mapi to a preliminary value and then tests if the result is in Trunated .If it is, we are done. If not, then this step resets op:mapi to trunate(map i), whih is inTrunated .To see Part 2, note that m 2 Usable by Invariant 4.3. The fat that m 2 Trunated thenfollows from the de�nition of Usable and Part 1. �4.4 Phase guaranteesIn this setion, we present results saying what is ahieved by the individual operation phases. Wegive four lemmas, desribing the messages that must be sent and reeived and the information owthat must our during the two phases of on�guration-upgrades and during the two phases of readand write operations.Note that these lemmas treat the ase where j = i uniformly with the ase where j 6= i. Thisis beause, in the Reader-Writer algorithm, ommuniation from a loation to itself is treateduniformly with ommuniation between two di�erent loations. We �rst onsider the query phaseof a on�guration-upgrade:Lemma 4.5 Suppose that a fg-upg-query-�x(k)i event for on�guration upgrade operation  oursin � and k0 2 removal-set(). Suppose j 2 R(; k0) [W1(; k0).Then there exist messages m from i to j and m0 from j to i suh that:1. m is sent after the fg-upgrade(k)i event of .2. m0 is sent after j reeives m.3. m0 is reeived before the fg-upg-query-�x(k)i event of .4. In any state after j reeives m, map(`)j 6= ? for all ` � k.5. tag() � t, where t is the value of tag j in any state before j sends message m0.Proof. The phase number disipline implies the existene of the laimed messages m and m0.For Part 4, the preondition of fg-upgrade(k) implies that, when the fg-upgrade(k)i event of ours, map(`)i 6= ? for all ` � k. Therefore, j sets map(`)j 6= ? for all ` � k when it reeivesm. Monotoniity of mapj ensures that this property persists forever.For Part 5, let t be the value of tag j in any state before j sends message m0. Let t0 be the valueof tag j in the state just before j sends m0. Then t � t0, by monotoniity. The tag omponent ofm0 is equal to t0, by the ode for send. Sine i reeives this message before the fg-upg-query-�x(k),it follows that tag() is set by i to a value � t. �Next, we onsider the propagation phase of a on�guration upgrade:20



Lemma 4.6 Suppose that a fg-upg-prop-�x(k)i event for a on�guration upgrade operation  o-urs in �. Suppose that j 2W2().Then there exist messages m from i to j and m0 from j to i suh that:1. m is sent after the fg-upg-query-�x(k)i event of .2. m0 is sent after j reeives m.3. m0 is reeived before the fg-upg-prop-�x(k)i event of .4. In any state after j reeives m, tag j � tag().Proof. The phase number disipline implies the existene of the laimed messages m and m0.For Part 4, when j reeives m, it sets tagj to be � tag(). Monotoniity of tagj ensures thatthis property persists in later states. �Next, we onsider the query phase of read and write operations:Lemma 4.7 Suppose that a query-�xi event for a read or write operation � ours in �. Letk; k0 2 N. Suppose query-map(�)(k) 2 C and j 2 R(�; k).Then there exist messages m from i to j and m0 from j to i suh that:1. m is sent after the query-phase-start(�) event.2. m0 is sent after j reeives m.3. m0 is reeived before the query-�x event of �.4. If t is the value of tag j in any state before j sends m0, then:(a) tag(�) � t.(b) If � is a write operation then tag(�) > t.5. If map(`)j 6= ? for all ` � k0 in any state before j sends m0, then query-map(�)(`) 2 C forsome ` � k0.Proof. The phase number disipline implies the existene of the laimed messages m and m0.For Part 4, the tag omponent of message m0 is � t, so i reeives a tag that is � t during thequery phase of �. Therefore, tag(�) � t. Also, if � is a write, the e�ets of the query-�x imply thattag(�) > t.Finally, we show Part 5. In the m omponent of message m0, m(`) 6= ? for all ` � k0.Therefore, trunate(m)(`) = m(`) for all ` � k0, so trunate(m)(`) 6= ? for all ` � k0.Let m 0 be the on�guration map extend(op:map i; trunate(m)) omputed by i during thee�ets of the rev event for m0. Sine i does not reset op:a to ; in this step, by de�nition of thequery-phase-start event, it follows that m 0 2 Trunated , and m 0 is the value of op:map i just afterthe rev step.Fix `, 0 � ` � k0. We laim that m 0(`) 6= ?. We onsider ases:1. op:map(`)i 6= ? just before the rev step.Then the de�nition of extend implies that m 0(`) 6= ?, as needed.21



2. op:map(`)i = ? just before the rev step and trunate(m)(`) 2 C.Then the de�nition of extend implies that m 0(`) 2 C, whih implies that m 0(`) 6= ?, asneeded.3. op:map(`)i = ? just before the rev step and trunate(m)(`) =2 C.Sine trunate(m)(`) 6= ?, it follows that trunate(m)(`) = �. Sine trunate(m)(`) = �and trunate(m) 2 Usable, it follows that, for some `0 > `, trunate(m)(`0) 2 C.By the ase assumption, op:map(`)i = ? just before the rev step. Sine, by Invariant 4.4,op:map i 2 Trunated , it follows that op:map(`0)i = ? before the rev step.Then by de�nition of extend , we have that m 0(`) = ? while m 0(`0) 2 C. This implies thatm 0 =2 Trunated , whih ontradits the fat, already shown, that m 0 =2 Trunated , So thisase annot arise.Sine this argument holds for all `, 0 � ` � k0, it follows that m 0(`) 6= ? for all ` � k0. Sinem 0(`) 6= ? for all ` � k0, Invariant 4.3 implies that m 0 2 Usable, whih implies by de�nition ofUsable that m 0(`) 2 C for some ` � k0. That is, op:map i(`) 2 C for some ` � k0 immediatelyafter the rev step. This implies that query-map(�)(`) 2 C for some ` � k0, as needed. �And �nally, we onsider the propagation phase of read and write operations:Lemma 4.8 Suppose that a prop-�xi event for a read or write operation � ours in �. Supposeprop-map(�)(k) 2 C and j 2W (�; k).Then there exist messages m from i to j and m0 from j to i suh that:1. m is sent after the prop-phase-start(�) event.2. m0 is sent after j reeives m.3. m0 is reeived before the prop-�x event of �.4. In any state after j reeives m, tag j � tag(�).5. If map(`)j 6= ? for all ` � k0 in any state before j sends m0, then prop-map(�)(`) 2 C forsome ` � k0.Proof. The phase number disipline implies the existene of the laimed messages m and m0.For Part 4, let m:tag be the tag �eld of message m. Sine m is sent after the prop-phase-startevent, whih is not earlier than the query-�x, it must be that m:tag � tag(�). Therefore, by thee�ets of the rev, just after j reeives m, tag j � m:tag � tag(�). Then monotoniity of tagjimplies that tagj � tag(�) in any state after j reeives m.For Part 5, the proof is analogous to the proof of Part 5 of Lemma 4.7. In fat, it is identialexept for the �nal onlusion, whih now says that prop-map(�)(`) 2 C for some ` � k0. �5 Atomi ConsistenyThis setion ontains the proof of atomi onsisteny. The proof is arried out in several stages.First in Setion 5.1 we present some lemmas about the new on�guration management mehanism,desribing the relationship between on�guration upgrade operations. Setion 5.2 desribes therelationship between read/write operations and on�guration upgrade operations. Setion 5.3 then22



onsiders two read or write operations, and ulminates in Lemma 5.11, whih says that tags aremonotoni with respet to non-onurrent read or write operations. Finally, Setion 5.4 uses thetags to de�ne a partial order on operations and veri�es the four properties required for atomiity.5.1 Behavior of on�guration upgradeThis setion presents the key new tehnial lemmas on whih the proof of atomiity is based. Speif-ially, we present lemmas desribing information ow between on�guration upgrade operations.These lemmas assert the existene of a sequene of on�guration upgrade operations on whih wean make ertain neessary guarantees. In partiular, the key property is that the tags are mono-tonially inreasing with respet to the spei� sequene of upgrade operations, guaranteeing thatvalue/tag information is propagated to newer on�gurations.The �rst lemma shows that if all on�guration upgrade operations remove two partiular on-�gurations together, then those two on�guration are always in the same state in all maps.Lemma 5.1 Suppose that k > 0, and � is an exeution in whih no fg-upg-prop-�x(k) event oursin �. Suppose that m is a CMap that appears as one of the following in any state in �:1. The m omponent of some message in in-transit .2. mapi for any i 2 I.If m(k � 1) = � then m(k) = �.Proof. Fix some � and k > 0 suh that no fg-upg-prop-�x(k) event ours in �. We pro-eed by indution on the length of a �nite pre�x of �: for every ation in �, if before the ationm(k � 1) = � =) m(k) = �, then the same impliation holds after the ation.Base: For Part 1, the onlusion follows vauously beause initially in-transit is empty. For Part2, the onlusion again follows vauously beause initially mapi(`) 6= � for all i and `.Indutive step: Let s and s0 be the states before and after the new event, respetively. We onsiderParts 1 and 2 separately.For Part 1, the interesting ase is a sendi event that puts a message ontaining m in in-transit .The preondition on the send ation implies that m is set to s:mapi. The indutive hypothesis,Part 2, implies that if s:map(k � 1) = �, then s:map(k) = �. Therefore in state s0, the sameholds for m, whih has been added to in-transit .For Part 2, �x i. The interesting ases are those that may hange mapi, namely, new-on�gi, revifor a gossip message, and fg-upg-prop-�xi.1. new-on�g(; �)i.If s0:map(k � 1)i = �, then s:map(k � 1)i = �, sine installing a new on�guration doesnot set any entry to �. Then by the indutive hypothesis s:map(k)i = �, whih impliesthat s0:map(k)i = �, sine this ation annot modify an entry that is already �.2. rev(h�; �; m ; �; �i)i.First, if m(0) 6= �, then the message does not ause any entry in s:map to be set to �,and as in Case 1 the desired property still holds. Also, if s:map(0) 6= �, then for all `,s0:map(`) = � if and only if m(`) = �. By the indutive hypothesis m(k � 1) = � =)23



m(k) = �, so the desired onlusion follows. For the rest of this ase, we will assume thatm(0) = � and s:map(0) = �.By Invariant 4.3, m 2 Usable. Therefore we an de�ne kmsg-max suh that m(`) = � forall ` � kmsg-max and m(`) 6= � for all ` > kmsg-max . Similarly, we an de�ne kmax suh thats:map(`)i = � for all ` � kmax and s:map(`)i 6= � for all ` > kmax. De�ne k0max in thesame way for the poststate, s0.There are two ases. First, assume kmax � kmsg-max . Then k0max = kmax, by the monotoniityof CMap. By our indutive hypothesis s:map(k � 1) = � =) s:map(k) = �; it follows,then, that if k� 1 � kmax then k � kmax. Therefore if k� 1 � k0max, then k � k0max. Finally,then, if s0:map(k � 1) = �, then s0:map(k) = �.Assume, then, that kmsg-max > kmax. Then after the update operation, k0max = kmsg-max .By our indutive hypothesis, m(k � 1) = � =) m(k) = �; it follows, then, that ifk�1 � kmsg-max , then k � kmsg-max . Therefore if k�1 � k0max, then k � k0max. Finally, then,s0:map(k � 1) = � implies that s0:map(k) = �.3. fg-upg-prop-�x(k0)i.By assumption, k 6= k0. If k < k0, then this operation sets both s0:map(k � 1)i = � ands0:map(k)i = �. If k > k0, then this operation has no e�et on map(k)i or map(k � 1)i,and the desired property still holds. �The following orollary says that if a fg-upgrade(k) event for an upgrade operation  ours inan exeution, then there is some previous on�guration upgrade operation 0 (that ompletes beforethe upgrade event) where the target of 0 is the on�guration with the smallest index removed by.Corollary 5.2 Let  be a on�guration upgrade operation, initiated by a fg-upgrade(k)i event in �,and let k1 = minfremoval-set()g. That is, k1 is the smallest element suh that upg-map()(k1) 2C. Assume k1 > 0. Then a fg-upg-prop-�x(k1)j event for some on�guration upgrade operation 0ours in � for some j suh that the fg-upg-prop-�xj event of 0 preedes the fg-upgrade(k)i eventin �.Proof. By the de�nition of k1, we know that in the state just after the fg-upgrade event,upg :map(k1 � 1)i = � and upg :map(k1)i 6= �. Sine upg :mapi is set by the fg-upgrade eventto mapi in the state just prior to the fg-upgrade event, we know that map(k1 � 1)i = � andmap(k1)i 6= � in the state just prior to the fg-upgrade event. Lemma 5.1, then, implies that somefg-upgrade-prop-�x(k1) event for some operation 0 ours in � preeding the fg-upgrade event.�The next lemma says that for a given on�guration upgrade operation , there exists a sequeneof preeding upgrade operations satisfying ertain properties. The lemma begins by assumingthat some on�guration with index k is removed by the spei�ed upgrade operation. For everyon�guration with an index smaller than k, we hoose a single upgrade operation { that removesthat on�guration { to add to the sequene. Therefore the onstruted sequene may well ontainthe same on�guration upgrade operation multiple times, if the operation has removed multipleon�gurations. If two elements in the sequene are distint upgrade operations, then the earlier24



operation in the sequene ompletes before the later operation in the sequene is initiated. Also, thetarget of an upgrade operation in the sequene is removed by the next distint upgrade operation inthe sequene. As a result of these properties, the on�guration upgrade proess obeys a sequentialdisipline.Lemma 5.3 If a fg-upgradei event for upgrade operation  ours in � suh that k 2 removal-set(),then there exists a sequene (possibly ontaining repeated elements) of on�guration upgrade oper-ations 0; 1; : : : ; k with the following properties:1. 8 s : 0 � s � k; s 2 removal-set(s),2. 8 s : 0 � s < k, if s 6= s+1, then the fg-upg-prop-�x event of s ours in � andthe fg-upgrade event of s+1 ours in �, and the fg-upg-prop-�x event of s preedes thefg-upgrade event of s+1, and3. 8 s : 0 � s < k, if s 6= s+1, then target(s) 2 removal-set(s+1).Proof. We onstrut the sequene in reverse order, �rst de�ning k, and then at eah step de�ningthe preeding element. We prove the lemma by bakward indution on `, for ` = k down to ` = 0,maintaining the following three properties at eah step of the indution:1 0. 8 s : ` � s � k; s 2 removal-set(s),2 0. 8 s : ` � s < k, if s 6= s+1, then the fg-upg-prop-�x event of s ours in � and thefg-upgrade event of s+1 ours in �, and the fg-upg-prop-�x event of s preedes thefg-upgrade event of s+1, and3 0. 8 s : ` � s < k, if s 6= s+1, then target(s) 2 removal-set(s+1).To begin the indution, we �rst examine the base ase, where ` = k. De�ne k = . Property 10holds by assumption, and Property 20 and Property 30 are vauously true.For the indutive step, we assume that ` has been de�ned and that properties 10{30 hold.If ` = 0, then 0 has been de�ned, and we are done. Otherwise, we need to de�ne `�1. If`� 1 2 removal-set(`), then let `�1 = `, and all the properties still hold.Otherwise, `�1 =2 removal-set(`) and ` 2 removal-set(`), whih implies that ` = minfremoval-set(`)gbeause eah on�guration upgrade operates on a onseutive sequene of on�gurations. Then byCorollary 5.2, there ours in � a on�guration upgrade operation, that we label `�1, with thefollowing properties: (i) the fg-upg-prop-�x event of `�1 preedes the fg-upgrade event of `, and(ii) target(`�1) = minfk0 : k0 2 removal-set(`)g.Reall that ` = minfremoval-set(`)g. Therefore, by Property (ii) of `�1, target(`�1) = `.Sine removal-set(`�1) 6= ;, this implies that ` � 1 2 removal-set(`�1), proving Property 10.Property 20 follows from Property (i) of `�1. Property 30 follows from Property (ii) of `�1. �The sequential nature of on�guration upgrade has a nie onsequene for propagation of tags:for any sequene of upgrade operations like that in Lemma 5.3, tag(s) is nondereasing in s.Lemma 5.4 Let `; : : : ; k be a sequene of on�guration upgrade operations suh that:1. 8 s : 0 � s � k; s 2 removal-set(s), 25



