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Abstract. In traditional game theory, players are typically en-
dowed with exogenously given knowledge of the structure of
the game—either full omniscient knowledge or partial but fixed
information. In real life, however, people are often unaware of
the utility of taking a particular action until they perform re-
search into its consequences. In this paper, we introduce So-
cratic game theory to model this phenomenon. (We imagine a
player engaged in a question-and-answer session, asking ques-
tions both about his or her own preferences and about the state
of reality; thus we call this setting “Socratic” game theory.) In a
Socratic game, players begin with an a priori probability distri-
bution over many possible worlds, with a different utility func-
tion for each world. Players can make queries, at some cost, to
learn information about which of the possible worlds is the ac-
tual world, before choosing an action. We consider two query
models: (1) an observable query model in which each player
knows which query the other players made and (2) an unobserv-
able query model in which each player learns only the response
to his or her own query.

The results in this paper consider cases in which the under-
lying worlds of a two-player Socratic game are either constant-
sum games or strategically zero-sum games, a class that gen-
eralizes constant-sum games to include all games in which the
sum of payoffs depends linearly on the interaction between the
players. When the underlying worlds are constant sum, we give
a polynomial-time algorithm to find Nash equilibria in both the
observable- and unobservable-query models. When the worlds
are strategically zero sum, we give efficient algorithms to find
Nash equilibria in unobservable-query Socratic games and cor-
related equilibria in observable-query Socratic games.

1 INTRODUCTION

Late October 1960. A smoky room. Democratic
Party strategists huddle around a map. How should
the Kennedy campaign allocate its remaining advertising
budget? Should it focus on, say, California or New York?
The Nixon campaign faces the same dilemma. Of course,
neither campaign knows the effectiveness of its advertis-
ing in each state. Perhaps Californians are susceptible to
Nixon’s advertising, but are unresponsive to Kennedy’s.
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In light of this uncertainty, the Kennedy campaign may
conduct a survey, at some cost, to estimate the effective-
ness of its advertising. Moreover, the larger—and more
expensive—the survey, the more accurate it will be. Is the
cost of a survey worth the information that it provides?
How should one balance the cost of acquiring more in-
formation against the risk of playing a game with higher
uncertainty?

We introduce Socratic game theory as a general for-
mal model for situations of this type. As in traditional
game theory, the players in a Socratic game choose ac-
tions to maximize their payoffs, but we model players
with incomplete information who can make costly queries
to reduce their uncertainty about the state of the world
before they choose their actions. This approach contrasts
with traditional game theory, in which players are usually
modeled as having fixed, exogenously given information
about the structure of the game and its payoffs. (In tra-
ditional games of incomplete and imperfect information,
there is information that the players do not have; in So-
cratic games, unlike in these games, the players have a
chance to acquire the missing information, at some cost.)

A Socratic game proceeds as follows. A real world is
chosen randomly from a set of possible worlds according
to a common prior distribution. Each player then selects
an arbitrary query from a set of available costly queries
and receives a corresponding piece of information about
the real world. Finally each player selects an action and
receives a payoff—a function of the players’ selected ac-
tions and the identity of the real world—less the cost of
the query that he or she made.

The novelty of our model is the introduction of explicit
costs to the players for learning arbitrary partial informa-
tion about which of the many possible worlds is the real
world. Like all games, Socratic games can be viewed as
a special case of extensive-form games, which represent
games by trees in which internal nodes represent choices
made by chance or by the players, and the leaves are la-
beled with a vector of payoffs to the players. Algorithmi-
cally, the generality of extensive-form games makes them
difficult to solve efficiently, and the special cases that are
known to be efficiently solvable do not include even sim-
ple Socratic games.

1



Our research was initially inspired by recent results in
psychology on decision making, but it soon became clear
that Socratic game theory is also a general tool for un-
derstanding the “exploitation versus exploration” trade-
off, well-studied in machine learning, in a strategic multi-
player environment. This tension between the risk arising
from uncertainty and the cost of acquiring information is
ubiquitous in political science, economics, and beyond.

Our results. We consider Socratic games under two mod-
els: an unobservable model where players learn only
the response to their own queries and an observable
model where players also learn which queries their op-
ponents made. We give efficient algorithms to find Nash
equilibria—i.e., tuples of strategies from which no player
has unilateral incentive to deviate—in broad classes of
two-player Socratic games in both models. Our first
result is an efficient algorithm to find Nash equilibria
in unobservable-query Socratic games with constant-sum
worlds, in which the sum of the players’ payoffs is in-
dependent of their actions. Our techniques also yield
Nash equilibria in unobservable-query Socratic games
with strategically zero-sum worlds. Strategically zero-
sum games generalize constant-sum games by allowing
the sum of the players’ payoffs to depend on individ-
ual players’ choices of strategy, but not on any interac-
tion of their choices. Our second result is an efficient
algorithm to find Nash equilibria in observable-query So-
cratic games with constant-sum worlds. Finally, we give
an efficient algorithm to find correlated equilibria—a
weaker but increasingly well-studied solution concept for
games [2, 3, 21, 41, 42]—in observable-query Socratic
games with strategically zero-sum worlds.

