Distributed Algorithms for Planar Networks I:
Planar Embedding

Mohsen Ghaffari
MIT
ghaffari@mit.edu

ABSTRACT

This paper presents the first (non-trivial) distributed planar
embedding algorithm. We consider this a crucial first step in
a broader program to design efficient distributed algorithms
for planar networks.

We work in the standard distributed model in which nodes
can send an O(log n)-bit message to each of their neighbors
per round. In a planar network, with n nodes and diam-
eter D, our deterministic planar embedding algorithm uses
O(D-min{logn, D}) rounds to compute a combinatorial pla-
nar embedding, which consists of each node knowing the
clockwise order of its incident edges in a fixed planar draw-
ing. The complexity of our algorithm is near-optimal and
matches the trivial lower bound of (D) up to a log n factor.
No algorithm outperforming the trivial round complexity of
O(n) was known prior to this work.

1. INTRODUCTION

In this paper, which is a part of a broader effort to extend
the algorithmic theory of planar graphs to the distributed
realm, we present the first (non-trivial) distributed planar
embedding algorithm:

Theorem 1.1. There is a deterministic planar em-
bedding algorithm which on any planar network G =
(V, E), with n nodes and diameter D, computes a com-
binatorial planar embedding in O(D - min{logn, D})
rounds.

In this theorem and throughout the paper, we use the stan-
dard distributed message passing model called CONGEST
[Pel00], where communications occur in synchronous round
and per round, an O(logn)-bit message can be sent along
each edge. We note that the complexity of the algorithm is

This research was supported in part by the NSF award

Distributed Algorithms for Near Planar Networks (CCF-
1527110) and the NSF grant CCF-BSF:Coding for Dis-
tributed Computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PODC’16, July 25-28, 2016, Chicago, IL, USA
© 2016 ACM. ISBN 978-1-4503-3964-3/16/07. .. $15.00
DOI: http://dx.doi.org/10.1145/2933057.2933109

Bernhard Haeupler
CMU
haeupler@cs.cmu.edu

near-optimal and matches the trivial (folklore) lower bound*
of Q(D) up to a logn factor. No algorithm outperforming
the trivial® round complexity of O(n) was known prior to
this work.

As we discuss later, this algorithm is a crucial first step
in designing efficient distributed algorithms for global net-
work optimization problems in planar networks. Generally,
it can be viewed as the first distributed counterpart to the
classic centralized planar embedding algorithm of Hopcroft
and Tarjan [HT74], which plays a key role in essentially all
planar graph algorithms. Our distributed planar embedding
particularly is used, in a black-box manner, in the result re-
ported in the other part of this project [GH16]: those results
particularly compute minimum spanning tree and minimum
cut in O(D) rounds, in planar networks.

1.1 Motivations

General Interest in (Near-)Planar Networks: Planar
graphs have always been a primary graph family of interest,
since the very beginning of graph theory in Euler’s 1735
Seven Bridges of Konigsberg paper. This interest has even
led to courses [KM,Kle, DMST] and textbooks [KMft,NC88]
dedicated solely to planar and near-planar graphs. This vast
interest is because of the natural and frequent occurrence
of (near-)planar structures in reality, and perhaps more so
due to the rich theoretical aspects found in them. For most
network optimizations, much better centralized algorithms
are known for (near-) planar graphs, often requiring quite
deep ideas; see [DMST,]

Unfortunately, almost nothing is known about how dis-
tributed algorithms can utilize planarity for (global) net-
work optimization problems such as minimum spanning tree,
shortest paths, min-cut, or max-flow. This gets us to an-
other motive, peculiar to distributed computation:

Further Motivation for Distributed Study of Planar
Networks: For many basic network optimization problems,
including those listed above, Q(D + /n) is a round com-
plexity lower bound for any distributed algorithm in general
graphs [PR99, Elk04b, DSHK " 11], and this even holds for

!Consider the 4-node complete graph K4 and replace each
edge with a ©(D) long path. In any planar embedding,
degree-3 nodes must output consistent clockwise ordering
of their edges. This requires coordination between nodes
that are ©(D) hops apart, thus proving that, even with un-
bounded message sizes, (D) rounds are needed.

2Note that any graph problem can be solved in O(m) rounds
in the CONGEST model, simply by gathering the whole net-
work topology and solving the problem locally, and in planar
graphs, this is O(m) = O(n) rounds.

http://dx.doi.org/10.1145/2933057.2933109
http://courses.csail.mit.edu/6.889/fall11/lectures/video/L01_720p.mp4

any non-trivial approximation. Although more and more
algorithms are known to achieve or get close to this bound,
for various problems (see e.g., [KP95, Elk04a, LPS13, GK13,
Nan14,LPS14,CHGK14,NS14,GL14,Ghal4,GKK*15]), this
now well-known barrier is becoming somewhat of plateau.
We believe that it is thus important to examine what can be
achieved when these lower bound graphs are ruled out, i.e.,
in special graph families. However, the lower bound graphs
are extremely simple and fit within many basic graph fami-
lies: particularly, they are everywhere sparse, with arboricity
2, and can be even made to have maximum degree 3. Planar
(or near-planar) graphs seem to be the main natural graph
family that rules out these (D + 1/n) lower bound graphs.

Motivation for Planar Embedding: Computing a pla-
nar embedding is almost always the first algorithmic step,
as it makes the planar structure accessible/manageable for
algorithms. See e.g. step 1 in the planar separator of Lipton
and Tarjan [LT79, Section 3], which itself is a base for many
of the planar graph algorithms. In the centralized setting,
it is easy to assume that the embedding is already available,
thanks to the celebrated O(n) algorithm of Hopcroft and
Tarjan [HT74].

