
RAMBO II: Rapidly Re
on�gurable Atomi
 Memory for Dynami
Networks �Seth Gilberty Nan
y Lyn
hz Alex ShvartsmanxJanuary 9, 2004Abstra
tFuture
ivilian res
ue and military operations will depend on a
omplex system of
ommuni-
ating devi
es that
an operate in highly dynami
 environments. In order to present a
onsistentview of a
omplex world, these devi
es will need to maintain data obje
ts with atomi
 (lineariz-able) read/write semanti
s.Lyn
h and Shvartsman have re
ently developed a re
on�gurable atomi
 read/write memoryalgorithm for su
h environments [12, 13℄ This algorithm,
alled Rambo, guarantees atomi
-ity for arbitrary patterns of asyn
hrony, message loss, and node
rashes. Rambo installs new
on�gurations lazily, transferring data from old
on�gurations to new
on�gurations using aba
kground information transfer task. That task handles
on�gurations sequentially, transfer-ring information from ea
h
on�guration to the next.This paper presents a new algorithm, Rambo II, that implements a radi
ally di�erent ap-proa
h to installing new
on�gurations: instead of operating sequentially, the new algorithmre
on�gures \aggressively", transferring information from old
on�gurations in parallel. Thisimprovement substantially redu
es the time ne
essary to remove obsolete
on�gurations, whi
hin turn substantially in
reases the fault-toleran
e. This paper presents a formal spe
i�
ation ofthe new algorithm, a
orre
tness proof, and a
onditional analysis of its performan
e. Prelimi-nary empiri
al studies performed using LAN implementations of Rambo and the new algorithmillustrate the advantages of the new algorithm.
�This work was supported in part by the NSF ITR Grant CCR-0121277.yMassa
husetts Institute of Te
hnology, Laboratory for Computer S
ien
e, 200 Te
hnology Square, NE43-371,Cambridge, MA 02139, USA. Email: sethg�theory.l
s.mit.edu.zMassa
husetts Institute of Te
hnology, Laboratory for Computer S
ien
e, 200 Te
hnology Square, NE43-365,Cambridge, MA 02139, USA. Email: lyn
h�theory.l
s.mit.edu. The work of this author was additionally supportedby NSF Grant 9804665.xDepartment of Computer S
ien
e and Engineering, 191 Auditorium Road, Unit 3155, University of Conne
ti
ut,Storrs, CT 06269 and Massa
husetts Institute of Te
hnology, Laboratory for Computer S
ien
e, 200 Te
hnologySquare, NE43-363, Cambridge, MA 02139, USA. Email: alex�theory.l
s.mit.edu. The work of this author wasadditionally supported by the NSF Career Award 9984778 and NSF Grant 9988304.1

Contents1 Introdu
tion 32 The Original Rambo Algorithm 63 Formal Spe
i�
ation of Rambo II 104 Notation and Basi
 Lemmas 144.1 Good Exe
utions . 144.2 Notational
onventions . 154.3 Con�guration map invariants . 174.4 Phase guarantees . 205 Atomi
 Consisten
y 225.1 Behavior of
on�guration upgrade . 235.2 Behavior of a read or a write following a
on�guration upgrade 265.3 Behavior of sequential reads and writes . 275.4 Atomi
ity . 306 Re
on�guration Servi
e 316.1 Re
on�guration Servi
e Spe
i�
ation . 316.2 Re
on�guration Servi
e Implementation . 326.3 Consensus servi
es . 336.4 Re
on automata . 347 Conditional Performan
e Analysis 367.1 De�nitions . 367.2 Limiting Nondeterminism . 377.3 The Behavior of the Environment . 377.3.1 Normal Timing Behavior from Some Point Onward 387.3.2 Con�guration{Viability . 387.3.3 Re
on-Spa
ing . 397.3.4 Join-Conne
tivity . 397.3.5 Re
on-Readiness . 407.3.6 Upgrade-Readiness . 407.3.7 Fixed Parameters . 407.4 Basi
 Lemmas . 417.5 Propagation of Information . 427.6 Upgrade-Ready Viability . 477.7 Con�guration-Upgrade Laten
y Results . 507.8 Read-Write Laten
y Results . 618 Implementation and Preliminary Evaluation 649 Con
lusion and Open Problems 66
2

1 Introdu
tionFuture large s
ale
ivilian res
ue and military deployment operations will involve large numbers of
ommuni
ation and
omputing devi
es operating in highly dynami
 network substrates. Su

essful
oordination and marshaling of human resour
es and equipment involves
olle
ting informationabout a
omplex real-world situation using sensors and input devi
es, gathering the information insurvivable repositories, and providing appropriate and
oherent information to the stakeholders.Data obje
ts with atomi
 (linearizable) read/write semanti
s
ommonly o

ur in su
h settings.Repli
ation of obje
ts is a prerequisite for fault-toleran
e and availability, and with repli
ation
omes the need to maintain
onsisten
y. Additionally, in dynami
 settings where parti
ipants mayjoin and leave the environment, may fail, and where the physi
al obje
ts migrate, one needs to beable to e�e
tively move the
orresponding data obje
ts from one set of data owners to another.Lyn
h and Shvartsman developed a re
on�gurable atomi
 read/write memory algorithm for dy-nami
 networks [12, 13℄. The algorithm,
alled Rambo, guarantees atomi
ity for arbitrary patternsof asyn
hrony, message loss, and node
rashes. Conditional performan
e analysis of the algorithmshows that when the environment timing stabilizes, when failures are within spe
i�
 parameters,and when the re
on�gurations are not frequent and not bursty, then read and write operationshave small laten
y bounded in terms of the maximum message delay and the periodi
 gossip inter-val. However when the re
on�gurations are frequent or bursty, this algorithm may perform poorlybe
ause of the inherently sequential pro
essing of the new
on�gurations on
e they be
ome deter-mined by the algorithm. In parti
ular, the number of
on�gurations maintained by the algorithmmay grow without bound, leading to the unbounded number of messages ne
essary in pro
essingthe read and write operations. Su
h situations may arise due to failures or asyn
hrony, yet theseare not the only reasons. Even in syn
hronous failure-free environments the world dynami
s mayrequire that frequent re
on�gurations are performed to keep tra
k of the rapidly moving physi
alobje
ts or rapidly
hanging set of stakeholders.This paper presents a new algorithm, Rambo II, integrated with Rambo, that implementsa radi
ally di�erent approa
h to installing new
on�gurations: instead of operating sequentially,the new algorithm re
on�gures \aggressively", transferring information from old
on�gurations inparallel. This improvement substantially redu
es the time ne
essary to pro
ess new
on�gurationsand to remove obsolete
on�gurations from the system, whi
h in turn substantially in
reases fault-toleran
e. This is due to the fa
t that on
e a
on�guration is removed, the system no longer dependson it, and as soon as the
on�guration is removed, it is allowed to fail. The pro
ess exe
uting thenew algorithm a
hieves a linear speed-up in the number of old
on�gurations known to the pro
ess.For example, our
onditional performan
e analysis shows that if a pro
ess knows about a sequen
eof h
on�gurations, then the it
an eliminates all but one of these
on�gurations in time O(1), as
ompared to the original Rambo, where this takes �(h) time. Additionally, the new algorithmredu
es the number of messages ne
essary to pro
ess these
on�gurationsThis paper presents a formal spe
i�
ation of the new algorithm, a
orre
tness proof, and a
onditional analysis of its performan
e. Preliminary empiri
al studies performed using LAN imple-mentations of Rambo and the new algorithm illustrate the advantages of the new algorithm.Ba
kground. Starting with the work of Gi�ord [6℄ and Thomas [18℄, interse
ting
olle
tions ofsets found use in several algorithms providing
onsistent data in distributed settings. Depend-ing on the algorithm and its setting, su
h
olle
tions of sets,
alled quorums when any two havenon-empty interse
tion, represent either sets of pro
essors or their knowledge. Upfal and Wigder-son [19℄ use majority sets of readers and writers to emulate shared memory in a distributed setting.3

Vit�anyi and Awerbu
h [20℄ implement multi-writer/multi-reader registers using matri
es of single-writer/single-reader registers where the rows and the
olumns are written and respe
tively readby spe
i�
 pro
essors. Attiya, Bar-Noy and Dolev [1℄ use majorities of pro
essors to implementsingle-writer/multi-reader obje
ts in message passing systems. Su
h algorithms assume a stati
pro
essor universe and rely on stati
 stati
 quorum systems.In long-lived systems where pro
essors may dynami
ally join and leave the system, it is impor-tant to re
on�gure a quorum system to adapt it to the new set of pro
essors [8, 4, 7, 17℄. Priorapproa
hes required that the new quorum system in
lude pro
essors from the old quorum system.This is stated as a stati

onstraint on the quorum system that needs to be satis�ed during or evenbefore the re
on�guration. In our work on re
on�gurable atomi
 memory [15, 5, 12℄ we repla
ethe spa
e-domain requirement on su

essive quorum system interse
tions with the time-domain re-quirement that some quorums from the old and the new system are involved in the re
on�gurationalgorithm. Su
h systems are more dynami
 be
ause they allow for more
hoi
es of new quorumsystems and do not require that su

essive
on�gurations interse
t.Re
on�guration in Highly Dynami
 Settings. Lyn
h and Shvartsman's earlier algorithms [15,5℄ allowed a single distinguished pro
ess to a
t as the quorum system re
on�gurer. The advantageof the single-re
on�gurer approa
h is its relative simpli
ity and eÆ
ien
y: any pro
ess maintains atmost two
on�gurations, the
urrent
on�guration and the proposed new
on�guration. The dis-advantage of the single re
on�gurer is that it is a single point of failure { no further re
on�gurationis possible if the re
on�gurer fails.The Rambo algorithm [12, 13℄ removed the requirement of having a single re
on�gurer, thusenabling any pro
ess within its own
urrent
on�guration to begin re
on�guration to a new quorumsystem supplied by the environment. The algorithm implements atomi
 shared memory suitable foruse in highly dynami
 settings, and it guarantees atomi
ity in any asyn
hronous exe
ution and inthe presen
e of arbitrary pro
ess and network failures. However the multiple-re
on�gurer approa
hintrodu
es the problem of maintaining multiple
on�gurations and removing old
on�gurationsfrom the system. Rambo implements a sequential \garbage-
olle
tion" algorithm where pro
essesremove obsolete
on�gurations one-at-a-time. Con�guration removal requires that information ispropagated from the earliest known
on�guration to its su

essor. Sin
e arbitrarily many new
on�gurations may be introdu
ed this leads to an unbounded number of old
on�gurations thatneed to be sequentially removed.The environment may introdu
e new
on�gurations for several reasons: (i) due to failuresand network instability that endanger installed
on�gurations, (ii) due to the mobility of thephysi
al obje
ts represented by the abstra
t memory obje
ts and the mobility of the pro
essesmaintaining the obje
t repli
as, and (iii) due to the need to rebalan
e loads on pro
esses withininstalled
on�gurations. Frequent or bursty re
on�guration
an substantially in
rease the numberof installed
on�gurations and, sin
e a pro
ess performing a read or a write operation potentiallyneeds to
onta
t quorums in all
on�gurations known to it, this leads to the
orresponding in
reasein the number of messages needed to perform the operation.The New Algorithm. The primary
ontribution of this paper is a new algorithm for re
on�g-urable atomi
 memory, based on the original Rambo, that implements an aggressive
on�guration-repla
ement proto
ol where any lo
ally-known
ontiguous sequen
e of
on�gurations is repla
ed bythe last
on�guration in the sequen
e. The removal of the old
on�gurations is done in parallel,while preserving all other properties of the original Rambo. Spe
i�
ally, we maintain a loose
ou-pling between the re
on�guration algorithms and the original Rambo algorithms implementing the4

read and write operations.In order to a
hieve availability in the presen
e of failures, the obje
ts are repli
ated at severalnetwork lo
ations. In order to maintain memory
onsisten
y in the presen
e of small and transient
hanges, the algorithm uses
on�gurations, ea
h of whi
h
onsists of a set of members plus sets ofread-quorums and write-quorums. In order to a

ommodate larger and more permanent
hanges,the algorithm supports re
on�guration, by whi
h the set of members and the sets of quorums aremodi�ed. Su
h
hanges do not
ause violations of atomi
ity. Any quorum
on�guration may beinstalled at any time|no interse
tion requirement is imposed on the sets of members or on thequorums of distin
t
on�gurations.The algorithm is
omposed of a main algorithm, whi
h handles reading, writing, and repla
e-ment of old
on�gurations with a su

essor
on�guration, and a global
on�guration announ
ementservi
e, Re
on , whi
h provides the main algorithm with a
onsistent sequen
e of
on�gurations.Several
on�gurations may be known to the algorithm at one time, and read and write operations
an use them all without any harm.The main algorithm performs read and write operations requested by
lients using a two-phasestrategy, where the �rst phase gathers information from read-quorums of a
tive
on�gurationsand the se
ond phase propagates information to write-quorums of a
tive
on�gurations. This
ommuni
ation is
arried out using ba
kground gossiping, whi
h allows the algorithm to maintainonly a small amount of proto
ol state information. Ea
h phase is terminated by a �xed point
ondition that involves a quorum from ea
h a
tive
on�guration. Di�erent read and write operationsmay exe
ute
on
urrently: the restri
ted semanti
s of reads and writes permit the e�e
ts of this
on
urren
y to be sorted out afterward.The main algorithm provides a new
on�guration-repla
ement algorithm that removes old
on�gurations while ensuring that their use is no longer ne
essary for maintaining
onsisten
y.Con�guration-repla
ement also uses a two-phase strategy, where the �rst phase
ommuni
ates inparallel with all old
on�gurations being removed and the se
ond phase
ommuni
ates with a new
on�guration. A
on�guration-repla
ement operation ensures that both a read-quorum and a write-quorum of ea
h old
on�guration learn about the new
on�guration, and that the latest value fromall old
on�gurations is
onveyed to a write-quorum of the new
on�guration. The strength ofthe new algorithm is that it pro
eeds aggressively in parallel. An arbitrary number of old
on�g-urations
an be repla
ed in
onstant time (assuming bounded message laten
y and non-failure ofa
tive
on�gurations).The
on�guration announ
ement servi
e is implemented by a distributed algorithm that usesdistributed
onsensus to agree on the su

essive
on�gurations. Any member of the latest
on�g-uration
 may propose a new
on�guration at any time; di�erent proposals are re
on
iled by anexe
ution of
onsensus among the members of
. Consensus is, in turn, implemented using a versionof the Paxos algorithm [9℄, as des
ribed formally in [3℄. Although su
h
onsensus exe
utions maybe slow|in fa
t, in some situations, they may not even terminate|they do not
ause any delaysfor read and write operations.All servi
es and algorithms, and their intera
tions, are spe
i�ed using I/O automata. Weshow
orre
tness (atomi
ity) of the algorithm for arbitrary patterns of asyn
hrony and failures.On the other hand, we analyze performan
e
onditionally , based on
ertain failure and timingassumptions. For example, assuming that gossip and
on�guration-repla
ement o

ur periodi
ally,and that quorums of a
tive
on�gurations do not fail, we show that read and write operations
omplete within time 8d, where d is the maximum message laten
y. Note that the original Ramboalgorithm also had to assume also that garbage-
olle
tion is able to keep up|this assumption isnot ne
essary in the new algorithm due to the new
on�guration repla
ement algorithm. For the5

on�guration repla
ement algorithm we show that any number of
on�gurations
an be repla
edby their su

essor in
onstant time.At the same time, all the performan
e results of the original Rambo algorithm still hold; ininstan
es where the network is reliable and timely throughout the exe
ution, the bounds des
ribedin the previous Rambo papers [12, 13℄ still hold.Implementations of Rambo and Rambo II on a LAN are
urrently being
ompleted [16℄.Preliminary empiri
al studies performed using this implementation illustrate the advantages of thenew algorithm over the previous one.Do
ument Stru
ture. In Se
tion 2 we des
ribe the original Rambo algorithm of Lyn
h andShvartsman, and then in Se
tion 3 present and dis
uss the formal spe
i�
ation of Rambo II. InSe
tion 4 we present some notation, and restate some basi
 lemmas, only slightly modi�ed fromRambo. In Se
tion 5 we prove that the new algorithm guarantees atomi

onsisten
y. In Se
tion 6we present the re
on�guration servi
e. In Se
tion 7 we analyze the performan
e of Rambo II, anddis
uss in detail the areas in whi
h this algorithm improves over the original Rambo algorithm. InSe
tion 8 we dis
uss the preliminary performan
e results. Finally, in Se
tion 9 we summarize theresults, and areas for future resear
h.2 The Original Rambo AlgorithmIn this se
tion, we present the original Rambo algorithm, on whi
h the new algorithm Rambo IIis based. Rambo is an algorithm designed to support read/write operations on an atomi
 sharedmemory.In order to a
hieve fault toleran
e and availability, Rambo repli
ates data at several networklo
ations. The algorithm uses
on�gurations to maintain
onsisten
y in the presen
e of small andtransient
hanges. Ea
h
on�guration
onsists of a set of members plus sets of read-quorums andwrite-quorums. The quorum interse
tion property requires that every read-quorum interse
t everywrite-quorum. Read and write operations are implemented as a two-phase proto
ol, in whi
h ea
hphase a

esses a set of read or write quorums.Rambo supports re
on�guration, whi
h modi�es the set of members and the sets of quorums,thereby a

ommodating larger and more permanent
hanges without violating atomi
ity. In thisway, failed nodes
an be removed from a
tive quorums, and newly joined nodes
an be integratedinto the system. Any quorum
on�guration may be installed at any time { no interse
tion require-ment is imposed on the sets of members or on the quorums of distin
t
on�gurations.The Rambo algorithm
onsists of three kinds of automata:� Joiner automata, whi
h handle join requests,� Re
on automata, whi
h handle re
on�guration requests, and generate a totally ordered se-quen
e of
on�gurations, and� Reader-Writer automata, whi
h handle read and write requests, manage garbage
olle
tion,and send and re
eive gossip messages.In this paper, we dis
uss only the Reader-Writer automaton. The Joiner automaton is quitesimple; it sends a join message when node i joins, and sends a join-a
k message in response to joinmessages. The Re
on automaton depends on a
onsensus servi
e, implemented using Paxos [9℄, toagree on a total ordering of
on�gurations. However, we assume that this total ordering exists, and6

therefore need not dis
uss this automaton any further. For more details of these two automata, seethe original Rambo paper [12, 13℄.The
omplete implementation S is the
omposition of all the automata des
ribed above|theJoiner i, Reader-Writer i, and Re
on i automata for all i, and all the
hannels, with all the a
tionsthat are not external a
tions of the Rambo spe
i�
ation hidden.Input:join(rambo; J)x;i, J a �nite subset of I � fig, x 2 X, i 2 I,su
h that if i = (i0)x then J = ;readx;i, x 2 X, i 2 Iwrite(v)x;i, v 2 Vx, x 2 X, i 2 Ire
on(
;
0)x;i,
;
0 2 C, i 2 members(
), x 2 X, i 2 Ifaili, i 2 I
Output:join-a
k(rambo)x;i, x 2 X, i 2 Iread-a
k(v)x;i, v 2 Vx, x 2 X, i 2 Iwrite-a
kx;i, x 2 X, i 2 Ire
on-a
k(b)x;i, b 2 fok; nokg; x 2 X; i 2 Ireport(
)x;i,
 2 C;
 2 X; i 2 IFigure 1: Rambo(x): External signatureThe external signature for Rambo appears in Figure 1. The algorithm is spe
i�ed for a singlememory lo
ation, and extended to implement a
omplete shared memory. A
lient uses the joinia
tion to join the system. After re
eiving a join-a
ki, the
lient
an issue readi and writei requests,whi
h results in read-a
ki and write-a
ki responses. The
lient
an issue a re
oni request to proposea new
on�guration. Finally, the faili a
tion is used to model node i failing.The signature and state for the Reader-Writer automata is presented in Figure 2. The
odefor the Reader-Writer automata is presented in Figure 3. All three operations, read, write, andgarbage-
olle
t, are implemented using gossip messages. Unlike in many other algorithms, there areno dire
ted messages spe
i�ed in this algorithm; at no point does a given node, say i, de
ide to senda message spe
i�
ally to node j. Instead, at regular intervals node i will non-deterministi
ally sendall of its publi
 state to other nodes. Progress in an operation o

urs when enough informationhas been ex
hanged. After initiating an operation, the automaton waits until it
an be sure that ithas shared state with enough other nodes (using gossip messages), and then de
lares the operation
omplete. The phase numbering regime, implemented using pnum1 and pnum2 is used to determinewhen enough
ommuni
ation has
ompleted.Every node maintains a tag and a value for the data obje
t. Every new value is assigned aunique tag, with ties broken by pro
ess-ids. These tags are used to determine an ordering of thewrite operations, and therefore determine the value that a read operation should return.Read and write operations require two phases, a query phase and a propagation phase, ea
hof whi
h a

esses
ertain quorums of repli
as. Assume the operation is initiated at node i. SeeFigure 5 for a summary of the two phases. First, in the query phase, node i
onta
ts read quorumsto determine the most re
ent available tag and value. Then, in the propagation phase, node i
onta
ts write quorums. If the operation is a read operation, the se
ond phase propagates thelargest tag dis
overed in the query phase, and its asso
iated value. If the operation is a writeoperation, node i
hooses a new tag, stri
tly larger than every tag dis
overed in the query phaseand propagates the new tag and the new value to the write quorums. Note that every operationa

esses both read and write quorums.During a phase of an operation, whenever node i re
eives a gossip message from node j, it
ompares the largest phase number j has re
eived from i (by examining pns) to the lo
al phasenumber when the operation began. If j initiated the gossip message after re
eiving a message fromi sent after the phase began, then i adds j to the a

 set. In e�e
t, there has been a round-tripmessage sent from i to j ba
k to i. Also, i then updates its op:
map if ne
essary.Garbage
olle
tion operations remove old
on�gurations from the system. A garbage
olle
tion7

Signature:Input:readiwrite(v)i, v 2 Vnew-
on�g(
; k)i,
 2 C; k 2 N+re
v(join)j;i, j 2 I � figre
v(m)j;i, m 2M , j 2 Ijoin(rw)ifailiOutput:join-a
k(rw)iread-a
k(v)i, v 2 Vwrite-a
kisend(m)i;j , m 2M , j 2 I
Internal:query-�xiprop-�xig
(k)i, k 2 Ng
-query-�x(k)i, k 2 Ng
-prop-�x(k)i, k 2 Ng
-a
k(k)i, k 2 N

State:status 2 fidle; joining; a
tive; failedg, initially idleworld , a �nite subset of I, initially ;value 2 V , initially v0tag 2 T , initially (0; i0)
map 2 CMap, initially
map(0) =
0,
map(k) = ? for k � 1pnum1 2 N, initially 0pnum2 , a mapping from I to N, initiallyeverywhere 0failed , a Boolean, initially false
op, a re
ord with �elds:type 2 fread;writegphase 2 fidle; query; prop; doneg, initially idlepnum 2 N
map 2 CMapa

, a �nite subset of Ivalue 2 Vg
, a re
ord with �elds:phase 2 fidle; query; propg, initially idlepnum 2 Na

, a �nite subset of I
map 2 CMapindex 2 NFigure 2: Reader-Writer i: Signature and stateoperation involves two
on�gurations: the old
on�guration being removed and the new
on�g-uration being established. See Figure 6 for a summary of the two phases. A garbage
olle
tionoperation requires two phases, a query phase and a propagation phase. The �rst phase
onta
tsa read-quorum and a write-quorum from the old
on�guration, and the se
ond phase
onta
ts awrite-quorum from the new
on�guration.Note that, unlike a read or write operation, the �rst phase of the garbage-
olle
tion operationmust
onta
t two types of quorums: a read-quorum and a write-quorum for the
on�guration beinggarbage-
olle
ted. This ensures that enough nodes are aware of the new
on�gurations, and ensuresthat any ongoing read/write operations will in
lude the new, larger,
on�guration.The
map is a mapping from integer indi
es to
on�gurations [f?;�g, that initially maps everyindex to ?. The
map tra
ks whi
h
on�gurations are a
tive, whi
h are not de�ned, indi
ated by?, and whi
h are removed, indi
ated by �. The total ordering on
on�gurations determined bythe Re
on automata ensures that all nodes agree on whi
h
on�guration is stored in ea
h positionin the array. We de�ne
(k) to be the
on�guration asso
iated with index k.The re
ord op stores information about the
urrent phase of an ongoing read or write operation,while g
 stores information about an ongoing garbage
olle
tion operation. (A node
an pro
ess8

Output send(hW; v; t;
m; pns; pnri)i;jPre
ondition::failedstatus = a
tivej 2 worldhW;v; t;
m; pns; pnri =hworld ; value; tag ;
map; pnum1 ; pnum2 (j)iE�e
t:noneInput re
v(hW;v; t;
m; pns; pnri)j;iE�e
t:if :failed thenif status 6= idle thenstatus a
tiveworld world [Wif t > tag then (value; tag) (v; t)
map update(
map;
m)pnum2 (j) max(pnum2 (j); pns)if op:phase 2 fquery; propg and pnr � op:pnum thenop:
map extend (op:
map; trun
ate (
m))if op:
map 2 Trun
ated thenop:a

 op:a

 [fjgelseop:a

 ;op:
map trun
ate(
map)if g
:phase 2 fquery; propg and pnr � g
:pnum theng
:a

 g
:a

 [fjgInput new-
on�g(
; k)iE�e
t:if :failed thenif status 6= idle then
map(k) update(
map(k);
)Input readiE�e
t:if :failed thenif status 6= idle thenpnum1 pnum1 + 1hop:pnum; op:type ; op:phase ; op:
map; op:a

i hpnum1 ; read; query; trun
ate(
map); ;iInput write(v)iE�e
t:if :failed thenif status 6= idle thenpnum1 pnum1 + 1hop:pnum; op:type ; op:phase ; op:
map; op:a

; op:valuei hpnum1 ;write; query; trun
ate(
map); ;; vi

Internal query-�xiPre
ondition::failedstatus = a
tiveop:type 2 fread;writegop:phase = query8k 2 N;
 2 C : op:
map(k) =
) 9R 2 read-quorums(
) : R � op:a

E�e
t:if op:type = read then op:value valueelse value op:valuetag htag :seq + 1; iipnum1 pnum1 + 1op:pnum pnum1op:phase propop:
map trun
ate(
map)op:a

