
GeoQuorums: Implementing Atomic Memory in Ad Hoc Networks�

(Extended Abstract)

Shlomi Dolevy Seth Gilbertz Nancy A. Lynchz Alex A. Shvartsmanx Jennifer L. Welch{

Abstract

In this paper, we present a new approach for implementing atomic read/write shared memory in ad

hoc networks. These networks are, by nature, highly dynamic, and it is therefore difficult to employ

classical distributed algorithms. As a result, we divide the problem into two components. First, we

define a geographic abstraction, associating virtual processes with physical regions, known as focal

points, and we show how mobile hosts can implement this abstraction. Second, we present an atomic

memory algorithm that depends on quorums of focal points to replicate the data, ensuring fault tolerance

and consistency.

Our approach, then, is predicated on the existence of focal points, geographic areas that are normally

“populated” by mobile hosts. For example, a focal point may be a road junction, a landscape observation

point, or a water resource in the desert. Mobile hosts that happen to populate a focal point participate

in implementing shared atomic objects, storing their contents and supporting (remote) read and write

operations.

The GeoQuorums algorithm defines certain intersecting sets of focal points, known as quorums. In

order to complete a read or write operation, a mobile host contacts certain quorums of focal points. Us-

ing the capabilities of GPS, the new algorithm requires only a single round-trip communication phase to

implement a write operation. Additionally, by maintaining information about the completion of specific

reads and writes, the new algorithm can perform some read operations using only a single round-trip

communication phase, as compared to previous algorithms that always require two phases. This reduc-

tion is especially effective in situations where read operations are frequent compared to write operations.

The observed frequency of read and write operations may lead to a change in the read and write

policy: a different quorum system may lead to improved system performance. The algorithm allows for

such changes to be made on the fly. Using the GeoQuorums approach and a limited number of possible

quorum systems, we present a highly efficient configuration upgrade algorithm: reconfiguration always

terminates rapidly (with no reliance on a consensus service) and has quite limited impact on concurrent

read and write operations.
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1 Introduction

In this paper, we study the problem of designing algorithms for ad hoc, mobile networks. An ad hoc net-

work uses no pre-existing infrastructure, unlike cellular networks that depend on fixed, wired base stations.

Instead, the network is formed by the mobile nodes themselves, who cooperate to route communication

from sources to destinations.

Ad hoc communication networks are, by nature, highly dynamic. Mobile hosts are often small devices

with limited energy that spontaneously join and leave the network. As a mobile host moves around the

world, the set of neighbors with which it can directly communicate may change completely. The nature

of ad hoc networks makes it challenging to solve the standard problems encountered in mobile computing,

such as location management (e.g., [5]). The difficulties arise from the lack of a fixed infrastructure to serve

as the backbone of the network. In this paper, we begin to develop a new approach that allows existing

distributed computing concepts to be applied in highly dynamic, ad hoc environments.

Providing atomic [18] (or linearizable [14]) read/write shared memory in ad hoc networks is a fun-

damental problem in distributed computing. Atomic memory provides a basic service that facilitates the

implementation of many higher-level algorithms. For example, one might construct a location service by

requiring each mobile host to periodically write its current location to the memory. Similarly, a consistent

shared memory could be used to collect real-time statistics, for example, recording the number of people in

a building. We present here a new algorithm for atomic read/write memory in mobile, ad hoc networks.

The GeoQuorums Approach We divide the problem of implementing atomic read/write memory into

two components. First, we define a static, abstract model that represents nodes in the network as well-

defined geographic locales. We then show how to implement this model using mobile hosts. In this way,

the dynamic nature of the ad hoc network is masked by a static model. Second, we present an algorithm for

atomic memory that operates in the virtual static network model.

The geographic model specifies a set of physical regions, known as focal points. The mobile hosts within

a focal point cooperate to simulate a single virtual process. Each focal point is required to support a Local

Broadcast service, which provides reliable, totally ordered broadcast. This service allows each node in the

focal point to communicate reliably with every other node in the focal point. The Local Broadcast service

is used to implement a type of replicated state machine, one that tolerates joins and leaves of mobile hosts.

The atomic memory algorithm is implemented on top of the geographic abstraction. Nodes implement-

ing the atomic memory algorithm use a GeoCast service (as in [21, 2]) to communicate with the virtual

processes, that is, with the focal points. In order to achieve fault tolerance and availability, the algorithm

replicates the shared memory at a number of focal points. In order to maintain consistency, accessing the

shared memory requires updating certain sets of focal points, known as quorums [10, 25, 26, 1, 22]. The

algorithm uses two sets of focal point quorums: (i) get-quorums, and (ii) put-quorums, with the property

that every get-quorum intersects every put-quorum.

Our multi-writer/multi-reader algorithm takes advantage of a Global Position System (GPS) time ser-

vice, allowing it to process writes using a single phase; prior single-phase write algorithms made other

strong assumptions, for example, relying either on synchrony [26] or single writers [1]. Our algorithm also

allows for some reads to be processed using a single phase: the Operation Manager flags the completion of

a previous read or write to avoid using additional phases, and distributes this to various focal points. As far

as we know, this is an improvement on previous quorum-based algorithms.

For performance reasons, at different times it may be desirable to use different sets of get-quorums and

put-quorums. For example, during periods of time when there are many more read operations than write

operations, it may be preferable to use smaller, more geographically distributed, get-quorums that are fast

to communicate with, and larger put-quorums that are slower to access. If the operational statistics change,

it may be useful to reverse the situation. The algorithm presented here includes a limited reconfiguration
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capability: it can switch between a finite number of predetermined configurations. As a result of the static

underlying model, in which focal points neither join nor leave, this is not a severe limitation. The resulting

reconfiguration algorithm, however, is quite efficient compared to prior reconfigurable atomic memory algo-

rithms [20, 11]. Reconfiguration does not significantly delay read or write operations, and, as no consensus

service is required, reconfiguration terminates rapidly.

Another major benefit of using a quorum-based approach is fault tolerance. Quorum systems are inher-

ently resilient to many types of failures. Any read or write operation is guaranteed to terminate whenever at

least one get-quorum (for reads) and one put-quorum (for reads and writes) of the configurations contacted

by the operation remain functional.

We formally specify all our algorithms in terms of Input/Output Automata [19]. The safety (atomicity)

of the implementation is shown using assertional and partial-order techniques.

Overall, then, there are two primary contributions in this paper. First, we introduce the geographic

abstraction model, which allows simple, static algorithms to be used effectively in highly dynamic envi-

ronments. We provide an implementation, the Focal Point Emulator, of the model designed specifically

for quorum based algorithms. Second, we present an atomic memory algorithm, the Operation Manager,

that is coupled with the implementation of the geographic model. The new algorithm takes advantage of a

real-time clock, provided by GPS, and improves on previous quorum based shared memory algorithms. It

also provides a highly efficient reconfiguration service.

Other Approaches. Quorum systems are widely used to implement atomic memory in static distributed

systems [10, 25, 26, 27, 1, 9, 13]. More recent research has pursued application of similar techniques

to highly dynamic environments, like ad hoc networks. Many algorithms depend on reconfiguring the

quorum systems in order to tolerate frequent joins and leaves and changes in network topology. Some

of these [7, 15, 4, 13, 22] require the new configurations to be related to the old configurations, limiting

their utility in ad hoc networks. Englert and Shvartsman [8] showed that using any two quorum systems

concurrently preserves atomicity during more general reconfiguration. Recently, Lynch and Shvartsman

introduced RAMBO [20] (extended in [11]), an algorithm designed to support distributed shared memory

in a highly dynamic environment. The RAMBO algorithms allow arbitrary reconfiguration, supporting a

changing set of (potentially mobile) participants. The GeoQuorums approach handles the dynamic aspects

of the network by creating a geographic abstraction, thus simplifying the atomic memory algorithm. While

prior algorithms use reconfiguration to provide fault tolerance in a highly dynamic setting, the GeoQuorums

approach depends on reconfiguration primarily for performance optimization. This allows a simpler, and

therefore more efficient, reconfiguration mechanism.

Haas and Liang [12] also address the problem of implementing quorum systems in a mobile network.

Instead of considering reconfiguration, they focus on the problem of constructing and maintaining quorum

systems for storing location information. Special participants are designed to perform administrative func-

tions. Thus, the backbone is formed by unreliable, ad hoc nodes that serve as members of quorum groups.

Stojmenovic and Pena [24] choose nodes to update using a geographically aware approach. They propose

a heuristic that sends location updates to a north-south column of nodes, while a location search proceeds

along an east-west row of nodes. Note that the north-south nodes may move during the update, so it is pos-

sible that the location search may fail. Karumanchi et al. [16] focus on the problem of efficiently utilizing

quorum systems in a highly dynamic environment. The nodes are partitioned into fixed quorums, and every

operation updates a randomly selected group, thus balancing the load.

