
Secure Communication Over Radio Channels

Shlomi Dolev
Ben-Gurion University

Beer-Sheva, Israel
dolev@cs.bgu.ac.il

Seth Gilbert
EPFL IC

Lausanne, Switzerland
seth.gilbert@epfl.ch

Rachid Guerraoui
EPFL IC

Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Calvin Newport
MIT CSAIL

Cambridge, MA, USA

cnewport@mit.edu

ABSTRACT
We study the problem of secure communication in a multi-
channel, single-hop radio network with a malicious adversary
that can cause collisions and spoof messages. We assume
no pre-shared secrets or trusted-third-party infrastructure.
The main contribution of this paper is f-AME: a randomized
(f)ast-(A)uthenticated (M)essage (E)xchange protocol that
enables nodes to exchange messages in a reliable and au-
thenticated manner. It runs in O(|E|t2 log n) time and has
optimal resilience to disruption, where E is the set of pairs
of nodes that need to swap messages, n is the total number
of nodes, C the number of channels, and t < C the number
of channels on which the adversary can participate in each
round. We show how to use f-AME to establish a shared se-
cret group key, which can be used to implement a secure, re-
liable and authenticated long-lived communication service.
The resulting service requires O(nt3 log n) rounds for the
setup phase, and O(t log n) rounds for an arbitrary pair to
communicate. By contrast, existing solutions rely on pre-
shared secrets, trusted third-party infrastructure, and/or
the assumption that all interference is non-malicious.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—wireless com-
munication

General Terms
Algorithms, Security

Keywords
Wireless Radio Networks, Malicious (Byzantine) Interfer-
ence, Randomized Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

1. INTRODUCTION
In recent years, wireless networking technology has held

out the prospect of enabling communication without the
need for physical network infrastructure. Protocols such as
Bluetooth realize this promise by allowing ad hoc collections
of nearby devices to easily construct a simple one-hop net-
work (sometimes called a piconet). The radio medium, how-
ever, is publicly accessible. A committed malcontent can
eavesdrop, interfere with broadcasts, and spoof messages.
Shared secrets provide a standard mechanism for circum-
venting these types of attacks. If the honest devices share a
secret key that is unknown to the adversary, they can elimi-
nate eavesdropping and message spoofing by encrypting and
signing their messages, respectively. Another common use of
a shared secret key is to generate a pseudo-random channel-
hopping pattern that allows the participants to efficiently
avoid adversarial interference.

This approach, however, begs an obvious question: How
do we establish shared secrets? Protocols such as Bluetooth,
for example, require that a shared secret is manually en-
tered into the relevant devices (in the form of a passkey).
This might prove inconvenient or impossible in many situa-
tions. Furthermore, even when pre-programming is feasible,
it might be necessary to re-key dynamically, for example,
after the detection of a compromised device. Another ap-
proach is to rely on trusted third-party infrastructure, such
as a PKI, to authenticate and secure communication. In
many settings, however, such services are unavailable.

Authenticated Message Exchange
In this paper we address this crucial question. We begin by
studying the problem of Authenticated Message Exchange
(AME). Initially, we are given an arbitrary set E of pairs
of devices that want to exchange information. The goal of
AME is for as many of these pairs as is possible to communi-
cate messages in an authenticated manner. For the purpose
of this paper, we assume that there are t + 1 channels avail-
able for communication and that the adversary can affect
up to t channels per round, causing interference or spoof-

∗This work was supported in part by the following: MICS,
Cisco, AFOSR A9550-04-1-0121 and A9550-08-1-0159, NSF
CCF-0726514 and CNS-0715397, the Rita Altura Trust
Chair, and ICT FP7-215270.

ing messages. (Notice that this is the minimal number of
channels for which any communication is feasible.)

A significant challenge lies in efficiently achieving authen-
tication. A deterministic algorithm can readily achieve au-
thentication by relying on a pre-determined broadcast sched-
ule: If pi is known to be broadcasting on a given channel in
a given round, the worst the adversary can do is broad-
cast concurrently and cause a collision; if another node pj

receives a message on that channel in that round, it can
conclude that the message was sent by pi itself, not the ad-
versary. A purely randomized approach, on the other hand,
is difficult to authenticate since the receiver cannot deter-
mine whether the adversary or the honest node was broad-
casting on that channel: with some probability the honest
node sent the message, but with some probability the honest
node was on a different channel, allowing the adversary to
spoof messages. Unfortunately, we conjecture (due to simi-
larities with gossip [13]) that a purely deterministic solution
would require exponential time to solve AME. In this pa-
per we identify a middle-ground: harnessing the efficiency of
randomization for transmitting data, while leveraging deter-
ministic broadcast scheduling to authenticate the messages.

We describe a randomized protocol called f-AME (fast-
Authenticated Message Exchange) that solves the AME prob-
lem with optimal resilience: all but at most t devices suc-
cessfully communicate as specified by the set E. The f-AME

protocol requires no pre-shared secrets or trusted third-party
infrastructure. It terminates in O(|E|t2 log n) rounds. By
contrast, relying on an all-to-all gossip protocol, as can be
found in [13], would result an exponential running time, and
yet still fail to achieve optimal resilience.

The core insights behind f-AME are graph theoretic. To
best capture this connection, we first define an abstract
graph-theoretic game that we call Starred-Edge Removal.
We then describe a greedy strategy that efficiently solves
the game. Our final f-AME protocol simulates the game
on the multi-channel network, using a randomized feedback
routine to synchronize the distributed view of the game and
maintain a correspondence between the game state and the
AME message set. We show that our efficient strategy for
the edge-removal game induces an optimally resilient solu-
tion to the AME problem.

Established a Secret Group Key
We then use f-AME to establish a shared secret group key.
The algorithm begins with a setup phase that establishes se-
cure pairwise keys. We initialize f-AME with messages gen-
erated by a one-round cryptographic key-exchange protocol
(such as Diffie-Hellman) and a set E of pairs describing a
sparse t+1-connected graph with n(t+1) edges that we call
a “(t + 1)-leader spanner.” The resulting pairwise shared
keys are used to distribute up to t + 1 proposals for the
shared group key. An agreement protocol allows the nodes
to safely agree on a single proposal. The total running time
to establish the shared group key is O(nt3 log n) rounds.

Long-Lived Communication Service
Shared secret group keys have a variety of uses. In this pa-
per we describe one: the construction of a secure, reliable,
and authenticated long-lived communication service. Once a
group key is established, the service requires only Θ(t log n)
rounds for an arbitrary pair to communicate. It differs from
f-AME in that it is long-lived, rather than single-shot. More-

over, after the setup phase (which relies on f-AME to estab-
lish a group key), the nodes can exchange messages more
efficiently than re-running the f-AME protocol. Also unlike
f-AME, any pair can communicate whenever it chooses—
even if no other nodes are interested in communicating at
that time. (By contrast, f-AME relies on the fact that many
pairs want to communicate, thus preventing the adversary
from blocking all of them.) This represents, to the best of
our knowledge, the first such communication primitive for
a radio network with malicious interference and no a priori
shared secrets or trusted infrastructure.