 ;Internal prop-�xiPre
ondition::failedstatus = a
tiveop:type 2 fread;writegop:phase = prop8k 2 N;
 2 C : op:
map(k) =
) 9W 2 write-quorums(
) :W � op:a

E�e
t:op:phase = doneOutput read-a
k(v)iPre
ondition::failedstatus = a
tiveop:type = readop:phase = donev = op:valueE�e
t:op:phase = idleOutput write-a
kiPre
ondition::failedstatus = a
tiveop:type = writeop:phase = doneE�e
t:op:phase = idleFigure 3: Reader-Writer i: Read/write transitions9

Internal g
(k)iPre
ondition::failedstatus = a
tiveg
:phase = idle
map(k) 2 C
map(k + 1) 2 Ck = 0 or
map(k � 1) = �E�e
t:pnum1 pnum1 + 1g
:pnum pnum1g
:phase queryg
:a

 ;g
:index kInternal g
-query-�x(k)iPre
ondition::failedstatus = a
tiveg
:phase = queryg
:index = k
map(k) 6= �9R 2 read-quorums(
map(k)) :9W 2 write-quorums (
map(k)) :R [W � g
:a

E�e
t:pnum1 pnum1 + 1g
:pnum pnum1g
:phase propg
:a

 ;

Internal g
-prop-�x(k)iPre
ondition::failedstatus = a
tiveg
:phase = propg
:index = k9W 2 write-quorums(
map(k + 1)) :W � g
:a

E�e
t:
map(k) �Internal g
-a
k(k)iPre
ondition::failedstatus = a
tiveg
:index = k
map(k) = �E�e
t:g
:phase = idle

Figure 4: Reader-Writer i: Rambo Garbage-
olle
tion transitionsread and write operations even when a garbage
olle
tion operation is ongoing.) The op:
mapsub�eld re
ords the
on�guration map for an operation. This
onsists of the node's
map whena phase begins, augmented by any new
on�gurations dis
overed during the phase. A phase
an
omplete only when the initiator has ex
hanged information with quorums from every non-removed
on�guration in op:
map . The pnum sub�eld re
ords the phase number when the phase begins,allowing the initiator to determine whi
h responses
orrespond to the
urrent phase. The a

sub�eld re
ords whi
h nodes from whi
h quorums have responded during the
urrent phase.In Rambo,
on�gurations go through three phases: proposal, installation, and upgrade. First,a
on�guration is proposed by a re
on event. Next, if the proposal is su

essful, the Re
on servi
ea
hieves
onsensus on the new
on�guration, and noti�es parti
ipants with de
ide events. Whenevery non-failed member of the previous
on�guration has been noti�ed, the
on�guration is in-stalled . The
on�guration is upgraded when every
on�guration with a smaller index has beenremoved at some pro
ess in the system. On
e a
on�guration has been upgraded, it is responsiblefor maintaining the data.3 Formal Spe
i�
ation of Rambo IIIn this se
tion we present the new algorithm in detail, and dis
uss how it di�ers from the Ramboalgorithm. The
omplete implementation, S, is the
omposition of all the automata des
ribed|the10

Operation initiated by readi or write(v)iPhase 1 :� Node i
ommuni
ates with a read-quorum from ea
h
on�guration in op:
map in order to determine thelargest value/tag pair.Phase 2 :� Node i
ommuni
ates with a write-quorum from ea
h
on�guration in in op:
map to notify it of the
urrent largest value/tag pair (or the new value/tag pair, if it is a write operation).Figure 5: Summary of two phase read or write operationJoiner i and Re
on i automata des
ribed in Rambo, the new Reader-Writer i automaton des
ribedhere, for all i, and all the
hannels { with all the a
tions that are not external a
tions of the RamboII spe
i�
ation hidden.The key problem that prevents rapid stabilization in the original algorithm is the sequentialnature of the
on�guration upgrade me
hanism: in Rambo,
on�gurations are upgraded one ata time, in order. (Re
all that in Rambo, a
on�guration is upgraded when every
on�gurationwith a smaller index has been garbage
olle
ted.) Con�guration
(k)
an be upgraded only if
on�guration
(k � 1) has previously been upgraded. This requirement arises from the need toensure that information is preserved as
on�gurations are
hanged. As in Rambo, a
on�gurationin Rambo II is upgraded when every
on�guration with a smaller index has been removed at somepro
ess in the system. Rambo II, however, implements a new re
on�guration proto
ol that
anupgrade any
on�guration, even if
on�gurations with smaller indi
es have not been upgraded.Unlike in Rambo, then, there may be
on�gurations that are not upgraded until they themselvesare removed, at the same instant that some
on�guration with a larger index is upgraded.After Rambo II
ompletes an upgrade operation for some
on�guration, all
on�gurationswith smaller indi
es
an be removed. Thus a single upgrade operation in Rambo II potentiallyhas the e�e
t of many garbage
olle
tion operations in Rambo, ea
h of whi
h
an only removea single
on�guration. The name has been
hanged to emphasize the operation's a
tive role in
on�guration management:
on�guration upgrade is an inherent part of preparing a
on�gurationto assume responsibility for the data. The
ode for the new
on�guration management me
hanismOperation initiated by g
(k)iPhase 1 :� Node i
ommuni
ates with a read-quorum from
on�guration
(k) in order to determine the largestvalue/tag pair.� Node i
ommuni
ates with a write-quorum from
on�guration
(k) in order to notify it of
on�gurationk + 1.Phase 2 :� Node i
ommuni
ates with a write-quorum from
on�guration
(k+1) to notify it of the
urrent largestvalue/tag pair.Figure 6: Summary of two phase garbage-
olle
tion operation
11

Signature:As in Rambo, with the following modi�
ations:Internal:
fg-upgrade(k)i, k 2 N>0
fg-upg-query-�x(k)i, k 2 N>0
fg-upg-prop-�x(k)i, k 2 N>0
fg-upgrade-a
k(k)i, k 2 N>0
Con�guration Management State:As in Rambo, with the following repla
ing the g
re
ord:upg , a re
ord with �elds:phase 2 fidle; query; propg, initially idlepnum 2 N
map 2 CMap,a

, a �nite subset of Itarget 2 NCon�guration Management Transitions:

(A)(B)(C)
(D)(E)(F)(G)
(H)(I)(J)

Internal
fg-upgrade(k)iPre
ondition::failedstatus = a
tiveupg :phase = idle
map(k) 2 C
map(k � 1) 2 C18` 2 N; ` < k :
map(`) 6= ?E�e
t:pnum1 pnum1 + 1upg hquery; pnum1 ;
map; ;; kiInternal
fg-upg-query-�x(k)iPre
ondition::failedstatus = a
tiveupg :phase = queryupg :target = k8` 2 N; ` < k : upg :
map(`) 2 C) 9R 2 read-quorums(upg :
map(`)) :9W 2 write-quorums(upg :
map(`)) :R [W � upg :a

E�e
t:pnum1 pnum1 + 1upg :pnum pnum1upg :phase propupg :a

 ;Internal
fg-upg-prop-�x(k)iPre
ondition::failedstatus = a
tiveupg :phase = propupg :target = k9W 2 write-quorums(upg :
map(k)) : W � upg :a

E�e
t:for ` 2 N : ` < k do
map(`) �

Internal
fg-upgrade-a
k(k)iPre
ondition::failedstatus = a
tiveupg :target = k8` 2 N; ` < k :
map(`) = �E�e
t:upg :phase = idleOutput send(hW;v; t;
m; pns; pnri)i;jPre
ondition::failedstatus = a
tivej 2 worldhW;v; t;
m; pns; pnri =hworld ; value; tag ;
map; pnum1 ; pnum2 (j)iE�e
t:noneInput re
v(hW;v; t;
m; pns; pnri)j;iE�e
t:if :failed thenif status 6= idle thenstatus a
tiveworld world [Wif t > tag then (value; tag) (v; t)
map update(
map;
m)pnum2 (j) max(pnum2 (j); pns)if op:phase 2 fquery; propg and pnr � op:pnum thenop:
map extend(op:
map; trun
ate(
m))if op:
map 2 Trun
ated thenop:a

 op:a

 [fjgelseop:a

 ;op:
map trun
ate(
map)if upg :phase 2 fquery; propg and pnr � upg :pnum thenupg :a

 upg :a

 [fjgFigure 7: Reader-Writer i: Con�guration Management transitions12

appears in Figure 7. All labeled lines in this se
tion refer to the
ode therein.We now des
ribe in more detail the
on�guration upgrade operation, whi
h is at the heart ofRambo II. A
on�guration upgrade is a two-phase operation, mu
h like the garbage-
olle
tionoperation in Rambo. See Figure 8 for a summary of the two phases. An upgrade operation isinitiated at node i with a
fg-upgrade(k) event. When this happens,
map(k) must be de�ned, thatis, must be a valid
on�guration 2 C (line A). Additionally, for every
on�guration ` < k,
map(`)must be either 2 C or removed, that is, � (line B).We refer to
on�guration
(k) as the target of the upgrade operation, and we refer to the setof
on�gurations to be removed, f
(`) : ` < k ^ upg :
map(`) 2 Cg, as the removal-set of the
on�guration upgrade operation. The
on�guration management me
hanism guarantees that theremoval-set
onsists of
on�gurations with a
ontiguous set of indi
es.As a result of the
fg-upgrade event, node i initializes its upg state (line C), and begins thequery phase of the upgrade operation. In parti
ular, node i stores its
urrent
map in upg :
map ,whi
h re
ords the
on�gurations that are
urrently a
tive. Only these
on�gurations (and, in fa
t,only those with index smaller than k) matter during the operation; new
on�gurations are ignored.The query phase
ontinues until node i re
eives responses from enough nodes. In parti
ular,for every
on�guration
(`) with index less than k in upg :
map, there must exist a read-quorum,R, of
on�guration
(`), and a write-quorum, W , of
on�guration
(`) su
h that i has re
eived aresponse (that is, a re
ent gossip message) from every node in R [W (lines D{E).When the query phase
ompletes, a
fg-upg-query-�x event o

urs. When this event o

urs,node i then has the most re
ent tag and value dis
overed by operations using
on�gurations withindex smaller than k. Further, all
on�gurations with indi
es smaller than k have been noti�ed of
on�guration
(k). Node i then reinitializes upg to begin the propagation phase (lines F{G).The propagation phase
ontinues until node i re
eives responses from a write-quorum in
on-�guration
(k). In parti
ular, there must exist a write-quorum, W , of
on�guration
(k), su
h thati has re
eived a response from every node in W (line H).When the propagation phase
ompletes, a
fg-upg-prop-�x event o

urs, whi
h veri�es the ter-mination
ondition. At this point node i has ensured that
on�guration
(k) has re
eived the mostre
ent value known to i, whi
h, as a result of the query phase, is itself a re
ent value. At this point,the
on�gurations with index < k are no longer needed, and node i removes these
on�gurationsfrom its lo
al
map, setting
map(`) = � for all ` < k (line I{J). Gossip messages may eventuallynotify other pro
esses that these
on�gurations have been removed.Finally, a
fg-upgrade-a
k(k) event noti�es the
lient that
on�guration
(k) has been su

ess-fully upgraded.Noti
e that the algorithm allows a nondeterministi

hoi
e of whi
h
on�guration to upgrade{ and therefore whi
h
on�gurations to remove. Therefore it is possible to restri
t the algorithmso that it removes only the smallest
on�guration, upgrading the
on�gurations one at a time. Inthis
ase the algorithm progresses exa
tly as the original Rambo algorithm. Therefore it is
learlypossible, by restri
ting the nondeterminism appropriately, to implement Rambo II in su
h a wayas to guarantee equivalent performan
e as Rambo. However we will show that by allowing greater
exibility we
an a
hieve equivalent safety results and improved performan
e.The new algorithm introdu
es several diÆ
ulties not present in Rambo. Consider, for example,a ni
e property guaranteed by the sequential garbage
olle
tion algorithm in Rambo: every
on-�guration is upgraded before it is removed. In Rambo II, on the other hand, some
on�gurations1In the
onferen
e version of the paper, this line was omitted. The removal of this line has no detrimental e�e
ton the algorithm, sin
e the operation then
ompletes in zero time. However for
larity sake it is in
luded.13

Operation initiated by
fg-upgrade(k)i:Phase 1 :� Node i
ommuni
ates with a read-quorum from ea
h
on�guration being removed in order to determinethe largest value/tag pair.� Node i
ommuni
ates with a write-quorum from ea
h
on�guration being removed to notify it of thenew, a
tive
on�guration.Phase 2 :� Node i
ommuni
ates with a write-quorum from the target
on�guration being upgraded, to notify it ofthe
urrent largest value/tag pair.Figure 8: Summary of two phase
on�guration upgrade operationnever re
eive up to date information; a
on�guration may be upgraded at the same instant it isremoved.As a result of this fa
t, a number of plausible improvements fail. Assume that during anongoing upgrade operation for
on�guration
(k) initiated by node i, node i re
eives a messageindi
ating that
on�guration
(k0) has been removed, for some k0 < k. In Rambo II, node i sets
map(k0) = �, but does not
hange upg :
map. Consider the following in
orre
t modi�
ation to the
on�guration management me
hanism. When node i re
eives su
h a message, it sets upg :
map(k0)to �. Sin
e the
on�guration has been removed, it seems plausible that the
on�guration upgradeoperation
an safely ignore it, thus
ompleting more qui
kly. It turns out, however, that thisimprovement results in a ra
e
ondition that
an lead to data loss. The
on�guration upgradeoperation that removes
on�guration
(k0) might o

ur
on
urrently with the operation at nodei upgrading
on�guration
(k). This
on
urren
y might result in data being propagated from
on�guration
(k0) to a
on�guration
(k00) : k0 < k00 < k that has already been pro
essed by theupgrade operation at node i. The data thus propagated might then be lost.4 Notation and Basi
 LemmasThis se
tion is, to a large extent, a restatement of notation and results from the original Rambopaper [13℄. Some of the notation in the proofs has been slightly modi�ed to a

ount for the new
on�guration management me
hanism, and some of the proofs have therefore been updated, butthe results are essentially un
hanged. Mu
h of this se
tion is taken dire
tly from [13℄.4.1 Good Exe
utionsThroughout the rest of this paper, we will talk about \good" exe
utions of the algorithm. In thisse
tion, we present a set of environment assumptions that de�ne a \good" exe
ution. In general,the assumptions we will present require well-formed requests:
lients follow the proto
ol to join andto initiate re
on�gurations;
lients initiate only one operation at a time;
lients wait for appropriatea
knowledgments before pro
eeding.We
onsider exe
utions of S (re
all that S is the entire system
ombining Reader-Writer , Re
onand Joiner automata) whose tra
es satisfy
ertain assumptions about the environment. We
allthese good exe
utions. In parti
ular, an \invariant" is a statement that is true of all states thatare rea
hable in good exe
utions of S. The environment assumptions are simple \well-formedness"14

onditions:� Well-formedness for Reader-Writer:{ For every x and i:� No join(rambo; �)x;i, readx;i, write(�)x;i, or re
on(�; �)x;i event is pre
eded by a failievent.� At most one join(rambo; �)x;i event o

urs.� Any readx;i, write(�)x;i, or re
on(�; �)x;i event is pre
eded by a join-a
k(rambo)x;ievent.� Any readx;i, write(�)x;i, or re
on(�; �)x;i event is pre
eded by an -a
k event for anypre
eding event of any of these kinds.{ For every x and
, at most one re
on(�;
)x;� event o

urs. (This says that
on�gurationidenti�ers that are proposed in re
on events are unique. It does not say that the mem-bership and/or quorum sets are unique|just the identi�ers. The same membershipand quorum sets may be asso
iated with di�erent
on�guration identi�ers.) Unique-ness of
on�guration identi�ers is a
hievable using lo
al pro
ess identi�ers and sequen
enumbers.{ For every
,
0, x, and i, if a re
on(
;
0)x;i event o

urs, then it is pre
eded by:� A report(
)x;i event, and� A join-a
k(rambo)x;j event for every j 2 members(
0).� Well-formedness for Re
on:2{ For every i:� No join(re
on)i or re
on(�; �)i event is pre
eded by a faili event.� At most one join(re
on)i event o

urs.� Any re
on(�; �)i event is pre
eded by a join-a
k(re
on)i event.� Any re
on(�; �)i event is pre
eded by an -a
k for any pre
eding re
on(�; �)i event.{ For every
, at most one re
on(�;
)� event o

urs.{ For every
,
0, x, and i, if a re
on(
;
0)i event o

urs, then it is pre
eded by:� A report(
)i event, and� A join-a
k(re
on)j for every j 2 members(
0).4.2 Notational
onventionsIn this se
tion, we introdu
e some de�nitions and notational
onventions, and we add
ertain historyvariables to the global state of the system S.De�nitions:� update , a binary fun
tion on C�, de�ned by update(
;
0) = max(
;
0) if
 and
0 are
ompa-rable (in the augmented partial ordering of C�), update(
;
0) =
 otherwise.� extend , a binary fun
tion on C�, de�ned by extend(
;
0) =
0 if
 = ? and
0 2 C, andextend(
;
0) =
 otherwise.2The following properties appear in Se
tion 6, but we repeat them here for
ompleteness.15

� CMap, the set of
on�guration maps, de�ned as the set of mappings from N to C�. Theupdate and extend operators are extended element-wise to binary operations on CMap.� trun
ate , a unary fun
tion on CMap, de�ned by trun
ate(
m)(k) = ? if there exists ` � ksu
h that
m(`) = ?, trun
ate(
m)(k) =
m(k) otherwise. This trun
ates
on�guration map
m by removing all the
on�guration identi�ers that follow a ?.� Trun
ated , the subset of CMap su
h that
m 2 Trun
ated if and only if trun
ate(
m) =
m.� Usable, the subset of CMap su
h that
m 2 Usable i� the pattern o

urring in
m
onsistsof a pre�x of �nitely many �s, followed by an element of C, followed by an in�nite sequen
eof elements of C [f?g in whi
h all but �nitely many elements are ?.An operation is a pair (n; i)
onsisting of a natural number n and an index i 2 I. Here, i is theindex of the pro
ess running the operation, and n is the value of pnum1 i just after the read, write,or
fg-upgrade event of the operation o

urs.We introdu
e the following history variables:� in-transit , a set of messages, initially ;.A message is added to the set when it is sent by any Reader-Writer i to any Reader-Writer j .No message is ever removed from this set.� For every k 2 N:1.
(k) 2 C, initially unde�ned.This is set when the �rst new-
on�g(
; k)i o

urs, for some
 and i. It is set to the
 thatappears as the �rst argument of this a
tion.� For every operation �:1. tag(�) 2 T , initially unde�ned.This is set to the value of tag at the pro
ess running �, at the point right after �'s query-�xor
fg-upg-query-�x event o

urs. If � is a read or
on�guration upgrade operation, thisis the highest tag that it en
ounters during the query phase. If � is a write operation,this is the new tag that is sele
ted for performing the write.� For every read or write operation �:1. query-
map(�), a CMap, initially unde�ned.This is set in the query-�x step of �, to the value of op:
map in the pre-state.2. R(�; k), for k 2 N, a subset of I, initially unde�ned.This is set in the query-�x step of �, for ea
h k su
h that query-
map(�)(k) 2 C. It isset to an arbitrary R 2 read-quorums(
(k)) su
h that R � op:a

 in the pre-state.3. prop-
map(�), a CMap, initially unde�ned.This is set in the prop-�x step of �, to the value of op:
map in the pre-state.4. W (�; k), for k 2 N, a subset of I, initially unde�ned.This is set in the prop-�x step of �, for ea
h k su
h that prop-
map(�)(k) 2 C. It is setto an arbitrary W 2 write-quorums(
(k)) su
h that W � op:a

 in the pre-state.� For every
on�guration upgrade operation
 for k:16

1. removal-set(
), a subset of N, initially unde�ned.This is set in the
fg-upgrade step of
, to the set f` : ` < k;
map(`) 6= �g.2. R(
; `), for ` 2 N, a subset of I, initially unde�ned.This is set in the
fg-upg-query-�x step of
, for ea
h ` 2 removal-set (
), to an arbitraryR 2 read-quorums(
(`)) su
h that R � upg :a

 in the pre-state.3. W1(
; `), for ` 2 N, a subset of I, initially unde�ned.This is set in the
fg-upg-query-�x step of
, for ea
h ` 2 removal-set (
), to an arbitraryW 2 write-quorums(
(`)) su
h that W � upg :a

 in the pre-state.4. W2(
), a subset of I, initially unde�ned.This is set in the
fg-upg-prop-�x step of
, to an arbitrary W 2 write-quorums(
(k))su
h that W � upg :a

 in the pre-state.In any good exe
ution �, we de�ne the following events (more pre
isely, we are giving additionalnames to some existing events):1. For every read or write operation �:(a) query-phase-start(�) , initially unde�ned.This is de�ned in the query-�x step of �, to be the unique earlier event at whi
h the
olle
tion of query results was started and not subsequently restarted. This is either aread, write, or re
v event.(b) prop-phase-start(�), initially unde�ned.This is de�ned in the prop-�x step of �, to be the unique earlier event at whi
h the
olle
tion of propagation results was started and not subsequently restarted. This iseither a query-�x or re
v event.4.3 Con�guration map invariantsIn this se
tion, we give invariants des
ribing the kinds of
on�guration maps that may appear invarious pla
es in the state of S. We begin with a lemma saying that various operations yield orpreserve the \usable" property:Lemma 4.1 1. If
m ;
m 0 2 Usable then update(
m ;
m 0) 2 Usable.2. If
m 2 Usable, k 2 N ,
 2 C, and
m 0 is identi
al to
m ex
ept that
m 0(k) = update(
m(k);
),then
m 0 2 Usable.3. If
m;
m 0 2 Usable then extend(
m ;
m 0) 2 Usable.4. If
m 2 Usable then trun
ate(
m) 2 Usable.Proof. Part 1 is shown using a
ase analysis based on whi
h of
m and
m 0 has a longer pre�xof �s. Part 2 uses a
ase analysis based on where k is with respe
t to the pre�x of �s. Part 3 andPart 4 are also straightforward. �The next invariant (re
all from Se
tion 4.1 that this means a property of all states that arisein good exe
utions of S) des
ribes some properties of
mapi that hold while Reader-Writer i is
ondu
ting a
on�guration upgrade operation:Invariant 4.2 If upg :phase i 6= idle and upg :target i = k, then:17

1. 8` : ` � k)
map(`)i 2 C [f�g.2. If k1 = minf` : ` � k and upg :
map(`) 6= �g then k1 = 0 or
map(k1 � 1)i = �.Proof. By the pre
ondition of
fg-upgrade(k)i and monotoni
ity of all the
hanges to
mapi. �We next pro
eed to des
ribe the patterns of C, ?, and � values that may o

ur in
on�gurationmaps in various pla
es in the system state.Invariant 4.3 Let
m be a CMap that appears as one of the following:1. The
m
omponent of some message in in-transit .2.
mapi for any i 2 I.3. op:
map i for some i 2 I for whi
h op:phase 6= idle.4. query-
map(�) or prop-
map(�) for any operation �.5. upg :
map i for some i 2 I for whi
h upg :phase 6= idle.Then
m 2 Usable.In the following proof and elsewhere, we use dot notation to indi
ate
omponents of a state, forexample, s:
mapi indi
ates the value of
mapi in state s.Proof. By indu
tion on the length of a �nite good exe
ution.Base: Part 1 holds be
ause initially, in-transit is empty. Part 2 holds be
ause initially, for ev-ery i,
map(0)i =
0 and
map(k)i = ?; the resulting CMap is in Usable. Part 3 and Part 5hold va
uously, be
ause in the initial state, all op:phase and upg :phase values are idle. Part 4 alsoholds va
uously, be
ause in the initial state, all query-
map and prop-
map variables are unde�ned.Indu
tive step: Let s and s0 be the states before and after the new event, respe
tively. We
onsiderParts 1{5 one by one.For Part 1, the interesting
ase is a sendi event that puts a message
ontaining
m in in-transit .The pre
ondition on the send a
tion implies that
m is set to s:
mapi. The indu
tive hypothesis,Part 2, implies that s:
mapi 2 Usable, whi
h suÆ
es.For Part 2, �x i. The interesting
ases are those that may
hange
mapi, namely, new-
on�gi, re
vifor a gossip (non-join) message, and
fg-upg-prop-�xi. The latter
ase is the only one modi�ed fromthe original Rambo algorithm.1. new-
on�g(
; �)i.By indu
tive hypothesis, s:
mapi 2 Usable. The only
hange this
an make is
hanging a ?to
. Then Lemma 4.1, Part 2, implies that s0:
mapi 2 Usable.2. re
v(h�; �;
m ; �; �i)i.By indu
tive hypothesis,
m 2 Usable and s:
mapi 2 Usable. The step sets s0:
mapi toupdate(s:
mapi;
m). Lemma 4.1, Part 1, then implies that s0:
mapi 2 Usable.18