We think that our distributed planar embedding will prob-
ably play an analogous role, especially because it has an
O(D) complexity, which is close to the trivial Q(D) lower
bound and should typically get dominated by the complex-
ity of the other algorithmic parts. Particularly, in the other
part of this project [GH16], we make (black-box) usage of
this planar embedding to give near-optimal distributed algo-
rithms for a number of fundamental network optimization
problems including minimum spanning tree and minimum
cut. These algorithms achieve a complexity of O(D) in pla-
nar networks, thus bypassing the Q(D + 1/n) lower bound
of general graphs [DSHK " 11].

1.2 Our Technical Contributions, in Contrast
with Centralized Algorithms

Theorem 1.1 borrows two ideas from (some of) its central-
ized /parallel counterparts [LEC66, KR88,BM04,HT08]: (A)
Gradually adding more nodes, while maintaining the em-
bedding, and (B) using (essentially) biconnected component
decompositions to keep track of all the partial embeddings
of the already added nodes. The former is inspired by the
vertez addition method [LEC66], but we will need a quite
different framework, as discussed in Sections 3 and 4, be-
cause for instance we cannot afford to add nodes one by one.
The latter is where the PQ-trees data structures [BL76] are
used in centralized /parallel algorithms. We do not use these
data structures per se, but we have to deal with many other
communication related issues, a few of which have a flavor
similar to those faced in implementations of PQ-trees. Gen-
erally, there are major differences in the challenging aspects
of the centralized algorithms and Theorem 1.1. A partial
reasoning is as follows:

Computation vs. Communication: The core matter in
centralized planarity tests is computational efficiency; this
particularly takes special data structures, which is where
much of their technicalities lie in. On the other hand, The-
orem 1.1 is a statement mainly about communication. Note
that in the CONGEST model, communication is restricted

but nodes have unbounded computational power®. In this
regard, Theorem 1.1 implies something information theo-
retic: While it is easy to show cases in which a node must
exchange information with up to ©(n) many other nodes
that are ©(D) hops far way, Theorem 1.1 implies, quite
surprisingly, that it is possible to summarize/compress and
route/communicate this information such that (I) no pair
of adjacent nodes needs to exchange @(D) bits, and (II) no
information needs to be routed along paths (much) longer
than the necessary distance of D.

We hope that, besides the distributed algorithms made
possible by Theorem 1.1, the study of planar networks from
the communication centered perspective of distributed com-
puting will also lead to new structural insights®, similar to
the success of the computationally centered studies.

The Novelties in Our Approach: On a more concrete
level, to obtain our distributed embedding algorithm, we use
a number of seemingly novel ideas. A sampling includes:

e In Section 3 we extend the vertex addition framework
significantly, such that there is enough flexibility to not
just treat the parallel addition of constraints but also
to keep the diameter of any partial embedding small.
The latter is vital in order to operate distributedly on
these partial embeddings in an efficient manner. Our
generalized framework is quite clean and we expect it
to be useful on its own, beyond this work.

e In Section 4, we present a recursive embedding or-
der, which forms the backbone of our algorithm. This
order is very different from prior approaches such as
DFS-orderings or s-t orderings used in [LECG6, KRS8,
BMO04, HT08]. This, too, is necessary mainly to guar-
antee low-diameter sub-problems, a requirement fairly
unique to the distributed setting.

e Our embedding algorithm also contains two new dis-
tributed symmetry breaking routines. In particular,
in Theorem 5.3 we give an algorithm that can be ex-
tended to give a deterministic ©(log™ n) algorithm which,
for any (outer-)planar graph G, computes an indepen-
dent vertex set in the line graph L(G) that is also
dominating in L(G)?. In Section 7.1.3 of the full ver-
sion, we furthermore give a distributed deterministic
algorithm which allows every vertex in an everywhere
sparse graph to learn the graph induced by its neigh-
borhood in only O(1)-rounds. This is used to compute
a low arboricity orientation. This symmetry breaking
algorithm uses ideas from coding theory and Slepian-
Wolf style distributed source coding to achieve this
communication efficiency. To our knowledge this is
the first time that these tools from coding and infor-
mation theory have been used in distributed symmetry
breaking.

e Achieving a (near) optimal communication efficiency
throughout the algorithm also leads to many other
challenges and new solutions that are not as easy to
recap. The need for a compressed variant of PQ-trees

3Although, we note that in our algorithm, they will be re-
quired to perform at most poly(n) computations.
4Perhaps, the existence of low-congestion shortcuts for pla-
nar graphs, which we prove in the subsequent work, could
already be considered as a step in this direction.

that summarizes only essential degrees of freedom is
one such example (see Section 7.1.4 of the full version).

In our presentation, we have tried to give one modular top-
down description, with clean interfaces and levels of abstrac-
tion, and with many pictorial illustrations. We hope that
this will help in understanding the many details involved in
making the algorithm work in the end.

