
Brewer's Conjeture and the Feasibility of

Consistent, Available, Partition-Tolerant Web

Servies

Seth Gilbert

�

Nany Lynh

�

Abstrat

When designing distributed web servies, there are three

properties that are ommonly desired: onsisteny, avail-

ability, and partition tolerane. It is impossible to ahieve

all three. In this note, we prove this onjeture in the asyn-

hronous network model, and then disuss solutions to this

dilemma in the partially synhronous model.

1 Introdution

At PODC 2000, Brewer

1

, in an invited talk [2℄, made the following on-

jeture: it is impossible for a web servie to provide the following three

guarantees:

� Consisteny

� Availability

� Partition-tolerane

All three of these properties are desirable { and expeted { from real-world

web servies. In this note, we will �rst disuss what Brewer meant by the

onjeture; next we will formalize these onepts and prove the onjeture;

�

Laboratory for Computer Siene, Massahusetts Institute of Tehnology, Cambridge,

MA 02139.

1

Eri Brewer is a professor at the University of California, Berkeley, and the o-founder

and Chief Sientist of Inktomi.

�nally, we will desribe and attempt to formalize some real-world solutions

to this pratial diÆulty.

Most web servies today attempt to provide strongly onsistent data.

There has been signi�ant researh designing ACID

2

databases, and most

of the new frameworks for building distributed web servies depend on these

databases. Interations with web servies are expeted to behave in a trans-

ational manner: operations ommit or fail in their entirety (atomi), trans-

ations never observe or result in inonsistent data (onsistent), unommit-

ted transations are isolated from eah other (isolated), and one a trans-

ation is ommitted it is permanent (durable). It is learly important, for

example, that billing information and ommerial transation reords be

handled with this type of strong onsisteny.

Web servies are similarly expeted to be highly available. Every request

should sueed and reeive a response. When a servie goes down, it may

well reate signi�ant real-world problems; the lassi example of this is

the potential legal diÆulties should the E-Trade web site go down. This

problem is exaerbated by the fat that a web-site is most likely to be

unavailable when it is most needed. The goal of most web servies today is

to be as available as the network on whih they run: if any servie on the

network is available, then the web servie should be aessible.

Finally, on a highly distributed network, it is desirable to provide some

amount of fault-tolerane. When some nodes rash or some ommuniation

links fail, it is important that the servie still perform as expeted. One

desirable fault tolerane property is the ability to survive a network parti-

tioning into multiple omponents. In this note we will not onsider stopping

failures, though in some ases a stopping failure an be modeled as a node

existing in its own unique omponent of a partition.

2 Formal Model

In this setion, we will formally de�ne what is meant by the terms onsistent,

available, and partition tolerant.

2.1 Atomi Data Objets

The most natural way of formalizing the idea of a onsistent servie is as

an atomi data objet. Atomi [4℄, or linearizable [3℄, onsisteny is the

2

Atomi, Consistent, Isolated, Durable

ondition expeted by most web servies today.

3

Under this onsisteny

guarantee, there must exist a total order on all operations suh that eah

operation looks as if it were ompleted at a single instant. This is equivalent

to requiring requests of the distributed shared memory to at as if they were

exeuting on a single node, responding to operations one at a time. This

is the onsisteny guarantee that generally provides the easiest model for

users to understand, and is most onvenient for those attempting to design

a lient appliation that uses the distributed servie. See Chapter 13 of [5℄

for a more omplete de�nition of atomi onsisteny.

2.2 Available Data Objets

For a distributed system to be ontinuously available, every request reeived

by a non-failing node in the system must result in a response.

4

That is, any

algorithm used by the servie must eventually terminate. In some ways

this is a weak de�nition of availability: it puts no bound on how long the

algorithm may run before terminating, and therefore allows unbounded om-

putation. On the other hand, when quali�ed by the need for partition toler-

ane, this an be seen as a strong de�nition of availability: even when severe

network failures our, every request must terminate.

2.3 Partition Tolerane

The above de�nitions of availability and atomiity are quali�ed by the need

to tolerate partitions. In order to model partition tolerane, the network

will be allowed to lose arbitrarily many messages sent from one node to

another. When a network is partitioned, all messages sent from nodes in

one omponent of the partition to nodes in another omponent are lost.

(And any pattern of message loss an be modeled as a temporary partition

separating the ommuniating nodes at the exat instant the message is lost.)