2. 8 s : 0 � s < k, if s 6= s+1, then the fg-upg-prop-�x event of s ours in � andthe fg-upgrade event of s+1 ours in �, and the fg-upg-prop-�x event of s preedes thefg-upgrade event of s+1, and3. 8 s : 0 � s < k, if s 6= s+1, then target(s) 2 removal-set(s+1).Then 8 s : 0 � s < k; tag(s) � tag(s+1).Proof. If s = s+1, then it is trivially true that tag(s) � tag(s+1). Therefore assume that s 6=s+1; this implies that the fg-upg-prop-�x event of s preedes the fg-upgrade event of s+1. Let k2be the largest element in removal-set(s). We know by assumption that k2+1 2 removal-set(s+1).Therefore, W2(s), a write-quorum of on�guration (k2 + 1), has at least one element in ommonwith R(s+1; k2 + 1); label this node j. By Lemma 4.6, and the monotoniity of tag j, after thefg-upg-prop-�x event of s we know that tagj � tag(s). Then by Lemma 4.5 tag(s+1) � tagj .Therefore tag(s) � tag(s+1). �Corollary 5.5 Let `; : : : ; k be a sequene of on�guration upgrade operations suh that:1. 8 s : 0 � s � k; s 2 removal-set(s),2. 8 s : 0 � s < k, if s 6= s+1, then the fg-upg-prop-�x event of s ours in � andthe fg-upgrade event of s+1 ours in �, and the fg-upg-prop-�x event of s preedes thefg-upgrade event of s+1, and3. 8 s : 0 � s < k, if s 6= s+1, then target(s) 2 removal-set(s+1).Then 8 s; s0 : 0 � s � s0 � k, tag(s) � tag(s0)Proof. This follows immediately from Lemma 5.4 by indution. �5.2 Behavior of a read or a write following a on�guration upgradeNow we desribe the relationship between an upgrade operation and a following read or write op-eration. These three lemmas relate the removal-set of a preeding on�guration upgrade operationwith the query-map of a later read or write operation.The �rst lemma shows that if, for some read or write operation, k is the smallest index suhthat query-map(k) 2 C, then some on�guration upgrade operation with target k preedes theread or write operation.Lemma 5.6 Let � be a read or write operation whose query-�x event ours in �. Let k be thesmallest element suh that query-map(�)(k) 2 C. Assume k > 0. Then there must exist aon�guration upgrade operation  suh that k = target(), and the fg-upg-prop-�x event of preedes the query-phase-start(�) event.Proof. This follows from Lemma 5.1. Let s be the state just before the query-phase-start(�)event. By de�nition, query-map(�) = s:mapi. Sine s:map(k � 1)i = � and s:map(k)i 6= �,there must exist suh a on�guration upgrade operation for k by the ontrapositive of Lemma 5.1.�Seond, if some upgrade removing k does omplete before the query-phase-start event of a reador write operation, then some on�guration with index � k+1 must be inluded in the query-mapof a later read or write operation. 26



Lemma 5.7 Let  be a on�guration upgrade operation suh that k 2 removal-set(). Let � be aread or write operation whose query-�x event ours in �. Suppose that the fg-upg-prop-�x eventof  preedes the query-phase-start(�) event in �.Then query-map(�)(`) 2 C for some ` � k + 1.Proof. Suppose for the sake of ontradition that query-map(�)(`) =2 C for all ` � k + 1. Fixk0 = max(f`0 : query-map(�)(`0) 2 Cg). Then k0 � k.Let 0; : : : ; k be the sequene of upgrade operations whose existene is asserted by Lemma 5.3,where k = . Then, by this onstrution, k0 2 removal-set(k0), and the fg-upg-prop-�x event ofk0 does not ome after the fg-upg-prop-�x event of  in �. By assumption, the fg-upg-prop-�xevent of  preedes the query-phase-start(�) event in �. Therefore the fg-upg-prop-�x event of k0preedes the query-phase-start(�) event in �.Then, sine k0 2 removal-set(k0), write-quorum W1(k0 ; k0) is de�ned. Sine query-map(k0) 2C), the read-quorum R(�; k0) is de�ned. Choose j 2 W1(k0 ; k0) \ R(�; k0). Assume that kt =target(k0). Notie that k0 < kt. Then Lemma 4.5 and monotoniity of map imply that, in thestate just prior to the fg-upg-query-�x event of k0 , map(`)j 6= ? for all ` � kt. Then Lemma 4.7implies that query-map(�)(`) 2 C for some ` � kt. But this ontradits the hoie of k0. �The next lemma desribes propagation of tag information from a on�guration upgrade opera-tion to a following read or write operation. For this lemma, we assume that query-map(k) 2 C,where k is the target of the upgrade operation,Lemma 5.8 Let  be a on�guration upgrade operation. Assume that k = target(). Let � be aread or write operation whose query-�x event ours in �. Suppose that the fg-upg-prop-�x event of preedes the query-phase-start(�) event in exeution �. Suppose also that query-map(�)(k) 2 C.Then:1. tag() � tag(�).2. If � is a write operation then tag() < tag(�).Proof. The propagation phase of  aesses write-quorum W2() of (k), whereas the queryphase of � aesses read-quorum R(�; k). Sine both are quorums of on�guration (k), they havea nonempty intersetion; hoose j 2W2() \R(�; k).Lemma 4.6 implies that, in any state after the fg-upg-prop-�x event for , tagj � tag(). Sinethe fg-upg-prop-�x event of  preedes the query-phase-start(�) event, we have that t � tag(),where t is de�ned to be the value of tagj just before the query-phase-start(�) event. Then Lemma 4.7implies that tag(�) � t, and if � is a write operation, then tag(�) > t. Combining the inequalitiesyields both onlusions of the lemma. �5.3 Behavior of sequential reads and writesRead or write operations that originate at di�erent loations may proeed onurrently. However,in the speial ase where they exeute sequentially, we an prove some relationships between theirquery-maps, prop-maps, and tags. The �rst lemma says that, when two read or write operationsexeute sequentially, the smallest on�guration index used in the propagation phase of the �rstoperation is less than or equal to the largest index used in the query phase of the seond. In otherwords, we annot have a situation in whih the seond operation's query phase exeutes using onlyon�gurations with indies that are stritly less than any used in the �rst operation's propagationphase. 27



Lemma 5.9 Assume �1 and �2 are two read or write operations, suh that:1. The prop-�x event of �1 ours in �.2. The query-�x event of �2 ours in �.3. The prop-�x event of �1 preedes the query-phase-start(�2) event.Then min(f` : prop-map(�1)(`) 2 Cg) � max(f` : query-map(�2)(`) 2 Cg).Proof. Suppose for the sake of ontradition that min(f` : prop-map(�1)(`) 2 Cg) > k, wherek is de�ned to be max(f` : query-map(�2)(`) 2 Cg). Then in partiular, prop-map(�1)(k) =2 C.The form of prop-map(�1), as expressed in Invariant 4.4, implies that prop-map(�1)(k) = �.This implies that some fg-upg-prop-�x event for some upgrade operation  suh that k 2removal-set() ours prior to the prop-�x of �1, and hene prior to the query-phase-start(�2) event.Lemma 5.7 then implies that query-map(�2)(`) 2 C for some ` � k + 1. But this ontradits thehoie of k. �The next lemma desribes propagation of tag information, in the ase where the propagationphase of the �rst operation and the query phase of the seond operation share a on�guration.Lemma 5.10 Assume �1 and �2 are two read or write operations, and k 2 N, suh that:1. The prop-�x event of �1 ours in �.2. The query-�x event of �2 ours in �.3. The prop-�x event of �1 preedes the query-phase-start(�2) event.4. prop-map(�1)(k) and query-map(�2)(k) are both in C.Then:1. tag(�1) � tag(�2).2. If �2 is a write then tag(�1) < tag(�2).Proof. The hypotheses imply that prop-map(�1)(k) = query-map(�2)(k) = (k). ThenW (�1; k)and R(�2; k) are both de�ned in �. Sine they are both quorums of on�guration (k), they havea nonempty intersetion; hoose j 2W (�1; k) \R(�2; k).Lemma 4.8 implies that, in any state after the prop-�x event of �1, tag j � tag(�1). Sine theprop-�x event of �1 preedes the query-phase-start(�2) event, we have that t � tag(�1), where t isde�ned to be the value of tagj just before the query-phase-start(�2) event. Then Lemma 4.7 impliesthat tag(�2) � t, and if �2 is a write operation, then tag(�2) > t. Combining the inequalities yieldsboth onlusions. �The �nal lemma is similar to the previous one, but it does not assume that the propagationphase of the �rst operation and the query phase of the seond operation share a on�guration. Themain fous of the proof is on the situation where all the on�guration indies used in the queryphase of the seond operation are greater than those used in the propagation phase of the �rstoperation. 28



Lemma 5.11 Assume �1 and �2 are two read or write operations, suh that:1. The prop-�x of �1 ours in �.2. The query-�x of �2 ours in �.3. The prop-�x event of �1 preedes the query-phase-start(�2) event.Then:1. tag(�1) � tag(�2).2. If �2 is a write then tag(�1) < tag(�2).Proof. Let i1 and i2 be the indies of the proesses that run operations �1 and �2, respetively.Let m1 = prop-map(�1) and m2 = query-map(�2). If there exists k suh that m1(k) 2 C andm2(k) 2 C, then Lemma 5.10 implies the onlusions of the lemma. So from now on, we assumethat no suh k exists.Lemma 5.9 implies that min(f` : m1(`) 2 Cg) � max(f` : m2(`) 2 Cg). Invariant 4.4 impliesthat the set of indies used in eah phase onsists of onseutive integers. Sine the intervals haveno indies in ommon, it follows that s1 < s2, where s1 is de�ned to be max(f` : m1(`) 2 Cg) ands2 is de�ned to be min(f` : m2(`) 2 Cg).Lemma 5.6 implies that there exists a on�guration upgrade operation that we will all s2�1suh that s2 = target(s2�1), and the fg-upg-prop-�x of s2�1 preedes the query-phase-start(�2)event. Then by Lemma 5.8, tag(s2�1) � tag(�2), and if �2 is a write operation then tag(s2�1) <tag(�2).Next we will demonstrate a hain of on�guration upgrade operations with non-dereasing tags.Lemma 5.3, in onjuntion with the already de�ned s2�1, implies the existene of a sequene ofon�guration upgrade operations 0; : : : ; s2�1 suh that:1. 8 s : 0 � s � s2 � 1; s 2 removal-set(s),2. 8 s : 0 � s < s2�1, if s 6= s+1, then the fg-upg-prop-�x event of s preedes the fg-upgradeevent of s+1 in �,3. 8 s : 0 � s < s2 � 1, if s 6= s+1, then target(s) 2 removal-set(s+1).As a speial ase of Property 1, sine s1 � s2 � 1, we know that s1 2 removal-set(s1). ThenCorollary 5.5 implies that tag(s1) � tag(s2�1).It remains to show that the tag of �1 is no greater than the tag of s1 . Therefore we fous nowon the relationship between operation �1 and on�guration upgrade s1 . The propagation phase of�1 aesses write-quorum W (�1; s1) of on�guration (s1), whereas the query phase of s1 aessesread-quorum R(s1 ; s1) of on�guration (s1). Sine W (�1; s1) \ R(s1 ; s1) 6= ;, we may �x somej 2 W (�1; s1) \ R(s1 ; s1). Let message m1 from i1 to j and message m01 from j to i1 be as inLemma 4.8 for the propagation phase of s1 .Let message m2 from the proess running s1 to j and messagem02 from j to the proess runnings1 be the messages whose existene is asserted in Lemma 4.5 for the query phase of s1 .We laim that j sends m01, its message for �1, before it sends m02, its message for s1 . Supposefor the sake of ontradition that j sends m02 before it sends m01. Assume that st = target(s1 .Notie that st > s1, sine s1 2 removal-set (s1). Lemma 4.5 implies that in any state after jreeives m2, before j sends m02, map(k)j 6= ? for all k � st. Sine j sends m02 before it sends29



m01, monotoniity of map implies that just before j sends m01, map(k)j 6= ? for all k � st. ThenLemma 4.8 implies that prop-map(�1)(`) 2 C for some ` � st. But this ontradits the hoie ofs1, sine s1 < st. This implies that j sends m01 before it sends m02.Sine j sends m01 before it sends m02, Lemma 4.8 implies that, at the time j sends m02, tag(�1) �tag j. Then Lemma 4.5 implies that tag(�1) � tag(s1). From above, we know that tag(s1) �tag(s2�1), and tag(s2�1) � tag(�2), and if �2 is a write operation then tag(s2�1) < tag(�2).Combining the various inequalities then yields both onlusions. �5.4 AtomiityIn order to prove that all exeutions of Rambo II are atomi, we use four suÆient onditions. Amemory is said to be atomi provided that the following onditions hold for all good exeutions:� If all the read and write operations that are invoked omplete, then the read and writeoperations for objet x an be partially ordered by an ordering �, so that:1. No operation has in�nitely many other operations ordered before it.2. The partial order is onsistent with the external order of invoations and responses, thatis, there do not exist read or write operations �1 and �2 suh that �1 ompletes before�2 starts, yet �2 � �1.3. All write operations are totally ordered and every read operation is ordered with respetto all the writes.4. Every read operation ordered after any writes returns the value of the last write preedingit in the partial order; any read operation ordered before all writes returns the initialvalue.This de�nition is suÆient to guarantee atomiity in terms of the other ommon de�nition whihis de�ned in terms of equivalene to a serial memory. (See, for example, Lemma 13.16 in [11℄.)Let � be a trae of S, the system that implements Rambo II (reall that this inludes theReader-Writer , Reon and Joiner automata), and assume that all read and write operations om-plete in �. Consider any partiular good exeution � of S whose trae is �. We de�ne a partialorder � on read and write operations in �, in terms of the operations' tags in �. Namely, we totallyorder the writes in order of their tags, and we order eah read with respet to all the writes asfollows: a read with tag t is ordered after all writes with tags � t and before all writes with tags> t.Lemma 5.12 The ordering � is well-de�ned.Proof. The key is to show that no two write operations get assigned the same tag. This is obvi-ously true for two writes that are initiated at di�erent loations, beause the low-order tiebreakeridenti�ers are di�erent. For two writes at the same loation, Lemma 5.11 implies that the tag ofthe seond is greater than the tag of the �rst. This suÆes. �Lemma 5.13 � satis�es the four onditions in the de�nition of atomiity.Proof. We begin with Property 2, whih as usual in suh proofs, is the most interesting thing toshow. Suppose for the sake of ontradition that �1 ompletes before �2 starts, yet �2 � �1. Weonsider two ases: 30



1. �2 is a write operation.Sine �1 ompletes before �2 starts, Lemma 5.11 implies that tag(�2) > tag(�1). On theother hand, the fat that �2 � �1 implies that tag(�2) � tag(�1). This yields a ontradition.2. �2 is a read operation.Sine �1 ompletes before �2 starts, Lemma 5.11 implies that tag(�2) � tag(�1). On theother hand, the fat that �2 � �1 implies that tag(�2) < tag(�1). This yields a ontradition.Sine we have a ontradition in either ase, Property 2 must hold.Property 1 follows from Property 2. Properties 3 and 4 are straightforward. �Now we tie everything together for the proof of Theorem 5.14.Theorem 5.14 Let � be a trae of S, the system that implements Rambo II. Then � satis�es theatomiity guarantee.Proof. Assume that all read and write operations omplete in �. Let � be a good exeution ofS whose trae is �. De�ne the ordering � on the read and write operations in � as above, usingthe exeution �. Then Lemma 5.13 says that � satis�es the four onditions in the de�nition ofatomiity. Thus, � satis�es the atomiity ondition, as needed. �6 Reon�guration ServieIn this setion we present the spei�ation and implementation for the reon�guration spei�ation.This setion is a restatement of Setions 4 and 7 of the Rambo tehnial report, and is takendiretly from [13℄. Our Rambo implementation for eah objet x onsists of a main Reader-Writeralgorithm and a reon�guration servie, Reon(x); sine we are suppressing mention of x, we writethis simply as Reon . First, in Setion 6.1, we present the spei�ation for the Reon servie, asan external signature and set of traes. In Setion 6.2, we present our implementation of Reon .6.1 Reon�guration Servie Spei�ationThe interfae for Reon appears in Figure 9. The lient of Reon at loation i requests to jointhe reon�guration servie by performing a join(reon)i input ation. The servie aknowledgesthis with a orresponding join-aki output ation. The lient requests to reon�gure the objetusing a reoni input, whih is aknowledged with a reon-aki output ation. Rambo reports a newon�guration to the lient using a reporti output ation. Crashes are modeled using fail ations.Reon also produes outputs of the form new-on�g(; k)i, whih announe at loation i that is the kth on�guration identi�er for the objet. These outputs are used for ommuniation withthe portion of the Reader-Writer algorithm running at loation i. Reon announes onsistentinformation, only one on�guration identi�er per index in the on�guration identi�er sequene.It delivers information about eah on�guration to members of the new on�guration and of theimmediately preeding on�guration.Now we de�ne the set of traes desribing Reon 's safety properties. Again, these are de�ned interms of environment assumptions and and servie guarantees. The environment assumptions aresimple well-formedness onditions, onsistent with the well-formedness assumptions for Rambo:� Well-formedness: 31



Input:join(reon)i, i 2 Ireon(; 0)i, ; 0 2 C, i 2 members()faili, i 2 I Output:join-ak(reon)i, i 2 Ireon-ak(b)i, b 2 fok; nokg; i 2 Ireport()i,  2 C; i 2 Inew-on�g(; k)i,  2 C, k 2 N+ , i 2 IFigure 9: Reon : External signature{ For every i:� No join(reon)i or reon(�; �)i event is preeded by a faili event.� At most one join(reon)i event ours.� Any reon(�; �)i event is preeded by a join-ak(reon)i event.� Any reon(�; �)i event is preeded by an -ak for any preeding reon(�; �)i event.{ For every , at most one reon(�; )� event ours.{ For every , 0, x, and i, if a reon(; 0)i event ours, then it is preeded by:� A report()i event, and� A join-ak(reon)j for every j 2 members(0).The safety guarantees provided by the servie are as follows:� Well-formedness: For every i:{ No join-ak(reon)i, reon-ak(�)i, report(�)i, or new-on�g(�; �)i event is preeded by afaili event.{ Any join-ak(reon)i (resp., reon-ak()i) event has a preeding join(reon)i (resp., reoni)event with no intervening invoation or response ation for x and i.� Agreement: If new-on�g(; k)i and new-on�g(0; k)j both our, then  = 0. (No disagree-ment arises about what the kth on�guration identi�er is, for any k.)� Validity: If new-on�g(; k)i ours, then it is preeded by a reon(�; )i0 for some i0 for whiha mathing reon-ak(nok)i0 does not our. (Any on�guration identi�er that is announedwas previously requested by someone who did not reeive a negative aknowledgment.)� No dupliation: If new-on�g(; k)i and new-on�g(; k0)i0 both our, then k = k0. (Thesame on�guration identi�er annot be assigned to two di�erent positions in the sequene ofon�guration identi�ers.)6.2 Reon�guration Servie ImplementationIn this setion, we desribe a distributed algorithm that implements the Reon servie for a par-tiular objet x (and we suppress mention of x). This algorithm is onsiderably simpler than theReader-Writer algorithm. It onsists of a Reon i automaton for eah loation i, whih interatswith a olletion of global onsensus servies Cons(k; ), one for eah k � 1 and eah  2 C, andwith a point-to-point ommuniation servie.Cons(k; ) aepts inputs from members of on�guration , whih it assumes to be the k � 1ston�guration. These inputs are proposed new on�gurations. The deision reahed by Cons(k; ),whih must be one of the proposed on�gurations, is determined to be the kth on�guration.32