2. SOME PRELIMINARIES

Planar Embeddings: A geometric embedding of a graph
G = (V, E) is a drawing of it on a plane in which any node
maps to a point and any edge maps to a curve that connects
the points associated with the two vertices it is adjacent to.
The geometric embedding is planar if no two curves are in-
tersecting. Given a planar network, our objective is to find a
combinatorial planar embedding of the network in the format
of a rotation system, which for each vertex v determines the
the clockwise cyclic ordering of edges incident on v around v,
where these cyclic orders are equal to those in one fixed geo-
metric planar embedding. By a result of Edmonds [Edm60],
it is known that the geometric/topological and the combi-
natorial definitions are equivalent. Throughout the paper,
we are concerned with only simple graphs G = (V| E), that
is, G does not have parallel edges or self-loops.

Distributed Input and Output Format in Planar Em-
bedding: The input is that each vertex has a unique iden-
tifier and at the start of the execution, each vertex learns
the ids of its neighbors. This is the only knowledge initially
given to the vertices. When we say a combinatorial planar
embedding is computed in a distributed manner, the output
format is that each vertex must learn the clockwise ordering
of its own edges around itself, in this particular embedding.

Note that in O(D) rounds, nodes can easily compute both
the number of nodes n and a 2-approximation of D, using
a BFS. Thus, these will be assumed known throughout the
paper.

3. GENERAL ALGORITHMIC PLANARITY
FRAMEWORK

At any stage, our planarity algorithm maintains a parti-
tioning P = {Py, Pa,..., Py} of the set of vertices V, i.e.,
Vi#j: PPNP;=0and J,P =V. We call an edge
e = {u,v} embedded if both endpoints are in the same part
P;, and half-embedded otherwise. Initially each vertex forms
its own part and all edges are half-embedded.

We always maintain that each part induces a connected
subgraph of GG. Furthermore, we call a part P; trivial if it
induces a tree. Throughout the embedding algorithm, our
partitioning will preserve the following safety-property:

Definition 3.1. (Safety Property) A partition of the ver-
tices V into connected parts Py, Pa, . .., Py is safe if and only
if for every non-trivial part P; the subgraph induced by V'\ P;
is connected.

The important insight that motivates this safety property
is that it guarantees that in any planar embedding, the half-
embedded edges of any part P; have to lie in a single face
(with respect to the internal embedding of P;). It is often
helpful to picture this face as the outside face. See Figure 1.
Furthermore, whether or not a partial embedding for a part

P; can be extended to a global planar embedding depends
only on the cyclic order of the half-embedded edges around
this face. Therefore, to find a planar embedding (or also
for a planarity test), all that is needed is to keep track of
all possible cyclic orders of half-embedded edges of P; that
have a corresponding planar embedding of P;. We call this
set of cyclic orders the interface of P;.

While there can be a large number of possible cyclic or-
ders, they have a nice structure that is intimately connected
to the bi-connected component decomposition of the sub-
graph induced by P;. In particular, while each bi-connected
component can have many (internal) combinatorial embed-
dings, its interface—that is, the cyclic order of the vertices
connecting to half-embedded edges—is fixed and is always
the same up to a flip (reversal). See Figure 2. For each cut-
vertex, on the other hand, there is no restrictions on how
the bi-connected components it connects to are arranged,
as long as no two components that lead to a half-embedded
edge are enclosed in each other. See Figure 3.

These observations can be used to fully characterize all
degrees of freedom in the interface of a part: Given a com-
binatorial embedding of P; with half-embedded edges on the
outer face, one can obtain all cyclic orders of these edges in
the interface by, successive steps of, flipping a bi-connected
component or permuting the order of bi-connected compo-
nents around a cut-vertex. See Figure 4.

Observation 3.2. The interface for a part P; is uniquely
identified by the bi-connected component decomposition of
P, and the fized cyclic order interface of the bi-connected
components.

Hence, throughout the planarity algorithm, for each part,
we simply need to keep track of the biconnected component
decomposition of it along with one embedding for each of
the bi-connected components. We use the straightforward
distributed representation of this information:

Distributed Representation of Biconnected Decom-
position: Each biconnected component has an ID, which
will simply be equal to the smallest edge ID among the edges
in the component®. Each vertex v knows the IDs of all the
biconnected components v it belongs to. Note that v is a cut-
vertex if and only if it belongs to two or more biconnected
components, and hence this way, v also knows if it is a cut-
vertex. Moreover, for each pair of neighboring vertices u and
v there is always exactly one biconnected component that
includes both v and u. Every vertex knows for each of its
neighbors which component this is. Finally, for each bicon-
nected component that includes v, vertex v knows a linear
order of all its neighbors u that are in the same component.
This order is consistent with a fixed planar embedding of the
biconnected component. This fully describes the input and
output format of partial embeddings used in our algorithm
and its subroutines.

4. ALGORITHM OUTLINE

In this section, we present the outline of our distributed
embedding algorithm. In later sections, we then fill in the
concrete details of this outline.

Our general strategy for distributed embedding is to use
divide and conquer. There are a number of important is-

®The edge-ID of an edge e = {u,v} is equal to ID(e) =
(ID(u),ID(v)) where w is such that ID(u) < ID(v).

Figure 1: (a) A planar embedding of three parts with the half-embedded edges between them. In the planar embedding of each part, all
half-embedded edges (more formally all nodes incident on half-embedded edges) lie in one face, i.e., the outside face, in regards to the
embedding of the part itself. (b) For one of the parts Pi, the rest of the graph, that is G \ Py, is contracted into a single node. Note
that these contractions do not change the order of the vertices adjacent to half-embedded edges of P; around P;.

o © ®
® e
® ®
) o ®
o © o ©
o ¥ o °®

(b)

Figure 2: Two different planar drawings of one bi-connected component. Both drawings lead to the same external cyclic order of the
vertices adjacent to half-embedded edges but cyclic orders of the edges around some vertices are different, and even the set of vertices

appearing on the outside face are different.

sues that need to be taken into account while instantiating
this divide and conquer. We next describe these issues and
provide some intuition for each of them.