2. RELATED WORK
There exists much research in broadcast and gossip in the

context of single-channel radio networks (e.g., [1–3, 7, 8, 11,
15, 18, 20, 23]). Much of this research focuses on the prob-
lem of channel contention, and assumes reliable devices in a
non-malicious environment. Recently, there has been some
interest in crash-tolerance in radio networks (e.g., [9,10,19]),
and Byzantine-resilient broadcast in radio networks [4, 16].
In these latter studies, however, the adversary cannot dis-
rupt communication. When adversarial disruption is al-
lowed, there exist three common approaches in the litera-
ture. The first assumes that messages may be corrupted
at random (e.g., [21]). The second bounds the number of
messages that the adversary can transmit or disrupt, due,
for example, to a limited energy budget (e.g., [14,17]). The
third assumes some manner of shared secrets. There have
been proposed a variety of approaches for establishing such
a shared secret, all of which require some form of human
intervention (e.g., the manually configured passkeys of Blue-
tooth [5]), or out-of-band communication (e.g., physical con-
tact between devices [22], a limited-bandwidth secure side-
channel [6, 12], location information [6] and strong collision
detection [6, 14]).

The present paper, along with [13], are the first, to our
knowledge, to consider multi-channel networks subject to
malicious disruption in which nodes do not possess a priori
shared secrets (or have access to out-of-band means for es-
tablishing these secrets). Dolev et al. [13] consider the prob-
lem of almost gossip, in which all but t rumors are delivered
to all but t nodes. They focus on oblivious algorithms that
do not adapt to the execution in progress, and show for the
special case of t = 1 that there exists a tight bound for gos-
sip of Θ(n2/C2). They extend their algorithm for general t,
achieving running time O((en/t)t+1). Thus using gossip to
solve AME would be quite slow, and also would only achieve
suboptimal resilience, i.e., 2t-disruptability (see Section 4 for
more details).

3. MODEL
We assume a single-hop radio network with n devices

(which we call “nodes”), described by Π = {p1, ..., pn}. The
network has C > 1 communication channels. Executions
proceed in synchronous rounds; all nodes start in the same
round. During each round, each node can choose to transmit
or receive on a single channel. If a single node transmits on
a channel, all receivers on that channel receive the transmis-
sion. If no node, or two or more nodes transmit on the same
channel, then the receivers on that channel receive nothing.
(We do not assume that nodes can detect collisions.)

We also assume the presence of an adversary that can

transmit on up to t < C channels during each round, and can
listen on all C channels. The adversary can therefore disrupt
communication in two ways: (1) jamming : by transmitting
concurrently with an honest node, the adversary causes a
message to be lost due to collision; and (2) spoofing : by
transmitting a fake message on an otherwise empty channel,
the adversary causes a node to receive incorrect informa-
tion. Notice that since communication is not authenticated,
a node cannot definitively determine who sent a given mes-
sage. As is typical, we assume the adversary does not know
in advance the honest nodes’ random choices; only by ob-
serving a node’s actions is it possible to determine which
random choice it made. Without loss of generality, we as-
sume that at the end of each round, the adversary learns all
random choices made in all completed rounds.

4. PRELIMINARIES
In this paper, we focus on the case where C = t + 1;

notice that this is the minimum number of channels for
which any communication is possible. Where relevant, we
briefly discuss how our results can be improved for larger
values of C, specifically, the case where C = 2t. We also
fix n to be sufficiently large with respect to t, specifically
n > 3(t + 1)2 + 2(t + 1). (This is not unreasonable, since n
is typically large with respect to the number of channels C,
and t < C.)

The focus of this paper is a problem we call Authenticated
Message Exchange (AME). An AME protocol is initially
provided with a set E of ordered pairs. For each ordered
pair (v, w) ∈ E we attempt to send a message mv,w from v
to w. The AME protocol guarantees three properties: (1)
authenticity, i.e., a node receives only authentic messages
and successfully ignores messages spoofed by the adversary;
(2) sender awareness, i.e., each node knows which of their
messages were successfully received; and (3) limited disrupt-
ability, i.e., the adversary can disrupt only a limited number
of the nodes that want to communicate. More formally, an
AME protocol makes the following guarantees:

Definition 1 (d-Disruptable AME Protocol).
For d a non-negative integer, we say that protocol P is a
d-disruptable AME protocol if for every set E of ordered
pairs of distinct nodes from Π, where |E| ≥ d, and for every
(v, w) ∈ E, message mv,w is initially known only to v, the
following properties hold with high probability:

1. Authentication: For each (v, w) ∈ E: w outputs
either 〈(v, w), fail〉 or 〈(v, w), mv,w〉.

2. Sender Awareness: For each (v, w) ∈ E: v can de-
termine whether j output 〈(v, w), fail〉 or 〈(v, w), mv,w〉.

3. d-Disruptability: Let E′ ⊆ E be the subset of pairs
that output fail. The minimum vertex cover of the dis-
ruption graph Gd = (Π, E′) contains no more than d
vertices.

Notice that the disruptability property describes the num-
ber of “failures” that can be induced by the adversary. That
is, for a d-disruptable protocol, there exists a set of no more
than d nodes such that if we remove these nodes from con-
sideration, all other nodes succeed in communicating their
messages. We observe that no protocol can achieve better
than t-disruptability; this implies that the adversary can al-
ways prevent at least t of the nodes from communicating

successfully. Notice that in the case of deterministic AME
protocols, this is immediately clear since the adversary can
readily target t of the nodes; slightly more care is needed
in the case of randomized protocols, but the same argument
holds.

Theorem 2. For n ≥ 2t and d < t: there exists no d-
disruptable Authenticated Message Exchange protocol.

Proof. Assume for the sake of contradiction that such a
protocol P exists. Fix E = {(i, i + t)|i ∈ {1, . . . , t}}, that
is, there are t disjoint pairs of nodes that want to communi-
cate. Consider an execution α1 of P in which the adversary
simulates nodes 1 through t and attempts to disseminate a
fake message (different from the real message, in each case);
whenever a node i ∈ {1, . . . , t} broadcasts a message on
a deterministically chosen channel, the adversary does the
same; whenever i broadcasts a message on a randomly cho-
sen channel, the adversary also chooses a channel at random
based on the same distribution. Because the adversary can
broadcast on up to t different channels per round, it can
carry out this simulation faithfully.