Reon i is ativated by the joining protool. It proesses reon�guration requests using the on-sensus servies, and reords the new on�gurations that the onsensus servies determine. Reon ialso onveys information about new on�gurations to the members of those on�gurations, and re-leases new on�gurations for use by Reader-Writer i. It returns aknowledgments and on�gurationreports to its lient.6.3 Consensus serviesIn this setion, we speify the behavior we assume for onsensus servie Cons(k; ), for a �xed k � 1and  2 C. This behavior an be ahieved using the Paxos onsensus algorithm [9℄, as desribedformally in [14℄. Fix V to be the set of onsensus values. (In the implementation of the Reonservie, V will be instantiated as C.) The external signature of Cons(k; ) is given in Figure 10.Input:init(v)k;;i, v 2 V , i 2 members()faili, i 2 members() Output:deide(v)k;;i, v 2 V , i 2 members()Figure 10: Cons(k; ): External signatureWe desribe the safety properties of Cons(k; ) in terms of properties of a trae � of ations inthe external signature. Namely, we de�ne the lient safety assumptions:� Well-formedness: For any i 2 members():{ No init(�)k;;i event is preeded by a fail(i) event.{ At most one init(�)k;;i event ours in �.And we de�ne the onsensus safety guarantees:� Well-formedness: For any i 2 members():{ No deide(�)k;;i event is preeded by a fail(i) event.{ At most one deide(�)k;;i event ours in �.{ If a deide(�)k;;i event ours in �, then it is preeded by an init(�)k;;i event.� Agreement: If deide(v)k;;i and deide(v0)k;;i0 events our in �, then v = v0.� Validity: If a deide(v)k;;i event ours in �, then it is preeded by an init(v)k;;j.We assume that the Cons(k; ) servie is implemented using the Paxos algorithm [9℄, as de-sribed formally in [14℄. This satis�es the safety guarantees desribed above, based on the safetyassumptions:Theorem 6.1 If � is a trae of Paxos that satis�es the safety assumptions of Cons(k; ), then �also satis�es the (well-formedness, agreement, and validity) safety guarantees of Cons(k; ).The Paxos algorithm also satis�es the following lateny result:Theorem 6.2 Consider a timed exeution � of the Paxos algorithm and a pre�x �0 of �. Supposethat: 33



1. The underlying system \behaves well" after �0, in the sense that timing is \normal" (what isalled \regular" in [14℄)3 and no proess failures or message losses our.2. For every i that does not fail in �, an init(�)i event ours in �0.3. There exist R 2 read-quorums() and W 2 write-quorums() suh that for all i 2 R [W , nofaili event ours in �.Then for every i that does not fail in �, a deide(�)i event ours, no later than 9d + " time afterthe end of �0 (" > 0).6.4 Reon automataA Reon i proess is responsible for initiating onsensus exeutions to help determine new on-�gurations, for telling the loal Reader-Writer i proess about a newly-determined on�guration,and for disseminating information about newly-determined on�gurations to the members of thoseon�gurations. The signature and state of Reon i appear in Figures 11, and the transitions inFigure 12.Signature:Input:join(reon)ireon(; 0)i; ; 0 2 C; i 2 members()deide()k;i;  2 C; k 2 N+rev(hon�g; ; ki)j;i,  2 C, k 2 N+ ,i 2 members(), j 2 I � figrev(hinit; ; 0; ki)j;i, ; 0 2 C, k 2 N+ ,i; j 2 members(), j 6= ifaili
Output:join-ak(reon)inew-on�g(; k)i,  2 C; k 2 N+init(; 0)k;i, ; 0 2 C; k 2 N+ , i 2 members()reon-ak(b)i, b 2 fok; nokgreport()i,  2 Csend(hon�g; ; ki)i;j ,  2 C, k 2 N+ ,j 2 members()� figsend(hinit; ; 0; ki)i;j ; ; 0 2 C; k 2 N+ ;i; j 2 members(), j 6= iState:status 2 fidle; ativeg, initially idle.re-map 2 CMap, initially re-map(0) = 0and re-map(k) = ? for all k 6= 0.did-init � N+ , initially ;did-new-on�g � N+ , initially ; ons-data 2 (N+ ! (C � C)): initially ? everywherere-status 2 fidle; ativeg, initially idleoutome 2 fok; nok;?g, initially ?reported � C, initially ;failed , a Boolean, initially falseFigure 11: Reon i: Signature and stateLoation i joins the Reon servie when a join(reon) input ours. Reon i responds with ajoin-ak.Reon i inludes a state variable re-map, whih holds a CMap: re-map(k) =  indiates thati knows that  is the kth on�guration identi�er. If Reon i has learned that  is the kth on�gurationidenti�er, it an onvey this to its loal Reader-Writer i proess using a new-on�g(; k)i outputation, and it an inform any other Reon j proess, j 2 members(), by sending a hon�g; ; kimessage. Reon i learns about new on�gurations either by reeiving a deide input from a Consservie, or by reeiving a on�g or init message from another proess.3In [14℄, regular timing implies that messages are delivered reliably within time d, that loal proessing time is 0,and that information is \gossiped" at intervals of d. 34



Input join(reon)iE�et:if :failed thenif status = idle thenstatus  ativeOutput join-ak(reon)iPreondition::failedstatus = ativeE�et:noneOutput new-on�g(; k)iPreondition::failedstatus = ativere-map(k) = k =2 did-new-on�gE�et:did-new-on�g  did-new-on�g [ fkgOutput send(hon�g; ; ki)i;jPreondition::failedstatus = ativere-map(k) = E�et:noneInput rev(hon�g; ; ki)j;iE�et:if :failed thenif status = ative thenre-map(k) Output report()iPreondition::failedstatus = ative 62 reportedS = f` : re-map(`) 2 Cg = re-map(max(S))E�et:reported  reported [ fgInput reon(; 0)iE�et:if :failed thenif status = ative thenre-status  ativelet S = f` : re-map(`) 2 Cgif S 6= ; and  = re-map(max(S))and ons-data(max(S) + 1) = ? thenons-data(max(S) + 1) h; 0ielse outome  nok

Output init(0)k;;iPreondition::failedstatus = ativeons-data(k) = h; 0iif k � 1 then k 2 did-new-on�gk 62 did-initE�et:did-init  did-init [ fkgOutput send(hinit; ; 0; ki)i;jPreondition::failedstatus = ativeons-data(k) = h; 0ik 2 did-initE�et:noneInput rev(hinit; ; 0; ki)j;iE�et:if :failed thenif status = ative thenif re-map(k � 1) = ? then re-map(k � 1) if ons-data(k) = ? then ons-data(k) h; 0iInput deide(0)k;;iE�et:if :failed thenif status = ative thenre-map(k) 0if re-status = ative thenif ons-data(k) = h; 0i then outome  okelse outome  nokOutput reon-ak(b)iPreondition::failedstatus = ativere-status = ativeb = outomeE�et:re-status = idleoutome  ?Input failiE�et:failed  true
Figure 12: Reon i: Transitions.35



Reon i reeives a reon�guration request from its environment via a reon(; 0)i event. Uponreeiving suh a request, Reon i determines whether (a) i is a member of the known on�guration with the largest index k � 1 and (b) it has not already prepared data for a onsensus for thenext larger index k. If both (a) and (b) hold, Reon i prepares suh data, onsisting of the pairh; 0i, where  is the k� 1st on�guration identi�er and 0 is the proposed on�guration identi�er.Otherwise, Reon i responds negatively to the new reon�guration request.Reon i initiates partiipation in a Cons(k; ) algorithm when its onsensus data are prepared.After initiating partiipation in a onsensus algorithm, it sends init messages to inform the othermembers of  about its initiation of onsensus. The other members use this information to prepareto partiipate in the same onsensus algorithm (and also to update their re-map if neessary).Thus, there are two ways in whih Reon i an initiate partiipation in onsensus: as a result of aloal reon event, or by reeiving an init message from another Reon j proess.When Reon i reeives a deide(0)k;i diretly from Cons(k; ), it reords on�guration 0 inre-map It also determines if a response to its loal lient is neessary (if a loal reon�gurationoperation is ative), and determines the response based on whether the onsensus deision is thesame as the loally-proposed on�guration identi�er.Eah onsensus servie Cons(k; ) is responsible for onveying onsensus deisions tomembers().The Reon i omponents are responsible for telling members(0) about 0 by sending new-on�g mes-sages.Theorem 6.3 The Reon implementation guarantees well-formedness, agreement, and validity.7 Conditional Performane AnalysisIn this setion we give a onditional lateny analysis of the new algorithm, fousing on the im-provements realized by the aggressive on�guration-upgrade mehanism. We show that the newalgorithm allows the system to reover rapidly after a period of unreliable network onnetivity orbursty reon�guration. In partiular, we prove that if on�gurations do not fail too rapidly, thenprogress is guaranteed. First, in Setion 7.1, we present a few general de�nitions. In Setion 7.2and 7.3, we de�ne the exeutions being onsidered, and the environmental assumptions that theseexeutions satisfy. Then in Setions 7.5, 7.6, and 7.7, we prove a series of lemmas that desribehow long it takes on�guration-upgrade operations to omplete. Finally, in Setion 7.8 we statethe main stabilization theorem, and prove that operations will omplete as long as the exeutionassumptions are met. Throughout this setion, we ompare the results with those proved in Setion9 of the Rambo tehnial report [13℄.7.1 De�nitionsIn this setion, we present a few basi de�nitions. These de�nitions do not depend on timing, butare needed only for the onditional performane analysis. For these de�nitions, assume that � isan exeution.First we de�ne what it means for a on�guration to be installed: on�guration  is installed wheneither of the following holds: (i)  = 0 or (ii) for some k > 0, for all non-failed i 2 members((k�1)),a deide()k;i event ours in �. That is, on�guration  = (k) is installed when every non-failedmember of on�guration (k � 1) performs a deide((k)) event.Next, we de�ne an event that ours when a on�guration is guaranteed to be ready tobe upgraded (though an upgrade operation may our earlier than this event). We de�ne the36



upgrade-ready(k) event, for k > 0, to be the �rst event in � after whih, 8` � k, the following hold:(i) on�guration (`) is installed, and (ii) 8i 2 members((k � 1)) suh that i has not failed at thetime of the event, map(`)i 6= ?.7.2 Limiting NondeterminismThe algorithm, as presented, is highly nondeterministi. Therefore for the purposes of analysis,we restrit our attention to a subset of exeutions in whih automata follow ertain timing-relatedrules. For the rest of this paper we assume a �xed onstant d > 0. We assume that gossip oursat �xed intervals of time d, and also that in times of good behavior messages are delivered withintime d4.1. Eah node, i 2 I, performs a sendi;j for all j 2 world i every time d as measured by the loallok of i.2. Eah node, i 2 I, performs a sendi;j (an \important" send) whenever any of the followingours:� Just after a rev(join)j;i event ours, if status i = ative.� (Responses for messages) Just after a rev(�; �; �; �; pns ; �)j;i event ours, if pns >pnum2 (j)i and status i = ative.� Just after a new-on�g(; k)i event ours if status i = ative and j 2 world i.� Just after a rev(�; �; �; m ; �; �)j;i event ours, if op:phase i 6= idle and for some k,m(k) 6= ? and map(k)i = ?.� Just after a readi, writei, or query-�xi event ours, if j 2 members(), for some  in therange of op:mapi.� Just after a fg-upgrade(k)i event ours for on�guration-upgrade , if j 2 members(map(k0)i)for any k0 2 removal-set().� Just after a fg-upg-query-�x(k)i event ours for on�guration-upgrade , if j 2 members(map(k0)i)where k0 = target().3. Loally ontrolled ations of any automaton in the system that have no e�ets, other thanthe important sends desribed just above, are performed only one.4. If an ation is enabled to our at node i, and has not yet been performed (and therefore isnot restrited by the previous rule), then it ours immediately, with zero time passing.7.3 The Behavior of the EnvironmentMuh of the analysis in the original Rambo algorithm makes guarantees about the lateny ofrequests when \normal behavior" holds. In Setion 9 of [13℄, Lynh and Shvartsman begin toexamine how the system behaves in exeutions that ahieve normal behavior after some point.Here we adopt a similar model. We �rst de�ne what it means for an exeution to exhibit \normalbehavior" from some point onward.For the rest of the paper, we use the following notation: given some time t 2 R�0 , J(t; e; �)represents the set of all nodes j suh that join-akj ours no later than time t�e�2d in �. (Reall4It seems, perhaps, that we should not be using d to represent both these quantities; however for onsisteny withthe original Rambo presentation, we ontinue to use this onvention.37



join-aki � e + 2d i 2 J(t)t
Figure 13: De�nition of J(t)that d has been �xed, above.) In most ases, we will use the notation J(t), when e and � are learfrom the ontext.7.3.1 Normal Timing Behavior from Some Point OnwardLet � be an admissible timed exeution, and �0 a �nite pre�x of �. Arbitrary behavior is allowedin �0: messages may be lost or delivered late, loks may run at arbitrary rates, and in general anyasynhronous behavior may our. However we assume that after �0, good behavior resumes. Wesay that � is an �0-normal exeution if the following assumptions hold:1. Initial time: The join-aki0 event ours at time 0, ompleting the join protool for node i0,the node that reated the data objet.52. Regular timing: The loal loks of allRambo II automata (i.e., Reader-Writer i;Reon i; Joiner i)at all nodes progress at exatly the rate of real time, after �0.3. Reliable message delivery: No message sent in � after �0 is lost.4. Message delay bound: If a message is sent at time t in � and it is delivered, then it is deliveredby time max(t; `time(�0)) + d.7.3.2 Con�guration{ViabilityNext we will de�ne on�guration-viability, whih is the key assumption needed to guarantee thatread and write operations omplete. As in all quorum-based algorithms, liveness depends on allthe nodes in some quorums remaining alive. In Rambo II, a node an make progress only if it isable to ommuniate with the read and write quorums of all extant on�gurations. We say that aon�guration has failed when either: (i) some node in every read-quorum of the on�guration hasfailed, or (ii) some node in every write-quorum of the on�guration has failed. If a on�gurationfails before a new on�guration is installed and the old on�guration removed, then the system willbe e�etively rashed: no future read or write request will ever omplete. In order to guaranteethat operations omplete, then, it is neessary for the lient using the Rambo II system to initiateappropriate reon�gurations to ensure that quorums remain aessible. The on�guration viabilityassumption is a omplex property, depending on the behavior of the algorithm, the lient initiatingappropriate reon�gurations, and on the patterns of node failure and message loss.We de�ne what it means for an exeution to be (�0, e, �)-on�guration-viable: Let � be anadmissible timed exeution, and let �0 be a �nite pre�x of �. Let e; � 2 R�0 . Then � is (�0, e, �)-on�guration-viable if the following holds:For all i; ; k suh that map(k)i =  in some state in �, there exist R 2 read-quorums() andW 2 write-quorums() suh that at least one of the following holds:5This assumption was assumed impliitly in the initial Rambo papers, and was missing from the list of assumptions.38



1. No proess in R [W fails in �.2. There exists a �nite pre�x �install of � suh that for all ` � k+1, on�guration (`) is installedin �install and no proess in R [W fails in � by time max(`time(�0) + e; `time(�install)) + � .By assuming that an exeution is (�0,e,�)-on�guration-viable, we ensure that the algorithmhas at least time � after a new on�guration is installed to lean up obsolete on�gurations. Also,sine all on�gurations are viable until at least time e+ � after �0, the algorithm has at least timee+ � after the system stabilizes to lean up obsolete on�gurations.7.3.3 Reon-SpaingWhile reon�gurations annot impede a read/write operation, too frequent reon�gurations anslow down a read/write operation by introduing new quorums that must be ontated. In or-der to bound the time required for a read/write operation, we need to bound the frequeny ofreon�gurations.There are two omponents to Reon-Spaing. Let � be an �0-normal exeution, and e 2 R�0 .Then � satis�es:1. (�0,e)-reon-spaing-1 : if for any reon(; �)i event in � after �0 the preeding report()i eventours at least time e earlier.2. (�0,e)-reon-spaing-2 : if for any reon(; �)i event in � after �0 there exists a write-quorumW 2 write-quorums() suh that for all j 2W , report()j preedes the reon(; �)i event in �.We say that � satis�es (�0,e)-reon-spaing if it satis�es both (�0,e)-reon-spaing-1 and (�0,e)-reon-spaing-2.Notie that, instead of assuming the seond part of this requirement, we ould instead modifythe reon automaton to enfore this ordering: the automaton ould ollet gossip messages indi-ating whih nodes had performed a report(), and delay or abort the next reon if it preeded anappropriate set of report events. We hoose to instantiate this as an assumption, rather than as amodi�ation to the automaton for two reasons. First, we prefer to retain ompatibility with theoriginal Rambo analysis. Seond, by stating this as an assumption, it is possible that the lientusing the Rambo II algorithm might hoose to violate the seond part of the assumption. As aresult, those guarantees that depend on this assumption will not hold; however reon�gurationsmay be more performed more frequently. Even if the seond part of this assumption is violated,safety is still guaranteed: atomiity is maintained, and read and write operations are guaranteedto terminate. However, operations might not terminate rapidly in 8d, as in Setion 7.8.7.3.4 Join-ConnetivityThe hypothesis of join-onnetivity is designed to ensure that all non-failing joining proesses areable to learn about eah other. Otherwise, it is possible for the proesses to join and fail in suha way that the world-views of the nodes are partitioned into multiple omponents, with di�erentnodes aware of di�erent, disonneted piees of the world. It is also important for the latenyanalysis to bound how long this proess takes. If two nodes both omplete the join protool anddo not fail, then they should learn about eah other within a bounded time. For this reason, wede�ne the notion of join-onnetivity as follows:39



