
Distributed MST and Routing in Almost Mixing Time
Mohsen Ghaffari

ETH Zurich, Switzerland

ghaffari@inf.ethz.ch

Fabian Kuhn

University of Freiburg, Germany

kuhn@cs.uni-freiburg.de

Hsin-Hao Su

MIT, USA

hsinhao@mit.edu

ABSTRACT
We present a randomized distributed algorithm that computes a

minimum spanning tree in τmix (G) · 2O (
√
logn log logn)) rounds, in

any n-node graphG with mixing time τmix (G). This result provides
a sub-polynomial complexity for a wide range of graphs of practical

interest, and goes below the celebrated Ω̃(D +
√
n) lower bound

of Das Sarma et al. [STOC’11] which holds for some worst-case

general graphs.

The core novelty in this result is a distributed method for per-
mutation routing. In this problem, one is given a number of source-

destination pairs, and we should deliver one packet from each

source to its destination, all in parallel, in the shortest span of time

possible. Our algorithm allows us to route and deliver all these

packets in τmix (G) · 2O (
√
logn log logn)

rounds, assuming that each

node v is the source or destination for at most dG (v) packets. The
main technical ingredient in this routing result is a certain hier-
archical embedding of good-expansion random graphs on the base

graph, which we believe can be of interest well beyond this work.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms;

KEYWORDS
Distributed Graph Algorithms; CONGESTModel; Routing; Mini-

mum Spanning Tree

1 INTRODUCTION & RELATEDWORK
We present a distributed algorithm for computing aminimum span-
ning tree (MST) with a time complexity close to the network’s

mixing time. The core technical novelty in this result is the intro-

duction of a certain hierarchical routing structure, which we believe

will pave the road towards achieving a similar time complexity for

a wider range of graph problems.

Throughout, we work with the standard CONGEST model of

distributed computation: the network is abstracted as an n-node
graphG = (V ,E). Initially each node knows only its own edges. Per

synchronous round, each node can send an O (logn)-bit message

to each of its neighbors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00

https://doi.org/10.1145/3087801.3087827

Background: The MST problem has played a central role in dis-
tributed graph algorithms, by providing a setup for developing

new algorithmic or impossibility techniques, which were then ex-

tended to other problems. The work on distributed MST compu-

tations started with the seminal algorithm of Gallager, Humblet,

and Spira [28], which has time complexity O (n logn) and which

itself is a variant of the 1926 algorithm of Boruvka [58]. The time

complexity was gradually improved [15, 27], eventually leading to

the “optimal" algorithm of Awerbuch, which has time complexity

O (n) [7]. A round complexity of O (n) was usually treated as opti-

mal, because there are graphs of diameter D = Ω(n) on which one

cannot do better (e.g., the n-node cycle).
Starting with the pioneering work of Garay, Kutten and Pe-

leg [29, 44], the area took a turn, and moved towards seeking sub-

linear time algorithms, when this “excuse” of graphs withD = Ω(n)
is ruled out. In particular, an O (D + n0.61)-round MST algorithm

was presented in [29], which was subsequently improved in [44] to

O (D +
√
n log∗ n). This Õ (D +

√
n) time complexity turned out to

be “optimal" for MST, and in fact for an extraordinarily wider range

of problems, in the following sense: Peleg and Rubinovich [64]

showed that there are graphs of diameter D = O (logn) on which

Ω(
√
n/ logn) rounds are necessary for computing an MST. Subse-

quently, building on a construction of Elkin [23], Das Sarma et

al. [17] showed that even approximating MST within any non-

trivial factor requires Ω(D +
√
n/ logn) time on some graphs with

D = O (logn). They also showed that the same lower bound holds

for several other fundamental problems, e.g., computing single-

source shortest paths or an approximate minimum cut.

Faced with this seemingly omnipresent Ω̃(D +
√
n) lower bound,

there are two ways ahead. One is to take this lower bound as a

last word and be contempt with the current Õ (D +
√
n) algorithm,

because it is the best possible in some graphs. The other is to look

for mathematically clean and practically relevant graph properties

that allow one to go below the lower bound. This second approach

has been pursued in three directions in the prior work:

• Graphs with Small Constant Diameter:
Lotker et al. [51] showed an O (logn) round algorithm for

diameter 2 graphs, and proved that for graphs of diame-

ter 3 and 4, there are lower bounds of Ω(3

√
n/

√
logn) and

Ω(4

√
n/

√
logn), respectively. Later, Lotker et al. [53] showed

that in graphs with diameter D = 1—i.e., if the graph is

a weighted complete graph, which is also known as the

congested clique model—an MST can be computed in time

O (log logn). This complexitywas improved recently byHege-

man et al. toO (log log logn) [36], and subsequently, by Ghaf-
fari and Parter to O (log∗ n) [33].

• Graphs with Small MSTRadius or Local Shortest-Path
Diameter (SPD):

https://doi.org/10.1145/3087801.3087827

Elkin [22] introduced the notion ofMST radius, which roughly

speaking is maximum radius each node needs to check to

check whether any of its edges is in the MST. This is de-

noted by λ(G,w) and it depends on both the topology and

the weights. Elkin provided an algorithm with complexity

Õ (λ(G,w) +
√
n). Khan and Pandurangan [41] introduced

the notion of local shortest path diameter L(G,w), which
roughly speaking is the maximum number of hops of the

minimum-weight path between each node and the other

endpoint of its heaviest edge. Note that L(G,w) dependends
both on the topology and on the weights. The paper pre-

sented an O (logn) approximation algorithm for MST with

time complexity Õ (D + L(G,w)).

• Planar and Near-Planar Graphs:
Ghaffari and Haeupler [31] developed the general concept

of low-congestion shortcuts, and applied it to obtain an MST

algorithm with time complexity Õ (D) in planar graphs. This

was then extended by Haeupler, Izumi, and Zuzic [34, 35] to

graphs with bounded genus or bounded tree-width.

Our Contribution: In this paper, we focus on graphs with good

expansion properties. In particular, we analyze the round complexity

of computing an MST and related problems as a function of the

random walk mixing time τmix (G) of the network graph G. For a
formal definition of τmix (G), we refer to Section 2. Our main result

proves that an MST can be computed in almost the mixing time.

Theorem 1.1. There is a distributed, randomized Las Vegas algo-

rithm that computes an MST in time τmix (G) · 2O (
√
logn log logn) in

the CONGEST model, with high probability1.

We remark that while the 2
O (
√
logn log logn)

term is more than

any polylogarithmic function of n, it is a slowly growing function of
n and in particular substantially smaller than any fixed power of n.
Theorem 1.1 in particular implies that in graphs with mixing time at

most 2
O (
√
logn log logn)

or conductance at lest 2
−O (
√
logn log logn)

,

an MST can be computed in time 2
O (
√
logn log logn)

. This includes

all graphs with maximum degree 2
O (
√
logn log logn)

and edge or

vertex expansion at least 2
−O (
√
logn log logn)

. Note that a wide range

of the common (overlay) networks used in practical distributed

applications fall in this category, see e.g. [4, 8, 45, 55, 60–62, 69].

By combining the above algorithm with techniques developed

in [32, 57] and especially a method of [31], the same upper bound

as in Theorem 1.1 can also be achieved for computing a (1 + ε)-
approximate minimum cut.

At its heart, our MST algorithm is based on a new random-walk

based distributed routing scheme to serve a large number of con-

current pair-wise routing requests. This routing scheme is then

incorporated into anMST algorithm in the style of Boruvka’s classic

approach [58], with the help of a few additional algorithmic ingre-

dients, to obtain the MST algorithm of Theorem 1.1. The routing

scheme is the main technical contribution of the present paper.

Theorem 1.2. Consider a graph G = (V ,E) and a set of point-
to-point routing requests, each given by the IDs of the corresponding
1
As standard, with high probability (w.h.p.) indicates that an event has probability

1 − 1/nc for a constant c ≥ 2.

source-destination pair. If each node of G is the source and the des-

tination of at most dG (v) · 2O (
√
logn log logn) messages, there is a

randomized distributed algorithm that delivers all messages in time

τmix (G) · 2O (
√
logn log logn) , w.h.p.