The atomiity requirement (x2.1) therefore implies that every response will

be atomi, even though arbitrary messages sent as part of the algorithm

might not be delivered. The availability requirement (x2.2) implies that

3

Disussing atomi onsisteny is somewhat di�erent than talking about an ACID

database, as database onsisteny refers to transations, while atomi onsisteny refers

only to a property of a single request/response operation sequene. And it has a di�erent

meaning than the Atomi in ACID, as it subsumes the database notions of both Atomi

and Consistent.

4

Brewer originally only required almost all requests to reeive a response. As allowing

probabilisti availability does not hange the result when arbitrary failures our, for

simpliity we are requiring 100% availability.

every node reeiving a request from a lient must respond, even though

arbitrary messages that are sent may be lost. Note that this is similar to

wait-free termination in a pure shared-memory system: even if every other

node in the network fails (i.e. the node is in its own unique omponent of the

partition), a valid (atomi) response must be generated. No set of failures

less than total network failure is allowed to ause the system to respond

inorretly.

5

3 Asynhronous Networks

3.1 Impossibility Result

In proving this onjeture, we will use the asynhronous network model, as

formalized by Lynh in Chapter 8 of [5℄. In the asynhronous model, there

is no lok, and nodes must make deisions based only on the messages

reeived and loal omputation.

Theorem 1 It is impossible in the asynhronous network model to imple-

ment a read/write data objet that guarantees the following properties:

� Availability

� Atomi onsisteny

in all fair exeutions (inluding those in whih messages are lost).

Proof: We prove this by ontradition. Assume an algorithm A exists that

meets the three riteria: atomiity, availability, and partition tolerane. We

onstrut an exeution of A in whih there exists a request that returns an

inonsistent response. The methodology is similar to proofs in Attiya et

al. [1℄ and Lynh [5℄ (Theorem 17.6). Assume that the network onsists

of at least two nodes. Thus it an be divided into two disjoint, non-empty

sets: fG

1

; G

2

g. The basi idea of the proof is to assume that all messages

between G

1

and G

2

are lost. If a write ours in G

1

, and later a read ours

in G

2

, then the read operation annot return the results of the earlier write

operation.

More formally, let v

0

be the initial value of the atomi objet. Let �

1

be

the pre�x of an exeution of A in whih a single write of a value not equal to

5

Brewer pointed out in the talk that partitions of one node are irrelevant: they are

equivalent to that node failing. However restriting our attention to partitions ontaining

only omponents of size greater than one does not hange any of the results in this note.

v

0

ours in G

1

, ending with the termination of the write operation. Assume

that no other lient requests our in either G

1

or G

2

. Further, assume

that no messages from G

1

are reeived in G

2

, and no messages from G

2

are reeived in G

1

. We know that this write ompletes, by the availability

requirement. Similarly, let �

2

be the pre�x of an exeution in whih a

single read ours in G

2

, and no other lient requests our, ending with

the termination of the read operation. During �

2

no messages from G

2

are

reeived in G

1

, and no messages from G

1

are reeived in G

2

. Again we know

that the read returns a value by the availability requirement. The value

returned by this exeution must be v

0

, as no write operation has ourred

in �

2

.

Let � be an exeution beginning with �

1

and ontinuing with �

2

. To the

nodes in G

2

, � is indistinguishable from �

2

, as all the messages from G

1

to

G

2

are lost (in both �

1

and �

2

, whih together make up �), and �

1

does not

inlude any lient requests to nodes in G

2

. Therefore in the � exeution,

the read request (from �

2

) must still return v

0

. However the read request

does not begin until after the write request (from �

1

) has ompleted. This

therefore ontradits the atomiity property, proving that no suh algorithm

exists.

Corollary 1.1 It is impossible in the asynhronous network model to im-

plement a read/write data objet that guarantees the following properties:

� Availability, in all fair exeutions,

� Atomi onsisteny, in fair exeutions in whih no messages are lost.

Proof: The main idea is that in the asynhronous model an algorithm has no

way of determining whether a message has been lost, or has been arbitrarily

delayed in the transmission hannel. Therefore if there existed an algorithm

that guaranteed atomi onsisteny in exeutions in whih no messages were

lost, then there would exist an algorithm that guaranteed atomi onsisteny

in all exeutions. This would violate Theorem 1.

More formally, assume for the sake of ontradition that there exists

an algorithm A that always terminates, and guarantees atomi onsisteny

in fair exeutions in whih all messages are delivered. Further, Theorem 1

implies that A does not guarantee atomi onsisteny in all fair exeutions,

so there exists some fair exeution � of A in whih some response is not

atomi.

