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ABSTRACT
We present a simple distributed ∆-approximation algorithm for max-
imum weight independent set (MaxIS) in the CONGEST model
which completes in O(MIS(G) · logW ) rounds, where ∆ is the maxi-
mum degree, MIS(G) is the number of rounds needed to compute a
maximal independent set (MIS) onG, andW is the maximum weight
of a node. Plugging in the best known algorithm for MIS gives a
randomized solution in O(logn logW ) rounds, where n is the num-
ber of nodes. We also present a deterministic O(∆ + log∗ n)-round
algorithm based on coloring.

We then show how to use our MaxIS approximation algorithms to
compute a 2-approximation for maximum weight matching without
incurring any additional round penalty in the CONGEST model. We
use a known reduction for simulating algorithms on the line graph
while incurring congestion, but we show our algorithm is part of a
broad family of local aggregation algorithms for which we describe
a mechanism that allows the simulation to run in the CONGEST
model without an additional overhead.

Next, we show that for maximum weight matching, relaxing the
approximation factor to (2 + ε) allows us to devise a distributed
algorithm requiring O(

log∆
log log∆ ) rounds for any constant ε > 0. For

the unweighted case, we can even obtain a (1 + ε)-approximation in
this number of rounds. These algorithms are the first to achieve the
provably optimal round complexity with respect to dependency on
∆.
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1 INTRODUCTION
We address the fundamental problems of approximating the max-
imum independent set and the maximum matching of a graph in
the classic distributed CONGEST model [40]. In this model, the n
nodes of the graph communicate in synchronous rounds, by sending
one O(logn)-bit message per round along links of the graph. Table 1
summarizes our contributions. Below, we elaborate on our results,
the challenges, and how we overcome them.

Problem Approx. Prev. Results Our Results notes

MaxIS | MWM ∆ | 2 — O(MIS(G) logW ) rand.
MaxIS | MWM ∆ | 2 — O(∆ + log∗ n) det.
MWM 2 + ε O(logn) O(log∆/log log∆) rand.
MCM 1 + ε O(logn) O(log∆/log log∆) rand.

Table 1: Summary of results for the CONGEST model. Here n
denotes the number of nodes, ∆ is their maximum degree, and
W is the maximum weight.

1.1 Our Results, Part I: Better Approximations
∆-approximation algorithms for maximum weight independent

set. We present a simple distributed ∆-approximation algorithm for
maximum weight independent set (MaxIS), where ∆ is the maxi-
mum degree, which completes in O(MIS(G) · logW ) rounds, where
MIS(G) is the number of rounds needed to compute a maximal inde-
pendent set (MIS) onG, andW is the maximum weight of a node. As
standard, we assume thatW is at most polynomial in n, so that the
weight of each edge can be described in one message. Our algorithm
adapts the local ratio technique [7] for maximization problems [4]
to the distributed setting in a novel, yet simple, manner. Roughly
speaking, in the simplest form of this technique, one repeatedly picks
a node v and reduces its weight from every u ∈ N (v), where N (v)
is the set of neighbors of v. Every neighbor u ∈ N (v) whose weight
becomes less than or equal to zero is removed from the graph, while
v is added to a stack. We repeat this process with the induced graph
until no nodes remain. We then begin popping nodes from the stack,
adding them to the independent set if they have no neighbors in the
set. This yields a ∆-approximation.

The challenge in translating this framework to the distributed
setting is that if we allow all nodes to perform weight reductions
simultaneously, then the above does not hold. For example, con-
sider a star graph where the weight of the center is larger than the
weight of any of its neighbors but smaller than their sum. After a
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single iteration the weights of all the nodes become negative, and
no node gets selected. However, we show that if we first compute
an independent set and then go on to perform weight reductions we
achieve a ∆-approximation factor, while allowing using the power of
parallelism. At each iteration we find an MIS, and the nodes chosen
to the MIS perform weight reductions. This process is repeated until
no nodes with positive weight remain. Nodes are then added to the
independent set in reverse order of removal while maintaining the
independence constraints. To analyze the running time, our main
technique is to group the nodes into logW layers based on their
weight. At each iteration, all of the nodes from the topmost layer
move to lower layers.

This results in a round complexity of O(MIS(G) · logW ) in the
CONGEST model. Our algorithm is deterministic apart from using
a black-box algorithm to find an MIS at each iteration. Whether
our algorithm is randomized or deterministic depends on the MIS
algorithm it uses as a black-box.

We also present a deterministic coloring-based algorithm running
in O(∆ + log∗ n) rounds. Here we first color the graph using ∆ + 1
colors, and then use each color group as an independent set to
perform weight reductions as in the previous algorithm.

2-approximation algorithms for maximum weighted matching.
We use a known reduction to simulate algorithms on the line graph
[30], our MaxIS ∆-approximation algorithm gives a 2-approximation
for maximum weight matching. Simulating an execution on the line
graph in a naive fashion results in a O(∆) multiplicative overhead
in the CONGEST model. We show our algorithm is part of a broad
family of local aggregation algorithms for which we describe a
mechanism which allows the simulation to run in the CONGEST
model without added overhead.

Our deterministic coloring-based algorithm has a favorable run-
ning time compared to the algorithm presented in [17] with pa-
rameters that result in a 2-approximation. Our randomized algo-
rithm improves upon the (2 + ϵ)-approximation factor of [34]. Us-
ing the maximal matching algorithm of [10] on the original graph
as an MIS algorithm on the line graph we get a running time of
O((log∆+log4 logn)·logW ) 1, with high probability, for the LOCAL
model, and using Luby’s classical MIS algorithm[37], we get an
O(logn · logW ) algorithm2 for the CONGEST model. For constant
values ofW , this is O(logn) rounds.

1.2 Our Results, Part II: Faster Approximations
Approximations with Optimal Time-Complexity: We provide two

approximations algorithms for maximum matching that achieve the
optimal round complexity ofO(log∆/log log∆): The first achieves a
(2+ϵ)-approximation of maximum weight matching, and the second
a (1 + ϵ)-approximation of maximum cardinality matching, for any
constant ε > 0.

These two algorithms improve upon the O(logn)-round algo-
rithms of Lotker et al.[35] for the same problems and same approxi-
mation guarantees. Furthermore, these two algorithms are the first
constant-approximation algorithms that achieve an optimal round
complexity, matching the Ω(log∆/log log∆) lower bound of Kuhn

1Note that ∆ and n are the parameters of the original graph and not the line graph.
2Here the MIS algorithm is executed on the line graph, so we get O (MIS(G)) =

O (logn2) = O (logn).

et al. [31]. We note that this lower bound holds for any constant
approximation, and so long as log∆ ≤

√
logn.