Our Routing Method in a Nutshell: A random walk starting

from the packet source would be unlikely to get to the correct desti-

nation, unless it is very long, or we use a very large number of such

walks. In our routing algorithm, we use random walks to construct

a hierarchical structure, which roughly speaking recursively embeds

good-expansion random graphs on the base graph. For the construc-

tion, we replace every node v ∈ V by dG (v) virtual nodes so that
overall, we have 2|E | virtual nodes. On the bottom level, we use par-

allel random walks of length τmix (G) to compute a low-congestion

embedding of an approximate Erdős-Rényi random graph with

average degree O (logn) among the virtual nodes. Because in the

stationary distribution of a random walk on G, the probability of a

node v is proportional to its degree, we can run O (logn) random
walks per virtual node with only a logarithmic slowdown compared

to running a single random walk in the graph. On the second level,

we partition the set of virtual nodes into α = 2
O (
√
logn log logn)

parts and for each part, we compute a low-congestion embedding

of another approximate Erdős-Rényi random graph on top of the

bottom random graph. The time for computing such an embedding

is α poly logn. For each of the α parts, we proceed recursively, we

divide the part into α smaller parts and embed a new random graph

in each part. The construction has O
(√

logn
log logn

)
recursion levels

and can be constructed in time α poly logn = 2
O (
√
logn log logn)

.

As the random graph embedding on each recursion level adds a

polylogarithmic stretch factor, the cost for routing a message is

also 2
O (
√
logn log logn)

. The random graph embeddings guarantee

that in parallel we can cope with up to 2
O (
√
logn log logn)

messages

per virtual node. By using a small number of shared random bits,

which can be disseminated in O (D poly logn) time, the position of

a given node ID in the hierarchical partition can be determined by

a globally known random hash function.

A More Efficient Solution For Denser Routing Requests: We

also present more efficient routing algorithms for instances where

the set of routing requests is larger. Due to the space limitations,

the explanations of this part are deferred to the full version of the

paper. Here, we simply overview the end-result:

We focus on routing instances where each node has to send one

O (logn)-bit message to each other node. Such a routing algorithm

can be seen as emulating the congested clique model [53] on top

of a general underlying graph. The congested clique model has

recently received considerable attention [10, 11, 14, 20, 21, 30, 33, 36–

39, 42, 50, 56, 63] and for general graphs, admitting a fast algorithm

for the above clique emulation problem is considered as one of the

desirable network ‘axioms’ in [5]. A simple cut-based argument

shows that the clique emulation problem requires time at least

Ω(n/h(G)), where h(G) is the edge expansion of G. We prove the

following upper bound.

Theorem 1.3. There is a distributed algorithm that emulates

the clique in a graph G, w.h.p., in O
(

n
h (G) ·

(
1 + ∆

n ·
∆

h (G) · logn
)
·

logn log∗ n
)
rounds, where ∆ denotes the maximum degree of G.

Moreover, if h(G) = Ω(∆) and ∆ ≥ n0.5+ε for constant ε > 0, the
bound can be improved to O

(
n

h (G) · logn · log
∗ n).

Remark: We note that as a simple corollary, this theorem yields

an improvement of a recent result of Balliu et al. [9] about the

time needed for emulating the clique in Erdős-Rényi [24] random

graphs. From Theorem 1.3, we get that an Erdős-Rényi random

graph Gn,p above the connectivity threshold — i.e., where p =

Ω(
logn
n) — can emulate the clique inO (1/p + logn) rounds. This is

because, by a simple calculation, we can see that in such graphs,

with high probability, h(G) = Θ(np) and also ∆ = Θ(np). This
O (1/p + logn)-round emulation improves over the result of Balliu

et al.[9], which emulates the clique in O (min{1/p2,np}) rounds

assuming p ≥
√
logn/n. Notice that Ω(1/p) is a clear lower bound

as each node has degree Θ(np) and it should receive n− 1messages.

Hence, this O (1/p + logn)-round bound is nearly optimal.

Other Related Work—the Centralized or
Existential Analogues
We conclude the introduction by mentioning some other related

work which concern the existential aspects of the routing problem

that we consider, or the centralized algorithms for it. In the setting

that we focus on in this paper, initially, the communication network

G is known only locally, i.e., each node knows only its neighbors.

This is important for most of the plausible applications of our work.

For instance, in overlay networks, the topology is usually dynamic

and changes with time, and it is never fully known to one node, see

e.g. [4, 43, 45, 60–62]. The variant of the routing problem where G
is globally known relates to some well-studied problems in the area

of centralized computation, which we briefly review next.

Multi-Commodity Flow with Short Paths: If G is known to a

centralized computer, the seminal work of Leighton and Rao [48]

can be used to route the packets: we formulate the problem as a

multi-commodity flow instance with a unit flow demand per node

pair, then do a randomized rounding on the flows to generate short

paths, and finally schedules the packet routing of these paths using

Lovasz Local Lemma. However, this method seems unlikely to lead

to a fast distributed algorithm, the multi-commodity flow part itself

needs a large polynomial centralized time complexity.

Edge-Disjoint Paths in Expanders: A problem that relates to the

routing question is that of finding edge-disjoint paths in expanders,

between given source-destination pairs. This problem began with

the work of Peleg and Upfal[65], who showed a polynomial time

algorithm for finding nε paths, for a small constant ε . This problem
has since receive extensive attention[12, 13, 25, 46, 47, 49]. This line

of work was improved to optimality by [26], which finds Θ(n
logn)

paths in a (large) polynomial time in regular-expanders with suf-

ficiently large expansion. It does not seem likely to us that these

computationally intensive centralized methods would yield a fast

distributed routing algorithm.

2 PRELIMINARIES

Mathematical notations: Throughout the paper, we use n to de-

note the number of nodes andm to denote the number of edges

of the network graph G = (V ,E). Further, we use dG (v) to denote

the degree of some node v ∈ V , and ∆ for the maximum degree

of G. Moreover, given a nontrivial partition of V to S and V \ S ,
we use e (S,V \ S) to denote the number of edges connecting S and

V \ S . The edge expansion h(G) of a graph G = (V ,E) is defined as

h(G) := minS ⊆V ,1≤ |S | ≤n/2
e (S,V \S)
|S | .

RandomWalks: Our algorithms use random walks as a main tool.

Note that random walks are by now quite a standard tool, used

extensively throughout all branches of theory of computation, see,

e.g.[1, 2, 6, 16, 18, 19, 54, 59, 67, 68, 70]. In order to guarantee that

the resulting Markov chain is aperiodic, throughout the paper when

referring to the randomwalk on a graphG , we implicitly assume the

usual so-called lazy random walk: In every step, the walk remains

at the current node with probability 1/2 and it transitions to a

uniformly random neighbor otherwise. In case of multi-graphs, the

transision is on a uniformly chosen random edge. The stationary
distribution of such a random walk is proportional to the degree

distribution, i.e., when performing enough steps of the random

walk, the probability for ending in a nodev converges to dG (v)/2m.

We formally define the mixing time of the random walk as follows.

Definition 2.1. [Mixing Time] For V = {v1, . . . ,vn } and a node

v ∈ V , let P tv =
(
P tv (v1), . . . , P

t
v (vn)

)
be the probability distribu-

tion on the nodes after t steps of a lazy random walk starting at v .
We define the mixing time τmix (G) as the minimum t such that for

all v,u ∈ V , we have
����P
t
v (u) −

dG (v)
2m

���� ≤
dG (v)
2mn . When the graph G

is clear from the context, we sometimes use τmix instead of τmix (G).

Remark. By running the walk for O (τmix) steps, one can improve

the deviation from the mixing time to

����P
τmix

v (u) −
dG (v)
2m

���� ≤ 1/nc

for an arbitrary constant c > 0.

We sometimes need to perform random walks that have a uni-

form stationary distribution. By using standard ideas—see e.g.,

[6, 40]—we can “regularize” the graph to achieve this.

Definition 2.2 (2∆-Regular Random Walk). Let G = (V ,E) be an
n-node graph with maximum degree ∆ and let G ′ = (V ,E ′) be the
multi-graph that is obtained fromG by adding ∆−dG (v) self-loops
to each node v . A 2∆-regular random walk on G is defined as the

usual lazy random walk on G ′. We use τmix (G) = τmix (G
′) for the

mixing time of the 2∆-regular random walk on a graph G.