Document Structure. The rest of the paper is organized as follows. The system model appears in Sec-

tion 2. The algorithms for emulating a focal point and implementing GeoQuorums appear in Section 3. The

atomicity proof for the implementations appear in Section 4. Finally, in Section 5, we conclude and present

some areas for future research. The complete code for the algorithms and selected proofs are given in the

(optional) Appendix.
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2 System Model

In the first part of this section, we describe the basic environmental assumptions. In the second part, we

present examples of real-world systems that support these assumptions.

Theoretical Model. Our world model consists of a bounded region of a two-dimensional plane, populated

by mobile hosts. The mobile hosts may turn on, joining the system, or turn off, leaving the system. Since

mobile hosts may fail at any time, we allow the hosts to leave the system without any protocol. The mobile

hosts can move on any continuous path in the plane, where their maximum speed is bounded. The com-

putation at each mobile host is modeled by an asynchronous automaton, augmented with a geosensor. The

geosensor is a device with access to a real-time clock and the current, exact location of the mobile host in

the plane. It provides the mobile host with continuous access to this information.

While we make no assumption as to the motion of the mobile hosts, we do assume that there are certain

regions that are usually “populated” by mobile hosts. We assume that there is a collection of some n non-

intersecting regions in the plane, called focal points, such that (i) there are at least n � f focal points (for

some f < n), where at all times there is at least one mobile host in each focal point, and (ii) the mobile

hosts in each focal point are able to implement a reliable, atomic broadcast service. Condition (i) is used to

ensure that sufficiently many focal points remain available. Once a focal point becomes unavailable due to

“depopulation”, we do not allow it to recover if it is repopulated. (The algorithm we present in this paper can

be modified to allow a “failed” focal point to recover, however, we do not discuss this modification here.)

Condition (ii) ensures that all mobile hosts within a focal point can communicate reliably with each other,

and that messages are totally ordered. We assume that each mobile host has a list of all the focal points.

Each mobile host also has a list of configurations. A configuration, , consists of two sets of quorums:

get-quorums() and put-quorums(). Each quorum consists of a set of focal points, and they have the

following intersection properties: if G 2 get-quorums() and P 2 put-quorums(), then G \ P 6= ;.

Additionally, for a given , we assume that for any set of f focal points, F , there exist G 2 get-quorums()

and P 2 put-quorums() such that F \ G = ; and F \ P = ;. This allows an algorithm based on the

quorums to tolerate f focal points failing. In this paper, we assume that there are only two configurations,



1

and 

2

.

Mobile hosts depend on two broadcast services: (i) Local-Broadcast, a local, atomic broadcast service,

and (ii) GeoCast, a global delivery service. The Local-Broadcast service allows nodes within a focal point

to communicate reliably. Each focal point is assumed to support a separate Local-Broadcast service: if we

refer to focal point h, its broadcast service is referred to as Loal-Broadast
h

. The Local-Broadcast service

takes one parameter, a message, and delivers it to every node in the focal point. If mobile host i is in focal

point h, and broadcasts a message m using Loal-Broadast

h

at time t, and if j is also in focal point h at

time t, and remains in h, then j receives message m. Additionally, the service guarantees that all mobile

hosts receive all messages in the same order. That is, if host i
1

receives message m

1

before message m

2

,

then if host i
2

receives messages m
1

and m

2

it will receive message m
1

before message m
2

.

The GeoCast service delivers a message to a specified destination in the plane, and optionally delivers it

to a specified node at that location. The GeoCast service takes three parameters: (i) message, (ii) destination

location, (iii) ID of a destination node (optional). If no destination ID is specified, then the destination

location must be inside some focal point, h. In this case, if message m is GeoCast at time t, then there exists

some time t

0

> t such that if mobile host i is in focal point h at time t

0, and remains in h, then i receives

message m. If a destination-ID is specified, and if the destination node remains near the destination location

until the message is delivered, and the destination node does not fail until the message is delivered, then the

service will eventually deliver the message to the node with the correct destination-ID.

Practical Aspects. This theoretical model represents a wide class of real mobile systems. First, there are

a number of ways to provide location and time services, as represented by the geosensor. The Global Posi-
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tioning System (GPS) is perhaps the most common method. Others, like Cricket [23], are being developed

to augment weaknesses in GPS, such as indoor operation. All the algorithms presented in this paper can

tolerate small errors in the time or location, though we do not discuss this.

Second, the broadcast services specified here are reasonable. If a focal point is small enough, it should

be easy to ensure that a single broadcast, with appropriate error correction, reaches every mobile node at the

focal point. If the broadcast service uses a time-division/multiple-access (TDMA) protocol, which allocates

each node a time slot in which to broadcast, then it is easy to determine a total ordering of the messages.

A node joining the focal point might use a separate reservation channel to compete for a time slot on the

main TDMA communication channel. This would eliminate collisions on the main channel, while slightly

prolonging the process of joining a focal point. The GeoCast service is also a common primitive in mobile

networks: a number of algorithms have been developed to solve this problem, originally for the Internet

Protocol [21] and later for ad hoc networks (e.g., [17, 2]).

We propose one set of configurations that may be particularly useful in actual implementations. We

assume that accessing nearby focal points is faster than accessing distant focal points, and this set of config-

urations takes advantage of this locality principle. The focal points can be grouped into clusters, using some

geographic technique [3]. Figure 1 illustrates the relationship among mobile hosts, focal points, and clusters.

For configuration 

1

, the get-quorums are defined to be the clusters. The put-quorums consist of every set

containing exactly one node from each cluster. Configuration 

2

is defined in the opposite manner. If the

clusters are relatively small and are well distributed in the plane, so that every mobile host is near to every

focal point in some cluster, then configuration 

1

is quite efficient, if read operations are more common than

write operations and if most read operations need only access the focal points of a single cluster. Similarly,

in this case, configuration 

2

is quite efficient if write operations are more common than read operations. As

we show later in this paper, our reconfiguration algorithm allows the system to safely switch between these

two configurations.

Another implementation difficulty might be agreeing on the focal points and ensuring that every mobile

host has an accurate list of all the focal points and configurations. Some strategies have been proposed

to choose focal points: for example, the mobile hosts might send a token on a random walk, to collect

information on geographic density [6]. The simplest way to ensure that a mobile host has access to a list of

focal points and configurations is to depend on a centralized server, through transmissions from a satellite

or a cell-phone tower. Alternatively, the GeoCast service itself might facilitate finding other mobile hosts,

at which point the definitive list can be discovered.

mobile host

focal point

cluster

Figure 1: Clusters
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3 Focal Point Emulator and GeoQuorums Implementation

In this section we informally describe the algorithm used to implement read/write atomic memory in ad hoc

networks. The algorithm consists of two components: the Focal Point Emulator, and the Operation Manager.

Both of these algorithms are described in detail in Appendix A, where we present Input/Output Automata

code for both automata.

We start with a high level description of the algorithms used in the system. Figure 2 describes the

relationship of the different components of the mobile host program. Every mobile host may serve as a

client that performs read and write memory accesses. For example, a client may request a read (the leftmost

arrow from client to the operation manager) then a read procedure is invoked by the mobile host, sending

GeoCast messages to, say, one focal point in each cluster (“geoc-send” arrow). The GeoCast message

carries the current location of the sending mobile host, received from the geosensor (right “geo-update”

arrow). Representatives of each focal point answer, using the position of the client sent in the GeoCast

message, with the memory value and the time stamp of the last update (“geoc-rcv” arrow). Then, the mobile

host uses the answers to compute the most updated value of the memory and responds to the client as part

of the read-ack. A mobile host identifies the fact that it is in a focal point region by the information obtained

from the geosensor (left “geo-update” arrow). Then the mobile host uses the local broadcast procedure to

obtain a copy of the memory from other mobile hosts in the focal point region (“lbcast-send”, “lbcast-rcv”).

The mobile host is now ready to serve put and get operations to the memory arriving in messages of the

GeoCast (“geoc-send” and “geoc-rcv” arrows). We next describe the algorithm in more detail.

3.1 Focal Point Emulator

The Focal Point Emulator (FPE) is the automaton that allows the members of a focal point to simulate a

single replica. The FPE implements a replicated state machine, using the totally ordered local broadcast to

ensure consistency.

The FPE maintains a data record that represents the state being replicated at every mobile host in

the focal point. The FPE receives GeoCast messages updating the value of the atomic data object, which
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it stores in data:value . Each update is accompanied by a unique tag from a totally ordered set, that is

stored in data:tag . Occasionally the FPE is notified that a tag is confirmed; data:on�rmed tracks the

set of confirmed tags. Many requests to the FPE contain the ID of a configuration; data:onf-id stores the

largest known configuration ID. Occasionally the FPE is notified that a configuration is completely installed;

data:reon-ip is a flag that indicates whether a reconfiguration is in progress.

