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Abstract

This paper introduces the concept of low-congestion short-
cuts for (near-)planar networks, and demonstrates their
power by using them to obtain near-optimal distributed algo-
rithms for problems such as Minimum Spanning Tree (MST)
or Minimum Cut, in planar networks.

Consider a graph G = (V,E) and a partitioning of V
into subsets of nodes S1, . . . , SN , each inducing a connected
subgraph G[Si]. We define an α-congestion shortcut with
dilation β to be a set of subgraphs H1, . . . , HN ⊆ G, one
for each subset Si, such that

1. For each i ∈ [1, N ], the diameter of the subgraph
G[Si] +Hi is at most β.

2. For each edge e ∈ E, the number of subgraphs G[Si] +
Hi containing e is at most α.

We prove that any partition of a D-diameter planar graph
into individually-connected parts admits an O(D logD)-
congestion shortcut with dilation O(D logD), and we also
present a distributed construction of it in Õ(D) rounds.
We moreover prove these parameters to be near-optimal;
i.e., there are instances in which, unavoidably, max{α, β} =
Ω(D logD

log logD
).

Finally, we use low-congestion shortcuts, and their
efficient distributed construction, to derive Õ(D)-round
distributed algorithms for MST and Min-Cut, in planar
networks. This complexity nearly matches the trivial lower
bound of Ω(D). We remark that this is the first result
bypassing the well-known Ω̃(D+

√
n) existential lower bound

of general graphs (see Peleg and Rubinovich [FOCS’99];
Elkin [STOC’04]; and Das Sarma et al. [STOC’11]) in a
family of graphs of interest.

1 Introduction

This paper introduces low-congestion shortcuts and ex-
hibits their utility by using them to derive near-optimal
distributed algorithms for a number of fundamental net-
work optimization problems.

∗This research was supported in part by the NSF award Dis-
tributed Algorithms for Near Planar Networks (CCF-1527110).

Throughout, we use the standard distributed mes-
sage passing model called CONGEST [Pel00]: the net-
work is abstracted as a graph G = (V,E), with n nodes
and diameter D; communications occur in synchronous
rounds, and per round, O(log n) bits can be sent along
each edge.

1.1 The Motivation for, and Definition of, Low-
Congestion Shortcuts Consider the following sce-
nario, which is a recurring theme throughout distributed
approaches for many network optimization problems:

The graph is partitioned into a number of
disjoint individually-connected parts, and we
need to compute a (typically simple) function
for each part, e.g., the minimum of the values
held by the nodes in the part.

See Figure 1 for a pictorial illustration of this parti-
tion. This scenario typically appears when the algorith-
mic approach works via, often iterations of, merging
solutions of smaller subproblems. This includes various
methods (loosely) based on divide and conquer. There
are many examples, e.g., [GHS83,GKP93,KP95,Elk04a,
DSHK+11, GK13, NS14, Gha14, GKK+15], but perhaps
the most prominent is the 1926 algorithm of Boruvka1

[NMN01] for Minimum Spanning Tree: Starting with
the trivial partition of each node being its own part, in
each iteration, each part computes the minimum-weight
outgoing edge, and adds it to the current partial solu-
tion, making the parts incident on this edge merge. Af-
ter O(log n) iterations, we arrive at the MST.

Typically, since the number of parts can be large, we
need to solve the problems of all parts in parallel. Most
naturally, this would be by solving each part’s problem
using communication only inside the part. However,
this would take a long time as the diameter of these

1We note that, within the distributed literature, this method
is more often called the GHS approach, after Gallagher, Humblet

and Spira who rediscovered it in 1983 [GHS83], and extended it
to asynchronous settings.
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Figure 1: An illustration of the recurring scenario.

parts can be large, much larger than the diameter
D of the graph. It is often hard to enforce small
part-wise diameters as the structure of the parts (i.e.,
subproblems) is usually dictated by the problem itself;
see, e.g., MST.

To overcome this generic issue, we introduce the
notion of low-congestion shortcuts: Intuitively, we want
to augment each part with some extra edges, taken
from the network G, so that we effectively reduce the
diameter of the part. These shortcutting edges are
to be used for communication purposes. To be able
to use these shortcuts without creating communication
bottlenecks, we need to ensure that each edge is not used
in too many shortcuts. We next formalize this intuition:

Definition 1. Given a graph G = (V,E) and a
partition of V into disjoint subsets S1, . . . , SN ⊂
V , each inducing a connected subgraph G[Si], we
define an α-congestion shortcut with dilation β to
be a set of subgraphs H1, . . . , HN ⊂ G, one for
each set Si, such that:
(1) For each i, the diameter of the subgraph

G[Si] +Hi is at most β.
(2) For each edge e ∈ E, the number of subgraphs

G[Si] +Hi containing e is at most α.

As we will see later, given such a low-congestion short-
cut, one can solve the common scenario stated above
in Õ(max{α, β}) rounds, using standard random delay
techniques for pipelining messages.

1.2 Technical Results In general graphs,
there are instances in which, unavoidably,
max{congestion, dilation} = Ω(D +

√
n); see Sec-

tion 1.3. Our key technical contribution is to show the
following result for planar graphs:

Theorem 2. For any planar graph G = (V,E) and
any partition of V into disjoint individually-connected

parts S1, . . . , SN , there exists an O(D logD)-congestion
O(D logD)-dilation shortcut, where D denotes the di-
ameter of G. Moreover, there is a distributed algorithm
that computes such a shortcut in Õ(D) rounds.

We note that the above theorem (partially) extends
to near-planar graphs, to bounded-genus graphs par-
ticularly. To be precise, for graphs that can be
drawn on a genus g surface with no crossing, we get
O((g+1)D logD)-congestion O(D logD)-dilation short-
cuts. However, currently, we do not have the distributed
construction of this extension, solely because we do not
have the respective efficient distributed embedding al-
gorithm.

As we will see, when using shortcuts, the complexity
depends on max{congestion, dilation}, and this is the
key quality measure. In this regard, we show that
Theorem 2 is nearly optimal:

Lemma 3. There is a planar graph G = (V,E)
with diameter D and a partition of V into disjoint
individually-connected parts S1, . . . , SN such that, re-
gardless of the choice of the shortcuts, we will have
max{congestion, dilation} = Ω( D logD

log logD ).

Finally, we use low-congestion shortcuts to prove
the following two end-results:

Theorem 4. For any weighted planar graph G =
(V,E), there is an Õ(D) round distributed MST algo-
rithm.

Theorem 5. For any weighted planar graph G =
(V,E), there is an Õ(D) round distributed algorithm
that computes a (1 + ε) approximation of the minimum
cut. Here, ε is an arbitrarily small positive constant2.

Note that, both of the above algorithms have a near-
optimal complexity as Ω(D) is a trivial and folklore
lower bound for each of the problems.

1.3 The Motivation for (Near-)Planar Net-
works, and Related Work Distributed algorithms
for network optimization problems have a long and rich
history. A first-order summary of the state of the art
is that, for many of the basic problems, including MST
and (1 + ε)-approximations of Min-Cut, Max-Flow, and
Shortest-Paths, the best-known upper bound is Õ(D +

2In reality, we do not need ε to be a constant; in general, the

bound has a O(poly(1/ε)) dependency on ε. For simplicity, in

our notations, we imagine ε being a constant, thus allowing us to
absorb poly(1/ε) into the O() notation. Furthermore, note that,

e.g., in unweighted planar graphs, the min-cut size is an integer

and at most 6 and thus, by choosing ε ≤ 1/7, we get an exact
min-cut algorithm.



√
n), or close to it. See e.g. [KP95,Elk04a,LPS13,GK13,

Nan14,LPS14,CHGK14,NS14,GL14,Gha14,GKK+15].
Furthermore, this round complexity is essentially the
best-possible in general graphs, i.e., there are graphs in
which one cannot do better [PR99,Elk04b,DSHK+11].

In hindsight, one simplistic way of explaining
the Õ(D +

√
n) bound is via shortcuts. In any

graph, one can always achieve low-congestion short-
cuts with max{congestion, dilation} = Θ(D +

√
n).