Property (3) of the AME definition requires that at least
one pair in E does not output fail, since |E| = t and d <
t. Without loss of generality, assume this is pair (1, t +
1). Property (1) requires that, with high probability, t + 1
outputs m1,t+1. Let r1 be the string of random bits used
by node 1, and let rA be the string of random bits used
by the adversary. To node t + 1, however, this execution
α1 is indistinguishable from another execution α2 in which
the adversary chooses random bits r1 and node 1 chooses
random bits rA. Moreover, both executions α1 and α2 occur
with equal probability. It follows, therefore, that node t +
1 has equal probability of outputting the correct message,
m1,t+1, and the fake message generated by the adversary.
This violates property (1), implying a contradiction.

5. AUTHENTICATED MESSAGE
EXCHANGE

In this section, we develop an Authenticated Message Ex-
change (AME) protocol with optimal resilience, i.e., the pro-
tocol is at most t-disruptable. Throughout this section,
fix GAME = (Π, EAME) to be the directed graph repre-
senting the pairs that have messages to exchange, and let
n = |Π|. For every (v, w) ∈ EAME , let mv,w be the mes-
sage that v is sending to w. We call our protocol f-AME

(fast-Authenticated Message Exchange) as it runs in time
O(|EAME |t2 log n) rounds. Our f-AME protocol is built on
two insights.

The first insight is related to authentication: a good way
to achieve authenticated communication is to schedule t +
1 sender/receiver pairs to communicate concurrently; each
sender then transmits its message directly to the receiver.
The adversary cannot simultaneously block all t + 1 chan-
nels, and hence at least one message is successfully com-
municated. If the channel assignment is determined deter-
ministically and in advance, then the adversary can disrupt
communication but not spoof messages, as any broadcast by
the adversary will simply cause a collision.

This strategy alone, in which each message is transmitted
directly from the source to the destination, can achieve no
better than 2t-disruptability. Consider a complete commu-
nication graph. The adversary can identify t disjoint sets of

three nodes; it can block any channel which contains two or
more nodes from the same set of three. The result: a disrup-
tion graph with t edge-disjoint triangles, inducing minimum
vertex cover of size 2t.

We turn, therefore, to our second insight: to further re-
duce disruptability further, a node can recruit surrogates to
relay messages on its behalf. These surrogates later allow
us to schedule two edges to broadcast simultaneously, even
if they share a source. (Notice that by routing messages via
surrogates, the adversarial strategy of isolating triangles, as
described above, is no longer feasible.)

Roadmap
To best clarify our deployment of these insights, we present
our protocol in stages. First, in Section 5.1, we define an
abstract graph-theoretic “game” that we call starred-edge
removal. This game isolates the core scheduling concerns
of removing edges from the disruption graph and recruiting
surrogates from the more practical concerns of coordinat-
ing distributed nodes on a multi-channel network. In Sec-
tion 5.2, we describe an efficient strategy, greedy-removal,
that solves the starred-edge removal game in a minimal num-
ber of rounds. In the final two sections, Sections 5.3 and 5.4,
we describe a distributed simulation of the starred-edge re-
moval game that maintains a correspondence between the
game graph and the AME disruption graph. At the core
of the distributed simulation is a randomized sub-routine,
communication-feedback, that informs all nodes, with high
probability, which channels were disrupted during a given
round.

5.1 The (G, t)-starred-edge removal game
In this section, we define the (G, t)-starred-edge removal

game, where G = (V, E) is a directed graph and t is a nat-
ural number less than n = |V |. As a point of notation, for
every edge (v, w) ∈ E, we refer to v as the source and w as
the destination. Throughout the game, we also maintain an
auxiliary set S ⊆ V , initially empty. (If a node v ∈ V is in
the set S, we say that v is starred.) The game consists of a
series of rounds. In each round:

1. The player proposes a set P that is comprised of the
following: (1) nodes from V ; and (2) edges from E.
The proposal must satisfy the proposal restrictions de-
scribed below.

2. The referee responds by choosing a non-empty subset
of nodes and edges from P .

3. For every node chosen by the referee, the player adds
the node to S. For every edge chosen by the referee,
the edge is removed from E.

The game terminates if the player succeeds in removing
enough edges from G to produce a new graph with a vertex
cover of size at most t. The goal of the referee, by contrast,
is to delay the player from completing the game for as long
as possible.

Proposal Restrictions
It remains to specify the restrictions on the player’s proposed
set P of nodes and edges. They are as follows:

1. The set P must consist of exactly t + 1 items, each of
which is either a node in V or an edge in E.

2. Every node in P is unique, i.e., it does not appear as
either the source or destination of any edge in P .

3. No two edges in P share a destination.

4. Two edges in P share a source v ∈ V only if v ∈ S.

For example, if v, w, z are nodes in V , Restriction 3 prohibits
the player from proposing both edges (v, z) and (w, z). Simi-
larly, Restriction 4 prohibits the player from proposing both
edges (v, w) and (v, z) unless node v ∈ S. Roughly speak-
ing, a node being added to S corresponds to the fact that
it has successfully recruited surrogates to broadcast on its
behalf (which is required to achieve t-resilience, as per our
discussion above).

5.2 The Greedy Removal Strategy
In this section, we describe a centralized strategy, which

we call greedy-removal, that solves the (G, t)-starred-edge
removal game in O(|E|) rounds. Our strategy ensures that
in each round of the game, either a new edge is removed
from E or a new node is added to S. The greedy-removal

strategy works as follows. Define two sets P1 and P2, with
respect to graph G = (V, E):

• P1 = {v ∈ V \S : (v, ∗) ∈ E}. That is, P1 consists of
the set of nodes not in S that are the source of some
edge in E.

• P2 = {(v, w) ∈ E : v, w /∈ P1}. That is, P2 consists of
edges in which neither source nor destination is in P1.
This implies that if (v, w) ∈ P2, then v ∈ S.

The player chooses any arbitrary subset of t + 1 elements
from P1 ∪ P2 that satisfy Proposal Restrictions 1–4 of the
(G, t)-starred-edge removal game. If there is no subset of
P1 ∪ P2 of size at least t + 1 that satisfies Restrictions 1–
4, we say that the greedy-removal strategy has terminated.
The key result in this section is that the greedy-removal strat-
egy terminates only if the minimum vertex cover of G is no
greater than t; this implies that the game is complete.

Lemma 3. Assume that no subset P ⊆ P1 ∪ P2 satis-
fies Restrictions 1–4 of the (G, t)-starred-edge removal game.
Then graph G has a minimum vertex cover no larger than t.

Proof. We proceed in the following three steps: (1) con-
structing a set V ′ ⊆ V ; (2) arguing that it is of size at most
t; and (3) showing that it is a vertex cover for G. We define
the set of vertices V ′ as follows:

V ′ = P1 ∪ {w : (∗, w) ∈ P2}

Every node in P1 is included in the set V ′; in addition every
destination for every edge in P2 is also included in V ′. We
first argue that the number of destinations in P2 is at most
t − |P1|; we can derive from this that |V ′| ≤ t. Assume for
the sake of contradiction that there exist at least t−|P1|+1
destinations in P2. We can define the following proposal P
of size t + 1: all the nodes in P1, along with the t− |P1|+ 1
destination-disjoint edges from P2. It follows immediately
that this set satisfies Restriction 1. Restriction 2 follows
from the fact that every edge in P2 is disjoint from every
node in P1. Restriction 3 follows from the fact that we
have chosen at most one edge in P2 for each destination.
Restriction 4 is satisfied by the fact the source of every edge
in P2 is also in S. (Otherwise, the source of the edge would

Figure 1: Detect collisions.