3.
fg-upg-prop-�x(k)i.This sets
map(`)i to � for all ` < k. By the de�nition of this step, s0:
map(`)i = � for` < k.If s:
map(k � 1)i = �, then the operation has no e�e
t, and s0:
mapi = s:
mapi 2 Usable.Assume, then, that s:
map(k � 1)i 2 C [f?g. This implies, by the indu
tive hypothesisshowing s:
mapi 2 Usable, that s:
map(`)i 2 C [f?g for all ` � k � 1. By Invariant 4.2, weknow that s:
map(k)i 2 C [f�g, and therefore s:
map(k)i 2 C. Therefore s0:
map(k)i 2 Cand s0:
map(`)i 2 C [f?g for all ` > k, sin
e the
fg-upg-prop-�x does not
hange entriesin the
map larger than k � 1. Further, there are only �nitely many entries in s:
mapi thatare in C (by the indu
tive hypothesis), and so there are still only �nitely many entries ins0:
mapi. Therefore, s0:
mapi 2 Usable.For Part 3, the interesting a
tions to
onsider are those that modify op:
map , namely, readi, writei,re
vi, and query-�xi.1. readi, writei, or query-�xi.By indu
tive hypothesis, s:
mapi 2 Usable. The new step sets s0:op:
map i to trun
ate(s:
mapi);sin
e s:
mapi 2 Usable, Lemma 4.1, Part 4, implies that this is also usable.2. re
v(h�; �;
m ; �; �i)i.This step may alter op:
mapi only if s:op:phase 2 fquery ; propg, and then in only two ways:by setting it either to extend(s:op:
map i; trun
ate(
m)) or to trun
ate(update(s:
mapi;
m)).The indu
tive hypothesis implies that s:op:
map i,
mapi, and
m are all inUsable. Lemma 4.1implies that trun
ate , extend , and update all preserve usability. Therefore, s0:op:
map i 2Usable.For Part 4, the a
tions to
onsider are query-�xi and prop-�xi.1. query-�xi.This sets s0:query-
mapi to the value of s:op:
mapi. Sin
e by indu
tive hypothesis the latteris usable, so is s0:query-
mapi.2. prop-�xi.This sets s0:prop-
map i to the value of s:op:
mapi. Sin
e by indu
tive hypothesis, the latteris usable, so is s0:prop-
map i.For Part 5, the a
tions to
onsider are
fg-upgrade(k)i and
fg-upg-query-�x(k)i. These set s0:upg :
map ito the value of s:
mapi. Sin
e by the indu
tive hypothesis the latter is usable, so is s0:upg :
map i.�We now strengthen Invariant 4.3 to say more about the form of the CMaps that are used forread and write operations:Invariant 4.4 Let
m be a CMap that appears as op:
map i for some i 2 I for whi
h op:phase i 6=idle, or as query-
map(�) or prop-
map(�) for any operation �. Then:1.
m 2 Trun
ated .2.
m
onsists of �nitely many � entries followed by �nitely many C entries followed by anin�nite number of ? entries. 19

Proof. We prove that the desired properties hold for a
m that is op:
map i. The same propertiesfor query-
mapi and prop-
map i follow by the way they are de�ned, from op:
map i.To prove Part 1 we pro
eed by indu
tion. In the initial state, op:phase i = idle, whi
h makesthe
laim va
uously true. For the indu
tive step we
onsider all a
tions that alter op:
mapi:1. readi, writei, or query-�x i.These set op:
map i to trun
ate(
mapi), whi
h is ne
essarily in Trun
ated .2. re
vi.This �rst sets op:
mapi to a preliminary value and then tests if the result is in Trun
ated .If it is, we are done. If not, then this step resets op:
mapi to trun
ate(
map i), whi
h is inTrun
ated .To see Part 2, note that
m 2 Usable by Invariant 4.3. The fa
t that
m 2 Trun
ated thenfollows from the de�nition of Usable and Part 1. �4.4 Phase guaranteesIn this se
tion, we present results saying what is a
hieved by the individual operation phases. Wegive four lemmas, des
ribing the messages that must be sent and re
eived and the information
owthat must o

ur during the two phases of
on�guration-upgrades and during the two phases of readand write operations.Note that these lemmas treat the
ase where j = i uniformly with the
ase where j 6= i. Thisis be
ause, in the Reader-Writer algorithm,
ommuni
ation from a lo
ation to itself is treateduniformly with
ommuni
ation between two di�erent lo
ations. We �rst
onsider the query phaseof a
on�guration-upgrade:Lemma 4.5 Suppose that a
fg-upg-query-�x(k)i event for
on�guration upgrade operation
 o

ursin � and k0 2 removal-set(
). Suppose j 2 R(
; k0) [W1(
; k0).Then there exist messages m from i to j and m0 from j to i su
h that:1. m is sent after the
fg-upgrade(k)i event of
.2. m0 is sent after j re
eives m.3. m0 is re
eived before the
fg-upg-query-�x(k)i event of
.4. In any state after j re
eives m,
map(`)j 6= ? for all ` � k.5. tag(
) � t, where t is the value of tag j in any state before j sends message m0.Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and m0.For Part 4, the pre
ondition of
fg-upgrade(k) implies that, when the
fg-upgrade(k)i event of
 o

urs,
map(`)i 6= ? for all ` � k. Therefore, j sets
map(`)j 6= ? for all ` � k when it re
eivesm. Monotoni
ity of
mapj ensures that this property persists forever.For Part 5, let t be the value of tag j in any state before j sends message m0. Let t0 be the valueof tag j in the state just before j sends m0. Then t � t0, by monotoni
ity. The tag
omponent ofm0 is equal to t0, by the
ode for send. Sin
e i re
eives this message before the
fg-upg-query-�x(k),it follows that tag(
) is set by i to a value � t. �Next, we
onsider the propagation phase of a
on�guration upgrade:20

Lemma 4.6 Suppose that a
fg-upg-prop-�x(k)i event for a
on�guration upgrade operation
 o
-
urs in �. Suppose that j 2W2(
).Then there exist messages m from i to j and m0 from j to i su
h that:1. m is sent after the
fg-upg-query-�x(k)i event of
.2. m0 is sent after j re
eives m.3. m0 is re
eived before the
fg-upg-prop-�x(k)i event of
.4. In any state after j re
eives m, tag j � tag(
).Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and m0.For Part 4, when j re
eives m, it sets tagj to be � tag(
). Monotoni
ity of tagj ensures thatthis property persists in later states. �Next, we
onsider the query phase of read and write operations:Lemma 4.7 Suppose that a query-�xi event for a read or write operation � o

urs in �. Letk; k0 2 N. Suppose query-
map(�)(k) 2 C and j 2 R(�; k).Then there exist messages m from i to j and m0 from j to i su
h that:1. m is sent after the query-phase-start(�) event.2. m0 is sent after j re
eives m.3. m0 is re
eived before the query-�x event of �.4. If t is the value of tag j in any state before j sends m0, then:(a) tag(�) � t.(b) If � is a write operation then tag(�) > t.5. If
map(`)j 6= ? for all ` � k0 in any state before j sends m0, then query-
map(�)(`) 2 C forsome ` � k0.Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and m0.For Part 4, the tag
omponent of message m0 is � t, so i re
eives a tag that is � t during thequery phase of �. Therefore, tag(�) � t. Also, if � is a write, the e�e
ts of the query-�x imply thattag(�) > t.Finally, we show Part 5. In the
m
omponent of message m0,
m(`) 6= ? for all ` � k0.Therefore, trun
ate(
m)(`) =
m(`) for all ` � k0, so trun
ate(
m)(`) 6= ? for all ` � k0.Let
m 0 be the
on�guration map extend(op:
map i; trun
ate(
m))
omputed by i during thee�e
ts of the re
v event for m0. Sin
e i does not reset op:a

 to ; in this step, by de�nition of thequery-phase-start event, it follows that
m 0 2 Trun
ated , and
m 0 is the value of op:
map i just afterthe re
v step.Fix `, 0 � ` � k0. We
laim that
m 0(`) 6= ?. We
onsider
ases:1. op:
map(`)i 6= ? just before the re
v step.Then the de�nition of extend implies that
m 0(`) 6= ?, as needed.21

2. op:
map(`)i = ? just before the re
v step and trun
ate(
m)(`) 2 C.Then the de�nition of extend implies that
m 0(`) 2 C, whi
h implies that
m 0(`) 6= ?, asneeded.3. op:
map(`)i = ? just before the re
v step and trun
ate(
m)(`) =2 C.Sin
e trun
ate(
m)(`) 6= ?, it follows that trun
ate(
m)(`) = �. Sin
e trun
ate(
m)(`) = �and trun
ate(
m) 2 Usable, it follows that, for some `0 > `, trun
ate(
m)(`0) 2 C.By the
ase assumption, op:
map(`)i = ? just before the re
v step. Sin
e, by Invariant 4.4,op:
map i 2 Trun
ated , it follows that op:
map(`0)i = ? before the re
v step.Then by de�nition of extend , we have that
m 0(`) = ? while
m 0(`0) 2 C. This implies that
m 0 =2 Trun
ated , whi
h
ontradi
ts the fa
t, already shown, that
m 0 =2 Trun
ated , So this
ase
annot arise.Sin
e this argument holds for all `, 0 � ` � k0, it follows that
m 0(`) 6= ? for all ` � k0. Sin
e
m 0(`) 6= ? for all ` � k0, Invariant 4.3 implies that
m 0 2 Usable, whi
h implies by de�nition ofUsable that
m 0(`) 2 C for some ` � k0. That is, op:
map i(`) 2 C for some ` � k0 immediatelyafter the re
v step. This implies that query-
map(�)(`) 2 C for some ` � k0, as needed. �And �nally, we
onsider the propagation phase of read and write operations:Lemma 4.8 Suppose that a prop-�xi event for a read or write operation � o

urs in �. Supposeprop-
map(�)(k) 2 C and j 2W (�; k).Then there exist messages m from i to j and m0 from j to i su
h that:1. m is sent after the prop-phase-start(�) event.2. m0 is sent after j re
eives m.3. m0 is re
eived before the prop-�x event of �.4. In any state after j re
eives m, tag j � tag(�).5. If
map(`)j 6= ? for all ` � k0 in any state before j sends m0, then prop-
map(�)(`) 2 C forsome ` � k0.Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and m0.For Part 4, let m:tag be the tag �eld of message m. Sin
e m is sent after the prop-phase-startevent, whi
h is not earlier than the query-�x, it must be that m:tag � tag(�). Therefore, by thee�e
ts of the re
v, just after j re
eives m, tag j � m:tag � tag(�). Then monotoni
ity of tagjimplies that tagj � tag(�) in any state after j re
eives m.For Part 5, the proof is analogous to the proof of Part 5 of Lemma 4.7. In fa
t, it is identi
alex
ept for the �nal
on
lusion, whi
h now says that prop-
map(�)(`) 2 C for some ` � k0. �5 Atomi
 Consisten
yThis se
tion
ontains the proof of atomi

onsisten
y. The proof is
arried out in several stages.First in Se
tion 5.1 we present some lemmas about the new
on�guration management me
hanism,des
ribing the relationship between
on�guration upgrade operations. Se
tion 5.2 des
ribes therelationship between read/write operations and
on�guration upgrade operations. Se
tion 5.3 then22

onsiders two read or write operations, and
ulminates in Lemma 5.11, whi
h says that tags aremonotoni
 with respe
t to non-
on
urrent read or write operations. Finally, Se
tion 5.4 uses thetags to de�ne a partial order on operations and veri�es the four properties required for atomi
ity.5.1 Behavior of
on�guration upgradeThis se
tion presents the key new te
hni
al lemmas on whi
h the proof of atomi
ity is based. Spe
if-i
ally, we present lemmas des
ribing information
ow between
on�guration upgrade operations.These lemmas assert the existen
e of a sequen
e of
on�guration upgrade operations on whi
h we
an make
ertain ne
essary guarantees. In parti
ular, the key property is that the tags are mono-toni
ally in
reasing with respe
t to the spe
i�
 sequen
e of upgrade operations, guaranteeing thatvalue/tag information is propagated to newer
on�gurations.The �rst lemma shows that if all
on�guration upgrade operations remove two parti
ular
on-�gurations together, then those two
on�guration are always in the same state in all
maps.Lemma 5.1 Suppose that k > 0, and � is an exe
ution in whi
h no
fg-upg-prop-�x(k) event o

ursin �. Suppose that
m is a CMap that appears as one of the following in any state in �:1. The
m
omponent of some message in in-transit .2.
mapi for any i 2 I.If
m(k � 1) = � then
m(k) = �.Proof. Fix some � and k > 0 su
h that no
fg-upg-prop-�x(k) event o

urs in �. We pro-
eed by indu
tion on the length of a �nite pre�x of �: for every a
tion in �, if before the a
tion
m(k � 1) = � =)
m(k) = �, then the same impli
ation holds after the a
tion.Base: For Part 1, the
on
lusion follows va
uously be
ause initially in-transit is empty. For Part2, the
on
lusion again follows va
uously be
ause initially
mapi(`) 6= � for all i and `.Indu
tive step: Let s and s0 be the states before and after the new event, respe
tively. We
onsiderParts 1 and 2 separately.For Part 1, the interesting
ase is a sendi event that puts a message
ontaining
m in in-transit .The pre
ondition on the send a
tion implies that
m is set to s:
mapi. The indu
tive hypothesis,Part 2, implies that if s:
map(k � 1) = �, then s:
map(k) = �. Therefore in state s0, the sameholds for
m, whi
h has been added to in-transit .For Part 2, �x i. The interesting
ases are those that may
hange
mapi, namely, new-
on�gi, re
vifor a gossip message, and
fg-upg-prop-�xi.1. new-
on�g(
; �)i.If s0:
map(k � 1)i = �, then s:
map(k � 1)i = �, sin
e installing a new
on�guration doesnot set any entry to �. Then by the indu
tive hypothesis s:
map(k)i = �, whi
h impliesthat s0:
map(k)i = �, sin
e this a
tion
annot modify an entry that is already �.2. re
v(h�; �;
m ; �; �i)i.First, if
m(0) 6= �, then the message does not
ause any entry in s:
map to be set to �,and as in Case 1 the desired property still holds. Also, if s:
map(0) 6= �, then for all `,s0:
map(`) = � if and only if
m(`) = �. By the indu
tive hypothesis
m(k � 1) = � =)23

m(k) = �, so the desired
on
lusion follows. For the rest of this
ase, we will assume that
m(0) = � and s:
map(0) = �.By Invariant 4.3,
m 2 Usable. Therefore we
an de�ne kmsg-max su
h that
m(`) = � forall ` � kmsg-max and
m(`) 6= � for all ` > kmsg-max . Similarly, we
an de�ne kmax su
h thats:
map(`)i = � for all ` � kmax and s:
map(`)i 6= � for all ` > kmax. De�ne k0max in thesame way for the poststate, s0.There are two
ases. First, assume kmax � kmsg-max . Then k0max = kmax, by the monotoni
ityof CMap. By our indu
tive hypothesis s:
map(k � 1) = � =) s:
map(k) = �; it follows,then, that if k� 1 � kmax then k � kmax. Therefore if k� 1 � k0max, then k � k0max. Finally,then, if s0:
map(k � 1) = �, then s0:
map(k) = �.Assume, then, that kmsg-max > kmax. Then after the update operation, k0max = kmsg-max .By our indu
tive hypothesis,
m(k � 1) = � =)
m(k) = �; it follows, then, that ifk�1 � kmsg-max , then k � kmsg-max . Therefore if k�1 � k0max, then k � k0max. Finally, then,s0:
map(k � 1) = � implies that s0:
map(k) = �.3.
fg-upg-prop-�x(k0)i.By assumption, k 6= k0. If k < k0, then this operation sets both s0:
map(k � 1)i = � ands0:
map(k)i = �. If k > k0, then this operation has no e�e
t on
map(k)i or
map(k � 1)i,and the desired property still holds. �The following
orollary says that if a
fg-upgrade(k) event for an upgrade operation
 o

urs inan exe
ution, then there is some previous
on�guration upgrade operation
0 (that
ompletes beforethe upgrade event) where the target of
0 is the
on�guration with the smallest index removed by
.Corollary 5.2 Let
 be a
on�guration upgrade operation, initiated by a
fg-upgrade(k)i event in �,and let k1 = minfremoval-set(
)g. That is, k1 is the smallest element su
h that upg-
map(
)(k1) 2C. Assume k1 > 0. Then a
fg-upg-prop-�x(k1)j event for some
on�guration upgrade operation
0o

urs in � for some j su
h that the
fg-upg-prop-�xj event of
0 pre
edes the
fg-upgrade(k)i eventin �.Proof. By the de�nition of k1, we know that in the state just after the
fg-upgrade event,upg :
map(k1 � 1)i = � and upg :
map(k1)i 6= �. Sin
e upg :
mapi is set by the
fg-upgrade eventto
mapi in the state just prior to the
fg-upgrade event, we know that
map(k1 � 1)i = � and
map(k1)i 6= � in the state just prior to the
fg-upgrade event. Lemma 5.1, then, implies that some
fg-upgrade-prop-�x(k1) event for some operation
0 o

urs in � pre
eding the
fg-upgrade event.�The next lemma says that for a given
on�guration upgrade operation
, there exists a sequen
eof pre
eding upgrade operations satisfying
ertain properties. The lemma begins by assumingthat some
on�guration with index k is removed by the spe
i�ed upgrade operation. For every
on�guration with an index smaller than k, we
hoose a single upgrade operation { that removesthat
on�guration { to add to the sequen
e. Therefore the
onstru
ted sequen
e may well
ontainthe same
on�guration upgrade operation multiple times, if the operation has removed multiple
on�gurations. If two elements in the sequen
e are distin
t upgrade operations, then the earlier24

operation in the sequen
e
ompletes before the later operation in the sequen
e is initiated. Also, thetarget of an upgrade operation in the sequen
e is removed by the next distin
t upgrade operation inthe sequen
e. As a result of these properties, the
on�guration upgrade pro
ess obeys a sequentialdis
ipline.Lemma 5.3 If a
fg-upgradei event for upgrade operation
 o

urs in � su
h that k 2 removal-set(
),then there exists a sequen
e (possibly
ontaining repeated elements) of
on�guration upgrade oper-ations
0;
1; : : : ;
k with the following properties:1. 8 s : 0 � s � k; s 2 removal-set(
s),2. 8 s : 0 � s < k, if
s 6=
s+1, then the
fg-upg-prop-�x event of
s o

urs in � andthe
fg-upgrade event of
s+1 o

urs in �, and the
fg-upg-prop-�x event of
s pre
edes the
fg-upgrade event of
s+1, and3. 8 s : 0 � s < k, if
s 6=
s+1, then target(
s) 2 removal-set(
s+1).Proof. We
onstru
t the sequen
e in reverse order, �rst de�ning
k, and then at ea
h step de�ningthe pre
eding element. We prove the lemma by ba
kward indu
tion on `, for ` = k down to ` = 0,maintaining the following three properties at ea
h step of the indu
tion:1 0. 8 s : ` � s � k; s 2 removal-set(
s),2 0. 8 s : ` � s < k, if
s 6=
s+1, then the
fg-upg-prop-�x event of
s o

urs in � and the
fg-upgrade event of
s+1 o

urs in �, and the
fg-upg-prop-�x event of
s pre
edes the
fg-upgrade event of
s+1, and3 0. 8 s : ` � s < k, if
s 6=
s+1, then target(
s) 2 removal-set(
s+1).To begin the indu
tion, we �rst examine the base
ase, where ` = k. De�ne
k =
. Property 10holds by assumption, and Property 20 and Property 30 are va
uously true.For the indu
tive step, we assume that
` has been de�ned and that properties 10{30 hold.If ` = 0, then
0 has been de�ned, and we are done. Otherwise, we need to de�ne
`�1. If`� 1 2 removal-set(
`), then let
`�1 =
`, and all the properties still hold.Otherwise, `�1 =2 removal-set(
`) and ` 2 removal-set(
`), whi
h implies that ` = minfremoval-set(
`)gbe
ause ea
h
on�guration upgrade operates on a
onse
utive sequen
e of
on�gurations. Then byCorollary 5.2, there o

urs in � a
on�guration upgrade operation, that we label
`�1, with thefollowing properties: (i) the
fg-upg-prop-�x event of
`�1 pre
edes the
fg-upgrade event of
`, and(ii) target(
`�1) = minfk0 : k0 2 removal-set(
`)g.Re
all that ` = minfremoval-set(
`)g. Therefore, by Property (ii) of
`�1, target(
`�1) = `.Sin
e removal-set(
`�1) 6= ;, this implies that ` � 1 2 removal-set(
`�1), proving Property 10.Property 20 follows from Property (i) of
`�1. Property 30 follows from Property (ii) of
`�1. �The sequential nature of
on�guration upgrade has a ni
e
onsequen
e for propagation of tags:for any sequen
e of upgrade operations like that in Lemma 5.3, tag(
s) is nonde
reasing in s.Lemma 5.4 Let
`; : : : ;
k be a sequen
e of
on�guration upgrade operations su
h that:1. 8 s : 0 � s � k; s 2 removal-set(
s), 25

2. 8 s : 0 � s < k, if
s 6=
s+1, then the
fg-upg-prop-�x event of
s o

urs in � andthe
fg-upgrade event of
s+1 o

urs in �, and the
fg-upg-prop-�x event of
s pre
edes the
fg-upgrade event of
s+1, and3. 8 s : 0 � s < k, if
s 6=
s+1, then target(
s) 2 removal-set(
s+1).Then 8 s : 0 � s < k; tag(
s) � tag(
s+1).Proof. If
s =
s+1, then it is trivially true that tag(
s) � tag(
s+1). Therefore assume that
s 6=
s+1; this implies that the
fg-upg-prop-�x event of
s pre
edes the
fg-upgrade event of
s+1. Let k2be the largest element in removal-set(
s). We know by assumption that k2+1 2 removal-set(
s+1).Therefore, W2(
s), a write-quorum of
on�guration
(k2 + 1), has at least one element in
ommonwith R(
s+1; k2 + 1); label this node j. By Lemma 4.6, and the monotoni
ity of tag j, after the
fg-upg-prop-�x event of
s we know that tagj � tag(
s). Then by Lemma 4.5 tag(
s+1) � tagj .Therefore tag(
s) � tag(
s+1). �Corollary 5.5 Let
`; : : : ;
k be a sequen
e of
on�guration upgrade operations su
h that:1. 8 s : 0 � s � k; s 2 removal-set(
s),2. 8 s : 0 � s < k, if
s 6=
s+1, then the
fg-upg-prop-�x event of
s o

urs in � andthe
fg-upgrade event of
s+1 o

urs in �, and the
fg-upg-prop-�x event of
s pre
edes the
fg-upgrade event of
s+1, and3. 8 s : 0 � s < k, if
s 6=
s+1, then target(
s) 2 removal-set(
s+1).Then 8 s; s0 : 0 � s � s0 � k, tag(
s) � tag(
s0)Proof. This follows immediately from Lemma 5.4 by indu
tion. �5.2 Behavior of a read or a write following a
on�guration upgradeNow we des
ribe the relationship between an upgrade operation and a following read or write op-eration. These three lemmas relate the removal-set of a pre
eding
on�guration upgrade operationwith the query-
map of a later read or write operation.The �rst lemma shows that if, for some read or write operation, k is the smallest index su
hthat query-
map(k) 2 C, then some
on�guration upgrade operation with target k pre
edes theread or write operation.Lemma 5.6 Let � be a read or write operation whose query-�x event o

urs in �. Let k be thesmallest element su
h that query-
map(�)(k) 2 C. Assume k > 0. Then there must exist a
on�guration upgrade operation
 su
h that k = target(
), and the
fg-upg-prop-�x event of
pre
edes the query-phase-start(�) event.Proof. This follows from Lemma 5.1. Let s be the state just before the query-phase-start(�)event. By de�nition, query-
map(�) = s:
mapi. Sin
e s:
map(k � 1)i = � and s:
map(k)i 6= �,there must exist su
h a
on�guration upgrade operation for k by the
ontrapositive of Lemma 5.1.�Se
ond, if some upgrade removing k does
omplete before the query-phase-start event of a reador write operation, then some
on�guration with index � k+1 must be in
luded in the query-
mapof a later read or write operation. 26

Lemma 5.7 Let
 be a
on�guration upgrade operation su
h that k 2 removal-set(
). Let � be aread or write operation whose query-�x event o

urs in �. Suppose that the
fg-upg-prop-�x eventof
 pre
edes the query-phase-start(�) event in �.Then query-
map(�)(`) 2 C for some ` � k + 1.Proof. Suppose for the sake of
ontradi
tion that query-
map(�)(`) =2 C for all ` � k + 1. Fixk0 = max(f`0 : query-
map(�)(`0) 2 Cg). Then k0 � k.Let
0; : : : ;
k be the sequen
e of upgrade operations whose existen
e is asserted by Lemma 5.3,where
k =
. Then, by this
onstru
tion, k0 2 removal-set(
k0), and the
fg-upg-prop-�x event of
k0 does not
ome after the
fg-upg-prop-�x event of
 in �. By assumption, the
fg-upg-prop-�xevent of
 pre
edes the query-phase-start(�) event in �. Therefore the
fg-upg-prop-�x event of
k0pre
edes the query-phase-start(�) event in �.Then, sin
e k0 2 removal-set(
k0), write-quorum W1(
k0 ; k0) is de�ned. Sin
e query-
map(k0) 2C), the read-quorum R(�; k0) is de�ned. Choose j 2 W1(
k0 ; k0) \ R(�; k0). Assume that kt =target(
k0). Noti
e that k0 < kt. Then Lemma 4.5 and monotoni
ity of
map imply that, in thestate just prior to the
fg-upg-query-�x event of
k0 ,
map(`)j 6= ? for all ` � kt. Then Lemma 4.7implies that query-
map(�)(`) 2 C for some ` � kt. But this
ontradi
ts the
hoi
e of k0. �The next lemma des
ribes propagation of tag information from a
on�guration upgrade opera-tion to a following read or write operation. For this lemma, we assume that query-
map(k) 2 C,where k is the target of the upgrade operation,Lemma 5.8 Let
 be a
on�guration upgrade operation. Assume that k = target(
). Let � be aread or write operation whose query-�x event o

urs in �. Suppose that the
fg-upg-prop-�x event of
 pre
edes the query-phase-start(�) event in exe
ution �. Suppose also that query-
map(�)(k) 2 C.Then:1. tag(
) � tag(�).2. If � is a write operation then tag(
) < tag(�).Proof. The propagation phase of
 a

esses write-quorum W2(
) of
(k), whereas the queryphase of � a

esses read-quorum R(�; k). Sin
e both are quorums of
on�guration
(k), they havea nonempty interse
tion;
hoose j 2W2(
) \R(�; k).Lemma 4.6 implies that, in any state after the
fg-upg-prop-�x event for
, tagj � tag(
). Sin
ethe
fg-upg-prop-�x event of
 pre
edes the query-phase-start(�) event, we have that t � tag(
),where t is de�ned to be the value of tagj just before the query-phase-start(�) event. Then Lemma 4.7implies that tag(�) � t, and if � is a write operation, then tag(�) > t. Combining the inequalitiesyields both
on
lusions of the lemma. �5.3 Behavior of sequential reads and writesRead or write operations that originate at di�erent lo
ations may pro
eed
on
urrently. However,in the spe
ial
ase where they exe
ute sequentially, we
an prove some relationships between theirquery-
maps, prop-
maps, and tags. The �rst lemma says that, when two read or write operationsexe
ute sequentially, the smallest
on�guration index used in the propagation phase of the �rstoperation is less than or equal to the largest index used in the query phase of the se
ond. In otherwords, we
annot have a situation in whi
h the se
ond operation's query phase exe
utes using only
on�gurations with indi
es that are stri
tly less than any used in the �rst operation's propagationphase. 27