However unfortunately, this is the best-possible for
general graphs, as can be easily inferred from the
lower bounds of [PR99, Elk04b, DSHK+11]. To obtain
max{congestion, dilation} = O(D +

√
n), simply set the

shortcut Hi = G for each part Si where |Si| ≥
√
n,

and let it be empty for any other part. This en-
sures that each shortcutted part has diameter at most
max{D,

√
n} = O(D +

√
n) and each edge is used in at

most n/
√
n+ 1 = O(

√
n) shortcutted parts. Of course,

this is not all that it takes to get to the algorithms listed
above, but it demonstrates the key tradeoff in quite a
few of them, e.g., [KP95,GK13,NS14,Gha14,GKK+15].
In fact, this simple idea can be turned into a very short
and clean O((D +

√
n) log n) round MST algorithm for

general graphs.
We now go back to the discussion about the

stated far-reaching Ω̃(D +
√
n)-round lower bound

of [PR99, Elk04b, DSHK+11] for general graphs. We
believe that the fact that there is a network in which
one cannot obtain better than Ω̃(D+

√
n) algorithms is

not a strong enough justification for being satisfied with
this complexity in all networks and not looking further.
This point becomes more crucial considering that this
barrier is not only for one problem, but rather for most
of the fundamental network optimization tasks. Hence,
we think that an important step forward is to examine
what can be done when these lower bound graphs are
ruled out, i.e., in special graph families. We focus on
(near-)planar networks, mainly because of two reasons:

(A) Planar graphs have always been a primary graph
family of interest. This is due to their frequent ap-
pearance in practice and because of the richness of the
theoretical/algorithmic aspects found in them. This has
been true since 1735 when Euler introduced graphs as a
mathematical representation to discuss (Eulerian) paths
in the plane, and continues to this day, where each year
about a dozen papers present new, typically algorith-
mic, results on planar or near-planar graphs. Thanks to
this richness and theoretical depth, (near-)planar graphs
even have (algorithmic) courses [KM, Kle, DMST] and
textbooks [KMft,NC88] of their own.

(B) The graph of [PR99, Elk04b, DSHK+11], which
exhibits the powerful Ω̃(D+

√
n) round lower bound, is

Figure 2: The graph of the Ω̃(D +
√
n) lower bound.

extremely simple and is contained in most basic graph
families. The graph is made of a full binary tree with√
n leaves, and Θ(

√
n) paths of length

√
n, where the ith

leaf is connected to the ith nodes of all the paths. See
Figure 2. This graph has a very low sparsity, in fact an
arboricity of 2. One can even make the max degree 3, by
substituting each leaf’s star-connections with a binary
tree, while keeping the lower bound at Ω̃(D+

√
n). One

can see that this graph, or close variants of it, fits within
many other basic graph families as well. The main (non-
trivial3) exception we found that rules out this graph
is the (near-)planar family, and our results show that
indeed one can bypass the lower bound in such networks.

2 Preliminaries

Basic Definitions: Consider a Breadth First Search
(BFS) tree T of the graph G rooted in an arbitrary
node r. Also consider a planar embedding of G, or
more generally, an embedding of G on a genus-g surface,
where g is the genus of graph G. This embedding
determines a clockwise order of the edges incident on
each node v around it, and particularly, it dictates a
clockwise order for the BFS-edges of each node v around
v. With respect to this, we define a left-order and
a right-order among the nodes, as follows: We use a
left-first (or right-first) Depth First Search traversal in
the BFS-tree, labeling each node with a unique left-ID
(resp., right-ID) from {1, 2, . . . , n}. For two nodes u, v,
we say u is to the left (or right) of v if u’s left-ID (resp.,
right-ID) is smaller than that of v. It is easy to see
that u is an ancestor (or descendant) of v if and only if
both the left-ID and the right-ID of u are smaller (resp.,
greater) than those of v. We say a node v is strictly-
right (or strictly-left) of a node u if it is to the right
(resp., left) of it but not an ancestor or descendant of
it. For each part Si, we define the leftmost node (and
the rightmost node) of Si to be the node in Si that has

3The lower bounds do not hold in, e.g., trees, but in trees the
problems under consideration are trivial anyways.



the smallest left-ID (resp., the smallest right-ID). The
lowest common ancestor (LCA) of a part Si is the lowest
common ancestor of its leftmost and rightmost nodes on
the BFS-tree T . Moreover, we define the boundary paths
of Si to be the two paths connecting the BFS-root r to
the leftmost and rightmost nodes of Si.

3 Existence of Shortcuts

In this section, we show that the shortcuts as claimed
in Theorem 2 exist. In the next section, we explain how
to turn this existence proof into an efficient distributed
construction.

We first present a weaker version of our result that
proves the existence of shortcuts with O(D)-congestion
and O(D2)-dilation. Later, by adding some more edges
to these shortcuts, we strengthen this to prove the
existence of shortcuts with O(D logD)-congestion and
O(D logD)-dilation. At the end of this section, we show
in Theorem 12 that these parameters are essentially
optimal.

3.1 Take 1: Shortcuts with Congestion O(D)
and Dilation O(D2): Consider the given partition of
V to disjoint individually-connected parts S1, . . . , SN .
We first define our choice of the shortcut subgraphs Hi,
i.e., we explain what is the set of the shortcut edges
that will be given to each part Si. Then, we prove that
this choice of subgraphs Hi is indeed a shortcut with
congestion O(D) and dilation O(D2).

Designating Shortcuts, Version 1: For each
subgraph G[Si], define the designated shortcut
subgraph Hi to be the subset of the BFS-tree
T edges e that satisfy one of the following two
conditions: (1) e has a BFS-ancestor in Si, (2) e
has a BFS-descendant in Si but e is not on the
boundary paths of Si. We call the latter kind of
BFS-edges encapsulated by Si.

Figure 3 shows some examples of a BFS-edge e
encapsulated by a part Si. Regarding the conditions
stated in the above rule, notice that we have particularly
ruled out using the boundary path edges. It is easy
to see that if one adds (all) the boundary path edges
to the shortcut, then the congestion can grow in an
uncontrolled way, even up to N , the total number of
parts. In the next subsection, we take a closer look
at this issue and see how by adding a carefully chosen
subset of these boundary-path edges, we can reduce the
diameter without increasing the congestion too much.

Analysis: We now prove that these shortcuts have
congestion O(D) and dilationO(D2). We in fact present
a stronger result, showing that if G is embeddable in a

e e e

si
si

si

Figure 3: Examples of encapsulation. The BFS- tree is
depicted with thin blue lines and the thicker green line
indicates the part Si. In the figure on the right side, e
satisfies both of the conditions; it has an ancestor in Si and
it is also encapsulated in Si.

genus-g surface, then congestion is at most O((g+ 1)D)
and dilation is O(D2). Note that a planar graph is
simply a graph embeddable on a genus g = 0 surface,
e.g., a plane or a sphere.

We note that a somewhat different proof of this fact
for the g = 0 case, as well as the related choice of the
shortcuts, was found in collaboration with Shay Mozes.

Lemma 6. Assuming G has genus g, each BFS-edge e
is in at most α = O((g+1)D) of the designated shortcut
sub-graphs Hi.

Proof. Note that a shortcut Hi includes e either because
Si includes a BFS-ancestor of e, or because Si encapsu-
lates e. Since Si-sets are disjoint and the BFS tree has
depth at most D, the number of parts Si that include
an ancestor of e is at most D. Let k be the number
of parts Si that encapsulate e and do not include any
ancestor of e. To complete the proof, we show that
k ≤ O((g + 1)D).

Let us focus on parts Si that encapsulate e but do
not contain an ancestor of e. For each of these parts Si,
define the three e-encapsulations paths of Si as follows:
Considering Figure 3 might be helpful here. The path
going from the root through e to its descendant node
c ∈ Si is the central path of this encapsulation, while the
paths going from the root to the leftmost and rightmost
nodes of Si are called respectively the left and right paths
of the encapsulation.

Imagine a virtual graph Ge with one node repre-
senting each part Si—each part that encapsulates e but
does not contain an ancestor of it—and put a directed
edge from the node representing Si to the node repre-
senting Si′ if set Si intersects at least one of the three
e-encapsulation paths of Si′ . Note that for each part Si,
its three e-encapsulation paths in total include at most
3D nodes. Hence, as the parts are node-disjoint, the in-
degree of each node in Ge is at most 3D. This means, in
the undirected version Ge of Ge, the average degree is at



most 6D. Turan’s theorem (see e.g., [AS04, pages 95-96]
or [BM08, exercise 13.2.10]) shows that an η-node undi-
rected graph with average-degree x has an independent
set of size at least η

x+1 . Thus, if k > (6D + 1)(4g + 1),

we would get that Ge has an independent set of size at
least 4g+ 2. In the next claim, essentially by exhibiting
a K3,4g+3 minor—a minor that is a complete bipartite
graph with the size of the two sides being 3 and 4g+3—
we show that this would be in contradiction with graph
G being embeddable on a genus g surface, thus com-
pleting the proof.

Claim 7. For each BFS-edge e, there cannot be 4g +
2 parts Si, each encapsulating e but not having an
ancestor of it, such that none of them intersects the e-
encapsulation paths of any other.

For the case of planar graphs (g = 0), one can give
a simple intuitive sketch, which is almost a proof: just
pictorially consider the encapsulation possibilities for
one part Si, see the examples given in Figure 3. If we
have another part Sj that encapsulates e but does not
intersect the encapsulation paths of Si, then by Jordan
curve theorem, Sj will have to be in one of the faces
defined by the three paths of Si and part Si itself. One
can see that in each of the cases, at least one of the
encapsulation paths of Sj would cross/intersect Si.