1 communication-feedback(W , b)i

2 D ←∅
3 // send feedback for each channel
4 for r =1 to C

5 repeat Θ(C
C−t

lg n):

6 // if pi is a witness for r
7 if pi ∈W[r] then
8 // if b = false send “false”
9 if b = false then

10 let k =rank(pi, W[r])
11 bcast(〈false〉, k);
12 // if b = true send “true”
13 else
14 D ←D ∪{r}
15 let k =rank(pi, W[r])
16 bcast(〈true, r〉, k)
17 // if pi is not a witness for r
18 else
19 Choose channel k at random from [1,C]
20 reports ←reports ∪ recv(k)
21 if 〈true, r〉 ∈reports then
22 D ←D ∪{r}
23 return D

be included in P1). The existence of this proposal P of size
t+1 contradicts our assumption that the player has no legal
move available, from which we conclude that V ′ is of size at
most t.

Finally, we argue that V ′ is a vertex cover for G. In
particular, consider some edge (v, w) ∈ E. If (v, w) ∈ P2,
then, by definition, w ∈ V ′. Therefore, (v, w) is covered by
V ′. Assume, then, that (v, w) /∈ P2. By the definition of
P2: either v or w must be in P1. This implies however that
either v or w is in V ′, once again covering the edge. Thus,
we have demonstrated a vertex cover of size at most t.

Theorem 4. The greedy-removal strategy solves the (G, t)-
starred-edge removal game in O(|E|) moves.

Proof. If the referee returns an edge from P2, this re-
moves an edge from E. If the referee returns a node from
P1, this adds a new node to S (as every node in P1 is not in
S). Since at most |E| edges can be removed from E, and at
most 2|E| nodes can be added to S, the bound holds.

5.3 Communication Feedback
Our f-AME protocol simulates the starred-edge removal

game. A key sub-routine needed by this simulation is a
method for nodes to agree on which channels were disrupted
during a given round. The communication-feedback protocol
satisfies this need.

Specifically, after executing a round of communication,
the nodes call the feedback routine communication-feedback

in order to agree on which channels have been disrupted; the
feedback routine takes two parameters: (1) W , a partition
of the nodes {p1, . . . , pC2} into C sets of size C; (2) b, a
binary flag, either true or false. Intuitively, W assigns as
set of C “witnesses” to each of the C channels, and the flag
b indicates whether the caller of the feedback routine has
received a message in that round of communication.

We assume that all nodes call communication-feedback in
the same round with the same partition W . For each c ∈

{1, . . . , C}, we refer to the nodes W [c] as witnesses for chan-
nel c. We also assume that every witness for channel c has
the same value of the flag b, which we refer to as the channel
c flag. For every c ∈ {1, . . . , C}, let bc describe the channel
c flag. We show that under these circumstances, the call to
communication-feedback satisfies the following:

Lemma 5. Each invocation of communication-feedback ter-
minates in time O(t2 log n), and returns a set D satisfying
the following property, with high probability: for every chan-
nel c ∈ {1, . . . , C}, c ∈ D if and only if bc = true.

Proof. Fix come channel c ∈ {1, . . . , C}, and some node
pj ∈ Π that invokes communication-feedback. It is clear
by inspection that the feedback routine terminates in C ·
“

C log n

C−t

”

rounds, which is O(t2 log n). We now examine the

set D produced when pj calls communication-feedback.
First, assume that bc = false. Consider the iteration of

lines 4–22 where r = c, as this is the only instance in which
c can be added to the set D. Notice that in each of the
Θ(t log n) rounds that take place where r = c, for each chan-
nel k ∈ {1, . . . , C}, one of the witnesses in W [c] broadcasts
a false message on channel k (line 11). Thus it is impossible
for pj to receive a 〈true, c〉 message, and hence c /∈ D for
node pj . (Notice, the adversary can broadcast 〈true, c〉, but
because every channel is occupied by a broadcasting witness,
this will lead only to a collision.)

Consider instead the case in which the value bc = true.
If pj is a witness for c, then pj , immediately adds r to D
(line 14). Otherwise, we will argue that, with high proba-
bility, pj receives a 〈true, c〉 message from some witness for
channel c. Specifically, for each of the Θ(C

C−t
log n) rounds

that take place where r = c, one witness on each channel is
broadcasting 〈true, c〉. The node pj chooses a random chan-
nel on which to listen (line 20). As a result, we note that
in each round, pj has probability no worse than (C − t)/C
of selecting a channel not disrupted by the adversary and
therefore receiving a 〈true, c〉 message. Receiving this mes-
sage causes pj to add c to the set D.

Thus, over Θ
“

C
C−t

log n
”

rounds, we conclude, using a

straightforward Chernoff bound, that pj receives 〈true, c〉,
and thus adds c to D, with high probability. By a union
bound over all nodes, we conclude that every pj ∈ Π that
is not a witness receives such a message with high probabil-
ity.

5.4 The fast-AME Protocol
Here were bring together all the pieces to present f-AME

(fast-Authenticated Message Exchange). The protocol is t-
disruptable and completes in O(|E|t2 log n) rounds. At the
core of our protocol is a distributed simulation of the (G, t)-
starred-edge removal game, where, initially, G = GAME .
The simulation maintains a graph equivalence invariant: af-
ter r simulated rounds of the game, the graph G in the
game is equivalent to the current disruption graph. Since
the starred-edge removal game terminates only when the
vertex cover is no greater than t, the game simulation re-
sults in t-disruptability.

Overview:
The f-AME protocol, described at a high level in Figure 2,
proceeds by simulating moves in the starred-edge removal
game. Each move is simulated using Θ(t2 log n) rounds

Figure 2: Structure for f-AME Protocol.

SIM ← new instance of (GAME , t)-starred edge removal.
while (SIM not terminated):

1. Apply greedy-removal to SIM to determine
the proposal P .

2. Broadcast according to P .
3. Call collision-feedback to determine referee

response R.
4. Update SIM according to R.

of communication, and consists of two phases: a message-
transmission phase (which requires one round of commu-
nication), and a feedback phase (which requires Θ(t2 log n)
rounds of communication). In the first phase, the nodes sim-
ulate the player’s proposal in the game, choosing a set P and
transmitting messages accordingly. In the second phase, the
nodes simulate the referee, using the communication-feedback

routine to agree on the set returned by the referee.

