
Brewer's Conje
ture and the Feasibility of

Consistent, Available, Partition-Tolerant Web

Servi
es

Seth Gilbert

�

Nan
y Lyn
h

�

Abstra
t

When designing distributed web servi
es, there are three

properties that are
ommonly desired:
onsisten
y, avail-

ability, and partition toleran
e. It is impossible to a
hieve

all three. In this note, we prove this
onje
ture in the asyn-

hronous network model, and then dis
uss solutions to this

dilemma in the partially syn
hronous model.

1 Introdu
tion

At PODC 2000, Brewer

1

, in an invited talk [2℄, made the following
on-

je
ture: it is impossible for a web servi
e to provide the following three

guarantees:

� Consisten
y

� Availability

� Partition-toleran
e

All three of these properties are desirable { and expe
ted { from real-world

web servi
es. In this note, we will �rst dis
uss what Brewer meant by the

onje
ture; next we will formalize these
on
epts and prove the
onje
ture;

�

Laboratory for Computer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge,

MA 02139.

1

Eri
 Brewer is a professor at the University of California, Berkeley, and the
o-founder

and Chief S
ientist of Inktomi.

�nally, we will des
ribe and attempt to formalize some real-world solutions

to this pra
ti
al diÆ
ulty.

Most web servi
es today attempt to provide strongly
onsistent data.

There has been signi�
ant resear
h designing ACID

2

databases, and most

of the new frameworks for building distributed web servi
es depend on these

databases. Intera
tions with web servi
es are expe
ted to behave in a trans-

a
tional manner: operations
ommit or fail in their entirety (atomi
), trans-

a
tions never observe or result in in
onsistent data (
onsistent), un
ommit-

ted transa
tions are isolated from ea
h other (isolated), and on
e a trans-

a
tion is
ommitted it is permanent (durable). It is
learly important, for

example, that billing information and
ommer
ial transa
tion re
ords be

handled with this type of strong
onsisten
y.

Web servi
es are similarly expe
ted to be highly available. Every request

should su

eed and re
eive a response. When a servi
e goes down, it may

well
reate signi�
ant real-world problems; the
lassi
 example of this is

the potential legal diÆ
ulties should the E-Trade web site go down. This

problem is exa
erbated by the fa
t that a web-site is most likely to be

unavailable when it is most needed. The goal of most web servi
es today is

to be as available as the network on whi
h they run: if any servi
e on the

network is available, then the web servi
e should be a

essible.

Finally, on a highly distributed network, it is desirable to provide some

amount of fault-toleran
e. When some nodes
rash or some
ommuni
ation

links fail, it is important that the servi
e still perform as expe
ted. One

desirable fault toleran
e property is the ability to survive a network parti-

tioning into multiple
omponents. In this note we will not
onsider stopping

failures, though in some
ases a stopping failure
an be modeled as a node

existing in its own unique
omponent of a partition.

2 Formal Model

In this se
tion, we will formally de�ne what is meant by the terms
onsistent,

available, and partition tolerant.

2.1 Atomi
 Data Obje
ts

The most natural way of formalizing the idea of a
onsistent servi
e is as

an atomi
 data obje
t. Atomi
 [4℄, or linearizable [3℄,
onsisten
y is the

2

Atomi
, Consistent, Isolated, Durable

ondition expe
ted by most web servi
es today.

3

Under this
onsisten
y

guarantee, there must exist a total order on all operations su
h that ea
h

operation looks as if it were
ompleted at a single instant. This is equivalent

to requiring requests of the distributed shared memory to a
t as if they were

exe
uting on a single node, responding to operations one at a time. This

is the
onsisten
y guarantee that generally provides the easiest model for

users to understand, and is most
onvenient for those attempting to design

a
lient appli
ation that uses the distributed servi
e. See Chapter 13 of [5℄

for a more
omplete de�nition of atomi

onsisten
y.

2.2 Available Data Obje
ts

For a distributed system to be
ontinuously available, every request re
eived

by a non-failing node in the system must result in a response.