Proof. [Proof of Claim 7] Consider a BFS edge e =
(v, u), where v is the BFS-parent of u. For the sake of
contradiction, suppose that there are 4g+ 2 parts, each
encapsulating e but not having an ancestor of it, such
that none of them intersects the e-encapsulation paths
of any other. We show that, since we have assumed
G to have genus g, this implies K3,4g+3—that is, the
complete bipartite graph with 3 nodes on one side and
4g+3 on the other—can be embedded on a surface with
genus g. This would be in contradiction with known
results (see e.g., [Rin65a,Rin65b]) that show that Ka,b

has genus exactly d (a−2)(b−2)
4 e.

First, contract each part Si into a single node.
Note that since each Si induces a connected subgraph,
this operation does not increase the genus. Moreover,
since none of these parts intersects the e-encapsulation
paths of any other, during these contractions, the e-
encapsulation paths do not get contracted (except for
the endpoints in each part Si being united). Now
contract the BFS-path connecting v to the BFS-root
r, and let us call the resulting node v′. Note that
again, this contraction does not increase the genus as
we contracted a connected induced subgraph. The
middle drawing in Figure 4 shows the result of these
contractions, for one part Si.

e

si

e

si

v

u u

v’C v’Lv’R

e

si

u

v’

Figure 4: The result of the contractions, and then the local
splitting, depicted for one part.

For each part Si, there are three paths that connect
node v′ to set Si and we have the restriction that, in the
already fixed clockwise ordering of the embedding, one
path should be to the left of the edge e (now going from
v′ to u), and one path should be to the right of it, while
the third goes through e. Because of this restriction,
we can locally split node v′ into three copies, v′L, v′C ,
and v′R, respectively for left, central, and right copies,
with connections as follows: we have connected each of
v′L and v′R to v′C , and moreover, the left encapsulation
paths are attached to v′L, the right encapsulation paths
are attached to v′R, and the central encapsulation paths
go through e which is attached to v′C . The right drawing
in Figure 4 shows an example. Note that this operation
does not increase the genus because for any previous
embedding on a genus-g surface (which has the left and
right encapsulation paths respectively on the left and
right of e), after this local splitting process, the old
embedding with this split is an embedding on the same
surface, with no crossing.

Now, consider the complete bipartite minor defined
by side A being the set of contracted nodes representing
parts Si and the node v′C , and side B being three
nodes of V ′L, V ′R and u. Each of the A-side nodes is
connected to all three of the B-side nodes. Hence, this
is a K3,4g+3 minor of a graph embedded on a g-genus
surface. This is a contradiction as the genus of K3,4g+3

is d (3−2)(4g+3−2)
4 e = d 4g+1

4 e = g + 1.

Lemma 8. For each i, the diameter of the sub-graph
G[Si] +Hi is at most β = O(D2).

Proof. Consider two arbitrary nodes v, u ∈ Si. We show
that there is a path in G[Si]+Hi connecting v to u that
has length at most at most β = O(D2).

Consider the union P of boundary paths of Si and
partition Si into classes such that the nodes in each
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Figure 5: (a) An edge e on the tree-path Qw connecting
w to the tree-path P. Edge e must be encapsulated by Si,
which means its is added to Hi. (b) A shortcutted walk
going from v to u is shown in red, which has length at most
O(D2) hops and uses only edges of G[Si] +Hi.

class have the same lowest BFS-ancestor on P. Since P
has at most 2D nodes, we have at most 2D classes.

We first argue that for each node w ∈ Si, each BFS-
edge e on BFS-path Qw that connects w to its lowest
tree-ancestor on P is added to Hi. See Figure 5(a).
This is true because edge e is a BFS-edge that is not
on the boundary paths of Si and it has a descendant
w ∈ Si. Hence, e is encapsulated by Si, which
means e is included in Hi. This implies that each two
nodes in the same class have distance at most 2D in
G[Si] + Hi. Particularly, we can go from one to the
other by traversing up from one of them through the Hi

edges to their common lowest boundary ancestor and
then going down again via Hi edges to the other, in at
most 2D hops.

Now imagine contracting all the Si-nodes of each
class into a single big-node, along with the tree-paths

connecting them to their common boundary ancestor.
Since Si is connected, in this contracted graph, there is
a path traversing G[Si]-edges which goes from the big-
node containing v to the big-node containing u. This
path contains at most 2D big-nodes, simply because the
total number of the big-nodes is at most 2D. Now, we
can take this path back to G[Si] +Hi by expanding the
contractions, where crossing each big-node costs us at
most 2D hops. Overall this is O(D2) hops. Figure 5(b)
shows an example of such a shortcutted path between
v, u ∈ Si. Hence, in G[Si]+Hi, there is a path of length
at most β = O(D2) between any two nodes v, u ∈ Si.

3.2 Take 2: Shortcuts with Congestion
O(D logD) and Dilation O(D logD): Recall that in
the previous section, we did not add the edges on the
BFS boundary paths to the shortcut graphs. This was
particularly because, if one adds all of these, then the
congestion can grow in an uncontrolled way, even grow-
ing up to N , the total number of parts. In this section,
we explain how by adding a carefully chosen subset of
these boundary path edges to the shortcut subgraphs
Hi, we can reduce the dilation to O(D logD), while sac-
rificing only a little bit in the congestion, i.e., increasing
it to O(D logD). In the next subsection, we show that
this trade-off is in fact essentially optimal; that is, there
are instances in which, regardless of the choice of the
shortcuts, achieving a dilation of O(D logD) requires
congestion of Ω(D logD

log logD ).
For each part Si, consider the BFS-path connecting

its leftmost and rightmost nodes. We call a node v
on this path a junction if v is incident on a BFS-edge
encapsulated by Si. See Figure 6(a).

Designating Shortcuts, Version 2: Add to the
shortcut Hi of version 1, stated in Section 3.1,
the set of BFS-edges satisfying the following third
property: (3) Consider an edge e on the BFS-path
P connecting left-most and rightmost nodes of Si
and let u be the first/lowest junction above e in
this path. Let `1 be the tree-distance from e to u
and `2 be the tree-distance from u to the LCA of
Si. See Figure 6(b). Add e to Hi if `2 ≥ `1/2 > 0.

We next show that the addition of these edges does
not increase the congestion beyond O(D logD), while it
does reduce the dilation to O(D logD), as promised.

Lemma 9. Assuming G has genus g, each edge e is
added to O((g + 1)D logD) shortcuts Hi.

Proof. From Lemma 6, we know that the number of
shortcut subgraphs that use e following conditions (1) or
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Figure 6: (a) Red markings on the boundary indicate
the junction nodes, and the smaller black ones indicate
the leftmost, the rightmost, and the LCA nodes. (b)
The parameters `1 and `2 used in the rule for determining
whether to include a boundary edge e or not.

(2) stated in Section 3.1 is at most O(D). To complete
the proof, we show that O(D logD) shortcut subgraphs
Hi use e as an edge on the boundary path of G[si].

For the sake of simplicity, let us divide the sub-
graphs Hi that use e as an edge on their boundary path
into four categories, depending on the (clockwise) order-
ing of the connections around the related first junction:
For each subgraph Hi, consider the related first junction
node u. There are edges going from u to e, from u to its
Si-descendant that is not a descendant of e, and from u
to the LCA. The latter two edges can each be on the left
or right of the edge going to e, in the clockwise ordering
dictated by the fixed embedding. These two possibili-
ties for each of these two edges form four possibilities
in total. We bound the number of subgraphs in each of
these categories separately. The arguments for the four
cases are essentially the same, so we will explain only
one of the cases, say when both connections are to the
right of the edge going to e, as depicted in Figure 6(b).

Consider all the shortcut subgraphs that use e
as their boundary edge, with right-right connections
around the junction, as explained above. Walking from
e upwards on the BFS-path Pe connecting e to the BFS-
root, let w1 be the first LCA, related to these subgraphs.
Define the first segment to be portion of path Pe from e
to w1 (and excluding w itself). Let A1 be the set of all
parts Sj (or equivalently their shortcut subgraphs Hi)
that have their first junction in this segment and use e as
a boundary edge (with right-right connections). Using
an argument similar to Lemma 6, in Lemma 10, we show
that there can be at most O(gD) many such parts. Now
remove the parts in A1. Besides these O(gD) parts, any
other part that uses e as a boundary edge (with right-
right connections) must have its first junction on Pe on
or above w. Define w2 to be the lowest LCA among
the LCAs of the remaining parts, and then define the
second segment be the portion of Pe between w1 and w2,
but excluding w2. Let A2 be the set of parts that have
their first junction in the second segment (and right-
right junction connections). By Lemma 10, we again
see that there can be at most O(gD) such parts. We
can now remove the parts in A2 and repeat. The key
fact is that, the distance from w2 to e must be at least a
3/2 factor larger than the distance from w1 to e. This is
because, the first junction of the part with LCA at w2 is
on or above w1, and the rule for using boundary edges
is that the distance from LCA to first junction must be
at least half of the distance from the first junction to e.
Now, we repeat the same process of defining segments
on the remaining parts. In every repetition, the distance
from e to the new lowest LCA wj grows by a 3/2 factor.
Thus, we have at most O(logD) segments. In each
segment, there are at most O(gD) many parts with their
first junction in that segment. Hence, in total, at most
O(gD logD) parts use edge e as a boundary edge.

