
ROBUST DISTRIBUTED COOPERATION

IN THE PRESENCE OF QUANTIFIED ADVERSITY

Chryssis Georgiou, Ph.D.

University of Connecticut, 2003

The ability to cooperatively perform a collection of tasks in a distributed setting is key to

solving a broad range of computation problems ranging from distributed search to distributed

simulation and multi-agent collaboration. Do-All , an abstraction of such cooperative activity,

is the problem of using p processors to cooperatively perform n independent and idempotent

tasks in the presence of adversity. The Do-All problem can be used to identifying the trade-

offs between efficiency and fault-tolerance in distributed cooperative computing. Solutions for

Do-All may yield insight leading to efficient and fault-tolerant algorithms for distributed co-

operation. Although significant research was dedicated to studying Do-All , prior work offers

only a partial understanding of this problem. In particular, while prior work shows how to

achieve fault-tolerance in the presence of adversity, it does not adequately teach how the ad-

verse environment affects the efficiency of Do-All solutions. This thesis substantially increases

this understanding. One of the contributions includes failure sensitive upper and lower bounds

for Do-All in certain models of computation, that show how failures affect the efficiency of

Do-All solutions. The upper/lower bounds are given as functions of n, p and f , the number

of failures caused by the adverse environment. Another contribution of the thesis is the def-

inition and analysis of the iterative Do-All problem, that models the repetitive use of Do-All

algorithms, such as found in typical algorithm simulations.

Chryssis Georgiou––University of Connecticut, 2003

This thesis also studies the distributed cooperation problem in partitionable networks,

where partitions may interfere with the progress of the computation. Group communication

services are used to develop robust algorithms for this settings. Moreover, it is shown that it

is possible to obtain optimally-competitive scheduling algorithms in partitionable networks by

proving upper and lower bound results. These results demonstrate precisely how partitions

affect the efficiency of computation.

Overall, the thesis is substantially contributing to the study of the trade-offs between ef-

ficiency and fault-tolerance in cooperative computing and is advancing the state-of-the-art in

principles of robust distributed computing.

ROBUST DISTRIBUTED COOPERATION

IN THE PRESENCE OF QUANTIFIED ADVERSITY

Chryssis Georgiou

M.S., Computer Science & Engineering, University of Connecticut, 2002

B.S., Mathematics, University of Cyprus, 1998

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

2003

Copyright by

Chryssis Georgiou

2003

APPROVAL PAGE

Doctor of Philosophy Dissertation

ROBUST DISTRIBUTED COOPERATION

IN THE PRESENCE OF QUANTIFIED ADVERSITY

Presented by

Chryssis Georgiou, M.S., B.S.

Major Advisor

Alex A. Shvartsman

Associate Advisor

Nancy A. Lynch

Associate Advisor

Alexander Russell

University of Connecticut

2003

ii

ACKNOWLEDGEMENTS

This dissertation would have been impossible without the encouragement, guidance and

support of the three members of my committee.

I am deeply indebted to my advisor and mentor, Alex Shvartsman, for giving me the op-

portunity to pursue doctoral studies at the University of Connecticut. His continuous support

and advice brought these studies to a successful completion. I thank him for his critical and

pertinent criticism on my work that helped me grow both as a researcher and as a person.

His incessant desire for excellence has positively influenced the presentation and organization

of this dissertation. I thank him for the time he invested on me and the financial support he

provided me over the years of my graduate studies.

My gratitude to Alexander Russell is indefinable. He has played a significant role in my

graduate education and my growth as a researcher in the field of theoretical computer science.

My interaction and collaboration with him helped me to advance my knowledge and under-

standing on how to apply mathematical reasoning in computer science. I thank him for the

time he dedicated to me and the mathematical tools he enriched me with.

I am particularly grateful to Nancy Lynch, first, for agreeing to be on my advisory com-

mittee, and second, for giving me the opportunity to present parts of my work at the MIT TDS

seminar. Her feedback along with the comments of the other members of her group at MIT

have significantly improved the quality of my work.

During my graduate studies at UConn I had the opportunity to collaborate on research

projects with Dariusz Kowalski, Antonio Fernández and Peter Musial. I am thankful for the

iii

knowledge and experience I obtained through these wonderful collaborations. I would also like

to express my gratitude to Lester Lipsky, Thomas Peters, and Eugene Santos Jr. for valuable

discussions on course-related projects. My thanks to Dina Goldin and Kishori Konwar for

our collaboration in teaching the Algorithms and Complexity class in the Fall of 2001. I am

also thankful to all the officemates I had at UConn during my studies, especially to Cecilia

Bastarrica, Peter Musial, and Mariam Momenzadeh.