Every (complete-information) classical game is a triv-
ial Socratic game (with no uncertainty and a single trivial
query), and efficiently finding Nash equilibria in classical
games is believed to be hard [8, 39, 40]. Therefore we
would not expect to find a straightforward polynomial-
time algorithm to compute Nash equilibria in general So-
cratic games. However, it is well known that Nash equi-
libria can be found efficiently via an LP for two-player
constant-sum games [34, 52] (and strategically zero-sum
games [36]). A Socratic game is itself a classical game,
so one might hope that these results can be applied to
Socratic games with contant-sum (or strategically zero-
sum) worlds. We face two major obstacles in extending
these classical results to Socratic games. First, a Socratic
game with constant-sum worlds is not itself a constant-
sum classical game—rather, the resulting classical game
is only strategically zero sum. Further, a Socratic game
with strategically zero-sum worlds is not itself classical
strategically zero sum—indeed, there are no known effi-

cient algorithmic techniques to compute Nash equilibria
in the resulting class of classical games. (Exponential-
time algorithms like Lemke/Howson, of course, can be
used [31].) Thus even when it is easy to find Nash equi-
libria in each of the worlds of a Socratic game, we require
new techniques to solve the Socratic game itself. Second,
even when the Socratic game itself is strategically zero
sum, the number of possible strategies available to each
player is exponential in the natural representation of the
game. As a result, the standard linear programs for com-
puting equilibria have an exponential number of variables
and an exponential number of constraints.

For unobservable-query Socratic games with strategi-
cally zero-sum worlds, we address these obstacles by for-
mulating a new LP that uses only polynomially many
variables (though still an exponential number of con-
straints) and then use ellipsoid-based techniques to solve
it. For observable-query Socratic games, we handle
the exponentiality by decomposing the game into stages,
solving the stages separately, and showing how to effi-
ciently reassemble the solutions. To solve the stages, it is
necessary to find Nash equilibria in Bayesian strategically
zero-sum games, and we give an explicit polynomial-time
algorithm to do so.

This paper contains three main contributions: (1)
the definition of Socratic game theory, a new and in-
teresting game-theoretic model; (2) efficient algorithms
to find Nash equilibria in two-player unobservable-
query Socratic games with strategically zero-sum worlds
and observable-query Socratic games with constant-sum
worlds; and (3) an efficient algorithm to find correlated
equilibria in two-player observable-query Socratic games
with strategically zero-sum worlds.

2 SOCRATIC GAME THEORY

We review background on game theory and formally
introduce Socratic games. Boldface variables will be
used to denote a pair of variables (a = 〈aI, aII〉). Let
Pr[x ← π] denote the probability that a particular value
x is drawn from the distribution π, and let Ex∼π[g(x)] de-
note the expectation of g(x) when x is drawn from π.

2.1 BACKGROUND ON GAME THEORY

Consider two players, Player I and Player II, each of
whom is attempting to maximize his or her utility (or pay-
off). A (two-player) game is a pair 〈A,u〉, where, for
i ∈ {I,II},

• Ai is the set of pure strategies for Player i, and A =
〈AI, AII〉; and

• ui : A → R is the utility function for Player i, and
u = 〈uI, uII〉.
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We require that A and u be common knowledge. If each
Player i chooses strategy ai ∈ Ai, then the payoffs to
Players I and II are uI(a) and uII(a), respectively. A game
is constant sum if, for all a ∈ A, we have that uI(a) +
uII(a) = c for some fixed c independent of a.

Player i can also play a mixed strategy αi ∈ Ai,
where Ai is the space of probability measures over the
set Ai. Payoff functions are generalized as ui(α) =
ui(αI, αII) := Ea∼α[ui(a)] =

∑
a∈A α(a)ui(a), where

α(a) = αI(aI)αII(aII) denotes the joint probability of the
independent events that each Player i chooses action ai

from the distribution αi. This generalization is known as
von Neumann/Morgenstern utility [51], in which players
are indifferent between a guaranteed payoff x and an ex-
pected payoff of x.

A Nash equilibrium is a pair α of mixed strate-
gies so that neither player has an incentive to unilat-
erally change his or her strategy. Formally, the strat-
egy pair α is a Nash equilibrium if and only if both
uI(αI, αII) = maxα′

I∈AI uI(α′
I, αII) and uII(αI, αII) =

maxα′
II∈AII uII(αI, αII); that is, the strategies αI and αII

are mutual best responses. A correlated equilibrium is a
distribution ψ over A that obeys the following: if a ∈ A
is drawn randomly according to ψ and Player i learns ai,
then no Player i has incentive to unilaterally deviate from
playing ai. (A Nash equilibrium is a correlated equilib-
rium in which ψ(a) = αI(aI) · αII(aII) is a product distri-
bution.) Formally, in a correlated equilibrium, for every
a ∈ A we must have that aI is a best response to a ran-
domly chosen âII ∈ AII drawn according to ψ(aI, âII), and
analogously for Player II.

2.2 SOCRATIC GAME THEORY

In this section, we formally define Socratic games.
We present our model in the context of two-player
games, but of course the multiplayer case fits naturally
into this framework. A Socratic game is a 6-tuple
〈A,W, �u,Q, p, δ〉, where, for i ∈ {I,II}:

• Ai is, as before, the set of pure strategies for Player i.
• W is a set of possible worlds, one of which is the

real world wreal.
• �ui = {uw

i : A → R| w ∈ W} is a set of payoff
functions for Player i, one for each possible world.