Claim 10. For each BFS-edge e and each segment
defined as above on the BFS-path Pe connecting e to the
BFS-root, there are at most O(gD) parts that have their
first junction in this segment and right-right connections
around the first junction.

Proof. The proof is to a large extent similar to that
of Lemma 6. Consider the parts that have the BFS-
edge e added to their shortcut as a boundary edge,
and particularly parts that have right-right connections
around their first junction. Define the three special
paths of each of these parts as follows: (p1) the BFS-
path going from the BFS-root through e to Si, (p2)
the BFS-path going from the BFS-root through the
related first junction (and an encapsulated edge incident
to it) to Si, (p3) the BFS path going from the BFS-
root through the LCA to other side of the boundary to



Si. We show that there cannot be more than 4g + 2
parts such that none of them intersects any of the three
special paths of any other. This is an analogue of Claim
7. From this, by repeating the arguments of Lemma 6,
one can show that the total number of parts using the
BFS-edge e on their boundary, and with first junctions
on the given segment, is at most O((g + 1)D).

This part of the proof is very much similar to Claim
7: Contract each of these parts Si into a single node.
Moreover, let e = (v, u), where v is the parent, and
contract the BFS-path connecting v to the BFS root
into a new node v′. Since the set of parts under
consideration have their first-junction in this segment
but (strictly) before the lowest LCA, and since the
junction connections are right-right, we get that after
the contraction, all the (p3)-paths going through LCA
and the other side of boundary are to the right of
the (p2)-paths going through the first junction, which
themselves are to the right of the (p1)-paths going
through e. Hence, we can again do a local splitting of
v′ into copies v′L, v′C , and v′R, putting connections from
V ′L and v′R to V ′C , and attaching (p2)-paths to V ′L and
(p3)-paths connections to v′R while the edge e, which
goes to u and thus (p1)-paths, is attached to V ′c . This
local split again preserves the embedding on a genus g
surface. Therefore, we have found our k3,4g+3 complete
bipartite minor, where here v′C and parts Si are on one
side and v′R, v′L and u are on the other side. This
completes the proof as it is contradiction with genus
g of the graph G.

Lemma 11. For each part Si, the sub-graph G[Si] +Hi

has diameter at most O(D logD).

Proof. The proof is quite close to Lemma 8, with the
exception that here we will have only O(logD) classes,
hence proving dilation O(D logD).

Consider a part Si and the BFS-path P connecting
its leftmost node to its rightmost node. Walking on P
from the leftmost to the LCA, mark the junction nodes.
Figure 6(a) shows an illustration of the markings. Call
the interval between each two consequent marks a piece.
We show that except for at most O(logD) pieces, all
the edges in the rest of the pieces are added to Hi. This
would mean, if we define classes based on the highest
node on the boundary reachable solely via Hi edges,
there will be at most O(logD) classes. Clearly, the Hi-
distance between each two nodes of the same class is
at most 2D and hence, a repetition of the argument of
Lemma 8 would prove a dilation O(D logD).

To show that there are at most O(logD) boundary
pieces not added to Hi, let us walk on one of the
boundary paths from the LCA towards the leftmost
node. The argument for the right side is similar.

Walking down from LCA, skip the first piece and count
it for free as one of the pieces not added to Hi. For the
jth piece for j ≥ 2, let ej be the lowest edge on this piece.
Note that if ej is added to the shortcut Hi as a boundary
edge, then also all the edges in the jth piece are added
to Hi, as the `1 distance of them is smaller but their `2
is the same. If edge ej is not used in the boundary, we
get that the length of the jth piece must have been more
than 2 times larger than the summations of the lengths
of pieces 1 to j − 1. Hence, walking down from LCA,
every piece not added toHi grows the tree-distance from
LCA by at least a 2 factor. Therefore, there are at most
O(logD) pieces that are not added to Hi.

3.3 Lower Bound, Proving Near-Optimality of
Take 2 In this subsection, we show that the parameters
obtained in the previous subsection are almost optimal.
Particularly, we present a simple planar graph and a
partition of its vertices into individually-connected parts
such that, regardless of the choice of the shortcuts,
we will have max{congestion, dilation} = Ω(D logD

log logD ).
More formally, we show the following:

Theorem 12. (Rephrased Version of Lemma 3) There
is an instance of a planar graph G = (V,E) and a
partition of its vertices into parts S1, S2, . . . , SN , each
inducing a connected subgraph of G, such that regardless
of how the shortcut subgraphs Hi are chosen, if each
G[Si] + Hi has diameter at most D logD

10 , then there is

at least one edge that suffers a congestion of Ω( D logD
log logD ).

Proof. Throughout the construction of this hard in-
stance, we make frequent use of a simple gadget, which
we explain next.

See Figure 7 for a pictorial illustration of the gadget.
The gadget contains D/5 rows, each being one part Si.
Each part is simply a path; it is made of logD segments,
each containing 2D/5 nodes. The boundaries of the
segments in different rows are connected to each other
in a vertical path formation, which we call column, and
the top node in each of these columns has an edge going
out of the gadget box. We later explain where these
connections attach to.

Having defined the gadget, we are now ready for
explaining the whole structure of the hard instance. We
have one path of length D/5 hops at the top. We will
connect many copies of the above gadget to this path.
In fact, the gadgets are divided into Θ( logD

log logD ) levels,
regarding the span of the path that they connect to;
that is, the connections of each level-i gadget are in a
sub-interval of length Θ(logiD). More concretely, for
each level-1 gadget, the related logD connections are
attached to logD consecutive nodes on the path, and we
have about Θ( D

logD ) such level-1 gadgets. In between



the level-1 gadgets, we have the connection points of
the level-2 gadgets, thus each of them having its logD
connections span over a subinterval of length O(log2D)
of the top path, which also means we have Θ( D

logD )
level-2 gadgets. The construction continues in a similar
manner to higher levels, up to level Θ(logD/ log logD),
at which point the connections of a single gadget cover
the whole top path. See Figure 8 which shows a partial
view of the lower bound graph.

First notice that the graph has diameter D, because
the farthest node-pairs are those inside the gadgets and
for each node v in any of the gadgets, we can reach to its
closest column in D/5 hops, and from there we can get
to the top path in another D/5 hops. If we do this for
any pair of nodes v and u, possibly in different gadgets,
we get to the top path after a total of 4D/5 hops, from
two sides, and the top path itself has length D/5 hops.

Notice that each part Si, i.e., each row in a gadget,
has diameter D logD

5 . Hence, if G[Si] + Hi is to have

diameter at most D logD
10 , Hi should have some shortcut

edges. Particularly, one can easily see that going
through the other gadgets does not help and essentially
the only way to shortcut a row Si is to add to Hi

some of column edges of the related gadget and more
importantly, some of the edges of the top path. For a
row Si in a level-j gadget, let v1, v2, . . . , vlogD be the
nodes on the top path that the gadget of Si connects
to. Let us call the interval between each vk and vk+1

a segment. We can see that, for each segment such
that at least one of its edges is not included in Hi, we
lose (at least) an additive D/5 in diameter and in total,
we can afford to not include at most logD/2 segments
in Hi, as the diameter of G[Si] + Hi must be at most
D logD

10 . From this, we get that the shortcut Hi of each
level-1 row Si must use about half of the edges of the
corresponding sub-interval of the top path. Since all
but o(1) fraction of the top path edges are each in sub-
intervals of level-1 gadgets, and thus D/5 rows, we get
that overall the level-1 rows add an average load at least
about D

10 (1−o(1)) to the top path edges. Using a similar
argument, we can see that the average load added to
the top path by each level is at least about D

10 (1−o(1)).

Having Θ( logD
log logD ) levels, we get that the average load

on the top path is at least Θ( D logD
log logD ), which means

at least one of the top path edges has a congestion of
Ω( D logD

log logD ), thus completing the proof.

4 The Algorithmic Aspects of Low-Congestion
Shortcuts

In this section, we explain how to distributedly compute
the low-congestion shortcuts proven to exist in the
previous section, and we also explain the generic method

of using these shortcuts, i.e., how to efficiently route
messages on the shortcutted parts.

Basic Algorithmics: Throughout, we will assume
that the following basics are already computed: a pla-
nar embedding, a BFS-tree T , and a left-first-DFS or-
dering and also a right-first-DFS ordering of it, as de-
scribed in Section 2. Note that the planar embedding
can be computed in O(D log n) rounds, using the dis-
tributed algorithm we presented in the first part of this
project [GH15]. Moreover, the BFS can be easily com-
puted in O(D) rounds and even computing the related
left and right numberings takes O(D) rounds, using
standard techniques: e.g., by computing the number
of descendants of all nodes using an upcast and then
by allocating the related numbering intervals while per-
forming a downcast. Once these are done, let each node
use the tuple (left-ID, right-ID) as its identifier, and in
O(D) additional rounds of a pipelined downcast, make
each node know the identifiers of all its BFS-ancestors.