I am obliged to Marios Mavronicolas for his guidance and advice during my undergradu-

ate studies at the University of Cyprus and for encouraging me to pursue doctoral studies in

theoretical computer science.

Finally, I would like to thank my family. My parents, Georgios and Michaela Georgiou,

for sacrificing their personal lives for me. They have been supporting and encouraging me to

realize my dreams since the day they brought me to this world. My brother, Demetris Georgiou,

for always believing in me and supporting all my decisions. My fiancé and soon my-wife-to-

be, Agni Stylianou, for everything. There is no way I can measure the many ways she has

unconditionally supported me over the years it took me to complete my studies. She has been

my strength and joy. I dedicate this dissertation to all four members of my family.

iv

CREDITS

This dissertation incorporates research results appearing in the following publications:

[48, 49] This is a joint work with A. Russell and A. Shvartsman. [48] will appear in Distributed

Computing. A preliminary version [49] appears in the Proceedings of DISC’01. This

work corresponds to Sections 4.1-4.3, 5.1, 6.1 and parts of Sections 3.1-3.4 of the dis-

sertation.

[47] This paper is a joint work with D. Kowalski and A. Shvartsman. It appears in the Pro-

ceedings of DISC’03. It corresponds to Section 5.2.

[51] This paper is a joint work with A. Russell and A. Shvartsman. It appears in the Proceed-

ings of OPODIS’02. It corresponds to Section 6.2 and parts of Section 3.4.

[53, 54] This is a joint work with A. Shvartsman. [53] appears in the Journal of Discrete Algo-

rithms, 2003. A preliminary version [54] appears in the Proceedings of SIROCCO’00.

This work corresponds to Section 7.1 and parts of Sections 3.1-3.4.

[52] This paper is a joint work with A. Russell and A. Shvartsman. It appears in the Proceed-

ings of STOC’03. It corresponds to Section 7.2 and parts of Sections 3.2-3.3.