Hence, when running a 2∆-regular random walk on G, in each

step, the walk remains at the current node with probability 1 −

d (v)/2∆ and otherwise, it transitions to each of thedG (v) neighbors
with probability 1/∆. In previous work, similar regularized random

walks have also been called ∆-lazy randomwalks [6] or max-degree

random walks [40]. The following lemma uses Cheeger’s theorem

(see e.g. [54]) to upper bound the mixing time τmix of a 2∆-regular
random on G walk as a function of the edge expansion h(G) of G.

Lemma 2.3. The mixing time τmix of a 2∆-regular random walk
on a graph G is τmix ≤ 8 · ∆2

h2 (G)
· lnn.

Proof of Lemma 2.3. The convergence of a random walk can

expressed as a function the spectral properties of the stochastic

random walk matrix and the most important connection to graph

expansion is captured by Cheeger’s inequality. For more details,

we refer to [54], the following analysis is also based on [67]. The

congergence of random walks to the stationary distribution can

be upper bounded in the following way. For a node v ∈ V and

V = {v1, . . . ,vn }, let P
t
v =

(
P tv (v1), . . . , P

t
v (vn)

)
be the probability

distribution on the nodes after t steps of a lazy random walk on

a graph G starting at a node v of G. In a lazy random walk, in

each step, with probability 1/2, the walk stays at the same node

and with probability 1/2 it moves on a uniformly random edge

incident to the current node. Let π = (π (w1), . . . ,π (wn)) denote
the stationary distribution. For lazy random walks in a regular

graphG , the stationary distribution is the uniform distribution and

we have:
���P
t
v (w) − π (w)��� ≤

(
1 −

ϕ2 (G)
4

)t
. Here, ϕ (G) denotes the

conductance of a graph G = (V ,E), which is defined as follows:

ϕ (G) := min

S ⊆V :vol(S)≤m

e (S,V \ S)

vol(S)
,

where for each X ⊆ V , we have vol(X) :=
∑
v ∈X dG (v).

Note that the 2∆-regular random walk can be seen as a lazy

random walk on the ∆-regular multi-graph G ′ = (V ,E ′) which is

obtained from G in the following way. To each node v of degree

dG (v), we add∆−dG (v) self loops. Taking a uniformly random edge

with probability 1/2 now implies that each edge ofG incident to the

current node is picked independently with probability 1/2∆ and

thus the lazy random walk on G ′ is equivalent to the 2∆-regular
random walk on G. For the auxiliary multi-graph G ′, we have

ϕ (G ′) = h(G)/∆. Therefore, after t = τmix (G) = 8∆2
lnn/h2 (G) =

8 lnn/ϕ2 (G) steps, we have

����P
t
v (w) −

1

n

���� ≤
(
1 −

ϕ2 (G ′)

4

)8 lnn/ϕ2 (G′)

≤ e−2 lnn =
1

n2
.

�

Parallel RandomWalks: In all of our results, we run many ran-

dom walks in parallel. We next discuss how we do this. We first

prove a simple helper lemma. We comment that variants of these

simple helper lemmas appear in prior work, see e.g. [18, 19].

Lemma 2.4. Let G = (V ,E) be a n-graph and assume that we
(synchronously) run at most nO (1) steps of a collection of independent,
parallel random walks onG . If each node is starting node v of at most
kdG (v) random walks, w.h.p., after each parallel step, there are at
most O (kdG (v) + logn) random walks at each node v ∈ V .

Proof of Lemma 2.4. The stationary distribution of a random

walk on a graphG is proportional to the degree distribution. Hence,

if we start exactly kdG (v) random walks at every node v ofG , after
every step, the expected number of randomwalks at every nodev is

kdG (v). If at most kdG (v) randomwalks start at every node, at each

time, the expected number of randomwalks at every nodev is upper

bounded by kdG (v). Because the walks are run independently, the

lemma follows from a standard Chernoff bound. �

When performing several random walks in parallel in a dis-

tributed way, we assume that in each round each node can send

up to one random walk over each of its edges. If running several

random walks in parallel such that each node is the starting node v
of kdG (v) random walks, in each parallel random walk step, each

node has to forward around k random walks over each of its edges.

Simulating T steps of all the random walks will therefore require

at least around kT rounds. The following lemma shows that even if

all the random walks are run in an independent way, we can run

them distributedly in a way that nearly matches this lower bound.

Lemma 2.5. LetG = (V ,E) be an n-node graph and let k ≥ 1 be a
positive integer. Assume that we want to performT = nO (1) steps of a
collection of independent random walks in parallel. If each nodev ∈ V
is the starting node v of at most kdG (v) random walks, w.h.p., the T
steps of all the random walks can be performed in O

(
(k + logn) ·T

)
rounds in a distributed way.

Proof of Lemma 2.5. We perform all the walks synchronously,

and we show that we can perform one step of all walks in parallel, in

one phase, where each phase has c (k+logn) rounds for a sufficiently

large constant c > 0. From Lemma 2.4 and a union bound over all

the T steps, we know that in each step, the number of walks in

each node v is at most O (kdG (v) + logn), w.h.p. Each of these

walks chooses each edge e incident on v with probability 1/2dG (v).
Hence, the number of walks that need to go through e in one phase

is upper bounded by O (k + logn) in expectation and by a standard

Chernoff bound also w.h.p. Therefore, if choosing the constant c
sufficiently large, the number of walks that need to go through e
is less than the length of one phase, which means that the phase

suffices for performing one step of all walks in parallel. �

The boundO
(
(k + logn) ·T

)
in Lemma 2.5 is asymptotically op-

timal, matching the kT lower bound, when k = Ω(logn). However,
when k = o(logn), the additive logn term becomes dominant and

makes the bound sub-optimal. To overcome this issue, for some

range of parameters, we will run the random walks in a carefully

correlated fashion. The related details are deferred to the full version

of the paper.

3 DISTRIBUTED PERMUTATION ROUTING
IN ALMOST MIXING TIME

In this section, we explain our distributed algorithm for permutation
routing and slightly more general routing instances. This algorithm

constructs a certain hierarchical routing structure, which allows

us to solve the following packet routing problem: given several

packet routing requests, each specified by a packet source and the

corresponding packet destination, and such that each node v is

the source or destination for at most dG (v) packets, we can route

all these packets from their sources to their destinations in τmix ·

2
O (
√
logn log logn)

rounds.

The construction of this hierarchical routing structure and the

general method for using it are explained in Section 3.1 and Sec-

tion 3.2, respectively. In Section 4, we show the applications of

this routing, by explaining a distributed algorithm for computing a

minimum spanning tree in τmix · 2
O (
√
logn log logn)

rounds.

3.1 The Routing Structure via Hierarchical
Embedding of Random Graphs

Here, we explain the construction of our hierarchical routing struc-

ture. The two key aspects of this structure are: (1) it allows us to

route many messages on this structure simultaneously and fast, (2)

we can construct this structure fast.

3.1.1 Embedding a Sparse Random GraphG0 onG. As a prepa-
ration step, which can be viewed the level zero of our hierarchical

construction, we embed an Erdős-Rényi random graph G0 on top

of our base graph. After that, our construction will continue atop

G0. Working with the random graph G0 simplifies some of our

construction and analysis, in comparison to directly dealing with

G, while as we will see, this transition has only a poly logn factor

overhead in the round complexities.

Let G = (V ,E) be the base graph, and let n = |V | andm = |E |.
As we assume G to be connected, we have logm = Θ(logn), and
thus, we express all logarithmic terms as a function of logn.

The Level-Zero Random Graph G0: Graph G0 has 2m nodes,

where each node v ∈ G simulates dG (v) many G0-nodes. The

construction of the random graphG0 atopG will be such that each

communication round of G0 can be implemented in poly(logn)
rounds of G. The graph G0 will be an Erdős-Rényi G0 = G (m,p)

random graph, where p =
200 logn

m . To construct the overlayG0, we

selectmp = 100 logn independent random outgoing neighbors for

each node v0 ∈ G0, with a uniform distribution for each neighbor
2
.