Considerations when using Divide and Conquer: In
the divide and conquer method, we will partition the vertex
set into a number of disjoint parts Pi to Py, find (a succinct
representation of) all possible embeddings of each of the
parts, and then merge these into (a succinct representation
of) all possible embeddings for the union of the parts.

For this approach to be correct, we need the partition to
satisfy the safety property presented in Theorem 3.1. That
is, removing each non-trivial part should leave a connected
subgraph. Moreover, there are a number of properties that
we need due to efficiency considerations: Since the parts
are disjoint, we will be able to run distributed algorithms in
different parts in parallel. Hence, the overall complexity is
determined by the depth of the recursion and the time com-
plexity of each “divide” and “merge”. Regarding the first pa-
rameter, we would like to have a small recursion depth—e.g.,

O(log n). Furthermore, since we want to run distributed al-
gorithms in each of the parts, it is vital that each of the parts
has a low diameter, ideally a diameter of O(D). Finally, the
division should be such that, we should be able to compute
the division fast—i.e., in O(D) time—and more crucially, we
should be able to perform the merge step, which puts the
partial embeddings of the parts together, distributedly and
efficiently—i.e., also in O(D) time.

To recap, we require the partition to: (1) satisfy the safety
property of Theorem 3.1; (2) have low recursion depth, ide-
ally O(logn); (3) lead to parts each with induced diameter
O(D); (4) admit efficient O(D) time merging of the partial
embeddings of the parts.

We next describe our partitioning method and explain
why it satisfies these properties.

Our Approach: Our algorithm first picks a vertex s* ar-
bitrarily as the starting point of the embedding and marks
it for being on the outside face of the embedding of G. This
can be for instance the vertex with the largest ID, which can

(a)

(b)

Figure 3: A cut-vertex (black) and the bi-connected components adjacent to it (colored blue, green, and orange). The biconnected
components can have any order around the cut-vertex, but if we ignore the biconnected components that do not have a half-embedded
edge, the edges of each other bi-connected component must appear consecutively in the cyclic order around the cut-vertex. That is, a
component that leads to a half-embedded edge cannot be enclosed in another.

be computed in O(D) rounds. We then compute a BFS T’
rooted at this vertex and we work with this BFS throughout
the algorithm. For each vertex v, let T, be the subtree of T'
induced by v and its descendants.

In each recursion step, we have a subgraph H of G, which
is induced by the T-subtree T, rooted at a vertex s. Fur-
thermore, we have a number of half-embedded edges each
with only one endpoint in H, that is, these half-embedded
edges go out from H to G\ H. We want to compute all the
possible cyclic orderings of the half-embedded edges around
H, along with an embedding of H for each of these orders.
We next explain how we partition this problem:

The Partitioning: We find a vertex v € T such that
when we remove v from T, each of the remaining 7T-
components has size at most 2|7s|/3. Note that such a
vertex v always exists and furthermore, it can be com-
puted distributedly in O(d) time where d = depth(T5).
Define part Py to be the unique path in 7 connecting
s and v. Let vi,...,vr be the vertices in 75 that are
Ts-adjacent to Py. Respectively, define Pi,..., Py to
be the vertex subsets where each P; includes the set of
all Ts-vertices for which the Ts-path to Py goes through
v;. See Figure 5, which shows a pictorial example.

Analysis: We next explain why this partition satisfies prop-
erties (1) to (3) stated above. Explaining property (4)—i.e.,
how we can perform the merges in O(D) rounds—will be
the challenging part and the topic of the next sections.

Lemma 4.1. The partition with parts Po, P1, Pa, ..., Py, G\
H is a safe partition.

Proof. First notice that P, is a trivial part because the sub-
graph of G induced by the Py-vertices only includes the edges
of the BFS-tree path connecting s to v and no other edge.
That is, any extra edge would be in contradiction with the
definition of a BFS. For each of the parts Pi,..., Py, G\ H,
removing this part leaves a connected graph because the
other parts are connected via Py. Thus, the safety property
is satisfied. O

We note that similarly, this safety property also holds
throughout the recursions. More concretely, consider the
partition that happens on P; when we have the recursive call

of embedding P; and let the related parts be Pio, P11, Pi2, ..., Pig.

Then it is true that for each nontrivial part P;; where i > 1,
subgraph G \ Pi; is connected. This is because, G \ P; is
connected and it includes Py, and moreover for any j > 1,
subgraph Pi; is connected to Pip which itself is connected
to P, 0-

Properties (2) and (3) are easy to establish:

Lemma 4.2. FEach part P; induces a subgraph with diameter
at most depth(Ts) — 1 and contains at most 2|Ts|/3 vertices.

Lemma 4.3. The recursion depth is at most min{O(logn), D}.
Thus, assuming each level can be performed in O(D) rounds,
the overall round complexity is O(min{Dlogn, D*}).

In the next sections, we talk about how we perform the
merging of the partial embeddings of parts Py and P; to Pj.