v

TABLE OF CONTENTS

Chapter 1: Introduction 1

1.1 Motivation for this research . 1

1.2 Background . 4

1.3 Prior Work . 6

1.4 Summary of Contributions . 11

1.5 Document Structure . 16

Chapter 2: Related Work 18

2.1 Do-All in Message-Passing Models . 18

2.2 Write-All in Shared-Memory Models . 23

2.3 Do-All Under the Assumption of Perfect Knowledge 28

2.4 Omni-Do in Partitionable Networks . 29

2.5 Group Communication Services . 31

2.6 Cooperative Collect . 32

2.7 Consensus . 33

2.8 Web-Based Computing . 38

Chapter 3: Models of Computation and the Do-All Problem 40

3.1 General Setting and Definitions . 40

3.2 Models of Adversity . 43

3.2.1 Failure Types . 43

3.2.2 Adversarial Models . 44

3.3 The Do-All Problem . 50

vi

3.4 Measures of Efficiency . 53

Chapter 4: Perfect Knowledge: Do-All with Crashes 57

4.1 Do-All Upper Bounds with Perfect Knowledge 58

4.2 Do-All Lower Bounds . 62

4.3 Iterative Do-All . 68

Chapter 5: Message-Passing: Do-All with Crashes 72

5.1 Failure-Sensitive Bounds with Reliable Multicast 72

5.1.1 Description of Algorithm AN . 73

5.1.2 Analysis of Work Complexity . 74

5.1.3 Analysis of Message Complexity 76

5.1.4 Analysis of Message-Passing Iterative Do-All 76

5.2 Failure-Sensitive Bounds without Reliable Multicast 77

5.2.1 The Gossip Problem . 78

5.2.2 Combinatorial Tools . 80

5.2.3 The Gossip Algorithm . 89

5.2.4 The Do-All Algorithm based on Gossip 104

Chapter 6: Shared-Memory: Write-All with Crashes 126

6.1 Failure-Sensitive Bounds . 127

6.1.1 Description of Algorithm W . 127

6.1.2 Complexity Analysis . 128

6.1.3 Iterative Write-All and Parallel Algorithm Simulations 130

6.2 Failure-Sensitive Bounds for Controlled Memory Access Concurrency 131

vii

6.2.1 Description of Algorithm KMS . 132

6.2.2 Complexity Analysis . 137

6.2.3 Iterative Write-All and Parallel Algorithm Simulations 143

Chapter 7: Omni-Do in Partitionable Networks 145

7.1 Worst Case Analysis of Omni-Do . 146

7.1.1 Input/Output Automata . 147

7.1.2 A Group Communication Service 147

7.1.3 View-Graphs . 149

7.1.4 Algorithm AX . 156

7.1.5 Analysis of Algorithm AX . 162

7.2 Competitive Analysis of Omni-Do . 174

7.2.1 Preliminaries . 175

7.2.2 Description of Algorithm RS . 180

7.2.3 Analysis of Algorithm RS . 180

7.2.4 Lower Bounds . 184

Chapter 8: Conclusions and Future Work 188

Bibliography 194

viii

LIST OF FIGURES

1 Oracle-based algorithm. 58

2 Algorithm GOSSIPε . Code for processor v. 90

3 A phase of epoch ℓ of algorithm DOALLε. Code for processor v. 105

4 Classification of a phase i of epoch ℓ; execution ξ is implied. 112

5 Example of a view-graph . 151

6 Algorithm AX. 158

7 An example of a (12, n)-DAG. 177

ix

Chapter 1

Introduction

This thesis studies the impact of the adverse environment on the efficiency of distributed

cooperative computing.

1.1 Motivation for this research

The ability to cooperatively perform a collection of tasks in a distributed setting is key to

solving a broad range of computation problems ranging from distributed search (e.g., SETI [74])

to distributed simulation (e.g., [25]) and multi-agent collaboration (e.g., [2, 108]). Therefore,

cooperative computing has drawn a lot of attention from the research community in the last

two decades and substantial research was dedicated to investigating how processors can coop-

erate effectively in order to exploit parallelism in a system consisting of multiple processing

elements.

Distributed systems consisting of hundreds and thousands of processing units (e.g., mul-

tiprocessor machines, clusters of workstations, wide-area networks) are widely used. In such

systems it is possible that the set of processing elements available to the computation and

1

2

their ability to communicate may dynamically change due to perturbations in the computation

medium. Such changes may degrade the efficiency of algorithms designed to solve computa-

tional problems on these multiprocessing systems, and cause algorithms to produce incorrect

results.

Therefore, there is a corresponding need for the development of efficient and dependable

algorithms that are able to cope with unpredictable changes in the computation medium caused

by component failures or delays. Algorithms need to be both efficient and fault-tolerant. We

call such algorithms robust. However, developing robust algorithms for distributed coopera-

tion is inherently difficult since fault-tolerance is achieved by introducing redundancy, while

efficiency is achieved by eliminating redundancy.

To study aspects of the trade-off between efficiency and fault-tolerance in cooperative com-

puting and to obtain insight into developing robust algorithms for distributed cooperation, past

research (e.g., [33, 68, 17, 44, 28]) has focused on studying the abstract problem of performing

a set of tasks in a decentralized setting, known as the Do-All problem.

Do-All : p processors must cooperatively perform n tasks in the presence of adversity.

In the Do-All problem, the tasks are assumed to be similar, independent and idempotent.

By the similarity of the tasks we mean that the task executions consume equal or comparable

resources. By the independence of the tasks we mean that the completion of any task does not

affect any other task. By the idempotence of the tasks we mean that each task can be executed

multiple times or concurrently and produce the same final result.

Several high-level computational problems can be abstracted in terms of the Do-All prob-

lem. For example, in image processing [112] and computer graphics [42], a significant amount

of data processing (e.g., operations on large data structures, computing complicated partial and

3

ordinary differential equations) is required, especially in visualization (achieving graphical vi-

sual realism of real world objects) [89, 101]. When the data to be computed can be decomposed

into smaller independent “chunks”, a usual approach is to load-balance the chunks among the

different processing units of a parallel machine (or a cluster of machines) [101, 58]. The data

chunks can be abstracted as Do-All tasks and the processing units can be abstracted as Do-

All processors. In databases [36], when querying a large (unsorted) data space, it is often

desirable to use multiple machines to search different records of the database in an attempt to

decrease the search time [1]. In fluid dynamics, researchers study the behavior of fluids in dif-

ferent settings by running simulations that involve solving numerically complicated differential

equations over large data spaces. Again, when the data can be decomposed into smaller inde-

pendent chunks, the chunks are assigned on different multiprocessing units to achieve faster

and reliable computation [55, 65]. Another example can be found in Cryptography. In partic-

ular, in breaking cryptographic schemes. The goal is to search and find a user’s private key.

A key may be a string of 128 bits, meaning that there are 2128 different strings that a user

could choose as his private key. Among the various techniques available, the most frequently

used is exhaustive search where multiple processing units search simultaneously for the key,

each unit searching different sets of bit permutations [106]. Each set of bit permutation can be

abstracted as a Do-All task and each processing unit can be abstracted as a Do-All processor.