The FPE receives various messages from the GeoCast service, sent by a mobile host. The incoming

message is immediately rebroadcast, using the Local Broadcast service. The FPE takes no other action in

response to GeoCast messages.

The FPE also receives messages from the Local Broadcast service. Each FPE automaton can be either

idle, joining or active. If it is not idle, then it will process the message and update its local state. Even if

a node is in the process of joining, it updates its local state to maintain consistency. If the node is active

(and thus no joining is in progress), then the FPE enqueues a response, if required. Whenever a response is

sent through the GeoCast service, an ak message is sent using the Local Broadcast service. If a node has

received an ak message for a given request, it does not need to send a response. Similarly, if a node notices

that it has already handled a given request, then it does not need to send a response. Finally, if any node

notices that a new configuration is being used, it sets a flag to remember that a reconfiguration is in progress.

We now discuss the various messages received by node i from the Local Broadcast service. The first

four are messages rebroadcast from the Local Broadcast service. (i) If node i receives a get message and

if certain criteria are met, then node i sends a response via the GeoCast service, containing its current copy

of tag, value, and confirmed (ii) If node i receives a put message, then node i updates its local copy of tag,

value and confirmed using the data in the message. If certain criteria are met, then node i sends a response

using the GeoCast service, indicating that the update is complete. (iii) If node i receives a confirm message,

then it updates its local copy of the confirmed flag. (iv) If node i receives a recon-done message, then it

sets its local recon-ip flag to false to indicate that the reconfiguration is completed.

The final piece of the Focal Point Emulator is the join protocol, which enables a mobile host to join

a focal point. Recall that the geosensor service periodically notifies the mobile host of its new location.

When the host has entered a focal point, it begins the join protocol by sending a join-request message using

the Local Broadcast service; this message contains a unique identifier for the join request consisting of the

requester’s node identifier and the current time. When node i receives the join-request message, if certain

criteria are met, node i sends a response using the Local Broadcast; this response includes information about

the current value of the shared object, the tag, and whether or not the value is confirmed. As soon as the

initiator of the join protocol receives any response, it updates its current local copy of the value, the tag, and

the confirmed flag with the information in the response message, and then becomes active.

3.2 Operation Manager

The Operation Manager uses the GeoCast service to communicate with focal points, sending get, put, and

on�rm messages to various focal points, and receiving appropriate responses. The Operation Manager

uses the focal points as replicas, guaranteeing both atomicity and fault tolerance. For each phase of each

operation, the automaton will contact a quorum of focal points. The quorum intersection property will

ensure consistency.

Read/Write Operations When node i receives a write request, it first examines its clock to choose a

unique tag for the operation. Assume that node i believes the current configuration is . Node i then

uses the GeoCast service to send the new tag and value to be written to a number of focal points. If no

reconfiguration is in progress, and if all responses indicate that  is the only known configuration, then

the operation terminates when node i receives at least one response from each focal-point in some P 2

put-quorums(). If any response indicates that a reconfiguration is in progress to configuration 

0, or that 0
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is known anywhere as the newer current configuration, then node i must wait until it also receives responses

from each focal point in some P 0

2 put-quorums(

0

). After the operation is complete, node i can optionally

notify focal points that the specified tag has been confirmed, indicating that the operation is complete.

When node i receives a read request, it sends out messages to a number of focal points. As before, if

no focal point indicates that a reconfiguration is in progress, and no focal point indicates the existence of

a newer configuration, then the first phase terminates when i receives a response from each focal point in

some G 2 get-quorums(). Otherwise, the phase only completes when it also hears from each focal point

in some G0

2 get-quorums(

0

), where 0 is the other configuration. At this point, node i chooses the value

associated with the largest tag from any of the responses. If the chosen tag has been confirmed, then the

operation is complete. Otherwise, node i begins a second phase that is identical to the protocol of the write

operation.

Notice that the knowledge of the confirmed tags is used to short-circuit the second phase of certain read

operations. The second phase is only required in the case where a prior operation with the same tag has

not yet completed. By notifying a put-quorum that the operation has completed, the algorithm allows later

operations to discover that a second phase is unnecessary.

Reconfiguration The reconfiguration algorithm is, in some manners, a variant of the reconfiguration

mechanism presented in the RAMBO II algorithm [11]: the presented algorithm is a special case of the

general algorithm, in which there are only a small, finite number of legal configurations. This simplification

obviates the need for a consensus service, and therefore significantly improves efficiency. For the rest of this

paper, we assume that there are exactly two configurations, named 

1

and 

2

. A reconfiguration operation is

similar to a read or write operation, in that it requires contacting appropriate quorums of focal points from

the two different configurations. First, node i chooses a new, unique, configuration identifier, by examining

the local clock, its node-id, and the name of the desired configuration. Then node i sets a flag, indicating

that a reconfiguration is in progress. At this point, the first phase of the reconfiguration begins, sending mes-

sages to a number of focal points. The first phase terminates when it receives a response from every node in

four different quorums: (i) a get-quorum of 
1

, (ii) a get-quorum of 
2

, (iii) a put-quorum of 
1

, and a (iii)

put-quorum of 
2

. Then the second phase begins, again sending out messages to focal points. It terminates

when i receives responses from every node in some put-quorum of the new configuration. Node i may then

broadcast a message to various focal-points, notifying them that the new configuration is established and

that the reconfiguration is done.

4 Proof of Atomic Consistency

In this section, we discuss the proof that the algorithm presented guarantees atomic consistency. For the

details of the proof, see Appendix C. The proof is divided into two parts. First, we show that each focal

point, running the Focal Point Emulator, acts like a single, atomic object. Then we show that the Operation

Manager correctly uses these focal point objects to provide atomic consistency.

Focal Point Emulator The first fact to note about the FPE is that, if nodes never join or leave a focal

point, it is clear that it implements an atomic object. Each request to the focal point is rebroadcast using the

lbast service, which assigns a total ordering to all requests. If every node in the focal point begins in the

same initial state, and every node in the focal point handles every request, and the requests are handled in

the same order (that determined by the lbast service), then if two mobile hosts i; j have both just processed

message m, then they are both in the same state and send the same response. We claim the same result for

the more general case when nodes frequently join and leave the focal point:

Lemma 4.1 Assume that at some point in the execution, mobile host i has an item in its outgoing GeoCast

queue of the following form: hop
1

; oid ; payload

1

i. Further, assume that at some (other) point in the execu-
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tion mobile host j has an item in its outgoing GeoCast queue of the following form: hop
2

; oid ; payload

2

i.

Then, op
1

= op

2

, and payload

1

= payload

2

.

This shows that if two different nodes in a single focal point both GeoCast a response to the same request

(identified by oid ), then they always send the same response.

Next, we claim that put and get operations act atomically. For example, if a put request stores some

value at the focal point, a later get request returns that value, or the value of a more recent put request.

Similarly, the configuration-ids returned in response to requests are non-decreasing.

Lemma 4.2 Assume that i and j are two mobile hosts; all described actions occur in focal point h. Assume

that i GeoCasts a response to an operation, �, where � is either a put or a get request. Later, j GeoCasts

a response to a get request. Then the tag sent by j is no smaller than the tag sent or received for �, and the

configuration-id sent j is no smaller than the configuration-id sent or received for �.

We also show that similar results hold for the on�rmed flag and the rconfiguration flag: if a focal point

sends a response that a certain tag is confirmed, then it must previously have received a request indicating

that the tag was confirmed; if a focal point sends a response indicating that a certain reconfiguration is

complete, then it must previously have received a request indicating that the reconfiguration was complete.

Operation Manager Once it has been shown that the focal point emulates an atomic object, we can

show that the operation manager preserves atomicity. The complete proofs are given in Appendix C. The

proof relies on establishing a partial order on read and write operations based on tags using the approach of

Lemma 13.16 in [19].

We first show that if there is no reconfiguration, and all read operations complete in two phases (rather

than being short-circuited by the on�rmed flag) then atomic consistency is guaranteed. Assume you have

two operations, �
1

and �

2

, and the former completes before the latter begins. Assume that both use configu-

ration . Then �
1

accesses a put-quorum of , and �
2

accesses a get-quorum of . By the quorum intersection

property, there is some focal point, h, that is in both quorums. Then, focal point h first receives a message

containing �

1

, and then sends a message in response to �

2

. By Lemma 4.2, the second message contains

information as least as recent as that received in the first message. This shows the following:

Lemma 4.3 If �
1

is a two-phase read or write operation, and �

2

is a read or write operation, and �

1

and

�

2

both use the same configuration, and if �
1

completes before �
2

begins, then the tag associated with �

1

is

no larger than the tag associated with �

2

, and if �
2

is a write operation, then the tag associated with �

1

is

strictly less than the tag associated with �

2

.