4

That is, any

algorithm used by the servi
e must eventually terminate. In some ways

this is a weak de�nition of availability: it puts no bound on how long the

algorithm may run before terminating, and therefore allows unbounded
om-

putation. On the other hand, when quali�ed by the need for partition toler-

an
e, this
an be seen as a strong de�nition of availability: even when severe

network failures o

ur, every request must terminate.

2.3 Partition Toleran
e

The above de�nitions of availability and atomi
ity are quali�ed by the need

to tolerate partitions. In order to model partition toleran
e, the network

will be allowed to lose arbitrarily many messages sent from one node to

another. When a network is partitioned, all messages sent from nodes in

one
omponent of the partition to nodes in another
omponent are lost.

(And any pattern of message loss
an be modeled as a temporary partition

separating the
ommuni
ating nodes at the exa
t instant the message is lost.)

The atomi
ity requirement (x2.1) therefore implies that every response will

be atomi
, even though arbitrary messages sent as part of the algorithm

might not be delivered. The availability requirement (x2.2) implies that

3

Dis
ussing atomi

onsisten
y is somewhat di�erent than talking about an ACID

database, as database
onsisten
y refers to transa
tions, while atomi

onsisten
y refers

only to a property of a single request/response operation sequen
e. And it has a di�erent

meaning than the Atomi
 in ACID, as it subsumes the database notions of both Atomi

and Consistent.

4

Brewer originally only required almost all requests to re
eive a response. As allowing

probabilisti
 availability does not
hange the result when arbitrary failures o

ur, for

simpli
ity we are requiring 100% availability.

every node re
eiving a request from a
lient must respond, even though

arbitrary messages that are sent may be lost. Note that this is similar to

wait-free termination in a pure shared-memory system: even if every other

node in the network fails (i.e. the node is in its own unique
omponent of the

partition), a valid (atomi
) response must be generated. No set of failures

less than total network failure is allowed to
ause the system to respond

in
orre
tly.

5

3 Asyn
hronous Networks

3.1 Impossibility Result

In proving this
onje
ture, we will use the asyn
hronous network model, as

formalized by Lyn
h in Chapter 8 of [5℄. In the asyn
hronous model, there

is no
lo
k, and nodes must make de
isions based only on the messages

re
eived and lo
al
omputation.

Theorem 1 It is impossible in the asyn
hronous network model to imple-

ment a read/write data obje
t that guarantees the following properties:

� Availability

� Atomi

onsisten
y

in all fair exe
utions (in
luding those in whi
h messages are lost).

Proof: We prove this by
ontradi
tion. Assume an algorithm A exists that

meets the three
riteria: atomi
ity, availability, and partition toleran
e. We

onstru
t an exe
ution of A in whi
h there exists a request that returns an

in
onsistent response. The methodology is similar to proofs in Attiya et

al. [1℄ and Lyn
h [5℄ (Theorem 17.6). Assume that the network
onsists

of at least two nodes. Thus it
an be divided into two disjoint, non-empty

sets: fG

1

; G

2

g. The basi
 idea of the proof is to assume that all messages

between G

1

and G

2

are lost. If a write o

urs in G

1

, and later a read o

urs

in G

2

, then the read operation
annot return the results of the earlier write

operation.

More formally, let v

0

be the initial value of the atomi
 obje
t. Let �

1

be

the pre�x of an exe
ution of A in whi
h a single write of a value not equal to

5

Brewer pointed out in the talk that partitions of one node are irrelevant: they are

equivalent to that node failing. However restri
ting our attention to partitions
ontaining

only
omponents of size greater than one does not
hange any of the results in this note.

v

0

o

urs in G

1

, ending with the termination of the write operation. Assume

that no other
lient requests o

ur in either G

1

or G

2

. Further, assume

that no messages from G

1

are re
eived in G

2

, and no messages from G

2

are re
eived in G

1

. We know that this write
ompletes, by the availability

requirement. Similarly, let �

2

be the pre�x of an exe
ution in whi
h a

single read o

urs in G

2

, and no other
lient requests o

ur, ending with

the termination of the read operation. During �

2

no messages from G

2

are

re
eived in G

1

, and no messages from G

1

are re
eived in G

2

. Again we know

that the read returns a value by the availability requirement. The value

returned by this exe
ution must be v

0

, as no write operation has o

urred

in �

2

.