Lemma 5.9 Assume �1 and �2 are two read or write operations, su
h that:1. The prop-�x event of �1 o

urs in �.2. The query-�x event of �2 o

urs in �.3. The prop-�x event of �1 pre
edes the query-phase-start(�2) event.Then min(f` : prop-
map(�1)(`) 2 Cg) � max(f` : query-
map(�2)(`) 2 Cg).Proof. Suppose for the sake of
ontradi
tion that min(f` : prop-
map(�1)(`) 2 Cg) > k, wherek is de�ned to be max(f` : query-
map(�2)(`) 2 Cg). Then in parti
ular, prop-
map(�1)(k) =2 C.The form of prop-
map(�1), as expressed in Invariant 4.4, implies that prop-
map(�1)(k) = �.This implies that some
fg-upg-prop-�x event for some upgrade operation
 su
h that k 2removal-set(
) o

urs prior to the prop-�x of �1, and hen
e prior to the query-phase-start(�2) event.Lemma 5.7 then implies that query-
map(�2)(`) 2 C for some ` � k + 1. But this
ontradi
ts the
hoi
e of k. �The next lemma des
ribes propagation of tag information, in the
ase where the propagationphase of the �rst operation and the query phase of the se
ond operation share a
on�guration.Lemma 5.10 Assume �1 and �2 are two read or write operations, and k 2 N, su
h that:1. The prop-�x event of �1 o

urs in �.2. The query-�x event of �2 o

urs in �.3. The prop-�x event of �1 pre
edes the query-phase-start(�2) event.4. prop-
map(�1)(k) and query-
map(�2)(k) are both in C.Then:1. tag(�1) � tag(�2).2. If �2 is a write then tag(�1) < tag(�2).Proof. The hypotheses imply that prop-
map(�1)(k) = query-
map(�2)(k) =
(k). ThenW (�1; k)and R(�2; k) are both de�ned in �. Sin
e they are both quorums of
on�guration
(k), they havea nonempty interse
tion;
hoose j 2W (�1; k) \R(�2; k).Lemma 4.8 implies that, in any state after the prop-�x event of �1, tag j � tag(�1). Sin
e theprop-�x event of �1 pre
edes the query-phase-start(�2) event, we have that t � tag(�1), where t isde�ned to be the value of tagj just before the query-phase-start(�2) event. Then Lemma 4.7 impliesthat tag(�2) � t, and if �2 is a write operation, then tag(�2) > t. Combining the inequalities yieldsboth
on
lusions. �The �nal lemma is similar to the previous one, but it does not assume that the propagationphase of the �rst operation and the query phase of the se
ond operation share a
on�guration. Themain fo
us of the proof is on the situation where all the
on�guration indi
es used in the queryphase of the se
ond operation are greater than those used in the propagation phase of the �rstoperation. 28

Lemma 5.11 Assume �1 and �2 are two read or write operations, su
h that:1. The prop-�x of �1 o

urs in �.2. The query-�x of �2 o

urs in �.3. The prop-�x event of �1 pre
edes the query-phase-start(�2) event.Then:1. tag(�1) � tag(�2).2. If �2 is a write then tag(�1) < tag(�2).Proof. Let i1 and i2 be the indi
es of the pro
esses that run operations �1 and �2, respe
tively.Let
m1 = prop-
map(�1) and
m2 = query-
map(�2). If there exists k su
h that
m1(k) 2 C and
m2(k) 2 C, then Lemma 5.10 implies the
on
lusions of the lemma. So from now on, we assumethat no su
h k exists.Lemma 5.9 implies that min(f` :
m1(`) 2 Cg) � max(f` :
m2(`) 2 Cg). Invariant 4.4 impliesthat the set of indi
es used in ea
h phase
onsists of
onse
utive integers. Sin
e the intervals haveno indi
es in
ommon, it follows that s1 < s2, where s1 is de�ned to be max(f` :
m1(`) 2 Cg) ands2 is de�ned to be min(f` :
m2(`) 2 Cg).Lemma 5.6 implies that there exists a
on�guration upgrade operation that we will
all
s2�1su
h that s2 = target(
s2�1), and the
fg-upg-prop-�x of
s2�1 pre
edes the query-phase-start(�2)event. Then by Lemma 5.8, tag(
s2�1) � tag(�2), and if �2 is a write operation then tag(
s2�1) <tag(�2).Next we will demonstrate a
hain of
on�guration upgrade operations with non-de
reasing tags.Lemma 5.3, in
onjun
tion with the already de�ned
s2�1, implies the existen
e of a sequen
e of
on�guration upgrade operations
0; : : : ;
s2�1 su
h that:1. 8 s : 0 � s � s2 � 1; s 2 removal-set(
s),2. 8 s : 0 � s < s2�1, if
s 6=
s+1, then the
fg-upg-prop-�x event of
s pre
edes the
fg-upgradeevent of
s+1 in �,3. 8 s : 0 � s < s2 � 1, if
s 6=
s+1, then target(
s) 2 removal-set(
s+1).As a spe
ial
ase of Property 1, sin
e s1 � s2 � 1, we know that s1 2 removal-set(
s1). ThenCorollary 5.5 implies that tag(
s1) � tag(
s2�1).It remains to show that the tag of �1 is no greater than the tag of
s1 . Therefore we fo
us nowon the relationship between operation �1 and
on�guration upgrade
s1 . The propagation phase of�1 a

esses write-quorum W (�1; s1) of
on�guration
(s1), whereas the query phase of
s1 a

essesread-quorum R(
s1 ; s1) of
on�guration
(s1). Sin
e W (�1; s1) \ R(
s1 ; s1) 6= ;, we may �x somej 2 W (�1; s1) \ R(
s1 ; s1). Let message m1 from i1 to j and message m01 from j to i1 be as inLemma 4.8 for the propagation phase of
s1 .Let message m2 from the pro
ess running
s1 to j and messagem02 from j to the pro
ess running
s1 be the messages whose existen
e is asserted in Lemma 4.5 for the query phase of
s1 .We
laim that j sends m01, its message for �1, before it sends m02, its message for
s1 . Supposefor the sake of
ontradi
tion that j sends m02 before it sends m01. Assume that st = target(
s1 .Noti
e that st > s1, sin
e s1 2 removal-set (
s1). Lemma 4.5 implies that in any state after jre
eives m2, before j sends m02,
map(k)j 6= ? for all k � st. Sin
e j sends m02 before it sends29

m01, monotoni
ity of
map implies that just before j sends m01,
map(k)j 6= ? for all k � st. ThenLemma 4.8 implies that prop-
map(�1)(`) 2 C for some ` � st. But this
ontradi
ts the
hoi
e ofs1, sin
e s1 < st. This implies that j sends m01 before it sends m02.Sin
e j sends m01 before it sends m02, Lemma 4.8 implies that, at the time j sends m02, tag(�1) �tag j. Then Lemma 4.5 implies that tag(�1) � tag(
s1). From above, we know that tag(
s1) �tag(
s2�1), and tag(
s2�1) � tag(�2), and if �2 is a write operation then tag(
s2�1) < tag(�2).Combining the various inequalities then yields both
on
lusions. �5.4 Atomi
ityIn order to prove that all exe
utions of Rambo II are atomi
, we use four suÆ
ient
onditions. Amemory is said to be atomi
 provided that the following
onditions hold for all good exe
utions:� If all the read and write operations that are invoked
omplete, then the read and writeoperations for obje
t x
an be partially ordered by an ordering �, so that:1. No operation has in�nitely many other operations ordered before it.2. The partial order is
onsistent with the external order of invo
ations and responses, thatis, there do not exist read or write operations �1 and �2 su
h that �1
ompletes before�2 starts, yet �2 � �1.3. All write operations are totally ordered and every read operation is ordered with respe
tto all the writes.4. Every read operation ordered after any writes returns the value of the last write pre
edingit in the partial order; any read operation ordered before all writes returns the initialvalue.This de�nition is suÆ
ient to guarantee atomi
ity in terms of the other
ommon de�nition whi
his de�ned in terms of equivalen
e to a serial memory. (See, for example, Lemma 13.16 in [11℄.)Let � be a tra
e of S, the system that implements Rambo II (re
all that this in
ludes theReader-Writer , Re
on and Joiner automata), and assume that all read and write operations
om-plete in �. Consider any parti
ular good exe
ution � of S whose tra
e is �. We de�ne a partialorder � on read and write operations in �, in terms of the operations' tags in �. Namely, we totallyorder the writes in order of their tags, and we order ea
h read with respe
t to all the writes asfollows: a read with tag t is ordered after all writes with tags � t and before all writes with tags> t.Lemma 5.12 The ordering � is well-de�ned.Proof. The key is to show that no two write operations get assigned the same tag. This is obvi-ously true for two writes that are initiated at di�erent lo
ations, be
ause the low-order tiebreakeridenti�ers are di�erent. For two writes at the same lo
ation, Lemma 5.11 implies that the tag ofthe se
ond is greater than the tag of the �rst. This suÆ
es. �Lemma 5.13 � satis�es the four
onditions in the de�nition of atomi
ity.Proof. We begin with Property 2, whi
h as usual in su
h proofs, is the most interesting thing toshow. Suppose for the sake of
ontradi
tion that �1
ompletes before �2 starts, yet �2 � �1. We
onsider two
ases: 30

1. �2 is a write operation.Sin
e �1
ompletes before �2 starts, Lemma 5.11 implies that tag(�2) > tag(�1). On theother hand, the fa
t that �2 � �1 implies that tag(�2) � tag(�1). This yields a
ontradi
tion.2. �2 is a read operation.Sin
e �1
ompletes before �2 starts, Lemma 5.11 implies that tag(�2) � tag(�1). On theother hand, the fa
t that �2 � �1 implies that tag(�2) < tag(�1). This yields a
ontradi
tion.Sin
e we have a
ontradi
tion in either
ase, Property 2 must hold.Property 1 follows from Property 2. Properties 3 and 4 are straightforward. �Now we tie everything together for the proof of Theorem 5.14.Theorem 5.14 Let � be a tra
e of S, the system that implements Rambo II. Then � satis�es theatomi
ity guarantee.Proof. Assume that all read and write operations
omplete in �. Let � be a good exe
ution ofS whose tra
e is �. De�ne the ordering � on the read and write operations in � as above, usingthe exe
ution �. Then Lemma 5.13 says that � satis�es the four
onditions in the de�nition ofatomi
ity. Thus, � satis�es the atomi
ity
ondition, as needed. �6 Re
on�guration Servi
eIn this se
tion we present the spe
i�
ation and implementation for the re
on�guration spe
i�
ation.This se
tion is a restatement of Se
tions 4 and 7 of the Rambo te
hni
al report, and is takendire
tly from [13℄. Our Rambo implementation for ea
h obje
t x
onsists of a main Reader-Writeralgorithm and a re
on�guration servi
e, Re
on(x); sin
e we are suppressing mention of x, we writethis simply as Re
on . First, in Se
tion 6.1, we present the spe
i�
ation for the Re
on servi
e, asan external signature and set of tra
es. In Se
tion 6.2, we present our implementation of Re
on .6.1 Re
on�guration Servi
e Spe
i�
ationThe interfa
e for Re
on appears in Figure 9. The
lient of Re
on at lo
ation i requests to jointhe re
on�guration servi
e by performing a join(re
on)i input a
tion. The servi
e a
knowledgesthis with a
orresponding join-a
ki output a
tion. The
lient requests to re
on�gure the obje
tusing a re
oni input, whi
h is a
knowledged with a re
on-a
ki output a
tion. Rambo reports a new
on�guration to the
lient using a reporti output a
tion. Crashes are modeled using fail a
tions.Re
on also produ
es outputs of the form new-
on�g(
; k)i, whi
h announ
e at lo
ation i that
is the kth
on�guration identi�er for the obje
t. These outputs are used for
ommuni
ation withthe portion of the Reader-Writer algorithm running at lo
ation i. Re
on announ
es
onsistentinformation, only one
on�guration identi�er per index in the
on�guration identi�er sequen
e.It delivers information about ea
h
on�guration to members of the new
on�guration and of theimmediately pre
eding
on�guration.Now we de�ne the set of tra
es des
ribing Re
on 's safety properties. Again, these are de�ned interms of environment assumptions and and servi
e guarantees. The environment assumptions aresimple well-formedness
onditions,
onsistent with the well-formedness assumptions for Rambo:� Well-formedness: 31

Input:join(re
on)i, i 2 Ire
on(
;
0)i,
;
0 2 C, i 2 members(
)faili, i 2 I Output:join-a
k(re
on)i, i 2 Ire
on-a
k(b)i, b 2 fok; nokg; i 2 Ireport(
)i,
 2 C; i 2 Inew-
on�g(
; k)i,
 2 C, k 2 N+ , i 2 IFigure 9: Re
on : External signature{ For every i:� No join(re
on)i or re
on(�; �)i event is pre
eded by a faili event.� At most one join(re
on)i event o

urs.� Any re
on(�; �)i event is pre
eded by a join-a
k(re
on)i event.� Any re
on(�; �)i event is pre
eded by an -a
k for any pre
eding re
on(�; �)i event.{ For every
, at most one re
on(�;
)� event o

urs.{ For every
,
0, x, and i, if a re
on(
;
0)i event o

urs, then it is pre
eded by:� A report(
)i event, and� A join-a
k(re
on)j for every j 2 members(
0).The safety guarantees provided by the servi
e are as follows:� Well-formedness: For every i:{ No join-a
k(re
on)i, re
on-a
k(�)i, report(�)i, or new-
on�g(�; �)i event is pre
eded by afaili event.{ Any join-a
k(re
on)i (resp., re
on-a
k(
)i) event has a pre
eding join(re
on)i (resp., re
oni)event with no intervening invo
ation or response a
tion for x and i.� Agreement: If new-
on�g(
; k)i and new-
on�g(
0; k)j both o

ur, then
 =
0. (No disagree-ment arises about what the kth
on�guration identi�er is, for any k.)� Validity: If new-
on�g(
; k)i o

urs, then it is pre
eded by a re
on(�;
)i0 for some i0 for whi
ha mat
hing re
on-a
k(nok)i0 does not o

ur. (Any
on�guration identi�er that is announ
edwas previously requested by someone who did not re
eive a negative a
knowledgment.)� No dupli
ation: If new-
on�g(
; k)i and new-
on�g(
; k0)i0 both o

ur, then k = k0. (Thesame
on�guration identi�er
annot be assigned to two di�erent positions in the sequen
e of
on�guration identi�ers.)6.2 Re
on�guration Servi
e ImplementationIn this se
tion, we des
ribe a distributed algorithm that implements the Re
on servi
e for a par-ti
ular obje
t x (and we suppress mention of x). This algorithm is
onsiderably simpler than theReader-Writer algorithm. It
onsists of a Re
on i automaton for ea
h lo
ation i, whi
h intera
tswith a
olle
tion of global
onsensus servi
es Cons(k;
), one for ea
h k � 1 and ea
h
 2 C, andwith a point-to-point
ommuni
ation servi
e.Cons(k;
) a

epts inputs from members of
on�guration
, whi
h it assumes to be the k � 1st
on�guration. These inputs are proposed new
on�gurations. The de
ision rea
hed by Cons(k;
),whi
h must be one of the proposed
on�gurations, is determined to be the kth
on�guration.32

Re
on i is a
tivated by the joining proto
ol. It pro
esses re
on�guration requests using the
on-sensus servi
es, and re
ords the new
on�gurations that the
onsensus servi
es determine. Re
on ialso
onveys information about new
on�gurations to the members of those
on�gurations, and re-leases new
on�gurations for use by Reader-Writer i. It returns a
knowledgments and
on�gurationreports to its
lient.6.3 Consensus servi
esIn this se
tion, we spe
ify the behavior we assume for
onsensus servi
e Cons(k;
), for a �xed k � 1and
 2 C. This behavior
an be a
hieved using the Paxos
onsensus algorithm [9℄, as des
ribedformally in [14℄. Fix V to be the set of
onsensus values. (In the implementation of the Re
onservi
e, V will be instantiated as C.) The external signature of Cons(k;
) is given in Figure 10.Input:init(v)k;
;i, v 2 V , i 2 members(
)faili, i 2 members(
) Output:de
ide(v)k;
;i, v 2 V , i 2 members(
)Figure 10: Cons(k;
): External signatureWe des
ribe the safety properties of Cons(k;
) in terms of properties of a tra
e � of a
tions inthe external signature. Namely, we de�ne the
lient safety assumptions:� Well-formedness: For any i 2 members(
):{ No init(�)k;
;i event is pre
eded by a fail(i) event.{ At most one init(�)k;
;i event o

urs in �.And we de�ne the
onsensus safety guarantees:� Well-formedness: For any i 2 members(
):{ No de
ide(�)k;
;i event is pre
eded by a fail(i) event.{ At most one de
ide(�)k;
;i event o

urs in �.{ If a de
ide(�)k;
;i event o

urs in �, then it is pre
eded by an init(�)k;
;i event.� Agreement: If de
ide(v)k;
;i and de
ide(v0)k;
;i0 events o

ur in �, then v = v0.� Validity: If a de
ide(v)k;
;i event o

urs in �, then it is pre
eded by an init(v)k;
;j.We assume that the Cons(k;
) servi
e is implemented using the Paxos algorithm [9℄, as de-s
ribed formally in [14℄. This satis�es the safety guarantees des
ribed above, based on the safetyassumptions:Theorem 6.1 If � is a tra
e of Paxos that satis�es the safety assumptions of Cons(k;
), then �also satis�es the (well-formedness, agreement, and validity) safety guarantees of Cons(k;
).The Paxos algorithm also satis�es the following laten
y result:Theorem 6.2 Consider a timed exe
ution � of the Paxos algorithm and a pre�x �0 of �. Supposethat: 33

1. The underlying system \behaves well" after �0, in the sense that timing is \normal" (what is
alled \regular" in [14℄)3 and no pro
ess failures or message losses o

ur.2. For every i that does not fail in �, an init(�)i event o

urs in �0.3. There exist R 2 read-quorums(
) and W 2 write-quorums(
) su
h that for all i 2 R [W , nofaili event o

urs in �.Then for every i that does not fail in �, a de
ide(�)i event o

urs, no later than 9d + " time afterthe end of �0 (" > 0).6.4 Re
on automataA Re
on i pro
ess is responsible for initiating
onsensus exe
utions to help determine new
on-�gurations, for telling the lo
al Reader-Writer i pro
ess about a newly-determined
on�guration,and for disseminating information about newly-determined
on�gurations to the members of those
on�gurations. The signature and state of Re
on i appear in Figures 11, and the transitions inFigure 12.Signature:Input:join(re
on)ire
on(
;
0)i;
;
0 2 C; i 2 members(
)de
ide(
)k;i;
 2 C; k 2 N+re
v(h
on�g;
; ki)j;i,
 2 C, k 2 N+ ,i 2 members(
), j 2 I � figre
v(hinit;
;
0; ki)j;i,
;
0 2 C, k 2 N+ ,i; j 2 members(
), j 6= ifaili
Output:join-a
k(re
on)inew-
on�g(
; k)i,
 2 C; k 2 N+init(
;
0)k;i,
;
0 2 C; k 2 N+ , i 2 members(
)re
on-a
k(b)i, b 2 fok; nokgreport(
)i,
 2 Csend(h
on�g;
; ki)i;j ,
 2 C, k 2 N+ ,j 2 members(
)� figsend(hinit;
;
0; ki)i;j ;
;
0 2 C; k 2 N+ ;i; j 2 members(
), j 6= iState:status 2 fidle; a
tiveg, initially idle.re
-
map 2 CMap, initially re
-
map(0) =
0and re
-
map(k) = ? for all k 6= 0.did-init � N+ , initially ;did-new-
on�g � N+ , initially ;
ons-data 2 (N+ ! (C � C)): initially ? everywherere
-status 2 fidle; a
tiveg, initially idleout
ome 2 fok; nok;?g, initially ?reported � C, initially ;failed , a Boolean, initially falseFigure 11: Re
on i: Signature and stateLo
ation i joins the Re
on servi
e when a join(re
on) input o

urs. Re
on i responds with ajoin-a
k.Re
on i in
ludes a state variable re
-
map, whi
h holds a CMap: re
-
map(k) =
 indi
ates thati knows that
 is the kth
on�guration identi�er. If Re
on i has learned that
 is the kth
on�gurationidenti�er, it
an
onvey this to its lo
al Reader-Writer i pro
ess using a new-
on�g(
; k)i outputa
tion, and it
an inform any other Re
on j pro
ess, j 2 members(
), by sending a h
on�g;
; kimessage. Re
on i learns about new
on�gurations either by re
eiving a de
ide input from a Consservi
e, or by re
eiving a
on�g or init message from another pro
ess.3In [14℄, regular timing implies that messages are delivered reliably within time d, that lo
al pro
essing time is 0,and that information is \gossiped" at intervals of d. 34

Input join(re
on)iE�e
t:if :failed thenif status = idle thenstatus a
tiveOutput join-a
k(re
on)iPre
ondition::failedstatus = a
tiveE�e
t:noneOutput new-
on�g(
; k)iPre
ondition::failedstatus = a
tivere
-
map(k) =
k =2 did-new-
on�gE�e
t:did-new-
on�g did-new-
on�g [fkgOutput send(h
on�g;
; ki)i;jPre
ondition::failedstatus = a
tivere
-
map(k) =
E�e
t:noneInput re
v(h
on�g;
; ki)j;iE�e
t:if :failed thenif status = a
tive thenre
-
map(k)
Output report(
)iPre
ondition::failedstatus = a
tive
 62 reportedS = f` : re
-
map(`) 2 Cg
 = re
-
map(max(S))E�e
t:reported reported [f
gInput re
on(
;
0)iE�e
t:if :failed thenif status = a
tive thenre
-status a
tivelet S = f` : re
-
map(`) 2 Cgif S 6= ; and
 = re
-
map(max(S))and
ons-data(max(S) + 1) = ? then
ons-data(max(S) + 1) h
;
0ielse out
ome nok

Output init(
0)k;
;iPre
ondition::failedstatus = a
tive
ons-data(k) = h
;
0iif k � 1 then k 2 did-new-
on�gk 62 did-initE�e
t:did-init did-init [fkgOutput send(hinit;
;
0; ki)i;jPre
ondition::failedstatus = a
tive
ons-data(k) = h
;
0ik 2 did-initE�e
t:noneInput re
v(hinit;
;
0; ki)j;iE�e
t:if :failed thenif status = a
tive thenif re
-
map(k � 1) = ? then re
-
map(k � 1)
if
ons-data(k) = ? then
ons-data(k) h
;
0iInput de
ide(
0)k;
;iE�e
t:if :failed thenif status = a
tive thenre
-
map(k)
0if re
-status = a
tive thenif
ons-data(k) = h
;
0i then out
ome okelse out
ome nokOutput re
on-a
k(b)iPre
ondition::failedstatus = a
tivere
-status = a
tiveb = out
omeE�e
t:re
-status = idleout
ome ?Input failiE�e
t:failed true
Figure 12: Re
on i: Transitions.35