Let � be an �0-normal exeution, e 2 R�0 . We say that � satis�es (�0,e)-join-onnetivityprovided that: for any time t and nodes i; j 2 J(t; e; �), if neither i nor j fails until after max(t�2d; `time(�0) + e), then by time max(t� 2d; `time(�0) + e), i 2 world j.This indiates, then, that if two nodes both omplete joining by some time t after �0, thenwithin time e the two nodes are aware of eah other. If two nodes both omplete joining by sometime t during �0, then within time e after �0 the two nodes are aware of eah other.Prior results on joining from [13℄ suggest that in some ases it an be shown that the urrentsimple join protool in the Rambo II algorithm provides (�0; d + ddlog(jJ j)e)-join-onnetivity.However we will not prove - or depend on - this earlier result. Instead we will assume that thesystem provides (�0,e)-join-onnetivity for some e, and prove our results in this ontext. We leaveit as an open problem to determine the exat value of e; a more ompliated and interative joinprotool might well provide better results.7.3.5 Reon-ReadinessThe next assumption we make is related to the problem of reon�guration by a node that hasreently joined. We will assume that every node that is proposed to be a member of a on�gurationhas been a member of the Rambo II system for a reasonable period of time. This allows us toonlude that everyone is aware of nodes that are part of ative on�gurations.An �0-normal exeution � satis�es (�0; e)-reon-readiness if the following property holds: if forsome node i and some on�gurations  and 0, a reon(; 0)i event ours in � at time t, then:� If j 2 members(0), then j performs a join-ak prior to the reon event.� If the reon event ours after �0, and if j 2 members(0), then j 2 J(t; e; �).This prohibits nodes that have just joined the system, but are not yet in anyone's world viewfrom forming new on�gurations. As long as e is not too large, this seems a reasonable requirement.7.3.6 Upgrade-ReadinessThe last assumption we make ensures that a node initiates an upgrade operation only if it hasjoined suÆiently long ago. This ensures that when a node performs an upgrade, it has relativelyup-to-date information.We say that an �0-normal exeution � satis�es (�0; e)-upgrade-readiness if the following prop-erty holds: if for some i a fg-upgrade(�)i event ours in � after �0 at time t, then i 2 J(t).In partiular, we suggest that in an implementation of this algorithm, only members of on-�guration (k) initiate operations to upgrade on�guration (k). In this ase, reon-readinessguarantees upgrade-readiness.7.3.7 Fixed ParametersWe have already �xed d suh that gossip ours at �xed intervals of time d, and in times of goodbehaviour messages are delivered with time d. We now �x e as well. Additionally, for the rest ofthe paper, we �x � and �0, and assume that � is an �0-normal exeution. We therefore sometimessuppress these parameters, as they are lear from ontext. For example, we will use the notationJ(t) to represent J(t; e; �). When we refer to join-onnetivity, we mean (�0; e)-join-onnetivity;reon-readiness is used to mean (�0; e)-reon-readiness; upgrade-readiness is used to mean (�0; e)-upgrade-readiness; � -reon-spaing is used to mean (�0; �)-reon-spaing; � -on�guration-viabilityis used to mean (�0; e; �)-on�guration viability.40



ti 2 J(t)t'reon(�; h)join-aki�0 � e+ 2d
Figure 14: Lemma 7.2, Case 1 ti 2 J(t)t'reon(�; h)join-aki�0 � e+ 2d
Figure 15: Lemma 7.2, Case 27.4 Basi LemmasIn this setion, we prove a few basi lemmas that will be useful in the rest of the paper.The following two lemmas demonstrate some basi fats about the sets J(�):Lemma 7.1 1. If t � t0, then J(t) � J(t0).2. For all t; t0, J(t) � J(max(t; t0)).Proof. By de�nition of J(�). �The following lemma uses the reon-readiness assumption to say something stronger about thejoining time of members of a on�guration:Lemma 7.2 Assume that � is an �0-normal exeution satisfying (�0; e)-reon-readiness. If h is aon�guration proposed at time t0 by a reon(�; h) event, t � t0, and t � `time(�0) + e + 2d, thenmembers(h) � J(t).Proof. First, assume that t0 � `time(�0). Then the result follows immediately by reon-readinessand Lemma 7.1. Assume, then, that t0 < `time(�0). By reon-readiness, every member of on�gura-tion h performs a join-ak by `time(�0). Therefore, by de�nition of J , members(h) � J(`time(�0)+e+ 2d). Sine t � `time(�0) + e+ 2d, Lemma 7.1 implies that J(`time(�0) + e+ 2d) � J(t). �The next lemma shows a similar result about upgrade-readiness:Lemma 7.3 Assume that � is an �0-normal exeution satisfying (�0; e)-upgrade-readiness. If afg-upgrade(�)i event ours in � at time t, for some node i, then i 2 J(max(t; `time(�0)+e+2d)).Proof. First, assume that the fg-upgrade event ours after �0. Then the lemma follows imme-diately by the de�nition of upgrade-readiness and Lemma 7.1. Assume, then, that the fg-upgradeevent ours in �0. By the preondition of fg-upgrade, i must perform a join-ak prior to thefg-upgrade event; otherwise status i 6= ative when the fg-upgrade ours, whih ontradits thepreondition of the fg-upgrade. Therefore i performs a join-aki at latest at time `time(�0), andtherefore i 2 J(`time(�0) + e+ 2d), and the lemma again follows by Lemma 7.1. �41



7.5 Propagation of InformationIn this setion, we introdue the notion of information being in the \mainstream". One a suÆientset of nodes know a partiular fat, then, under appropriate assumptions, this fat will never beforgotten by the system as a whole. In partiular, we show that this is true about information inthe map: updates to the map are propagated. One every non-failed node in J(t) updates itsmap, then at any time in the future, at time t0 � t + 2d, every non-failed node in J(t0) will beaware of this update.If m is a CMap and � is a �nite pre�x of � with `time(�) = t � e+ 2d, then we say that mis mainstream after � provided that the following holds: For every i 2 J(t) suh that faili does notour in �, m � `state(�):map i.Further, we de�ne the following notation: given an exeution � and a time t 2 R�0 , we de�ne�(t; �) to be the �nite pre�x of � suh that `time(�(t; �)) = t and every event that ours at time tours in �(t; �). As we have already �xed �, for the rest of this paper we use the simpler notationof �(t). We then say that a CMap m is mainstream after t if it is mainstream after �(t).The �rst lemma shows a basi property of mainstream maps:Lemma 7.4 Assume that � is an exeution, t is a time, and m, m2 are CMaps. If m � m2 ,and m2 is mainstream after t, then m is mainstream after t.Proof. Immediate from the de�nition of mainstream. �The following lemma shows that a node's map is monotone:Lemma 7.5 Assume that �00 is a �nite pre�x of exeution �, and that �000 is a pre�x of �00. Assumethat i is a node. Then `state(�000):map i � `state(�00):mapi.Proof. In the algorithm, mapi is only modi�ed by the update funtion, and the update funtionis monotone; that is, for all CMaps new-map, map � update(map;new-map). �Lemma 7.6 Assume that � is an exeution, and t and t0 are times, and that t � t0. Assume thati is a node, and m is a CMap.1. If m � `state(�(t)):map i, then m � `state(�(t0)):map i.2. `state(�(t)):map i � `state(�(t0)):map i.Proof. This follows by Lemma 7.5, where �000 = �(t) and �00 = �(t0). �Next, we demonstrate a partiular ase when a map beomes mainstream.Lemma 7.7 Let � be an �0-normal exeution satisfying (�0,e)-join-onnetivity. Let t be a timesuh that t � `time(�0)+ e. If i 2 J(t+2d), and i does not fail in �(t+d), then `state(�(t)):map iis mainstream after t+ 2d.Proof. Let m = `state(�(t)):map i. To show that m is mainstream after t + 2d, we need toshow that for all j 2 J(t+2d) suh that j does not fail in �(t+2d), m � `state(�(t+2d)):mapj .Fix any suh j. By join-onnetivity, j 2 world i by time max(t; `time(�0) + e) � t.By time t+ d, i sends a gossip message, msg , to node j suh that m � msg :mapi. By timet+2d, j reeives the gossip message and updates mapj withmsg :map. By the monotoniity of theupdate funtion, msg :map � update(mapj ;msg :map). Therefore m � `state(�(t+2d)):mapj ,as required. �42
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t failijoin-aki
Figure 16: Lemma 7.7�0 �0 + e+ 2d reon(h; h0)it0m mainstream after t m mainstream after t0 + 2dt0 + 2dt =)Figure 17: Lemma 7.9The following lemma shows that if two nodes are both in the set J(t+2d), then information ispropagated from one to the other.Lemma 7.8 Let � be an �0-normal exeution satisfying (�0,e)-join-onnetivity. Assume that tand t0 are times, and t0�2d � t � `time(�0)+e. Assume that i and j are nodes, and i; j 2 J(t+2d).Also, assume that i does not fail in �(t+ 2d), and j does not fail in �(t0).If m � `state(�(t)):map i, then m � `state(�(t0)):mapj.Proof. By Lemma 7.7, `state(�(t)):map i is mainstream after t+ 2d. Notie that j 2 J(t+ 2d),and therefore, by the de�nition of mainstream, `state(�(t)):map i � `state(�(t+2d)):map j. Sinet+2d � t0, by Lemma 7.6, `state(�(t+2d)):mapj � `state(�(t0)):mapj. Putting the inequalitiestogether, m � `state(�(t0)):mapj. �We now show that one a map is in the mainstream, after 2d it will always be in the mainstream.First, Lemma 7.9 onsiders a speial ase: it onsiders only times t0 after the system has stabilized,when a reon(h; h0) event ours. Seond, Lemma 7.10 handles the ase where the map is in themainstream at a time in �0. Third, Lemma 7.11 proves the existene of a on�guration with someneessary speial properties to prove the main theorem. Finally, Lemmas 7.12 and 7.13 prove thegeneral result, as summarized in Lemma 7.14.First, we de�ne a suessful reon event as follows: a reon(�; ) event is suessful if at sometime afterwards a deide()k;i event ours for some k and i.Lemma 7.9 Let � be an �0-normal exeution satisfying: (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 2d)-on�guration-viability.Assume that t and t0 are times, and that t � `time(�0) + e+2d and t0 � t. Let h and h0 be twoon�gurations, and assume that reon(h; h0)� ours at time t0, and that this is a suessful reonevent.If m is mainstream after t, then m is mainstream after t0 + 2d.43



e+ 2d m mainstream after �0 + e+ 4d�0 + e+ 4d�0 + e+ 2dtm mainstream after t =)Figure 18: Lemma 7.10Proof. Fix t and m suh that m is mainstream after t. We prove the result by indution onthe number of suessful reon events that our at or after time t.As the base ase, onsider the �rst suessful reon(h; h0) event that ours in � at a time t0 � t.We need to show that m is mainstream after t0 + 2d. Therefore �x some j0 2 J(t0 + 2d) suh thatfailj0 does not our in �(t0 + 2d). We will show that m � `state(�(t0 + 2d)):map j0 .Choose some node j 2 members(h) suh that j does not fail in �(t0+2d); that is, j does not failuntil after t0+2d. Con�guration-viability ensures that suh a node exists. Notie that j 2 J(t), byLemma 7.2. Sine m is mainstream after t, then m � `state(�):mapj.Note that on�guration h is proposed prior to time t, sine the reon(h; h0) event is the �rstsuessful reon event at or after time t. Therefore on�guration h is also proposed prior to timet0. By Lemma 7.1, j 2 J(t0 + 2d). By assumption j0 2 J(t0 + 2d) and does not fail in �(t0 + 2d).Therefore, by Lemma 7.8, m � `state(�(t0 + 2d)):mapj0 , as needed.Next we show the indutive step. Indutively assume the following: if reon(�; �) is one of the�rst n suessful reon events in � that our at time t0 � t, then m is mainstream after t0.Consider the (n + 1)st suessful reon(h; h0) event in � that ours at or after t. Assumethis event ours at time t0. We need to show that m is mainstream after t0 + 2d. Therefore�x some j0 2 J(t0 + 2d) suh that failj0 does not our in �(t0 + 2d). We will show that m �`state(�(t0 + 2d)):mapj0 .Let � be the nth suessful reon(�; h) event, and assume that � ours at time t1. Note thatthe �rst argument of the (n+1)st suessful reon event must be the on�guration proposed by thenth suessful reon event.2d-reon-spaing-1 guarantees that t0 � t1 + 2d. The indutive hypothesis shows that m ismainstream after t1 + 2d.Choose some node j 2 members(h) suh that no failj ours in �(t0+2d). Con�guration-viabilityensures that suh a node exists. By reon-readiness and Lemma 7.1, j 2 J(t0+2d). By assumptionj0 2 J(t0 + 2d) and j0 does not fail in �(t0 + 2d). By Lemma 7.8, m � `state(�(t0 + 2d)):map j0 ,as needed. �The next lemma onsiders the ase where a map is mainstream in �0 or soon after, and showsthat it is mainstream after `time(�0) + e+ 4d.Lemma 7.10 Let � be an �0-normal exeution satisfying (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 4d)-on�guration-viability.Assume that t is a time and that e+ 2d � t � `time(�0) + e+ 2d. If m is mainstream after t,then m is mainstream after `time(�0) + e+ 4d.Proof. Consider on�guration 0. By on�guration-viability, there exists a read-quorum, R 2read-quorums(0), and a write-quorum, W 2 write-quorums(0) suh that no node in R [W failsby `time(�0) + e+ 4d. 44