Let � be an exe
ution beginning with �

1

and
ontinuing with �

2

. To the

nodes in G

2

, � is indistinguishable from �

2

, as all the messages from G

1

to

G

2

are lost (in both �

1

and �

2

, whi
h together make up �), and �

1

does not

in
lude any
lient requests to nodes in G

2

. Therefore in the � exe
ution,

the read request (from �

2

) must still return v

0

. However the read request

does not begin until after the write request (from �

1

) has
ompleted. This

therefore
ontradi
ts the atomi
ity property, proving that no su
h algorithm

exists.

Corollary 1.1 It is impossible in the asyn
hronous network model to im-

plement a read/write data obje
t that guarantees the following properties:

� Availability, in all fair exe
utions,

� Atomi

onsisten
y, in fair exe
utions in whi
h no messages are lost.

Proof: The main idea is that in the asyn
hronous model an algorithm has no

way of determining whether a message has been lost, or has been arbitrarily

delayed in the transmission
hannel. Therefore if there existed an algorithm

that guaranteed atomi

onsisten
y in exe
utions in whi
h no messages were

lost, then there would exist an algorithm that guaranteed atomi

onsisten
y

in all exe
utions. This would violate Theorem 1.

More formally, assume for the sake of
ontradi
tion that there exists

an algorithm A that always terminates, and guarantees atomi

onsisten
y

in fair exe
utions in whi
h all messages are delivered. Further, Theorem 1

implies that A does not guarantee atomi

onsisten
y in all fair exe
utions,

so there exists some fair exe
ution � of A in whi
h some response is not

atomi
.

At some �nite point in exe
ution �, the algorithm A returns a response

that is not atomi
. Let �

0

be the pre�x of � ending with the invalid response.

Next, extend �

0

to a fair exe
ution �

00

, in whi
h all messages are delivered.

The exe
ution �

00

is now a fair exe
ution in whi
h all messages are delivered.

However this exe
ution is not atomi
. Therefore no su
h algorithm A exists.

3.2 Solutions in the Asyn
hronous Model

While it is impossible to provide all three properties: atomi
ity, availability,

and partition toleran
e, any two of these three properties
an be a
hieved.

3.2.1 Atomi
, Partition Tolerant

If availability is not required, then it is easy to a
hieve atomi
 data and

partition toleran
e. The trivial system that ignores all requests meets these

requirements. However we
an provide a stronger liveness
riterion: if all

the messages in an exe
ution are delivered, the system is available and all

operations terminate. A simple
entralized algorithm meets these require-

ments: a single designated node maintains the value of an obje
t. A node

re
eiving a request forwards the request to the designated node, whi
h sends

a response. When an a
knowledgment is re
eived, the node sends a response

to the
lient.

Many distributed databases provide this type of guarantee, espe
ially

algorithms based on distributed lo
king or quorums: if
ertain failure pat-

terns o

ur, then the liveness
ondition is weakened and the servi
e no longer

returns responses. If there are no failures, then liveness is guaranteed.

3.2.2 Atomi
, Available

If there are no partitions, it is
learly possible to provide atomi
, available

data. In fa
t, the
entralized algorithm des
ribed in Se
tion 3.2.1 meets

these requirements. Systems that run on intranets and LANs are an example

of these types of algorithms.

3.2.3 Available, Partition Tolerant

It is possible to provide high availability and partition toleran
e, if atomi

onsisten
y is not required. If there are no
onsisten
y requirements, the

servi
e
an trivially return v

0

, the initial value, in response to every request.

However it is possible to provide weakened
onsisten
y in an available, par-

tition tolerant setting. Web
a
hes are one example of a weakly
onsistent

network. In Se
tion 4.4 we
onsider one of the possible weaker
onsisten
y

onditions.

4 Partially Syn
hronous Networks

4.1 Partially Syn
hronous Model

The most obvious way to try to
ir
umvent the impossibility result of The-

orem 1 is to realize that in the real world, most networks are not purely

asyn
hronous. If you allow ea
h node in the network to have a
lo
k, it is

possible to build a more powerful servi
e.

For the rest of this paper, we will assume a partially syn
hronous model

in whi
h every node has a
lo
k, and all
lo
ks in
rease at the same rate.