State:
Each node pj ∈ Π maintains the following state throughout
the execution: a graph Gj = (Vj , Ej); and a set Sj . These
represent pj ’s local copy of the starred-edge removal game.
Initially, for every pj , Gj = GAME and Sj = ∅.

Message-transmission phase:
The message transmission phase proceeds as follows. Each
node pj locally applies the greedy-removal strategy to its lo-
cal copy of Gj and Sj to determine a valid proposal Pj . We
will argue in our correctness proof that every node gener-
ates the same proposal Pj , and hence all the nodes behave
consistently in the rounds that follows. We now describe
how a node calculates which nodes should broadcast or lis-
ten during the message-transmission phase, and which chan-
nels these nodes should use. Notice that given Pj , node pj

can determine the precise behavior of every other node, and
thus can determine the appropriate action to take during
the message-transmission phase.

Recall that Pj consists of both nodes and edges. Each
node in Pj is scheduled for one of the t + 1 channels on
which to broadcast during the message-transmission phase.
Ideally, we would also schedule each edge in Pj on one of
the t + 1 channels: for each edge, the source would choose
a channel on which to broadcast, and the destination would
listen on the same channel.

It may, however, be the case that some of the edges in
Pj share the same source, and hence cannot be scheduled
simultaneously. We know, however, by the restrictions of
the starred-edge removal game that none of the edges in Pj

share the same destination; nor do any of the edges in Pj

contain a node in Pj .
Consider the case where Pj includes two edges that share

a source, say (v, w) and (v, z). In this case, we know that
v ∈ S, by the restrictions of the game. We will show that
every node in S has at least 3(t + 1) surrogates. Since there
are at most 2(t+1) nodes involved with Pj as either a node,
a source, or a destination, we can conclude that there are at
least t + 1 nodes available to act as surrogates for v. Thus,
for every edge in Pj , either the source or one of its available
surrogates is scheduled to broadcast on a channel, and we
schedule the destination to receive on the same channel.

Lastly, 3(t+1) witnesses are scheduled to listen on each of

the t+1 channels that are being used. Since n > 3(t+1)2 +
2(t+1), and since at most 2(t+1) nodes have, to this point,
been assigned either to broadcast or to listen, it is clear
that there are enough nodes to satisfy this assignment. Of
these witnesses, for each channel c ∈ {1, . . . , C}, we choose a
subset of t+1 nodes per channel and assign these to W [c] for
use in the call to communication-feedback that occurs during
the next phase.

To this point, we have described the choice of nodes to
broadcast and listen in a centralized fashion as a function
of Pj . Node pj behaves according to the schedule which
it calculates locally from Pj . As we show that every node
calculates the same Pj , we can conclude that every node
calculates the same scheduling of channels, thus leading to
consistent behavior that avoids contention.

Thus, to summarize a node’s behavior in the message-
transmission phase: each node pj examines the schedule that
has been determined by Pj and acts accordingly. If pj is
scheduled to broadcast its own value on some channel c,
then it transmits the vector of all values mj,∗ on channel
c. If it is scheduled to broadcast as a surrogate for pw on
some channel c, then pj transmits the vector of all the values
mw,∗. If it is scheduled to receive on some channel c, then
it does so. (In Section 5.6 we reduce the message size to
constant.) When the round completes, at least one of the
t + 1 channels has transmitted successfully; the remaining t
may have been disrupted by the adversary. Notice that since
t +1 honest nodes broadcast on the t+1 channels, then the
adversary cannot successfully spoof messages, as every one
of the t + 1 channels on which nodes receive is in use.

Feedback phase:
In the second phase of simulating the move in the starred-
edge removal game, the nodes run communication-feedback,
using the witness set W as defined above. Each witness sets
its flag as follows: if it received a message during the mes-
sage transmission phase, then it sets its boolean flag to true;
otherwise, it sets its flag to false. Notice that every witness
for a given channel c chooses the same setting for its flag.
The communication-feedback routine returns to each node pj

some set Dj . We will argue that, as per the guarantees of
communication-feedback, every set Dj is identical.

Each node pj then simulates the referee returning the fol-
lowing set of nodes and edges from Pj : (1) every node v ∈ Pj

where v was scheduled to broadcast during the message-
transmission round on channel c and c ∈ Dj ; (2) every edge
(w, z) ∈ Pj where z was scheduled to receive on channel c
and c ∈ Dj .

1

Theorem 6. f-AME is a t-disruptable Authenticated Mes-
sage Exchange protocol that terminates in O

`

|E|t2 log n
´

rounds of communication.

Proof. We show that throughout the starred-edge re-
moval game round simulation, the following three invariants
are maintained:
1Notice that we could simplify the algorithm somewhat by
having communication-feedback return the actual messages
received on each non-disrupted channel, rather than sim-
ply the single bit of information indicating success or fail-
ure. The running time, however, would remain unchanged.
We use the binary version of the communication-feedback
as it seems from preliminary research to be more robust to
harsher adversary models, including, for example, Byzantine
node corruptions.

(Invariant 1.) At the beginning of each simulated move
of the starred-edge removal game, every node has the
same simulated game graph G , and the same starred
set S. This implies that the same nodes and edges
have been removed in the game up until this round,
and the same nodes have been added to S.

(Invariant 2.) For every node pj ∈ Π, for every node v ∈
Sj (the starred-node set of node pj), and for every w
such that (v, w) ∈ E: the message mv,w is known to
at least 3(t + 1) nodes.

(Invariant 3.) After every simulated move of the starred-
edge removal game, for every node pj , the graph Gj

represents the disruption graph for the AME problem.
That is, if (v, w) ∈ EAME and w has not yet learned
mv,w, then edge (v, w) is in Gj .

It is easy to see that all three invariants are initially true:
Invariant 1 follows since Gj and Sj are initialized identically
for every node pj ; Invariant 2 follows since Sj is initially
empty, for every node pj ; Invariant 3 follows since initially
Gj = GAME for every node pj .

We proceed inductively to show that these invariants are
maintained, with high probability, after each simulated move
of the starred-edge removal game. We first note that since,
at the beginning of the simulated round, every node pj has
the same graph Gj and the same set Sj , by Invariant 1,
every node pj chooses the same set Pj when executing the
greedy-removal strategy. As a result, all the nodes calcu-
late the same broadcast/receive schedule for the message-
transmission phase, and hence exactly one node broadcasts
on each of the t + 1 channels. This also implies that ev-
ery node calculates the same witness set W [c] for channel
c ∈ {1, . . . , C}.

We therefore conclude that each of the nodes scheduled
to receive on some channel either receives a message from
an honest transmitter, or receives nothing—in the case of
an adversarial disruption. (Thus, adversarial spoofing is im-
possible here.) Since the adversary can disrupt at most t
channels, at least one set of nodes scheduled to listen does
in fact receive a message in the message-transmission phase.