Re
on i re
eives a re
on�guration request from its environment via a re
on(
;
0)i event. Uponre
eiving su
h a request, Re
on i determines whether (a) i is a member of the known
on�guration
 with the largest index k � 1 and (b) it has not already prepared data for a
onsensus for thenext larger index k. If both (a) and (b) hold, Re
on i prepares su
h data,
onsisting of the pairh
;
0i, where
 is the k� 1st
on�guration identi�er and
0 is the proposed
on�guration identi�er.Otherwise, Re
on i responds negatively to the new re
on�guration request.Re
on i initiates parti
ipation in a Cons(k;
) algorithm when its
onsensus data are prepared.After initiating parti
ipation in a
onsensus algorithm, it sends init messages to inform the othermembers of
 about its initiation of
onsensus. The other members use this information to prepareto parti
ipate in the same
onsensus algorithm (and also to update their re
-
map if ne
essary).Thus, there are two ways in whi
h Re
on i
an initiate parti
ipation in
onsensus: as a result of alo
al re
on event, or by re
eiving an init message from another Re
on j pro
ess.When Re
on i re
eives a de
ide(
0)k;i dire
tly from Cons(k;
), it re
ords
on�guration
0 inre
-
map It also determines if a response to its lo
al
lient is ne
essary (if a lo
al re
on�gurationoperation is a
tive), and determines the response based on whether the
onsensus de
ision is thesame as the lo
ally-proposed
on�guration identi�er.Ea
h
onsensus servi
e Cons(k;
) is responsible for
onveying
onsensus de
isions tomembers(
).The Re
on i
omponents are responsible for telling members(
0) about
0 by sending new-
on�g mes-sages.Theorem 6.3 The Re
on implementation guarantees well-formedness, agreement, and validity.7 Conditional Performan
e AnalysisIn this se
tion we give a
onditional laten
y analysis of the new algorithm, fo
using on the im-provements realized by the aggressive
on�guration-upgrade me
hanism. We show that the newalgorithm allows the system to re
over rapidly after a period of unreliable network
onne
tivity orbursty re
on�guration. In parti
ular, we prove that if
on�gurations do not fail too rapidly, thenprogress is guaranteed. First, in Se
tion 7.1, we present a few general de�nitions. In Se
tion 7.2and 7.3, we de�ne the exe
utions being
onsidered, and the environmental assumptions that theseexe
utions satisfy. Then in Se
tions 7.5, 7.6, and 7.7, we prove a series of lemmas that des
ribehow long it takes
on�guration-upgrade operations to
omplete. Finally, in Se
tion 7.8 we statethe main stabilization theorem, and prove that operations will
omplete as long as the exe
utionassumptions are met. Throughout this se
tion, we
ompare the results with those proved in Se
tion9 of the Rambo te
hni
al report [13℄.7.1 De�nitionsIn this se
tion, we present a few basi
 de�nitions. These de�nitions do not depend on timing, butare needed only for the
onditional performan
e analysis. For these de�nitions, assume that � isan exe
ution.First we de�ne what it means for a
on�guration to be installed:
on�guration
 is installed wheneither of the following holds: (i)
 =
0 or (ii) for some k > 0, for all non-failed i 2 members(
(k�1)),a de
ide(
)k;i event o

urs in �. That is,
on�guration
 =
(k) is installed when every non-failedmember of
on�guration
(k � 1) performs a de
ide(
(k)) event.Next, we de�ne an event that o

urs when a
on�guration is guaranteed to be ready tobe upgraded (though an upgrade operation may o

ur earlier than this event). We de�ne the36

upgrade-ready(k) event, for k > 0, to be the �rst event in � after whi
h, 8` � k, the following hold:(i)
on�guration
(`) is installed, and (ii) 8i 2 members(
(k � 1)) su
h that i has not failed at thetime of the event,
map(`)i 6= ?.7.2 Limiting NondeterminismThe algorithm, as presented, is highly nondeterministi
. Therefore for the purposes of analysis,we restri
t our attention to a subset of exe
utions in whi
h automata follow
ertain timing-relatedrules. For the rest of this paper we assume a �xed
onstant d > 0. We assume that gossip o

ursat �xed intervals of time d, and also that in times of good behavior messages are delivered withintime d4.1. Ea
h node, i 2 I, performs a sendi;j for all j 2 world i every time d as measured by the lo
al
lo
k of i.2. Ea
h node, i 2 I, performs a sendi;j (an \important" send) whenever any of the followingo

urs:� Just after a re
v(join)j;i event o

urs, if status i = a
tive.� (Responses for messages) Just after a re
v(�; �; �; �; pns ; �)j;i event o

urs, if pns >pnum2 (j)i and status i = a
tive.� Just after a new-
on�g(
; k)i event o

urs if status i = a
tive and j 2 world i.� Just after a re
v(�; �; �;
m ; �; �)j;i event o

urs, if op:phase i 6= idle and for some k,
m(k) 6= ? and
map(k)i = ?.� Just after a readi, writei, or query-�xi event o

urs, if j 2 members(
), for some
 in therange of op:
mapi.� Just after a
fg-upgrade(k)i event o

urs for
on�guration-upgrade
, if j 2 members(
map(k0)i)for any k0 2 removal-set(
).� Just after a
fg-upg-query-�x(k)i event o

urs for
on�guration-upgrade
, if j 2 members(
map(k0)i)where k0 = target(
).3. Lo
ally
ontrolled a
tions of any automaton in the system that have no e�e
ts, other thanthe important sends des
ribed just above, are performed only on
e.4. If an a
tion is enabled to o

ur at node i, and has not yet been performed (and therefore isnot restri
ted by the previous rule), then it o

urs immediately, with zero time passing.7.3 The Behavior of the EnvironmentMu
h of the analysis in the original Rambo algorithm makes guarantees about the laten
y ofrequests when \normal behavior" holds. In Se
tion 9 of [13℄, Lyn
h and Shvartsman begin toexamine how the system behaves in exe
utions that a
hieve normal behavior after some point.Here we adopt a similar model. We �rst de�ne what it means for an exe
ution to exhibit \normalbehavior" from some point onward.For the rest of the paper, we use the following notation: given some time t 2 R�0 , J(t; e; �)represents the set of all nodes j su
h that join-a
kj o

urs no later than time t�e�2d in �. (Re
all4It seems, perhaps, that we should not be using d to represent both these quantities; however for
onsisten
y withthe original Rambo presentation, we
ontinue to use this
onvention.37

join-a
ki � e + 2d i 2 J(t)t
Figure 13: De�nition of J(t)that d has been �xed, above.) In most
ases, we will use the notation J(t), when e and � are
learfrom the
ontext.7.3.1 Normal Timing Behavior from Some Point OnwardLet � be an admissible timed exe
ution, and �0 a �nite pre�x of �. Arbitrary behavior is allowedin �0: messages may be lost or delivered late,
lo
ks may run at arbitrary rates, and in general anyasyn
hronous behavior may o

ur. However we assume that after �0, good behavior resumes. Wesay that � is an �0-normal exe
ution if the following assumptions hold:1. Initial time: The join-a
ki0 event o

urs at time 0,
ompleting the join proto
ol for node i0,the node that
reated the data obje
t.52. Regular timing: The lo
al
lo
ks of allRambo II automata (i.e., Reader-Writer i;Re
on i; Joiner i)at all nodes progress at exa
tly the rate of real time, after �0.3. Reliable message delivery: No message sent in � after �0 is lost.4. Message delay bound: If a message is sent at time t in � and it is delivered, then it is deliveredby time max(t; `time(�0)) + d.7.3.2 Con�guration{ViabilityNext we will de�ne
on�guration-viability, whi
h is the key assumption needed to guarantee thatread and write operations
omplete. As in all quorum-based algorithms, liveness depends on allthe nodes in some quorums remaining alive. In Rambo II, a node
an make progress only if it isable to
ommuni
ate with the read and write quorums of all extant
on�gurations. We say that a
on�guration has failed when either: (i) some node in every read-quorum of the
on�guration hasfailed, or (ii) some node in every write-quorum of the
on�guration has failed. If a
on�gurationfails before a new
on�guration is installed and the old
on�guration removed, then the system willbe e�e
tively
rashed: no future read or write request will ever
omplete. In order to guaranteethat operations
omplete, then, it is ne
essary for the
lient using the Rambo II system to initiateappropriate re
on�gurations to ensure that quorums remain a

essible. The
on�guration viabilityassumption is a
omplex property, depending on the behavior of the algorithm, the
lient initiatingappropriate re
on�gurations, and on the patterns of node failure and message loss.We de�ne what it means for an exe
ution to be (�0, e, �)-
on�guration-viable: Let � be anadmissible timed exe
ution, and let �0 be a �nite pre�x of �. Let e; � 2 R�0 . Then � is (�0, e, �)-
on�guration-viable if the following holds:For all i;
; k su
h that
map(k)i =
 in some state in �, there exist R 2 read-quorums(
) andW 2 write-quorums(
) su
h that at least one of the following holds:5This assumption was assumed impli
itly in the initial Rambo papers, and was missing from the list of assumptions.38

1. No pro
ess in R [W fails in �.2. There exists a �nite pre�x �install of � su
h that for all ` � k+1,
on�guration
(`) is installedin �install and no pro
ess in R [W fails in � by time max(`time(�0) + e; `time(�install)) + � .By assuming that an exe
ution is (�0,e,�)-
on�guration-viable, we ensure that the algorithmhas at least time � after a new
on�guration is installed to
lean up obsolete
on�gurations. Also,sin
e all
on�gurations are viable until at least time e+ � after �0, the algorithm has at least timee+ � after the system stabilizes to
lean up obsolete
on�gurations.7.3.3 Re
on-Spa
ingWhile re
on�gurations
annot impede a read/write operation, too frequent re
on�gurations
anslow down a read/write operation by introdu
ing new quorums that must be
onta
ted. In or-der to bound the time required for a read/write operation, we need to bound the frequen
y ofre
on�gurations.There are two
omponents to Re
on-Spa
ing. Let � be an �0-normal exe
ution, and e 2 R�0 .Then � satis�es:1. (�0,e)-re
on-spa
ing-1 : if for any re
on(
; �)i event in � after �0 the pre
eding report(
)i evento

urs at least time e earlier.2. (�0,e)-re
on-spa
ing-2 : if for any re
on(
; �)i event in � after �0 there exists a write-quorumW 2 write-quorums(
) su
h that for all j 2W , report(
)j pre
edes the re
on(
; �)i event in �.We say that � satis�es (�0,e)-re
on-spa
ing if it satis�es both (�0,e)-re
on-spa
ing-1 and (�0,e)-re
on-spa
ing-2.Noti
e that, instead of assuming the se
ond part of this requirement, we
ould instead modifythe re
on automaton to enfor
e this ordering: the automaton
ould
olle
t gossip messages indi-
ating whi
h nodes had performed a report(
), and delay or abort the next re
on if it pre
eded anappropriate set of report events. We
hoose to instantiate this as an assumption, rather than as amodi�
ation to the automaton for two reasons. First, we prefer to retain
ompatibility with theoriginal Rambo analysis. Se
ond, by stating this as an assumption, it is possible that the
lientusing the Rambo II algorithm might
hoose to violate the se
ond part of the assumption. As aresult, those guarantees that depend on this assumption will not hold; however re
on�gurationsmay be more performed more frequently. Even if the se
ond part of this assumption is violated,safety is still guaranteed: atomi
ity is maintained, and read and write operations are guaranteedto terminate. However, operations might not terminate rapidly in 8d, as in Se
tion 7.8.7.3.4 Join-Conne
tivityThe hypothesis of join-
onne
tivity is designed to ensure that all non-failing joining pro
esses areable to learn about ea
h other. Otherwise, it is possible for the pro
esses to join and fail in su
ha way that the world-views of the nodes are partitioned into multiple
omponents, with di�erentnodes aware of di�erent, dis
onne
ted pie
es of the world. It is also important for the laten
yanalysis to bound how long this pro
ess takes. If two nodes both
omplete the join proto
ol anddo not fail, then they should learn about ea
h other within a bounded time. For this reason, wede�ne the notion of join-
onne
tivity as follows:39

Let � be an �0-normal exe
ution, e 2 R�0 . We say that � satis�es (�0,e)-join-
onne
tivityprovided that: for any time t and nodes i; j 2 J(t; e; �), if neither i nor j fails until after max(t�2d; `time(�0) + e), then by time max(t� 2d; `time(�0) + e), i 2 world j.This indi
ates, then, that if two nodes both
omplete joining by some time t after �0, thenwithin time e the two nodes are aware of ea
h other. If two nodes both
omplete joining by sometime t during �0, then within time e after �0 the two nodes are aware of ea
h other.Prior results on joining from [13℄ suggest that in some
ases it
an be shown that the
urrentsimple join proto
ol in the Rambo II algorithm provides (�0; d + ddlog(jJ j)e)-join-
onne
tivity.However we will not prove - or depend on - this earlier result. Instead we will assume that thesystem provides (�0,e)-join-
onne
tivity for some e, and prove our results in this
ontext. We leaveit as an open problem to determine the exa
t value of e; a more
ompli
ated and intera
tive joinproto
ol might well provide better results.7.3.5 Re
on-ReadinessThe next assumption we make is related to the problem of re
on�guration by a node that hasre
ently joined. We will assume that every node that is proposed to be a member of a
on�gurationhas been a member of the Rambo II system for a reasonable period of time. This allows us to
on
lude that everyone is aware of nodes that are part of a
tive
on�gurations.An �0-normal exe
ution � satis�es (�0; e)-re
on-readiness if the following property holds: if forsome node i and some
on�gurations
 and
0, a re
on(
;
0)i event o

urs in � at time t, then:� If j 2 members(
0), then j performs a join-a
k prior to the re
on event.� If the re
on event o

urs after �0, and if j 2 members(
0), then j 2 J(t; e; �).This prohibits nodes that have just joined the system, but are not yet in anyone's world viewfrom forming new
on�gurations. As long as e is not too large, this seems a reasonable requirement.7.3.6 Upgrade-ReadinessThe last assumption we make ensures that a node initiates an upgrade operation only if it hasjoined suÆ
iently long ago. This ensures that when a node performs an upgrade, it has relativelyup-to-date information.We say that an �0-normal exe
ution � satis�es (�0; e)-upgrade-readiness if the following prop-erty holds: if for some i a
fg-upgrade(�)i event o

urs in � after �0 at time t, then i 2 J(t).In parti
ular, we suggest that in an implementation of this algorithm, only members of
on-�guration
(k) initiate operations to upgrade
on�guration
(k). In this
ase, re
on-readinessguarantees upgrade-readiness.7.3.7 Fixed ParametersWe have already �xed d su
h that gossip o

urs at �xed intervals of time d, and in times of goodbehaviour messages are delivered with time d. We now �x e as well. Additionally, for the rest ofthe paper, we �x � and �0, and assume that � is an �0-normal exe
ution. We therefore sometimessuppress these parameters, as they are
lear from
ontext. For example, we will use the notationJ(t) to represent J(t; e; �). When we refer to join-
onne
tivity, we mean (�0; e)-join-
onne
tivity;re
on-readiness is used to mean (�0; e)-re
on-readiness; upgrade-readiness is used to mean (�0; e)-upgrade-readiness; � -re
on-spa
ing is used to mean (�0; �)-re
on-spa
ing; � -
on�guration-viabilityis used to mean (�0; e; �)-
on�guration viability.40

ti 2 J(t)t're
on(�; h)join-a
ki�0 � e+ 2d
Figure 14: Lemma 7.2, Case 1 ti 2 J(t)t're
on(�; h)join-a
ki�0 � e+ 2d
Figure 15: Lemma 7.2, Case 27.4 Basi
 LemmasIn this se
tion, we prove a few basi
 lemmas that will be useful in the rest of the paper.The following two lemmas demonstrate some basi
 fa
ts about the sets J(�):Lemma 7.1 1. If t � t0, then J(t) � J(t0).2. For all t; t0, J(t) � J(max(t; t0)).Proof. By de�nition of J(�). �The following lemma uses the re
on-readiness assumption to say something stronger about thejoining time of members of a
on�guration:Lemma 7.2 Assume that � is an �0-normal exe
ution satisfying (�0; e)-re
on-readiness. If h is a
on�guration proposed at time t0 by a re
on(�; h) event, t � t0, and t � `time(�0) + e + 2d, thenmembers(h) � J(t).Proof. First, assume that t0 � `time(�0). Then the result follows immediately by re
on-readinessand Lemma 7.1. Assume, then, that t0 < `time(�0). By re
on-readiness, every member of
on�gura-tion h performs a join-a
k by `time(�0). Therefore, by de�nition of J , members(h) � J(`time(�0)+e+ 2d). Sin
e t � `time(�0) + e+ 2d, Lemma 7.1 implies that J(`time(�0) + e+ 2d) � J(t). �The next lemma shows a similar result about upgrade-readiness:Lemma 7.3 Assume that � is an �0-normal exe
ution satisfying (�0; e)-upgrade-readiness. If a
fg-upgrade(�)i event o

urs in � at time t, for some node i, then i 2 J(max(t; `time(�0)+e+2d)).Proof. First, assume that the
fg-upgrade event o

urs after �0. Then the lemma follows imme-diately by the de�nition of upgrade-readiness and Lemma 7.1. Assume, then, that the
fg-upgradeevent o

urs in �0. By the pre
ondition of
fg-upgrade, i must perform a join-a
k prior to the
fg-upgrade event; otherwise status i 6= a
tive when the
fg-upgrade o

urs, whi
h
ontradi
ts thepre
ondition of the
fg-upgrade. Therefore i performs a join-a
ki at latest at time `time(�0), andtherefore i 2 J(`time(�0) + e+ 2d), and the lemma again follows by Lemma 7.1. �41

7.5 Propagation of InformationIn this se
tion, we introdu
e the notion of information being in the \mainstream". On
e a suÆ
ientset of nodes know a parti
ular fa
t, then, under appropriate assumptions, this fa
t will never beforgotten by the system as a whole. In parti
ular, we show that this is true about information inthe
map: updates to the
map are propagated. On
e every non-failed node in J(t) updates its
map, then at any time in the future, at time t0 � t + 2d, every non-failed node in J(t0) will beaware of this update.If
m is a CMap and � is a �nite pre�x of � with `time(�) = t � e+ 2d, then we say that
mis mainstream after � provided that the following holds: For every i 2 J(t) su
h that faili does noto

ur in �,
m � `state(�):
map i.Further, we de�ne the following notation: given an exe
ution � and a time t 2 R�0 , we de�ne�(t; �) to be the �nite pre�x of � su
h that `time(�(t; �)) = t and every event that o

urs at time to

urs in �(t; �). As we have already �xed �, for the rest of this paper we use the simpler notationof �(t). We then say that a CMap
m is mainstream after t if it is mainstream after �(t).The �rst lemma shows a basi
 property of mainstream
maps:Lemma 7.4 Assume that � is an exe
ution, t is a time, and
m,
m2 are CMaps. If
m �
m2 ,and
m2 is mainstream after t, then
m is mainstream after t.Proof. Immediate from the de�nition of mainstream. �The following lemma shows that a node's
map is monotone:Lemma 7.5 Assume that �00 is a �nite pre�x of exe
ution �, and that �000 is a pre�x of �00. Assumethat i is a node. Then `state(�000):
map i � `state(�00):
mapi.Proof. In the algorithm,
mapi is only modi�ed by the update fun
tion, and the update fun
tionis monotone; that is, for all CMaps new-
map,
map � update(
map;new-
map). �Lemma 7.6 Assume that � is an exe
ution, and t and t0 are times, and that t � t0. Assume thati is a node, and
m is a CMap.1. If
m � `state(�(t)):
map i, then
m � `state(�(t0)):
map i.2. `state(�(t)):
map i � `state(�(t0)):
map i.Proof. This follows by Lemma 7.5, where �000 = �(t) and �00 = �(t0). �Next, we demonstrate a parti
ular
ase when a
map be
omes mainstream.Lemma 7.7 Let � be an �0-normal exe
ution satisfying (�0,e)-join-
onne
tivity. Let t be a timesu
h that t � `time(�0)+ e. If i 2 J(t+2d), and i does not fail in �(t+d), then `state(�(t)):
map iis mainstream after t+ 2d.Proof. Let
m = `state(�(t)):
map i. To show that
m is mainstream after t + 2d, we need toshow that for all j 2 J(t+2d) su
h that j does not fail in �(t+2d),
m � `state(�(t+2d)):
mapj .Fix any su
h j. By join-
onne
tivity, j 2 world i by time max(t; `time(�0) + e) � t.By time t+ d, i sends a gossip message, msg , to node j su
h that
m � msg :
mapi. By timet+2d, j re
eives the gossip message and updates
mapj withmsg :
map. By the monotoni
ity of theupdate fun
tion, msg :
map � update(
mapj ;msg :
map). Therefore
m � `state(�(t+2d)):
mapj ,as required. �42

�0 + e�0 � e t+ 2d
`state(�(t)):
map i mainstream after t+ 2d

t failijoin-a
ki
Figure 16: Lemma 7.7�0 �0 + e+ 2d re
on(h; h0)it0
m mainstream after t
m mainstream after t0 + 2dt0 + 2dt =)Figure 17: Lemma 7.9The following lemma shows that if two nodes are both in the set J(t+2d), then information ispropagated from one to the other.Lemma 7.8 Let � be an �0-normal exe
ution satisfying (�0,e)-join-
onne
tivity. Assume that tand t0 are times, and t0�2d � t � `time(�0)+e. Assume that i and j are nodes, and i; j 2 J(t+2d).Also, assume that i does not fail in �(t+ 2d), and j does not fail in �(t0).If
m � `state(�(t)):
map i, then
m � `state(�(t0)):
mapj.Proof. By Lemma 7.7, `state(�(t)):
map i is mainstream after t+ 2d. Noti
e that j 2 J(t+ 2d),and therefore, by the de�nition of mainstream, `state(�(t)):
map i � `state(�(t+2d)):
map j. Sin
et+2d � t0, by Lemma 7.6, `state(�(t+2d)):
mapj � `state(�(t0)):
mapj. Putting the inequalitiestogether,
m � `state(�(t0)):
mapj. �We now show that on
e a
map is in the mainstream, after 2d it will always be in the mainstream.First, Lemma 7.9
onsiders a spe
ial
ase: it
onsiders only times t0 after the system has stabilized,when a re
on(h; h0) event o

urs. Se
ond, Lemma 7.10 handles the
ase where the
map is in themainstream at a time in �0. Third, Lemma 7.11 proves the existen
e of a
on�guration with somene
essary spe
ial properties to prove the main theorem. Finally, Lemmas 7.12 and 7.13 prove thegeneral result, as summarized in Lemma 7.14.First, we de�ne a su

essful re
on event as follows: a re
on(�;
) event is su

essful if at sometime afterwards a de
ide(
)k;i event o

urs for some k and i.Lemma 7.9 Let � be an �0-normal exe
ution satisfying: (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 2d)-
on�guration-viability.Assume that t and t0 are times, and that t � `time(�0) + e+2d and t0 � t. Let h and h0 be two
on�gurations, and assume that re
on(h; h0)� o

urs at time t0, and that this is a su

essful re
onevent.If
m is mainstream after t, then
m is mainstream after t0 + 2d.43

e+ 2d
m mainstream after �0 + e+ 4d�0 + e+ 4d�0 + e+ 2dt
m mainstream after t =)Figure 18: Lemma 7.10Proof. Fix t and
m su
h that
m is mainstream after t. We prove the result by indu
tion onthe number of su

essful re
on events that o

ur at or after time t.As the base
ase,
onsider the �rst su

essful re
on(h; h0) event that o

urs in � at a time t0 � t.We need to show that
m is mainstream after t0 + 2d. Therefore �x some j0 2 J(t0 + 2d) su
h thatfailj0 does not o

ur in �(t0 + 2d). We will show that
m � `state(�(t0 + 2d)):
map j0 .Choose some node j 2 members(h) su
h that j does not fail in �(t0+2d); that is, j does not failuntil after t0+2d. Con�guration-viability ensures that su
h a node exists. Noti
e that j 2 J(t), byLemma 7.2. Sin
e
m is mainstream after t, then
m � `state(�):
mapj.Note that
on�guration h is proposed prior to time t, sin
e the re
on(h; h0) event is the �rstsu

essful re
on event at or after time t. Therefore
on�guration h is also proposed prior to timet0. By Lemma 7.1, j 2 J(t0 + 2d). By assumption j0 2 J(t0 + 2d) and does not fail in �(t0 + 2d).Therefore, by Lemma 7.8,
m � `state(�(t0 + 2d)):
mapj0 , as needed.Next we show the indu
tive step. Indu
tively assume the following: if re
on(�; �) is one of the�rst n su

essful re
on events in � that o

ur at time t0 � t, then
m is mainstream after t0.Consider the (n + 1)st su

essful re
on(h; h0) event in � that o

urs at or after t. Assumethis event o

urs at time t0. We need to show that
m is mainstream after t0 + 2d. Therefore�x some j0 2 J(t0 + 2d) su
h that failj0 does not o

ur in �(t0 + 2d). We will show that
m �`state(�(t0 + 2d)):
mapj0 .Let � be the nth su

essful re
on(�; h) event, and assume that � o

urs at time t1. Note thatthe �rst argument of the (n+1)st su

essful re
on event must be the
on�guration proposed by thenth su

essful re
on event.2d-re
on-spa
ing-1 guarantees that t0 � t1 + 2d. The indu
tive hypothesis shows that
m ismainstream after t1 + 2d.Choose some node j 2 members(h) su
h that no failj o

urs in �(t0+2d). Con�guration-viabilityensures that su
h a node exists. By re
on-readiness and Lemma 7.1, j 2 J(t0+2d). By assumptionj0 2 J(t0 + 2d) and j0 does not fail in �(t0 + 2d). By Lemma 7.8,
m � `state(�(t0 + 2d)):
map j0 ,as needed. �The next lemma
onsiders the
ase where a
map is mainstream in �0 or soon after, and showsthat it is mainstream after `time(�0) + e+ 4d.Lemma 7.10 Let � be an �0-normal exe
ution satisfying (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 4d)-
on�guration-viability.Assume that t is a time and that e+ 2d � t � `time(�0) + e+ 2d. If
m is mainstream after t,then
m is mainstream after `time(�0) + e+ 4d.Proof. Consider
on�guration
0. By
on�guration-viability, there exists a read-quorum, R 2read-quorums(
0), and a write-quorum, W 2 write-quorums(
0) su
h that no node in R [W failsby `time(�0) + e+ 4d. 44

Let t1 = `time(�0) + e+ 2d. Consider i0 2 R [W ; i0 does not fail by `time(�0) + e+ 4d. Sin
ei0 performs a join-a
k at time 0, by the assumption that � is an �0-normal exe
ution, and sin
et � e+ 2d, i0 2 J(t). Also note that by Lemma 7.6, i0 2 J(t1).Sin
e
m is mainstream after t,
m � `state(�(t)):
map i0 . Therefore, we know by Lemma 7.6that
m � `state(�(t1)):
map i0 . By Lemma 7.7, we know that `state(�(t1)):
map i0 is mainstreamafter t1 + 2d. Therefore by Lemma 7.4,
m is mainstream after t1 + 2d; that is,
m is mainstreamafter `time(�0) + e+ 4d. �The next lemma shows the existen
e of a
ertain
on�guration, h0, with some parti
ular prop-erties. This will be useful in proving Lemma 7.14.Lemma 7.11 Let � be an �0-normal exe
ution satisfying: (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 4d)-
on�guration-viability.Assume that t and t0 are times. Assume that `time(�0) + e+ 2d � t � t0 � 2d and `time(�0) +e+6d � t0. Assume that
m is mainstream after t. Then there exists a
on�guration h, with indexk, with the following properties:1. members(h) � J(t0).2. For all members i of
on�guration h that do not fail in �(t0),
m � `state(�(t0 � 2d)):
map i.3. No su

essful re
on(h; �) event o

urs in �(t0 � 4d).Proof. There are three di�erent sub-
ases to
onsider.1. No su

essful re
on event o

urs in �(t0 � 4d):Let h =
0. Noti
e that members(h) � J(t), sin
e i0 (the only member of
0)
ompletes ajoin-a
k at time 0 (by assumption on �), and t > `time(�0)+e+2d. This, then, implies Prop-erty 1 by Lemma 7.1. Sin
e i0 2 J(t) and
m is mainstream after t,
m � `state(�(t)):
map i0 .Therefore, sin
e t � t0 � 2d, by Lemma 7.6,
m � `state(�(t0 � 2d)):
map i0 , as required forProperty 2. Property 3 holds trivially.2. A su

essful re
on event o

urs in �(t0 � 4d) after time t:Consider the last su

essful re
on event in � that o

urs in �(t0�4d); let h be the
on�gurationidenti�er appearing as the se
ond argument in this re
on event. Assume that this re
on evento

urs at time tre
. Note that t < tre
 � t0 � 4d. Therefore (sin
e t0 � `time(�0) + e + 6dand t0 � tre
) by Lemma 7.2, members(h) � J(t0), as required for Property 1. Sin
e tre
 > t,Lemma 7.9 shows that
m is mainstream after tre
+2d. Re
all that tre
+2d � t0�2d. By themainstream property, for every member, i, of
on�guration h that does not fail in �(t0 � 2d),
m � `state(�(tre
 + 2d)):
map i; therefore, for ea
h of these members, i, by Lemma 7.6,
m � `state(�(t0 � 2d)):
map i, as required for Property 2. Property 3 holds by the sele
tionof the last su

essful re
on event in �(t0 � 4d).3. Neither Case 1 nor Case 2 holds, that is, a su

essful re
on event o

urs in �(t0� 4d), but nosu
h re
on event o

urs after time t:Consider the last su

essful re
on event in � that o

urs in �(t0�4d); let h be the
on�gurationidenti�er appearing as the se
ond argument in this re
on event. Assume that this re
onevent o

urs at time tre
. Noti
e, then, that tre
 � t. (Otherwise, Case 2 would hold.)Sin
e t � `time(�0) + e + 2d, then by Lemma 7.2, members(h) � J(t). By Lemma 7.6,then, members(h) � J(t0), whi
h implies Property 1. Sin
e
m is mainstream after t (and45