Let t1 = `time(�0) + e+ 2d. Consider i0 2 R [W ; i0 does not fail by `time(�0) + e+ 4d. Sinei0 performs a join-ak at time 0, by the assumption that � is an �0-normal exeution, and sinet � e+ 2d, i0 2 J(t). Also note that by Lemma 7.6, i0 2 J(t1).Sine m is mainstream after t, m � `state(�(t)):map i0 . Therefore, we know by Lemma 7.6that m � `state(�(t1)):map i0 . By Lemma 7.7, we know that `state(�(t1)):map i0 is mainstreamafter t1 + 2d. Therefore by Lemma 7.4, m is mainstream after t1 + 2d; that is, m is mainstreamafter `time(�0) + e+ 4d. �The next lemma shows the existene of a ertain on�guration, h0, with some partiular prop-erties. This will be useful in proving Lemma 7.14.Lemma 7.11 Let � be an �0-normal exeution satisfying: (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 4d)-on�guration-viability.Assume that t and t0 are times. Assume that `time(�0) + e+ 2d � t � t0 � 2d and `time(�0) +e+6d � t0. Assume that m is mainstream after t. Then there exists a on�guration h, with indexk, with the following properties:1. members(h) � J(t0).2. For all members i of on�guration h that do not fail in �(t0), m � `state(�(t0 � 2d)):map i.3. No suessful reon(h; �) event ours in �(t0 � 4d).Proof. There are three di�erent sub-ases to onsider.1. No suessful reon event ours in �(t0 � 4d):Let h = 0. Notie that members(h) � J(t), sine i0 (the only member of 0) ompletes ajoin-ak at time 0 (by assumption on �), and t > `time(�0)+e+2d. This, then, implies Prop-erty 1 by Lemma 7.1. Sine i0 2 J(t) and m is mainstream after t, m � `state(�(t)):map i0 .Therefore, sine t � t0 � 2d, by Lemma 7.6, m � `state(�(t0 � 2d)):map i0 , as required forProperty 2. Property 3 holds trivially.2. A suessful reon event ours in �(t0 � 4d) after time t:Consider the last suessful reon event in � that ours in �(t0�4d); let h be the on�gurationidenti�er appearing as the seond argument in this reon event. Assume that this reon eventours at time tre. Note that t < tre � t0 � 4d. Therefore (sine t0 � `time(�0) + e + 6dand t0 � tre) by Lemma 7.2, members(h) � J(t0), as required for Property 1. Sine tre > t,Lemma 7.9 shows that m is mainstream after tre+2d. Reall that tre+2d � t0�2d. By themainstream property, for every member, i, of on�guration h that does not fail in �(t0 � 2d),m � `state(�(tre + 2d)):map i; therefore, for eah of these members, i, by Lemma 7.6,m � `state(�(t0 � 2d)):map i, as required for Property 2. Property 3 holds by the seletionof the last suessful reon event in �(t0 � 4d).3. Neither Case 1 nor Case 2 holds, that is, a suessful reon event ours in �(t0� 4d), but nosuh reon event ours after time t:Consider the last suessful reon event in � that ours in �(t0�4d); let h be the on�gurationidenti�er appearing as the seond argument in this reon event. Assume that this reonevent ours at time tre. Notie, then, that tre � t. (Otherwise, Case 2 would hold.)Sine t � `time(�0) + e + 2d, then by Lemma 7.2, members(h) � J(t). By Lemma 7.6,then, members(h) � J(t0), whih implies Property 1. Sine m is mainstream after t (and45
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Figure 19: Lemma 7.12members(h) � J(t)), for all j 2 members(h) suh that no failj event ours in �(t), m �`state(�(t)):mapj . Sine t � t0 � 2d, by Lemma 7.6, for all j suh that no faili event oursby time t0 � 2d, m � `state(�(t0 � 2d)):mapj , as required for Property 2. Property 3 holdsby the seletion of the last suessful reon event that ours in �(t0 � 4d). �Finally we prove the main lemma of this setion, showing that if a map is mainstream attime t, then the map is also mainstream at times t0 � t+ 2d. There are two ases to onsider: (i)t � `time(�0)+e+2d, and (ii) t < `time(�0)+e+2d. Lemma 7.12 shows the �rst ase, Lemma 7.13shows the seond ase, and Lemma 7.14 presents the overall onlusion.Lemma 7.12 Let � be an �0-normal exeution satisfying (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 4d)-on�guration-viability.Assume that t and t0 are times. Assume that e+ 2d � t � t0 � 2d and `time(�0) + e+ 6d � t0.Additionally assume that t � `time(�0) + e+ 2d. If m is a mainstream CMap after t, then m ismainstream after t0.Proof. By assumption, t � `time(�0)+e+2d. Lemma 7.11 shows that there exists a on�guration,h, with index k with the following three properties:1. members(h) � J(t0).2. For all members i of on�guration h that do not fail in �(t0), m � `state(�(t0 � 2d)):map i.3. No suessful reon(h; �) event ours in �(t0 � 4d).Con�guration-viability guarantees that some node of on�guration h does not fail until after thenext on�guration is installed. No suessful reon(h; �) event ours in �(t0 � 4d), by Property 3.Therefore some node, j 2 members(h) does not fail in �(t0) (and therefore does not fail in �(t0�d)),by 4d-on�guration-viability. By Property 1 of h, node j 2 J(t0). Therefore, by Lemma 7.7,`state(�(t0 � 2d)):mapj is mainstream after t0.Further, we know by Property 2 that m � `state(�(t0� 2d)):mapj . Therefore by Lemma 7.4,m is mainstream after t0. �The following lemma onsiders the ase where t < `time(�0) + e+ 2d:Lemma 7.13 Let � be an �0-normal exeution satisfying (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 4d)-on�guration-viability.Assume that t and t0 are times. Assume that e+ 2d � t � t0 � 2d and `time(�0) + e+ 6d � t0.Additionally, assume that t < `time(�0) + e+ 2d. If m is a mainstream CMap after t, then m ismainstream after t0. 46



e+ 2d �0 + e+ 2d �0 + e+ 4d � 2dm mainstream after �0 + e+ 4dm mainstream after tt t0m mainstream after t0=)=) Figure 20: Lemma 7.13Proof. By assumption, t < `time(�0) + e+2d. Let t1 = `time(�0) + e+2d. By Lemma 7.10, mis mainstream after t1+2d. By assumption, t1+2d � t0� 2d, and `time(�0)+ e+2d � t1+2d. ByLemma 7.12, however, we know that sine m is mainstream after t1 + 2d, then m is mainstreamafter t0. �The following lemma ombines the previous two lemmas into a single onlusion. This lemma isthe main result of this setion, and is used throughout the rest of the proof.Lemma 7.14 Let � be an �0-normal exeution satisfying (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 4d)-on�guration-viability.Assume that t and t0 are times. Assume that e+ 2d � t � t0 � 2d and `time(�0) + e+ 6d � t0.If m is a mainstream CMap after t, then m is mainstream after t0.Proof. By Lemmas 7.12 and 7.13. �7.6 Upgrade-Ready ViabilityIn this setion, we show the relationship between a on�guration being upgrade-ready, and a on�gu-ration being viable. In partiular, we prove that if an exeution � is (�0,e,22d)-on�guration-viable,then on�guration (k) is viable until at least 15d after the upgrade-ready((k + 1)) event.The �rst lemma shows that soon after a on�guration is installed, every node that joined awhile ago learns about the new on�guration.Lemma 7.15 Let � be an �0-normal exeution satisfying: (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; e; 4d)-on�guration-viability.Assume that t 2 R�0 is a time, and on�guration (k) is installed at time t. Then there existsa CMap, m, suh that m(k) 6= ?, and m is mainstream after max(t; `time(�0) + e) + 2d.Proof. We �rst �nd a node j 2 members((k�1)) suh that j 2 J(max(t; `time(�0)+e)+2d) andj does not fail in �(max(t; `time(�0) + e) + d). Con�guration-viability guarantees that there existsa read-quorum R 2 read-quorums((k�1)) and a pre�x �00 of � suh that (k) is installed in � andno node in R fails by max(`time(�00); `time(�0) + e) + 4d. Sine on�guration (k) is installed attime t, we know that t � `time(�00), and therefore no node in R fails by max(t; `time(�0)+ e)+ 4d.Therefore no node in R fails in �(max(t; `time(�0) + e) + d). Choose some node j 2 R.Assume that on�guration (k � 1) is proposed at time tre. We next apply Lemma 7.2 whereh = (k � 1), t0 = tre, and t = max(t; `time(�0) + e) + 2d:� max(t; `time(�0)+e)+2d � tre: (k�1) is proposed at tre � t, sine (k�1) must be proposedprior to on�guration (k � 1) being installed, whih must our prior to on�guration (k)being installed; t � max(t; `time(�0) + e) + 2d.47



� max(t; `time(�0) + e) + 2d � `time(�0) + e+ 2d: Immediate.We therefore onlude that members((k � 1)) � J(max(t; `time(�0) + e) + 2d). Therefore wehave shown that j 2 members((k � 1)), j 2 J(max(t; `time(�0) + e) + 2d), and j does not fail in�(max(t; `time(�0) + e) + d).Sine on�guration (k) is installed at time t and j 2 members((k�1)), `state(�(t)):map(k)j 6=?, by the de�nition of a on�guration being installed, and therefore (by Lemma 7.6) `state(�(max(t; `time(�0)+e))):map(k)j 6= ?. We let m = `state(�(max(t; `time(�0) + e))):map(k)j ; m(k) 6= ?, as re-quired.We next apply Lemma 7.7, where t = max(t; `time(�0) + e) and i = j:� max(t; `time(�0) + e) � `time(�0) + e: Immediate.� j 2 J(max(t; `time(�0) + e) + 2d): Shown above.� j does not fail in �(max(t; `time(�0) + e) + d): Shown above.We therefore onlude that `state(�(max(t; `time(�0)+e))):map i is mainstream after max(t; `time(�0)+e) + 2d, that is, m is mainstream after max(t; `time(�0) + e) + 2d. �The next lemma shows that soon after smaller on�gurations are installed, a on�guration isupgrade-ready.Lemma 7.16 Let � be an �0-normal exeution satisfying: (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 4d)-on�guration-viability.Let  be a on�guration with index k, and assume that for all ` � k, on�guration (`) isinstalled in � by time t.Then upgrade-ready(k) ours in �(max(t; `time(�0) + e) + 6d).Proof. For every on�guration (`) with index ` � k, let t` be the time at whih on�guration(`) is installed. Therefore t � max(ti).We �rst show that for all ` � k, there exists a CMap, m` suh that m`(`) 6= ? and m` ismainstream after max(t; `time(�0) + e) + 6d. Fix some ` � k.Lemma 7.15, where t = t` and k = `, shows that there exists a CMap, m`, suh that m`(`) 6= ?and m` is mainstream after time max(t`; `time(�0) + e) + 2d.We next apply Lemma 7.14, where t = max(t`; `time(�0) + e) + 2d and t0 = max(t; `time(�0) +e) + 6d:� max(t`; `time(�0) + e) + 2d � e+ 2d: Immediate.� max(t`; `time(�0) + e) + 2d � max(t; `time(�0) + e) + 6d � 2d: We know that t` � t, and`time(�0) + e+ 2d � `time(�0) + e+ 4d.� max(t; `time(�0) + e) + 6d � `time(�0) + e+ 6d: Immediate.� m` is mainstream after max(t`; `time(�0) + e) + 2d: Shown above.We therefore onlude that m` is mainstream after max(t; `time(�0)+e)+6d. We have thus shownthat for all ` � k, there exists a CMap, m` suh that m`(`) 6= ? and m` is mainstream aftermax(t; `time(�0) + e) + 6d.Reall that upgrade-ready(k) is designated as the �rst event after whih (i) all on�gurationswith index � k have been installed, and (ii) for all ` < k, for all members of on�guration (k� 1)48



that do not fail prior to the upgrade event, map(`) 6= ?. The �rst omponent ours by time t,and therefore by time max(t; `time(�0) + e) + 6d, by assumption.We therefore need to show the seond part. Fix some node j 2 members((k � 1)) suh thatj does not fail in �(max(t; `time(�0) + e) + 6d). Fix some ` < k. We apply Lemma 7.2, whereh = (k � 1), t = max(t; `time(�0) + e) + 6d, and t0 is the time at whih on�guration (k � 1) isproposed:� max(t; `time(�0) + e) + 6d is � the time at whih on�guration (k� 1) is proposed: (k� 1)is proposed prior to time tk�1 (the time at whih on�guration (k � 1) is installed), whihis � time t � max(t; `time(�0) + e) + 6d.� max(t; `time(�0) + e) + 6d � `time(�0) + e+ 2d: Immediate.We therefore onlude that members((k � 1)) � J(max(t; `time(�0) + e) + 6d), and thereforej 2 J(max(t; `time(�0) + e) + 6d).We know from above that m` is mainstream after max(t; `time(�0) + e) + 6d, whih implies,by the de�nition of being mainstream, that m` � `state(�(max(t; `time(�0) + e) + 6d)):map(`)j .This in turn implies that `state(�(max(t; `time(�0)+e)+6d)):map(`)j 6= ?, as required. Thereforeupgrade-ready(k) ours in �(max(t; `time(�0) + e) + 6d). �The next lemma diretly relates the time when all quorums of on�guration (k � 1) fail to thetime at whih upgrade-ready(k) ours.Lemma 7.17 Let � be an �0-normal exeution satisfying: (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 22d)-on�guration-viability.Let  be a on�guration with index k, and assume that the upgrade-ready(k) event ours at timet. Then there exists a read-quorum, R, and a write-quorum, W , of on�guration (k� 1) suh thatno node in R [W fails in �(max(t; `time(�0) + e) + 16d).Proof. Let �00 be the shortest pre�x of � suh that every on�guration with index � k is installedin �. Let t0 = `time(�00). Notie that for all ` � k, on�guration (`) is installed in �(t0).Lemma 7.16, where t = t0 and  and k are as de�ned above, shows that the upgrade-ready(k)event ours in �(max(t0; `time(�0) + e) + 6d), that is, t � max(t0; `time(�0) + e) + 6d.Con�guration-viability guarantees that there exists a read-quorum, R, and a write-quorum,W ,of on�guration (k � 1) suh that either (1) no proess in R [W fails in �, or (2) there existsa �nite pre�x, �install of � suh that for all ` � k, on�guration (`) is installed in �install andno proess in R [W fails in � by time max(`time(�install); `time(�0) + e) + 22d. In the formerase, we are done. We now onsider the seond ase. Sine �00 is the shortest pre�x of � suhthat every on�guration with index � k is installed, we know that �00 is a pre�x of �install, andtherefore t0 = `time(�00) � `time(�install). Therefore we know that there exists a read-quorum,R 2 read-quorums((k�1)), and a write-quorum, W 2 write-quorums((k�1)), suh that no nodein R [W fails by time max(t0; `time(�0) + e) + 22d.Then, max(t; `time(�0)+e)+16d � max(t0; `time(�0)+e)+22d, and as a result, no node in R[Wfails by time max(t; `time(�0) + e) + 16d. That is, no node in R [W fails in �(max(t; `time(�0) +e) + 16d). �The �nal lemma shows that if no upgrade-ready(k) ours in �, then on�guration (k�1) is alwaysviable. 49



Lemma 7.18 Let � be an �0-normal exeution satisfying: (i) (�0,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, and (iv) (�0; e; 4d)-on�guration-viability.Let  be a on�guration with index k, and assume that no upgrade-ready(k + 1) event o-urs in �. Then there exists a read-quorum, R 2 read-quorums(), and a write-quorum, W 2write-quorums(), suh that no node in R [W fails in �.Proof. Assume that for some ` � k+1, on�guration (`) is not installed in �. By the de�nitionof on�guration-viability, then, there exists a read-quorum, R 2 read-quorums(), and a write-quorum, W 2 write-quorums(), suh that no node in R [W fails in �.Assume, instead, that for every ` � k + 1, on�guration (`) is installed in �. Then byLemma 7.16, an upgrade-ready(k + 1) event ours in �, ontraditing the hypothesis. �7.7 Con�guration-Upgrade Lateny ResultsIn this setion we show that on�guration-upgrade operations terminate rapidly, and that any ob-solete on�guration is rapidly removed. In partiular, these results hold in exeutions that inludeperiods of bad behavior. The on�guration-upgrade mehanism in Rambo does not make theseguarantees. The original Rambo lateny analysis required the assumption of (�0;1)-on�guration-viability6 for the entire exeution. This is an unrealisti assumption in a long-lived dynami sys-tem. As a result of the new on�guration-upgrade mehanism, we need to assume only boundedon�guration-viability to ensure liveness.First we state a lemma about on�guration-upgrade after the system stabilizes and good be-havior resumes.Lemma 7.19 Let � be an �0-normal exeution. Let t 2 R�0 be a time. Let i be a node that doesnot fail until after max(t; `time(�0) + d) + 4d.Assume a fg-upgrade(k)i event ours in � at time t. Additionally, assume that for everyon�guration (`) suh that upg :map(`)i 2 C, there exists a read-quorum, R`, and a write-quorum,W`, of on�guration (`) suh that no node in R` [W` fails by time t+ 3d.Then a fg-upgrade-ak(k)i event ours no later than t+ 4d.Proof. There are two ases to onsider.Case 1: t > `time(�0). At time t, node i begins the on�guration-upgrade, with phase-numberp1 = upg:pnumi. By triggered gossip, node i immediately sends out messages to every nodein world i. Therefore for every on�guration (`) suh that upg :map(`)i 2 C, every nodej 2 R` [W` reeives a message by time t+ d.By triggered gossip, then, eah of these nodes sends a response with phase-number p1. Eahresponse is reeived by time t+2d, at whih point a fg-upg-query-�x(k)i event ours. Nodei then hooses a new phase-number, p2, and sets upg :pnum i = p2.Immediately, by triggered gossip node i sends out messages to every proess in world i, inlud-ing every node in R` [W`, for every on�guration (`) suh that upg :map(`)i 2 C. Again, aresponse is sent by time t+ 3d, and node i reeives a response from eah with phase-numberp2 by time t+4d. Immediately, then, a fg-upg-query-�x(k) event ours. This is followed bya fg-upgrade-ak(k), proving our laim.6Although we have not formally de�ned (�0;1)-on�guration-viability here, one an understand it to mean (�0; e)-on�guration-viability for arbitrarily large e. 50