Moreover, we observe that every witness for a given chan-
nel c ∈ {1, . . . , C} receives the same message-or-silence dur-
ing the message-transmission phase, and hence initiates the
communicate-feedback routine with the same setting for its
flag. Thus, we conclude by Lemma 5 that, with high prob-
ability, every node pj outputs c ∈ Dj if and only if the
broadcast on channel c succeeded during the message trans-
mission round. As a result, every node outputs the same set
Dj , and Dj 6= ∅.

Since each node pj then simulates the referee in the same
manner based on the same sets Dj and Pj , we can conclude
that each node pj updates its graph Gj and its set Sj in the
same manner, maintaining Invariant 1.

Next, we argue that the second invariant is maintained: a
node v in the graph Gj is added by node pj to set Sj only
if it was scheduled during the message transmission round
to broadcast on some channel c, and only if c ∈ Dj after
the communication-feedback routine. This latter fact implies
that the broadcast succeeded (as per Lemma 5), and hence
that at least 3(t +1) witnesses received the message from v.

Finally, we note that the third invariant follows from the
fact that a node pj removes edge (v, w) from Gj only if the

channel c on which v—or its surrogate—transmits mv,w to
w is not disrupted, i.e., if c ∈ Dj .

Having shown that each of the three invariants is main-
tained throughout the simulation, it remains to observe that
this implies the correctness of the algorithm, and to calcu-
late the running time.

First, note that for each of the O(|E|) game rounds re-
quired by the greedy-removal strategy, the simulation suc-
ceeds with high probability. We conclude by a union bound
over the O(|E|) rounds that each round is simulated cor-
rectly with high probability.

Second, we notice that by Theorem 4, at the end of |E|
simulated rounds, for every node pj , the vertex cover for
the graph Gj is at most t. Invariant 3 implies an equiva-
lence with the AME disruption graph, leading to the con-
clusion that f-AME satisfies t-disruptability. Finally, each
simulated game round requires O(t2 log n) rounds of commu-
nication: communication-feedback requires O(t log n) rounds
to deliver the feedback for each of t+1 channels, as described
in Lemma 5. We conclude that the simulation of the O(|E|)
game rounds requires O(|E|t2 log n) rounds.

5.5 Optimizing f-AME for More Channels
For our analysis of f-AME, we assumed that C = t + 1,

the maximum value of t for which any communication is
possible. We have focused on this case in order to highlight
that polynomial-time solutions exist even under worst-case
interference. It is natural, however, to ask how performance
might improve when more channels are available. Here we
briefly consider two additional cases (the results are sum-
marized in Figure 5.5).

Case 1: C ≥ 2t.
Assume that the protocol uses exactly C = 2t of the avail-
able channels. In this case, each proposal in the starred-
edge removal game consists of 2t elements, and the referee
returns t elements from each proposal. Thus, the greedy
strategy terminates in O(|E|/t) rounds. We next note that
in each round of the communication-feedback routine, a lis-
tening node (that is not a witness) has a probability ≥
1/2 of avoiding disruption, and thus receives the feedback
in O(log n) rounds with high probability. Thus, the total
running time for acquiring feedback on all 2t channels is
O(t log n). As a result, the overall running time of the pro-
tocol is O(|E| log n).

Case 2: C ≥ 2t2.
Fix C′ = ⌊C/t⌋. In the message-transmission phase we use
only C′ of the available channels; we refer to these as the
proposal channels. In the feedback phase, we use all C chan-
nels. Thus, in the simulated starred-edge removal game,
each proposal consists of C′ elements; the referee responds
with C′−t elements of the proposal. Thus, the greedy strat-
egy terminates in O(|E|/(C′ − t)) = O(|E|/t) rounds.

The key, then, to obtaining better performance is to re-
duce the cost of feedback. Recall that for each channel, feed-
back can be accomplished in O(log n) rounds. Instead of ex-
ecuting the O(C′) instances of feedback sequentially (which
would require O(t log n) time), we execute the feedback in-
stances in parallel, using a parallel-prefix tree to merge in-
formation until all the information is known to a single set
of witness; these witness can then disseminate the feedback
to everyone else.

Number of channels greedy-removal
communication-feedback

(per invocation)
f-AME

C ≥ t + 1 O (|E|) O
`

t2 log n
´

O
`

|E|t2 log n
´

C ≥ 2t O

„

|E|

t

«

O (t log n) O (|E| log n)

C ≥ 2t2 O

„

|E|

t

«

O
`

log2 n
´

O

„

|E| log2 n

t

«

Figure 3: Optimizing f-AME time complexity for larger number of channels.

In more detail, begin by pairing up the proposal chan-
nels, and assign each pair (c1, c2) a unique set of t chan-
nels. Using only the assigned channels, the witnesses for
proposal channel c1 use the communication-feedback rou-
tine to propagate information to the witnesses for proposal
channel c2. Next witnesses for proposal channel c2 use the
communication-feedback routine to propagate information to
the witnesses for proposal channel c1. At this point, the
witnesses are informed of the feedback for both channels
c1 and c2. Each pair 〈c1, c2〉 is now assigned a compan-
ion pair 〈c3, c4〉, and the node continues merging informa-
tion until there are t + 1 witnesses that have all the feed-
back. A final instance of communication-feedback is used
for these witnesses to propagate the feedback to everyone
else. The total time for the modified feedback routine is
now O(log n log C′) = O(log2 n). The running time for the

entire game simulation is now O(|E|
t

log2 n).

A Note on Optimality
Notice that a trivial lower for authenticated message ex-

change is Ω
“

|E|
C

”

. In particular, consider a graph E con-

sisting only of disjoint edges; at most C of the sources can
transmit information in each round. When C ≥ 2t, the
optimized f-AME algorithm is within a factor of t log n of
achieving this lower bound; when C ≥ 2t2, it is within a fac-
tor of t log2 n. Closing this gap remains an open question.

5.6 Optimizing f-AME Message Size
Each message of the f-AME protocol may be quite large.

In fact, each message sent by node pv may include up to n−1
messages of the form mv,∗. Here we describe an optimization
that reduces the size of a protocol message to include no
more than a constant number of AME values.

The optimized protocol is divided into two parts. In the
first part, the message gossip phase, nodes exchange mes-
sages using a randomized gossip protocol. This ensures that
every node has received every message; however it does not
guarantee any authentication. In the second part, the origi-
nal f-AME protocol is used to exchange shorter digests that
can be use to authenticate the true messages from the gossip
phase. In order to accomplish this, we will rely on secure
hash functions. Let H1 and H2 be two such functions. Fix
an edge set E, and let Ev ⊆ E be the edges of the form
(v, ∗). Let Mv be an ordered sequence of the values to be
sent on the edges in Ev.