�0 + e+ 2d t0
m mainstream after t0� 2dt
m mainstream after t =)� 4d
Figure 19: Lemma 7.12members(h) � J(t)), for all j 2 members(h) su
h that no failj event o

urs in �(t),
m �`state(�(t)):
mapj . Sin
e t � t0 � 2d, by Lemma 7.6, for all j su
h that no faili event o

ursby time t0 � 2d,
m � `state(�(t0 � 2d)):
mapj , as required for Property 2. Property 3 holdsby the sele
tion of the last su

essful re
on event that o

urs in �(t0 � 4d). �Finally we prove the main lemma of this se
tion, showing that if a
map is mainstream attime t, then the
map is also mainstream at times t0 � t+ 2d. There are two
ases to
onsider: (i)t � `time(�0)+e+2d, and (ii) t < `time(�0)+e+2d. Lemma 7.12 shows the �rst
ase, Lemma 7.13shows the se
ond
ase, and Lemma 7.14 presents the overall
on
lusion.Lemma 7.12 Let � be an �0-normal exe
ution satisfying (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 4d)-
on�guration-viability.Assume that t and t0 are times. Assume that e+ 2d � t � t0 � 2d and `time(�0) + e+ 6d � t0.Additionally assume that t � `time(�0) + e+ 2d. If
m is a mainstream CMap after t, then
m ismainstream after t0.Proof. By assumption, t � `time(�0)+e+2d. Lemma 7.11 shows that there exists a
on�guration,h, with index k with the following three properties:1. members(h) � J(t0).2. For all members i of
on�guration h that do not fail in �(t0),
m � `state(�(t0 � 2d)):
map i.3. No su

essful re
on(h; �) event o

urs in �(t0 � 4d).Con�guration-viability guarantees that some node of
on�guration h does not fail until after thenext
on�guration is installed. No su

essful re
on(h; �) event o

urs in �(t0 � 4d), by Property 3.Therefore some node, j 2 members(h) does not fail in �(t0) (and therefore does not fail in �(t0�d)),by 4d-
on�guration-viability. By Property 1 of h, node j 2 J(t0). Therefore, by Lemma 7.7,`state(�(t0 � 2d)):
mapj is mainstream after t0.Further, we know by Property 2 that
m � `state(�(t0� 2d)):
mapj . Therefore by Lemma 7.4,
m is mainstream after t0. �The following lemma
onsiders the
ase where t < `time(�0) + e+ 2d:Lemma 7.13 Let � be an �0-normal exe
ution satisfying (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 4d)-
on�guration-viability.Assume that t and t0 are times. Assume that e+ 2d � t � t0 � 2d and `time(�0) + e+ 6d � t0.Additionally, assume that t < `time(�0) + e+ 2d. If
m is a mainstream CMap after t, then
m ismainstream after t0. 46

e+ 2d �0 + e+ 2d �0 + e+ 4d � 2d
m mainstream after �0 + e+ 4d
m mainstream after tt t0
m mainstream after t0=)=) Figure 20: Lemma 7.13Proof. By assumption, t < `time(�0) + e+2d. Let t1 = `time(�0) + e+2d. By Lemma 7.10,
mis mainstream after t1+2d. By assumption, t1+2d � t0� 2d, and `time(�0)+ e+2d � t1+2d. ByLemma 7.12, however, we know that sin
e
m is mainstream after t1 + 2d, then
m is mainstreamafter t0. �The following lemma
ombines the previous two lemmas into a single
on
lusion. This lemma isthe main result of this se
tion, and is used throughout the rest of the proof.Lemma 7.14 Let � be an �0-normal exe
ution satisfying (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 4d)-
on�guration-viability.Assume that t and t0 are times. Assume that e+ 2d � t � t0 � 2d and `time(�0) + e+ 6d � t0.If
m is a mainstream CMap after t, then
m is mainstream after t0.Proof. By Lemmas 7.12 and 7.13. �7.6 Upgrade-Ready ViabilityIn this se
tion, we show the relationship between a
on�guration being upgrade-ready, and a
on�gu-ration being viable. In parti
ular, we prove that if an exe
ution � is (�0,e,22d)-
on�guration-viable,then
on�guration
(k) is viable until at least 15d after the upgrade-ready(
(k + 1)) event.The �rst lemma shows that soon after a
on�guration is installed, every node that joined awhile ago learns about the new
on�guration.Lemma 7.15 Let � be an �0-normal exe
ution satisfying: (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; e; 4d)-
on�guration-viability.Assume that t 2 R�0 is a time, and
on�guration
(k) is installed at time t. Then there existsa CMap,
m, su
h that
m(k) 6= ?, and
m is mainstream after max(t; `time(�0) + e) + 2d.Proof. We �rst �nd a node j 2 members(
(k�1)) su
h that j 2 J(max(t; `time(�0)+e)+2d) andj does not fail in �(max(t; `time(�0) + e) + d). Con�guration-viability guarantees that there existsa read-quorum R 2 read-quorums(
(k�1)) and a pre�x �00 of � su
h that
(k) is installed in � andno node in R fails by max(`time(�00); `time(�0) + e) + 4d. Sin
e
on�guration
(k) is installed attime t, we know that t � `time(�00), and therefore no node in R fails by max(t; `time(�0)+ e)+ 4d.Therefore no node in R fails in �(max(t; `time(�0) + e) + d). Choose some node j 2 R.Assume that
on�guration
(k � 1) is proposed at time tre
. We next apply Lemma 7.2 whereh =
(k � 1), t0 = tre
, and t = max(t; `time(�0) + e) + 2d:� max(t; `time(�0)+e)+2d � tre
:
(k�1) is proposed at tre
 � t, sin
e
(k�1) must be proposedprior to
on�guration
(k � 1) being installed, whi
h must o

ur prior to
on�guration
(k)being installed; t � max(t; `time(�0) + e) + 2d.47

� max(t; `time(�0) + e) + 2d � `time(�0) + e+ 2d: Immediate.We therefore
on
lude that members(
(k � 1)) � J(max(t; `time(�0) + e) + 2d). Therefore wehave shown that j 2 members(
(k � 1)), j 2 J(max(t; `time(�0) + e) + 2d), and j does not fail in�(max(t; `time(�0) + e) + d).Sin
e
on�guration
(k) is installed at time t and j 2 members(
(k�1)), `state(�(t)):
map(k)j 6=?, by the de�nition of a
on�guration being installed, and therefore (by Lemma 7.6) `state(�(max(t; `time(�0)+e))):
map(k)j 6= ?. We let
m = `state(�(max(t; `time(�0) + e))):
map(k)j ;
m(k) 6= ?, as re-quired.We next apply Lemma 7.7, where t = max(t; `time(�0) + e) and i = j:� max(t; `time(�0) + e) � `time(�0) + e: Immediate.� j 2 J(max(t; `time(�0) + e) + 2d): Shown above.� j does not fail in �(max(t; `time(�0) + e) + d): Shown above.We therefore
on
lude that `state(�(max(t; `time(�0)+e))):
map i is mainstream after max(t; `time(�0)+e) + 2d, that is,
m is mainstream after max(t; `time(�0) + e) + 2d. �The next lemma shows that soon after smaller
on�gurations are installed, a
on�guration isupgrade-ready.Lemma 7.16 Let � be an �0-normal exe
ution satisfying: (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 4d)-
on�guration-viability.Let
 be a
on�guration with index k, and assume that for all ` � k,
on�guration
(`) isinstalled in � by time t.Then upgrade-ready(k) o

urs in �(max(t; `time(�0) + e) + 6d).Proof. For every
on�guration
(`) with index ` � k, let t` be the time at whi
h
on�guration
(`) is installed. Therefore t � max(ti).We �rst show that for all ` � k, there exists a CMap,
m` su
h that
m`(`) 6= ? and
m` ismainstream after max(t; `time(�0) + e) + 6d. Fix some ` � k.Lemma 7.15, where t = t` and k = `, shows that there exists a CMap,
m`, su
h that
m`(`) 6= ?and
m` is mainstream after time max(t`; `time(�0) + e) + 2d.We next apply Lemma 7.14, where t = max(t`; `time(�0) + e) + 2d and t0 = max(t; `time(�0) +e) + 6d:� max(t`; `time(�0) + e) + 2d � e+ 2d: Immediate.� max(t`; `time(�0) + e) + 2d � max(t; `time(�0) + e) + 6d � 2d: We know that t` � t, and`time(�0) + e+ 2d � `time(�0) + e+ 4d.� max(t; `time(�0) + e) + 6d � `time(�0) + e+ 6d: Immediate.�
m` is mainstream after max(t`; `time(�0) + e) + 2d: Shown above.We therefore
on
lude that
m` is mainstream after max(t; `time(�0)+e)+6d. We have thus shownthat for all ` � k, there exists a CMap,
m` su
h that
m`(`) 6= ? and
m` is mainstream aftermax(t; `time(�0) + e) + 6d.Re
all that upgrade-ready(k) is designated as the �rst event after whi
h (i) all
on�gurationswith index � k have been installed, and (ii) for all ` < k, for all members of
on�guration
(k� 1)48

that do not fail prior to the upgrade event,
map(`) 6= ?. The �rst
omponent o

urs by time t,and therefore by time max(t; `time(�0) + e) + 6d, by assumption.We therefore need to show the se
ond part. Fix some node j 2 members(
(k � 1)) su
h thatj does not fail in �(max(t; `time(�0) + e) + 6d). Fix some ` < k. We apply Lemma 7.2, whereh =
(k � 1), t = max(t; `time(�0) + e) + 6d, and t0 is the time at whi
h
on�guration
(k � 1) isproposed:� max(t; `time(�0) + e) + 6d is � the time at whi
h
on�guration
(k� 1) is proposed:
(k� 1)is proposed prior to time tk�1 (the time at whi
h
on�guration
(k � 1) is installed), whi
his � time t � max(t; `time(�0) + e) + 6d.� max(t; `time(�0) + e) + 6d � `time(�0) + e+ 2d: Immediate.We therefore
on
lude that members(
(k � 1)) � J(max(t; `time(�0) + e) + 6d), and thereforej 2 J(max(t; `time(�0) + e) + 6d).We know from above that
m` is mainstream after max(t; `time(�0) + e) + 6d, whi
h implies,by the de�nition of being mainstream, that
m` � `state(�(max(t; `time(�0) + e) + 6d)):
map(`)j .This in turn implies that `state(�(max(t; `time(�0)+e)+6d)):
map(`)j 6= ?, as required. Thereforeupgrade-ready(k) o

urs in �(max(t; `time(�0) + e) + 6d). �The next lemma dire
tly relates the time when all quorums of
on�guration
(k � 1) fail to thetime at whi
h upgrade-ready(k) o

urs.Lemma 7.17 Let � be an �0-normal exe
ution satisfying: (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 22d)-
on�guration-viability.Let
 be a
on�guration with index k, and assume that the upgrade-ready(k) event o

urs at timet. Then there exists a read-quorum, R, and a write-quorum, W , of
on�guration
(k� 1) su
h thatno node in R [W fails in �(max(t; `time(�0) + e) + 16d).Proof. Let �00 be the shortest pre�x of � su
h that every
on�guration with index � k is installedin �. Let t0 = `time(�00). Noti
e that for all ` � k,
on�guration
(`) is installed in �(t0).Lemma 7.16, where t = t0 and
 and k are as de�ned above, shows that the upgrade-ready(k)event o

urs in �(max(t0; `time(�0) + e) + 6d), that is, t � max(t0; `time(�0) + e) + 6d.Con�guration-viability guarantees that there exists a read-quorum, R, and a write-quorum,W ,of
on�guration
(k � 1) su
h that either (1) no pro
ess in R [W fails in �, or (2) there existsa �nite pre�x, �install of � su
h that for all ` � k,
on�guration
(`) is installed in �install andno pro
ess in R [W fails in � by time max(`time(�install); `time(�0) + e) + 22d. In the former
ase, we are done. We now
onsider the se
ond
ase. Sin
e �00 is the shortest pre�x of � su
hthat every
on�guration with index � k is installed, we know that �00 is a pre�x of �install, andtherefore t0 = `time(�00) � `time(�install). Therefore we know that there exists a read-quorum,R 2 read-quorums(
(k�1)), and a write-quorum, W 2 write-quorums(
(k�1)), su
h that no nodein R [W fails by time max(t0; `time(�0) + e) + 22d.Then, max(t; `time(�0)+e)+16d � max(t0; `time(�0)+e)+22d, and as a result, no node in R[Wfails by time max(t; `time(�0) + e) + 16d. That is, no node in R [W fails in �(max(t; `time(�0) +e) + 16d). �The �nal lemma shows that if no upgrade-ready(k) o

urs in �, then
on�guration
(k�1) is alwaysviable. 49

Lemma 7.18 Let � be an �0-normal exe
ution satisfying: (i) (�0,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, and (iv) (�0; e; 4d)-
on�guration-viability.Let
 be a
on�guration with index k, and assume that no upgrade-ready(k + 1) event o
-
urs in �. Then there exists a read-quorum, R 2 read-quorums(
), and a write-quorum, W 2write-quorums(
), su
h that no node in R [W fails in �.Proof. Assume that for some ` � k+1,
on�guration
(`) is not installed in �. By the de�nitionof
on�guration-viability, then, there exists a read-quorum, R 2 read-quorums(
), and a write-quorum, W 2 write-quorums(
), su
h that no node in R [W fails in �.Assume, instead, that for every ` � k + 1,
on�guration
(`) is installed in �. Then byLemma 7.16, an upgrade-ready(k + 1) event o

urs in �,
ontradi
ting the hypothesis. �7.7 Con�guration-Upgrade Laten
y ResultsIn this se
tion we show that
on�guration-upgrade operations terminate rapidly, and that any ob-solete
on�guration is rapidly removed. In parti
ular, these results hold in exe
utions that in
ludeperiods of bad behavior. The
on�guration-upgrade me
hanism in Rambo does not make theseguarantees. The original Rambo laten
y analysis required the assumption of (�0;1)-
on�guration-viability6 for the entire exe
ution. This is an unrealisti
 assumption in a long-lived dynami
 sys-tem. As a result of the new
on�guration-upgrade me
hanism, we need to assume only bounded
on�guration-viability to ensure liveness.First we state a lemma about
on�guration-upgrade after the system stabilizes and good be-havior resumes.Lemma 7.19 Let � be an �0-normal exe
ution. Let t 2 R�0 be a time. Let i be a node that doesnot fail until after max(t; `time(�0) + d) + 4d.Assume a
fg-upgrade(k)i event o

urs in � at time t. Additionally, assume that for every
on�guration
(`) su
h that upg :
map(`)i 2 C, there exists a read-quorum, R`, and a write-quorum,W`, of
on�guration
(`) su
h that no node in R` [W` fails by time t+ 3d.Then a
fg-upgrade-a
k(k)i event o

urs no later than t+ 4d.Proof. There are two
ases to
onsider.Case 1: t > `time(�0). At time t, node i begins the
on�guration-upgrade, with phase-numberp1 = upg:pnumi. By triggered gossip, node i immediately sends out messages to every nodein world i. Therefore for every
on�guration
(`) su
h that upg :
map(`)i 2 C, every nodej 2 R` [W` re
eives a message by time t+ d.By triggered gossip, then, ea
h of these nodes sends a response with phase-number p1. Ea
hresponse is re
eived by time t+2d, at whi
h point a
fg-upg-query-�x(k)i event o

urs. Nodei then
hooses a new phase-number, p2, and sets upg :pnum i = p2.Immediately, by triggered gossip node i sends out messages to every pro
ess in world i, in
lud-ing every node in R` [W`, for every
on�guration
(`) su
h that upg :
map(`)i 2 C. Again, aresponse is sent by time t+ 3d, and node i re
eives a response from ea
h with phase-numberp2 by time t+4d. Immediately, then, a
fg-upg-query-�x(k) event o

urs. This is followed bya
fg-upgrade-a
k(k), proving our
laim.6Although we have not formally de�ned (�0;1)-
on�guration-viability here, one
an understand it to mean (�0; e)-
on�guration-viability for arbitrarily large e. 50

Case 2: t � `time(�0). At time t, node i begins the
on�guration-upgrade, with phase-numberp1 = upg:pnumi. By o

asional gossip, i sends out messages to every node in world i. There-fore for every
on�guration
(`) su
h that upg :
map(`)i 2 C, every node j 2 R` [W` re
eivesa message by time max(t; `time(�0) + d) + d.By triggered gossip, then, ea
h of these nodes sends a response with phase-number p1. Ea
hresponse is re
eived by time max(t; `time(�0)+ d)+ 2d, at whi
h point a
fg-upg-query-�x(k)ievent o

urs. Node i then
hooses a new phase-number, p2, and sets upg :pnum i = p2.Immediately, by triggered gossip node i sends out messages to every pro
ess in world i, in
lud-ing every node inR`[W`, for every
on�guration
(`) su
h that upg :
map(`)i 2 C. Again, a re-sponse is sent by time max(t; `time(�0)+d)+3d, and node i re
eives a response from ea
h withphase-number p2 by time max(t; `time(�0)) + 4d. Immediately, then, a
fg-upg-query-�x(k)event o

urs. This is followed by a
fg-upgrade-a
k(k), proving our
laim. �Next, we provide a
onditional guarantee that a
on�guration is viable: if for some time t everyearlier
fg-upgrade operation
ompletes rapidly within 4d, then every
on�guration that is extantat time t will remain viable until t+ 3d.We do this in four steps. First, Lemma 7.20 demonstrates that a node with
ertain goodproperties exists. Se
ond, Lemma 7.21 shows that this
ertain node with good properties willbegin an upgrade operation, in
ertain situations. Third, Lemma 7.22 shows that soon after a
on�guration is upgrade-ready(k), some node
ompletes an upgrade operation on
on�guration
(k). Finally, Lemma 7.23 uses these preliminary lemmas to show that under
ertain
onditions,
on�gurations remain viable suÆ
iently long.Lemma 7.20 Let � be an �0-normal exe
ution satisfying (i) (�0, e)-join-
onne
tivity, (ii)(�0; e)-re
on-readiness, (iii) (�0; e)-upgrade-readiness, (iv) (�0; 2d)-re
on-spa
ing-1, (v) (�0; e; 22d)-
on�guration-viability.Assume that an upgrade-ready(k2) event o

urs at time t for some
on�guration
2 and assumethat k2 � 1. Let k1 = k2 � 1, and
1 =
(k1). Then there exists a node i su
h that the followinghold:1. i is a member of
on�guration
1,2. i does not fail in �(max(t; `time(�0) + e+ d) + 10d),3. i 2 J(max(t; `time(�0) + e+ d) + 8d),4. i 2 J(max(t; `time(�0) + e+ 2d)),5. i performs a join-a
k prior to the upgrade-ready(k2) event in �.Proof. Lemma 7.17, applied with
 =
2, k = k2, and t as de�ned above, implies that there existsa read-quorum, R, of
on�guration
1 su
h that no member of R fails in �(max(t; `time(�0) + e) +16d). Then we know that no member of R fails in �(max(t; `time(�0)+ e+ d)+ 14d). We therefore
hoose a node i 2 R � members(
1). We know that i does not fail in �(max(t; `time(�0) + e+ d) +10d). This i satis�es Parts 1 and 2.Let t
1 be the time at whi
h
on�guration
1 is proposed. Noti
e that max(t; `time(�0) + e +2d) � t
1 , be
ause t, the time of the upgrade-ready(k2),
annot be smaller than t
1 , the time at51

whi
h
on�guration
1 is proposed (sin
e an upgrade-ready(k2) event
annot o

ur until after are
on(
1;
2) event, whi
h
annot o

ur until after a re
on(�;
1) event). Therefore, Lemma 7.2,applied where h =
1, t0 = t
1 , and t = max(t; `time(�0) + e+ 2d), guarantees that members(
1) �J(max(t; `time(�0)+e+2d)). Sin
e i 2 members(
1), we know that i 2 J(max(t; `time(�0)+e+2d)),satisfying Part 4.Sin
e max(t; `time(�0) + e + 2d) � max(t; `time(�0) + e + d) + 10d (sin
e `time(�0) + e +2d � `time(�0) + e + 10d), Lemma 7.1, applied where t = max(t; `time(�0) + e + 2d) and t0 =max(t; `time(�0) + e+ d) + 10d, implies that J(max(t; `time(�0) + e+2d)) � J(max(t; `time(�0) +e+ d) + 10d), and thus i 2 J(max(t; `time(�0) + e+ d) + 10d), satisfying Part 3.Finally, noti
e that re
on-readiness requires that i performs a join-a
k prior to the re
on(�;
1)event, and therefore prior to the
fg-upgrade(k2) event. This satis�es Part 5. �The next lemma
laims that when a
on�guration is upgrade-ready, and a node with
ertainproperties (as in Lemma 7.20) exists, then either the
on�guration is removed or an upgradeoperation begins.Lemma 7.21 Let � be an �0-normal exe
ution satisfying (i) (�0, e)-join-
onne
tivity, (ii)(�0; e)-re
on-readiness, (iii) (�0; e)-upgrade-readiness, (iv) (�0; 2d)-re
on-spa
ing-1, (v) (�0; e; 22d)-
on�guration-viability.Assume upgrade-ready(k2) o

urs at time t and k2 � 1. Let k1 = k2 � 1 and
1 =
(k � 1).Further, assume that node i has the following properties:1. i is a member of
on�guration
1,2. i does not fail in �(max(t; `time(�0) + e+ d) + 10d),3. i 2 J(max(t; `time(�0) + e+ d) + 8d),4. i 2 J(max(t; `time(�0) + e+ 2d)),5. i performs a join-a
k prior to the upgrade-ready(k2) event.Let t0 be a time su
h that t � t0 < max(t; `time(�0) + e+ d) + 13d. Let �00 be a pre�x of � su
hthat:1. t0 = `time(�00),2. an upgrade-ready(k2) event is in �00,3. `state(�00):upg :phase i = idle.Then either:1. `state(�(t0)):
map(k1)i = �, or2. i performs a
fg-upgrade(k0)i at time t0, for some k0 � k2.Proof. If `state(�00):
map(k1)i = �, then the
on
lusion holds, sin
e �00 is a pre�x of �(t0):by Lemma 7.6, `state(�(t0)):
map(k1)i = �. Assume, then, that `state(�00):
map(k1)i 6= �. Weexamine in turn the pre
onditions for
fg-upgrade(k0)i just after �00 (from Figure 7):1. :`state(�00):failed i: By Part 2 of the assumption on i, we know that i does not fail in�(max(t; `time(�0) + e + d) + 10d). However, t0 < max(t; `time(�0) + e + d) + 10d, andthus i does not fail in �(t0). Sin
e �00 is a pre�x of �(t0), i does not fail in �00.52

2. `state(�00):status i = a
tive: By Part 5 of the assumption on i we know that i performs ajoin-a
k prior to the upgrade-ready(k2) event.3. `state(�00):upg :phase i = idle: By assumption, this holds.4. 8` 2 N; ` � k2 : `state(�00):
map(`)i 6= ?: It suÆ
es to show that by the point in the exe
utionat whi
h the upgrade-ready(k2) event o

urs, node i has already learned of
on�guration
2 and all
on�gurations with smaller indi
es. Let �000 be the pre�x of � ending in theupgrade-ready(k2) event. Part (ii) of the de�nition of the upgrade-ready(k2) event guaranteesthat: for all ` � k2, for all j 2 members(
1) that do not fail in �000, `state(�000):
map(`)j 6= ?.Noti
e that by Part 1 of the assumption about i, i 2 members(
1) and that by Part 2 of theassumption about i, i does not fail in �000, sin
e `time(�000) = t � max(t; `time(�0) + e + d).Therefore we
an
on
lude by part (ii) that for all ` � k2, `state(�000):
map(`)i 6= ?. Sin
e�000 is a pre�x of �00 (by assumption that upgrade-ready(k2) is in
luded in �00), by Lemma 7.5we know that for all ` � k2, `state(�00):
map(`)i 6= ?, as desired.5. `state(�00):
map(k2)i 2 C: By assumption, `state(�00):
map(k1)i 6= �. Invariant 4.3 then im-plies that `state(�00):
map(k2)i 6= �, sin
e k1 < k2. Part 4, above, shows that `state(�00):
map(k2)i 6=?, thus implying the desired result.6. `state(�00):
map(k1)i 2 C: By assumption, `state(�00):
map(k1)i 6= �. Part 4, above, showsthat `state(�00):
map(k1)i 6= ?, sin
e k1 � k2, thus implying the desired result.Sin
e enabled events o

ur in zero time (by assumption), either the event be
omes disabled, in whi
h
ase `state(�(t0)):
map(k1)i = �, satisfying Part 1 of the
on
lusion, or at time t0 = `time(�00) a
fg-upgrade event for some
on�guration
 with index k0 � k2 o

urs, satisfying Part 2 of the
on
lusion. �The next lemma
onditionally guarantees that soon after a new
on�guration is upgrade-ready, theold
on�guration is removed.Lemma 7.22 Let � be an �0-normal exe
ution satisfying (i) (�0, e)-join-
onne
tivity, (ii)(�0; e)-re
on-readiness, (iii) (�0; e)-upgrade-readiness, (iv) (�0; 2d)-re
on-spa
ing-1, (v) (�0; e; 22d)-
on�guration-viability.Assume that t 2 R�0 is a time su
h that t > `time(�0) + e + 14d. Assume that
1 is a
on�guration, and for some �nite pre�x �00 of �, where t = `time(�00), for some node i 2 J(t) thatdoes not fail in �00, for some index k1, `state(�00):
map(k1)i =
1.Also, we assume the Upgrades-Complete Hypothesis: for every
fg-upgrade(�)j event that o

ursin � at some time tupg < t at some node j 2 J(max(tupg; `time(�0)+e+2d)) where j does not fail in�(max(tupg; `time(�0)+e+d)+4d), a mat
hing
fg-upg-a
k(�)j o

urs by time max(tupg; `time(�0)+e+ d) + 4d.Assume that an upgrade-ready(k1 + 1) event o

urs at time t0 < t � 13d. Let k2 = k1 + 1and
2 =
(k2). Then for some node i0 2 J(max(t0; `time(�0) + e + d) + 8d) that does not fail in�(max(t0; `time(�0) + e+ d) + 10d), `state(�(max(t0; `time(�0) + e+ d) + 8d)):
map(k1)i0 = �.Proof. We �rst identify a node, i0, that is suitable. Then we show that i0
ompletes an upgradeoperation in the alotted time.We apply Lemma 7.20, where t = t0, and therefore
on
lude that there exists a node i0 with thefollowing �ve properties: 53