• Qi is a set of available queries for Player i. When
Player i makes query qi : W → P(W ), he or she
learns the value of qi(wreal), i.e., the set of possible
worlds from which query qi cannot distinguish wreal.
We require that (i) ∀w ∈ W : w ∈ qi(w) and (ii)
∀w,w′ ∈ W : w ∈ qi(w′) ⇐⇒ w′ ∈ qi(w).

• p : W → [0, 1] is a probability distribution over the
possible worlds.

• δi : Qi → R
≥0 gives the query cost for each avail-

able query for Player i.

Initially, the world wreal is chosen according to the prob-
ability distribution p, but the identity of wreal remains
unknown to the players. That is, it is as if the players
are playing the game 〈A,uwreal〉 but do not know wreal.
The players make queries q ∈ Q; Player i learns a sub-
set qi(wreal) of the possible worlds, one of which is the
real world. We consider both observable queries and un-
observable queries. When queries are observable, each
player learns which query was made by the other player,
and the results of his or her own query—that is, each
Player i learns qI , qII , and qi(wreal). For unobservable
queries, Player i learns only qi and qi(wreal). After learn-
ing the results of the queries, the players select strategies
a ∈ A and receive as payoffs uwreal

i (a) − δi(qi).
In the Socratic game, a pure strategy for Player i con-

sists of a query qi ∈ Qi and a response function mapping
any result of the query qi to a strategy ai ∈ Ai to play.
A player’s state of knowledge after a query is a point in
R := Q× P(W ) or Ri := Qi × P(W ) for observable
or unobservable queries, respectively. (Note that there
are at most |Q| · |W | elements of R, and similarly Ri,
that are consistent with a Socratic game. When we de-
fine functions on R, we are content to define them only
on this relevant subset.) Thus Player i’s response func-
tion maps R or Ri to Ai. Note that the number of pure
strategies is exponential, as there are exponentially many
response functions. A mixed strategy involves both ran-
domly choosing a query qi ∈ Qi and randomly choosing
an action ai ∈ Ai in response to the results of the query.
Formally, we will consider a mixed-strategy function pro-
file f = 〈fquery, f resp〉 to have two parts:

• a function fquery
i : Qi → [0, 1], where fquery

i (qi) is
the probability that Player i makes query qi.

• a function f resp
i that maps R (or Ri) to a probabil-

ity distribution over actions. Player i chooses an
action ai ∈ Ai according to the probability distri-
bution f resp

i (q, qi(w)) for observable queries, and
f resp

i (qi, qi(w)) for unobservable queries. (With un-
observable queries, for example, the probability that
Player I plays action aI after making query qI in
world w is given by Pr[aI ← f resp

I (qI, qI(w))].)

Mixed strategies are typically defined as probability dis-
tributions over the pure strategies, but here we repre-
sent a mixed strategy by 〈fquery, f resp〉. One can easily
map a mixture of pure strategies to an f = 〈fquery, f resp〉
which induces the same probability of making a particular
query qi or playing a particular action after qi in a partic-
ular world. Thus it suffices to consider this representation
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of mixed strategies. For a strategy function profile f for
observable queries, the (expected) payoff to Player i is
given by

∑
q∈Q,w∈W,a∈A

⎡
⎢⎢⎣

fquery
I (qI) · fquery

II (qII) · p(w)
· Pr[aI ← f resp

I (q, qI(w))]
· Pr[aII ← f resp

II (q, qII(w))]
· (uw

i (a) − δi(qi))

⎤
⎥⎥⎦ .

The payoffs for unobservable queries are analogous, with
f resp

j (qj , qj(w)) in place of f resp
j (q, qj(w)).

3 STRATEGICALLY ZERO-SUM GAMES

We can view a Socratic game G with constant-sum worlds
as an exponentially large classical game, with pure strate-
gies “make query qi and respond according to fi.” How-
ever, this classical game is not constant sum. The sum
of the players’ payoffs varies depending upon their strate-
gies, because different queries incur different costs. How-
ever, this game still has significant structure: the sum of
payoffs varies only because of varying query costs. Thus
the sum of payoffs does depend on players’ choice of
strategies, but not on the interaction of their choices—
i.e., for fixed functions gI and gII , we have uI(q, f) +
uII(q, f) = gI(qI, fI) + gII(qII, fII) for all strategies 〈q, f〉.
Such games are called strategically zero sum and were
introduced by Moulin and Vial [36], who introduce a no-
tion of strategic equivalence and define strategically zero-
sum games as those strategically equivalent to zero-sum
games. It is interesting to note that two Socratic games
with the same queries and strategically equivalent worlds
are not necessarily strategically equivalent.

A game 〈A,u〉 is strategically zero sum if there exist
labels �(i, ai) for every Player i and every pure strategy
ai ∈ Ai such that, for all mixed-strategy profiles α, we
have that the sum of the utilities satisfies uI(α)+uII(α) =∑

aI∈AI
αI(aI) ·�(I, aI)+

∑
aII∈AII

αII(aII) ·�(II, aII). Note
that any constant-sum game is also strategically zero sum.

It is not immediately obvious that one can efficiently
decide if a given game is strategically zero sum. For com-
pleteness, we give a characterization of classical strate-
gically zero-sum games in terms of the rank of a simple
matrix derived from the game’s payoffs, allowing us to ef-
ficiently decide if a given game is strategically zero sum
and, if it is, to compute the labels �(i, ai).