Method Outline. A key ingredient in both of the above fast al-
gorithms is an improvement of the nearly-maximal independent
set algorithm of Ghaffari [21]. A nearly-maximal independent set
is an independent set for which each node in the graph is in the
set or has a neighbor in the set with probability at least 1 − δ for
a small δ . The main result of [21] is a maximal independent set
algorithm with round complexity of O(log∆) + 2O (

√
log logn). The

central building block in that result was finding a nearly-maximal
independent set in O(log∆) rounds. Here, we provide an improved
nearly-maximal independent set algorithm with a round complexity
of O(log∆/log log∆). This algorithm builds upon the techniques
of [21], but with some crucial modifications. The modification is
partially inspired by the ideas of the recent vertex-cover approxima-
tion algorithm of Bar-Yehuda et al. [6], of balancing two types of
progresses. While this improvement does not allow us to improve
upon Ghaffari’s MIS algorithm, it helps us in obtaining our fast
maximum matching approximation algorithms, as we discuss next.

For the (2 + ϵ)-approximation, this improved nearly-maximal
independent set algorithm is essentially enough. We run it on the
line graph of the network graph, and argue that it gives an (2 + ϵ)-
approximation of the maximum unweighted matching. To argue that
the algorithm works in the CONGEST model, even when run on the
line graph of the network graph, we use the property that this nearly-
maximal independent set algorithm is a local aggregation algorithm.
Then, we extend this approximation algorithm to the weighted case,
using techniques of [35, 36].

For the unweighted (1 + ϵ)-approximation, our goal is to use the
general framework of Hopcroft and Karp [27], in which we repeat-
edly search for short non-intersecting augmenting paths and augment
the matching with them, hence improving its size. However, in our
setting, this does not work as is and poses significant challenges. One
key challenge is that, to have the desired approximation factor, we
need a much stronger near-maximality guarantee. It does not suffice
to have a low probability for each short augmenting path to remain;
we need to show that each node has a low probability of having a re-
maining augmenting path. To overcome the obstacles, first we show
how to find a nearly-maximal matching in low-rank hypergraphs and
how to modify the algorithm for obtaining the (1+ ϵ)-approximation
guarantee in the LOCAL model.

Making the algorithm suitable for the CONGEST model is even
more demanding, in part because here we cannot explicitly work
with the structure of the intersections between short augmenting
paths; instead, we need to have a new variant of the near-maximal
independent set algorithm that works on the fly. At a high level, we
first address bipartite graphs, and show how to find a nearly-maximal
independent set of short augmenting paths in them. Since the aug-
menting paths are not known explicitly, an interesting aspect here
will be a variant of the dynamic probability adjustments in the algo-
rithm of[21]. Now, various nodes of a path might decide differently
regarding whether to raise or lower its probability. However, we will
prove that still the net effect provides a sufficient move in the right
direction. We complete by generalizing this from bipartite graphs
to all graphs, using an idea of Lotker et al. [35], which essentially
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transforms the problem into randomly chosen bipartite subgraphs of
it.

1.3 Related Work
The maximum independent set problem is known to be NP-hard, as
it is complementary to the maximum clique problem, which is one
of Karp’s 21 NP-hard problems [29]. In the sequential setting, an
excellent summary of the known results is given by [3], which we
overview in what follows. For general graphs, the best known al-
gorithm achieves a O(n log2 logn/log3 n)-approximation factor [18].
Assuming NP * ZPP , [26] shows that no (n1−ϵ )-approximation
exists for every constant ϵ > 0.

When the degree is bounded by ∆, a simple (∆+2)/3-approximation
is achieved by greedily adding the node with minimal degree to the
independent set and removing its neighbors [24]. The best known ap-
proximation factor isO(∆ log log∆/log∆) [1, 22, 23, 25, 28]. Condi-
tioned on the Unique Games Conjecture, there exist a Ω(∆/log2 ∆)-
approximation bound [2], where ∆ is constant or some mildly in-
creasing function of n. Assuming P , NP , a bound of Ω(∆/log4 ∆)
is given in [12].

As for the distributed case, [14, 32] give a lower bound of Ω(log∗ n)
rounds for any deterministic algorithm approximating MaxIS, while
[14] provide randomized and deterministic approximations for pla-
nar graphs. In [11], an O(1/ϵ)-round LOCAL randomized algorithm
forO(nϵ )-approximation is presented for the unweighted case, along
with a matching lower bound.

Maximum matching is a classical optimization problem, for which
the first polynomial time algorithm was given by Edmonds [15, 16]
for both the weighted and unweighted case. In the distributed set-
ting, the first algorithm for computing an approximate maximum
matching was given in [41], where a 5-approximation factor is
achieved w.h.p for general graphs, in O(log2 n) rounds. In [36] a
randomized (4 + ϵ)-approximation for the weighted case is given,
running in O(logn) rounds for constant ϵ > 0. This was later im-
proved in [34] to achieve a (2+ϵ)-approximation in O(log ϵ−1 logn)
rounds. In [17] a deterministic (1 + ϵ)-approximation is given, in
∆O (1/ϵ ) + O(1/(ϵ2)) · log∗ n rounds for the unweighted case, and
log(min{1/wmin ,n/ϵ})

O (1/ϵ ) · (∆O (1/ϵ ) + log∗ n) rounds for the
weighted case, where the edge weights are in [wmin , 1]. In [13]
a deterministic (1 + ϵ)-approximation is given, which finishes af-
ter O(logD(1/ε ) n) rounds, where D(1/ε) is some function of 1/ε.
Due to [31], every algorithm achieving a constant approximation
for the problem requires Ω(min{log∆/log log∆,

√
logn/log logn})

rounds.
The first distributed algorithm that uses the local ratio technique

is due to [39]. The local ratio technique was also used in [6] to
compute a distributed (2 + ϵ)-approximation for weighted vertex
cover. In [38], a similar technique of weight grouping is used in the
primal-dual framework for scheduling.

2 MAXIS APPROXIMATION
We begin, in Subsection 2.1, by showing the idea behind the use of
local ratio for approximating MaxIS. This is done by presenting a
sequential meta-algorithm and analyzing its correctness. Then, in
Subsection 2.2, we show how to implement this algorithm in the
CONGEST model, and prove the claimed round complexity.