Then, we forget the direction of the edges.

The process of identifying the edges inG0 is as follows. We start

200 lognmany independent randomwalks from eachG0-node. This

is a total of 200dG (v) logn randomwalks from each nodev ∈ G . We

run all these walks in parallel inG , each for τmix (G) steps. This can
be done inO (τmix poly logn) rounds, by Lemma 2.5. At the end, the

tokens of each G0-node v0 are distributed (essentially) uniformly

among the nodes ofG0. Thus, the tokens of node v0 ∈ G0 are in at

least 100 logn differentG0-nodes. These are the outgoing neighbors

of v0 in overlay G0.

We then run the random walks in the reverse direction of their

forward traversal, thus getting them back to their sources. Running

thewalks in reverse is possible because during the forward traversal,

each node can remember in which direction it forwarded each

random walk token. At the end, each G0-node v0 knows at least
100 logn randomly selected otherG0-nodes. Nodev0 selects exactly
100 logn of these, say at random, and considers them as its own out-

neighbors in the graph G0. Thus, each node v0 knows its outgoing
edges. By running the walks one more time in the forward direction,

we can make all nodes u0 ∈ G0 also know their incoming edges.

At this point, we forget the directions of the edges. These are the

edges of G0. Hence, we now have the random graph G0 computed.

We can emulate a single communication round of G0 in τmix ·

poly(logn) rounds of G, by re-running the exact random walks as

above. That is, we can deliver one message from each G0-node to

each of its G0-neighbors, using τmix · poly(logn) rounds of G.

2
Note that the Erdős-Rényi model is usually described as connecting each node pair

with probability p . For the range of p in our discussion, this graph distribution is

equivalent, modulo a negligible inverse-polynomially small probability, to the graph

distribution resulting from randomly and uniformly pickingmp/2 outgoing neighbors
for each node.

3.1.2 The Hierarchical Construction. We now work on top of

G0. From here on, the construction of our hierarchical embedding

is recursive. We start by explaining the first level; the other levels

are repetitions of same method. Throughout, we have one main

parameter β , and as we will see, setting β = 2
O (
√
logn log logn)

gives

the best trade-off.

First Level of the Recursion: Partition the nodes of G0 into β
disjoint sets A1, A2, . . . , Aβ such that for each i , we have |Ai | =

Θ(|G0 |

β) = Θ(mβ). We later discuss how this partitioning is done.

For now, it is convenient to think that each G0-node is put in one

of these β parts at random.

We generate a virtual random graph G1 on the same vertex set

as G0. The graph G1 is a disjoint union of β random graphs, one

for each Ai . That is, the graph G1 has β disconnected components,

one for each set Ai . The connected component induced by the set

Ai is defined by having each node of Ai pick O (logn) uniformly

random neighbors from the same set Ai . The construction of G1

will be such that one communication round of the graph G1 can

be emulated in O (log2 n) communication rounds of graph G0. In

short terms, each round of G1 embeds into O (log2 n) rounds of
G0. After the construction, we will be able to think of G1 as a

collection of β independent random graphs, one for each Ai , such
that these β random graphs can work effectively in parallel, modulo

a multiplicative O (log2 n) round complexity overhead.

To construct G1, we start O (β logn) many 2∆-regular random
walks from each node v ∈ G0, defined as in Definition 2.2. Each

of these walk tokens carries the ID of node v and also the num-

ber i ∈ {1, 2, . . . , β } for which v ∈ Ai . We run all the O (mβ logn)
random walks for τmix (G0) = O (logn) steps. As Lemma 2.5 shows,

this can be performed in O (β log2 n) rounds of G0. We consider a

random walk token successful if its starting point and end point

are in the same set Ai . At the end, for each node v , there are

O (β logn) tokens of v ∈ Ai spread uniformly over the graph G0.

Since |Ai | = Θ̃(mβ), w.h.p., Θ(logn) of these random walk tokens

ofv are successful, meaning that they ended in a node ofAi . Hence,
v has Θ(logn) successful tokens, each of which gives v one ran-

domly sampled neighbor in Ai . We then run these random walks

backwards, thus letting node v know itsG1-neighbors. These suc-

cessful walks, which are O (logn) many per node, can be re-run in

O (log2 n) rounds of G0.

Lemma 3.1. Each round ofG1 can be emulated inO (log2 n) rounds
of G0.

Proof of Lemma 3.1. The argument is essentially by invoking

Lemma 2.5. Some care is needed because conditioning on the each

random walk having a fixed source and destination can bias the

distribution of the walks and conceivably increase the number of

walks that need to go through one edge. However, this is not a

real problem in our case. We can assume that the walks are run

for a length more than a 2 factor of the mixing time. Then, given

the source and destination, the walk can be viewed as going from

the source to a random middle point, and then going from there

to the destination, and each of these two parts clearly induces a

distribution of tokens on edges similar to basic random walks, thus

allowing us to repeat the arguments of Lemma 2.5. �

t

B11

A2

A3

A4

A1

B21

B31B41

Figure 1: An illustration of three levels of the hierarchical subsets.We have
one random graph on each ball and random graphs of balls of each level can
be implemented in O (log2 n) rounds of one of the balls of the lower layer.
Thus, for instance, we can run one round of graphs of B11, B21, B31, and B41

all in O (log2 n) rounds of the graph of A1.

To conclude, usingO (β log2 n) rounds ofG0, we constructed the

graph G1, made of one random graph per set Ai . Moreover, each

round ofG1 can be emulated inO (log2 n) rounds ofG0. We are now

ready to proceed to the next levels of our hierarchical embedding.

Next Levels of the Recursion: The next levels of the recursive
hierarchical construction are similar. See Figure 1 for a pictorial

illustration. In the second level, we partition each set Ai into sets

B1i , B2i , B3i , . . . , Bβ i , of (almost) the same size. The exact partition

will be discussed later. We then construct a random graphG2 where

each node of Bji is matched to O (logn) randomly chosen neigh-

bors of Bji , by running random walks as before, this time on G1.

This construction of G2 takes O (β log2 n) rounds of G1, and thus

O (β log4 n) rounds of G0. Moreover, the each round of the graph

G2 can be emulated in O (log2 n) rounds of G1.

Continuing k levels of this recursive construction will produce

graphs G0, G1, . . . , Gk , where each graph is a structured random

graph on some subsets, where each of these subsets is a refinement

of those of the previous level. Since in each iteration, the size of

each subset goes down by about a β factor, we repeat this procedure

for at most k = O (logβ m) iterations, until each subset has size at

most O (logn). At that point, we just take the complete graph on

each of those subsets as their “random” graph. The following lemma

summarizes the complexity of this construction.

Lemma 3.2. We can performk = logn/ log β levels of this construc-

tion in O (kβ) (logn)O (k) = 2
O (
√
logn log logn) rounds of G0. More-

over, each round of graph Gi can be emulated in at most (logn)O (i)

rounds of graph G0. This is at most 2O (
√
logn log logn) rounds, even

for the last level k = logn/ log β .

There are two aspects of the construction of our hierarchical

embedding which remain to be discussed: (A) One aspect is how

we partition the nodes, in different levels of recursion. In particular,

this partition should be into parts of almost equal size, but also

such that the source of each packet can know the part to which the

corresponding destination belongs. (B) The other aspects is some

portals that we add to the construction, which we use for moving

the packets between different parts of the partition. We next explain

these two aspects.

Pseudo-Random Partitions, and the Hierarchical Labeling:
As we described above, we have k iterative levels of partitioning,

and as a result, each node v ∈ G0 has a sequence of length k =
logn/ log β of partition labels (ℓ1, ℓ2, . . . , ℓk). Here, each partition

label ℓp is a number in {1, 2, . . . , β }, that indicates the subset that
node v chose in level p. Particularly, ℓ1 = i means that v ∈ Ai ;
then ℓ2 = j means that v ∈ Bji , etc. It is intuitive to think of this

partitioning as a β-ary tree with depth k = logβ
m

logm . Then, the

pth label ℓp indicates that in the pth , node v chose the branch of

the parititon tree corresponding to the child number ℓp .