S. MERGING PARTS: OUTLINE AND SUB-

ROUTINE DESCRIPTIONS
In this section, we give more details on how the algorithm
outlined in the previous section merges the parts Po, Pi,. .., Pk

in a recursive call. In particular, in Section 5.1 we first
explain why essentially any sequence of merges that does
not involve Py is safe. In Section 5.2 we then describe a
number of merging patterns which we call pairwise merge,
star merge, vertexr coordinated merge, and path coordinated
merge. These merging patterns build on top of each other
and are increasingly more powerful. In particular, in Sec-
tion 5.3 we explain how a full-fledged path coordinated merge—

which is the main thing we need for merging parts Po, P, ..., Px—

can be performed through a sequence of pairwise, star, and
vertex coordinated merging steps and a final simpler case of
path-coordinated merge somewhat similar to vertex coordi-
nated merge.

5.1 Safety Considerations for Merges

In this section we give simple sufficient conditions which
ensure that the merges that we perform are safe. Let us

Figure 4: (a) biconnected component decomposition of a planar graph, (b) the related (virtual) tree of the biconnected component
decomposition, (c¢) a flip of one of the biconnected components, (d) a permutations of the biconnected components around a cut-vertex.
Red vertices are cut vertices, and oval shapes indicate the biconnected components. Orange dashed edges are half-embedded edges, which
connect to the rest of the graph. Their cyclic order around the part changes during (c) and (d), as a result of the flip and permutation.

begin by considering a simple merge of two parts. In this
situation, there is a simple (sufficient) safety condition:

Definition 5.1 (Safety of a merge). Given a safe partition
P =A{P1, Ps,...,}, merging two adjacent parts P;, P; € P
into a new part P' = P; U P; is safe iff P' = P\ {P;, P;} U
{P'} is a safe partition.

Figure 6 shows parts of a safe-merge and two pairwise
merges, one that is safe and one that is not safe. In addi-
tion to using the above criterion for the safety of a pairwise
merge, there is another situation that easily implies safety
for merges:

Proposition 5.2. Suppose that in a safe partition P, a
subset of parts P’ C P are all connected (via half-embedded
edges) to a part P € P’ and suppose that the vertices in
(P\P")U{P} are connected. Then, any sequence of merges
within P’ not involving P is safe.

We remark that the condition of not involving the part
P in the merge is necessary as any merge that includes P

might transform P from a trivial part into a non-trivial part,
thus violating safety. All in all, Theorem 5.2 tells us that
any merges within a recursive call of our partitionings are
safe, so long as the trivial center part Py is not involved.
Our algorithm(s) thus first perform merges that combine
any connected parts except Py, before the final merge with
Py is performed.

5.2 Merging Patterns

The general merging setting that we have, as described in
the previous section, is an induced-path part Py along with
a number of parts P; to Pk such that each of these parts has
diameter O(D) and as expressed in Theorem 4.1, partition
P ={Po,P1,Ps,...,P,,G\ H} is safe. Our ultimate goal
is to be able to merge all parts Py to P,. We call this
merge setting an unrestricted path coordinated merge. This
term unrestricted is used as opposed to a restricted path
coordinated merge, which has at most O(D) parts. Note
that in the unrestricted case, k can be as large as ©(n). To
perform the unrestricted path coordinated merge, we use a
number of merge subroutines:

Figure 5: The partition to path Pp and hanging parts P; to Pk.

/

[s
\
Po 1

/4

Py

o
w

\ N
o \

\"

N\

. .

Black links indicate edges of the BFS tree, the brown links are

half-embedded edges connecting to G \ H, and the dashed orange edges are those which fall between parts and will be regarded as
half-embedded in the lower levels of recursion. The vertex s which is the root of the BFS subtree of H is indicated with green and the
vertex v which breaks the subtree into semi-balanced parts is indicated with red. The path connecting s to v is the Py part.

Figure 6: The green and the red curves respectively show a safe
and an unsafe pairwise merge.

Merge Patterns: We use the following merging patterns:

Pairwise merge, which merges two parts P; and Ps.

Star merge, which merges a part P, with several of its
neighbors P», Ps, ... as long as they do not share any
edges, i.e., as long as Pi, P2, Ps,... induce a star in
Gp.

Vertex coordinated merge, which merges a trivial part
P, consisting of a single vertex v with several of its

neighbors P, Ps, ... irrespective of what graph P», Ps, . ..

induce in Gp.

Path coordinated merge, which is the same as a ver-
tex coordinated merge except that the trivial part Py
is allowed to be a path. If there are at most O(D)

parts, we call this a restricted path coordinated merge.
Otherwise, it is called unrestricted.

Implementations of pairwise and star coordinated merges
are given in Section 6 of the full version, while those of vertex
coordinated and restricted path coordinated merges appear
in its Section 7.

Remarks, Intuition, and Motivation for the Merge
Patterns:

e PAIRWISE MERGE: This is the simplest merging pat-
tern, and we will be using it as the basis of all the other
merges.

e STAR MERGE: The star merge generalizes the pairwise
merge and is essentially identical to £ pairwise merges,
each being between a star center part and one side
part, all performed in parallel. Tt is critically necessary
that these ¢ pairwise merges parallelize efficiently as we
will need to perform star merges with very large de-
grees and thus, performing the related pairwise merges
one by one would not be sufficient.