2.1 Sequential MaxIS approximation via local
ratio

Here we provide a sequential ∆-approximation meta-algorithm to be
used as the base for our distributed algorithm. The correctness of the
algorithm is proved using the local ratio technique for maximization
problems [4]. We assume a given weighted graph G = (V ,w,E),
where w : V → R+ is an assignment of weights for the nodes and
the degree of each node is bounded by ∆. A simple ∆-approximation
local ratio algorithm exists for the problem [5]. We rely on the fol-
lowing local ratio theorem for maximization problems [5, Theorem
9] in our proof.

THEOREM 2.1. LetC be a set of feasibility constraints on vectors
in Rn . Let w,w1,w2 ∈ Rn be vectors such that w = w1 + w2.
Let x ∈ Rn be a feasible solution (with respect to C) that is r -
approximate with respect to w1 and with respect to w2. Then x is
r -approximate with respect to w as well.

In our case the vector w is the weight vector representing the
weight function of G(V ,w,E), x is a binary vector indicating which
nodes are chosen to the solution and the set of constraints C, is
the set of independence constraints. We call the graph with weight
vector w1 the reduced graph and the graph with weight vector w2
the residual graph.

As standard practice with the local ratio technique, the splitting
of the weight vector into w1,w2 is done such that any r -approximate
solution to the reduced graph can be easily transformed into an
r -approximate solution to the residual graph, while keeping it an
r -approximate solution for the reduced graph. This allows us to
apply weight reductions iteratively, solving each subproblem while
maintaining the constraints. It is important to note that the theorem
also holds if the weights in the reduced graph take negative values.

For the specific problem of MaxIS, we note that picking some
node v ∈ V and reducing the weight of v from every u ∈ N (v)
splits the weight vector w into two vectors, w1 and w2. Where
w2(v) = w(v) for every u ∈ N (v) and zero for every other node,
and w1 = w − w2. Note that any ∆-approximate solution for the
reduced graph can be easily turned into a ∆-approximate solution
for the residual graph. This is done by making sure that at least some
u ∈ N (v) is in the solution: If this is not the case, we can always
add one u ∈ N (v) to the solution without violating the independence
constraints. This only increases the value of our solution, making it
∆-approximate for both the residual and the reduced graphs.

The above solution is sequential by nature. Implementing it di-
rectly in the distributed setting will require O(n) rounds. We notice
that if two nodes are in different neighborhoods of the graph then
this process can be performed by both of them simultaneously with-
out affecting each other. This observation forms the base for our
distributed implementation.

We expand this idea by taking any independent set U ⊆ V and
for every v ∈ U reducing the weight of v from every u ∈ N (v)
in parallel. Next, solve the problem for the reduced graph. If for
some v ∈ U , every u ∈ N (v) is not in the solution for the reduced
graph, we add v to the solution for the reduced graph. This yields a
∆-approximate solution for the problem. For the sake of simplicity
let V = [n]. Let w2 be the weight vector of the residual graph
after performing weight reductions as described above for some
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independent set U ⊆ V . By definition w2[v] =
∑
u ∈U∩N (v)w[u].

The weight of the reduced graph is given by w1 = w − w2. Let
x ∈ {0, 1}n be some ∆-approximate solution for the reduced graph.
The cost of the solution x is

∑
v w[v]x[v]. Let x ′ ∈ {0, 1}n be

defined as follows:

x ′[u] =

{
1 u ∈ U ∧ ∀v ∈ N (u),x[v] = 0
x[u] otherwise

(1)

We prove the following lemma.

LEMMA 2.2. x ′ is a ∆-approximate solution for both the reduced
graph and the residual graph.

PROOF. We note that w2[u] = w[u] for every u ∈ U . Thus,
w1[u] = 0 for every u ∈ U . We do not incur any additional cost for
the reduced graph because x ′ is created by adding nodes from U to
x . Because x is ∆-approximate for the reduced graph, so is x ′.

For the residual graph, only nodes in ∪u ∈U N (u) have non zero
weights. Let x∗ ∈ {0, 1}n be an optimal solution for the residual
graph. We can bound from above the weight of x∗ by summing over
the weights of N (u) for every u ∈ U where x∗[u] = 1, taking into
account that for any neighborhood N (u), at most |N (v)| − 1 nodes
can be selected to a solution due to the independence constraints.
We get the following upper bound for the weight x∗:∑
v ∈V

w2[v]x
∗[v] =

∑
v ∈V

∑
u ∈U∩N (v)

w2[u]x
∗[u] =

∑
u ∈U

∑
v ∈N (u)

w2[u]x
∗[u]

≤
∑
u ∈U

w2[u] · (|N (u)| − 1) =
∑
u ∈U

w2[u] · deд(u) ≤ ∆
∑
u ∈U

w2[u].

On the other hand, x ′ is selected such that for each u ∈ U at
least one v ∈ N (u) is in x ′ for any u ∈ U . Thus, x ′ · w2 =∑
u ∈U

∑
v ∈N (u)w2[u] · x ′[u] ≥

∑
u ∈U w2[u], which means that x ′

is at least a ∆-approximation for x∗ on the residual graph, and the
proof is complete. �

Overview of Algorithm 1: Using Lemma 2.2 we construct a meta-
algorithm that at each iteration picks an independent set U ⊆ V ,
reduces the weights of the elements in U from their neighborhood
and calls itself recursively with the reduced weights. This implicitly
splits the graph into the reduced graph and the residual graph. A
recursive call returns a ∆-approximate solution for the reduced graph
which is turned into a ∆-approximate solution for both graphs by
adding all nodes in the independent set that do not have neighbors
in the returned solution. According to the local ratio theorem the
final solution is a ∆-approximation. Currently we are only interested
in the correctness of the algorithm, thus it does not matter how the
set U is picked. The recursive step of Algorithm 1 returns a ∆-
approximate solution for the reduced graph which is then turned into
a ∆-approximate solution for the residual graph. Correctness follows
from Lemma 2.2 combined with a simple inductive argument. In the
next section we implement this algorithm in a distributed setting.

2.2 Distributed MaxIS approximation via local
ratio

In this section we implement Algorithm 1 in the distributed setting.
We present an algorithm which iteratively finds independent sets
and finishes after logW iterations. This yields a ∆-approximation
in O(MIS(G) logW ) rounds, where MIS(G) is the running time of a

Algorithm 1: SeqLR(V ,E,w) - Sequential LR algorithm for
maximum independent set

1 if V = ∅ then
2 Return ∅

3 foreach v ∈ V do
4 if w (v) ≤ 0 then
5 V = V \ {v }

6 E = E \ {(v, u) | u ∈ V }

7 Let U ⊆ V be an independent set
8 Let w1 = w
9 foreach u ∈ U do

10 foreach v ∈ N (u) do
11 w1(v) = w (v) −w (u)

12 R = SeqLR(V , E, w1)
13 U = U \

⋃
v∈R N (v)

14 Return R ∪U

black-box MIS algorithm used. The algorithm that wraps the MIS
procedure is deterministic, while the MIS procedure may be random.
If the MIS procedure is random and finishes after T rounds w.h.p
then our algorithm requires O(T logW ) rounds w.h.p. This holds for
the CONGEST model.