At some �nite point in exeution �, the algorithm A returns a response

that is not atomi. Let �

0

be the pre�x of � ending with the invalid response.

Next, extend �

0

to a fair exeution �

00

, in whih all messages are delivered.

The exeution �

00

is now a fair exeution in whih all messages are delivered.

However this exeution is not atomi. Therefore no suh algorithm A exists.

3.2 Solutions in the Asynhronous Model

While it is impossible to provide all three properties: atomiity, availability,

and partition tolerane, any two of these three properties an be ahieved.

3.2.1 Atomi, Partition Tolerant

If availability is not required, then it is easy to ahieve atomi data and

partition tolerane. The trivial system that ignores all requests meets these

requirements. However we an provide a stronger liveness riterion: if all

the messages in an exeution are delivered, the system is available and all

operations terminate. A simple entralized algorithm meets these require-

ments: a single designated node maintains the value of an objet. A node

reeiving a request forwards the request to the designated node, whih sends

a response. When an aknowledgment is reeived, the node sends a response

to the lient.

Many distributed databases provide this type of guarantee, espeially

algorithms based on distributed loking or quorums: if ertain failure pat-

terns our, then the liveness ondition is weakened and the servie no longer

returns responses. If there are no failures, then liveness is guaranteed.

3.2.2 Atomi, Available

If there are no partitions, it is learly possible to provide atomi, available

data. In fat, the entralized algorithm desribed in Setion 3.2.1 meets

these requirements. Systems that run on intranets and LANs are an example

of these types of algorithms.

3.2.3 Available, Partition Tolerant

It is possible to provide high availability and partition tolerane, if atomi

onsisteny is not required. If there are no onsisteny requirements, the

servie an trivially return v

0

, the initial value, in response to every request.

However it is possible to provide weakened onsisteny in an available, par-

tition tolerant setting. Web ahes are one example of a weakly onsistent

network. In Setion 4.4 we onsider one of the possible weaker onsisteny

onditions.

4 Partially Synhronous Networks

4.1 Partially Synhronous Model

The most obvious way to try to irumvent the impossibility result of The-

orem 1 is to realize that in the real world, most networks are not purely

asynhronous. If you allow eah node in the network to have a lok, it is

possible to build a more powerful servie.

For the rest of this paper, we will assume a partially synhronous model

in whih every node has a lok, and all loks inrease at the same rate.

However, the loks themselves are not synhronized, in that they may dis-

play di�erent values at the same real time. In e�et, the loks at as timers:

loal state variables that the proesses an observe to measure how muh

time has passed. A loal timer an be used to shedule an ation to our

a ertain interval of time after some other event. Furthermore, assume that

every message is either delivered within a given, known time: t

msg

, or it is

lost. Also, every node proesses a reeived message within a given, known

time: t

loal

, and loal proessing takes zero time. This an be formalized as

a speial ase of the General Timed Automata model desribed by Lynh in

Chapter 23 of [5℄.

4.2 Impossibility Result

It is still impossible to have an always available, atomi data objet when

arbitrary messages may be lost, even in the partially synhronous model.

That is, the following analogue of Theorem 1 holds:

Theorem 2 It is impossible in the partially synhronous network model to

implement a read/write data objet that guarantees the following properties:

� Availability

� Atomi onsisteny

in all exeutions (even those in whih messages are lost).

Proof: This proof is rather similar to the proof of Theorem 1. We will

follow the same methodology: divide the network into two omponents,

fG

1

; G

2

g, and onstrut an admissible exeution in whih a write happens

in one omponent, followed by a read operation in the other omponent.

This read operation an be shown to return inonsistent data.

More formally, onstrut exeution �

1

as before in Theorem 1: a single

write request and aknowledgment our inG

1

, and all messages between the

two omponents, fG

1

; G

2

g, are lost. We will onstrut the seond exeution,

�

0

2

, slightly di�erently. Let �

0

2

be an exeution that begins with a long

interval of time during whih no lient requests our. This interval must

be at least as long as the entire duration of �

1

. Then append to �

0

2

the

events of �

2

, as de�ned above in Theorem 1: a single read request and

response in G

2

, again assuming all messages between the two omponents

are lost. Finally, onstrut � by superimposing the two exeutions �

1

and

�

0

2

. The long interval of time in �

2

ensures that the write request ompletes

before the read request begins. However, as in Theorem 1, the read request

returns the initial value, rather than the new value written by the write

request, violating atomi onsisteny.