e VERTEX COORDINATED MERGE: While Theorem 5.2
shows that any merges in Gp\ Py are safe, just perform-
ing local merges on this part cannot lead to an efficient
algorithm. To see this, note that G» \ Py can be any
outerplanar graph and thus have a diameter of up to
©(n) > D. Operating on this graph in a distributed
fashion would require ©(n) rounds. When merging
Pi, Ps, ..., Py, it is thus important to have some com-
munication go over shorter paths, which are in Py. A
simple case of this is when all this shortcut commu-
nication can be through a single vertex of Py. This
is exactly vertex-coordinated merge. Given that parts
can be up to ©(n) large and have rich interactions re-

sulting from up to ©(n) edges, it is perhaps surprising
that all long-range interactions can be efficiently com-
municated via the coordinator v even though v might
only have a single (capacity-restricted) edge to each
part.

e RESTRICTED AND UNRESTRICTED PATH COORDINATED
MERGE: While the path coordinated merges ideally
should function similar to a vertex coordinated merge,
the path structure imposes further limitations on the
communications that can be performed through the
coordinator. In particular, we will be able to only di-
rectly handle path coordinated merges when the num-
ber of parts k is at most O(D). This is because, when
k = O(D), the information that needs to be routed via
the coordinator is small enough to not cause conges-
tion on the path edges, beyond what can be handled
in O(D) rounds. On the other hand, once k = w(D),
the amount of information to be shared over the path
Py can exceed what the path edges can deliver within
O(D) rounds. For this reason, we will turn the general
unrestricted path coordinated merge into a case of re-
stricted path coordinated merge (with only O(D) parts)
by utilizing a sequence of pairwise, star and vertex co-
ordinated merges. Then, we will use our restricted
path coordinate merge to solve the problem for this
reduced case with O(D) parts.

5.3 Unresticted Path Coordinated Merge us-
ing Other Merge Patterns

As stated in Section 5.2, starting from the general set-
ting of unrestricted path coordinated merge, we will use a
sequence of star and vertex coordinated merging steps on
parts other than Py to reduce the number of parts to O(D),
thus leaving us with a restricted path coordinated merge
setting. In this section, we explain this step which turns an
unrestricted path coordinated merge setting to a restricted
one.

To determine which star and vertex coordinated merges
are performed here and how these are computed in a dis-
tributed fashion, we design a symmetry breaking algorithm.
The ideal goal of this algorithm is to partition parts other
than Py into star merging groups Vi, Va,... such that (1)
every part merges with at least one other part and (2) every
group induces a star. However, this is not always possi-
ble, e.g., simply when some parts form a triangle. To fix
this issue, roughly speaking, we will have two such group-
ings such that each part P; participates in at least one of
them. Formally, our symmetry breaking algorithm’s inter-
face is captured by the following lemma:

Lemma 5.3 (Symmetry Breaking Algorithm). Suppose G =
(V, E) is an undirected outer-planar network with a proper
node coloring. There exists a deterministic algorithm that
for any such G computes in O(1) rounds:

e disjoint node sets Vi, Va,..
each inducing a star in G

. CV of size at least two,

e a partition of G' = (V',E’) into disjoint node sets
Vi, Vs, ..., such that, each V; either induces a star in
G’ or is a path in G' and contains no two G'-nodes
with the same color. Here G’ is obtained from G by
contracting each Vi into Vi’s center and keeping the
color of the center for the resulting node.

Remark 1: We note that in reality, we will be running this
algorithm on parts, each acting as one node of this algo-
rithm, and where each part has O(D) diameter. That is,
the vertices of the same part should work together to run
the operations of the single part. However, it is easy to see
that for each single round of the above algorithm, the related
operations of a single part—which are of the type compute
max, min, sum, etc of some variables—can actually be sim-
ulated in O(D) rounds on a BFS of the part, using standard
upcast and downcast techniques. Hence, the O(1) rounds of
Theorem 5.3 translate to O(D) rounds. We skip stating the
exact details of how these communications happen on the
BFS, as they are standard.

The algorithm of Theorem 5.3 and its analysis appear in
Section 5.4 of the full version. Here, we show how we use
it to reduce the unrestricted path-coordinated merge to a
restricted one. We start with an intuitive (but imprecise and
incomplete) explanation, and then we present the algorithm.

Intuition and Owutline: Consider the path P, and the
parts Pi to P connected to it. If we had the property that
each part P; has half-embedded edges connecting to at least
three different vertices of Py, then we could use planarity
to prove that in this case, the number of parts could not
be more than O(D). Having this in mind, given parts that
do not necessarily satisfy this property, the high-level line of
attack is to perform small iterations of vertex coordinated
or induced-star merges such that at the end of these merges,
the merged parts satisfy this property of each having edges
to at least three Py-vertices.

Notice that at the start, each part P; has edges connect-
ing to at least one of the Py vertices. To reach the state
where each part has at least three such connection vertices
in Py, we work in two functionally identical iterations, each
of which performs merges that (try to) increase this number
of connections by at least one, if it is possible. There will be
some parts for which such an increase is not possible. We
will be able to handle these parts with simpler schemes and
discard them afterward.

Each of the iterations works roughly as follows: to make
sure that when we combine two neighboring parts we actu-
ally increase the number of their connection points, we would
like to have the property that these neighboring parts have
connections to different P, vertices. This is not satisfied at
the start. To remedy this, we number the Py-vertices 1, 2,
..., |Po|] from one end to the other, and color each part by
assigning to it (the number of) its lowest P connection ver-
tex . We then merge the (connected subsets of) nodes of
the same color using a vertex coordinated merge where the
shared connection vertex 7 is the coordinator. This might
increase the part diameters significantly so we add a copy
of this coordinator v to each of the parts colored with 4,
which reduces the diameter of parts back to O(D). We will
argue that this operation does not destroy the planarity,
and furthermore, since only different edges of a vertex can
communicate different messages, this separate copy of v can
operate independently.