From now on we assume that all node weights are integers in [W ].
The sequential meta algorithm can be implemented distributedly,
by having each node in the set perform weight reductions indepen-
dently of other nodes. The key questions left open in the transition
to the distributed setting is how to select our independent set at each
iteration and how many rounds we need. Iteratively running the MIS
procedure and performing weight reductions does not guarantee any-
thing with regard to the number of nodes removed at each iteration
or to the amount of weight reduced.

Overview of the distributed algorithm. The algorithm works by
dividing the nodes into layers according to their weights. The i-th
layer is given by Li = {v | 2i−1 < w(v) ≤ 2i }. During the algorithm
each node keeps track of the weights (and layers) of neighboring
nodes and updates are sent regarding weight changes and node
removals. We divide the algorithm into two stages: the removal stage
and the addition stage.

In the removal stage we find an independent set in the graph and
perform weight reductions exactly as in the sequential meta algo-
rithm. When finding the MIS, nodes in higher layers are prioritized
over nodes in lower layers. A node cannot start running the MIS
algorithm as long as it has a neighbor in a higher level. The most
important thing to note here is that nodes in the topmost level never
need to wait. A node who is selected to the MIS during the removal
stage is a candidate node. A node whose weight becomes zero or
negative without being added to the MIS is said to be a removed
node. Removed nodes output NotInIS and finish, while candidate
nodes continue to the addition stage. Both candidate and removed
nodes are deleted from the neighborhood of their neighbors.

In the addition stage, a candidate node v remains only with neigh-
bors with higher weights. We say these nodes have precedence over
the node v. A node v may add itself to the solution only if it has
no neighboring nodes which have precedence over it. After a node
is added to the solution, all of its neighbors become removed. This
corresponds line 13 in the sequential meta algorithm.
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Algorithm 2: A distributed ∆-approximation for weighted
MaxIS, code for node v

1 //w(v) is the initial weight of v, wv (v) changes during the run
of the algorithm

2 wv (v) = w(v)

3 ℓv (v) = ⌈logwv ⌉

4 status = waitinд

5 while true do
6 foreach reduce(x) received from u ∈ N (v) do
7 wv (v) = wv (v) − x

8 N (v) = N (v) \ {u}

9 if wv (v) ≤ 0 then
10 Send removed(v) to all neighbors
11 return NotInIS

12 foreach removed(u) received from N (v) do
13 N (v) = N (v) \ {u}

14 ℓv (v) = ⌈logwv (v)⌉

15 Send weiдhtUpdate(v,wv (v)) to all neighbors
16 foreach weiдhtUpdate(u,w ′) received from N (v) do
17 wv (u) = w

′

18 ℓv (u) = ⌈logwv (u)⌉

19 if status = waitinд then
20 if ∀u ∈ N (v), ℓv (u) ≤ ℓv (v) then
21 status(v) = ready

22 while ∃u ∈ N (v), ℓv (u) = ℓv (v) and
status(u) , ready do

23 Continue

24 v starts running MIS algorithm

25 if v in MIS then
26 Send reduce(wv (v)) to all neighbors
27 wv (v) = 0
28 status = candidate

29 else
30 status = waitinд

31 else if status = candidate then
32 if N (v) = ∅ then
33 Send addedToIS(v) to all neighbors
34 Return InIS

35 if addedToIS(u) received from N (v) then
36 Send removed(v) to all neighbors
37 Return NotInIS

The correctness of the distributed algorithm follows directly from
the correctness of the sequential meta algorithm. We are only left to
bound the number of rounds. Let us consider the communication cost
of the removal stage. We define the topmost layer to be Ltop = Lj
where j = arдmaxi Li , ∅. Note that nodes in Ltop never wait to
run the MIS, and that after the MIS finishes for Ltop , the weight of
every v ∈ Ltop is reduced by at least a factor of two, emptying that
layer. This can repeat at most logW times.

We assume a black-box MIS algorithm that finishes after MIS(G)
rounds with probability at least 1 − p.

LEMMA 2.3. With probability at least 1 − p, Ltop = ∅ after
MIS(G) rounds.

PROOF. LetG ′ be the graph induced by Ltop . By the code, nodes
in Ltop need not wait to run an MIS algorithm and as long as a node
is not in Ltop it does not participate in an MIS algorithm. With
probability at least 1 − p an MIS is selected for G ′ after MIS(G)
rounds. All nodes selected to the MIS have their weights reduced to
zero. Every other nodev has at least one neighbor in the MIS, whose
weight, by our definition of layers, is at least half of the weight of
v. Thus the weight of every node v ∈ Ltop is halved, emptying the
layer. �

We now arrive at the main theorem for this section.

THEOREM 2.4. The distributed MaxIS approximation algorithm
(Algorithm 2) finishes within O(MIS(G) · logW ) rounds with proba-
bility at least 1 − p logW in the CONGEST model. 3

PROOF. Applying a union bound over all layers, gives that all
layers are empty after at most
MIS(G) · logW iterations with probability at least 1 − p logW , by
Lemma 2.3. We require p = o(1/logW ). This bounds the communi-
cation cost for the removal stage.

Denote by Ci the set of candidate nodes from level Li . These
nodes are at level Li when they are set to be candidate nodes. Nodes
in Ci wait for neighbors with higher precedence to decided whether
they enter the solution. We note that nodes in C0 do not have any
neighbors with higher precedence. After nodes in C0 have decided,
the nodes in C1 do not have to wait and so on. Thus, all candidate
nodes make a decision after at most logW rounds. This bounds the
communication cost for the addition stage. �

2.3 Deterministic coloring-based approximation
algorithm

In this section we present a simple coloring-based ∆-approximation
algorithm for MaxIS. The advantage of this approach is that we have
no dependence onW , yielding a deterministic algorithm running in
O(∆ + log∗ n) rounds in the CONGEST model.

In the algorithm (pseudocode in Algorithm 3), instead of parti-
tioning the nodes based on weights, they are partitioned based on
colors, where colors with larger index have priority. This will result
in a runtime independent of the maximum weight. Nodes perform
weight reductions if their color is a local maxima. As in the previous
section we have two stages: removal and addition, and three types of
node states: removed, candidate and precedent. After one iteration
all nodes of the top color are either candidate or removed nodes.
Thus after ∆ + 1 iterations all nodes are either candidate or removed
nodes. Thus, the removal stage finishes in O(∆) rounds.