The second key aspect of the proof is showing that the reconfiguration mechanism does not violate

atomicity. Again consider two operation �

1

and �

2

. If either �
1

or �
2

has the flag set indicating that a

reconfiguration is in progress, it is again straightforward to see that consistency is maintained: the operation

that has the flag set accesses quorums in both configurations 
1

and 
2

, and therefore, as in the previous case,

is guaranteed to contact a quorum that intersects with a quorum accessed by the other operation.

Assume instead that each operation accesses only a single configuration (as the reconfiguration in

progress flag is set otherwise). Assume that �
1

uses configuration , and �

2

uses configuration 

0. We

show that 0 must be at least as recent a configuration as . Then we know that the reconfiguration that

establishes 0 completes before �
2

. We then show that this reconfiguration propagates information from �

1

,

discovered in the first phase, to �

2

in the second phase. This shows that:

Lemma 4.4 If �
1

is a two-phase read or write operation, and �

2

is a read or write operation, and �

1

uses

a smaller configuration than �

2

, and if �
1

completes before �

2

begins, then the tag associated with �

1

is

no larger than the tag associated with �

2

, and if �
2

is a write operation, then the tag associated with �

1

is

strictly less then the tag associated with �

2

.
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The last aspect to consider is one-phase read operations. Consider a read operation that stops after its

first phase as a result of the on�rmed flag. We then show that there must be an operation with the same

associated tag and value that completes before the read operation begins, and that accesses a put-quorum .

This then leads to the conclusion that atomicity is preserved. Putting these pieces together, we show the

following, which leads (by Lemma 13.16 in [19]) to the conclusion that atomic consistency is guaranteed:

Lemma 4.5 If �
1

and �

2

are read or write operations, and �

1

completes before �

2

begins, then the tag

associated with �

2

is no smaller than the tag associated with �

1

. If �
2

is also a write operation, then the tag

associated with �

1

is strictly less than the tag associated with �

2

.

5 Conclusions and Future Work

In this paper, we have presented a new approach to implementing algorithms in highly dynamic, mobile

networks. To solve the problem of atomic memory, we have presented a geographic abstraction model,

and an algorithm, the Focal Point Emulator, that implements it using mobile hosts. We have also presented

a client algorithm, the Operation Manager, that takes advantage of the static abstraction to implement an

efficient, reconfigurable atomic read/write memory.

In this paper, the two algorithms presented are tightly coupled: the Operation Manager depends on the

Focal Point Emulator’s awareness of the semantics of reconfigurable atomic memory. We hope in the future

to develop a more abstract model for the Focal Point Emulator. It should be possible to specify the desired

behavior as an atomic data object, and the focal point should guarantee that the specification is met. This

would simplify the development and proof of algorithms in the GeoQuorums model.

It seems likely that many algorithmic problems should be amenable to the approach in this paper. The

geographic abstraction transforms the highly dynamic, ad hoc environment into a relatively static model.

This transformation should facilitate the use in ad hoc networks of many classical distributed algorithms

that are otherwise difficult to implement in highly dynamic environments.

We also believe that our approach will be useful in studying hybrid networks, consisting of both mobile

nodes and fixed infrastructure. In areas where there are non-mobile, fixed participants, simpler and more

efficient versions of the FPE can be used. When nodes enter areas with no infrastructure, the more dynamic

algorithm can seamlessly take over.

There are many open questions relating to the best way to implement the geographic abstraction. In this

paper, we assumed a static definition of focal points and configurations. Yet it might be useful to construct

these entities in a distributed fashion, and to modify them as the algorithm runs. There are also questions as

to how to implement the various components of this algorithm. We mentioned some ideas in Section 2 as to

what a practical implementation might look like, but many other options are possible.
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Appendices

A Automata Specifications: Focal Point Emulator

Domains:

I , set of mobile hosts identifiers

V , set of values [ ?

B, set of boolean values [ ?

C, set of clock times

T , set of tags C � I [ f?g

O, set of operation ids C � I

L, set of locations, presumably R�R [?

D, a set of destinations, I [ ffoal-pointg � L

FP , a set of focal points,

presumably L�R[?

N , set of configuration-names f0; 1g

CID, set of configuration-ids C � I �N

Figure 3: Domains

FPE

i

: State Components

status 2 fidle; joining; ativeg, initially

�

idle if i is not initially in any focal point

ative if i is initially in some focal point

foalpoint-id 2 FP , initially?

join-oid 2 O, initially 0

omplete-ops , a subset of O, initially ;

data , a record with fields:

value 2 V , initially v
0

tag 2 T , initially?

on�rmed , a subset of T , initially ;

onf-id 2 CID, initially h0; 0; 0i

reon-ip 2 B, initially false

queues , a record with fields:

geoast , a queue of hop; payload ; sr; dest i, initially ;

lbast , a queue of hop; payload ; op-sri, initially ;

global , a record with fields:

fp-map, a set of FP , initially ;

lok 2 C, initially 0

loation 2 L, initially i’s initial location

Figure 4: Focal Point Emulator State
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FPE

i

: Signature:

Input:

lbast-rv(message ; payload ; op-sr)

h;i

,

i 2 I ,

h 2 FP ,

message 2 fget; put; ak; on�rm; reon-done;

join-req; join-req-akg

payload 2 f(O � CID);

(O � T � V �B � CID);

(O);

(O � T );

(O �CID);

(O� V � T �P(T )�CID�B �P(O))g;

op-sr 2 D

geo-rv(message ; payload ; sr; dest)

i

,

i 2 I ,

message 2 fget; put; on�rm; reon-doneg

payload 2 f(O � CID);

(O � T � V �B � CID);

(O � T );

(O �CID)g;

sr; dest 2 D

geo-update(urrent-lo ; new-time)

i

,

i 2 I

urrent-lo 2 L

new-time 2 C

Output:

lbast-send(message ; payload ; op-sr)

h;i

,

i 2 I ,

h 2 FP ,

message 2 fget; put; ak; on�rm; reon-done;

join-req; join-req-akg

payload 2 f(O � CID);

(O � T � V �B � CID);

(O);

(O � T );

(O �CID);

(O� T � V �P(T )�CID�B �P(O))g,

op-sr 2 D

geo-send(message ; payload ; sr; dest)

i

,

i 2 I

message 2 fget-ak; put-akg;

payload 2 f(O � T � V �B �CID �B);

(O �CID �B);

sr; dest 2 D

Internal:

join()

i

i 2 I

leave()

i

i 2 I

Figure 5: Focal Point Emulator Signature
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FPE

i

: Transitions I

Input lbast-rv(get; oid ; id ; op-sr)

h;i

Effect:

if (h = lookup(global :loation ; global :fp-map)) then

if id > data:onf-id then

data:onf-id  id

data:reon-ip  true

if status = ative then

if oid =2 omplete-ops then

onf  data:tag 2 data:on�rmed

sr  hfoal-point; foalpoint-idi

dest  op-sr

Enqueue(queues:geoast ,

hget-ak; oid ; data:tag ; data:value ; onf ;

data:onf-id ; data:reon-ip ; sr; desti)

omplete-ops  omplete-ops [ foidg

Input lbast-rv(put; oid ; id ; op-sr)

h;i

Effect:

if (h = lookup(global :loation ; global :fp-map)) then

if id > data:onf-id then

data:onf-id  id

data:reon-ip  true

if t > data:tag then

data:value v

data:tag t

if status = ative then

if oid =2 omplete-ops then

sr = hfoal-point; foalpoint-id i

dest = op-sr

Enqueue(queues:geoast ,

hput-ak; oid ; data:onf-id ; data:reon-ip ; sr; dest i)

omplete-ops  omplete-ops [ foidg

Input lbast-rv(ak; oid)

h;i

Effect:

if (h = lookup(global :loation ; global :fp-map)) then

8x = h�; oid ; �; �; �i 2 queues:geoast

Remove x from queues:geoast

8x = h�; oid ; �; �i 2 queues:lbast

Remove x from queues:lbast

Input geo-rv(hop; payload ; sr; desti)

i

Effect:

Enqueue(queues:lbast , hop; payload ; sri)

Output geo-send(op; payload ; sr; dest )

Precondition:

hoid ; �i = payload

hop; payload ; sr; dest i = queues:lbast :head

Effect:

queues:geoast  queues:geoast :tail

if (op = get jj op = put) then

Enqueue(queues:lbast , hak; oid ;?i)

Output lbast-send(op; payload)

h;i

Precondition:

h = lookup(global :loation ; global :fp-map)

hop; payloadi = queues:lbast :head

Effect:

queues:lbast  queues:lbast :tail

Input lbast-rv(on�rm; oid ; t ; op-sr)

h;i

Effect:

if (h = lookup(global :loation ; global :fp-map)) then

data:on�rmed  data:on�rmed [ t

omplete-ops  omplete-ops [ foidg

Input lbast-rv(reon-done; oid ; id ; op-sr)

h;i

Effect:

if (h = lookup(global :loation ; global :fp-map)) then

if id = data:onf-id then

data:reon-ip  false

omplete-ops  omplete-ops [ foidg

Input geo-update(new-lo; new-time)

i

Effect:

global :loation  urrent-lo

global :lok  new-time

Figure 6: Focal Point Emulator send/receive Transitions

13



FPE

i

: Transitions II

Internal join()

i

Precondition:

lookup(global :loation ; global :fp-map) 6= ?