Theorem 3.1. For a game G = 〈A,u〉 with
Ai = {a1

i , . . . , a
ni
i }, let MG be the nI-by-nII matrix

whose 〈i, j〉th component MG
(i,j) satisfies log MG

(i,j) =
uI(ai

I , a
j
II) + uII(ai

I , a
j
II). The following are equivalent:

(i) G is strategically zero sum; (ii) there exist labels
�(i, ai) for every player i ∈ {I,II} and every pure strat-
egy ai ∈ Ai such that, for all pure strategies a ∈ A,

we have uI(a) + uII(a) = �(I, aI) + �(II, aII); and (iii)
rank(MG) = 1. �

Proof sketch. (i ⇒ii) is immediate; every pure strategy
is a trivially mixed strategy. For (ii ⇒iii), let �ci be the
n-element column vector with jth component 2�(i,aj

i );
then �cI · �cII

T = MG. For (iii ⇒i), if rank(MG) = 1,
then MG = u · vT. We can prove that G is strategi-
cally zero sum by choosing labels �(I, aj

I ) := log2 uj and
�(II, aj

II) := log2 vj . �

4 SOCRATIC GAMES WITH UNOBSERVABLE

QUERIES

We begin with unobservable queries, where a player’s
choice of query is not revealed to her opponent. We
give an efficient algorithm to solve unobservable-query
Socratic games with strategically zero-sum worlds. Our
algorithm is based upon the LP shown in Fig. 1, whose
feasible points are Nash equilibria for the game. The
LP has polynomially many variables but exponentially
many constraints. We give an efficient separation oracle
for the LP, implying that the ellipsoid method [17, 27]
yields an efficient algorithm. This approach extends the
techniques of Koller and Megiddo [28] (see also [29]) to
solve constant-sum games represented in extensive form,
which is similar to a multiplayer decision tree. (Note that
their result does not directly apply in our case; even a So-
cratic game with constant-sum worlds is not a constant-
sum classical game.)

Lemma 4.1. Let G = 〈A,W, �u,Q, p, δ〉 be an
unobservable-query Socratic game with strategically
zero-sum worlds. Any feasible point for the LP in Fig-
ure 1 can be efficiently mapped to a Nash equilibrium for
G, and any Nash equilibrium for G can be mapped to a
feasible point for the program.

Proof sketch. We describe the correspondence between
feasible points for the LP and Nash equilibria for G. First,
suppose that strategy profile f = 〈fquery, f resp〉 forms a
Nash equilibrium for G. Then the following setting for
the LP variables is feasible. (We omit the straightforward
calculations that verify feasibility.)

yi
qi

= fquery
i (qi)

xi
ai,qi,w = Pr[ai ← f resp

i (qi, qi(w))] · yi
qi

ρi =
∑

w,q∈Q,a∈A

p(w) · xI
aI,qI,w

· xII
aII,qII,w

· [uw
i (a) − δi(qi)].

Next, suppose 〈xi
ai,qi,w, yi

qi
, ρi〉 is feasible for the LP. Let

f be the strategy function profile defined as

fquery
i : qi 
→ yi

qi

f resp
i (qi, qi(w)) : ai 
→ xi

ai,qi,w/yi
qi

.
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(“Player i does not prefer ‘make query qi, then play according to the function fi’ ”)
∀qI ∈ QI, fI : RI → AI :

ρI ≥ ∑
w∈W,aII∈AII,qII∈QII,aI=fI(qI,qI(w))

(
p(w) · xII

aII,qII,w
· [uw

I (a) − δI(qI)]
)

(I)

∀qII ∈ QII, fII : RII → AII :
ρII ≥ ∑

w∈W,aI∈AI,qI∈QI,aII=fII(qII,qII(w))

(
p(w) · xI

aI,qI,w
· [uw

II (a) − δII(qII)]
)

(II)

(“For every player and every world, it’s really a probability distribution”)
∀i ∈ {I,II}, w ∈ W : 1 =

∑
ai∈Ai,qi∈Qi

xi
ai,qi,w 0 ≤ xi

ai,qi,w (III,IV)

(“Queries are independent of the world; actions depend only on query output”)
∀i ∈ {I,II}, qi ∈ Qi, w ∈ W,w′ ∈ W s.t. qi(w) = qi(w′) :

yi
qi

=
∑

ai∈Ai
xi

ai,qi,w xi
ai,qi,w = xi

ai,qi,w′ (V,VI)

(“The payoffs are consistent with the labels �(i, ai, w)”)
ρI + ρII =

∑
i∈{I,II}

∑
w∈W,qi∈Qi,ai∈Ai

(
p(w) · xi

ai,qi,w · [�(i, ai, w) − δi(qi)]
)

(VII)

Figure 1: An LP to find Nash equilibria in unobservable-query Socratic games with strategically zero-sum worlds.
The input is a Socratic game 〈A,W, �u,Q, p, δ〉 so that world w is strategically zero sum with labels �(i, ai, w). Player
i makes query qi ∈ Qi with probability yi

qi
and, when the actual world is w ∈ W , makes query qi and plays action ai

with probability xi
ai,qi,w. The expected payoff to Player i is given by ρi.