As in Algorithm 2, after the removal stage all candidate nodes
only have nodes who have precedence over them as their neighbors.
A node adds itself to the independent set if it has no neighbors
with precedence over it, in which case all of its neighbors become

3The MIS algorithm is always executed on the entire graph G . Thus, its success proba-
bility does not change as we move between levels.
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removed. We again note that candidate nodes of the smallest color
have no neighbors and are added to the solution. Thus, the removal
stages finishes in O(∆) rounds.

Algorithm 3: Coloring-based distributed ∆-approximation for
weighted MaxIS, code for node v

1 Run a ∆ + 1 coloring algorithm
2 Let c : v → [∆ + 1] be a coloring for the nodes
3 w(v) = wv
4 foreach reduce(w ′) received from u ∈ N (v) do
5 w(v) = w(v) −w ′

6 N (v) = N (v) \ {u}

7 if w(v) ≤ 0 then
8 Send removed(v) to all neighbors
9 return NotInIS

10 foreach removed(u) received from N (v) do
11 N (v) = N (v) \ {u}

12 if N (v) = ∅ then
13 Send addedToIS(v) to all neighbors
14 Return InIS

15 if addedToIS(u) received from N (v) then
16 Send removed(v) to all neighbors
17 Return NotInIS

18 if ∀u ∈ N (v) \ {v} it holds that c(v) > c(u) then
19 foreach u ∈ N (v) do
20 Send reduce(w(v))

21 w(v) = 0

Algorithm 3 is a distributed implementation of Algorithm 1,
where the independent set is selected via its color at each iteration.
The correctness of the algorithm follows from the correctness of Al-
gorithm 1. The number of rounds of Algorithm 3 is O(∆+ log∗ n) by
using a deterministic distributed coloring algorithm of O(∆+ log∗ n)
rounds [8, 9].4 The log∗ n factor cannot be improved upon due to a
lower bound by Linial [33].

2.4 Distributed 2-approximation for maximum
weighted matching

From the results in the previous section we can now derive local 2-
approximation algorithms for maximum matching. Let G be a graph
with weighted nodes, and let L(G) be the line graph of G. It is well
known that a maximum independent set in L(G) corresponds to a
maximum matching inG. An algorithm is executed on the line graph
by assigning each edge in G to have its computation simulated by
one of its endpoints [30]. We show that running our local ratio based
approximation algorithms on L(G) yields a 2-approximate maximum
matching in G. The main challenge is how to handle congestion,
since nodes in G may need to simulate many edges, thus may have
to send many messages in a naive simulation 5.
4[20] gives a faster coloring but is in LOCAL and in any case we need to pay for the
number of colors as well.
5What follows is equivalent to iteratively running a maximal matching on weight groups
in G and performing local ratio steps on the edges of the matching. We go to L(G) in

Recall Algorithm 1, the sequential ∆-approximation meta-algorithm.
The approximation factor was proved in Lemma 2.2 to be ∆. Specifi-
cally, the following equation provided an upper bound for the weight
of an optimal solution x∗. Where U is some MIS in L(G).∑

u ∈U

∑
v ∈N (u)

w[u]x∗[u] ≤
∑
u ∈U

w[u] · (|N (u)| − 1)

=
∑
u ∈U

w[u] · deд(u) ≤ ∆
∑
u ∈U

w[u].

The above bound uses the fact that for any node u ∈ U , at most
|N (u)| − 1 nodes in N (v) can be selected for the solution due to
independence constraints. But in L(G) the largest independent set in
the neighborhood of some node in L(G) is at most 2, yielding the
following upper bound:

∑
u ∈U

∑
v ∈N (u)w[u]x∗[u] ≤

∑
u ∈U 2w[u].

We conclude that the algorithms presented in the previous sections
provide 2-approximation for maximum matching when executed on
G(L).

As for the communication complexity, the line graph has at most
n∆ nodes and degree bounded by 2∆ − 2. Thus, simulating our
algorithms on L(G) in the LOCAL model does not incur any addi-
tional asymptotic cost. However, in a naive implementation in the
CONGEST model, we pay an O(∆) multiplicative penalty due to
congestion. This can be avoided with some modifications to our
algorithms, as explained next.

For e = (v,u) that is simulated by v, we call v its primary node
and u its secondary node. We define a family of algorithms called
local aggregation algorithms and show that these algorithms can
be augmented to not incur any additional communication penalty
when executed on the line graph relative to their performance on
the original graph in the CONGEST model. We begin with some
definitions.

Definition 2.5. We say that f : Σn → Σ is order invariant, if
for any set of inputs {xi }

n
i=1, and any permutation π , it holds that

f (x1, ...,xn ) = f (xπ (1), ...,xπ (n)).

For the sake of simplicity, if f is order invariant we write f (x1, ...,xn )
as f ({xi }). We may also give a partial parameter set to our func-
tion, in which case we assume all remaining inputs to the function
are the empty character ϵ ∈ Σ. Formally, for X ′ = {xi }

k
i=1, denote

f (X ′) = f (x1, ...,xk , ϵ, ..., ϵ).

Definition 2.6. We say that a function f : Σn → Σ is an aggregate
function if it is order invariant and there exists a function ϕ : Σ2 → Σ

such that for any set of inputs X = {xi }
k , and any disjoint partition

of the inputs into X1,X2 it holds that f (X ) = ϕ(f (X1), f (X2)). The
function ϕ is called the joining function.

OBSERVATION 2.7. It is easy to see that Boolean "and" and "or"
functions are aggregate functions.

Let Alд be some algorithm for the CONGEST model. Let Dv,i
be the local data stored by v during the round i of the algorithm
at. Let DN (v),i = {Du,i | u ∈ N (v)} be the data of v’s immediate
neighborhood.

order to demonstrate how a wide class of algorithms can be executed on the line graph
while avoiding congestion.
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Definition 2.8. We call Alд a local aggregation algorithm if
it only accesses DN (v),i using aggregate functions where |Σ| =
O(logn) and |Dv,i | = O(logn) for every v ∈ V , i ∈ [t].

We prove the following theorems:

THEOREM 2.9. If Alд is a local aggregation algorithm running
in the CONGEST model in O(t) rounds, it can be executed on the
line graph in O(t) rounds.