We would like to have two properties about this partitioning: (P1)

We want the partitioning to be nearly-uniform in all levels. More

concretely, we want that for each label prefix (ℓ1, ℓ2, . . . , ℓp) for
p ∈ [1,k], the number of nodes whose label starts with this prefix

should be Θ(mβp). In other words, at each level of the partitioning

tree, the size of the subtrees rooted in the nodes of that level should

be almost equal. (P2) We would like that each node v can know the

full label of each other node u.
Random partitioning gives (P1) but not (P2). More concretely, if

we make each nodev put itself on a random one of the leaves of the

β-ary tree of depth k = logβ
m

logm , then with high probability, all

the leaves would have Θ(logm) nodes. Therefore, we would have

the near-uniformity property of (P1). However, with such a fully

random assignment, we will not have property (P2), meaning that

a node v would not know the partition label of another node u.
To overcome this problem and satisfy property (P2), instead of

using fully random assignments, we use a pseudo-random partition-

ing. In particular, we use Θ(logn)-wise independent hash functions

that map the set of IDs to the leaves of the β-ary tree of depth

k = logβ
m

logm . Here, W -wise independence for W = Θ(logn)

means that for any set ofW IDs, the probability that they are all

mapped to one leaf is the same as in the fully random mapping,

i.e., equal to
1

(βk)W
. It is known that to construct such a hash func-

tion, Θ(W logn) = Θ(logn) bits of randomness suffice[3]. That is,

one can use these Θ(log2 n) bits to pick a random hash function

among 2
Θ(log2 n)

deterministic hash functions, in a way that en-

sures the desired Θ(logn)-wise independence. We make the leader

of the network node pick Θ(log2 n) random bits, and then we de-

liver these bits to all nodes. Note that this can be done easily in

O (D logn) = O (τmix logn) rounds of G. That allows nodes to com-

pute these hash functions.

On the other hand, one can use extensions of the Chernoff bound

toΘ(logn)-wise independent random variables[66] to conclude that

when mappingm nodes of G0 using these Θ(logn)-wise indepen-
dent hash functions, each leaf gets Θ(logm) nodes, w.h.p. Hence,
we have the near-uniformity described in property (P1).

Adding Portals to the Hierarchical Construction: During our

routing, some of the packets will be kept and routed within the

same branch of the partition, whereas others need to be hopped to

the other branch. For instance, a packet residing in a node s ∈ Ai
may be destined for a node t ∈ Aj , Ai . In this case, we need to first
deliver the packet to a node t ′ ∈ Ai such that t ′ has a G0-neighbor

s ′ in the set Aj , and then to hop the packet from t ′ to s ′, and finally
route it from s ′ to s , recursively. In this case, we refer to t ′ as the
portal of node s ∈ Ai towards the set Aj . We now describe how we

augment our hierarchical routing structure with these portals.

We describe the process for the first level of the hierarchical

construction. A similar procedure is used for the other levels. For

the first level, we would like that for each i, j ∈ {1, 2, . . . , β }, each
node s ∈ Ai knows the label of a node t

′ ∈ Ai , such that t ′ has a
G0-neighbor s

′
in the set Aj . In this case, node t ′ will be known

as the portal of node s ∈ Ai to the set Aj . Furthermore, we want

an additional uniformity property for these portals, as follows. We

would like that the portal of each node s ∈ Ai towards setAj should

be chosen uniformly at random among nodes of Ai that have G0-

neighbors in Aj . The randomness in the choice of the portals t ′ for
different nodes s ∈ Ai will be independent. The next lemma states

that we can add these portals to our hierarchical embedding, within

the promised round complexity.

Lemma 3.3. We can add the random portals to the hierarchical

structure in 2
O (
√
logn log logn) rounds.

Proof of Lemma 3.3. This part of the construction will be in

Õ (β2) rounds of G0, where we spend Θ̃(β) rounds to identify the

portals towards set Aj , for each j ∈ {1, 2, . . . , β }. Fix one Aj , we

desribe how various sets Ai can find their portals towards Aj in

Θ(β) rounds.
We start β random walks from each node s ∈ Ai and we run

these random walks onG1[Ai] forO (logn) steps. We do this simul-

taneously for all Ai . This will take O (β logn) rounds of G1, which

means O (β log3 n) rounds of G0. At the end, random walks that

are sitting on nodes that have a connection to Aj are considered

successful. Notice that sinceG0 is aG (m,p) random graph, there are

Θ(m/β)2p = Θ(m logn/β2) nodes of Ai that have neighbors in Aj ,

that is, a O (logn/β) fraction of nodes of Ai . Hence, among the β
random walks of s , we expectO (logn) to be successful. That means,

with high probability, Θ(logn) of them are successful. We then run

these successful random walks backwards towards their sources,

thus letting each node s know the label of a random portal towards

Aj . This process takes O (β logn) rounds of G1, and determines the

portals towards one fixed Aj . Hence, performing this for all j takes

O (β2 logn) rounds of G1.

Wewill perform a similar construction for each level of the hierar-

chical structure. In levelk , this portal construction takesO (β2 logn)

rounds of the graph Gk . Since β = 2
O (
√
logn log logn)

and as each

round of Gk is embedded in at most 2
O (
√
logn log logn)

rounds of

G0, per level this is at most 2
O (
√
logn log logn)

rounds of graph G0.

Moreover, even summed up over all the k = O (logn/ log β) levels,

this is still O (logn/ log β) · 2O (
√
logn log logn) = 2

O (
√
logn log logn)

rounds, for learning all the portals. �

3.2 Routing on the Hierarchical Structure
In this subsection, we explain how we use the described hierar-

chical structure to solve packet routing. Concretely, the problem

we address is defined as follows: the input is a number of source-

destination pairs (si , ti) where for each i we should deliver one

message from the source node si ∈ G to the destination node ti ∈ G .
For each packet, the source si knows the ID of the destination ti .
We are also given the promise that each node v ∈ G is the source

or destination in at most dG (v) · O (logn) packets. We explain a

method that solves this problem in τmix · 2
O (
√
logn log logn)

rounds
3
.

The method is recursive, with one level of recursion for each level

of the hierarchical structure.

A Preparation Step: Before starting the recursion, we redistribute
the packets uniformly and randomly onG0. Make each packet take

a regular walk of length τmix on G, starting from its source. At the

end, if the packet ended up in a node u ∈ G, assign it to a random

G0-node u0 simulated by u. By Lemma 2.5, all these walks can be

performed in O (τmix log
2 n) rounds. At the end, the packets are

distributed uniformly among nodes of G0, and there are O (logn)
source tokens in each G0-node, with high probability. From now

on, we work with these randomly redistributed packets.

The Recursion: We now explain the recursion for the packet rout-

ing problem, corresponding to our hierarchical structure. We solve

the problem of routing on anm-node random graphG0 by two con-

secutive iterations of routing on random graphs with Õ (m/β) nodes,
and some smaller transitional steps between these two recursions.

Consider the first random graphG0 as well as the setsA1,A2, . . . ,

Aβ . For each packet with source and destination pair (sℓ , tℓ), there
are two cases: either (1) the source sℓ and destination tℓ are in the

same set Ai , or (2) the source is in set Ai and the destination is in a

different set Aj , Ai . The former case can be directly solved as a

problem of routing on the smaller graphG1[Ai], which has Θ(m/β)
nodes, thus allowing recursion. The more interesting case is the

latter. For the latter case, our approach is to first route the source

token from sℓ to the portal node t ′ ∈ Ai of sℓ towards Aj , which is

adjacent toAj in graphG0. This portal node t
′
will be considered as

the temporary destination while routing in Ai . Notice that node sℓ
can know j because node sℓ knows the hierarchical partition label

of the destination tℓ of the packet, by applying the common random

hash function to the ID of tℓ , as described above. Since sℓ knows
j, it can choose the portal t ′ as the temporary destination of the

packet, while routing in Ai . Once the packet arrives at the portal
t ′, we hop it over to a node s ′ ∈ Aj that is G0-neighbor of t

′
. Then,

we route the packet from s ′ to its destination tℓ in Aj . The first

and last part in this method are essentially smaller instances of the

same routing problem, respectively, on G1[Ai] and G1[Aj]. Hence,

to solve the routing on the random graphG0 withm nodes, we use

two times of routing on each of disconnected random graphs ofG1

with Θ(m/β) nodes, as well as one time of hopping between the

two sets. We next examine the round complexity of this recursion.