Verifying that this strategy profile is a Nash equi-
librium requires checking that f resp

i (qi, qi(w)) is a
well-defined function (from constraint VI), that fquery

i

and f resp
i (qi, qi(w)) are probability distributions (from

III,IV), and that each player is playing a best response
to his or her opponent’s strategy (from I, II). Finally, from
(I,II), the expected payoff to Player i is at most ρi. Be-
cause the right-hand side of (VII) is equal to the expected
sum of the payoffs from f and is at most ρI + ρII , the pay-
offs are correct and imply the lemma. �

Recall that a separation oracle is a function that, given a
setting for the variables in the LP, either returns “feasible”
or returns a particular constraint of the LP that is violated
by that setting of the variables. An efficient, correct sep-
aration oracle allows us to solve the LP efficiently via the
ellipsoid method.

Lemma 4.2. The separation oracle SP (on p. 6) is correct
for the LP in Fig. 1 and runs in polynomial time.

Proof. We first argue that the separation oracle runs in
polynomial time and then prove its correctness. Steps 1
and 4 are clearly polynomial. For Step 2, given fII and
the result qI(wreal) of the query qI , it is straightforward
to compute the probability that, conditioned on the fact
that the result of query qI is qI(w), the world is w and
Player II will play action aII ∈ AII . Therefore, for each
query qI and response qI(w), Player I can compute the
expected utility of each pure response aI to the induced

mixed strategy over AII for Player II. Player I can then
select the aI maximizing this expected payoff. There are
only polynomially many queries, worlds, query results,
and pure actions, so the running time of Steps 2 and 3 is
thus polynomial.

We now show that the separation oracle works cor-
rectly. The main challenge is to show that if any constraint
(I-q′I -f

′
I ) is violated then (I-q̂I-f̂I) is violated in Step 4.

First, we observe that, by construction, the function f̂I

computed in Step 3 must be a best response to Player II
playing fII , no matter what query Player I makes. There-
fore the strategy “make query q̂I , then play response func-
tion f̂I” must be a best response to Player II playing fII ,
by definition of q̂I . The right-hand side of each constraint
(I-q′I -f

′
I ) is equal to the expected payoff that Player I re-

ceives when playing the pure strategy “make query q′I and
then play response function f ′

I ” against Player II’s strat-
egy of fII . Therefore, because the pure strategy “make
query q̂I and then play response function f̂I” is a best re-
sponse to Player II playing fII , the right-hand side of con-
straint (I-q̂I-f̂I) is at least as large as the right hand side
of any constraint (I-q̂I-f ′

I ). Therefore, if any constraint (I-
q′I -f

′
I ) is violated, constraint (I-q̂I-f̂I) is also violated. An

analogous argument holds for Player II. �

These lemmas and the well-known fact that Nash equilib-
ria always exist [37] imply the following theorem:
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Separation Oracle SP. On input 〈xi
ai,qi,w, yi

qi
, ρi〉:

1. Check each constraint (III, IV, V, VI, VII). If any constraint is violated, return it.
2. Define the strategy profile f as fquery

i : qi 
→ yi
qi

and f resp
i (qi, qi(w)) : ai 
→ xi

ai,qi,w/yi
qi

.

For each query qI , compute a pure best-response function f̂qI
I for Player I to strategy fII after making query qI .

Let f̂I be the response function such that f̂I(qI, qI(w)) = f̂qI
I (qI(w)) for all qI ∈ QI . Similarly, compute f̂II .

3. Let ρ̂qI
I be the expected payoff to Player I using strategy “make query qI and play response function f̂I” if

Player II plays according to fII . Let ρ̂I = maxqI∈Qq
ρ̂qI

I and let q̂I = arg maxqI∈Qq
ρ̂qI

I . Similarly, define ρ̂qII
II ,

ρ̂II , and q̂II .
4. For the f̂i and q̂i defined in Step 3, return constraint (I-q̂I-f̂I) or (II-q̂II-f̂II) if either is violated. If both are

satisfied, then return “feasible.”

Theorem 4.3. Nash equilibria can be found in poly-
nomial time for any two-player unobservable-query So-
cratic game with strategically zero-sum worlds. �

5 SOCRATIC GAMES WITH OBSERVABLE

QUERIES

In this section, we give efficient algorithms to find (1)
a Nash equilibrium for observable-query Socratic games
with constant-sum worlds and (2) a correlated equilib-
rium in the broader class of Socratic games with strate-
gically zero-sum worlds. Recall that a Socratic game
G = 〈A,W, �u,Q, p, δ〉 with observable queries proceeds
in two stages:

Stage 1: The players simultaneously choose queries q ∈
Q. Player i receives as output qI , qII , and qi(wreal).

Stage 2: The players simultaneously choose strategies
a ∈ A. The payoff to Player i is uwreal

i (a) − δi(qi).

Using backward induction, we first solve Stage 2 and then
proceed to the Stage 1 game.

For a query q ∈ Q, we would like to analyze the
Stage 2 “game” Ĝq resulting from the players making
queries q in Stage 1. Technically, however, Ĝq is not
actually a game, because at the beginning of Stage 2
the players have different information about the world:
Player I knows qI(wreal), and Player II knows qII(wreal).
Fortunately, the situation in which players have asym-
metric private knowledge has been well studied in the
game-theory literature. A Bayesian game is a quadruple
〈A,T, r,u〉, where:

• Ai is the set of pure strategies for Player i.
• Ti is the set of types for Player i.
• r is a probability distribution over T; r(t) denotes

the probability that Player i has type ti for all i.
• ui : A × T → R is the payoff function for Player i.

If the players have types t and play pure strategies a,
then ui(a, t) denotes the payoff for Player i.