PROOF. Alд is executed on the primary node, and we maintain
the invariant that Dv,i is always present in both the primary and
secondary nodes. Every time Alд needs to execute a function f , both
the primary and secondary nodes already have the data of all of their
neighbors. Each node calculates f on the data of its neighbors, the
secondary node sends this calculation to the primary which in turn
executes the joining function yielding the desired result. Afterwards
the new node data is sent to the secondary node.

No communication is needed to access the data of the neighbors,
as a neighbor of e must share a node with it, which contains its data.
There is no congestion when sending the value of f or the new data
to the secondary node. Thus, the number of rounds is O(t). �

THEOREM 2.10. Algorithm 2 is a local aggregation algorithm.

PROOF. Let us explicitly defineDv,i . Each node knows its weight,
status and degree. Formally, Dv,i = {wi (v), statusv ,deдi (v)}. The
algorithm uses "and" and "or" Boolean functions, which by Observa-
tion 2.7, are aggregate functions. Each node also needs to update its
weight at each iteration. The weight update function can be written
as fw (wv , {wu | u ∈ N (v)}) = wv −

∑
wu , which is of course an

aggregate function. �

This exact same technique can be applied to Algorithm 3, giving
the main result for this section:

THEOREM 2.11. There exist a randomized 2-approximation algo-
rithm for maximum weighted matching in the CONGEST model run-
ning inO(MIS(G)·logW ) rounds, and a deterministic 2-approximation
algorithm for maximum weighted matching in the CONGEST model
running in O(∆ + log∗ n) rounds.

3 TIME-OPTIMAL APPROXIMATIONS OF
MAXIMUM MATCHING

Here, we provide our O(
log∆

log log∆ )-round algorithms for (2 + ε)-
approximation of maximum weighted matching and a sketch of
a (1 + ε)-approximation of maximum unweighted matching. As
stated before, these are the first to obtain the provably optimal round
complexity, matching the Ω(

log∆
log log∆ ) lower bound of [31], which

holds for any constant approximation.

3.1 A fast (2 + ε)-approximation of maximum
weighted matching

We first present a simple O( log∆
log log∆ )-round (2 + ε)-approximation

for maximum unweighted matching. We then explain how this ap-
proximation extends to the weighted setting via known methods.

To get a (2+ ε)-approximation, we gradually find large matchings
and remove them from along with the other edges that are incident
on them. At the end, we show that the remaining graph has only a

small matching left, hence allowing us to prove an approximation
guarantee.

The key algorithmic component in our approach is an adaptation
of the algorithm of Ghaffari [21]. Ghaffari presented an MIS algo-
rithm, which if executed on a graph H with maximum degree ∆ for
O(log∆ + log 1/δ ) rounds, computes an independent set IS of nodes
of H , with the following probabilistic near-maximality guarantee:
each node of H is either in IS or has a neighbor in it, with probability
at least 1−δ . We will be applying a similar method on the line graph
of our original graph, hence choosing a nearly-maximal independent
set of edges. However, this running time is not quite fast enough for
our target complexity.

We first explain relatively simple changes in the algorithm and
its analysis that improve the complexity to O(

log∆
log log∆ ), for any con-

stant ε > 0. We then explain how that leads to an O(
log∆

log log∆ )-round
(2 + ε)-approximation for maximum unweighted matching.

The Modified Nearly-Maximal Independent Set Algorithm.
In each iteration t , each node v has a probability pt (v) for
trying to join the independent set IS. Initially p0(v) = 1/K , for
a parameter K to be fixed later. The total sum of the probabili-
ties of neighbors of v is called its effective-degree dt (v), i.e.,
dt (v) =

∑
u ∈N (v) pt (u). The probabilities change over time as

follows:

pt+1(v) =

{
pt (v)/K , if dt (v) ≥ 2
min{Kpt (v), 1/K}, if dt (v) < 2.

The probabilities are used as follows: In each iteration, node v
gets marked with probability pt (v) and if no neighbor of v is
marked, v joins IS and gets removed along with its neighbors.

THEOREM 3.1. For each node v, the probability that by the
end of round β(log∆/logK + K2 log 1/δ ) = O( log∆

log log∆ ), for a large
enough constant β , node v is not in IS and does not have a neighbor
in IS is at most δ . Furthermore, this holds even if coin tosses outside
N+2 (v) are determined adversarially.

Let us say that a node u is low-degree if dt (u) < 2, and high-
degree otherwise. We define two types of golden rounds for a node
v: (1) rounds in which dt (v) < 2 and pt (v) = 1/K , (2) rounds in
which dv (t) ≥ 1 and at least dt (v)/(2K2) of dt (v) is contributed by
low-degree neighbors.

LEMMA 3.2. By the end of round β(log∆/logK + K2 log 1/δ ),
either v has joined IS, or has a neighbor in IS, or at least one of its
golden round counts reached β

13 (log∆/logK + K
2 log 1/δ ).

PROOF. Let T = β(log∆/logK + K2 log 1/δ ) for a sufficiently
large constant β . We focus only on the first T rounds. Let д1 and д2
respectively be the number of golden rounds of types 1 and 2 for v,
during this period. We assume that by the end of round T , node v is
not removed and д1 ≤ T /13, and we conclude that д2 ≥ T /13.

Let h be the number of rounds during which dt (v) ≥ 2. Notice
that the changes in pt (v) are governed by the condition dt (v) ≥ 2
and the rounds with dt (v) ≥ 2 are exactly the ones in which pt (v)
decreases by a K factor. Since the number of K-factor increases in
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pt (v) can be at most equal to its number of K-factor decreases, there
are at leastT − 2h rounds in which pt (v) = 1/K . Out of these rounds,
at most h rounds can have dt (v) ≥ 2. Hence, д1 ≥ T − 3h. The
assumption д1 ≤ T /13 gives that h ≥ 4T /13. Let us now consider
the changes in the effective-degree dt (v) of v over time. If dt (v) ≥ 1
and this is not a golden round of type-2, then we have

dt+1(v) ≤ K
1

2K2dt (v) +
1
K
(1 −

1
2K2 )dt (v) <

3
2K

dt (v).

There are д2 golden rounds of type-2. Except for these, whenever
dt (v) ≥ 1, the effective-degree dt (v) shrinks by at least a 3

2K factor.
In these exception cases, it increases by at most a K factor. Each of
these exception rounds cancels the effect of no more than 2 shrinkage
rounds, as ( 3

2K )2 · K ≪ 1. Thus, ignoring the total of at most 3д2
rounds lost due to type-2 golden rounds and their cancellation effects,
every other round with dt (v) ≥ 2 pushes the effective-degree down
by a 3

2K factor. This cannot happen more than log 2K
3
∆ times as that

would lead the effective degree to exit the dt (v) ≥ 2 region. Hence,
the number of rounds in which dt (v) ≥ 2 is at most log∆

log 2K
3
+ 3д2.