Case 2: t � `time(�0). At time t, node i begins the on�guration-upgrade, with phase-numberp1 = upg:pnumi. By oasional gossip, i sends out messages to every node in world i. There-fore for every on�guration (`) suh that upg :map(`)i 2 C, every node j 2 R` [W` reeivesa message by time max(t; `time(�0) + d) + d.By triggered gossip, then, eah of these nodes sends a response with phase-number p1. Eahresponse is reeived by time max(t; `time(�0)+ d)+ 2d, at whih point a fg-upg-query-�x(k)ievent ours. Node i then hooses a new phase-number, p2, and sets upg :pnum i = p2.Immediately, by triggered gossip node i sends out messages to every proess in world i, inlud-ing every node inR`[W`, for every on�guration (`) suh that upg :map(`)i 2 C. Again, a re-sponse is sent by time max(t; `time(�0)+d)+3d, and node i reeives a response from eah withphase-number p2 by time max(t; `time(�0)) + 4d. Immediately, then, a fg-upg-query-�x(k)event ours. This is followed by a fg-upgrade-ak(k), proving our laim. �Next, we provide a onditional guarantee that a on�guration is viable: if for some time t everyearlier fg-upgrade operation ompletes rapidly within 4d, then every on�guration that is extantat time t will remain viable until t+ 3d.We do this in four steps. First, Lemma 7.20 demonstrates that a node with ertain goodproperties exists. Seond, Lemma 7.21 shows that this ertain node with good properties willbegin an upgrade operation, in ertain situations. Third, Lemma 7.22 shows that soon after aon�guration is upgrade-ready(k), some node ompletes an upgrade operation on on�guration(k). Finally, Lemma 7.23 uses these preliminary lemmas to show that under ertain onditions,on�gurations remain viable suÆiently long.Lemma 7.20 Let � be an �0-normal exeution satisfying (i) (�0, e)-join-onnetivity, (ii)(�0; e)-reon-readiness, (iii) (�0; e)-upgrade-readiness, (iv) (�0; 2d)-reon-spaing-1, (v) (�0; e; 22d)-on�guration-viability.Assume that an upgrade-ready(k2) event ours at time t for some on�guration 2 and assumethat k2 � 1. Let k1 = k2 � 1, and 1 = (k1). Then there exists a node i suh that the followinghold:1. i is a member of on�guration 1,2. i does not fail in �(max(t; `time(�0) + e+ d) + 10d),3. i 2 J(max(t; `time(�0) + e+ d) + 8d),4. i 2 J(max(t; `time(�0) + e+ 2d)),5. i performs a join-ak prior to the upgrade-ready(k2) event in �.Proof. Lemma 7.17, applied with  = 2, k = k2, and t as de�ned above, implies that there existsa read-quorum, R, of on�guration 1 suh that no member of R fails in �(max(t; `time(�0) + e) +16d). Then we know that no member of R fails in �(max(t; `time(�0)+ e+ d)+ 14d). We thereforehoose a node i 2 R � members(1). We know that i does not fail in �(max(t; `time(�0) + e+ d) +10d). This i satis�es Parts 1 and 2.Let t1 be the time at whih on�guration 1 is proposed. Notie that max(t; `time(�0) + e +2d) � t1 , beause t, the time of the upgrade-ready(k2), annot be smaller than t1 , the time at51



whih on�guration 1 is proposed (sine an upgrade-ready(k2) event annot our until after areon(1; 2) event, whih annot our until after a reon(�; 1) event). Therefore, Lemma 7.2,applied where h = 1, t0 = t1 , and t = max(t; `time(�0) + e+ 2d), guarantees that members(1) �J(max(t; `time(�0)+e+2d)). Sine i 2 members(1), we know that i 2 J(max(t; `time(�0)+e+2d)),satisfying Part 4.Sine max(t; `time(�0) + e + 2d) � max(t; `time(�0) + e + d) + 10d (sine `time(�0) + e +2d � `time(�0) + e + 10d), Lemma 7.1, applied where t = max(t; `time(�0) + e + 2d) and t0 =max(t; `time(�0) + e+ d) + 10d, implies that J(max(t; `time(�0) + e+2d)) � J(max(t; `time(�0) +e+ d) + 10d), and thus i 2 J(max(t; `time(�0) + e+ d) + 10d), satisfying Part 3.Finally, notie that reon-readiness requires that i performs a join-ak prior to the reon(�; 1)event, and therefore prior to the fg-upgrade(k2) event. This satis�es Part 5. �The next lemma laims that when a on�guration is upgrade-ready, and a node with ertainproperties (as in Lemma 7.20) exists, then either the on�guration is removed or an upgradeoperation begins.Lemma 7.21 Let � be an �0-normal exeution satisfying (i) (�0, e)-join-onnetivity, (ii)(�0; e)-reon-readiness, (iii) (�0; e)-upgrade-readiness, (iv) (�0; 2d)-reon-spaing-1, (v) (�0; e; 22d)-on�guration-viability.Assume upgrade-ready(k2) ours at time t and k2 � 1. Let k1 = k2 � 1 and 1 = (k � 1).Further, assume that node i has the following properties:1. i is a member of on�guration 1,2. i does not fail in �(max(t; `time(�0) + e+ d) + 10d),3. i 2 J(max(t; `time(�0) + e+ d) + 8d),4. i 2 J(max(t; `time(�0) + e+ 2d)),5. i performs a join-ak prior to the upgrade-ready(k2) event.Let t0 be a time suh that t � t0 < max(t; `time(�0) + e+ d) + 13d. Let �00 be a pre�x of � suhthat:1. t0 = `time(�00),2. an upgrade-ready(k2) event is in �00,3. `state(�00):upg :phase i = idle.Then either:1. `state(�(t0)):map(k1)i = �, or2. i performs a fg-upgrade(k0)i at time t0, for some k0 � k2.Proof. If `state(�00):map(k1)i = �, then the onlusion holds, sine �00 is a pre�x of �(t0):by Lemma 7.6, `state(�(t0)):map(k1)i = �. Assume, then, that `state(�00):map(k1)i 6= �. Weexamine in turn the preonditions for fg-upgrade(k0)i just after �00 (from Figure 7):1. :`state(�00):failed i: By Part 2 of the assumption on i, we know that i does not fail in�(max(t; `time(�0) + e + d) + 10d). However, t0 < max(t; `time(�0) + e + d) + 10d, andthus i does not fail in �(t0). Sine �00 is a pre�x of �(t0), i does not fail in �00.52



2. `state(�00):status i = ative: By Part 5 of the assumption on i we know that i performs ajoin-ak prior to the upgrade-ready(k2) event.3. `state(�00):upg :phase i = idle: By assumption, this holds.4. 8` 2 N; ` � k2 : `state(�00):map(`)i 6= ?: It suÆes to show that by the point in the exeutionat whih the upgrade-ready(k2) event ours, node i has already learned of on�guration2 and all on�gurations with smaller indies. Let �000 be the pre�x of � ending in theupgrade-ready(k2) event. Part (ii) of the de�nition of the upgrade-ready(k2) event guaranteesthat: for all ` � k2, for all j 2 members(1) that do not fail in �000, `state(�000):map(`)j 6= ?.Notie that by Part 1 of the assumption about i, i 2 members(1) and that by Part 2 of theassumption about i, i does not fail in �000, sine `time(�000) = t � max(t; `time(�0) + e + d).Therefore we an onlude by part (ii) that for all ` � k2, `state(�000):map(`)i 6= ?. Sine�000 is a pre�x of �00 (by assumption that upgrade-ready(k2) is inluded in �00), by Lemma 7.5we know that for all ` � k2, `state(�00):map(`)i 6= ?, as desired.5. `state(�00):map(k2)i 2 C: By assumption, `state(�00):map(k1)i 6= �. Invariant 4.3 then im-plies that `state(�00):map(k2)i 6= �, sine k1 < k2. Part 4, above, shows that `state(�00):map(k2)i 6=?, thus implying the desired result.6. `state(�00):map(k1)i 2 C: By assumption, `state(�00):map(k1)i 6= �. Part 4, above, showsthat `state(�00):map(k1)i 6= ?, sine k1 � k2, thus implying the desired result.Sine enabled events our in zero time (by assumption), either the event beomes disabled, in whihase `state(�(t0)):map(k1)i = �, satisfying Part 1 of the onlusion, or at time t0 = `time(�00) afg-upgrade event for some on�guration  with index k0 � k2 ours, satisfying Part 2 of theonlusion. �The next lemma onditionally guarantees that soon after a new on�guration is upgrade-ready, theold on�guration is removed.Lemma 7.22 Let � be an �0-normal exeution satisfying (i) (�0, e)-join-onnetivity, (ii)(�0; e)-reon-readiness, (iii) (�0; e)-upgrade-readiness, (iv) (�0; 2d)-reon-spaing-1, (v) (�0; e; 22d)-on�guration-viability.Assume that t 2 R�0 is a time suh that t > `time(�0) + e + 14d. Assume that 1 is aon�guration, and for some �nite pre�x �00 of �, where t = `time(�00), for some node i 2 J(t) thatdoes not fail in �00, for some index k1, `state(�00):map(k1)i = 1.Also, we assume the Upgrades-Complete Hypothesis: for every fg-upgrade(�)j event that oursin � at some time tupg < t at some node j 2 J(max(tupg; `time(�0)+e+2d)) where j does not fail in�(max(tupg; `time(�0)+e+d)+4d), a mathing fg-upg-ak(�)j ours by time max(tupg; `time(�0)+e+ d) + 4d.Assume that an upgrade-ready(k1 + 1) event ours at time t0 < t � 13d. Let k2 = k1 + 1and 2 = (k2). Then for some node i0 2 J(max(t0; `time(�0) + e + d) + 8d) that does not fail in�(max(t0; `time(�0) + e+ d) + 10d), `state(�(max(t0; `time(�0) + e+ d) + 8d)):map(k1)i0 = �.Proof. We �rst identify a node, i0, that is suitable. Then we show that i0 ompletes an upgradeoperation in the alotted time.We apply Lemma 7.20, where t = t0, and therefore onlude that there exists a node i0 with thefollowing �ve properties: 53



1. i0 is a member of on�guration 1,2. i0 does not fail in �(max(t0; `time(�0) + e+ d) + 10d),3. i0 2 J(max(t0; `time(�0) + e+ d) + 8d),4. i0 2 J(max(t0; `time(�0) + e+ 2d)),5. i0 performs a join-ak prior to the upgrade-ready(k2) event.Notie that Part 2 and Part 3 satisfy the �rst two requirements for i0 in the onlusion of thislemma. It remains to show that i0 marks on�guration 1 as � at the appropriate point.We onsider what happens at time max(t0; `time(�0) + e + d). Let �000 be the pre�x of � thatis the longer of the following two pre�xes: (i) �(`time(�0) + e+ d), or (ii) the shortest pre�x of �that inludes the fg-upgrade(k2) event. Notie that `time(�000) = max(t0; `time(�0) + e + d), andthat the fg-upgrade(k2) event is in �000.If `state(�000)):map(k1)i0 = �, then the laim is immediate: Lemma 7.5 implies that `state(�000):mapi0 �`state(�(max(t0; `time(�0) + e + d) + 8d)):map i0 , sine `time(�000) = max(t0; `time(�0) + e + d) <max(t0; `time(�0)+e+d)+8d. Therefore, if `state(�000):map(k1)i0 = �, then `state(�(max(t0; `time(�0)+e+ d) + 8d)):map(k1)i0 = �.We thus assume that `state(�000):map(k1)i0 6= �, and onsider what happens at time max(t0; `time(�0)+e+ d). There are now two ases to onsider:1. `state(�000):upg :phase i0 = idle or2. `state(�000):upg :phase i0 6= idle.Case 1: Assume that `state(�000):upg :phase i0 = idle. We apply Lemma 7.21, where t = t0, t0 =max(t0; `time(�0) + e+ d), �00 = �000, and i0 is as hosen above:� t0 � max(t0; `time(�0) + e+ d) < max(t0; `time(�0) + e+ d) + 13d: immediate,� i0 satis�es the riteria, by the properties of i0 above,� `time(�000) = max(t0; `time(�0) + e+ d) and upgrade-ready(k2) ours in �000: by the wayin whih �00 was hosen,� `state(�000):upg :phase i0 = idle: by the ase assumption.From this lemma, we onlude that either:1. `state(�(max(t0; `time(�0) + e+ d))):map(k1)i0 = �, or2. i0 performs a fg-upgrade(k0)i0 at time max(t0; `time(�0) + e+ d), for some k0 � k2.In the �rst ase, where `state(�(max(t0; `time(�0) + e + d))):map(k1)i0 = �, we are done:Lemma 7.6 implies that `state(�(max(t0; `time(�0) + e+ d) + 8d)):map(k1)i0 = �. Considerthe seond ase, that is, i0 performs a fg-upgrade(k0)i0 at time max(t0; `time(�0) + e+ d), forsome k0 � k2.We then apply the Upgrades-Complete Hypothesis, where j = i0 and tupg = t0; notie that:� i0 2 J(max(t0; `time(�0) + e+ 2d)): by 4th property of i0,� i0 does not fail in �(max(t0; `time(�0) + e + d) + 4d): by Part 2 of the way in whih i0was hosen, and 54



� max(t0; `time(�0) + e+ d) < t: t0+13d < t, by assumption, and `time(�0) + e+14d < t,by assumption, and therefore max(t0; `time(�0) + e+ d) + 13d < t.Therefore, by the Upgrades-Complete Hypothesis we onlude that a fg-upg-ak(k0)i0 oursby time max(t0; `time(�0)+e+d)+4d. Sine k0 � k2, then by the preondition of a fg-upg-akoperation we know that `state(�(max(t0; `time(�0)+ e+d)+4d):map(k1)i0 = �. Lemma 7.6implies that `state(�(max(t0; `time(�0) + e+ d) + 8d):map(k1)i0 = �, as desired.Case 2: Assume that `state(�000):upg :phase i0 6= idle. For this to our, a fg-upgrade(k0)i0 eventmust our prior to the upgrade-ready(k2) event in � with no mathing fg-upg-ak(k0)i0 eventprior to the upgrade-ready(k2) event, where k0 = `state(�00):upg :target i0 . Otherwise, if therewere no ongoing upgrade operation, i0 would be idle. Let t1 be the time at whih this earlierfg-upgrade(k0)i0 operation ours.We an then apply the Upgrades-Complete Hypothesis, where j = i0 and tupg = t1; notiethat:� i0 2 J(max(t1; `time(�0) + e+ 2d)): Lemma 7.3, applied where t = t1 and i = i0, showsthat i0 2 J(max(t1; `time(�0) + e+ 2d)).� i0 does not fail in �(max(t1; `time(�0) + e + d) + 4d): By Part 2 of the way in whihi0 was hosen, i0 does not fail in �(max(t0; `time(�0) + e + d) + 10d). Notie that t1 �max(t0; `time(�0) + e + d), sine the earlier upgrade event ours in �000 prior to theupgrade-ready(k2) event. Therefore i0 does not fail in �(max(t1; `time(�0) + e+ d) + 4d).� max(t1; `time(�0)+e+d) < t: Again, notie that max(t1; `time(�0)+e+d) � max(t0; `time(�0)+e+ d), sine t1 � t0. Also, t0 + 13d < t, by assumption, and `time(�0) + e+ 14d < t, byassumption. Therefore, max(t0; `time(�0)+e+d) < t, implying that max(t1; `time(�0)+e+ d) < t.We an then onlude that a fg-upgrade-ak(k0)i0 ours in � by time max(t1; `time(�0) +e + d) + 4d � max(t0; `time(�0) + e + d) + 4d. If k0 � k2, then by the preondition of thefg-upgrade-ak(k0) ation, i0 marks map(k1) = �, and we are done.Otherwise, we apply Lemma 7.21 to show that another fg-upgrade operation begins: let t2be the time at whih the fg-upgrade-ak(k0)i0 ours and �2 be the pre�x of � ending in thefg-upgrade-ak(k0)i0 event. Notie that:� t0 � max(t2; `time(�0) + e+ d): By the way in whih the fg-upgrade(k0) was hosen, ithas to omplete no earlier than t0.� max(t2; `time(�0) + e + d) < max(t0; `time(�0) + e + d) + 13d: Above, we showedthat that fg-upgrade-ak(k0)i0 ours by max(t0; `time(�0) + e + d) + 4d, that is, t2 �max(t1; `time(�0)+e+d)+4d � max(t0; `time(�0)+e+d)+4d, sine t1 � t0. Therefore,t2 < max(t0; `time(�0) + e+ d) + 13d. Also, `time(�0) + e+ d < `time(�0) + e+ 14d.Then we apply Lemma 7.21 with t = t0, t0 = max(t2; `time(�0) + e + d), �00 = �2, and i0 ashosen above:� t0 � max(t2; `time(�0) + e+ d) < max(t0; `time(�0) + e+ d) + 13d: as shown above,� i0 satis�es the riteria, by the properties of i0 above,� `time(�2) = max(t2; `time(�0) + e+ d) and upgrade-ready(k2) ours in �00: by the wayin whih �2 was hosen and the fat that the fg-upgrade-ak(k0)i0 must ome after theupgrade-ready(k2) event, 55



� `state(�2):upg :phase i0 = idle: by the e�et of the fg-upg-ak(k0)i0 event that is the lastevent in �000.We then onlude that either:1. `state(�(max(t2; `time(�0) + e+ d))):map(k1)i0 = �, or2. i0 performs a fg-upgrade(k00)i0 at time max(t2; `time(�0) + e+ d), for some k00 � k2.Again, if the �rst ase holds, we are done: sine t2 � max(t0; `time(�0) + e + d) + 8d,Lemma 7.6 implies that `state(�(max(t0; `time(�0) + e + d) + 8d)):map(k1)i0 = �. There-fore, we an assume that the seond part holds, and i0 performs a fg-upgrade(k00)i0 at timemax(t2; `time(�0) + e+ d), for some k00 � k2.One more, we apply the Upgrades-Complete Hypothesis, where j = i0 and tupg = t2; notiethat:� i0 2 J(max(t2; `time(�0) + e + 2d)): Reall that i0 2 J(max(t1; `time(�0) + e + 2d)),above. Sine max(t1; `time(�0)+ e+2d) � max(t2; `time(�0)+ e+2d) (i.e., the upgradebegins before it ompletes), by Lemma 7.1, where t = max(t1; `time(�0)+e+2d) and t0 =max(t2; `time(�0)+e+2d), J(max(t1; `time(�0)+e+2d)) � J(max(t2; `time(�0)+e+2d)),implying that i0 2 J(max(t2; `time(�0) + e+ 2d)).� i0 does not fail in �(max(t2; `time(�0) + e + d) + 4d): By Part 2 of the way in whihi0 was hosen, i0 does not fail in �(max(t0; `time(�0) + e + d) + 10d). Notie that t2 �max(t0; `time(�0)+e+d)+4d, as shown above. Therefore max(t2; `time(�0)+e+d)+4d �max(t0; `time(�0) + e+ d) + 8d, and as a result i0 does not fail in �(max(t2; `time(�0) +e+ d) + 4d).� max(t2; `time(�0)+e+d) < t: Again, notie that max(t2; `time(�0)+e+d) � max(t0; `time(�0)+e+d)+4d. Also, t0+13d < t, by assumption, and `time(�0)+e+d+13d < t, by assump-tion. Therefore, max(t0; `time(�0) + e+ d) + 13d < t. Therefore, max(t2; `time(�0) + e+d) � max(t0; `time(�0) + e+ d) + 4d < t� 9d, as desired.We an then onlude that a fg-upgrade-ak(k00)i0 ours in � by time max(t2; `time(�0) +e + d) + 4d � max(t0; `time(�0) + e + d) + 8d. Sine k00 � k2, then by the preonditionof the fg-upgrade-ak(k0) ation, i0 marks map(k1) = �, and Lemma 7.6 implies that`state(�(max(t0; `time(�0) + e+ d) + 8d)):map(k1)i0 = �. �In the next lemma, we provide a onditional guarantee that a on�guration remains viable.Lemma 7.23 Let � be an �0-normal exeution satisfying (i) (�0, e)-join-onnetivity, (ii)(�0; e)-reon-readiness, (iii) (�0; e)-upgrade-readiness, (iv) (�0; 2d)-reon-spaing-1, (v) (�0; e; 22d)-on�guration-viability.Assume that t 2 R�0 is a time suh that t > `time(�0) + e + 14d. Assume that 1 isa on�guration, and for some �nite pre�x �00 of �, where t = `time(�00), for some node i 2J(max(t; `time(�0)+e+2d)) that does not fail in �00, for some index k1, `state(�00):map(k1)i = 1.Also we assume the Upgrades-Complete Hypothesis: for all fg-upgrade(�)j events that our in� at some time tupg < t at some node j 2 J(max(tupg; `time(�0) + e+2d)) where j does not fail in�(max(tupg; `time(�0)+e+d)+4d, a mathing fg-upg-ak(�)j ours by time max(tupg; `time(�0)+e+ d) + 4d. 56