Message Gossip Phase
Each edge (v, w) ∈ E is given one epoch of length Θ(t2 log n)
during which v communicates mv,w. To reduce the num-
ber of fake messages assumed to be potentially true, nodes
append some extra digest information onto each of these
transmissions. Specifically, fix some node v ∈ Π, and let
{mv,1, . . . , mv,k} = Mv. Assume Mv describes the order of
the epochs for these messages, that is, the epoch for (v, 1)
precedes the epoch for (v, 2), and so on. For the (v, i) epoch,
node v broadcasts the following information on a randomly
chosen channel for each of the Θ(t2 log n) rounds: the mes-
sage mv,i, along with the reconstruction hash defined as
H1(mv,i, . . . , mv,k). All other nodes simply choose a ran-
dom channel on which to listen, and remember what they
have received. By the end of each epoch (v, i), with high
probability, every node has received v’s transmission (as per
a straightforward Chernoff bound and a union bound over
the n− 1 nodes). They may also have (potentially) received
many spoofed messages.

Reconstruction Phase
The message gossip phase concludes with each node at-
tempting to reconstruct Mv for each v ∈ Π. Having received
O(t2 log n) messages during each epoch for v, there may be
exponentially many possible Mv vectors. The reconstruc-
tion hash allows us to reduces these to a polynomial number
of possibilities. To perform the reconstruction for v ∈ Π, we
arrange the received messages into levels 1, . . . , k. In each
level i we place all messages received during v’s ith epoch.
We will attempt to decorate these levels with directed edges.
Each directed edge will connect messages at some level i to
messages at level i + 1.

The decoration proceeds backwards as follows, beginning
with level k, the largest level: For each message m1 at level
k − 1, and for each message m2 at level k, calculate the
hash of each sequence consisting of message m1, followed by
message m2. Draw an edge from message m1 to message m2

if and only if the reconstruction hash tagged on message m1

equals H1(m1, m2).
We repeat this procedure as we move down the levels. For

each level i message m1, consider the hash produced by each
of the sequences consisting of a level i + 1 message, followed
by a chain of messages reached by following outgoing edges
up to level k; create an edge between m1 and the level i + 1
message when the calculated hash matches the reconstruc-
tion hash attached to the level i message.

The procedure requires O(t4 log2 n) hashes for each of the
k − 1 levels. Assuming a collision-resilient hash function,
each message will be decorated with a most one outgoing
edge. (Recall, however, that local computation is relatively
cheap compared to the cost of sending messages.) It fol-
lows that the resulting decorated levels will include at most
O(t2 log n) chains of messages, each described by a path from
level 1 to level k. Among these, of course, will be one se-
quence that actually represents Mv.

The Vector Signature
In order to identify the correct sequence of messages and
thus ensure authenticity, we use the f-AME protocol with
the following modification: each message containing Mv is
replaced with the constant-sized message H2(Mv), the vector
signature for v. Whenever a node first receives the vector
signature for v, it can compare it to the H2 hashes of its
O(t2 log n) validly reconstructed Mv vectors from the recon-
struction phase, and thus validate the single vector that is
correct. Of course, once it knows the real Mv, it can extract
any message from v required by f-AME. The authentication
guarantee of f-AME ensures that the received vector signa-
ture is authentic.

6. A SHARED GROUP KEY
We now describe how to use f-AME to establish a secret

key shared among all but at most t nodes that is unknown to
the adversary. Group keys have a variety of uses from broad-
cast encryption to group management. In section Section 7,
we describe one possible use in the setup of a long-lived,
reliable, secure, and authenticated communication service.

Part 1: Initialize Shared Keys
We begin by choosing a set of t + 1 leader nodes, and we
establish a shared secret key between each leader node and
each non-leader node. Let ℓ ⊂ Π contain t + 1 leader nodes,
and define the pair set Eℓ = {(v, w) | v ∈ ℓ ∨ w ∈ ℓ}.

We then use f-AME to swap messages for a one-round
key exchange protocol, e.g., Diffie-Hellman Key Exchange
(DHKE) [12]. Specifically, execute f-AME where E = Eℓ

and each message mv,w is the appropriate DHKE message
to be sent from v to w. Any non-disrupted node pair can
use the DHKE messages to establish a shared key unknown
to the adversary.2 The total cost: O(nt3 log n) rounds.

Part 2: Disseminate Leader Keys
Recall that f-AME guarantees sender awareness, and thus
each leader knows how many shared secrets were successfully
established. If a leader exchanges messages with at least n−t
nodes, it considers itself complete. Each complete leader
chooses a leader key Kv.

We assign an epoch of length Θ(t log n) for each pair (v, w)
where v ∈ ℓ, w ∈ Π − {v}. If v and w failed to establish a
shared secret, they remain silent during their epoch. Oth-
erwise, using their shared secret, they calculate a pseudo-
random channel-hopping pattern that is unknown to the
adversary. During each round of the epoch, if v is com-
plete, it transmits the leader key Kv, encrypted with the key

2The specific security assumption for DHKE holds that cal-
culating the shared key can be reduced to the Computational
Diffie-Hellman assumption; that is, calculating discrete log
in a large finite field.

shared by v and w on the calculated pseudo-random channel.
Otherwise, it sends the message “incomplete.” Node w lis-
tens accordingly. The pair avoid interference in each round
with probability at least 1/(t+1). Therefore, over Θ(t log n)
rounds, we conclude that w receives the leader key with high
probability. The total cost: Θ(nt2 log n) rounds.

Part 3: Key Agreement
Finally, the nodes collectively choose one of the leader keys
to be the shared group key. Let S be a collection of 2t + 1
non-leader nodes. We assign an epoch of length Θ(t2 log n)
to each node i ∈ S. During this epoch, node i randomly
chooses channels on which to broadcast the identity of the
smallest leader j from which it received a key Kj during
Part 2, and a hash of the key Kj . Other nodes receive on
random channels. Because epochs lasts Θ(t2 log n) rounds,
every node should hear from all nodes in S.

After the epochs conclude, we apply a simple agreement
rule: If a node heard at least t+1 non-leader nodes report the
same leader, and the node can verify each of these messages
(i.e., it knows the leader key for this leader and can therefore
confirm the leader key hash for these reports), then it adopts
this leader key as the group key. Otherwise, it recognizes
that it does not know the group key.

To see that this works, let j be the smallest completed
leader. We know that at least t + 1 nodes in S heard from
j in Part 2, since j is complete, and thus report j in Part
3. (Recall that incomplete leaders do not broadcast in Part
2.) Therefore, the n − t nodes that received j’s leader key
Kj confirm the reports and adopt Kj . (The other t nodes
will correctly identify their lack of knowledge.) The total
cost of this part: Θ(t3 log n) rounds. The total cost of the
entire protocol is dominated by Part 1: Θ(nt3 log n) rounds.
(With more channels, the cost can be reduced accordingly.)