foalpoint-id = ?

status = idle

Effect:

foalpoint-id  lookup(global :loation ; global :fp-map)

status = joining

join-oid = hglobal:lok; ii

data:onf-id  h0; 0; 0i

Enqueue(queues:lbast , hjoin-req; join-oid ;?i)

Input lbast-rv(join-req; oid ; op-sr)

h;i

Effect:

if (h = lookup(global :loation ; global :fp-map)) then

if status = ative then

if oid =2 omplete-ops then

Enqueue(lbast-queue , hjoin-req-ak; oid ; data ; omplete-ops ;?i)

omplete-ops  omplete-ops [ foidg

Internal leave()

i

Precondition:

foalpoint-id 6= lookup(global :loation ; global :fp-map

i

)

Effect:

data:value  ?

data:tag  ?

data:on�rmed  ;

foalpoint-id  ?

status = idle

Input lbast-rv(join-req-ak; oid ; new-data ; new-omplete-ops )

h;i

Effect:

if (h = lookup(global :loation ; global :fp-map)) then

if status = joining then

if join-oid = oid then

if new-data:tag > data:tag then

data:tag  new-data:tag

data:value  new-data:value

data:on�rmed  data:on�rmed [ new-data:on�rmed

if (data:onf-id � new-data:onf-id ) then

data:onf-id  new-data:onf-id

data:reon-ip  new-data:reon-ip

omplete-ops  omplete-ops [ new-omplete-ops

status = ative

join-oid = ?

8x = h�; oid ; �; �; �i 2 queues:geoast

Remove x from queues:geoast

8x = h�; oid ; �; �i 2 queues:lbast

Remove x from queues:lbast

Figure 7: Focal Point Emulator join/leave Transitions
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B Automata Specifications: Operation Manager

OM

i

: State Components

on�rmed , a subset of T , initially ;

onf-id 2 CID, initially h0; 0; 0i

reon-ip 2 B, initially false

op, a record with fields:

type 2 fread;write; reong

phase 2 fidle; get; putg, initially idle

tag 2 T , initially ?

value 2 V , initially ?

reon-in-progress 2 B, initially false

oid 2 O, initially 0

a, a finite subset of I , initially ;

lo 2 L, initially?

global , a record with fields:

loation 2 L, initially ?

lok 2 C, initially 0

fp-map, a subset of FP , initially a set of focal point definitions

G

1

� P(FP ), initially the set of get-quorums for configuration 1

P

1

� P(FP ), initially the set of put-quorums for configuration 1

G

2

� P(FP ), initially the set of get-quorums for configuration 2

P

2

� P(FP ), initially the set of put-quorums for configuration 2

OM

i

: Signature

Input:

read()

i

i 2 I

write(v)

i

,

i 2 I;

v 2 V

reon(onf-name)

i

i 2 I;

onf-name 2 N

Output:

read-ak(v)

i

i 2 I;

v 2 V

write-ak()

i

i 2 I

reon-ak()

i

i 2 I

Internal:

read-2()

i

i 2 I

reon-2()

i 2 I

on�rm()

i

i 2 I

Input:

geo-rv(op; payload ; sr; dest)

i

op 2 fget-ak; put-akg,

payload 2 f(O � T � V �B �CID �B)g;

(O �CID �B)g;

sr; dest 2 D

Output:

geo-send(op; payload ; sr; dest)

i

op 2 fget; put; on�rm; reon-doneg

payload 2 f(O � CID);

(O � T � V �B � CID);

(O � T );

(O �CID);

sr; dest 2 D

Figure 8: Operation Manager State and Signature
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OM

i

: Transitions I

Input read()

i

Effect:

op:type  read

op:phase  get

op:tag  ?

op:value  ?

op:reon-in-progress  reon-ip

op:oid  hglobal:lok; ii

op:a  ;

op:lo  global :loation

Input write(v)

i

Effect:

op:type  write

op:phase  put

op:tag  hglobal:lok; ii

op:value  v

op:reon-in-progress  reon-ip

op:oid  hglobal:lok; ii

op:a  ;

op:lo  global :loation

Internal read-2()

i

Precondition:

onf-id = h; p; ni

if op:reon-in-progress then

9g

0

2 G

0

; g

1

2 G

1

such that:

op:a � g

0

[ g

1

else

9g

n

2 G

n

such that:

a � g

n

op:phase = get

op:type = read

op:tag =2 onfirmed

Effect:

op:phase  put

op:reon-in-progress  false

op:oid  hglobal:lok; ii

op:a  ;

op:lo  my-loation

Input geo-rv(get-ak; oid ; tag ; val ; onf ; id ; re-ip; sr; dest )

i

Effect:

if op:oid = oid then

if tag > op:tag then

op:tag  tag

op:val  val

a  a [ flookup(sr:lo; global :fp-map)g

if id > onf-id then

onf-id  id

op:reon-in-progress  true

reon-ip  true

if op:type = reon then

op:phase = idle

else if id = onf-id then

if re-ip = false then

reon-ip  false

if onf = true then

on�rmed  on�rmed [ ftagg

Input geo-rv(put-ak; oid ; id ; re-ip; sr; dest)

i

Effect:

if op:oid = oid then

a  a [ flookup(sr:lo; global :fp-map)g

if id > onf-id then

onf-id  id

op:reon-in-progress  true

reon-ip  true

else if id = onf-id then

if r-ip = false then

reon-ip  false

if onf = true then

on�rmed  on�rmed [ ftagg

Output geo-send(message ; payload ; sr; dest )

i

Precondition:

if (op:phase 6= idle) then

message = op:phase jj message 2 fon�rm; reon-doneg

else

message 2 fon�rm; reon-doneg

f = op:tag 2 on�rmed

if (op:phase = get) then

payload = hop:oid ; onf-idi

if (op:phase = put) then

payload = hop:oid ; op:tag ; op:value ; f ; onf-idi

if (op:phase = on�rm) then

op:tag 2 onfirmed

payload = hop:oid ; op:tagi

if (op:phase = reon-done) then

reon-ip = false

payload = hop:oid ; onf-idi

sr = hi; global :loationi

fp-name 2 FP

dest = hfoal-point; fp-namei

Effect:

None

Figure 9: Operation Manager Transitions
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OM

i

: Transitions II

Output read-ak(v)

i

Precondition:

onf-id = h; p; ni

if op:reon-in-progress then

9p

0

2 P

0

; p

1

2 P

1

such that:

a � p

0

[ p

1

else

9p

n

2 P

n

such that:

a � p

n

op:phase = put

op:type = read

v = op:value

Effect:

op:phase idle

onfirmed onfirmed [ fop:tagg

Output read-ak(v)

i

Precondition:

onf-id = h; p; ni

if op:reon-in-progress then

9g

0

2 G

0

; g

1

2 G

1

such that:

a � g

0

[ g

1

else

9g

n

2 G

n

such that:

a � G

n

op:phase = get

op:type = read

op:tag 2 onfirmed

v = op:value

Effect:

op:phase idle

Output write-ak()

i

Precondition:

onf-id = h; p; ni

if op:reon-in-progress then

9p

0

2 P

0

; p

1

2 P

1

such that:

a � p

0

[ p

1

else

9p

n

2 P

n

such that:

a � p

n

op:phase = put

op:type = write

Effect:

op:phase idle

onfirmed onfirmed [ fop:tagg

Input reon(onf-name)

i

Effect:

onf-id = hglobal :lok ; i; onf-namei

reon-ip = true

if op:type = reon then

op:phase = idle

Internal reon-upgrade(id)

i

Precondition:

reon-ip = true

op:phase = idle

id = onf-id

Effect:

op:type  reon

op:phase  get

op:tag  ?

op:value  ?

op:reon-in-progress  true

op:oid  hglobal:lok; ii

op:a  ;

op:lo  global :loation

Internal reon-upgrade-2(id)

i

Precondition:

9g

0

2 G

0

; g

1

2 G

1

; p

0

2 P

0

; p

1

2 P

1

such that:

a � g

0

[ g

1

[ p

0

[ p

1

op:type = reon

op:phase = get

id = onf-id

Effect:

op:phase  put

op:oid  hglobal:lok; ii

op:a  ;

op:lo  global :loation

Output reon-ak(id)

i

Precondition:

onf-id = h; p; ni

9p

n

2 P

n

such that:

a � p

n

op:type = reon

op:phase = put

id = onf-id

Effect:

reon-ip = false

op:phase  idle

Figure 10: Operation Manager Transitions (continued)
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C Safety Guarantees: Atomic Memory

In this section we prove that the GeoQuorums algorithm implements a distributed atomic memory.