4.1 Constructing Low-Congestion Shortcuts
We use part-IDs defined as follows: For each part Si,
we define the part-ID of Si to be the tuple (min-left-ID,
min-right-ID), where min-left-ID and min-right-ID are
respectively the smallest left-ID and the smallest right-
ID, among the nodes in part Si. For the purpose of
this subsection, suppose that these part-IDs are already
computed and each node knows the part-ID of its part.
We note that a time-efficient distributed computation
of these part-IDs is a highly non-trivial task itself and
for it, one has to use ideas (implicitly or explicitly) sim-
ilar to low-congestion shortcuts. We will compute them
using a recursive approach, via the help of shortcuts
(of recursively defined smaller parts). This recursive
approach for computing part-IDs is explained later in
Section 4.3. For the sake of this subsection, suppose
that the part-IDs are already computed.

We present some rules for forwarding the part-
IDs such that running these forwarding processes ex-
actly identifies the shortcut edges of each part. In
Section 4.1.1, we explain these forwarding rules and
show that they identify the shortcut edges correctly. In
Section 4.1.2, we explain how to run these forwarding
processes for all the parts concurrently, in O(D log n)
rounds.

4.1.1 Forwarding Rules Recall that an edge gets
added to shortcut Hi because of satisfying one of the
three properties described in Section 3.1 and Section 3.2.
We explain three forwarding processes, corresponding
respectively to these three properties. These three
forwarding processes will be performed one by one, and
in each of these processes, if a part-ID passes through
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a BFS-edge e, then as we will prove edge e actually
satisfies the respective property and thus e gets added
to the shortcut of this part. The forwarding rules are
as follows:

(F1) Downcast part-IDs to all BFS-descendants. This
identifies edges with ancestors in the part.

(F2) Upcast part-IDs as follows: each node v with ID
(lv, rv) forwards the part-ID (lP , rP ) upwards to
its parent iff lv > lP and rv > rP . This identifies
the encapsulated edges.

(F3) Lastly, we identify the boundary edges that are
added to the shortcuts. Each node v that received
a part-ID (lP , rP ) but did not send it up is a
boundary node for this part. As such, it checks
its ancestor-ID vector from itself upwards for the
lowest node u whose ID (lu, ru) satisfies lu < lP and
ru < rP . Node u is the LCA of that part. Then,
v forwards the part-ID downwards the boundary
of this part for bl2/2c steps, where l2 is the hop
distance to the LCA u. To forward along the
boundary, each node v forwards to its child w that
satisfies one of the following two conditions: (1)
rv > rP and w has the largest left-ID lw among

children of v such that lw ≤ lP , (2) lv > lP and
w has the largest right-ID rw among children of v
such that rw ≤ rP . Note that each node knows the
IDs of its children and thus can determine which
child satisfies this property.

Lemma 13. The above forwarding rule is correct. That
is, the part-ID of a part Si goes through a BFS-edge
e if and only if edge e should be added to the shortcut
subgraph Hi of that part.

Proof. The first forwarding process clearly identifies the
BFS-edges that have ancestors in the part. Regarding
the second forwarding process, which is supposed to
identify encapsulated edges, consider a BFS edge e =
(v, u) where u is the parent and v has ID (lv, rv).
For each part Si with part-ID (lP , rP ), edge e is
encasuplated by Si if and only if lv > lP and rv > rP
and v has a descendant in Si. Note that lv > lP and
rv > rP exactly means that v is not on the boundary
path. Suppose that w is the descendant of v in Si.
Then, along the path from w to v, each node has left-
and right-IDs respectively greater than lv and rv, which
also means greater than lP and rP . Hence, the part-ID
(lP , rP ) will be sent up by each of the nodes on this path



and it will reach v and get sent to its parent u. This
means e gets added to the shortcut.

Next, we discuss the case of boundary edges. Notice
that, if in the previous forwarding process, a node v
receives a part-ID but it does not send it up to its parent,
then v is a junction node, and conversely this happens
only for junction nodes. Consider an edge e that should
be in the shortcut of a part Si. Recall that the rule
for including e in the shortcut as a boundary edge is
that the distance from e to the related first junction u
is at most twice the distance from u to the LCA. Since
u is a junction, it will send this part-ID down on the
boundary for bl2/2c steps, where l2 is the hop distance
from u to the LCA. Hence, this part-ID will go through
e implying that e gets added to the shortcut. On the
other hand, since only junction nodes start this down-
forwarding, a BFS-edge e′ gets added to the shortcut (as
a boundary) only if there is a junction above it such that
the distance from that junction to LCA is at least half of
the distance from e to that junction. In this case, even
the first junction above e′ satisfies this condition, which
means e′ is added to the shortcut correctly. This means,
in the last forwarding process, a part-ID goes through
a BFS-edge e if and only if e is one of the boundary
shortcut edges of the related part, completing the proof.

4.1.2 Forwarding Identifiers of All Parts Con-
currently We now explain how to perform these for-
warding processes concurrently for all the parts, in
O(D log n) rounds overall. We perform the three pro-
cesses one by one:

(F1): The forwarding process (F1) can be done
easily for all the parts in O(D) rounds, using a standard
synchronous downcast. Here’s a brief sketch: start the
forwarding of the part-ID of each node that is at depth
i of BFS at round i + 1. Since each node has only one
part-ID, all these downcasts continue down the BFS in
a pipelined fashion and we get the following properties:
the part-ID of the root starts at round 1 and gets to
each leaf after at most D rounds. After that, every one
round, another part-ID arrives. Overall, these mean the
whole process finishes after at most O(D) rounds.

(F2): Here we need to do a bit more work. Notice
that for each edge e, during (F2), each part-ID needs
to go through edge e at most once. Since each edge is
in shortcuts of at most O(D logD) parts, we get that
overall, at most O(D logD) part-IDs need to go through
e. Moreover, the whole (F2) process is an upcast on a
BFS-tree which means, for each part, the process would
take at most D rounds, if the forwarding process of
the part was performed alone. Thus, the question is
to schedule a number of distributed algorithms, each
of which takes at most O(D) rounds if it was alone,

and where O(D logD) messages need to go through
each edge. To perform these upcasts together, we use
the standard random delays technique, first presented
by Leighton, Maggs, Rao [LMR94]. Here, we present
a brief but sufficient sketch. For more details and
a more general treatment of scheduling of distributed
algorithms, see [Gha15]. Break time into phases, each
made of O(log n) contiguous rounds. We will perform
the upcasts in a synchronous fashion at the speed of
one hop per phase. For each part Si, pick a uniformly
random delay δi ∈ [1, D], and delay the start of the
upcast of Si-nodes by δi phases4. As a result, for
each phase and each BFS-edge, the expected number
of part-IDs that are scheduled to go through this edge
in this phase is Θ(logD) = O(log n), which means
w.h.p., no more than Θ(logn) part-IDs are scheduled
to go through this edge in this phase. Hence, all of
them can be delivered to the endpoint of the edge
within the phase, which has room for Θ(log n) part-IDs.
Therefore, all the upcasts of all parts get performed at
a speed of one hop per phase, once they are started.
Since the maximum delay is D phases and each upcast
takes at most D phases, this means the whole (F2)
process finishes after at most O(D) phases, that is, after
O(D log n) rounds.

(F3): The downcast process of (F3) can be done
using the same random delay idea, as we did for (F2).
The only point to note is that, again, for each BFS-edge
e and each part-ID, this part-ID needs to go through e
at most once: particularly the copy of the part-ID that
starts at the lowest junction above e is the first one that
reaches e and it also has the longest allowed hop-count
for traversing downwards after passing e. Hence, there
is no reason to forward the later copies of the same part-
ID that might reach e. Therefore, again, overall at most
O(D logD) messages need to go through each edge, and
each downcast would take O(D) rounds if it was alone.
This means, repeating the same random delays idea, we
can perform the (F3) process in O(D log n) rounds.

4.2 Routing on the Low-Congestion Shortcuts
Here, we explain the generic method we take for using
the low-congestion shortcuts. Consider the scenario
that each node v has an O(log n)-bit value xv and we

4Notice that the same random delays δi is used by all nodes
of the part Si. For this, we need to share randomness between

the nodes. However, as explained in [Gha15], sharing O(log2 n)

bits of randomness is sufficient for all the parts, as then one can
feed these into a psuedo-randomness generator, which produces

poly(n) bits of Θ(logn)-wise independent random bits. This much

of independence is enough for standard Chernoff bounds, as shown
by [SSS95]. Moreover, sharing O(log2 n) bits of randomness can

be done by having the root node sample these bits and broadcast

them, in O(D + logn) rounds.



want to compute the part-wise min. That is, we want
to have each node u know x′u = minv∈S(u) xv where
S(u) indicates the part that contains u. We explain
how to solve this problem in O(D logD logn

log logn ) rounds,
using the shortcuts. We note that the same approach we
describe here can be used for other aggregate functions,
such as max or sum. We will later use this both in the
recursive computation of the part-IDs, and also in the
applications including MST and Min-Cut.