Once these merges are done, we remove some simply-
connected parts of it (made precise in the algorithm) and
then compute induced-stars or color-monotone paths of these
parts using Theorem 5.3, put the paths aside and perform
star merges on the induced stars. Now merging these stars
ensures that the number of the connection points in their

parts essentially increases by one (as the center and a leaf
of the star have different low connection points). Thus, we
have managed to increase the number of connections by at
least one. Again there will be some simply-connected parts
for which such an increase is not possible, but these will be
handled separately using a simpler scheme.

Algorithm: Having this intuitive idea of what should roughly

happen in the algorithm, we are now ready to describe the
algorithm.

Unrestricted Path-Coordinated Merge:

1. Number the vertices of the Py path 1,2,...,|FPo|

2. For two iterations, do:

(a) Each part P; computes what is the lowest-numbered

Py-vertex it connects to.

(b) For each vertex i € Py, perform a vertex coordi-
nated merge on all parts that their low-connection
is 7, where ¢ operates as the coordinator. The sub-
sets of these parts that are connected get merged,
each forming a new merged part.

(¢) Any merged part P; that is only connected to
a single Pp-vertex ¢ (i.e., and not to G \ H or
H\ (PjUPy\{i})) computes one fixed embedding
(using a pairwise merge with {¢}), and then it
delivers the order of the edges connecting to i to
vertex i. After that, this part does not participate
in the remaining algorithm.

(d) Any merged part P; that is only connected to a
single Pp-vertex ¢ and to G \ H computes the or-
der of the edges connecting to i (using a pairwise
merge with {i¢}) and delivers this order to vertex
i. It also informs ¢ that it has at least one G\ H
connection. After that, this part does not partic-
ipate in the algorithm until the very last step.

(e) For any other merged part, split off a copy of ¢
and add it to this part. That is, vertex i is broken
into a primary copy and a number of secondary
copies, where these copies form a star with the
center being the primary copy. The primary copy
is kept in the Pp-path and each secondary copy
is added to one of the merged parts. During the
second iteration, the primary copy will be kept
and some more secondary copies will be created.

(f) Run the symmetry breaking algorithm from The-
orem 5.3 on the inter-part graph Gp, where the
low-connection numbers are the coloring of Gp,
thus computing part-sets V and V'.

(g) Perform induced-star merges on all V-star sets.

(h) Perform induced-star merges on all V'-star sets
(including paths of length one).

(i) Parts belonging to V’-paths of lengths 3 or more
do not perform any merge and moreover, they do
not participate in the next (i.e., second) iteration.

3. Any part P, that is only connected to Py (and not
to any other part or to G \ H) determines whether
it is connected to exactly two vertices in Py. If this
is the case, then it informs both of these Py-vertices

simply by reporting its own part-ID and the numbers
of the two connection points. Then, it solves for an
embedding of P, by running a pairwise merge with
each of these two vertices, one by one (in an arbitrary
order). Then, P, informs each of the two vertices ¢ €
Py about the order of the edges connecting to i.

4. Any path Py-vertex i, for any other Py-vertex j such
that that there is a part P, with only connections to %
and 7, does as follows: in its cyclic ordering, ¢ orders
all its half-embedded edges that connect to each of the
parts connecting exactly only to i and j consecutively
and according to the ordering received from that part.
Moreover, 4 orders different (i, j)-connecting parts in
an increasing order of IDs if ¢ > j and in a decreasing
order if 7 < j.

5. For each pair of 7,5 of Py vertices, only the highest
ID (i, j)-connecting part is kept and all other (4,7)-
connecting parts do not participate in the algorithm
until the very last step.

6. Perform a restricted coordinated merge using Py as the
coordinator.

6. CONCLUDING REMARKS

This paper presents a distributed planar embedding with
a near-optimal round complexity of O(D - min{logn, D}).
We consider this an important step in obtaining efficient
distributed algorithms for planar networks. Particularly,
in a subsequent work, we show how to obtain distributed
algorithms for minimum spanning tree and minimum cut
problems, in planar networks, with near-optimal round com-
plexity of O(D). Those results make (blackbox) use of the
embedding given here.

There are many important questions left open. Perhaps
obtaining an efficient distributed algorithm to compute an
embedding for bounded genus graphs is the immediate next
step.

7. REFERENCES

[BL76] Kellogg S Booth and George S Lueker. Testing
for the consecutive ones property, interval
graphs, and graph planarity using pq-tree
algorithms. Journal of Computer and System
Sciences, 13(3):335-379, 1976.
John M Boyer and Wendy J Myrvold. On the
cutting edge: Simplified O (n) planarity by
edge addition. J. Graph Algorithms Appl.,
8(2):241-273, 2004.
[CHGK14] Keren Censor-Hillel, Mohsen Ghaffari, and
Fabian Kuhn. Distributed connectivity
decomposition. In the Proc. of the Int’l Symp.
on Princ. of Dist. Comp. (PODC), pages
156-165, 2014.
Erik Demaine, Shay Mozes, Christian
Sommer, and Siamak Tazari. Algorithms for
planar graphs and beyond.
http://courses.csail.mit.edu/6.889/fallll/.
Accessed: July 2015.
[DSHK'11] Atish Das Sarma, Stephan Holzer, Liah Kor,
Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger

[BM04]

[DMST]

http://courses.csail.mit.edu/6.889/fall11/

[Edm60]

[Elk04a]

[E1k04b]

[GH16]

[Ghal4]

[GK13]

[GKK™'15]

[GL14]

[HT74]

[HTO8]

[Kle]

[KM]

[KMft]

[KP95]

Wattenhofer. Distributed verification and
hardness of distributed approximation. In
Proc. of the Symp. on Theory of Comp.
(STOC), pages 363-372, 2011.