C.1 Focal Point Emulator

There are two major theorems to prove about the Focal Point Emulator. The first theorem shows that if two

nodes, i and j, both respond to a request, then they both send the same response. First we need some lemmas

showing how nodes respond to messages, and how nodes join the system.

We prove results about the FPE for some fixed focal point, h. Throughout this discussion, assume that �

is an execution. Also, assume that M is a finite prefix, fm
0

; : : : ;m

k

g, of the sequence of messages delivered

by the Local Broadcast service in focal point h.

We say that a node i is up-to-date with respect to M if, after receiving message m

k

, the following

hold: (i) data:tag
i

is at least as large as the largest tag in any message in M , and data:value

i

is set to the

value associated with that tag, (ii) for every hon�rm ; oid ; tagi message in M , tag 2 data:on�rmed

i

,

(iii) data:onf-id

i

is at least as large as the largest configuration in any message in M , (iv) if there ex-

ists a message in M : hreon-done ; data:onf-id
i

i, then data:reon-ip

i

is false, and (v) for all messages

hmessage ; oid ; payload i 2M , oid 2 omplete-ops

i

. Essentially, a node is up-to-date with respect to a set

of messages, M , if its data and omplete-ops state is equivalent to the state of a node that has processed all

the messages in M . Notice, then the following two facts:

Lemma C.1 If i receives all the messages in M , and i is active on receiving all the messages in M , then i

is up-to-date with respect to M .

Lemma C.2 If i is up-to-date with respect to M
1

, and i is up-to-date with respect to M
2

, then i is up-to-date

with M = M

1

concatenated with M

2

.

The next lemma states that if two nodes both begin an execution in a given focal point, then as long as

they remain in the focal point, they have the same state.

Lemma C.3 Let i and j be two mobile hosts. Assume that node i and node j both begin execution � in

focal point h, and both remain in focal point h until each receives message m
k

. Then, immediately after the

message m
k

is received, the data and omplete-ops state of i equals the same state of j.

Proof. Both i and j receive every message in M . Both start in the same initial state, and handle the same

requests in the same order. Therefore their required states are equal. �

The next lemma shows that if i enters focal point h and receives a join acknowledgment from a node

that is up-to-date, then i is also up-to-date.

Lemma C.4 Let i and j be two mobile hosts, and assume that at some point in �, i enters focal point h. Let

m

a

be the message in M corresponding with i’s local broadcast of a join-req.

Let M 0

= fm

0

; : : : ;m

a

g be a prefix of M . Assume that node j is up-to-date with respect to M

0. Also,

assume that j sends a join-req-ak message in response to i’s joining.

If i receives message m
k

, and status

i

= ative when i receives m
k

, then i is up-to-date with respect to

fm

0

; : : : ;m

k

g.

Proof. Let m
b

by the join-req-ak message sent by j in response to i joining. Notice that message m

b

contains the following information from M

0: (i) the maximum tag, and associated value, (ii) the set of all

confirmed tags, (iii) the ID of the largest configuration and whether that reconfiguration is complete, the IDs
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of all operations (i.e., omplete-ops

j

). Therefore, when node i receives message m

b

, its state accurately

reflects having received messages m
1

; : : : ;m

a

, and i is up-to-date with respect to M

0.

Next, notice that i has entered focal point h before sending message m
a

, the join request. Therefore, by

assumption of the Local Broadcast service, node i receives messages m
a+1

; : : : ;m

k

. Therefore, node i is

up-to-date with respect to m

a+1

; : : : ;m

k

. By Lemma C.2, then, i is up-to-date with respect to M . �

Lemma C.5 Assume status

i

= ative when some event occurs in �. Then there exists a sequence of nodes

i

0

; : : : ; i

n

, where i = i

n

, such that the following hold: (i) node i

0

begins � in focal point h, (ii) for all

k

0

< n, node i
k

0 sends a join-req-ak in response to a join-req by node i
k

0

+1

, and (iii) for all k0 < n, node

i

k

0

+1

receives the join-req-ak message sent by node i
k

0 .

Proof. A node i

k

0 only sets its status to active if (i) the node begins the execution in focal point h, or (ii)

the node receives a join-req-ak, which must have been sent by some node i
k

0

�1

that had previously set its

status to active. There are only a finite number of join-req-ak messages preceding the chosen event in �,

and therefore some node, designated i

0

, must have begun the execution in focal point h. �

Finally, we show that the join protocol works:

Lemma C.6 Let i be a mobile host. Assume that i is in h and receives message m

k

. Also, assume that

status

i

= ative when m

k

is delivered. Then, i is up-to-date with respect to M .

Proof. Let i
0

; : : : ; i

n

be the sequence of mobile hosts such that i = i

k

, and (i) node i

0

begins � in focal

point h, (ii) for all k0 < n, node i

k

0 sent a join-req-ak in response to a join-req by node i

k

0

+1

, and (iii)

for all k0 < n, node i

k

0

+1

receives the join-req-ak message sent by node i

k

0 . This sequence exists, as per

Lemma C.5.

We show the result by induction on `, with respect to the sequence i
0

; : : : ; i

n

. For all 0 � ` < n, let m
i

`

be the join-req-ak message sent from i

`

and received by i

`+1

, and let m
j

`

be the litjoin� req message

sent by i

`+1

. First, it is clear that i
0

is up-to-date with respect to fm
0

; : : : ;m

j

0

g, as it has received messages

fm

0

; : : : ;m

j

0

g, and clearly remains alive and in h until sending m

i

0

> m

j

0

.

Next, consider i

`

, for some ` < n � 1. Assume, inductively, that i
`

is up-to-date with respect to

fm

0

; : : : ;m

j

`

g. Then, by Lemma C.4, i
`+1

is up-to-date with respect to fm
0

; : : : ;m

j

`+1

g (applied where

i = i

`+1

, j = i

`

, a = j

`

, and k = j

`+1

). Note that i
`+1

does not fail or leave h before receiving m

j

`+1

, as

by assumption it sends a response to this join request.

Therefore, i
n�1

is up-to-date with respect to fm
0

; : : : ;m

j

n�1

g – that is, the join-req message sent by

i

n

. Then, by another application of Lemma C.4, i = i

n

is up-to-date with respect to M (where i = i

n

,

j = i

n�1

, a = j

`

, and the k is the same). �

Next, we show that every node in the focal point maintains the same replicated state:

Lemma C.7 Assume that i and j are in focal point h, and both receive message m

k

, and i and j are each

active on receiving m

k

. Then, data
i

at the time when i receives m
k

is equal to data

j

at the time when j

receives m
k

. Similarly, omplete-ops

i

at the time when i receives m
k

is equal to omplete-ops

j

at the time

j receives m
k

.

Proof. By Lemma C.6, both i and j are up-to-date with respect to M . By definition of up-to-date, node i

has tag at least as large as the largest tag in M , and the associated value. However, when i receives message

m

k

, i has only received Local Broadcast messages from some subset of M , so the tag of i can be no larger

than the tags in M , so i has set data:tag to the largest tag in M , and data:value to the associated value.

By a similar argument, data:onf-id is set to the configuration ID of the largest configuration in M , and
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data:on�rmed

i

is exactly equal to the set of confirmed tags in M . Again by the definition of up-to-date,

if M contains a reon-done message for data:onf-id
i

, then data:reon-ip

i

= false. Since i receives no

other messages aside from those in M , if there is no reon-done message in M for data:onf-id
i

, then either

data:reon-ip

i

= true or data:onf-id
i

= h0; 0; 0i. Similarly, omplete-ops

i

is equal to all the operations

in M .

The exact same logic holds for node j. Therefore the conclusion follows. �

Finally, we show that if two mobile hosts both send a response to a given request, then the response is

the same. This allows us to focus on the actions of a single mobile host, rather than having to argue about

every mobile host.

Theorem C.8 Assume that at some point in the execution, node i has an item in geo-queue

i

of the following

form: hop
1

; oid ; payload

1

i. Further, assume that at some (other) point in the execution node j has an item

in geo-queue

j

of the following form: hop
2

; oid ; payload

2

i. Then, op
1

= op

2

, and payload

1

= payload

2

.

Proof. First, both nodes i and j must be active, if they enqueued a GeoCast message. Next, notice that

since both messages in the two GeoCast queues have the same oid , and therefore must have both been sent

in response to the same Local Broadcast message, the first rebroadcast of the GeoCast request. Consider the

message, m, received from the Local Broadcast service that caused i to enqueue the message on the GeoCast

queue. Also, consider the message, m0, that is ordered immediately before m by the local broadcast service.

After receiving message m

0, nodes i and j have the same data and omplete-ops state, by Lemma C.7.

Therefore the message enqueued in response to message m will be the same in both cases. �

We next show that the Focal Point Emulator acts as in an atomic manner.