For each part Si, we compute a BFS tree of the
subgraph G[Si] + Hi rooted at the leftmost node of
Si. Note that each of these BFSs will have diameter
O(D logD), because of Theorem 11. To perform all
these BFSs for all the subgraphsG[Si]+Hi concurrently,
we again use the random delays trick. Again, the BFSs
grow at a synchronous speed of one hop per phase,
where each phase now consists of O( logn

log logn ) consecutive
rounds. We delay the start of the BFS of each part Si
by δi phases, where δi is a uniformly random value in
[1, D logD], sampled by the respective BFS-root. Since
by Lemma 9 each edge e is in at most O(D logD) of
subgraphs G[Si] + Hi, the expected number of BFS-
tokens scheduled to go through an edge per phase is
O(1). Using a Chernoff bound, this means, w.h.p, no
more than Θ( logn

log logn ) BFS-tokens need to go through
the edge per phase. Thus, the phase has enough
room for delivering all the scheduled tokens. Therefore,
all the BFSs get performed in parallel, growing at a
speed of one hop per phase. Since each of the BFSs
has diameter O(D logD), and the initial random delay
is at most D logD phases, all finish after at most
O(D logD logn

log logn ) rounds.
Now, to compute the part-wise min, we perform

a convergecast on each of these BFSs, and then a
broadcast/upcast on them. These convergecasts can
be pipelined/scheduled similar to what we did above in
O(D logD logn

log logn ) rounds, and the broadcast afterward
also takes a similar time, using the same approach.
Hence, overall, after O(D logD logn

log logn ) rounds, each

node u knows x′u = minv∈S(u) xv where S(u) indicates
the part that contains u.

4.3 Computing Part-IDs via Recusive Applica-
tions of Shortcuts Recall that in the construction of
shortcuts explained above, we assumed that each part
has a part-ID, defined as the tuple (min-left-ID, min-
right-ID). We noted that a time-efficient distributed
computation of these IDs itself takes an idea similar to
shortcuts. Here, we explain how a recursive approach
can be used to ratify this problem.

Outline and Intuition: Consider the partition P of
V into parts S1, S2, . . . , SN . We have O(log n) phases
of recursion, and in each phase i, we will have a further

partition Pj , where each part of each phase Pj is made
of merging a number of parts of Pj−1. At the start,
we have the trivial partition P0 where each node forms
a part of its own. As we continue, in each phase, we
perform some merges along G-edges that have both of
their endpoints in the same Si. This will be such that
after O(log n) phases, w.h.p, the end result is the same
partition of V into parts S1, S2, . . . , SN that we want.

The merges are done such that each part of the
partition Pj is formed by a star-merge of parts of the
partition Pj−1. That is, each merge is centered on one
of the parts of Pi−1 and this central-part just absorbs
a number of its neighboring parts in the partition Pi−1,
some parts that are made of nodes of the same eventual
part Si.

We will maintain the guarantee that during each
phase j, each node knows the min-left-ID and min-right-
ID of its part in the partition Pj . This is trivial at the
start. Once we have this at the end phase, each node
knows the min-left-ID and min-right-ID of its part in
the partition PΘ(logn). Since w.h.p. this partition is
equal to the main partition P, breaking V into S1, S2,
. . . , SN , we have then arrived at our goal.

The Algorithm for Each Phase: In each phase j,
we do as follows: We first compute the shortcuts for
each part. This can be done in O(D log n) rounds
using the approach explained in Section 4.1.1 and
Section 4.1.2 because by recursion, we know that the
nodes know the min-left-ID and min-right-ID of their
part in partition Pj . Now we make each part select
one of its outgoing-edges which has its other endpoint
in a part of the same eventual-part Si. The outgoing
edges that are to be added can be any arbitrarily chosen
such edge, say the edge that has the smallest id where
the id of edge is defined by concatenating the ids of
its two endpoint nodes. Computing these edges takes
O(D logD logn

log logn ) rounds, using the shortcuts of Pj-
parts and the approach of Section 4.2. Then, each part
suggests the outgoing edge that it selected, for a merge
along this edge.

To have the merges be star-shapes, we do as follows:
We make the root node of each part of partition Pj ,
which we define to be its leftmost node, toss a coin.
We allow only merges centered at parts with a head
coin, and this center-part accepts a suggested merge
that is from a neighboring part that has a tail coin toss.
Using the shortcuts, we make each node know whether
its part has a tail or head, in O(D logD logn

log logn ) rounds.
Furthermore, we make each tail-part send a message
to the node on the other end of its selected suggested
merge-edge. On the receiving end, the node accepts this
merge-edge only if its own part has a head coin, and if it
did so, it sends a message back on the this merge-edge,



announcing the acceptance of the merge.
Finally, we compute the new min-left-ID and min-

right-ID of the new parts as follows: We make the tail-
part nodes send their min-left-ID and min-right-IDs to
the other endpoints of the merge-edges. On the head
parts, which are the centers of merge, each node might
have received the min-left-ID and min-right-ID along
some merge-edges. Now using shortcuts, we make this
center part compute the new min-left-ID and new min-
right-ID of the new potentially bigger part. At the end,
these new IDs get passed along the newly added edges,
and then get broadcast on the tail parts, via another
application of shortcuts of the tail-parts. We now have
performed the merge and also have the guarantee that
each node knows the min-left-ID and min-right-ID of its
part in the new partition Pj+1. Hence, we are ready to
continue with the next level of recursion.

We now argue that O(log n) merge-levels suffice,
w.h.p. In each phase, for each eventual part Si such that
the current partition Pj has Si partitioned into η ≥ 2
parts, η merge-edges get suggested, one by each of these
smaller part. Since each edge can be counted at most
twice, we get that at least η/2 distinct merge-edges are
suggested. Furthermore, each merge suggestion actually
happens with probability 1/4, i.e., when the receiving
end has a head coin and the sending end has a tail
coin. This means, we expect an additive reduction of
Θ(η) in the number of parts of the eventual part Si,
that is, an expected constant factor reduction in the
number of those parts. Hence, after O(log n) phases, the
expected number of remaining parts is 1

poly(n) . Thus,

Markov’s inequality and a union bound over all parts
tell us that with high probability, we have arrived at
the partition Si. Finally, since we have O(log n) levels
and each takes O(D logD logn

log logn ) rounds, overall this

construction takes O(D logD log2 n
log logn ) rounds.

5 Applications

Here, we explain how low-congestion shortcuts allow us
to obtain near-optimal Õ(D) round distributed algo-
rithms for a number of fundamental network optimiza-
tion problems in planar networks.

5.1 Application 1: Minimum Spanning Tree
Here, we explain how to distributedly compute the
Minimum Spanning Tree in Õ(D) rounds, in weighted
planar networks. To solve MST, we simply incorporate
the low-congestion shortcuts into (a variant of) the
classic 1926 approach of Boruvka [NMN01].

The approach is very much similar to what we did
above in Section 4.3. We have O(log n) phases, initially
starting with the trivial partition of each node being its
own part. At each time, each part Si suggests a merge

along the edge going out of Si that has the smallest
weight among such edges. It is well-know that all such
edges belong to MST. We compute these min-weight
outgoing edges, one per part, using the shortcuts, in
O(D logD logn

log logn ) rounds.
We can again restrict the merge shapes to be star

shapes, using the per-part random coin idea explained
in Section 4.3, which allows only merges centered on
head-parts, each accepting incoming suggested merge-
edges from tail-parts. With this idea, we do not
really need to perform the recursion of Section 4.3 for
each level of MST: in reality, the previous levels of
the MST-recursion can be used to recursively maintain
that each node knows the min-left-ID and min-right-
ID of its current part. Again after O(log n) phases, we
reach the MST, w.h.p. Since we have O(log n) levels
and each takes O(D logD logn

log logn ) rounds, overall this

construction takes O(D logD log2 n
log logn ) rounds.

In the journal version of this paper, we will explain
how we can shave a O( logn

log2 logn
) factor from this bound,

using much more detailed approaches. The end bound
then has the nice property that each of the logarithmic
factors in it comes from a reason which is either optimal,
e.g. the logD factor of the shortcuts, or seemingly
hard to improve, e.g., the O(log n) factor of the MST
approach of Boruvka.

5.2 Application 2: Min-Cut Here, we explain our
min-cut algorithm, which achieves the following:

Theorem 14. (Theorem 5 Rephrased) There is an
Õ(D) round distributed algorithm that in any weighted
planar network, computes a (1+ε) approximation of the
min-cut, for any 5 ε > 0.

Basics: As standard (see e.g. [GK13,NS14]), we assume
that the weight w(e) of each edge e is a value in
[1,poly(n)]6. A cut is a bipartition of the vertex set
V into two non-trivial parts S ⊂ V and V \ S and the
size of this cut is the summation of the weights of the
edges between S and V \ S. The objective is to find a
(1 + ε) approximation of the size of the min-cut, which
we denote λ, and also, more importantly, to find a cut
(S′, V \ S′) that has size at most (1 + ε)λ.