Jack Edmonds. A combinatorial representation
of polyhedral surfaces. Notices of the
American Mathematical Society, 7, 1960.
Michael Elkin. A faster distributed protocol
for constructing a minimum spanning tree. In
Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete
algorithms, pages 359-368. Society for
Industrial and Applied Mathematics, 2004.
Michael Elkin. Unconditional lower bounds on
the time-approximation tradeoffs for the
distributed minimum spanning tree problem.
In Proc. of the Symp. on Theory of Comp.
(STOC), pages 331-340, 2004.

Mohsen Ghaffari and Bernhard Haeupler.
Distributed algorithms for planar networks II:
Low-congestion shortcuts, mst, and min-cut.
In Pro. of ACM-SIAM Symp. on Disc. Alg.
(SODA), page to appear, 2016.

Mohsen Ghaffari. Near-optimal distributed
approximation of minimum-weight connected
dominating set. In the Proc. of the Int’l
Colloquium on Automata, Languages and
Programming (ICALP), 2014.

Mohsen Ghaffari and Fabian Kuhn.
Distributed minimum cut approximation. In
Proc. of the Int’l Symp. on Dist. Comp.
(DISC), pages 1-15, 2013.

Mohsen Ghaffari, Andreas Karrenbauer,
Fabian Kuhn, Christoph Lenzen, and Boaz
Patt-Shamir. Near-optimal distributed
maximum flow. In the Proc. of the Int’l Symp.
on Princ. of Dist. Comp. (PODC), 2015.
Mohsen Ghaffari and Christoph Lenzen.
Near-optimal distributed tree embedding. In
Proc. of the Int’l Symp. on Dist. Comp.
(DISC), pages 197-211, 2014.

John Hopcroft and Robert Tarjan. Efficient
planarity testing. Journal of the ACM
(JACM), 21(4):549-568, 1974.

Bernhard Haeupler and Robert E Tarjan.
Planarity algorithms via PQ-trees. Electronic
Notes in Discrete Mathematics, 31:143-149,
2008.

Philip Klein. Topics in algorithms: Planar
graph algorithms.
http://cs.brown.edu/courses/csci2950-r/.
Accessed: July 2015.

Philip Klein and Claire Mathieu.
Optimization algorithms for planar graphs.
http://cs.brown.edu/courses/cs250/.
Accessed: July 2015.

Philip Klein and Shay Mozes. Optimization
Algorithms for Planar Graphs.
http://www.planarity.org/, draft.

Shay Kutten and David Peleg. Fast
distributed construction of k-dominating sets
and applications. In the Proc. of the Int’l

[KR8S]

[LECG66]

[LPS13]

[LPS14]

[LT79)

[Nan14]

[NC8S)

[NS14]

[Pel00]

[PR99]

Symp. on Princ. of Dist. Comp. (PODC),
pages 238-251, 1995.

Philip N Klein and John H Reif. An efficient
parallel algorithm for planarity. Journal of
Computer and System Sciences,
37(2):190-246, 1988.

Abraham Lempel, Shimon Even, and Israel
Cederbaum. An algorithm for planarity
testing of graphs. Theory of graphs,
8(2):215-232, 1966.

Christoph Lenzen and Boaz Patt-Shamir. Fast
routing table construction using small
messages: Extended abstract. In Proc. of the
Symp. on Theory of Comp. (STOC), pages
381-390, 2013.

Christoph Lenzen and Boaz Patt-Shamir.
Improved distributed steiner forest
construction. In the Proc. of the Int’l Symp.
on Princ. of Dist. Comp. (PODC), pages
262-271, 2014.

Richard J Lipton and Robert Endre Tarjan. A
separator theorem for planar graphs. SIAM
Journal on Applied Mathematics,
36(2):177-189, 1979.

Danupon Nanongkai. Distributed
approximation algorithms for weighted
shortest paths. In Proc. of the Symp. on
Theory of Comp. (STOC), pages 565-573,
2014.

Takao Nishizeki and Norishige Chiba. Planar
graphs: Theory and algorithms. Elsevier, 1988.
Danupon Nanongkai and Hsin-Hao Su.
Almost-tight distributed minimum cut
algorithms. In Proc. of the Int’l Symp. on
Dist. Comp. (DISC), pages 439-453, 2014.
David Peleg. Distributed Computing: A
Locality-sensitive Approach. Society for
Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

David Peleg and Vitaly Rubinovich. A
near-tight lower bound on the time complexity
of distributed MST construction. In Proc. of
the Symp. on Found. of Comp. Sci. (FOCS),
pages 253—, 1999.

http://cs.brown.edu/courses/csci2950-r/
http://cs.brown.edu/courses/cs250/
http://www.planarity.org/

	Introduction
	Motivations
	Our Technical Contributions, in Contrast with Centralized Algorithms

	Some Preliminaries
	General Algorithmic Planarity Framework
	Algorithm Outline
	Merging Parts: Outline and Subroutine Descriptions
	Safety Considerations for Merges
	Merging Patterns
	Unresticted Path Coordinated Merge using Other Merge Patterns

	Concluding Remarks
	References