However, the
lo
ks themselves are not syn
hronized, in that they may dis-

play di�erent values at the same real time. In e�e
t, the
lo
ks a
t as timers:

lo
al state variables that the pro
esses
an observe to measure how mu
h

time has passed. A lo
al timer
an be used to s
hedule an a
tion to o

ur

a
ertain interval of time after some other event. Furthermore, assume that

every message is either delivered within a given, known time: t

msg

, or it is

lost. Also, every node pro
esses a re
eived message within a given, known

time: t

lo
al

, and lo
al pro
essing takes zero time. This
an be formalized as

a spe
ial
ase of the General Timed Automata model des
ribed by Lyn
h in

Chapter 23 of [5℄.

4.2 Impossibility Result

It is still impossible to have an always available, atomi
 data obje
t when

arbitrary messages may be lost, even in the partially syn
hronous model.

That is, the following analogue of Theorem 1 holds:

Theorem 2 It is impossible in the partially syn
hronous network model to

implement a read/write data obje
t that guarantees the following properties:

� Availability

� Atomi

onsisten
y

in all exe
utions (even those in whi
h messages are lost).

Proof: This proof is rather similar to the proof of Theorem 1. We will

follow the same methodology: divide the network into two
omponents,

fG

1

; G

2

g, and
onstru
t an admissible exe
ution in whi
h a write happens

in one
omponent, followed by a read operation in the other
omponent.

This read operation
an be shown to return in
onsistent data.

More formally,
onstru
t exe
ution �

1

as before in Theorem 1: a single

write request and a
knowledgment o

ur inG

1

, and all messages between the

two
omponents, fG

1

; G

2

g, are lost. We will
onstru
t the se
ond exe
ution,

�

0

2

, slightly di�erently. Let �

0

2

be an exe
ution that begins with a long

interval of time during whi
h no
lient requests o

ur. This interval must

be at least as long as the entire duration of �

1

. Then append to �

0

2

the

events of �

2

, as de�ned above in Theorem 1: a single read request and

response in G

2

, again assuming all messages between the two
omponents

are lost. Finally,
onstru
t � by superimposing the two exe
utions �

1

and

�

0

2

. The long interval of time in �

2

ensures that the write request
ompletes

before the read request begins. However, as in Theorem 1, the read request

returns the initial value, rather than the new value written by the write

request, violating atomi

onsisten
y.

4.3 Solutions in the Partially Syn
hronous Model

In the partially syn
hronous model, however, the analogue of Corollary 1.1

does not hold. The proof of this
orollary does in fa
t depend on nodes

being unaware of when a message is lost. There are partially syn
hronous

algorithms that will return atomi
 data when all messages in an exe
ution

are delivered (i.e., there are no partitions), and will only return in
onsistent

(and, in parti
ular, stale) data when messages are lost. One example of su
h

an algorithm is the
entralized proto
ol des
ribed in Se
tion 3.2.1, modi�ed

to time-out lost messages. On a read (or write) request, a message is sent

to the
entral node. If a response from the
entral node is re
eived, then the

node delivers the requested data (or an a
knowledgment). If no response is

re
eived within 2 � t

msg

+ t

lo
al

, then the node
on
ludes that the message

was lost. The
lient is then sent a response: either the best known value

of the lo
al node (for a read operation), or an a
knowledgment (for a write

operation). In this
ase, atomi

onsisten
y may be violated.

4.4 Weaker Consisten
y Conditions

While it is useful to guarantee that atomi
 data will be returned in exe
u-

tions in whi
h all messages are delivered (within some time bound), it is

equally important to spe
ify what happens in exe
utions in whi
h some of

the messages are lost. In this se
tion, we will dis
uss one possible weaker

onsisten
y
ondition that allows stale data to be returned when there are

partitions, yet still pla
e formal requirements on the quality of the stale data

returned. This
onsisten
y guarantee will require availability and atomi

onsisten
y in exe
utions in whi
h no messages are lost, and is therefore

impossible to guarantee in the asyn
hronous model as a result of Corollary

1.1.