5In our asymptotic notations, we assume a constant ε. In
truth, the bound has a poly(1/ε) dependency on ε. Also note
that by setting ε < 1/λ, where λ denotes the min-cut size λ, one

gets an exact algorithm.
6Note that any other range of weight values can be trans-

formed to this range, by normalization and a rounding, in O(D)
rounds, and the rounding would cost at most a 1 + 1/ poly(n)
factor in the quality of the approximation.



5.2.1 Outline, and the High-Level Description
of the Algorithm The overall approach for achieving
Theorem 14 uses a mix of a number of ingredients: the
tree-packing approach of Thorup [Tho01], the sampling
idea of Karger [Kar94], our planar MST algorithm
from previous subsection, some further applications of
our low-congestion shortcuts, and finally some small
sketching type of ideas that we present. We note
that the distributed min-cut (1 + ε)-approximation of
Nanongkai and Su [NS14] also uses the first two of these
ingredients.

Throughout, we assume that we have a 2-
approximation λ̃ of min-cut size λ. This assumption can
be removed, as standard, by trying O(log n) guesses of
the form λ̃ = 2k and outputting the smallest cut found
overall. Having this, we use Karger’s sampling to re-
duce the min-cut size to λ′ = O(log n), while keeping
the min-cut sizes around their expectation. Then, we
greedily pack Õ(λ′7) = poly(log n) minimum spanning
trees, one by one, using the MST algorithm of the previ-
ous subsection. Thorup’s fascinating result shows that,
there is going to be one of these trees T , and specially
one of its edges e∗, that if we remove e∗ from T , the
remaining components define the two sides of a min-
cut. We will check all the trees in our collection, and
moreover, for each tree, we will check all the cuts each
induced by removing one of the tree edges, and we re-
port the smallest cut found. Doing this latter part in
Õ(D) rounds is where we use our new ideas.

Having this brief and very rough explanation, we
now proceed to present the algorithm:

Karger’s Sampling: Although the communications
will be always be in the base graph G, for the following
discussions, imagine that we replace the weighted graph
G with an unweighted multi-graph G′ where each edge
e is replaced by w(e) copies of e. Then, sample each
edge with probability Θ( logn

ε2λ̃
) and let G be the spanning

graph with the sampled edges. By classical results of
Karger [Kar94], we get that w.h.p. G has min-cut size
λ′ = Θ( logn

ε2 ), which is Θ(log n) for constant ε > 0,
and each cut of G has size within 1 ± ε

3 factor of its
expectation. Hence, finding a (1 + ε

3 ) approximation of
the min-cut on G gives an 1+ε approximation (at most)
for the min-cut of G.

Throup’s Tree-Packing: Now we use the tree-
packing idea of Thorup [Tho01] on this graph G. Ini-
tially, define the load of each edge to be 0. Then, for
η = Θ(λ′ 7 log3 n) = Θ(log10 n) iterations, do as fol-
lows: In iteration i, compute the minimum spanning
tree where the weight/cost of each edge is simply its
load, and remember this as tree Ti. Increase the load of
each of the edges in Ti by 1, and go to the next iteration.

To compute each of these MSTs, we simply use the our
Õ(D)-round MST algorithm, presented in the previous
subsection.

By Throup’s results [Tho01], there is one of these
trees Ti and one edge e∗ ∈ Ti such that if we remove e∗

from Ti, we get a min-cut; more precisely, each of the
two connected component of Ti \e∗ is one of the sides of
a min-cut. Hence, to find the min-cut, we will work on
these trees one by one, each time looking for this special
edge e∗, which gives us our desired small cut.

What remains to be solved: When working on each
tree Ti, even if this is the right tree, we still do not know
which of its edges is that special min-cut defining edge
e∗. Hence, we will need to read/approximate the sizes
of all the cuts, each defined by removing a single edge
of Ti, and we will report the smallest of these, overall,
and its associated cut.

Thus, the problem that remains to be solved dis-
tributedly can be recapped as follows: given an arbi-
trary tree T , we want to read the size of each of the
cuts defined by removing an edge of T , and report the
smallest of these cuts (smallest up to 1 + ε/3 factor).

Reading Tree-Edge Induced Cuts: Imagine that
we pick an arbitrary root for T and orient its edges
outwards from the root, i.e., from the parents to the
children. Then, the weight of the cut defined by each
edge e = (u, v), where u is the T -parent of v, is equal
to the total summation of the weights of G-edges that
connect the subtree Tv below v to the rest of the tree,
i.e., T \ Tv. To solve this problem, a basic subroutine
that we will make frequent use of it is subset sums, where
each node u starts with a value xu, and each node v must
learn the sum of the values of itself and its descendants,
yv =

∑
u∈Tv xu. In Section 5.2.2, we explain how to

solve this problem in Õ(D), using our low-congestion
shortcuts. Then, in Section 5.2.3, we explain how by
using poly(log n) iterations of this subroutine, we can
(simultaneously) compute a (1 + ε/3)-approximation of
the sizes of cuts each defined by removing one T -edge,
all in in Õ(D) rounds.

5.2.2 Subtree Sums We first explain how to orient
the tree from the root outwards, in Õ(D) rounds, and
then explain how to use this orientation to compute the
subtree sums, in Õ(D) rounds. Both parts make use of
our low-congestion shortcuts.

Orienting A Tree in Õ(D) Rounds: Let us first see
how to algorithmically orient T such that each node
knows its parent, in Õ(D) rounds. Note that the tree T
might have an arbitrarily large diameter and hence, the
standard approaches such as doing a flooding on T from
the root outwards would not finish in Õ(D) rounds. The



Figure 9: The fragmentation of a tree; each color shows the
fragments of one level. The fragments of the first level, where
each node is trivially its own fragment, are not depicted.

remedy is in using our low-congestion shortcuts.
Consider the following fragment-merging process

which has O(log n) levels: in each level, the tree T
is partitioned into a number of fragments, each being
an induced subtree. In level 1, each node is its own
fragment. From that point on, in each level, each
fragment of level i is formed by merging some of the
fragments of the level i − 1, which are adjacent in
T . More precisely, in each iteration i, each fragment
picks a T -edge e that connects it to one of the other
fragments, and suggests a merge along e. At the same
time, each fragment tosses a coin. Then, each head-
fragment accepts the proposed merge edges coming from
tail-fragments. That is, each merge is a star-formation,
centered at a fragment that has a head in its random
coin toss, and with a number of sides which each had
a tail coin. See Figure 9, which shows the fragments of
three levels. As in the previous subsection, it is easy to
see that after O(log n) such iterations, w.h.p., we have
a single fragment, that is the whole tree T . During
the iterations, each of the fragments might have a large
diameter. Hence, we use our low-congestion shortcuts
and the routing explained in Section 4.2, which allows
each fragment to pick an edge to one of the other
fragments and make this edge, as well as the outcome
of the random coin toss, known to all the nodes of
the fragment, and this happens for all the fragments
together in O(D logD logn

log logn ) rounds, per level.
Now let us take a look at these fragments of the

O(log n) levels, from the last level backwards. In the
very last level, we have (at most) a single star merge.
One of the fragments in this merge contains the root

r of T . For every other fragment, we can easily
find the root of it, using a few iterations of working
on the low-congestion shortcuts. First, identify the
fragment that contains the root. Then, let each of
the nodes in this fragment send a special message to
their neighbors in T . Nodes that received this special
message but were not in that root fragment are actually
root of their own fragment. Via one application of
low-congestion shortcuts, we can make all of the nodes
in these fragments know their fragment root. Since a
star has depth at most 2, with one more repetition of
the same idea, we will reach the point that we have
identified the root of each fragment, in the top level.
Now we remove the T -edges between these fragments,
and recurse, going one level deeper. Since always the
fragments are disjoint parts of the graph, and each
of them induces a connected subgraph, in each level,
we can use low-congestion shortcuts to identify the
root of each fragment, in O(D logD logn

log logn ) rounds.

After repeating this for O(log n) levels, which takes

O(D logD log2 n
log logn ) rounds, we have identified the roots

of the fragments of each of the levels.
Now each node v can easily identify its T -parent as

follows: v considers its lowest-level fragment, say level
i, in which v is not the root of this fragment. Notice
that this level-i fragment is a star-shape merge of some
level i − 1 fragments, one of which contains v as its
root. During the root-identification of level-i fragments,
v received the id of this level-i fragment’s root along an
edge between level-(i−1) fragments, i.e., from one of its
T -neighbors which is in a different level-(i−1) fragment.
This neighbor is in fact the parent of v in T .