4.3 Solutions in the Partially Synhronous Model

In the partially synhronous model, however, the analogue of Corollary 1.1

does not hold. The proof of this orollary does in fat depend on nodes

being unaware of when a message is lost. There are partially synhronous

algorithms that will return atomi data when all messages in an exeution

are delivered (i.e., there are no partitions), and will only return inonsistent

(and, in partiular, stale) data when messages are lost. One example of suh

an algorithm is the entralized protool desribed in Setion 3.2.1, modi�ed

to time-out lost messages. On a read (or write) request, a message is sent

to the entral node. If a response from the entral node is reeived, then the

node delivers the requested data (or an aknowledgment). If no response is

reeived within 2 � t

msg

+ t

loal

, then the node onludes that the message

was lost. The lient is then sent a response: either the best known value

of the loal node (for a read operation), or an aknowledgment (for a write

operation). In this ase, atomi onsisteny may be violated.

4.4 Weaker Consisteny Conditions

While it is useful to guarantee that atomi data will be returned in exeu-

tions in whih all messages are delivered (within some time bound), it is

equally important to speify what happens in exeutions in whih some of

the messages are lost. In this setion, we will disuss one possible weaker

onsisteny ondition that allows stale data to be returned when there are

partitions, yet still plae formal requirements on the quality of the stale data

returned. This onsisteny guarantee will require availability and atomi

onsisteny in exeutions in whih no messages are lost, and is therefore

impossible to guarantee in the asynhronous model as a result of Corollary

1.1.

In the partially synhronous model it often makes sense to base guar-

antees on how long an algorithm has had to retify a situation. This on-

sisteny model ensures that if messages are delivered, then eventually some

notion of atomiity is restored.

In an atomi exeution, we would de�ne a partial order of the read and

write operations, and then require that if one operation begins after another

one ends, the former does not preede the latter in the partial order. We will

de�ne a weaker guarantee, t-Conneted Consisteny, whih de�nes a partial

order in a similar manner, but only requires that one operation not preede

another if there is an interval between the operations in whih all messages

are delivered.

De�nition 3 A timed exeution, �, of a read-write objet is t-Conneted

Consistent if two riteria hold. First, in exeutions in whih no messages

are lost, the exeution is atomi. Seond, in exeutions in whih messages

are lost, there exists a partial order P on the operations in � suh that:

1. P orders all write operations, and orders all read operations with re-

spet to the write operations.

2. The value returned by every read operation is exatly the one written

by the previous write operation in P , or the initial value, if there is

no suh previous write in P .

3. The order in P is onsistent with the order of read and write requests

submitted at eah node.

4. Assume there exists an interval of time longer than t in whih no

messages are lost. Further, assume an operation, �, ompletes before

the interval begins, and another operation, �, begins after the interval

ends. Then � does not preede � in the partial order P .

This guarantee allows for some stale data when messages are lost, but

provides a time limit on how long it takes for onsisteny to return, one

the partition heals. This de�nition an of ourse be generalized to provide

onsisteny guarantees when only some of the nodes are onneted, and

when onnetions are available only some of the time. These generalizations

will be further examined in future work.

A variant of the entralized algorithm desribed in Setion 4.3 is t-

Conneted Consistent. Assume node C is the entralized node. The al-

gorithm behaves as follows:

� read at node A:

A sends a request to C for the most reent value. If A reeives a

response from C within time 2 � t

msg

+ t

loal

, it saves the value and

returns it to the lient. Otherwise, A onludes that a message was

lost and it returns the value with the highest sequene number that

has ever been reeived from C, or the initial value if no value has yet

been reeived from C. (When a lient read request ours at C, it ats

like any other node, sending messages to itself.)

� write at A:

A sends a message to C with the new value. A waits 2 � t

msg

+ t

loal

,

or until it reeives an aknowledgment from C, and then sends an

aknowledgment to the lient. At this point, either C has learned

of the new value, or a message was lost, or both events ourred. If

A onludes that a message was lost, it periodially retransmits the

value to C (along with all values lost during earlier write operations)

until it reeives an aknowledgment from C. (As in the ase of read

operations, when a lient write request ours at C, it ats like any

other node, sending messages to itself.)

� New value is reeived at C:

C serializes the write requests that it hears about by assigning them

onseutive integer tags. Periodially C broadasts the latest value

and sequene number to all other nodes.

Theorem 4 The modi�ed entralized algorithm is t-Conneted onsistent.

Proof: First, it is lear that in exeutions in whih no messages are lost,

the operations are atomi. An exeution is atomi if every operation ats as

if it is exeuted at a single instant; in this ase, that single instant ours

when C proesses the operation. C serializes the operations, ensuring atomi

onsisteny in exeutions in whih all messages are delivered.