3
Notice that the method can be easily extended to the case where each node is source

or destination for up to K = 2
O (
√
logn log logn)

messages: randomly put each message

in one of K phases. This ensures that per phase, each node is source or destination

for O (logn) pairs. Solve each phase using the algorithm claimed above. Overall this

becomes K · 2O (
√
logn log logn) = 2

O (
√
logn log logn)

rounds.

Lemma 3.4. The round complexity of the described hierarchical

routing problem is 2O (
√
logn log logn) rounds of G0, which means

τmix · 2
O (
√
logn log logn) rounds of the base network G.

Proof. Let us use T (m) to denote the complexity of routing

onm-node random graph G0 with O (logn) tokens per node. We

argue that T (m) = 2T (Θ(m/β)) ·O (log2 n) +O (logn). Once that is

established, given that β = 2
O (
√
logn log logn)

and logm = Θ(logn),

we get T (m) = 2
O (
√
logn log logn)

.

In the recursion T (m) = 2T (Θ(m/β)) ·O (log2 n) +O (logn), the
first term appears because of the following reason: to solve the

m-node problem, we need to run two instances of Θ(m/β) node
routing, one after the other. Moreover, these two subproblems are

routing on G1[Ai] and G1[Aj], i.e., they are by communicating

over graph G1, which itself is embedded on G0 with a emulation

round complexity overhead of an O (log2 n) factor. That is, each
communication round of the graphG1 can be emulated inO (log2 n)
communication rounds of the graph G0.

We next explain the second term of the recursion. We partic-

ularly explain that we have enough capacity in G0 to route the

messages between different sets Ai in just O (logn) rounds. Fix an
arbitrary pair of subsets Ai and Aj . Note that since G0 is an Erdős-

Rényi graph G (m,p), the number of G0-edges between Ai and Aj
is Θ(m/β)2p = Θ(m logn/β2). We note that this is under the as-

sumption that β ≤
√
m, which is clearly satisfied for our choice of

β = 2
O (
√
logn log logn)

. On the other hand, since the source tokens

are distributed uniformly and each node is destination for O (logn)
tokens, the number of source tokens residing in Ai destined for Aj
is Θ(m logn/β) · 1/β = Θ(m logn/β2). Hence, the number of the

edges betweenAi andAj inG0 is, up to constant factor, equal to the

number of the messages that should be passed from Ai to Aj . This

means hopping the messages fromAi toAj can be done inO (logn)
rounds, as we spread the messages in Ai essentially uniformly over

the endpoints of edges connecting to Aj , i.e., the portals. �

4 APPLICATIONS: MINIMUM SPANNING
TREE AND MIN CUT

In this section, we explain our distributed MST algorithm. In any

weighted graph G = (V ,E,W), this algorithm computes a mini-

mum spanning tree in τmix · 2
O (
√
logn log logn)

rounds. The core

novelty in this result the hierarchical routing method developed in

the previous section. Here, we explain how to incorporate this hier-

archical routing method in the standard approach of Boruvka[58]

for computing a minimum spanning tree. This will require a few

smaller new ideas, as we next explain.

The overall outline of our algorithm follows the classic approach

of Boruvka[58] for computing an MST, which is also the base of

most distributed MST algorithms [28, 29, 44, 52]. This approach

has O (logn) iterations. The key ingredient for us is to implement

each iteration in 2
O (
√
logn log logn)

rounds, using our hierarchical

routing scheme. Let us first briefly recall Boruvka’s approach.

Recalling Boruvka’s Approach: We start with an empty span-

ning forest F = (V , ∅). In O (logn) iterations, we gradually add

more and more edges to F , until it becomes a tree. Consider one

iteration and the connected components of the current forest F .
Assuming that all edge weights are distinct, it is well-known that

the MST is unique, and moreover, for each component C of F , the
minimum weight edge that connectsC toV \C belongs to the MST.

We can add all such edges to F . This is one iteration of Boruvka’s

approach. One can see that this reduces the number of components

by (at least) a factor 2. Thus, after logn iterations, we have a tree.

A Small Change in Boruvka’s Approach: To have efficient dis-

tributed implementation of each iteration, we make a minor change,

as follows: per iteration, each component tosses a fair coin and de-

cides randomly to be either a head component or a tail component,

each with probability 1/2. Different components decide indepen-

dently. We then add to the MST only minimum-weight outgoing

edges that go from a tail component to a head component. It is easy

to see that per iteration, the number of components goes down by

a constant factor, in expectation. Hence, using Markov’s inequality,

we see that after O (logn) iterations, we reach a tree, w.h.p. Thus,

even with this random merging, O (logn) iterations suffice. The ad-

ditional nice property provided by these random coins is as follows:

now, each new component is the result of a star shaped merge of

old components, where tail components merge with a central head

component. Thus, in terms of the number of components, each

merge has diameter 2. This simplifies the distributed computation

of new components and the related structures.

Implementing Each Iteration of Boruvka using our Hierar-
chical Routing: We now explain how in each iteration, we com-

pute the minimum-weight outgoing edges of different components,

in τmix ·2
O (
√
logn log logn)

rounds, and howwe compute the identify

the resulting merged components. Let F be the current forest, at

the beginning of the iteration. For each component C of the for-

est F , we maintain a virtual tree T (C) spanning C . These virtual
trees will be used for organizing the process of routing messages

while computing the minimum weight edges. Particularly, we will

preserve three key properties for these trees: (2) the depth of each

virtual tree T (C) is at mostO (log2 n), (2) in each virtual tree T (C),
each nodev ∈ G[C] has at most dG (v) ·O (logn) edges, and (3) each
virtual node knows its parent in the virtual tree T (C).

We explain in the proof of Lemma 4.1 how to preserve these

properties throughout the iterations. Let us discuss how we use

these trees. To compute the minimum weight outgoing edge of

each component C , we use a simple minimum computation upcast

on the virtual tree T (C) of the component, as follows: we start

with the bottom level of T (C) and each node sends to its T (C)-
parent its minimum-weight edge going out of C . This is done in

τmix ·2
O (
√
logn log logn)

rounds, by invoking the hierarchical routing

scheme described in the previous section.We can invoke the routing

scheme because of two reasons: (1) each nodev in T (C) has degree
at most dG (v) ·O (logn), which means each node is the source or

destination of at most dG (v) ·O (logn) messages, and (2) each node

knows its parent, which is the destination of its packet.

We repeat this procedure once for each level of T (C), and thus

O (log2 n) times in total. Each time, when a node receives some

outgoing edges from its virtual tree children, and possibly having

some of its own, it only remembers the outgoing edge with the

smallest weight, and forwards this minimum to its own T (C)-
parent in the next upcast step. Since the virtual tree has depth

O (log2 n), after O (log2 n) upcast steps, the root of the virtual tree
gets the minimum weight outgoing edge of componentC . Then, by
reversing the direction of these communications, we can deliver this

minimum weight outgoing edge e∗ to all nodes of the component,

within the same round complexity. This particularly informs the

node at the endpoint of this chosen minimumweight outgoing edge

e∗ that edge e∗ should be added to the MST. The next lemma shows

that we can maintain these virtual trees throughout the merges.

Lemma 4.1. Throughout the iterations, usingτmix·2
O (
√
logn log logn)

rounds of computation per iteration, we can preserve the three key
properties of virtual trees: (1) the depth of each virtual tree T (C) is
at most O (log2 n), (2) in each virtual tree T (C), each node v ∈ G[C]
has at most dG (v) ·O (logn) edges, and (3) each node knows its parent
in the virtual tree.

Proof of Lemma 4.1. Initially, when each F -component is just a

singleton node, the related virtual tree is also simply that singleton

node. What we need to explain is how maintain the virtual tree,

when some components of F merge. That is, how to construct the

virtual tree of a new component resulting from the merge of a

number of F -components C0, C1, . . . , Ck merge, where C0 is the

component of the merge, who had a head coin toss, andC1 toCk are

the tail components of the merge. This construction/maintenance

is done in a manner that provides the above three properties.