Then there exists a read-quorum, R 2 read-quorums(1), and a write-quorum, W 2 write-quorums(1),suh that no node in R [W fails in �(t+ 3d).Proof. Let k2 = k1 + 1, and let 2 = (k2). First, onsider the ase where no upgrade-ready(k2)event ours in �. We apply Lemma 7.18, where  = 1 and k = k1; this implies, then, that thereexists a read-quorum, R 2 read-quorums(1), and a write-quorum, W 2 write-quorums(1), suhthat no node in R [W fails in �.Next, onsider the ase where an upgrade-ready(k2) event ours in �. Let t0 be the time atwhih the upgrade-ready(k2) event ours. We laim that upgrade-ready(k2) ours no earlier thant� 13d. That is, t0 + 13d � t.Assume, in ontradition, that t0 + 13d < t. We now apply Lemma 7.22 to onlude that thereexists a node i0 2 J(max(t0; `time(�0) + e+ d) + 8d) that does not fail in �(max(t0; `time(�0) + e+d) + 10d) suh that `state(�(max(t0; `time(�0) + e+ d) + 8d)):map(k1)i0 = �.We now show that the information about on�guration 1's removal is propagated from node i0to node i. That is, we show the following:Claim: `state(�00):map(k1)i = �.Proof of laim: We do this in three steps. First, we show that `state(�(max(t0; `time(�0) +e + d) + 8d)):map i0 is mainstream after max(t0; `time(�0) + e + d) + 10d. Seond, we show that`state(�(max(t0; `time(�0)+ e+d)+8d)):mapi0 is mainstream after t�d. Third, we onlude that`state(�00):map(k1)i = �.Step 1: We already know that i0 2 J(max(t0; `time(�0) + e + d) + 8d), and does not fail in�(max(t0; `time(�0) + e+ d) + 10d). We then apply Lemma 7.7, where t = max(t0; `time(�0) + e+d) + 8d, and i = i0:� max(t0; `time(�0) + e+ d) + 8d � `time(�0) + e: Immediate.� i0 2 J(max(t0; `time(�0) + e+ d) + 8d+2d): i0 2 J(max(t0; `time(�0) + e+ d) + 8d), as shownabove, therefore this follow from Lemma 7.1, where t = max(t0; `time(�0) + e + d) + 8d andt0 = max(t0; `time(�0) + e+ d) + 10d.� i0 does not fail in �(max(t0; `time(�0)+e+d)+8d+d), sine i0 does not fail in �(max(t0; `time(�0)+e+ d) + 8d+ 2d) as shown above.Therefore we an onlude that `state(�(max(t0; `time(�0) + e + d) + 8d)):map i0 is mainstreamafter max(t; `time(�0) + e+ d) + 10d.Step 2: We have assumed above that t0 < t � 13d, that is, t0 + 10d < t � d � 2d. Also,we have assumed that `time(�0) + e + 14d < t, that is, `time(�0) + e + d + 10d < t � d � 2d.Therefore, max(t0; `time(�0) + e + d) + 10d < t � 3d. We now apply Lemma 7.14, where t =max(t0; `time(�0)+e+d)+10d, t0 = t�d, and m = `state(�(max(t0; `time(�0)+e+d)+8d)):mapi0 :� e+ 2d � max(t0; `time(�0) + e+ d) + 10d,� max(t0; `time(�0) + e+ d) + 10d � t� 3d,� `state(�(max(t0; `time(�0) + e+ d) + 8d)):map i0 is mainstream after max(t; `time(�0) + e+d) + 10d.We therefore onlude that `state(�(max(t0; `time(�0) + e + d) + 8d)):map i0 is mainstream aftert� d.Step 3: Notie, then, that by assumption i 2 J(t) and i does not fail in �(t � d). Thereforeby the de�nition of mainstream, `state(�(max(t0; `time(�0) + e + d) + 8d)):map i0 � `state(�(t �57



d)):map i. Lemma 7.6 then implies that `state(�(t� d)):map i � `state(�00):map i, sine �(t� d)is a pre�x of �00. Therefore, `state(�(max(t0; `time(�0) + e+ d) + 8d)):map i0 � `state(�00):map i.Sine `state(�(max(t0; `time(�0) + e+ d) + 8d)):map(k1)i0 = � (as shown above), this means that`state(�00):map(k1)i = �, as laimed above, onluding Step 3.This laim that `state(�00):map(k1)i = �, though, leads to a ontradition: by assumption ofthis lemma, `state(�00):map(k1)i = 1. Therefore, we onlude that our assumption that t0 < t�13dis inorret: that is, we must have t0 � t� 13d. That is, we have shown that the upgrade-ready(k2)event ours at most 13d prior to time t.We now apply Lemma 7.17, where  = 2, k = k2, and t = t0, to onlude that there exists aread-quorum, R, and a write-quorum, W , of on�guration 1 suh that no node in R [W fails in�(max(t0; `time(�0) + e) + 16d). Above we showed that t0 + 13d � t, therefore t0 + 16d � t + 3d,whih implies that max(t0; `time(�0) + e) + 16d � t + 3d. Therefore, we an onlude that thereexists a read-quorum, R, and a write-quorum, W , of on�guration 1 suh that no node in R [Wfails in �(t+ 3d). �The next two lemmas laim that every on�guration-upgrade operation ompletes soon after itbegins, or soon after the network stabilizes. The �rst lemma handles the ase where the upgradebegins before the network stabilizes, or during stabilization. The seond lemma handles the generalase, for all t.Lemma 7.24 Let � be an �0-normal exeution satisfying: (i) (�0, e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, (iv) (�0; e; 22d)-on�guration-viability.Assume that t 2 R�0 is a time suh that t � `time(�0) + e + 14d, and that a fg-upgrade(k)iours at time t at node i. Assume that node i 2 J(t) and that i does not fail in �(max(t; `time(�0)+d) + 4d).Then a fg-upg-ak(k)i ours no later than time max(t; `time(�0) + d) + 4d.Proof. Let  be the on�guration-upgrade operation assoiated with the fg-upgrade(k) ation.Lemma 7.19 shows that proving the following is suÆient to prove the lemma: for every on�gura-tion in removal-set() there exists a read-quorum, R and a write-quorum, W , suh that no nodein R [W fail by time max(t; `time(�0) + d) + 3d.Consider any on�guration, 1 with index k1 in removal-set(). If t1 is the time at whihon�guration (k1 + 1) is installed, on�guration-viability ensures that on�guration 1 does notfail until max(t1; `time(�0) + e) + 22d. Notie that `time(�0) + e + 22d > t + 3d, sine t �`time(�0) + e + 14d. Therefore, this guarantees that there exists a read-quorum, R, and a write-quorum, W for on�guration 1 suh that no node in R[W fails until after `time(�0) + e+ 22d >max(t; `time(�0) + d) + 3d. �Lemma 7.25 Let � be an �0-normal exeution satisfying: (i)(�0, e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, (iv) (�0; e; 22d)-on�guration-viability.Assume that t 2 R�0 is a time, and that a fg-upgrade(k)i ours in � at time t at node i.Assume that node i 2 J(t) and that i does not fail in �(max(t; `time(�0) + e+ d) + 4d).Then a fg-upg-ak(k)i ours no later than time max(t; `time(�0) + e+ d) + 4d.Proof. We prove this lemma by proving a stronger statement by strong indution on the numberof fg-upgrade events in �: if a fg-upgrade(�)j event ours in � at some time tupg � t at somenode j 2 J(tupg), and j does not fail in �(max(tupg; `time(�0) + e + d) + 4d), then a mathingfg-upg-ak(�)j ours no later than time max(tupg; `time(�0) + e+ d) + 4d.58



As this is strong indution, we now examine the indutive step. Consider on�guration-upgrade, the k + 1st upgrade operation in � that ours at time tupg � t at node j 2 J(t) that doesnot fail in �(max(tupg; `time(�0) + e + d) + 4d). Assume, indutively, that if 0 is one of the�rst k upgrade operations that ours at time t0 � t at some node j0 2 J(t0) that does not failin �(max(t0; `time(�0) + e + d) + 4d), then a mathing fg-upg-ak(�) ours no later than timemax(t0; `time(�0) + e+ d) + 4d. There are two ases to onsider.Case 1: tupg � `time(�0) + e+ 14d.Reall that the fg-upgrade event ours at node j 2 J(tupg) where j does not fail in�(max(tupg; `time(�0)+e+d)+4d). Lemma 7.24 shows that a fg-upg-ak(k)j ours by timemax(tupg; `time(�0) + d) + 4d � max(tupg; `time(�0) + e+ d) + 4d.Case 2: tupg > `time(�0) + e+ 14d.Lemma 7.19 shows that proving the following is suÆient to prove the lemma: for everyon�guration in removal-set() there exists a read-quorum, R and a write-quorum, W , suhthat no node in R [W fails in �(max(tupg; `time(�0) + d) + 3d). Let �00 be the pre�x of �ending with the fg-upgrade event . Fix some on�guration  2 removal-set() with indexk; that is, `state(�00):map(k)j = . We now apply Lemma 7.23, where 1 = , k1 = k, �00 isas just de�ned, and t = tupg:� tupg > `time(�00) + e+ 14d.� tupg = `time(�00).� `state(�00):map(k)j = , sine  2 removal-set() and �00 is the exeution ending withthe event .� j 2 J(max(tupg; `time(�0) + e+ 2d)), sine j 2 J(tupg) and tupg > `time(�0) + e+ 14d.� Upgrades-Complete Hypothesis: for every fg-upgrade(�)j event that ours in � atsome time t0 < tupg at some node j0 2 J(max(tupg; `time(�0) + e + 2d)) where j0 doesnot fail in �(max(tupg; `time(�0) + e+ d) + 4d), a mathing fg-upgradej0 ours by timemax(tupg; `time(�0) + e+ d) + 4d: this is the indutive hypothesis, sine any fg-upgradeouring at time t0 < tupg must be one of the �rst k upgrade events.Therefore, we onlude that there exists a read-quorum, R 2 read-quorums(), and a write-quorum, W 2 write-quorums(), suh that no node in R [W fails in �(t+ 3d). Sine this istrue for all  2 removal-set(), this then shows the desired result. �We next present two orollaries that follow from these lemmas. First, we present the unonditionalversion of Lemma 7.23:Corollary 7.26 Let � be an �0-normal exeution satisfying (i) (�0, e)-join-onnetivity, (ii)(�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, (iv) (�0; e; 22d)-on�guration-viability.Assume that t 2 R�0 is a time. Assume that  is a on�guration, and for some �nite pre�x�00 of � where t = `time(�00), some node i 2 J(t) that does not fail in �00, for some index k,`state(�00):map(k)i = .Then there exists a read-quorum, R, and a write-quorum, W , suh that no node in R[W failsin �(max(t; `time(�0) + e+ d) + 3d). 59



Proof. If t > `time(�0) + e + 14d, then we show that the result follows from Lemma 7.25 andLemma 7.23. We apply Lemma 7.25 where 1 = , k1 = k: notie that Lemma 7.23 assumes that:� t > `time(�0) + e+ 14d: By assumption.� t = `time(�00): By assumption.� `state(�00):map(k)i = : By assumption.� i 2 J(max(t; `time(�0) + e+ 2d)): t > `time(�0) + e+ 14d.� i does not fail in �00: By assumption.� Upgrade-Completes Hypothesis: Fix some fg-upgrade(�)j event that ours at time tupg < tat node j 2 J(max(tupg; `time(�0) + e+ 2d) where j does not fail in �(max(tupg; `time(�0) +e + d) + 4d). We apply Lemma 7.25, where t = tupg and i = j. (Notie that j 2 J(tupg) byLemma 7.1.) We therefore onlude that a fg-upgrade(�)j ours no later than max(tupg; `time(�0)+e+ d) + 4d, as required by the onlusion of the Upgrade-Completes Hypothesis.We thus onlude that there exists a read-quorum, R 2 read-quorums() and a write-quorum,W 2 write-quorums() suh that no node in R[W fails in �(t+3d). Sine t > `time(�0)+ e+14d,this implies that no node in R [W fails in �(max(t; `time(�0) + e+ d) + 3d).Alternatively, if t � `time(�0) + e + 14d, on�guration-viability guarantees that there exists aread-quorum, R, and a write-quorum,W , suh that no node in R[W fails in �(`time(�0)+e+22d),and again the result follows. �The seond orollary guarantees the liveness of the system; that is, the following orollary showsthat read and write operations always terminate eventually:Corollary 7.27 Let � be an �0-normal exeution satisfying (i) (�0, e)-join-onnetivity, (ii)(�0; e)-reon-readiness, (iii) (�0; 2d)-reon-spaing-1, (iv) (�0; e; 22d)-on�guration-viability.Assume that t 2 R�0. Assume that at time t, for some i 2 J(t) that does not fail in �7, a readior writei ours in �. Then the operation eventually ompletes.Proof. The read or write operation ompletes if eah phase of the operation ompletes. Let  bethe readi, writei, query-�xi, or revi ation that sets op:map to map, beginning the phase. Eahphase ompletes when for all ` : op:map(`)i 2 C, i has sent a gossip message to an appropriatequorum of nodes in (`), and reeived a response. The only way an operation an fail to terminate,then, is if there does not exist a non-failed read-quorum or a write-quorum of some on�gurationin op:map .Assume that  is a on�guration with index k suh that op:map(k)i is set to  at sometime t0 after  , and before the phase ompletes. Then for some �00 where t0 = `time(�00),`state(�00):map(k)i = , sine op:map is set by opying a trunated version of mapi. By Corol-lary 7.26, there exists a read-quorum, R, and a write-quorum, W , suh that no node in R[W failsin �(max(t; `time(�0)+e+d)+3d). No later than time max(t; `time(�0)+e+d)+d, node i sends agossip message to every node in R[W . By time max(t; `time(�0)+e+d)+2d the message is reeivedby every node in R[W , and eah node sends a response to i. By time max(t; `time(�0)+e+d)+3d,node i reeives the response, and R[W � a. Therefore, for all on�gurations the read and writequorums survive long enough, and so the phase ompletes. �7More spei�ally, we are assuming that i does not fail until after the operation terminates; sine we do not herebound how long the operation may take, we instead assume that i does not fail in �. Obviously i failing after theoperation ompletes has no e�et on the operation ompleting.60



7.8 Read-Write Lateny ResultsIn this setion we state and prove the main result of the lateny analysis: if an exeution ontainsa period of time of good behavior, and if this setion of the exeutions is 22d-on�guration-viable,then all read and write operations terminate, and terminate within 8d. Notie that in the originalRambo paper, a similar result required the stronger assumption of 1-on�guration-viability , anarbitrarily unbounded failure assumption, depending on events earlier in the exeution. Here thereis no dependeny on earlier events: the algorithm is guaranteed to stabilize rapidly, as soon as thenetwork stabilizes.We need one more lemma. This lemma shows that one a report() ation ours for someon�guration with index k, then soon every node has set map(`) 6= ?, for all ` � k. This willallow us to show that if a read or write operation begins long enough after a ertain report()operation, then it annot be interrupted by learning about new on�gurations with smaller indies.Lemma 7.28 Let � be an �0-normal exeution satisfying: (i) (�,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) 6d-reon-spaing, (iv) (�0; e; 4d)-on�guration-viability.Assume that � ontains deide events for in�nitely many on�gurations. Let ` be a on�gurationindex. Let 1 be the on�guration with index `, and 2 be the on�guration with index `+ 1.Let i be the node at whih the �rst reon(1; 2) event, �, ours. Let t be the time at whih thereport(1)i event, �, ours.Then there exists a CMap, m, suh that:1. m(`) 6= ?, and2. m is mainstream after max(t; `time(�0) + e+ d) + 6d.Proof. There are two ases to onsider. In eah ase, we �rst demonstrate an appropriate m:we identify a node that performs a report(1) and does not fail too soon. We then show that themap of that node is mainstream after max(t; `time(�0) + e+ d) + 6d.Case 1: reon(1; 2)i ours at some time � `time(�0) + e+ 2d.In this ase, we use the Reon-Spaing-2 assumption to identify a node with an appropriatemap, and then use on�guration-viability to show that this node survives long enough forits map to beome mainstream after `time(�0) + e+ 4d, whih then allows us to show thatits map is mainstream after max(t; `time(�0) + e+ d) + 6d.By the Reon-Spaing-2 assumption, there exists a write-quorum, W 2 write-quorums(1),suh that for every node j 2 W , a report(1)j ours in � prior to �, the reon event thatproposes on�guration 2. By on�guration-viability, there exists some node j 2W that doesnot fail by time `time(�0)+ e+4d, sine there exists some read-quorum, R, that does not failby time `time(�0) + e+ 4d, and by assumption R \W 6= ;.We now show that mapj satis�es Property 1 after `time(�0) + e+ 2d. Notie that:`state(�(time(�))):map(`)j 6= ?;sine the report ation noti�es j of the on�guration 1 prior to �. By assumption we know thattime(�) � `time(�0)+e+2d. Therefore we know that `state(�(`time(�0)+e+2d)):map j 6= ?.Let m = `state(�(`time(�0) + e+ 2d)):map j. We know, then, that m(`) 6= ?, as desired.Next we show that m is mainstream after `time(�0) + e+ 4d. We apply Lemma 7.7, wherei = j, t = `time(�0) + e+ 2d: 61