In the partially syn
hronous model it often makes sense to base guar-

antees on how long an algorithm has had to re
tify a situation. This
on-

sisten
y model ensures that if messages are delivered, then eventually some

notion of atomi
ity is restored.

In an atomi
 exe
ution, we would de�ne a partial order of the read and

write operations, and then require that if one operation begins after another

one ends, the former does not pre
ede the latter in the partial order. We will

de�ne a weaker guarantee, t-Conne
ted Consisten
y, whi
h de�nes a partial

order in a similar manner, but only requires that one operation not pre
ede

another if there is an interval between the operations in whi
h all messages

are delivered.

De�nition 3 A timed exe
ution, �, of a read-write obje
t is t-Conne
ted

Consistent if two
riteria hold. First, in exe
utions in whi
h no messages

are lost, the exe
ution is atomi
. Se
ond, in exe
utions in whi
h messages

are lost, there exists a partial order P on the operations in � su
h that:

1. P orders all write operations, and orders all read operations with re-

spe
t to the write operations.

2. The value returned by every read operation is exa
tly the one written

by the previous write operation in P , or the initial value, if there is

no su
h previous write in P .

3. The order in P is
onsistent with the order of read and write requests

submitted at ea
h node.

4. Assume there exists an interval of time longer than t in whi
h no

messages are lost. Further, assume an operation, �,
ompletes before

the interval begins, and another operation, �, begins after the interval

ends. Then � does not pre
ede � in the partial order P .

This guarantee allows for some stale data when messages are lost, but

provides a time limit on how long it takes for
onsisten
y to return, on
e

the partition heals. This de�nition
an of
ourse be generalized to provide

onsisten
y guarantees when only some of the nodes are
onne
ted, and

when
onne
tions are available only some of the time. These generalizations

will be further examined in future work.

A variant of the
entralized algorithm des
ribed in Se
tion 4.3 is t-

Conne
ted Consistent. Assume node C is the
entralized node. The al-

gorithm behaves as follows:

� read at node A:

A sends a request to C for the most re
ent value. If A re
eives a

response from C within time 2 � t

msg

+ t

lo
al

, it saves the value and

returns it to the
lient. Otherwise, A
on
ludes that a message was

lost and it returns the value with the highest sequen
e number that

has ever been re
eived from C, or the initial value if no value has yet

been re
eived from C. (When a
lient read request o

urs at C, it a
ts

like any other node, sending messages to itself.)

� write at A:

A sends a message to C with the new value. A waits 2 � t

msg

+ t

lo
al

,

or until it re
eives an a
knowledgment from C, and then sends an

a
knowledgment to the
lient. At this point, either C has learned

of the new value, or a message was lost, or both events o

urred. If

A
on
ludes that a message was lost, it periodi
ally retransmits the

value to C (along with all values lost during earlier write operations)

until it re
eives an a
knowledgment from C. (As in the
ase of read

operations, when a
lient write request o

urs at C, it a
ts like any

other node, sending messages to itself.)

� New value is re
eived at C:

C serializes the write requests that it hears about by assigning them

onse
utive integer tags. Periodi
ally C broad
asts the latest value

and sequen
e number to all other nodes.

Theorem 4 The modi�ed
entralized algorithm is t-Conne
ted
onsistent.

Proof: First, it is
lear that in exe
utions in whi
h no messages are lost,

the operations are atomi
. An exe
ution is atomi
 if every operation a
ts as

if it is exe
uted at a single instant; in this
ase, that single instant o

urs

when C pro
esses the operation. C serializes the operations, ensuring atomi

onsisten
y in exe
utions in whi
h all messages are delivered.

Next, we examine exe
utions in whi
h messages are lost. The partial

order, P is
onstru
ted as follows. Write operations are ordered by the

sequen
e number assigned by the
entral node. Ea
h read operation is se-

quen
ed after the write operation whose value it returns. It is
lear by the

onstru
tion that the partial order P satis�es
riteria 1 and 2 of the de�ni-

tion of t-Conne
ted
onsisten
y. As the algorithm handles requests in the

order re
eived,
riterion 3 is also
learly true.

In showing that the partial order respe
ts
riterion 4, there are four

ases: write followed by read, write followed by write, read followed by read,

and read followed by write. Let time t be long enough for a write operation

to
omplete (and for C to assign a sequen
e number to the new value), and

for one of the periodi
 broad
asts from C to o

ur.