Initially, a type t is drawn randomly from T according
to the distribution r. Player i learns his type ti, but does
not learn any other player’s type. Player i then plays a
mixed strategy αi ∈ Ai—that is, a probability distribu-
tion over Ai—and receives payoff ui(α, t). A strategy
function is a function hi : Ti → Ai; Player i plays
the mixed strategy hi(ti) ∈ Ai when her type is ti. A
strategy-function profile h is a Bayesian Nash equilib-
rium if and only if no Player i has unilateral incentive to
deviate from hi if the other players play according to h.
For a two-player Bayesian game, if α = h(t), then the
profile h is a Bayesian Nash equilibrium exactly when
the following condition and its analogue for Player II
hold: Et∼r[uI(α, t)] = maxh′

I
Et∼r[uI(〈h′

I(tI), αII〉, t)].
These conditions hold exactly if, for all ti ∈ Ti occur-
ring with positive probability, Player i’s expected utility
conditioned on his type being ti is maximized by hi(ti).
A Bayesian game is constant sum if for all a ∈ A and all
t ∈ T, we have uI(a, t) + uII(a, t) = ct, for some con-
stant ct independent of a. A Bayesian game is strategi-
cally zero sum if the classical game 〈A,u(·, t)〉 is strate-
gically zero sum for every t ∈ T. Whether a Bayesian
game is strategically zero sum can be determined as in
Theorem 3.1. (For further discussion of Bayesian games,
see [15, 20].)

We now formally define the Stage 2 “game” as a Bayesian
game. Given Socratic game G = 〈A,W, �u,Q, p, δ〉
and a query profile q ∈ Q, we define Gstage2(q) :=
〈A,Tq, pstage2(q),ustage2(q)〉, where:

• Ai, the set of pure strategies for Player i, is the same
as in the original Socratic game;

• Tq
i = {qi(w) : w ∈ W}, the set of types for Player

i, is the set of possible outcomes of query qi;
• pstage2(q)(t) = Pr[q(w) = t |w ← p]; and
• u

stage2(q)
i (a, t) =

∑
w∈W Pr[w ← p |q(w) = t] ·

uw
i (a).
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We now define the Stage 1 game in terms of the payoffs
for the Stage 2 games. Fix any algorithm alg that finds
a Bayesian Nash equilibrium hq,alg := alg(Gstage2(q))
for each Stage 2 game. Define valuealg

i (Gstage2(q)) to be
the expected payoff received by Player i in the Bayesian
game Gstage2(q) if each player plays according to hq,alg,
that is,

valuealg
i (Gstage2(q))

:=
∑

w∈W p(w) · ustage2(q)
i (hq,alg(q(w)),q(w)).

Define the game Galg
stage1 := 〈Astage1,ustage1(alg)〉, where:

• Astage1 := Q, the set of available queries in the So-
cratic game; and

• u
stage1(alg)
i (q) := valuealg

i (Gstage2(q)) − δi(qi).

I.e., players choose queries q and receive payoffs corre-
sponding to valuealg(Gstage2(q)), less query costs.

Lemma 5.1. Let G = 〈A,W, �u,Q, p, δ〉 be an
observable-query Socratic game, let Gstage2(q) be the
Stage 2 games for all q ∈ Q, let alg be an algorithm
finding a Bayesian Nash equilibrium in each Gstage2(q),
and let Galg

stage1 be the Stage 1 game. Let α be a Nash equi-
librium for Galg

stage1, and let hq,alg := alg(Gstage2(q)) be a
Bayesian Nash equilibrium for each Gstage2(q). Then the
following strategy is a Nash equilibrium for G:

• In Stage 1, Player i makes query qi with probability
αi(qi). (That is, set fquery(q) := α(q).)

• In Stage 2, if q is the query in Stage 1, then Player i
chooses action ai with probability hq,alg

i (qi(wreal)),
where qi(wreal) is the response to the query. (That is,
set f resp

i (q, qi(w)) := hq,alg
i (qi(w)).) �

We now find equilibria in the stage games for Socratic
games with constant- or strategically zero-sum worlds.

Lemma 5.2. If G = 〈A,W, �u,Q, p, δ〉 is an observable-
query Socratic game with constant-sum worlds, then the
Stage 1 game Galg

stage1 is strategically zero sum for ev-
ery algorithm alg, and every Stage 2 game Gstage2(q) is
Bayesian constant sum. If the worlds of G are strategi-
cally zero sum, then every Gstage2(q) is Bayesian strate-
gically zero sum. �

Theorem 5.3. There is a polynomial-time algorithm BNE
finding Bayesian Nash equilibria in strategically zero-
sum Bayesian (and thus classical strategically zero-sum
or Bayesian constant-sum) two-player games.

Proof sketch. Let G = 〈A,T, r,u〉 be a strategically
zero-sum Bayesian game. Define an unobservable-query
Socratic game G∗ with one possible world for each t ∈

T, one available zero-cost query qi for each Player i so
that qi reveals ti, and all else as in G. Bayesian Nash
equilibria in G correspond directly to Nash equilibria in
G∗, and the worlds of G∗ are strategically zero sum. Thus
by Thm. 4.3 we can compute Nash equilibria for G∗, and
thus we can compute Bayesian Nash equilibria for G. �

(LP’s for zero-sum two-player Bayesian games have been
previously developed and studied [44].)

Theorem 5.4. In time poly(|A|, |W |, |Q|), we can com-
pute a Nash equilibrium for any two-player observable-
query Socratic game G = 〈A,W, �u,Q, p, δ〉 with
constant-sum worlds.