Next, we examine exeutions in whih messages are lost. The partial

order, P is onstruted as follows. Write operations are ordered by the

sequene number assigned by the entral node. Eah read operation is se-

quened after the write operation whose value it returns. It is lear by the

onstrution that the partial order P satis�es riteria 1 and 2 of the de�ni-

tion of t-Conneted onsisteny. As the algorithm handles requests in the

order reeived, riterion 3 is also learly true.

In showing that the partial order respets riterion 4, there are four

ases: write followed by read, write followed by write, read followed by read,

and read followed by write. Let time t be long enough for a write operation

to omplete (and for C to assign a sequene number to the new value), and

for one of the periodi broadasts from C to our.

1. write followed by read

Assume a write ours at A

w

, after whih an interval of time longer

than t passes in whih all messages are delivered. After this, a read

is requested at some node. By the end of the interval, two things

have happened. First, A

w

has noti�ed the entral node of the new

value, and the write operation has been assigned a sequene number.

Seond, the entral node has rebroadast that value (or a later value

in the partial order) to all other nodes during one of the periodi

broadasts. As a result, the read operation does not return an earlier

value, and therefore it must ome after the write in the partial order

P .

2. write followed by write

Assume a write ours at A

w

, after whih an interval of time longer

than t passes in whih all messages are delivered. After this, a write

is requested at some node. As in the previous ase, by the end of the

interval in whih messages are delivered, the entral node has assigned

a sequene number to the write operation at A

w

. As a result, the later

write operation is sequened by the entral node after the �rst write

operation. Therefore the seond write omes after the �rst write in

the partial order P .

3. read followed by read

Assume a read operation ours at B

r

, after whih an interval of time

longer than t passes in whih all messages are delivered. After this, a

read is requested at some node. Let be the write operation whose

value the �rst read operation at B

r

returns. By the end of the inter-

val in whih messages are delivered, the entral node has assigned a

sequene number to , and has broadast the value of (or a later

value in the partial order) to all other nodes. As a result, the seond

read operation does not return a value earlier in the partial order than

 . Therefore the seond read operation does not preede the �rst in

the partial order P .

4. read followed by write

Assume a read operation ours at B

r

, after whih an interval of time

longer than t passes in whih all messages are delivered. After this,

a write is requested at some node. Let be the write operation

whose value the �rst read operation at B

r

returns. By the end of the

interval in whih messages are delivered, the entral node has assigned

a sequene number to , and as a result all write operations beginning

after the interval are serialized after . Therefore the write operation

does not preede the read operation in the partial order P .

Therefore, P satis�es riterion 4 of the de�nition, and this algorithm is

t-Conneted Consistent.

5 Conlusion

In this note, we have shown that it is impossible to reliably provide atomi,

onsistent data when there are partitions in the network. It is feasible,

however, to ahieve any two of the three properties: onsisteny, availability,

and partition tolerane. In an asynhronous model, when no loks are

available, the impossibility result is fairly strong: it is impossible to provide

onsistent data, even allowing stale data to be returned when messages are

lost. However in partially synhronous models it is possible to ahieve a

pratial ompromise between onsisteny and availability. In partiular,

most real-world systems today are fored to settle with returning \most of

the data, most of the time." Formalizing this idea and studying algorithms

for ahieving it is an interesting subjet for future theoretial researh.

Aknowledgments

We thank Eri Brewer for his interesting PODC talk, for providing us with

his talk slides and notes, and for enouraging us in writing this note. We

also thank Charles Leiserson for suggesting this problem and for interesting

and helpful disussions.

Referenes

[1℄ Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Pe-

leg, and R�udiger Reishuk. Ahievable ases in an asynhronous environ-

ment. In 28th Annual Symposium on Foundations of Computer Siene,

pages 337{346, Los Angeles, California, Otober 1987.

[2℄ Eri A. Brewer. Towards robust distributed systems. (Invited Talk)

Priniples of Distributed Computing, Portland, Oregon, July 2000.

[3℄ Maurie P. Herlihy and Jeannette M. Wing. Linearizability: A orret-

ness ondition for onurrent objets. ACM Transations on Program-

ming Languages and Systems, 12(3):463{492, July 1990.

[4℄ Leslie Lamport. On interproess ommuniation { parts I and II. Dis-

tributed Computing, 1(2):77{101, April 1986.

[5℄ Nany Lynh. Distributed Algorithms. Morgan Kaufman, 1996.