Subtree Sums in Õ(D) Rounds: Having the orien-
tation defined above, here we explain an Õ(D) round
algorithm which computes subtree sums. More for-
mally, suppose each node u has a O(log n)-bit value xu.
The objective is to have each node v know the sum-
mation of the values in the T -subtree below it, i.e.,
yv =

∑
u∈Tv xu, where Tv includes v and all its T -

descendants. In the next subsubsection, we explain how
this scheme helps us to find the min-cut.

The first step, which is mainly done for simplicity,
is to redefine the O(log n)-level fragmentation process
such that each level-i fragment is made of merging a
level-(i− 1) fragment and some of its level-(i− 1) frag-
ment children. See Figure 10 for an example. This
fragmentation process is quite similar to the process ex-
plained above, with the exception that here, in itera-
tion i, each fragment suggests the edge to its parent
fragment for the merge and then, the head-fragments
accept all their children tail fragments. Again, we eas-
ily see that after L = O(log n) levels, w.h.p., we reach



Figure 10: A fragmentation where each level-i fragment is
made of merging a level-(i − 1) fragment and some of its
level-(i− 1) fragment children.

a single fragment which includes the whole tree T . As

explained above, this process takes O(D logD log2 n
log logn )

rounds overall, thanks to using low-congestion shortcuts
in each level.

Having these fragments, we are ready to compute
the subtree sum for each node. We will solve the
problem recursively. Note that in level-L, there is only
one fragment, but this is (potentially) made of a level
L − 1 fragment and its level L − 1 children. The first
step is to separate the problems of these level L − 1
fragments, by removing the edges between them. Notice
that the children level L−1 fragments are ready to start
the problem within their own fragment and do not need
to learn any information from the parent level L − 1
fragment. However, this parent fragment needs to learn
some information from the children. Particularly, for
each of the children fragments Fc, there is one node v in
the parent fragment Fp that is the parent of the root of
this child fragment Fc. We need to deliver the total sum
of the values in Fc to node v. If we do this for all such
nodes v in Fp, those nodes can increment their value by
the received amount and afterwards drop the T -edge to
Fc. At that point, the problem would be to solve the
subtree sum within each level L − 1 fragment, which
means we have progressed one recursion level, and we
can continue to solve the problem recursively now, for
L = O(log n) recursion levels.

To compute the sum of the values in each of the
(children) level L− 1 fragments, so that we can deliver
it to v ∈ Fp, we use another recursion, now going
bottom-top, i.e., from level 1 to level L − 1: That is,
we walk through these O(log n) levels, and keep the

variant that at each point, the root of each fragment
knows the summation of the values in that fragment.
At the start, this is trivially satisfied as each level-
1 fragment, which is simply a node, knows its own
value. In level i ≥ 2, each level-i fragment is formed
by merging one level-(i − 1) fragment with some of
its level-(i − 1) fragment children. Each of the roots
of these children fragments knows the total sum of its
own fragment. They send these values to their parents,
in one round. At this point, we have all the values
in nodes of the parent level-(i − 1) fragment. Using
a convergecast on the BFS of the shortcutted version
of these parent fragments, similar to the approach
explained in Section 4.2, in O(D logD logn

log logn ) rounds,
we can gather the summation of these values at the root
of the parent level-(i− 1) fragment. Then, that parent
adds the value of its own level-(i − 1) fragment to this
sum and remembers the result as the sum of its level-i
fragment. After O(log n) repetitions of all the L − 1
levels, each level L − 1 fragment root knows the total
sum of its fragment. Hence, as described above, each of
these can report the value to its parent node, which is in
the parent level L− 1 fragment, and then we are ready
for the higher-level top-bottom recursion to subset sum
problems confined to level L− 1 fragments.

Notice that we are able to use low-congestion short-
cut throughout all of these recursions because the pa-
rameters of the shortcuts do not depend on how many
parts there are, and only require that the parts are dis-
joint and each part induces a connected subgraph, and
these two properties are clearly satisfied for the frag-
ments of each level. Hence, after O(log n) levels of the
top-bottom recursion as described above, each of which
contains an O(log n) level bottom-top recursion, each
node v knows its subtree sum yv =

∑
u∈Tv xu.

5.2.3 Approximating Tree-Edge Induced Cuts
We are now ready to explain the approach we use for
approximating the sizes of the cuts each defined by
removing one T -edge e from T . This uses the subtree
sum subroutine presented in the previous subsubsection,
and a small sketching type of idea.

Let us focus on just one of these cuts; as we will
see later, the proposed solution solves the problem for
all these cuts simultaneously. Consider one T -edge
e = (v, u) and suppose that u is the parent of v. Let us
say we want to see if the size of the cut (Tv, V \ Tv) is
larger than some threshold τ = (1 + ε′)k or not, where
ε′ = ε/3. Checking the cut versus the O(1/ε) many
thresholds of the form (1 + ε′)k that are within a 2-
factor of our guesstimate λ̃ of λ will suffice to get a
(1 + ε′) approximation of the size of the cut.

To compare the cut (Tv, V \ Tv) versus threshold



τ , what we do is based on repetitions of a simple
randomized experiment. Each experiment is as follows:
Mark each G-edge as active with probability 1− 2−

1
τ 7,

and as inactice otherwise. Now for each active edge e,
this edge contributes a ±1 to the value of its endpoints,
as follows: randomly select one of the endpoints of the
active edge e, assign a +1 to this endpoint, and a −1 to
the other endpoint. Define the value xw of each node w
to be the summation of all the values contributed to w
by the active edges incident on w.

Now let us take a look at the subtree sum yv =∑
w∈Tv xw, where v is the child in the cut-defining T -

edge e under consideration. Each G-edge that has both
of its endpoints in Tv does not contribute anything to
yv as, either it is inactive, or the +1 and −1 values of
its contributions are both in the subtree Tv and thus
get canceled out. This is also clearly true for edges with
both their endpoints in T \ Tv. Hence, the subtree sum
yv is simply the summation of the ±1 values coming
from active edges with exactly one endpoint in Tv. Our
indicator random variable for comparing the cut-size
(Tv, V \Tv) versus threshold τ is whether yv = 0 or not.
If the number of G-edges in the cut (Tv, V \Tv) is smaller
than τ(1−ε′), then we can see that, the probability that
there is at least one active edge in (Tv, V \Tv) is at most
0.5−ε′/10. On the other hand, if the cut size is at least
τ(1+ε′), then the same probability is at least 0.5+ε′/10.

The above is already the distinguisher that we
desired; but we still need to work a bit more. Note
that even if the set of active edges across the cut is
non-empty, it is still possible that we get unlucky and
the contributions of the (single) Tv-endpoints of these
active cut-edges sum up to 0. However, this is easy to
fix. For each random experiment defined as above, we
repeat b = Θ(log(1/ε)) sub-experiments: Throughout
each experiment, which has b sub-experiments, we keep
the set of active edges the same, but in each sub-
experiment, we re-sample the ±1 contributions to the
endpoints. That is, in each sub-experiment, using fresh
randomness, we determine which end of each active edge
gets a +1 and which endpoint gets a −1.

If the set of active cut-edges in an experiment is
non-empty, in each of these sub-experiments, yv 6= 0
with probability at least 1/2. To see why, suppose
we expose the randomness of the ± contributions one
by one and just consider the last cut active edge that
exposes its ±1 contribution. Regardless of the outcome
of the previous such edges, there is at least a 1/2 chance
that because of the randomness of this last edge, the
sum becomes nonzero. We conclude that the probability

7We note that this is roughly equal to 1
τ

, but this special
formula will simplify the calculations.

that, even though the set of active cut-edges in an
experiment is nonempty, all of its sub-experiments show
yv = 0 is at most (1/2)b � ε′/20. Hence, overall, if
τ(1 + ε′), the experiment will show yv 6= 0, in at least
one of its sub-experiments, with probability at least
0.5 + ε′/10− ε′/20 ≥ 0.5 + ε′/20.

Hence, by Hoeffding’s bound, we get that Θ( logn
ε2 )

iterations of this experiment suffice for a high probabil-
ity distinguisher. More precisely, we simply repeat the
above experiment for Θ( logn

ε2 ) iterations, and check if
the majority of the experiments are showing a nonzero
yv (in at least one of their sub-experiments) or not. This
w.h.p distinguishes the case where the cut size is greater
than τ(1+ε′) from the case that the cut size is less than
τ(1− ε′). Doing this for the O(1/ε) many thresholds of
the form τ = (1 + ε′)k that are within a 2-factor of our
guesstimate λ̃ of λ suffices to get a (1 + ε′) approxima-
tion of the cut.

Finally, notice that, to run the above process for all
the cuts defined each by removing a single T -edge e, all
that we need to do is as follows: sample the active edges
and their ±1 endpoint contributions and then compute
the subtree sums yv for all the nodes v of T . The
former can be done locally for each edge, say by the
larger-ID endpoint of the edges picking these random
values, and for the latter part, we already saw how to
compute subtree sums for all nodes in Õ(D) rounds,
using the low-congestion shortcuts. This concludes
the description of our Õ(D) round min-cut (1 + ε)-
approximation algorithm for planar networks.
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