Theorem C.9 Assume that node i, in focal point h, enqueues a response to an operation, �, in focal point h.

Assume that after node i does the geo-send of the response, node i0 receives a geo-rv(get; : : :) request. If

some node j in focal point h eventually sends a response to the get request, then the tag for this response is

no smaller than the tag for �, and the configuration ID for this request is no smaller than the configuration

ID for �.

Proof. Assume that i enqueues the response to � as a result of message m
k

. Assume that j sends a response

as a result of message m
`

. Since node j is active and receives m
`

, by Lemma C.6, j is up-to-date with respect

to fm
0

; : : : ;m

`

g. Therefore, the tag of j is at least as large as the tag of m
k

, since m

k

2 fm

0

; : : : ;m

`

g.

Also, by the same logic, the configuration ID of j is at least as large as the configuration ID of m
k

. Therefore

the conclusion follows. �

A final two lemmas handle the issue of the on�rmed flag and the reon-ip flag.

Lemma C.10 If node i ever sends a response including tag t where onfirmed is true, then some node j

previously performed a geo-rv(on�rm; �; t)

j

.

Proof. Let m
k

be the Local Broadcast message that causes i to enqueue the response confirming tag t. By

Lemma C.6, i is up-to-date with respect to fm
0

; : : : ;m

k

g. Therefore, the set of confirmed tags is exactly

the set of tags confirmed by on�rm messages in fm
0

; : : : ;m

k

g. �

Lemma C.11 If node i ever sends a response including reon-ip = false for some configuration id 6=

h0; 0; 0i, then some node j previously performed a geo-rv(reon-done; �; id).

Proof. Let m
k

be the Local Broadcast message that causes i to enqueue the response indicating that

reconfiguration id is done. By Lemma C.6, i is up-to-date with respect to fm

0

; : : : ;m

k

g. Therefore,

data:reon-ip

i

is only false as a result of a reon-done message in fm
0

; : : : ;m

k

g. �
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C.2 Operation Manager

In this section, we show that the Operation Manager guarantees atomic consistency. In order to prove that all

executions of the Operation Manager are atomic, we use the definition of atomicity based on four sufficient

conditions. A memory is said to be atomic:

� If all the read and write operations that are invoked complete, then the read and write operations for

object x can be partially ordered by an ordering �, so that: (i) No operation has infinitely many other

operations ordered before it. (ii) The partial order is consistent with the external order of invocations

and responses, that is, there do not exist read or write operations �

1

and �

2

such that �
1

completes

before �
2

starts, yet �
2

� �

1

. (iii) All write operations are totally ordered, and every read operation is

ordered with respect to all the writes. (iv) Every read operation that is ordered after any writes returns

the value of the last write preceding it in the partial order; any read operation ordered before all writes

returns v
0

.

This definition is equivalent to the other common definition: a distributed memory is atomic if it is, in some

sense, equivalent to a serial, monolithic, memory. (See Lemma 13.16 in [19].) The goal is to show that

these four conditions of atomicity hold. For a read or write operation, �, initiated at mobile host i, we define

tag(�) as follows: tag(�) = op:tag

i

at the instant when read-ak

i

or write-ak
i

occurs. We then define the

partial order �: (a) for any two read or write operations �
1

and �

2

, tag(�
1

) < tag(�

2

) =) �

1

� �

2

, (b)

for any write operation �

1

, and any read operation �

2

, tag(�
1

) = tag(�

2

) =) �

1

� �

2

.

Condition (i) is immediate. To see Condition (iii), notice that every write operation has a unique tag de-

termined by the global clock, with ties broken by processor id, implying that every write operation is totally

ordered by �. Every read operation is ordered with respect to every write operation either by condition (a),

if the tags of the two operations are unequal, or by condition (b), if the tags are equal. Condition (iv) is also

straightforward: if a read operation has the same tag as a write operation, then it returns the value of that

write operation; by condition (b) of �, a read operation comes after the write operation with the same tag.

The key condition, then, to guarantee atomic consistency is Condition (ii):

Theorem C.12 If �
1

and �
2

are read or write operations, and �
1

completes before �
2

begins, then tag(�
1

) �

tag(�

2

), and if �
2

is a write operation then tag(�

1

) < tag(�

2

).

We first consider the case where �
2

is a write operation:

Lemma C.13 If �
1

is a read or write operation, and �

2

is a write operation, and �

1

completes before �

2

begins, then tag(�

1

) < tag(�

2

).

Proof. The result follows immediately by the choice of tag(�
2

): op:tag
i

is defined in the write(v)

i

action,

and not modified until the write-ak

i

occurs. It is chosen uniquely using the real-time clock, and thus must

be larger than any prior operation that completes earlier. �

The key difficulty in the next part of the proof is related to reconfiguration: if no reconfiguration oc-

curs, then the quorum intersection property guarantees that the operations are monotonic in their tags. We

therefore need a few lemmas related to reconfiguration.

Lemma C.14 Assume that at mobile host i, reon-ip
i

= false. Then either onf-id
i

= h0; 0; 0i, or for some

j a reon-ak(onf-id)

j

occurs in �, no later than the event at which reon-ip

i

= false.

Proof. There are three cases in which reon-ip

i

= false: (i) onf-id = h0; 0; 0i, (ii) i performs a

reon-ak(onf-id)

i

, or (iii) i receives a GeoCast message from some focal point, say, h, indicating that
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reconfiguration of onf-id is complete. If Case 1 is true, then we are done. Similarly, if Case 2 is true, then

j = i and we are done.

Assume, by way of contradiction, that onf-id 6= h0; 0; 0i, and that there does not exist j that performs

a reon-ak(onf-id)

j

prior to the required event. Therefore, for every node i0 such that reon-ip
i

0

= false,

Case 3 is true. If Case 3 is true for some node i

0, then by Lemma C.11, there exists a node, i00, that

GeoCast focal point h a message indicating that the reconfiguration of onf-id is complete. However, by

assumption, Case 3 is true for i00 too. This leads to an infinite sequence of nodes receiving notification that

the reconfiguration of onf-id is complete. Yet there are only a finite number of messages GeoCast prior to

the point in � where reon-ip

i

= false. Therefore, for some node j, Case 1 or Case 2 holds, and we are

done. �

We say the � is a one-phase read operation if � is initiated by a read()

i

action, is followed by a

read-ak(val)

i

, and no read-2()

i

occurs in between. A two-phase read operation is a read operation that

is not a one-phase read. Also, for a read or write operation �, we define the �rst-phase-end (�) event as

follows: (i) if � is a write operation, �rst-phase-end (�) is the write-ak event that completes �, (ii) if � is a

one-phase read operation, �rst-phase-end (�) is the read-ak event that completes �, (iii) if � is a two-phase

read operation, �rst-phase-end (�) is the read-2 event that concludes the first phase of �.

For a two-phase read or write operation � initiated at mobile host i, we define the onf (�) = op:onf-id

at the time when (i) if � is a write operation, the write-ak

i

occurs, (ii) if � is a read operation, the read-2

i

occurs.

First we consider the case where �
1

is a two-phase read operation. We begin by considering two opera-

tions, �
1

and �

2

, that both complete using the same configuration; that is, no reconfiguration occurs during

these operations.

Lemma C.15 Assume operation �

1

is a two-phase read or write operation, and �

2

is a read operation.

Assume that �
1

completes in � before �
2

begins, and that onf(�
1

) = onf(�

2

). Then tag(�

1

) � tag(�

2

).

Proof. Assume that onf (�
1

) = hl ; pid ; namei. As part of operation �

1

, either a write

i

or a read-2

i

occurs in �. Both of these actions initiate a put operation, GeoCasting the following message to various

focal points: hput; op:oid
i

; op:tag

i

; op:value

i

; f ; onf-id

i

i. When the read-ak or write-ak occurs that

concludes �
1

, there exists a quorum of focal points, p 2 P

name

, such that each focal point in p has GeoCast

a response to the put operation.

Operation �

2

is initiated by a read()

j

operation. This causes a get operation, GeoCasting the following

message to various focal points: hget; op:oid
j

; onf-id

j

i. When the read-2

j

or read-ak
j

occurs that con-

cludes the first phase of �
2

, there exists a quorum of focal points, g 2 P

name

, such that each focal point in

g has GeoCast a response to the get operation.

By the intersection properties of quorums, there exists a focal point h 2 g \ p. By Theorem C.9, the

response sent to j for the get operation must have a tag no smaller than the tag received by h from the

preceding put operation. Therefore the desired inequality holds. �

Next we will show that if �
1

precedes �
2

, then �

1

cannot complete in a larger configuration than �

2

.

Lemma C.16 Assume operation �

1

completes in � at node i before operation �

2

begins at node j. Assume

that �
1

is a two phase read or write operation, and �

2

is a read operation. Then onf (�

1

) � onf (�

2

).