That is, h ≤
log∆
log 2K

3
+ 3д2. Since h ≥ 4T /13, and because T =

β(log∆/logK + K2 log 1/δ ) for a sufficiently large constant β , we
get that д2 > T /13. �

LEMMA 3.3. In each type-1 golden round, with probability at
least Θ(1/K), v joins the IS. Moreover, in each type-2 golden round,
with probability at least Θ(1/K2), a neighbor ofv joins the IS. Hence,
the probability that by the end of round β(log∆/logK +K2 log 1/δ ),
node v has not joined the IS and does not have a neighbor in it is at
most δ . These statements hold even if the coin tosses outside N+2 (v)
are determined adversarially.

PROOF. In each golden type-1 round, we have dt (v) < 2 and
pt (v) = 1/K . The latter means that node v gets marked with prob-
ability 1/K , and the former means that the probability that none
of the neighbors of v is marked is at least

∏
u ∈Nt (v)(1 − pt (u)) ≥

4−
∑
u∈Nt (v ) pt (u) = 4−dt (v) ≥ 1/16. Hence, in each golden type-1

round, node v joins the IS with probability at least 1/(16K).
In each golden type-2 rounds, we have dv (t) ≥ 1 and at least

dt (v)/(2K2) of dt (v) is contributed by low-degree neighbors. Sup-
pose we examine the set Lt (v) of low-degree neighbors of v one
by one and check whether they are marked or not. We stop when
we reach the first marked node. The probability that we find at
least one marked node is at least 1 −

∏
u ∈Lt (v)(1 − pt (u)) ≥ 1 −

e−
∑
u∈Lt (v ) pt (u) ≥ 1 − e−dt (v)/(2K

2) ≥ 1 − e−1/2K
2
≥ 1/4K2, given

that (2K2) ≥ 1. Now that we have found the first marked light neigh-
bor u, the probability that no neighbor w of u is marked is at least∏

w ∈Nt (u)(1 − pt (w)) ≥ 4−
∑
w∈Nt (u) pt (w ) = 4−dt (u) ≥ 1/16. There-

fore, overall, the probability that node v gets removed in a type-2
golden round is at least 1

64K 2 .
Now notice that these events are independent in different rounds.

Hence, the probability that node v does not get removed after
Θ(K2 log 1/δ ) golden rounds is at most (1 − 1

64K 2 )
Θ(K 2 log 1/δ ) ≤ δ .

Furthermore, in the above arguments, we only relied on the random-
ness in the nodes that are at most within 2 hops ofv. Hence, the guar-
antee is independent of the randomness outside the 2-neighborhood
of v. �

PROOF OF 3.1. By 3.2, within the first β(log∆/logK+K2 log 1/δ )
round, each node v is either already removed (by joining or having
a neighbor in the IS) or one of its golden round counts reaches at
least β(log∆/logK + K2 log 1/δ )/13. As 3.3 shows, in each golden
round, nodev gets removed with probability at least Θ(1/K2). Hence,
given a large enough constant β , the probability that node v remains
through β(K2 log 1/δ )/13 golden rounds is at most δ . �

THEOREM 3.4. There is a distributed algorithm in the CONGEST
model that computes a (2+ε)-approximation of maximum unweighted
matching in O(

log∆
log log∆ ) rounds, for any constant ε > 0, whp.

PROOF. The algorithm executes the nearly-maximal independent
set algorithm explained above on the line-graph. This finds a nearly-
maximal set of independent edges, i.e., edges which do not share an
endpoint, or in other words, a nearly-maximal matching. The fact
that the algorithm can be run on the line-graph in the CONGEST
model follows from 2.4, since it is easy to see that this is a local
aggregation algorithm. The round complexity of O( log∆

log log∆ ) fol-

lows from the O(log∆/logK + K2 log 1/δ ) bound of 3.1, by setting
K = Θ(log0.1 ∆) and δ = 2− log0.7 ∆. Let us now examine the approx-
imation factor. Each edge of the optimal matching has probability at
most δ of becoming unlucky and not being in our found matching
and not having any adjacent edge in it either. These are the edges
that remain after all iterations of the nearly-maximal independent
set algorithm. Thus, we expect at most δ ≪ ε fraction of the edges
of the optimal matching to become unlucky. The number also has an
exponential concentration around this mean6. Ignoring these ε |OPT |
unlucky edges of the optimal matching, among the rest of the edges,
each edge of the found matching can be blamed for removing at
most 2 edges of the optimal matching. So the found matching is a
(2 + ε)-approximation. �

Extension to the Weighted Case via Methods of Lotker et al.
Above, we explain anO(log∆/log log∆)-round algorithm for (2+ε)-
approximation of maximum unweighted matching. This can be ex-
tended to the weighted case via known methods, while preserving
the asymptotic complexity, as follows: First, we sketch a method of
Lotker et al.[36] which allows one to turn a (2 + ε)-approximation
for the unweighted case to an O(1)-approximation for the weighted
case. Classify the weights of edges into powers of a large constant
β , i.e., by defining weight buckets of the form [βi , βi+1]. In each of
these big-buckets, partition the weight range further intoO(log1+ε β)
small-buckets in powers of 1 + ε. Run the following procedure in
all big-buckets in parallel: Starting from the edges of the highest
weight small-bucket in this big-bucket, find a (2 + ε)-approximation
of the matching in that small-bucket using the unweighted matching
algorithm, remove all their incident edges in that big-bucket, and
move to the next biggest small-bucket. After O(log1+ε β) iterations
of going through all the small-buckets, for each big-bucket, we have
found a matching that is a 2 +O(ε) approximation of the maximum
weight matching among all the edges with weight in this big-bucket.
However, altogether, this is not a matching as a node might have

6This concentration is due to the fact that the dependencies are local and each edge’s
event of being unlucky depends on only at most ∆ other edges. However, one can
obtain a better success probability. See ?? for an algorithm which provides a stronger
concentration, giving a (2 + ε )-approximation with probability 1 − e−Ω(−|OPT |).
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a “matching”-edge incident on it in each of the big-buckets. Keep
each of these chosen edges only if it has the highest weight among
the chosen edges incident on it. Lotker et al.[36] showed that this
produces an O(1)-approximation of the maximum weight matching.