Proof. Because the worlds of G are constant sum, by
Lemma 5.2 we know that the induced Stage 2 games
Gstage2(q) are Bayesian constant sum. Thus we can use
algorithm BNE to compute a Bayesian Nash equilibrium
hq,BNE := BNE(Gstage2(q)) for each q ∈ Q, by Theo-
rem 5.3. Furthermore, again by Lemma 5.2, the induced
Stage 1 game GBNE

stage1 is classical strategically zero sum.
Therefore we can again use algorithm BNE to compute
a Nash equilibrium α := BNE(GBNE

stage1), again by Theo-
rem 5.3. Therefore, by Lemma 5.1, we can assemble α
and the hq,BNE’s into a Nash equilibrium for the Socratic
game G. �

We would like to extend our results on observable-query
Socratic games to Socratic games with strategically zero-
sum worlds. While we can still find Nash equilibria in
the Stage 2 games, the resulting Stage 1 game is not in
general strategically zero sum. Thus, finding Nash equi-
libria in observable-query Socratic games with strategi-
cally zero-sum worlds seems to require substantially new
techniques. However, our techniques for decomposing
observable-query Socratic games do allow us to find cor-
related equilibria in this case.

Lemma 5.5. Let G = 〈A,W, �u,Q, p, δ〉 be an
observable-query Socratic game, let alg be an algo-
rithm finding a Bayesian Nash equilibrium in each
of the derived Stage 2 games Gstage2(q), and let
Galg

stage1 be the derived Stage 1 game. Let φ be a
correlated equilibrium for Galg

stage1, and let hq,alg :=
alg(Gstage2(q)) be a Bayesian Nash equilibrium for each
Gstage2(q). Then the following distribution over pure
strategies is a correlated equilibrium for G: ψ(q, f) :=
φ(q)

∏
〈q,S〉∈R Pr

[
f(q,S) ← hq,alg(S)

]
. �

Thus to find a correlated equilibrium in an observable-
query Socratic game with strategically zero-sum worlds,
we need only our algorithm BNE from Theorem 5.3 along
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with an efficient algorithm for finding a correlated equi-
librium in a general game. Such an algorithm exists (the
definition of correlated equilibria can be directly trans-
lated into an LP [3]), and therefore we have the following
theorem:

Theorem 5.6. In polynomial time, we can find a cor-
related equilibrium for any observable-query two-player
Socratic game with strategically zero-sum worlds. �

By Lemma 5.5 we can also compute correlated equi-
libria in any observable-query Socratic game for which
Nash equilibria are computable in the induced Gstage2(q)
games (e.g., when Gstage2(q) is of constant size).

Another potentially interesting model of queries in So-
cratic games is what one might call public queries, in
which both the choice and outcome of a player’s query
is observable by all players in the game. (This model
might be most appropriate in the presence of corporate
espionage or media leaks, or in a setting in which the
queries—and thus their results—are done in plain view.)
The techniques that we have developed in this section also
yield exactly the same results as for observable queries.
The proof is actually simpler: with public queries, the
players’ payoffs are common knowledge when Stage 2
begins, and thus Stage 2 really is a complete-information
game. (There may still be uncertainty about the real
world, but all players have exactly the same set of possi-
ble worlds in which wreal may lie; thus they are playing a
complete-information game against each other.) Thus we
have the same results as in Theorems 5.4 and 5.6 more
simply, by solving Stage 2 using a (non-Bayesian) Nash-
equilibrium finder and solving Stage 1 as before.

Our results for observable queries are weaker than for
unobservable: in Socratic games with worlds that are
strategically zero sum but not constant sum, we find only
a correlated equilibrium in the observable case, whereas
we find a Nash equilibrium in the unobservable case. We
might hope to extend our unobservable-query techniques
to observable queries, but there is no obvious way to do
so. The fundamental obstacle is that the LP’s payoff con-
straint becomes nonlinear if there is any dependence on
the probability that the other player made a particular
query. This dependence arises in observable queries, sug-
gesting that observable Socratic games with strategically
zero-sum worlds may be harder to solve.

6 RELATED WORK

Our work was initially motivated by research in the social
sciences indicating that real people seem (irrationally)
paralyzed when they are presented with additional op-
tions. In this section, we briefly review some of these

social-science experiments and then discuss technical ap-
proaches related to Socratic game theory.

Prima facie, a rational agent’s happiness given an
added option can only increase. However, recent re-
search has found that more choices tend to decrease hap-
piness: for example, students choosing among extra-
credit options are more likely to do extra credit if given
a small subset of the choices and, moreover, produce
higher-quality work [24]. The psychology literature ex-
plores a number of explanations: people may miscalcu-
late their opportunity cost by comparing their choice to a
“component-wise maximum” of all other options instead
of the single best alternative [46], a new option may draw
undue attention to aspects of the other options [48], and so
on. The present work explores an economic explanation
of this phenomenon: information is not free. When there
are more options, a decision-maker must spend more time
to achieve a satisfactory outcome. See, for example, the
work of Skyrms [49] for a philosophical perspective on
the role of deliberation in strategic situations. Finally, we
note the connection between Socratic games and modal
logic [23], a formalism for the logic of possibility and ne-
cessity.