Proof. As part of operation �

1

, either a write

i

or a read-2

i

occurs in �. Both of these actions initiate a put

operation, GeoCasting the following message to various focal points: hput; op:oid
i

; op:tag

i

; op:value

i

; f ; onf-id

i

i.

There are two cases to consider. First, assume that when the read-ak

i

or write-ak
i

occurs that concludes
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�

1

, op:reon-in-progress
i

= true. Then there exist quorums of focal points, p
0

2 P

0

and p

1

2 P

1

, such

that each focal point in p

0

[ p

1

has GeoCast a response to the put operation.

Assume that onf (�
2

) = hl ; pid ; name-2 i. Operation �

2

is initiated by a read()

j

operation. This

causes a get operation, GeoCasting the following message to various focal points: hget; op:oid
j

; onf-id

j

i.

When the �rst-phase-end(�

2

)

j

occurs, there exists a quorum of focal points, g 2 G

name-2

, such that each

focal point in g has GeoCast a response to the get operation. By the intersection properties of quorums,

there exists a focal point h 2 g \ (p

0

[ p

1

). By Theorem C.9, the response sent to j for the get operation

must have a configuration-id no smaller than the configuration-id received by h from the preceding put

operation. Therefore onf (�

1

) � onf (�

2

).

Assume, instead, that when the read-ak

i

or write-ak
i

occurs that concludes �
1

, op:reon-in-progress
i

=

false. Then, reon-ip

i

= false when �rst-phase-end(�

1

) occurs. By Lemma C.14, either onf-id

i

=

h0; 0; 0i, or there exists some node i0 that performs a reon-ak(onf-id

i

)

i

0 prior to �rst-phase-end(�

1

). If

onf-id

i

= h0; 0; 0i, then clearly onf (�

1

) � onf (�

2

).

Otherwise, let i0 be the mobile host that performs a a reon-ak(onf-id

i

)

i

0 prior to �rst-phase-end(�

1

).

This means that a reon-upgrade-2(onf-id

i

)

i

0 occurs in � prior to the end of the first phase of �
1

. Then,

there exist quorums of focal points, p
0

2 P

0

and p
1

2 P

1

, such that each focal point in p
0

[p

1

has GeoCast a

response to the recon’s get operation. In particular, each of these focal points has been notified of onf-id
i

.

When the �rst-phase-end(�

2

) occurs, there exists a quorum of focal points, g 2 P

name-2

, such that each

focal point in g has GeoCast a response to �

2

’s get operation. By the intersection properties of quorums,

there exists a focal point h 2 g \ (p

0

[ p

1

). By Theorem C.9, the response sent to j for �
2

’s get operation

must have a configuration-id no smaller than the configuration-id received by h from the preceding recon’s

get operation. Therefore onf (�

1

) � onf (�

2

). �

The remaining lemma, then, addresses the case where onf (�

1

) < onf (�

2

).

Lemma C.17 Assume operation �

1

is a two-phase read or write operation, and completes at node i. As-

sume that �
2

is a read operation initiated at node j that completes, and that �
1

completes before �
2

begins.

Additionally, assume that onf(�
1

) < onf(�

2

). Then tag(�

1

) � tag(�

2

).

Proof. There are three cases to consider. First, assume that op:reon-in-progress

j

= true when the

read-2

j

or read-ak

j

that concludes the first phase of �
2

occurs. During the first phase, messages of the

following form are sent out to various focal points: hget; op:oid
j

; onf-id

j

i. Then, when the read-2

j

or

read-ak

j

occurs, there exist quorums of focal points, p
0

2 P

0

and p

1

2 P

1

, such that each focal point in

p

0

[ p

1

has GeoCast a response to the get operation.

Let onf (�
1

) = hl ; pid ; namei. As part of operation �

1

, either a write

i

or a read-2

i

occurs in �.

Both of these actions initiate a put operation, GeoCasting the following message to various focal points:

hput; op:oid

i

; op:tag

i

; op:value

i

; f ; onf-id

i

i. Then there exists a quorum of focal points, p 2 P

name

such that each focal point in p

name

has GeoCast a response to the put operation. By the intersection

properties of quorums, there exists a focal point h 2 g \ (p

0

[ p

1

). By Theorem C.9, the response sent

to j for the get operation must have a tag no smaller than the tag received by h from the preceding put

operation. Therefore tag(�

1

) � tag(�

2

).

The second case is the opposite: assume that op:reon-in-progress

i

= true when the read-ak or

write-ak that concludes �
1

occurs. In this case, there exist quorums of focal points g
0

2 G

0

and g

1

2 G

1

such that every focal point in g

0

[ g

1

sent a response to a put operation that included tag(�

1

). Also,

there exists a quorum of focal points p 2 P

name-2

, where onf-id(�

2

) = hl ; pid ; name-2 i, such that

every focal point in p has sent a response to the get operation initiated by �

2

. There exists a focal point

h 2 p \ (g

0

[ g

1

), and it again follows from Theorem C.9 that tag(�
1

) � tag(�

2

).
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For the third case, assume that op:reon-in-progress
i

= false and op:reon-in-progress

j

= false, when,

respectively, the read-ak

i

or write-ak
i

of �
1

occur, and the read()

j

of �
2

occur. Notice that onf (�
2

) 6=

h0; 0; 0i, since it is strictly larger than onf (�

1

). Then by Lemma C.14, there exists some mobile host r that

performs a reon-ak(onf (�

2

))

r

prior to read() of �
2

.

This means that a reon-upgrade(onf (�

2

))

r

occurs prior to the first phase of �
2

. This initiates sending

get messages to various focal points of the following form: hget; op:oid
r

; onf-id

r

i. When reon-upgrade-2(onf (�

2

))

r

occurs, there exist quorums of focal points, g
0

2 G

0

and g

1

2 G

1

, such that each focal point in g

0

[ g

1

has GeoCast a response to the get operation. When the read-ak

i

or write-ak
i

occurs that concludes the

second phase of �
1

, there exists a quorum of focal points, p 2 P

name

, such that each focal point in p has

GeoCast a response to the put operation initiated by the second phase of �
1

. By the intersection properties

of quorums, there exists a focal point h 2 p \ (g

0

[ g

1

). If the get operation of the recon precedes the

put of �
1

at focal point h, then by Theorem C.9, the response sent to i include configuration onf (�

2

),

and op:reon-in-progress

i

would be set to true during the second phase of �
1

. Instead, therefore, the put

operation of �
1

must precede the get operation of the recon. By Theorem C.9, the response sent to r by

focal point h for the get operation must have a tag no smaller than the tag received by h from the preceding

put operation of �
1

.

Now consider the second phase of the reconfiguration. During the second phase, put messages are

sent to various focal point. When the reon-ak(onf (�

2

))

r

occurs, there exists a quorum of focal point

p

0

2 P

name-2

such that each focal point has responded to the put request. Consider again the first

phase of �
2

. When the first phase of �
2

completes with �rst-phase-end(�

2

), there exists a quorum of focal

points g0 2 G

name-2

such that every node in g

0 has sent a response to j for the get request. By quorum

intersection, there exists h

0

2 p

0

\ h

0. And finally, by Theorem C.9, the response sent to j for the get

operation must have a tag no smaller than the tag received by h

0 from the preceding put operation. Once

again, tag(�
1

) � tag(�

2

). �

Finally we combine these results to prove the main theorem.

Proof (Theorem C.12). First, assume that �
2

is a write operation. Then Lemma C.13 implies that tag(�
1

) <

tag(�

2

).

Next, assume that �
2

is a write operation and �

1

is a two phase read or a write operation. Lemma C.16

implies that onf(�) � onf(�). Lemma C.15 and Lemma C.17 then imply that tag(�
1

) � tag(�

2

).

Finally, assume that �
1

is a one-phase read operation and �

2

is a read operation. Assume �
1

completes

at mobile host i. Define tag(�

1

) = op:tag

i

, at the time the matching read-ak

i

occurs, which is consis-

tent with our prior definitions. Since �

1

is a one-phase read operation, tag(�
1

) 2 on�rmed

i

when the

read-ak

i

occurs. There are two ways in which a tag is added to confirmed: either i itself added the tag

to on�rmed

i

(by completing an earlier operation with tag equal to tag(�

1

)), or mobile host i received a

message from some focal point, h, indicating that the tag was confirmed. By Lemma C.10, focal point h

would only send such a confirmation if it had previously received a message indicating that the tag was

confirmed. Therefore, in either case, there exists some node i0 that performs a read-ak or a write-ak, and

adds tag(�

1

) to on�rmed

i

0

. Label this earlier operation pi

0

1

. Then, it is clear that tag(�0
1

) = tag(�

1

).

Also, �0
1

completes before �

1

begins, and therefore completes before �

2

begins. By the prior argument,

then, tag(�0
1

) � tag(�

2

), implying that tag(�
1

) � tag(�

2

). �
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