We merge the their virtual trees of T (C0), T (C1), . . . , T (Ck), as
follows: For each i ∈ [1,k], let ei be the minimum weight outgoing

edge connecting Ci to C0, which is to be added to F , and let node

vi ∈ C0 be the physical endpoint of ei in C0. Let v
′
i ∈ T (Ci) be the

virtual node corresponding to vi . We then define v ′i as the virtual
parent of the root of T (Ci). For each node vi ∈ C0, this adds at

most dG (v) new incoming virtual edges for vi . Hence, over the
O (logn) iterations of Burovka’s approach, the number of virtual

edges incoming to vi is at most dG (v) ·O (logn), as desired.
This step may increase the depth of the virtual tree. We now

start a sort of a balancing process, where we redefine the parents

of these virtual nodes v ′i , and consequently their new parents, in a

way that allows us to bound the depth of the virutal tree.

This process of finding new parents will be done by walking up

the virtual tree of T (C0), starting from nodes v ′i , which are the

virtual nodes corresponding to the C0 endpoints of recently added

F -edges. We start from the bottom level of T (C0) and move up in

a synchronous manner, each time going one level higher in T (C0).
During this process, we try to redefine the parents of v ′i in a way

that they induce a shallow tree, similar to a balanced binary tree.

Concretely, the process is as follows: we create one token at each

virtual nodev ′i . Then, we upcast these tokens from the deepest level

of T (C0) towards its root. Whenever two or more tokens arrive

(simultaneously) at a node v ∈ T (C0), we essentially merge them.

Then, we create a new token at this merge point, and we upcast

only this new token towards the root of T (C0).
The merge process has some steps, as follows. Suppose two or

more tokens arrived at v ∈ T (C0). For each of these tokens, if the

token’s creation point was a child u of v , we do not do anything

and just keep v as the parent of u in the virtual tree. Otherwise, we

create a new virtual edge, which connects the creation pointw of

the token to a child u of v , where u is the child through which the

token arrived at v . Then, node u is the new parent of nodew . Node

v still remains as the parent of u. Notice that in this case, node u
was not one of the places were two or more tokens merged, and

hence, we have increased the in-degree of u by at most 1. On the

other hand, the in-degree of node v does not change. Now, node

v creates a new token, and sends it upwards in T (C0), effectively
searching for a new parent for itself.

Throughout this balancing process, each node’s in-degree grows

by an additive one. This is in addition to the at most dG (v) in-edges
added at the beginning to each nodev , which correspond to the just
merged F -edges. Hence, over all theO (logn) iterations of Boruvka,
the in-degree of each node v is at most dG (v) ·O (logn).

We now discuss the depth. In each iteration of Boruvka’s ap-

proach, when we do the virtual tree maintenance described above,

each virtual node’s distance from its root increases by at most an

additiveO (logn). Hence, overall the distance from the root remains

bounded to O (log2 n). The O (logn) increase is because the addi-
tion to the distance from the root is exactly the depth in the newly

defined part of the T (C0), from v ′i to the root. This part has depth

O (logn), because it is a tree where in each root-leaf path, each

other node has at least 2 children. �

By incorporating this method into the framework of [31, Section

5], essentially in a black-box manner, we can compute a (1 + ε)
approximation of the min-cut, for any constant ε > 0, in τmix ·

2
O (
√
logn log logn)

rounds. We defer the details to the full version.

REFERENCES
[1] David Aldous and Jim Fill. 2002. Reversible Markov chains and random walks on

graphs. (2002).

[2] Noga Alon, Chen Avin, Michal Kouckỳ, Gady Kozma, Zvi Lotker, and Mark R

Tuttle. 2011. Many random walks are faster than one. Combinatorics, Probability
and Computing 20, 04 (2011), 481–502.

[3] Noga Alon and Joel H Spencer. 2004. The probabilistic method. John Wiley &

Sons.

[4] John Augustine, Gopal Pandurangan, Peter Robinson, Scott Roche, and Eli Upfal.

2015. Enabling Robust and Efficient Distributed Computation in Dynamic Peer-

to-Peer Networks. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on. IEEE, 350–369.

[5] Chen Avin, Michael Borokhovich, Zvi Lotker, and David Peleg. 2014. Distributed

computing on core-periphery networks: Axiom-based design. In International
Colloquium on Automata, Languages, and Programming. Springer, 399–410.

[6] Chen Avin, Michal Kouckỳ, and Zvi Lotker. 2008. How to explore a fast-changing

world (cover time of a simple random walk on evolving graphs). In International
Colloquium on Automata, Languages, and Programming. Springer, 121–132.

[7] B. Awerbuch. 1987. Optimal distributed algorithms for minimum-weight span-

ning tree, counting, leader election and related problems. In Proc. of the 19th
Symposium on Theory of Computing (STOC). 230–240.

[8] Baruch Awerbuch and Christian Scheideler. 2004. The hyperring: a low-

congestion deterministic data structure for distributed environments. In Pro-
ceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, 318–327.

[9] Alkida Balliu, Pierre Fraigniaud, Zvi Lotker, and Dennis Olivetti. 2016. Sparsifying

congested cliques and core-periphery networks. In International Colloquium on
Structural Information and Communication Complexity. Springer, 307–322.

[10] Florent Becker, Antonio Fernandez Anta, Ivan Rapaport, and Eric Reémila. 2015.

Brief Announcement: A Hierarchy of Congested Clique Models, from Broadcast

to Unicast. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC) (PODC
’15). ACM, 167–169.

[11] Andrew Berns, James Hegeman, and Sriram V Pemmaraju. 2012. Super-fast

distributed algorithms for metric facility location. In Automata, Languages, and
Programming. Springer, 428–439.

[12] AZ Broder, AM Frieze, and E Upfal. 1997. Existence and construction of edge low

congestion paths on expander graphs. In Proc. of the Symp. on Theory of Comp.
(STOC). 531–539.

[13] Andrei Z Broder, Alan M Frieze, and Eli Upfal. 1994. Existence and construction

of edge-disjoint paths on expander graphs. SIAM J. Comput. 23, 5 (1994), 976–989.
[14] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami

Paz, and Jukka Suomela. 2015. Algebraic Methods in the Congested Clique. In

the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). ACM, 143–152.

[15] F Chin and HF Ting. 1985. An almost linear time and O (nlogn+ e) messages

distributed algorithm for minimum-weight spanning trees. In Proc. of the Symp.
on Found. of Comp. Sci. (FOCS). 257–266.

[16] Colin Cooper, Alan Frieze, and Tomasz Radzik. 2009. Multiple random walks in

random regular graphs. SIAM J. on Discrete Math. 23, 4 (2009), 1738–1761.
[17] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,

Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2011. Distributed

Verification and Hardness of Distributed Approximation. In Proc. of the Symp. on
Theory of Comp. (STOC). 363–372.

[18] Atish Das Sarma, Danupon Nanongkai, and Gopal Pandurangan. 2009. Fast

distributed randomwalks. In Proceedings of the 28th ACM symposium on Principles
of distributed computing. ACM, 161–170.

[19] Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali.

2010. Efficient Distributed Random Walks with Applications. In the Proc. of the
Int’l Symp. on Princ. of Dist. Comp. (PODC). 201–210.

[20] Danny Dolev, Christoph Lenzen, and Shir Peled. 2012. âĂIJTri, Tri AgainâĂİ:

Finding Triangles and Small Subgraphs in a Distributed Setting. In Distributed
Computing. Springer, 195–209.

[21] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the Power of the

Congested Clique Model. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp.
(PODC). ACM, 367–376.

[22] Michael Elkin. 2004. A faster distributed protocol for constructing a minimum

spanning tree. In Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA). 359–368.
[23] Michael Elkin. 2004. Unconditional Lower Bounds on the Time-approximation

Tradeoffs for the Distributed Minimum Spanning Tree Problem. In Proc. of the
Symp. on Theory of Comp. (STOC). 331–340.

[24] Pául Erdos. 1942. On an elementary proof of some asymptotic formulas in the

theory of partitions. Annals of Mathematics (1942), 437–450.
[25] Alan M Frieze. 1998. Disjoint paths in expander graphs via random walks: A

short survey. In Rand. and Approx. Techniques in Comp. Sci. Springer, 1–14.
[26] Alan M Frieze. 2001. Edge-disjoint paths in expander graphs. SIAM J. on Com-

puting 30, 6 (2001), 1790–1801.