ThisO(1)-approximation can be turned into a (2+ε)-approximation.
Lotker et al. [35, Section 4] present a method that via O(1/ε) black-
box usages of an O(1)-approximation Maximum Weight Matching
algorithm A, produces a (2 + ε)-approximation of the maximum
weight matching. We here provide only a brief and intuitive sketch.
The method is iterative, each iteration is as follows. Let M be the
current matching. We look only at weighted augmenting paths of
M with length at most 3. We define an auxiliary weight for each un-
matched edge e, which is equal to the overall weight-gain that would
be obtained by adding e to the matching and instead erasing the
matching M edges incident on endpoints of e (if there are any). Note
that this auxiliary weight can be computed easily in O(1) rounds.
Then, we use algorithm A to find a matching which has an auxiliary
weight at most an O(1) factor smaller than the maximum weight
matching, according to the auxiliary weights. Then we augment M
with all these found matching edges, erasing the previously matching
edges incident on their endpoints. We are then ready for the next
iteration. As Lotker et al. show, after O(1/ε) iterations, the matching
at hand is a (2+ ε)-approximation of the maximum weight matching.

3.2 A fast (1 + ε)-approximation of maximum
cardinality matching

We now discuss our O(log∆/log log∆)-round algorithm for (1 + ε)-
approximation of maximum unweighted matching. Since the algo-
rithm and its analysis are somewhat lengthy and technical, we can
present only a bird’s-eye view of them. We first discuss the algorithm
for the LOCAL model, and then briefly discuss some of the ideas we
use for extending it to the CONGEST model.

We follow a classical approach of Hopcroft and Karp[27]. Given
a matching M , an augmenting path P with respect to M is a path
that starts with an unmatched vertex, and alternates between non-
matching and matching edges, and ends in an unmatched vertex.
Flipping an augmenting path P means removing P ∩M edges from
M and replacing them with edges of P \ M . The approximation
algorithm based on the method of Hopcroft and Karp[27] works
as follows: For each ℓ = 1 to O(1/ε), find a maximal set of vertex-
disjoint augmenting paths of length ℓ, and flip all of them.
The analysis of [27] shows that this finds a (1 + ε)-approximation
of maximum matching. Hence, all that we need to do is to find a
maximal set of vertex-disjoint augmenting paths of length ℓ. This
problem can be formulated as a maximal independent set problem
in a virtual graph, called the conflict graph: put one vertex for each
augmenting path of length ℓ, and connect two vertices if their corre-
sponding paths intersect. Each communication round on the conflict
graph can be simulated in O(ℓ) = O(1) rounds in the network in the
LOCAL model. Thus, if we could find an MIS in O(log∆/log log∆)
rounds, we would be done. However, we only know how to compute
a nearly-maximal independent set in this number of rounds.

When applied in this context, the guarantee that our nearly-
maximal independent set algorithm provides is that each augmenting
path of length ℓ has only a small δ probability of remaining (without

any intersecting ℓ-length augmenting path in the computed nearly-
maximal set). However, this notion of near-maximality is not strong
enough for us to be able to say that we still get a good approximation.
For instance, one natural idea would be to simply discard the remain-
ing augmenting paths (and thus also their vertices). However, this
is not possible because with the current notion of near-maximality,
each node may have a high probability of having at least one of the
augmenting paths going through it remain. Notice that there are up
to ∆ℓ such paths and we cannot afford to use a union bound over
them.

In a nutshell, our approach is to provide a much tighter analysis of
(a simple variation of) the algorithm, by leveraging the fact that the
paths are short, having length O(1/ε). This tighter analysis allows us
to say that if we run the algorithm for slightly more time, larger by an
O(1/ε2) factor, then the probability of each node having a remaining
augmenting path will be small enough to allow us to discard such
nodes. This tighter analysis is presented in a more general framework,
which may be of independent interest. It concerns computing a
nearly-maximal matching in a low-rank hypergraph, where each
hyperedge contains a small number of vertices. The relation is that
we can think of each augmenting path as one hyperedge, on the same
set of vertices. These hyperedges would have rank O(1/ε), and a
matching of hyperedges — that is, a set of hyperedges that do not
share a vertex — would be the a set of vertex-disjoint paths.

The above sketches our algorithm in the LOCAL model. Making
this algorithm work in the CONGEST model brings in a range of new
challenges. For instance, we cannot build the conflict graph explicitly
and hence, the above algorithm does not work as is. We use a number
of ideas, in order to extend the algorithm to the CONGEST model,
which are described in the full version.

One of the key ideas, which we find particularly interesting and
may prove useful beyond our work, is a decentralized manner of
performing the increase or decreases of the marking probabilities in
the nearly-maximal independent set algorithm (as discussed in the
previous subsection). Notice that now each augmenting path has a
probability, which we would like to increase or decrease. Roughly
speaking, we define an attenuation parameter αt (v) for each node
v and we let the marking probability of each augmenting path be
the multiplication of the attenuations of its vertices. Each node will
decide on its own whether to increase or decrease its attentuation. Of
course it is possible that some nodes of the path raise their attenuation
and some lower it. However, we prove that in a long enough span of
time and by choosing the increase or decrease parameters right, the
net effect will still be in the correct direction, allowing us to mimic
the analysis of the ideal LOCAL model algorithm, and thus prove
the approximation guarantee.

4 DISCUSSION
This papers gives distributed approximation algorithms for maxi-
mum independent set and maximum matching in CONGEST. We
obtain a ∆-approximation for the former using local-ratio techniques,
and deduce a 2-approximation for the latter by defining local ag-
gregation algorithms and showing that they allow simulation on the
line graph in the restricted CONGEST model, despite the need to
simulate many nodes.
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We then provide fast approximations that relax either the approxi-
mation factor to 2 + ε or the setting to an unweighted case, but have
the optimal round complexity of O(log∆/log log∆).

One intriguing open question is whether this fast running time
can also be obtained for the problem of finding a maximal indepen-
dent set. Notice that by the algorithm we describe in 3.1, we can
compute an almost maximal independent set in O(log∆/log log∆)
rounds. Particularly, this is an independent set where the probability
of each node remaining (without being, or having a neighbor, in
the independent set) is at most 2− log1−γ ∆, for any desirably small
constant γ > 0. However, to be able to extend this to a maximal
independent set, we would need this failure probability to be at most
2−Θ(log∆). Furthermore, given our algorithm and the lower bound
of Kuhn et al. [31], we now know that this is the complexity of
finding a constant approximation for maximum matching. Similarly,
by Bar-Yehuda et al. [6], we also know that this is the complexity
of finding a constant approximation for the vertex-cover problem.
However, for the problem of finding a maximal independent set,
there remains a log log∆ gap between the lower bound of [31] and
the algorithm of Ghaffari [21].
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