1. write followed by read

Assume a write o

urs at A

w

, after whi
h an interval of time longer

than t passes in whi
h all messages are delivered. After this, a read

is requested at some node. By the end of the interval, two things

have happened. First, A

w

has noti�ed the
entral node of the new

value, and the write operation has been assigned a sequen
e number.

Se
ond, the
entral node has rebroad
ast that value (or a later value

in the partial order) to all other nodes during one of the periodi

broad
asts. As a result, the read operation does not return an earlier

value, and therefore it must
ome after the write in the partial order

P .

2. write followed by write

Assume a write o

urs at A

w

, after whi
h an interval of time longer

than t passes in whi
h all messages are delivered. After this, a write

is requested at some node. As in the previous
ase, by the end of the

interval in whi
h messages are delivered, the
entral node has assigned

a sequen
e number to the write operation at A

w

. As a result, the later

write operation is sequen
ed by the
entral node after the �rst write

operation. Therefore the se
ond write
omes after the �rst write in

the partial order P .

3. read followed by read

Assume a read operation o

urs at B

r

, after whi
h an interval of time

longer than t passes in whi
h all messages are delivered. After this, a

read is requested at some node. Let be the write operation whose

value the �rst read operation at B

r

returns. By the end of the inter-

val in whi
h messages are delivered, the
entral node has assigned a

sequen
e number to , and has broad
ast the value of (or a later

value in the partial order) to all other nodes. As a result, the se
ond

read operation does not return a value earlier in the partial order than

 . Therefore the se
ond read operation does not pre
ede the �rst in

the partial order P .

4. read followed by write

Assume a read operation o

urs at B

r

, after whi
h an interval of time

longer than t passes in whi
h all messages are delivered. After this,

a write is requested at some node. Let be the write operation

whose value the �rst read operation at B

r

returns. By the end of the

interval in whi
h messages are delivered, the
entral node has assigned

a sequen
e number to , and as a result all write operations beginning

after the interval are serialized after . Therefore the write operation

does not pre
ede the read operation in the partial order P .

Therefore, P satis�es
riterion 4 of the de�nition, and this algorithm is

t-Conne
ted Consistent.

5 Con
lusion

In this note, we have shown that it is impossible to reliably provide atomi
,

onsistent data when there are partitions in the network. It is feasible,

however, to a
hieve any two of the three properties:
onsisten
y, availability,

and partition toleran
e. In an asyn
hronous model, when no
lo
ks are

available, the impossibility result is fairly strong: it is impossible to provide

onsistent data, even allowing stale data to be returned when messages are

lost. However in partially syn
hronous models it is possible to a
hieve a

pra
ti
al
ompromise between
onsisten
y and availability. In parti
ular,

most real-world systems today are for
ed to settle with returning \most of

the data, most of the time." Formalizing this idea and studying algorithms

for a
hieving it is an interesting subje
t for future theoreti
al resear
h.

A
knowledgments

We thank Eri
 Brewer for his interesting PODC talk, for providing us with

his talk slides and notes, and for en
ouraging us in writing this note. We

also thank Charles Leiserson for suggesting this problem and for interesting

and helpful dis
ussions.

Referen
es

[1℄ Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Pe-

leg, and R�udiger Reis
huk. A
hievable
ases in an asyn
hronous environ-

ment. In 28th Annual Symposium on Foundations of Computer S
ien
e,

pages 337{346, Los Angeles, California, O
tober 1987.

[2℄ Eri
 A. Brewer. Towards robust distributed systems. (Invited Talk)

Prin
iples of Distributed Computing, Portland, Oregon, July 2000.

[3℄ Mauri
e P. Herlihy and Jeannette M. Wing. Linearizability: A
orre
t-

ness
ondition for
on
urrent obje
ts. ACM Transa
tions on Program-

ming Languages and Systems, 12(3):463{492, July 1990.

[4℄ Leslie Lamport. On interpro
ess
ommuni
ation { parts I and II. Dis-

tributed Computing, 1(2):77{101, April 1986.

[5℄ Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufman, 1996.