[27] Eli Gafni. 1985. Improvements in the time complexity of two message-optimal

election algorithms. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC).
ACM, 175–185.

[28] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. 1983. A distributed

algorithm for minimum-weight spanning trees. ACM Trans. on Programming
Languages and systems (TOPLAS) 5, 1 (1983), 66–77.

[29] J. Garay, S. Kutten, and D. Peleg. 1998. A sub-linear time distributed algorithm

for minimum-weight spanning trees. SIAM J. Comput. 27 (1998), 302–316.
[30] Mohsen Ghaffari. 2016. An Improved Distributed Algorithm for Maximal Inde-

pendent Set. In Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA).
[31] Mohsen Ghaffari and Bernhard Haeupler. 2016. Distributed Algorithms for Planar

Networks II: Low-Congestion Shortcuts, MST, and Min-Cut. In Pro. of ACM-SIAM
Symp. on Disc. Alg. (SODA).

[32] M. Ghaffari and F. Kuhn. 2013. Distributed Minimum Cut Approximation. In

Proc. of the Int’l Symp. on Dist. Comp. (DISC). 1–15.
[33] Mohsen Ghaffari and Merav Parter. 2016. MST in Log-Star Rounds of Congested

Clique. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). 19–28.
[34] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Low-congestion

shortcuts without embedding. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing. ACM, 451–460.

[35] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Near-Optimal Low-

Congestion Shortcuts on Bounded Parameter Graphs. In International Symposium
on Distributed Computing. Springer, 158–172.

[36] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardesh-

mukh, and Michele Scquizzato. 2015. Toward Optimal Bounds in the Congested

Clique: Graph Connectivity and MST. In the Proc. of the Int’l Symp. on Princ. of
Dist. Comp. (PODC). ACM, 91–100.

[37] James W Hegeman and Sriram V Pemmaraju. 2014. Lessons from the congested

clique applied to MapReduce. In the Proceedings of the International Colloquium
on Structural Information and Communication Complexity. Springer, 149–164.

[38] James W Hegeman, Sriram V Pemmaraju, and Vivek B Sardeshmukh. 2014.

Near-constant-time distributed algorithms on a congested clique. In Distributed
Computing. Springer, 514–530.

[39] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. A

deterministic almost-tight distributed algorithm for approximating single-source

shortest paths. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing. ACM, 489–498.

[40] Mark Jerrum and Alistair Sinclair. 1989. Approximating the permanent. SIAM
journal on computing 18, 6 (1989), 1149–1178.

[41] Maleq Khan and Gopal Pandurangan. 2008. A fast distributed approximation

algorithm for minimum spanning trees. Distributed Comp. 20, 6 (2008), 391–402.
[42] Janne H Korhonen. 2016. Deterministic MST Sparsification in the Congested

Clique. arXiv preprint arXiv:1605.02022 (2016).
[43] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. 2010. Towards worst-case

churn resistant peer-to-peer systems. Distributed Comp. 22, 4 (2010), 249–267.
[44] Shay Kutten and David Peleg. 1995. Fast Distributed Construction of K-

dominating Sets and Applications. In the Proc. of the Int’l Symp. on Princ. of
Dist. Comp. (PODC). 238–251.

[45] Ching Law and Kai-Yeung Siu. 2003. Distributed construction of random expander

networks. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications. IEEE Societies, Vol. 3. IEEE, 2133–2143.

[46] FT Leighton and Satish Rao. 1996. Circuit switching: a multicommodity ow based

approach,". In Proc. of a Workshop on Randomized Parallel Comp.
[47] Tom Leighton, Chi-Jen Lu, Satish Rao, and Aravind Srinivasan. 2001. New algo-

rithmic aspects of the Local Lemma with applications to routing and partitioning.

SIAM J. Comput. 31, 2 (2001), 626–641.
[48] Tom Leighton and Satish Rao. 1999. Multicommodity max-flowmin-cut theorems

and their use in designing approximation algorithms. Journal of the ACM (JACM)
46, 6 (1999), 787–832.

[49] Tom Leighton, Satish Rao, and Aravind Srinivasan. 1998. Multicommodity flow

and circuit switching. In System Sciences, 1998., Proceedings of the Thirty-First
Hawaii International Conference on, Vol. 7. IEEE, 459–465.

[50] Christoph Lenzen. 2013. Optimal Deterministic Routing and Sorting on the

Congested Clique. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC).
42–50.

[51] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. 2001. DistributedMST for constant

diameter graphs. In Proceedings of the twentieth annual ACM symposium on
Principles of distributed computing. ACM, 63–71.

[52] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. 2006. DistributedMST for constant

diameter graphs. Distributed Computing 18, 6 (2006), 453–460.

[53] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. 2003. MST construc-

tion in O(log loдn) communication rounds. In the Proceedings of the Symposium
on Parallel Algorithms and Architectures. ACM, 94–100.

[54] László Lovász. 1993. Random walks on graphs: A survey. Combinatorics, Paul
erdos is eighty 2, 1 (1993), 1–46.

[55] Peter Mahlmann and Christian Schindelhauer. 2005. Peer-to-peer networks

based on random transformations of connected regular undirected graphs. In the
Proceedings of the Symposium on Parallel Algorithms and Architectures. 155–164.

[56] Danupon Nanongkai. 2014. Distributed Approximation Algorithms for Weighted

Shortest Paths. In Proc. of the Symp. on Theory of Comp. (STOC).
[57] D. Nanongkai and H.-H. Su. 2014. Almost-Tight Distributed Minimum Cut

Algorithms. In Proc. of the Int’l Symp. on Dist. Comp. (DISC). 439–453.
[58] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. 2001. Otakar Boruvka on

minimum spanning tree problem translation of both the 1926 papers, comments,

history. Discrete Mathematics 233, 1 (2001), 3–36.
[59] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: bringing order to the web. (1999).

[60] Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. 2014. DEX: self-

healing expanders. In Parallel and Distributed Processing Symposium, 2014 IEEE
28th International. IEEE, 702–711.

[61] Gopal Pandurangan and Amitabh Trehan. 2011. Xheal: localized self-healing

using expanders. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC).
ACM, 301–310.

[62] Gopal Peer-to-Peer Networks Pandurangan, Prabhakar Raghavan, Eli Upfal,

et al. 2003. Building low-diameter peer-to-peer networks. Selected Areas in
Communications, IEEE Journal on 21, 6 (2003), 995–1002.

[63] Boaz Patt-Shamir and Marat Teplitsky. 2011. The round complexity of distributed

sorting. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). 249–256.
[64] D. Peleg and V. Rubinovich. 2001. A near-tight lower bound on the time complex-

ity of distributed MST construction. SIAM J. Comput. 30, 5 (2001), 1427–1442.
[65] David Peleg and Eli Upfal. 1989. Constructing disjoint paths on expander graphs.

Combinatorica 9, 3 (1989), 289–313.
[66] Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. 1995. Chernoff-

Hoeffding bounds for applications with limited independence. SIAM Journal on
Discrete Mathematics 8, 2 (1995), 223–250.

[67] Daniel A. Spielman. 2015. Spectral Graph Theory : Random Walks on Graphs.

lecture notes. (2015). http://www.cs.yale.edu/homes/spielman/561/2012/lect10-

12.pdf.

[68] Frank Spitzer. 2013. Principles of random walk. Vol. 34. Springer Science &

Business Media.

[69] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-

nan. 2001. Chord: A scalable peer-to-peer lookup service for internet applications.

ACM SIGCOMM Computer Communication Review 31, 4 (2001), 149–160.

[70] GWeiss. 2005. Aspects and Applications of the RandomWalk (Random Materials

& Processes S.). (2005).

	Abstract
	1 Introduction & Related Work
	2 Preliminaries
	3 Distributed Permutation Routing in Almost Mixing Time
	3.1 The Routing Structure via Hierarchical Embedding of Random Graphs
	3.2 Routing on the Hierarchical Structure

	4 Applications: Minimum Spanning Tree and Min Cut
	References