1. i0 is a member of
on�guration
1,2. i0 does not fail in �(max(t0; `time(�0) + e+ d) + 10d),3. i0 2 J(max(t0; `time(�0) + e+ d) + 8d),4. i0 2 J(max(t0; `time(�0) + e+ 2d)),5. i0 performs a join-a
k prior to the upgrade-ready(k2) event.Noti
e that Part 2 and Part 3 satisfy the �rst two requirements for i0 in the
on
lusion of thislemma. It remains to show that i0 marks
on�guration
1 as � at the appropriate point.We
onsider what happens at time max(t0; `time(�0) + e + d). Let �000 be the pre�x of � thatis the longer of the following two pre�xes: (i) �(`time(�0) + e+ d), or (ii) the shortest pre�x of �that in
ludes the
fg-upgrade(k2) event. Noti
e that `time(�000) = max(t0; `time(�0) + e + d), andthat the
fg-upgrade(k2) event is in �000.If `state(�000)):
map(k1)i0 = �, then the
laim is immediate: Lemma 7.5 implies that `state(�000):
mapi0 �`state(�(max(t0; `time(�0) + e + d) + 8d)):
map i0 , sin
e `time(�000) = max(t0; `time(�0) + e + d) <max(t0; `time(�0)+e+d)+8d. Therefore, if `state(�000):
map(k1)i0 = �, then `state(�(max(t0; `time(�0)+e+ d) + 8d)):
map(k1)i0 = �.We thus assume that `state(�000):
map(k1)i0 6= �, and
onsider what happens at time max(t0; `time(�0)+e+ d). There are now two
ases to
onsider:1. `state(�000):upg :phase i0 = idle or2. `state(�000):upg :phase i0 6= idle.Case 1: Assume that `state(�000):upg :phase i0 = idle. We apply Lemma 7.21, where t = t0, t0 =max(t0; `time(�0) + e+ d), �00 = �000, and i0 is as
hosen above:� t0 � max(t0; `time(�0) + e+ d) < max(t0; `time(�0) + e+ d) + 13d: immediate,� i0 satis�es the
riteria, by the properties of i0 above,� `time(�000) = max(t0; `time(�0) + e+ d) and upgrade-ready(k2) o

urs in �000: by the wayin whi
h �00 was
hosen,� `state(�000):upg :phase i0 = idle: by the
ase assumption.From this lemma, we
on
lude that either:1. `state(�(max(t0; `time(�0) + e+ d))):
map(k1)i0 = �, or2. i0 performs a
fg-upgrade(k0)i0 at time max(t0; `time(�0) + e+ d), for some k0 � k2.In the �rst
ase, where `state(�(max(t0; `time(�0) + e + d))):
map(k1)i0 = �, we are done:Lemma 7.6 implies that `state(�(max(t0; `time(�0) + e+ d) + 8d)):
map(k1)i0 = �. Considerthe se
ond
ase, that is, i0 performs a
fg-upgrade(k0)i0 at time max(t0; `time(�0) + e+ d), forsome k0 � k2.We then apply the Upgrades-Complete Hypothesis, where j = i0 and tupg = t0; noti
e that:� i0 2 J(max(t0; `time(�0) + e+ 2d)): by 4th property of i0,� i0 does not fail in �(max(t0; `time(�0) + e + d) + 4d): by Part 2 of the way in whi
h i0was
hosen, and 54

� max(t0; `time(�0) + e+ d) < t: t0+13d < t, by assumption, and `time(�0) + e+14d < t,by assumption, and therefore max(t0; `time(�0) + e+ d) + 13d < t.Therefore, by the Upgrades-Complete Hypothesis we
on
lude that a
fg-upg-a
k(k0)i0 o

ursby time max(t0; `time(�0)+e+d)+4d. Sin
e k0 � k2, then by the pre
ondition of a
fg-upg-a
koperation we know that `state(�(max(t0; `time(�0)+ e+d)+4d):
map(k1)i0 = �. Lemma 7.6implies that `state(�(max(t0; `time(�0) + e+ d) + 8d):
map(k1)i0 = �, as desired.Case 2: Assume that `state(�000):upg :phase i0 6= idle. For this to o

ur, a
fg-upgrade(k0)i0 eventmust o

ur prior to the upgrade-ready(k2) event in � with no mat
hing
fg-upg-a
k(k0)i0 eventprior to the upgrade-ready(k2) event, where k0 = `state(�00):upg :target i0 . Otherwise, if therewere no ongoing upgrade operation, i0 would be idle. Let t1 be the time at whi
h this earlier
fg-upgrade(k0)i0 operation o

urs.We
an then apply the Upgrades-Complete Hypothesis, where j = i0 and tupg = t1; noti
ethat:� i0 2 J(max(t1; `time(�0) + e+ 2d)): Lemma 7.3, applied where t = t1 and i = i0, showsthat i0 2 J(max(t1; `time(�0) + e+ 2d)).� i0 does not fail in �(max(t1; `time(�0) + e + d) + 4d): By Part 2 of the way in whi
hi0 was
hosen, i0 does not fail in �(max(t0; `time(�0) + e + d) + 10d). Noti
e that t1 �max(t0; `time(�0) + e + d), sin
e the earlier upgrade event o

urs in �000 prior to theupgrade-ready(k2) event. Therefore i0 does not fail in �(max(t1; `time(�0) + e+ d) + 4d).� max(t1; `time(�0)+e+d) < t: Again, noti
e that max(t1; `time(�0)+e+d) � max(t0; `time(�0)+e+ d), sin
e t1 � t0. Also, t0 + 13d < t, by assumption, and `time(�0) + e+ 14d < t, byassumption. Therefore, max(t0; `time(�0)+e+d) < t, implying that max(t1; `time(�0)+e+ d) < t.We
an then
on
lude that a
fg-upgrade-a
k(k0)i0 o

urs in � by time max(t1; `time(�0) +e + d) + 4d � max(t0; `time(�0) + e + d) + 4d. If k0 � k2, then by the pre
ondition of the
fg-upgrade-a
k(k0) a
tion, i0 marks
map(k1) = �, and we are done.Otherwise, we apply Lemma 7.21 to show that another
fg-upgrade operation begins: let t2be the time at whi
h the
fg-upgrade-a
k(k0)i0 o

urs and �2 be the pre�x of � ending in the
fg-upgrade-a
k(k0)i0 event. Noti
e that:� t0 � max(t2; `time(�0) + e+ d): By the way in whi
h the
fg-upgrade(k0) was
hosen, ithas to
omplete no earlier than t0.� max(t2; `time(�0) + e + d) < max(t0; `time(�0) + e + d) + 13d: Above, we showedthat that
fg-upgrade-a
k(k0)i0 o

urs by max(t0; `time(�0) + e + d) + 4d, that is, t2 �max(t1; `time(�0)+e+d)+4d � max(t0; `time(�0)+e+d)+4d, sin
e t1 � t0. Therefore,t2 < max(t0; `time(�0) + e+ d) + 13d. Also, `time(�0) + e+ d < `time(�0) + e+ 14d.Then we apply Lemma 7.21 with t = t0, t0 = max(t2; `time(�0) + e + d), �00 = �2, and i0 as
hosen above:� t0 � max(t2; `time(�0) + e+ d) < max(t0; `time(�0) + e+ d) + 13d: as shown above,� i0 satis�es the
riteria, by the properties of i0 above,� `time(�2) = max(t2; `time(�0) + e+ d) and upgrade-ready(k2) o

urs in �00: by the wayin whi
h �2 was
hosen and the fa
t that the
fg-upgrade-a
k(k0)i0 must
ome after theupgrade-ready(k2) event, 55

� `state(�2):upg :phase i0 = idle: by the e�e
t of the
fg-upg-a
k(k0)i0 event that is the lastevent in �000.We then
on
lude that either:1. `state(�(max(t2; `time(�0) + e+ d))):
map(k1)i0 = �, or2. i0 performs a
fg-upgrade(k00)i0 at time max(t2; `time(�0) + e+ d), for some k00 � k2.Again, if the �rst
ase holds, we are done: sin
e t2 � max(t0; `time(�0) + e + d) + 8d,Lemma 7.6 implies that `state(�(max(t0; `time(�0) + e + d) + 8d)):
map(k1)i0 = �. There-fore, we
an assume that the se
ond part holds, and i0 performs a
fg-upgrade(k00)i0 at timemax(t2; `time(�0) + e+ d), for some k00 � k2.On
e more, we apply the Upgrades-Complete Hypothesis, where j = i0 and tupg = t2; noti
ethat:� i0 2 J(max(t2; `time(�0) + e + 2d)): Re
all that i0 2 J(max(t1; `time(�0) + e + 2d)),above. Sin
e max(t1; `time(�0)+ e+2d) � max(t2; `time(�0)+ e+2d) (i.e., the upgradebegins before it
ompletes), by Lemma 7.1, where t = max(t1; `time(�0)+e+2d) and t0 =max(t2; `time(�0)+e+2d), J(max(t1; `time(�0)+e+2d)) � J(max(t2; `time(�0)+e+2d)),implying that i0 2 J(max(t2; `time(�0) + e+ 2d)).� i0 does not fail in �(max(t2; `time(�0) + e + d) + 4d): By Part 2 of the way in whi
hi0 was
hosen, i0 does not fail in �(max(t0; `time(�0) + e + d) + 10d). Noti
e that t2 �max(t0; `time(�0)+e+d)+4d, as shown above. Therefore max(t2; `time(�0)+e+d)+4d �max(t0; `time(�0) + e+ d) + 8d, and as a result i0 does not fail in �(max(t2; `time(�0) +e+ d) + 4d).� max(t2; `time(�0)+e+d) < t: Again, noti
e that max(t2; `time(�0)+e+d) � max(t0; `time(�0)+e+d)+4d. Also, t0+13d < t, by assumption, and `time(�0)+e+d+13d < t, by assump-tion. Therefore, max(t0; `time(�0) + e+ d) + 13d < t. Therefore, max(t2; `time(�0) + e+d) � max(t0; `time(�0) + e+ d) + 4d < t� 9d, as desired.We
an then
on
lude that a
fg-upgrade-a
k(k00)i0 o

urs in � by time max(t2; `time(�0) +e + d) + 4d � max(t0; `time(�0) + e + d) + 8d. Sin
e k00 � k2, then by the pre
onditionof the
fg-upgrade-a
k(k0) a
tion, i0 marks
map(k1) = �, and Lemma 7.6 implies that`state(�(max(t0; `time(�0) + e+ d) + 8d)):
map(k1)i0 = �. �In the next lemma, we provide a
onditional guarantee that a
on�guration remains viable.Lemma 7.23 Let � be an �0-normal exe
ution satisfying (i) (�0, e)-join-
onne
tivity, (ii)(�0; e)-re
on-readiness, (iii) (�0; e)-upgrade-readiness, (iv) (�0; 2d)-re
on-spa
ing-1, (v) (�0; e; 22d)-
on�guration-viability.Assume that t 2 R�0 is a time su
h that t > `time(�0) + e + 14d. Assume that
1 isa
on�guration, and for some �nite pre�x �00 of �, where t = `time(�00), for some node i 2J(max(t; `time(�0)+e+2d)) that does not fail in �00, for some index k1, `state(�00):
map(k1)i =
1.Also we assume the Upgrades-Complete Hypothesis: for all
fg-upgrade(�)j events that o

ur in� at some time tupg < t at some node j 2 J(max(tupg; `time(�0) + e+2d)) where j does not fail in�(max(tupg; `time(�0)+e+d)+4d, a mat
hing
fg-upg-a
k(�)j o

urs by time max(tupg; `time(�0)+e+ d) + 4d. 56

Then there exists a read-quorum, R 2 read-quorums(
1), and a write-quorum, W 2 write-quorums(
1),su
h that no node in R [W fails in �(t+ 3d).Proof. Let k2 = k1 + 1, and let
2 =
(k2). First,
onsider the
ase where no upgrade-ready(k2)event o

urs in �. We apply Lemma 7.18, where
 =
1 and k = k1; this implies, then, that thereexists a read-quorum, R 2 read-quorums(
1), and a write-quorum, W 2 write-quorums(
1), su
hthat no node in R [W fails in �.Next,
onsider the
ase where an upgrade-ready(k2) event o

urs in �. Let t0 be the time atwhi
h the upgrade-ready(k2) event o

urs. We
laim that upgrade-ready(k2) o

urs no earlier thant� 13d. That is, t0 + 13d � t.Assume, in
ontradi
tion, that t0 + 13d < t. We now apply Lemma 7.22 to
on
lude that thereexists a node i0 2 J(max(t0; `time(�0) + e+ d) + 8d) that does not fail in �(max(t0; `time(�0) + e+d) + 10d) su
h that `state(�(max(t0; `time(�0) + e+ d) + 8d)):
map(k1)i0 = �.We now show that the information about
on�guration
1's removal is propagated from node i0to node i. That is, we show the following:Claim: `state(�00):
map(k1)i = �.Proof of
laim: We do this in three steps. First, we show that `state(�(max(t0; `time(�0) +e + d) + 8d)):
map i0 is mainstream after max(t0; `time(�0) + e + d) + 10d. Se
ond, we show that`state(�(max(t0; `time(�0)+ e+d)+8d)):
mapi0 is mainstream after t�d. Third, we
on
lude that`state(�00):
map(k1)i = �.Step 1: We already know that i0 2 J(max(t0; `time(�0) + e + d) + 8d), and does not fail in�(max(t0; `time(�0) + e+ d) + 10d). We then apply Lemma 7.7, where t = max(t0; `time(�0) + e+d) + 8d, and i = i0:� max(t0; `time(�0) + e+ d) + 8d � `time(�0) + e: Immediate.� i0 2 J(max(t0; `time(�0) + e+ d) + 8d+2d): i0 2 J(max(t0; `time(�0) + e+ d) + 8d), as shownabove, therefore this follow from Lemma 7.1, where t = max(t0; `time(�0) + e + d) + 8d andt0 = max(t0; `time(�0) + e+ d) + 10d.� i0 does not fail in �(max(t0; `time(�0)+e+d)+8d+d), sin
e i0 does not fail in �(max(t0; `time(�0)+e+ d) + 8d+ 2d) as shown above.Therefore we
an
on
lude that `state(�(max(t0; `time(�0) + e + d) + 8d)):
map i0 is mainstreamafter max(t; `time(�0) + e+ d) + 10d.Step 2: We have assumed above that t0 < t � 13d, that is, t0 + 10d < t � d � 2d. Also,we have assumed that `time(�0) + e + 14d < t, that is, `time(�0) + e + d + 10d < t � d � 2d.Therefore, max(t0; `time(�0) + e + d) + 10d < t � 3d. We now apply Lemma 7.14, where t =max(t0; `time(�0)+e+d)+10d, t0 = t�d, and
m = `state(�(max(t0; `time(�0)+e+d)+8d)):
mapi0 :� e+ 2d � max(t0; `time(�0) + e+ d) + 10d,� max(t0; `time(�0) + e+ d) + 10d � t� 3d,� `state(�(max(t0; `time(�0) + e+ d) + 8d)):
map i0 is mainstream after max(t; `time(�0) + e+d) + 10d.We therefore
on
lude that `state(�(max(t0; `time(�0) + e + d) + 8d)):
map i0 is mainstream aftert� d.Step 3: Noti
e, then, that by assumption i 2 J(t) and i does not fail in �(t � d). Thereforeby the de�nition of mainstream, `state(�(max(t0; `time(�0) + e + d) + 8d)):
map i0 � `state(�(t �57

d)):
map i. Lemma 7.6 then implies that `state(�(t� d)):
map i � `state(�00):
map i, sin
e �(t� d)is a pre�x of �00. Therefore, `state(�(max(t0; `time(�0) + e+ d) + 8d)):
map i0 � `state(�00):
map i.Sin
e `state(�(max(t0; `time(�0) + e+ d) + 8d)):
map(k1)i0 = � (as shown above), this means that`state(�00):
map(k1)i = �, as
laimed above,
on
luding Step 3.This
laim that `state(�00):
map(k1)i = �, though, leads to a
ontradi
tion: by assumption ofthis lemma, `state(�00):
map(k1)i =
1. Therefore, we
on
lude that our assumption that t0 < t�13dis in
orre
t: that is, we must have t0 � t� 13d. That is, we have shown that the upgrade-ready(k2)event o

urs at most 13d prior to time t.We now apply Lemma 7.17, where
 =
2, k = k2, and t = t0, to
on
lude that there exists aread-quorum, R, and a write-quorum, W , of
on�guration
1 su
h that no node in R [W fails in�(max(t0; `time(�0) + e) + 16d). Above we showed that t0 + 13d � t, therefore t0 + 16d � t + 3d,whi
h implies that max(t0; `time(�0) + e) + 16d � t + 3d. Therefore, we
an
on
lude that thereexists a read-quorum, R, and a write-quorum, W , of
on�guration
1 su
h that no node in R [Wfails in �(t+ 3d). �The next two lemmas
laim that every
on�guration-upgrade operation
ompletes soon after itbegins, or soon after the network stabilizes. The �rst lemma handles the
ase where the upgradebegins before the network stabilizes, or during stabilization. The se
ond lemma handles the general
ase, for all t.Lemma 7.24 Let � be an �0-normal exe
ution satisfying: (i) (�0, e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, (iv) (�0; e; 22d)-
on�guration-viability.Assume that t 2 R�0 is a time su
h that t � `time(�0) + e + 14d, and that a
fg-upgrade(k)io

urs at time t at node i. Assume that node i 2 J(t) and that i does not fail in �(max(t; `time(�0)+d) + 4d).Then a
fg-upg-a
k(k)i o

urs no later than time max(t; `time(�0) + d) + 4d.Proof. Let
 be the
on�guration-upgrade operation asso
iated with the
fg-upgrade(k) a
tion.Lemma 7.19 shows that proving the following is suÆ
ient to prove the lemma: for every
on�gura-tion in removal-set(
) there exists a read-quorum, R and a write-quorum, W , su
h that no nodein R [W fail by time max(t; `time(�0) + d) + 3d.Consider any
on�guration,
1 with index k1 in removal-set(
). If t1 is the time at whi
h
on�guration
(k1 + 1) is installed,
on�guration-viability ensures that
on�guration
1 does notfail until max(t1; `time(�0) + e) + 22d. Noti
e that `time(�0) + e + 22d > t + 3d, sin
e t �`time(�0) + e + 14d. Therefore, this guarantees that there exists a read-quorum, R, and a write-quorum, W for
on�guration
1 su
h that no node in R[W fails until after `time(�0) + e+ 22d >max(t; `time(�0) + d) + 3d. �Lemma 7.25 Let � be an �0-normal exe
ution satisfying: (i)(�0, e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, (iv) (�0; e; 22d)-
on�guration-viability.Assume that t 2 R�0 is a time, and that a
fg-upgrade(k)i o

urs in � at time t at node i.Assume that node i 2 J(t) and that i does not fail in �(max(t; `time(�0) + e+ d) + 4d).Then a
fg-upg-a
k(k)i o

urs no later than time max(t; `time(�0) + e+ d) + 4d.Proof. We prove this lemma by proving a stronger statement by strong indu
tion on the numberof
fg-upgrade events in �: if a
fg-upgrade(�)j event o

urs in � at some time tupg � t at somenode j 2 J(tupg), and j does not fail in �(max(tupg; `time(�0) + e + d) + 4d), then a mat
hing
fg-upg-a
k(�)j o

urs no later than time max(tupg; `time(�0) + e+ d) + 4d.58

As this is strong indu
tion, we now examine the indu
tive step. Consider
on�guration-upgrade
, the k + 1st upgrade operation in � that o

urs at time tupg � t at node j 2 J(t) that doesnot fail in �(max(tupg; `time(�0) + e + d) + 4d). Assume, indu
tively, that if
0 is one of the�rst k upgrade operations that o

urs at time t0 � t at some node j0 2 J(t0) that does not failin �(max(t0; `time(�0) + e + d) + 4d), then a mat
hing
fg-upg-a
k(�) o

urs no later than timemax(t0; `time(�0) + e+ d) + 4d. There are two
ases to
onsider.Case 1: tupg � `time(�0) + e+ 14d.Re
all that the
fg-upgrade event o

urs at node j 2 J(tupg) where j does not fail in�(max(tupg; `time(�0)+e+d)+4d). Lemma 7.24 shows that a
fg-upg-a
k(k)j o

urs by timemax(tupg; `time(�0) + d) + 4d � max(tupg; `time(�0) + e+ d) + 4d.Case 2: tupg > `time(�0) + e+ 14d.Lemma 7.19 shows that proving the following is suÆ
ient to prove the lemma: for every
on�guration in removal-set(
) there exists a read-quorum, R and a write-quorum, W , su
hthat no node in R [W fails in �(max(tupg; `time(�0) + d) + 3d). Let �00 be the pre�x of �ending with the
fg-upgrade event
. Fix some
on�guration
 2 removal-set(
) with indexk; that is, `state(�00):
map(k)j =
. We now apply Lemma 7.23, where
1 =
, k1 = k, �00 isas just de�ned, and t = tupg:� tupg > `time(�00) + e+ 14d.� tupg = `time(�00).� `state(�00):
map(k)j =
, sin
e
 2 removal-set(
) and �00 is the exe
ution ending withthe event
.� j 2 J(max(tupg; `time(�0) + e+ 2d)), sin
e j 2 J(tupg) and tupg > `time(�0) + e+ 14d.� Upgrades-Complete Hypothesis: for every
fg-upgrade(�)j event that o

urs in � atsome time t0 < tupg at some node j0 2 J(max(tupg; `time(�0) + e + 2d)) where j0 doesnot fail in �(max(tupg; `time(�0) + e+ d) + 4d), a mat
hing
fg-upgradej0 o

urs by timemax(tupg; `time(�0) + e+ d) + 4d: this is the indu
tive hypothesis, sin
e any
fg-upgradeo

uring at time t0 < tupg must be one of the �rst k upgrade events.Therefore, we
on
lude that there exists a read-quorum, R 2 read-quorums(
), and a write-quorum, W 2 write-quorums(
), su
h that no node in R [W fails in �(t+ 3d). Sin
e this istrue for all
 2 removal-set(
), this then shows the desired result. �We next present two
orollaries that follow from these lemmas. First, we present the un
onditionalversion of Lemma 7.23:Corollary 7.26 Let � be an �0-normal exe
ution satisfying (i) (�0, e)-join-
onne
tivity, (ii)(�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, (iv) (�0; e; 22d)-
on�guration-viability.Assume that t 2 R�0 is a time. Assume that
 is a
on�guration, and for some �nite pre�x�00 of � where t = `time(�00), some node i 2 J(t) that does not fail in �00, for some index k,`state(�00):
map(k)i =
.Then there exists a read-quorum, R, and a write-quorum, W , su
h that no node in R[W failsin �(max(t; `time(�0) + e+ d) + 3d). 59

Proof. If t > `time(�0) + e + 14d, then we show that the result follows from Lemma 7.25 andLemma 7.23. We apply Lemma 7.25 where
1 =
, k1 = k: noti
e that Lemma 7.23 assumes that:� t > `time(�0) + e+ 14d: By assumption.� t = `time(�00): By assumption.� `state(�00):
map(k)i =
: By assumption.� i 2 J(max(t; `time(�0) + e+ 2d)): t > `time(�0) + e+ 14d.� i does not fail in �00: By assumption.� Upgrade-Completes Hypothesis: Fix some
fg-upgrade(�)j event that o

urs at time tupg < tat node j 2 J(max(tupg; `time(�0) + e+ 2d) where j does not fail in �(max(tupg; `time(�0) +e + d) + 4d). We apply Lemma 7.25, where t = tupg and i = j. (Noti
e that j 2 J(tupg) byLemma 7.1.) We therefore
on
lude that a
fg-upgrade(�)j o

urs no later than max(tupg; `time(�0)+e+ d) + 4d, as required by the
on
lusion of the Upgrade-Completes Hypothesis.We thus
on
lude that there exists a read-quorum, R 2 read-quorums(
) and a write-quorum,W 2 write-quorums(
) su
h that no node in R[W fails in �(t+3d). Sin
e t > `time(�0)+ e+14d,this implies that no node in R [W fails in �(max(t; `time(�0) + e+ d) + 3d).Alternatively, if t � `time(�0) + e + 14d,
on�guration-viability guarantees that there exists aread-quorum, R, and a write-quorum,W , su
h that no node in R[W fails in �(`time(�0)+e+22d),and again the result follows. �The se
ond
orollary guarantees the liveness of the system; that is, the following
orollary showsthat read and write operations always terminate eventually:Corollary 7.27 Let � be an �0-normal exe
ution satisfying (i) (�0, e)-join-
onne
tivity, (ii)(�0; e)-re
on-readiness, (iii) (�0; 2d)-re
on-spa
ing-1, (iv) (�0; e; 22d)-
on�guration-viability.Assume that t 2 R�0. Assume that at time t, for some i 2 J(t) that does not fail in �7, a readior writei o

urs in �. Then the operation eventually
ompletes.Proof. The read or write operation
ompletes if ea
h phase of the operation
ompletes. Let bethe readi, writei, query-�xi, or re
vi a
tion that sets op:
map to
map, beginning the phase. Ea
hphase
ompletes when for all ` : op:
map(`)i 2 C, i has sent a gossip message to an appropriatequorum of nodes in
(`), and re
eived a response. The only way an operation
an fail to terminate,then, is if there does not exist a non-failed read-quorum or a write-quorum of some
on�gurationin op:
map .Assume that
 is a
on�guration with index k su
h that op:
map(k)i is set to
 at sometime t0 after , and before the phase
ompletes. Then for some �00 where t0 = `time(�00),`state(�00):
map(k)i =
, sin
e op:
map is set by
opying a trun
ated version of
mapi. By Corol-lary 7.26, there exists a read-quorum, R, and a write-quorum, W , su
h that no node in R[W failsin �(max(t; `time(�0)+e+d)+3d). No later than time max(t; `time(�0)+e+d)+d, node i sends agossip message to every node in R[W . By time max(t; `time(�0)+e+d)+2d the message is re
eivedby every node in R[W , and ea
h node sends a response to i. By time max(t; `time(�0)+e+d)+3d,node i re
eives the response, and R[W � a