� j 2 J(`time(�0) + e + 4d): If ` = 0, then j = i0 and we have, by assumption, that i0performs a join-aki0 at time 0, immediately implying the statement by the de�nition ofJ .Otherwise, we apply Lemma 7.2, where h = 1, t0 = time(reon((` � 1); 1)), andt = `time(�0) + e + 2d. Notie that `time(�0) + e+ 2d � time(reon((` � 1); 1)) sine`time(�0) + e + 2d � time(�), and time(�) � time(reon((` � 1); 1)). We thereforeonlude that members(1) � J(`time(�0) + e + 2d). In partiular, this means thatj 2 J(`time(�0) + e+2d). Next we apply Lemma 7.1, where t = `time(�0) + e+ 2d andt0 = `time(�0) + e+ 4d to see that j 2 J(`time(�0) + e+ 4d).� `time(�0) + e+ 2d � `time(�0) + e: Immediate.� j does not fail in �(`time(�0) + e+3d): as shown above j does not fail in �(`time(�0) +e+ 4d), by hoie of j and on�guration-viability.We then onlude, sine m = `state(�(`time(�0) + e + 2d)):map j , that m is mainstreamafter `time(�0) + e+ 4d.We next apply Lemma 7.14, where t = `time(�0)+ e+4d, t0 = max(t; `time(�0)+ e+d)+6d,and m is as de�ned above:� e+ 2d � `time(�0) + e+ 4d: Immediate.� `time(�0) + e+ 4d � max(t; `time(�0) + e+ d) + 6d� 2d: Immediate.� m is mainstream after `time(�0) + e+ 4d: As shown above.Therefore, we onlude that m is mainstream after max(t; `time(�0)+e+d)+6d, as desired.Case 2: reon(1; 2)i ours at some time > `time(�0) + e+ 2d.We �rst notie that i has been noti�ed of on�guration 1 and then show that the map of iis mainstream after max(t; `time(�0) + e+ d) + 6d.Notie that `state(�(t)):map(`)i 6= ?, sine the report(1)i event noti�es i of on�guration1.We now apply Lemma 7.7, where i is as de�ned above and t = max(t; `time(�0) + e+ d), toshow that m is mainstream after max(t; `time(�0) + e+ d) + 2d:� max(t; `time(�0) + e+ d) + 2d � `time(�0) + e: Immediate.� i 2 J(max(t; `time(�0) + e + d) + 2d): We apply Lemma 7.2, where h = 1, t0 is thetime at whih 1 is proposed, and t = max(t; `time(�0) + e + d) + 2d. Notie thatmax(t; `time(�0)+ e+d)+2d is no earlier than the time at whih 1 is proposed, sine areport(1) ours prior to max(t; `time(�0)+e+d)+2d. Also, max(t; `time(�0)+e+d)+2d � `time(�0)+e+2d. Therefore we onlude that members(1) � J(max(t; `time(�0)+e+ d) + 2d). This implies that i 2 J(max(t; `time(�0) + e+ d) + 2d).� i does not fail in �(max(t; `time(�0) + e+ d) + d): We know that i does not fail prior toevent �, that is, the reon(1; 2)i event. By Reon-Spaing-1, we know that time(�) �t+6d. By assumption of this ase, we know that time(�) > `time(�0)+e+2d. Thereforei does not fail in �(max(t; `time(�0) + e+ d) + d).We therefore onlude that m is mainstream after max(t; `time(�0) + e+ d) + 2d.We next apply Lemma 7.14, where t = max(t; `time(�0)+ e+d)+2d, t0 = max(t; `time(�0)+e+ d) + 6d, and m is as de�ned above: 62



� e+ 2d � max(t; `time(�0) + e+ d) + 2d: Immediate.� max(t; `time(�0) + e+ d) + 2d � max(t; `time(�0) + e+ d) + 6d� 2d: Immediate.� m is mainstream after time(�`): As shown above.Therefore, we onlude that m is mainstream after max(t; `time(�0)+e+d)+6d, as desired.�We �nally prove the main theorem, showing that read and write operations terminate rapidly.This result requires 12d+�-reon-spaing, and is similar to Theorem 8.17 from [13℄. This earliertheorem states that in a normal, steady-state ase, with good environmental behavior, read andwrite operations terminate within time 8d. Although the following theorem allows for more ompli-ated behavior, deviating from the assumption of good environmental assumptions, read and writeoperations still omplete rapidly.Theorem 7.29 Let � be an �0-normal exeution satisfying: (i) (�,e)-join-onnetivity, (ii) (�0; e)-reon-readiness, (iii) 12d+�-reon-spaing, (iv) (�0; e; 22d)-on�guration-viability.Let t > `time(�0)+ e+17d, and assume a read or write operation starts at time t at some nodei. Assume i 2 J(t+8d), and does not fail until the read or write operation ompletes. Also, assumethat � ontains deide events for in�nitely many on�gurations. Then node i ompletes the read orwrite operation by time t+ 8d.Proof. Let 0; 1; 2; : : : denote the in�nite sequene of suessive on�gurations deided upon in�; by in�nite reon�guration, this sequene exists. For eah k � 0, let �k be the �rst reon(k; k+1)�event in �, let ik be the loation at whih this ours, and let �k be the orresponding, preed-ing report(k)ik event. (The speial ase of this notation for k = 0 is onsistent with our usageelsewhere.)We show that the time for eah phase of the read or write operation is � 4d { this will yield thebound we need. Consider one of the two phases, and let  be the readi, writei or query-�xi eventthat begins the phase.We laim that time( ) > time(�0) + 8d, that is, that  ours more than 8d time after thereport(0)i0 event: We have that time( ) � t, and t > time(join-aki) + 8d by assumption thati 2 J(t + 8d). Also, time(join-aki) � time(join-aki0). Furthermore, time(join-aki0) � time(�0),that is, when join-aki0 ours, report(0)i0 ours with no time passage. Putting these inequalitiestogether we see that time( ) > time(�0) + 8d.Fix k to be the largest number suh that time( ) > time(�k) + 8d. The laim in the preedingparagraph shows that suh k exists.Next, we show that within zero time of  ourring, map(`)i 6= ? for all ` � k. It is at thispoint that the proof diverges from that of Lemma 8.17 from [12℄.For the purposes of the next two lemmas, �x any ` � k. We apply Lemma 7.28, where ` is as�xed above, t = time(�`), � = �`, � = �`, 1 = `,and i = i`. We therefore onlude that thereexists a CMap m suh that:1. m(`) 6= ?, and2. m is mainstream after max(time(�`); `time(�0) + e+ d) + 6d.We next apply Lemma 7.14, where t = max(time(�`); `time(�0)+ e+d)+6d, t0 = time( ), andm is as above, to show that m is mainstream after time( ):63



� e+ 2d � max(time(�`); `time(�0) + e+ d) + 6d: Immediate.� max(time(�`); `time(�0) + e + d) + 6d � time( ) � 2d: By the way in whih k is hosen weknow that time(�k) + 8d < time( ). Also, time(�`) � time(�k): either ` = k, or �` preedes�` whih preedes �k. By assumption we know that `time(�0) + e+8d < t, and t � time( ).� m is mainstream after max(time(�`); `time(�0) + e) + 6d: As shown above.Therefore, we onlude that m is mainstream after time( ). We know that i 2 J(t), and t �time( ), so by Lemma 7.1, i 2 J(time( )). Also, i does not fail until the read or write operationompletes, and therefore either the read or write operation ompletes at time( ) (in whih ase wehave proved the desired bound) or i does not fail in �(time( )). Therefore by de�nition of a CMapbeing mainstream, if m is mainstream after time( ), then m � `state(�(time( ))):map i.Having shown this for �xed ` � k, we now know that for all ` � k there exists some CMap,m, suh that m(`) 6= ? and m is mainstream after time( ), this implies that for all ` � k,`state(�(time( ))):map(`)i 6= ?. Therefore we have shown that within zero time of  ourring,map(`)i 6= ? for all ` � k.Now, by hoie of k, we know that time( ) � time(�k+1) + 8d. The Reon-Spaing onditionimplies that time(�k+1) (the �rst reon event that requests the reation of the (k+2)nd on�gura-tion) is > time(�k+1) + 12d. Therefore, for an interval of time of length > 4d after  , the largestindex of any on�guration that appears anywhere in the system is k + 1. This implies that thephase of the read or write operation that starts with  ompletes with at most one additional delay(of 2d) for learning about a new on�guration. This yields a total time of at most 4d for the phase,as laimed.Finally, by Corollary 7.27, the operation eventually terminates, whih guarantees that everon�guration in op:map remains viable for long enough. �This shows that assuming (�0; e; 22d)-on�guration-viability is suÆient to guarantee that readand write operations terminate quikly. As long as the reon�guration algorithm an guaranteethis level of viability, the Rambo II algorithm will ontinue to make progress, regardless of any badbehavior the network may experiene. Further, while 22d may seem a long period of time to ensureviability, it must be remembered that d is typially a small interval: we have been assuming thatd is a single message delay in the network. Note that simply deiding on a new on�guration toinstall might take many intervals of d (in [12℄, it is bounded by 11d). Also, this 22d bound is fairlyonservative: by making stronger assumptions as to who begins on�guration-upgrade operations,and how gossip messages propagate information about ompleted on�guration-upgrade operations,it is probably possible to improve this bound. In this paper we are primarily interested in the fatthat it is a onstant time bound.8 Implementation and Preliminary EvaluationMusial and Shvartsman [16℄ have developed a prototype distributed implementation that inor-porates both the original Rambo on�guration management algorithm [12℄ and the new RamboII algorithm presented in this paper. The system was developed by manually translating the In-put/Output Automata spei�ation to Java ode. To mitigate the introdution of errors duringtranslation, the implementers followed a set of preise rules, similar to [2℄, that guided the deriva-tion of Java ode from Input/Output Automata notation. The system is undergoing re�nement andtuning, however an initial evaluation of the performane of the two algorithms has been performedin a loal-area setting. 64
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Figure 21: Preliminary empirial evaluation of the average operation lateny (measured as thenumber of gossip intervals), as a funtion of reon�guration frequeny, measured as number ofreon�gurations per one reon�guration period.The platform onsists of a Beowulf luster with 13 mahines running Linux (Red Hat 7.1).The mahines are Pentium proessors in the range from 90 MHz to 900 MHz, interonneted viaa 100 Mbps Ethernet swith. The implementation of the two algorithms shares most of the odeand all low-level routines. Any di�erene in performane is traeable to the distint on�gurationmanagement disipline used by eah algorithm.The mahines vary signi�antly in speed. Given several very slow mahines, Musial and Shvarts-man do not evaluate absolute performane and instead fous initially on omparing the two algo-rithms.The preliminary results in Figure 21 show the average lateny of read/write operations as thefrequeny of reon�gurations grows from about two to twenty reon�gurations per one gossip pe-riod. In order to handle suh frequent reon�gurations, a large gossip interval (8 seonds) is used.This interval is muh larger than the round-trip message delay, thus reduing the e�ets of net-work ongestion enountered when reon�guring very frequently. The results show that the overalllateny of read/write operations for the new algorithm progressively improve, as the frequenyof reon�guration inreases. As expeted, the derease in lateny beomes substantial for burstyreon�gurations (at 20 reon�gurations per gossip interval). For less frequent reon�gurations thelateny is similar, at about 4 gossip intervals depending on the settings (not shown). This is ex-peted and onsistent with our analysis, sine the two algorithms are essentially idential whenmaps ontain one or two on�gurations. Figure 22 shows the average number of on�gurationsin maps as a funtion of reon�guration frequeny. This further explains the di�erene in perfor-mane, sine the average number of on�gurations in maps is lower in the new algorithm as thefrequeny of reon�gurations inreases.Finally notie that the modest number of mahines used in this study favored the original algo-65
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Figure 22: Preliminary empirial evaluation of the average number of on�gurations in map's, asa funtion of reon�guration frequeny, measured as number of reon�gurations per one reon�gu-ration period.rithm. This is beause the mahines are often members of multiple on�gurations, thus the numberof messages needed to reah �xed-points by the read/write operations of the original algorithm ismuh lower than is expeted when eah proessor is a member of a few on�gurations.Also, notie that this evaluation does not examine the e�ets of message loss and lak of networkonnetivity. We hypothesize that, as in the ase of frequent bursty reon�guration, when thereare intervals of time in whih the network is disonneted, the new algorithm should reover morerapidly. This testing has not yet been performed.Full performane evaluation is urrently in progress. Shvartsman and Musial are investigatinghow the performane depends on the number of mahines and various timing parameters.9 Conlusion and Open ProblemsIn this paper we have presented a new algorithm, improving on the original Rambo algorithmby Lynh and Shvartsman [12, 13℄. While the original Rambo algorithm is analyzed primarily inthe ontext of good network behavior, we are able to show that our new algorithm funtions welleven when the network experienes transient periods of bad behavior, inluding message loss, lokskews, and arbitrary asynhrony, and when reon�guration is bursty and uneven.The key to this improvement is a new rapid on�guration-upgrade mehanism, whih allowsthe system to stabilize rapidly after a period of bad network behavior. In the previous Ramboalgorithm, it might take arbitrarily long to reover from a period of bad behavior. In this newalgorithm, however, within a onstant time, the system returns to a steady-state ondition. Thisallows the algorithm to funtion more reliably in a long-running, dynami system: when a system66



is expeted to funtion for months and years without failure, it is neessary to rapidly reover fromthe inevitable transient network failures.This improvement also makes pratial the design of algorithms to hoose new on�gurations.In the earlier version of Rambo, it is unlear what properties a reon�guration algorithm mustsupport in order for it to be useful. This paper shows that a reon�guration automaton mustprovide exatly (�0; 22d)-on�guration-viability .To design suh a reon�guration algorithm, then, is one of the major open problems posed bythis paper. In partiular, it seems important to show that if the rate of failure is bounded, then thealgorithm ontinues to make progress. This is similar to the ideas introdued by Karger and Liben-Nowell in [10℄, in whih they assume that the system has a bounded half-life: the time in whiheither half the proesses fail or the number of ative proesses doubles. Under this assumption,they show that their algorithm operates orretly.By similarly assuming a bounded rate of failures, it should be possible in ertain ases to designa reon�guration algorithm that guarantees liveness by initiating reon�guration with some min-imum frequeny. By hoosing appropriate quorums and appropriate numbers of reon�gurations,(�0; 22d)-on�guration-viability should be possible.Other open problems inlude improving the join protool, and designing a leave protool toallow good detetion of nodes that have exited the system. Currently, the join protool is quitesimple and it would seem bene�ial to require more ommuniation before allowing a node toinitiate operations. And when nodes fail or leave, in the algorithm as stated, they are just ignored.By introduing a formal protool to leave the system, and a method for deteting failed nodes, itmight be possible to improve the long-run performane of the system.Another open problem is to determine how to reover when viability fails (and data is inevitablylost). More generally, is a self-stabilizing version of Rambo feasible? It would also be interestingto determine whether a version of Rambo ould be adapted to tolerate Byzantine faults.Rambo may also allow the onstrution of other data types, suh as weakly onsistent memoryand sets. It may also be possible to optimize Rambo to return read values more rapidly, in onephase, in ertain ases. An important question would be to determine the most powerful dataobjet that an be implemented using the Rambo tehnique; one suspets that it is impossible toimplement onsensus in this manner.Finally, it would be interesting to examine how the Rambo algorithm ould be adapted tospei� platforms. The algorithm is presented in a fairly abstrat fashion. In real implementations,it would be optimized depending on the target platform. In partiular, we suspet that Ramboshould work well in sensor networks, mobile-networks, and peer-to-peer networks.In onlusion, this paper has presented a new algorithm for atomi memory in a highly dynamienvironment, proved that is always orret, and presented a set of onditions that guarantee liveness.This provides signi�ant improvements over existing algorithms, rapidly reovering from transientnetwork problems and bursty reon�guration.Referenes[1℄ Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passingsystems. Journal of the ACM, 42(1):124{142, 1995.[2℄ O. Cheiner and A.A. Shvartsman. Implementing and evaluating an eventually-serializabledata servie as a distributed system building blok. In Networks in Distributed Computing,67
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