7. LONG-LIVED COMMUNICATION
Once we have established shared secret keys, we can con-

struct a long-lived communication protocol that simulates a
secure channel. Thus nodes can execute the f-AME protocol
once to bootstrap the secure channel emulation, and from
then on out, rely on this more efficient and robust commu-
nication primitive. The long-lived communication protocol
guarantees, with high probability: (1) t-Reliability: all but
t nodes can communicate on the emulated channel; (2) Se-
crecy: the adversary cannot eavesdrop on the channel; and
(3) Authentication: a node w receives a message m from
v only if v previously sent message m.

Such a primitive is easy to implement using a shared se-
cret group key K, as established in Section 6. The nodes
generate a channel-hopping pattern by using K as the seed
to a pseudo-random generator. The nodes then participate
in each round on the specified channel.

To broadcast in an emulated round, a node repeats its
message, encrypted using key K, for Θ(t log n) rounds; other
nodes simply listen. Since the channel-hopping appears ran-
dom to the adversary, it is easy to see that if only one node
broadcasts, its message will be received, without disruption,
with high probability. (As before, for C ≥ 2t, the number of
required real rounds would fall to O(log n).) If two or more
nodes broadcast concurrently, then, as on a real broadcast
channel, one or more messages might be lost. The channel
emulation requires Θ(nt3 log n) rounds to setup the group
key, and each emulated round requires Θ(t log n) rounds.

8. OPEN QUESTIONS
By focusing on multi-channel wireless communication, this

paper introduces a new environment for the study of secure
communication. Thus, there are a variety of open questions
to consider. (1) Byzantine corruption: can we tolerate cor-
ruption faults, where the set of honest, participating devices
is unknown? A simple modification allows us to achieve 2t-
disruptability in this case: surrogates are eliminated, and
every rumor is received directly from its source; t + 1 nodes
are used to report on every non-disrupted channel during
communication-feedback. However, it remains open whether
t-disruptability can be achieved. (2) Information-theoretic
security: the secrecy of the shared keys here depends on
cryptographic assumptions, such as (computational Diffie-
Hellman). We can restrict the adversary to listening on only
t channels, so at least one channel’s communication is un-
known. In this case, is it possible to achieve some shared
secrets that are secure in an information-theoretic sense?
We conjecture that any such algorithm in inherently expo-
nential in time complexity. (3) Beyond t-disruptability: is
it possible to make some progress with the disrupted nodes,
even if it is at the cost of weakening, for them, some of the
AME guarantees? (4) Point-to-point communication and
beyond: do there exist more efficient point-to-point primi-
tives? What other communication and coordination activi-
ties are practical? (5) Multi-hop networks: all of these ques-
tions can be studied in the context of multi-hop networks.

9. REFERENCES
[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower

bound for radio broadcast. Journal of Computer and
System Sciences, 43(2):290–298, October 1992.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the
time-complexity of broadcast in multi-hop radio
networks: An exponential gap between determinism
and randomization. Journal of Computer and System
Sciences, 45(1):104–126, 1992.

[3] R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple
communication in multi-hop radio networks. SIAM
Journal on Computing, 22(4):875–887, 1993.

[4] V. Bhandari and N. H. Vaidya. On reliable broadcast
in a radio network. In the Proceedings of the
International Symposium on Principles of Distributed
Computing, pages 138–147, July 2005.

[5] Bluetooth Consortium. Bluetooth Specification Version
2.1, July 2007.

[6] M. Cagalj, S. Capkun, and J-P. Hubaux. Key
agreement in peer-to-peer wireless networks.
Proceedings of the IEEE (Special Issue on
Cryptography and Security), 94(2), February 2006.

[7] B. S. Chlebus, L. Gasieniec, A. Lingas, and A. T.
Pagourtzis. Oblivious gossiping in ad-hoc radio
networks. In the Proceedings of the 5th International
Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, pages 44–51,
2001.

[8] B.S. Chlebus and D.R. Kowalski. Robust gossiping
with an application to consensus. Journal of Computer
and System Sciences, 72(8):1262–1281, December
2006.

[9] A. Clementi, A. Monti, and R. Silvestri. Optimal
f-reliable protocols for the do-all problem on

single-hop wireless networks. Algorithms and
Computation, pages 320–331, 2002.

[10] A. Clementi, A. Monti, and R. Silvestri. Round robin
is optimal for fault-tolerant broadcasting on wireless
networks. Journal of Parallel and Distributed
Computing, 64(1):89–96, 2004.

[11] Artur Czumaj and Wojciech Rytter. Broadcasting
algorithms in radio networks with unknown topology.
In the Proceedings of the Symposium on Foundations
of Computer Science, October 2003.

[12] W. Diffe and M. Hellman. New directions in
cyptography. Transactions on Information Theory,
November 1976.

[13] S. Dolev, S. Gilbert, R. Guerraoui, and C. Newport.
Gossiping in a multi-channel radio network: An
oblivious approach to coping with malicious
interference. In the Proceedings of the International
Symposium on Distributed Computing, September
2007.

[14] S. Gilbert, R. Guerraoui, and C. Newport. Of
malicious motes and suspicious sensors: On the
efficiency of malicious interference in wireless
networks. In the Proceedings of the International
Conference on Principles of Distributed Systems,
December 2006.

[15] J. Komlos and A.G. Greenberg. An asymptotically
fast non-adaptive algorithm for conflict resolution in
multiple access channels. IEEE Transactions of
Information Theory, 31(2,) March 1985.

[16] C-Y. Koo. Broadcast in radio networks tolerating
byzantine adversarial behavior. In the Proceedings of
the International Symposium on Principles of
Distributed Computing, pages 275–282, July 2004.

[17] C-Y. Koo, V. Bhandari, J. Katz, and N. H. Vaidya.
Reliable broadcast in radio networks: The bounded
collision case. In the Proceedings of the International
Symposium on Principles of Distributed Computing,
July 2006.

[18] D. Kowalski and A. Pelc. Time of deterministic
broadcasting in radio networks with local knowledge.
SIAM Journal on Computing, 33(4):870–891, 2004.

[19] E. Kranakis, D. Krizanc, and A. Pelc. Fault-tolerant
broadcasting in radio networks. Journal of Algorithms,
39(1):47–67, April 2001.

[20] E. Kushelevitz and Y. Mansour. An Ω(d log(n/d))
lower bound for broadcast in radio networks. In the
Proceedings of the International Symposium on
Principles of Distributed Computing, August 1993.

[21] A. Pelc and D. Peleg. Feasibility and complexity of
broadcasting with random transmission failures. In the
Proceedings of the International Symposium on
Principles of Distributed Computing, pages 334–341,
July 2005.

[22] F. Stajano and R. Anderson. The resurrecting
duckling: security issues for ad hoc wireless networks.
In the Proceedings of the International Workshop on
Security Protocols, April 1999.

[23] D. E. Willard. Log-logarithmic selection resolution
protocols in a multiple access channel. SIAM Journal
of Computing, 15(2):468–477, 1986.