. Therefore, for all
on�gurations the read and writequorums survive long enough, and so the phase
ompletes. �7More spe
i�
ally, we are assuming that i does not fail until after the operation terminates; sin
e we do not herebound how long the operation may take, we instead assume that i does not fail in �. Obviously i failing after theoperation
ompletes has no e�e
t on the operation
ompleting.60

7.8 Read-Write Laten
y ResultsIn this se
tion we state and prove the main result of the laten
y analysis: if an exe
ution
ontainsa period of time of good behavior, and if this se
tion of the exe
utions is 22d-
on�guration-viable,then all read and write operations terminate, and terminate within 8d. Noti
e that in the originalRambo paper, a similar result required the stronger assumption of 1-
on�guration-viability , anarbitrarily unbounded failure assumption, depending on events earlier in the exe
ution. Here thereis no dependen
y on earlier events: the algorithm is guaranteed to stabilize rapidly, as soon as thenetwork stabilizes.We need one more lemma. This lemma shows that on
e a report(
) a
tion o

urs for some
on�guration with index k, then soon every node has set
map(`) 6= ?, for all ` � k. This willallow us to show that if a read or write operation begins long enough after a
ertain report(
)operation, then it
annot be interrupted by learning about new
on�gurations with smaller indi
es.Lemma 7.28 Let � be an �0-normal exe
ution satisfying: (i) (�,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) 6d-re
on-spa
ing, (iv) (�0; e; 4d)-
on�guration-viability.Assume that �
ontains de
ide events for in�nitely many
on�gurations. Let ` be a
on�gurationindex. Let
1 be the
on�guration with index `, and
2 be the
on�guration with index `+ 1.Let i be the node at whi
h the �rst re
on(
1;
2) event, �, o

urs. Let t be the time at whi
h thereport(
1)i event, �, o

urs.Then there exists a CMap,
m, su
h that:1.
m(`) 6= ?, and2.
m is mainstream after max(t; `time(�0) + e+ d) + 6d.Proof. There are two
ases to
onsider. In ea
h
ase, we �rst demonstrate an appropriate
m:we identify a node that performs a report(
1) and does not fail too soon. We then show that the
map of that node is mainstream after max(t; `time(�0) + e+ d) + 6d.Case 1: re
on(
1;
2)i o

urs at some time � `time(�0) + e+ 2d.In this
ase, we use the Re
on-Spa
ing-2 assumption to identify a node with an appropriate
map, and then use
on�guration-viability to show that this node survives long enough forits
map to be
ome mainstream after `time(�0) + e+ 4d, whi
h then allows us to show thatits
map is mainstream after max(t; `time(�0) + e+ d) + 6d.By the Re
on-Spa
ing-2 assumption, there exists a write-quorum, W 2 write-quorums(
1),su
h that for every node j 2 W , a report(
1)j o

urs in � prior to �, the re
on event thatproposes
on�guration
2. By
on�guration-viability, there exists some node j 2W that doesnot fail by time `time(�0)+ e+4d, sin
e there exists some read-quorum, R, that does not failby time `time(�0) + e+ 4d, and by assumption R \W 6= ;.We now show that
mapj satis�es Property 1 after `time(�0) + e+ 2d. Noti
e that:`state(�(time(�))):
map(`)j 6= ?;sin
e the report a
tion noti�es j of the
on�guration
1 prior to �. By assumption we know thattime(�) � `time(�0)+e+2d. Therefore we know that `state(�(`time(�0)+e+2d)):
map j 6= ?.Let
m = `state(�(`time(�0) + e+ 2d)):
map j. We know, then, that
m(`) 6= ?, as desired.Next we show that
m is mainstream after `time(�0) + e+ 4d. We apply Lemma 7.7, wherei = j, t = `time(�0) + e+ 2d: 61

� j 2 J(`time(�0) + e + 4d): If ` = 0, then j = i0 and we have, by assumption, that i0performs a join-a
ki0 at time 0, immediately implying the statement by the de�nition ofJ .Otherwise, we apply Lemma 7.2, where h =
1, t0 = time(re
on(
(` � 1);
1)), andt = `time(�0) + e + 2d. Noti
e that `time(�0) + e+ 2d � time(re
on(
(` � 1);
1)) sin
e`time(�0) + e + 2d � time(�), and time(�) � time(re
on(
(` � 1);
1)). We therefore
on
lude that members(
1) � J(`time(�0) + e + 2d). In parti
ular, this means thatj 2 J(`time(�0) + e+2d). Next we apply Lemma 7.1, where t = `time(�0) + e+ 2d andt0 = `time(�0) + e+ 4d to see that j 2 J(`time(�0) + e+ 4d).� `time(�0) + e+ 2d � `time(�0) + e: Immediate.� j does not fail in �(`time(�0) + e+3d): as shown above j does not fail in �(`time(�0) +e+ 4d), by
hoi
e of j and
on�guration-viability.We then
on
lude, sin
e
m = `state(�(`time(�0) + e + 2d)):
map j , that
m is mainstreamafter `time(�0) + e+ 4d.We next apply Lemma 7.14, where t = `time(�0)+ e+4d, t0 = max(t; `time(�0)+ e+d)+6d,and
m is as de�ned above:� e+ 2d � `time(�0) + e+ 4d: Immediate.� `time(�0) + e+ 4d � max(t; `time(�0) + e+ d) + 6d� 2d: Immediate.�
m is mainstream after `time(�0) + e+ 4d: As shown above.Therefore, we
on
lude that
m is mainstream after max(t; `time(�0)+e+d)+6d, as desired.Case 2: re
on(
1;
2)i o

urs at some time > `time(�0) + e+ 2d.We �rst noti
e that i has been noti�ed of
on�guration
1 and then show that the
map of iis mainstream after max(t; `time(�0) + e+ d) + 6d.Noti
e that `state(�(t)):
map(`)i 6= ?, sin
e the report(
1)i event noti�es i of
on�guration
1.We now apply Lemma 7.7, where i is as de�ned above and t = max(t; `time(�0) + e+ d), toshow that
m is mainstream after max(t; `time(�0) + e+ d) + 2d:� max(t; `time(�0) + e+ d) + 2d � `time(�0) + e: Immediate.� i 2 J(max(t; `time(�0) + e + d) + 2d): We apply Lemma 7.2, where h =
1, t0 is thetime at whi
h
1 is proposed, and t = max(t; `time(�0) + e + d) + 2d. Noti
e thatmax(t; `time(�0)+ e+d)+2d is no earlier than the time at whi
h
1 is proposed, sin
e areport(
1) o

urs prior to max(t; `time(�0)+e+d)+2d. Also, max(t; `time(�0)+e+d)+2d � `time(�0)+e+2d. Therefore we
on
lude that members(
1) � J(max(t; `time(�0)+e+ d) + 2d). This implies that i 2 J(max(t; `time(�0) + e+ d) + 2d).� i does not fail in �(max(t; `time(�0) + e+ d) + d): We know that i does not fail prior toevent �, that is, the re
on(
1;
2)i event. By Re
on-Spa
ing-1, we know that time(�) �t+6d. By assumption of this
ase, we know that time(�) > `time(�0)+e+2d. Thereforei does not fail in �(max(t; `time(�0) + e+ d) + d).We therefore
on
lude that
m is mainstream after max(t; `time(�0) + e+ d) + 2d.We next apply Lemma 7.14, where t = max(t; `time(�0)+ e+d)+2d, t0 = max(t; `time(�0)+e+ d) + 6d, and
m is as de�ned above: 62

� e+ 2d � max(t; `time(�0) + e+ d) + 2d: Immediate.� max(t; `time(�0) + e+ d) + 2d � max(t; `time(�0) + e+ d) + 6d� 2d: Immediate.�
m is mainstream after time(�`): As shown above.Therefore, we
on
lude that
m is mainstream after max(t; `time(�0)+e+d)+6d, as desired.�We �nally prove the main theorem, showing that read and write operations terminate rapidly.This result requires 12d+�-re
on-spa
ing, and is similar to Theorem 8.17 from [13℄. This earliertheorem states that in a normal, steady-state
ase, with good environmental behavior, read andwrite operations terminate within time 8d. Although the following theorem allows for more
ompli-
ated behavior, deviating from the assumption of good environmental assumptions, read and writeoperations still
omplete rapidly.Theorem 7.29 Let � be an �0-normal exe
ution satisfying: (i) (�,e)-join-
onne
tivity, (ii) (�0; e)-re
on-readiness, (iii) 12d+�-re
on-spa
ing, (iv) (�0; e; 22d)-
on�guration-viability.Let t > `time(�0)+ e+17d, and assume a read or write operation starts at time t at some nodei. Assume i 2 J(t+8d), and does not fail until the read or write operation
ompletes. Also, assumethat �
ontains de
ide events for in�nitely many
on�gurations. Then node i
ompletes the read orwrite operation by time t+ 8d.Proof. Let
0;
1;
2; : : : denote the in�nite sequen
e of su

essive
on�gurations de
ided upon in�; by in�nite re
on�guration, this sequen
e exists. For ea
h k � 0, let �k be the �rst re
on(
k;
k+1)�event in �, let ik be the lo
ation at whi
h this o

urs, and let �k be the
orresponding, pre
ed-ing report(
k)ik event. (The spe
ial
ase of this notation for k = 0 is
onsistent with our usageelsewhere.)We show that the time for ea
h phase of the read or write operation is � 4d { this will yield thebound we need. Consider one of the two phases, and let be the readi, writei or query-�xi eventthat begins the phase.We
laim that time() > time(�0) + 8d, that is, that o

urs more than 8d time after thereport(0)i0 event: We have that time() � t, and t > time(join-a
ki) + 8d by assumption thati 2 J(t + 8d). Also, time(join-a
ki) � time(join-a
ki0). Furthermore, time(join-a
ki0) � time(�0),that is, when join-a
ki0 o

urs, report(0)i0 o

urs with no time passage. Putting these inequalitiestogether we see that time() > time(�0) + 8d.Fix k to be the largest number su
h that time() > time(�k) + 8d. The
laim in the pre
edingparagraph shows that su
h k exists.Next, we show that within zero time of o

urring,
map(`)i 6= ? for all ` � k. It is at thispoint that the proof diverges from that of Lemma 8.17 from [12℄.For the purposes of the next two lemmas, �x any ` � k. We apply Lemma 7.28, where ` is as�xed above, t = time(�`), � = �`, � = �`,
1 =
`,and i = i`. We therefore
on
lude that thereexists a CMap
m su
h that:1.
m(`) 6= ?, and2.
m is mainstream after max(time(�`); `time(�0) + e+ d) + 6d.We next apply Lemma 7.14, where t = max(time(�`); `time(�0)+ e+d)+6d, t0 = time(), and
m is as above, to show that
m is mainstream after time():63

� e+ 2d � max(time(�`); `time(�0) + e+ d) + 6d: Immediate.� max(time(�`); `time(�0) + e + d) + 6d � time() � 2d: By the way in whi
h k is
hosen weknow that time(�k) + 8d < time(). Also, time(�`) � time(�k): either ` = k, or �` pre
edes�` whi
h pre
edes �k. By assumption we know that `time(�0) + e+8d < t, and t � time().�
m is mainstream after max(time(�`); `time(�0) + e) + 6d: As shown above.Therefore, we
on
lude that
m is mainstream after time(). We know that i 2 J(t), and t �time(), so by Lemma 7.1, i 2 J(time()). Also, i does not fail until the read or write operation
ompletes, and therefore either the read or write operation
ompletes at time() (in whi
h
ase wehave proved the desired bound) or i does not fail in �(time()). Therefore by de�nition of a CMapbeing mainstream, if
m is mainstream after time(), then
m � `state(�(time())):
map i.Having shown this for �xed ` � k, we now know that for all ` � k there exists some CMap,
m, su
h that
m(`) 6= ? and
m is mainstream after time(), this implies that for all ` � k,`state(�(time())):
map(`)i 6= ?. Therefore we have shown that within zero time of o

urring,
map(`)i 6= ? for all ` � k.Now, by
hoi
e of k, we know that time() � time(�k+1) + 8d. The Re
on-Spa
ing
onditionimplies that time(�k+1) (the �rst re
on event that requests the
reation of the (k+2)nd
on�gura-tion) is > time(�k+1) + 12d. Therefore, for an interval of time of length > 4d after , the largestindex of any
on�guration that appears anywhere in the system is k + 1. This implies that thephase of the read or write operation that starts with
ompletes with at most one additional delay(of 2d) for learning about a new
on�guration. This yields a total time of at most 4d for the phase,as
laimed.Finally, by Corollary 7.27, the operation eventually terminates, whi
h guarantees that ever
on�guration in op:
map remains viable for long enough. �This shows that assuming (�0; e; 22d)-
on�guration-viability is suÆ
ient to guarantee that readand write operations terminate qui
kly. As long as the re
on�guration algorithm
an guaranteethis level of viability, the Rambo II algorithm will
ontinue to make progress, regardless of any badbehavior the network may experien
e. Further, while 22d may seem a long period of time to ensureviability, it must be remembered that d is typi
ally a small interval: we have been assuming thatd is a single message delay in the network. Note that simply de
iding on a new
on�guration toinstall might take many intervals of d (in [12℄, it is bounded by 11d). Also, this 22d bound is fairly
onservative: by making stronger assumptions as to who begins
on�guration-upgrade operations,and how gossip messages propagate information about
ompleted
on�guration-upgrade operations,it is probably possible to improve this bound. In this paper we are primarily interested in the fa
tthat it is a
onstant time bound.8 Implementation and Preliminary EvaluationMusial and Shvartsman [16℄ have developed a prototype distributed implementation that in
or-porates both the original Rambo
on�guration management algorithm [12℄ and the new RamboII algorithm presented in this paper. The system was developed by manually translating the In-put/Output Automata spe
i�
ation to Java
ode. To mitigate the introdu
tion of errors duringtranslation, the implementers followed a set of pre
ise rules, similar to [2℄, that guided the deriva-tion of Java
ode from Input/Output Automata notation. The system is undergoing re�nement andtuning, however an initial evaluation of the performan
e of the two algorithms has been performedin a lo
al-area setting. 64

0

5

10

15

20

25

30

0.0 5.0 10.0 15.0 20.0 25.0

Number of reconfigurations per one gossip period
(a)

L
at

en
cy

RAMBO

RAMBO II

Figure 21: Preliminary empiri
al evaluation of the average operation laten
y (measured as thenumber of gossip intervals), as a fun
tion of re
on�guration frequen
y, measured as number ofre
on�gurations per one re
on�guration period.The platform
onsists of a Beowulf
luster with 13 ma
hines running Linux (Red Hat 7.1).The ma
hines are Pentium pro
essors in the range from 90 MHz to 900 MHz, inter
onne
ted viaa 100 Mbps Ethernet swit
h. The implementation of the two algorithms shares most of the
odeand all low-level routines. Any di�eren
e in performan
e is tra
eable to the distin
t
on�gurationmanagement dis
ipline used by ea
h algorithm.The ma
hines vary signi�
antly in speed. Given several very slow ma
hines, Musial and Shvarts-man do not evaluate absolute performan
e and instead fo
us initially on
omparing the two algo-rithms.The preliminary results in Figure 21 show the average laten
y of read/write operations as thefrequen
y of re
on�gurations grows from about two to twenty re
on�gurations per one gossip pe-riod. In order to handle su
h frequent re
on�gurations, a large gossip interval (8 se
onds) is used.This interval is mu
h larger than the round-trip message delay, thus redu
ing the e�e
ts of net-work
ongestion en
ountered when re
on�guring very frequently. The results show that the overalllaten
y of read/write operations for the new algorithm progressively improve, as the frequen
yof re
on�guration in
reases. As expe
ted, the de
rease in laten
y be
omes substantial for burstyre
on�gurations (at 20 re
on�gurations per gossip interval). For less frequent re
on�gurations thelaten
y is similar, at about 4 gossip intervals depending on the settings (not shown). This is ex-pe
ted and
onsistent with our analysis, sin
e the two algorithms are essentially identi
al when
maps
ontain one or two
on�gurations. Figure 22 shows the average number of
on�gurationsin
maps as a fun
tion of re
on�guration frequen
y. This further explains the di�eren
e in perfor-man
e, sin
e the average number of
on�gurations in
maps is lower in the new algorithm as thefrequen
y of re
on�gurations in
reases.Finally noti
e that the modest number of ma
hines used in this study favored the original algo-65

��
����
��

��� ��� ���� ���� ���� ��������	
 ��
	
������
������ �	
 ��	 ������ �	
������
�������� ! "#$%&"#$%& ''

Figure 22: Preliminary empiri
al evaluation of the average number of
on�gurations in
map's, asa fun
tion of re
on�guration frequen
y, measured as number of re
on�gurations per one re
on�gu-ration period.rithm. This is be
ause the ma
hines are often members of multiple
on�gurations, thus the numberof messages needed to rea
h �xed-points by the read/write operations of the original algorithm ismu
h lower than is expe
ted when ea
h pro
essor is a member of a few
on�gurations.Also, noti
e that this evaluation does not examine the e�e
ts of message loss and la
k of network
onne
tivity. We hypothesize that, as in the
ase of frequent bursty re
on�guration, when thereare intervals of time in whi
h the network is dis
onne
ted, the new algorithm should re
over morerapidly. This testing has not yet been performed.Full performan
e evaluation is
urrently in progress. Shvartsman and Musial are investigatinghow the performan
e depends on the number of ma
hines and various timing parameters.9 Con
lusion and Open ProblemsIn this paper we have presented a new algorithm, improving on the original Rambo algorithmby Lyn
h and Shvartsman [12, 13℄. While the original Rambo algorithm is analyzed primarily inthe
ontext of good network behavior, we are able to show that our new algorithm fun
tions welleven when the network experien
es transient periods of bad behavior, in
luding message loss,
lo
kskews, and arbitrary asyn
hrony, and when re
on�guration is bursty and uneven.The key to this improvement is a new rapid
on�guration-upgrade me
hanism, whi
h allowsthe system to stabilize rapidly after a period of bad network behavior. In the previous Ramboalgorithm, it might take arbitrarily long to re
over from a period of bad behavior. In this newalgorithm, however, within a
onstant time, the system returns to a steady-state
ondition. Thisallows the algorithm to fun
tion more reliably in a long-running, dynami
 system: when a system66

is expe
ted to fun
tion for months and years without failure, it is ne
essary to rapidly re
over fromthe inevitable transient network failures.This improvement also makes pra
ti
al the design of algorithms to
hoose new
on�gurations.In the earlier version of Rambo, it is un
lear what properties a re
on�guration algorithm mustsupport in order for it to be useful. This paper shows that a re
on�guration automaton mustprovide exa
tly (�0; 22d)-
on�guration-viability .To design su
h a re
on�guration algorithm, then, is one of the major open problems posed bythis paper. In parti
ular, it seems important to show that if the rate of failure is bounded, then thealgorithm
ontinues to make progress. This is similar to the ideas introdu
ed by Karger and Liben-Nowell in [10℄, in whi
h they assume that the system has a bounded half-life: the time in whi
heither half the pro
esses fail or the number of a
tive pro
esses doubles. Under this assumption,they show that their algorithm operates
orre
tly.By similarly assuming a bounded rate of failures, it should be possible in
ertain
ases to designa re
on�guration algorithm that guarantees liveness by initiating re
on�guration with some min-imum frequen
y. By
hoosing appropriate quorums and appropriate numbers of re
on�gurations,(�0; 22d)-
on�guration-viability should be possible.Other open problems in
lude improving the join proto
ol, and designing a leave proto
ol toallow good dete
tion of nodes that have exited the system. Currently, the join proto
ol is quitesimple and it would seem bene�
ial to require more
ommuni
ation before allowing a node toinitiate operations. And when nodes fail or leave, in the algorithm as stated, they are just ignored.By introdu
ing a formal proto
ol to leave the system, and a method for dete
ting failed nodes, itmight be possible to improve the long-run performan
e of the system.Another open problem is to determine how to re
over when viability fails (and data is inevitablylost). More generally, is a self-stabilizing version of Rambo feasible? It would also be interestingto determine whether a version of Rambo
ould be adapted to tolerate Byzantine faults.Rambo may also allow the
onstru
tion of other data types, su
h as weakly
onsistent memoryand sets. It may also be possible to optimize Rambo to return read values more rapidly, in onephase, in
ertain
ases. An important question would be to determine the most powerful dataobje
t that
an be implemented using the Rambo te
hnique; one suspe
ts that it is impossible toimplement
onsensus in this manner.Finally, it would be interesting to examine how the Rambo algorithm
ould be adapted tospe
i�
 platforms. The algorithm is presented in a fairly abstra
t fashion. In real implementations,it would be optimized depending on the target platform. In parti
ular, we suspe
t that Ramboshould work well in sensor networks, mobile-networks, and peer-to-peer networks.In
on
lusion, this paper has presented a new algorithm for atomi
 memory in a highly dynami
environment, proved that is always
orre
t, and presented a set of
onditions that guarantee liveness.This provides signi�
ant improvements over existing algorithms, rapidly re
overing from transientnetwork problems and bursty re
on�guration.Referen
es[1℄ Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passingsystems. Journal of the ACM, 42(1):124{142, 1995.[2℄ O. Cheiner and A.A. Shvartsman. Implementing and evaluating an eventually-serializabledata servi
e as a distributed system building blo
k. In Networks in Distributed Computing,67

volume 45 of DIMACS Series on Dis
. Mathemati
s and Theoreti
al Computer S
ien
e, pages43{71. AMS, 1999.[3℄ Roberto DePris
o, Nan
y Lyn
h, Alex Shvartsman, Ni
ole Immorli
a, and Toh Ne Win. Aformal treatment of Lamport's Paxos algorithm. In progress.[4℄ Danny Dolev, Idit Keidar, and Esti Yeger Lotem. Dynami
 voting for
onsistent primary
om-ponents. In Pro
eedings of the Sixteenth Annual ACM Symposium on Prin
iples of DistributedComputing, pages 63{71. ACM Press, 1997.[5℄ B. Englert and A.A. Shvartsman. Gra
eful quorum re
on�guration in a robust emulationof shared memory. In Pro
eedings of the International Conferen
e on Distributed ComputerSystems, pages 454{463, 2000.[6℄ David K. Gi�ord. Weighted voting for repli
ated data. In Pro
eedings of the seventh symposiumon Operating systems prin
iples, pages 150{162, 1979.[7℄ Mauri
e Herlihy. Dynami
 quorum adjustment for partitioned data. Trans. on DatabaseSystems, 12(2):170{194, 1987.[8℄ S. Jajodia and David Mut
hler. Dynami
 voting algorithms for maintaining the
onsisten
yof a repli
ated database. Transa
tions on Database Systems, 15(2):230{280, 1990.[9℄ Leslie Lamport. The part-time parliament. ACM Transa
tions on Computer Systems,16(2):133{169, 1998.[10℄ David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolution of peer-to-peer systems. In Pro
eedings of the Twenty-First Annual Symposium on Prin
iples of Dis-tributed Computing, pages 233{242. ACM Press, 2002.[11℄ Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufman, 1996.[12℄ Nan
y Lyn
h and Alex Shvartsman. Rambo: A re
on�gurable atomi
 memory servi
e fordynami
 networks. In Pro
eedings of the 16th Intl. Symposium on Distributed Computing,pages 173{190, 2002.[13℄ Nan
y Lyn
h and Alex Shvartsman. Rambo: A re
on�gurable atomi
 memory servi
e fordynami
 networks. Te
hni
al Report LCS-TR-856, M.I.T., 2002.[14℄ Nan
y Lyn
h, Alex Shvartsman, and Roberto De Pris
o. Paxos made even simpler (andformal). Manus
ript, 2002.[15℄ Nan
y A. Lyn
h and Alexander A. Shvartsman. Robust emulation of shared memory usingdynami
 quorum-a
knowledged broad
asts. In Twenty-Seventh Annual Intl. Symposium onFault-Tolerant Computing, pages 272{281, June 1997.[16℄ Peter M. Musial and Alex A. Shvartsman. Implementing a re
on�gurable atomi
 memoryservi
e for dynami
 networks. submitted for publi
ation.[17℄ Roberto De Pris
o, Alan Fekete, Nan
y A. Lyn
h, and Alexander A. Shvartsman. A dynami
primary
on�guration group
ommuni
ation servi
e. In Pro
eedings of the 13th InternationalSymposium on Distributed Computing, pages 64{78, September 1999.68

[18℄ Robert H. Thomas. A majority
onsensus approa
h to
on
urren
y
ontrol for multiple
opydatabases. Transa
tions on Database Systems, 4(2):180{209, 1979.[19℄ Eli Upfal and Avi Wigderson. How to share memory in a distributed system. Journal of theACM, 34(1):116{127, 1987.[20℄ P.M.B. Vit�anyi and B. Awerbu
h. Atomi
 shared register a

ess by asyn
hronous hardware.In Pro
eedings 27th Annual IEEE Symposium on Foundations of Computer S
ien
e, pages233{243, New York, 1986. IEEE.

69

Index of De�nitionsagreement, 31atomi
, 29�(t; �), 41
(k), 7, 15CMap , 15
on�guration-viability, 37d, 36extend , 14good exe
ution, 13in-transit , 15installed, 35invariant, 13J(t; e; �), 36join-
onne
tivity, 38mainstream, 41mainstream after �, 41mainstream after t, 41no dupli
ation, 31operation, 15�, 29prop-
map(�), 15prop-phase-start(�), 16query-
map(�), 15query-phase-start(�), 16R(
; `), 16R(�; k), 15re
on-readiness, 39re
on-spa
ing, 38removal-set(
), 16S, 6, 9su

essful re
on event, 42tag(�), 15trun
ate , 15Trun
ated , 15

update , 14upgrade-readiness, 39upgrade-ready, 36Usable, 15validity, 31W1(
; `), 16W2(
), 16W (�; k), 15well-formedness
onsensus, 32reader-writer, 14re
on, 14, 30, 31

70