The observation that human players typically do not
play “rational” strategies has inspired some attempts to
model “partially” rational players. The typical model
of this bounded rationality [25, 45, 47] is to postulate
bounds on computational power in computing the con-
sequences of a strategy. The work on bounded rational-
ity [13, 14, 38, 43] differs from the models that we con-
sider here in that instead of putting hard limitations on
the computational power of the agents, we instead restrict
their a priori knowledge of the state of the world, requir-
ing them to spend time (and therefore money/utility) to
learn about it.

Partially observable stochastic games (POSGs) are a
general framework used in AI to model situations of
multi-agent planning in an evolving, unknown environ-
ment, but the generality of POSGs seems to make them
very difficult [4]. Recent work has been done in devel-
oping algorithms for restricted classes of POSGs, most
notably classes of cooperative POSGs—e.g., [11, 19]—
which are very different from the competitive strategi-
cally zero-sum games we address in this paper.

The fundamental question in Socratic game theory is
deciding on the comparative value of making a more
costly but more informative query, or concluding the data-
gathering phase and picking the best option, given current
information. This tradeoff has been explored in a variety
of other contexts; a sampling of these contexts includes
aggregating results from information sources that may be
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slow to respond [6], doing approximate reasoning in in-
telligent systems [53], deciding when to take the current
best guess of disease diagnosis from a belief-propagation
network and when to let it continue inference [22], among
many others.

This issue can also be viewed as another perspective
on the general question of exploration versus exploitation
that arises often in AI: when is it better to actively seek
additional information instead of exploiting the knowl-
edge one already has? (See, e.g., [50].) Most of this
work differs significantly from our own in that it considers
single-agent planning as opposed to the game-theoretic
setting. A notable exception is the work of Larson and
Sandholm (see [30]) on mechanism design for interact-
ing agents whose computation is costly and limited. They
present a model in which players must solve a computa-
tionally intractable valuation problem, using costly com-
putation to learn some hidden parameters, and results for
auctions and bargaining games in this model.

7 FUTURE DIRECTIONS

Efficiently finding Nash equilibria in general Socratic
games (i.e, with non-strategically zero sum worlds) is
probably difficult because such an algorithm is not known
for classical games [8, 39, 40]. There has, however, been
some algorithmic success in finding Nash equilibria in re-
stricted classical settings (e.g., [12, 32, 33, 42]); we might
hope to extend our results to analogous Socratic games.

An efficient algorithm to find correlated equilibria in
general Socratic games seems more attainable. Suppose
the players receive recommended queries and responses.
The difficulty is that when a player considers a deviation
from his recommended query, he already knows his rec-
ommended response in each of the Stage 2 games. In
a correlated equilibrium, a player’s expected payoff gen-
erally depends on his recommended strategy, and thus a
player may deviate in Stage 1 so as to land in a Stage 2
game where he has been given a “better than average”
recommended response. (Socratic games are “succinct
games of superpolynomial type,” so Papadimitriou’s re-
sults [41] do not imply correlated equilibria for them.)

Socratic games can be extended to allow players
to make adaptive queries, choosing subsequent queries
based on previous results. Our techniques carry over to
O(1) rounds of unobservable queries, but it would be in-
teresting to compute equilibria in Socratic games with
adaptive observable queries or with ω(1) rounds of un-
observable queries. Special cases of adaptive Socratic
games are closely related to single-agent problems like
minimum latency [1, 5, 16], determining strategies for us-
ing priced information [7, 18, 26], and an online version

of minimum test cover [10, 35]. Although there are im-
portant technical distinctions between adaptive Socratic
games and these problems, approximation techniques
from this literature may apply to Socratic games. The
question of approximation raises interesting questions
even in non-adaptive Socratic games. An ε-approximate
Nash equilibrium is a strategy profile α so that no player
can increase her payoff by an additive ε by deviating from
α. Finding approximate Nash equilibria in both adaptive
and non-adaptive Socratic games is an interesting direc-
tion to pursue.

A natural scenario for Socratic games is when Q =
P(S)—i.e., each player chooses to make a set q ∈ P(S)
of queries from a specified groundset S of queries. Here
we take the query cost to be a linear function, so that
δ(q) =

∑
s∈q δ({s}). Natural groundsets include com-

parison queries (“if my opponent is playing strategy aII ,
would I prefer to play aI or âI?”), strategy queries (“what
is my vector of payoffs if I play strategy aI?”), and world-
identity queries (“is the world w ∈ W the real world?”).
When one can infer a polynomial bound on the num-
ber of queries made by a rational player, then our re-
sults yield efficient solutions. (For example, we can ef-
ficiently solve games in which every groundset element
s ∈ S has δ(s) = Ω(M − M), where M and M de-
note the maximum and minimum payoffs to any player in
any world.) Conversely, it is NP-hard to compute a Nash
equilibrium for such a game when every δ(s) ≤ 1/|W |2,
even when the worlds are constant sum and Player II has
only a single available strategy. Thus even computing a
best response for Player I is hard. (This proof proceeds
by reduction from set cover; intuitively, for sufficiently
low query costs, Player I must fully identify the actual
world through his queries. Selecting a minimum-sized
set of these queries is hard.) Computing Player I’s best re-
sponse can be viewed as maximizing a submodular func-
tion, and thus a best response can be (1 − 1/e) ≈ 0.63-
approximated greedily [9]. An interesting open question
is whether this approximate best-response calculation can
be leveraged to find an approximate Nash equilibrium.
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