In general, any problem that involves performing a number of similar independent calculations

can be abstracted in terms of the Do-All problem.

As we will see in Section 1.3 and more extensively in Chapter 2, prior research offers only

a partial understanding of the Do-All problem. Specifically, there is a partial understanding

on how the adverse environment (e.g., failures) affects the efficiency of Do-All solutions, and

4

more generally, how it affects cooperative computing — quantification of adversity does not

figure prominently in complexity results. This is rather surprising, especially since research

conducted for other fundamental problems of distributed computing, for example the consensus

problem (a set of processors must agree on a common value, see Section 2.7), always focused

on how adversity affects the efficiency and doability of the problem.

The underlying theme that we address in this thesis is

Understanding precisely how the adverse environment affects

the efficiency of cooperative computing.

1.2 Background

The Do-All problem and variations of this problem have been studied in a variety of set-

tings, e.g., in shared-memory models [68, 86, 59, 7], in message-passing models [33, 28, 22,

44] and in partitionable networks [32, 83].

In message-passing models, processors communicate by exchanging messages while in

shared-memory models processors communicate by reading from and writing to shared mem-

ory. In shared-memory models, the Do-All problem is known as the Write-All problem —

given a zero-valued array of n elements and p processors, write value 1 into each array loca-

tion — and it was introduced by Kanellakis and Shvartsman [67]. The main difference between

the Do-All problem in message-passing models and the Write-All problem in shared-memory

models is that in Do-All the tasks may be supplied to the processors from some external source,

while in Write-All the tasks are stored in shared-memory accessible to all processors. In par-

ticular, each location of the Write-All input array may be associated with a task, and when

a processor writes the value 1 into a specific location of the input array, this implies that the

5

processor has performed the associated task. In the context of this thesis we abstract away from

the source and the nature of the tasks and we treat Do-All and Write-All as the same problem.

However, when we study Do-All in shared-memory models, we refer explicitly to Write-All .

Do-All has also been studied in the setting of processor groups in partitionable networks,

i.e., when the topology of the network may dynamically change due to changes in the commu-

nication medium [32, 83]. In this setting, the goal is to utilize the resources of every component

of the system during the entire computation. We call this problem Omni-Do — a set of n tasks

must be performed by p processors in a distributed system, where each processor must learn

all results — and it was introduced by Dolev, Segala and Shvartsman [32].

Do-All has been also studied under the assumption of perfect knowledge [68], where

message-passing and shared-memory issues are abstracted away by the assumption of an ora-

cle that performs the load-balancing computation on behalf of the processors.

Finally, Write-All algorithms have been used in developing simulations of failure-free al-

gorithms on failure-prone processors, e.g., [72, 104, 85, 68]. This is done by iteratively using

a Write-All algorithm to simulate the steps of failure-free processors on failure-prone proces-

sors. In this thesis we abstract this iterative use of Do-All algorithms as the r-iterative Do-All

problem — using p processors, solve r instances of n-task Do-All with the added restriction

that every task of the ith instance must be completed before any task of the (i + 1)st instance

is begun. (The r-iterative Write-All and r-iterative Omni-Do problems are defined similarly.)

The efficiency of algorithmic solutions to Do-All is usually assessed in terms of work,

time and communication complexity, depending on the specific model of computation. Work

is defined either as the total number of computational steps taken by all available processors

during the computation (known as available processor steps, introduced by Kanellakis and

6

Shvartsman [67]) or as the total number of only task-oriented computational steps taken by the

processors (introduced by Dwork, Halpern, and Waarts [33]). A computational step taken by a

processor is said to be task-oriented, if during that step the processor performs a Do-All task.

We refer to the first variation of work as work and we denoting it by S. We refer to the second

variation of work as task-oriented work and we denote it by W . In synchronous systems,

time is defined as the total number of parallel steps required for the computation to terminate.

In asynchronous systems, time is defined as the total number of time-units required for the

computation to terminate, where a time-unit is usually defined in terms of the clock-ticks of a

global clock (that may or may not be accessible to processors). Communication complexity or

message complexity is defined as the total number of point-to-point messages sent during the

computation. We denote it by M .

A trivial lower bound on work for Do-All is Ω(n), since each task has to be performed at

least once. A trivial solution to Do-All can be obtained by having each processor obliviously

perform each of the n tasks. This solution has work Θ(n · p) and requires no communication.

To this respect, a Do-All algorithm is considered efficient if it achieves work substantially

better than the oblivious algorithm. In particular, we say that a Do-All algorithm is optimal if

it can achieve work O(n), polylogarithmically efficient if it can achieve work O(n logO(1) n)

and polynomially efficient if it can achieve work O(n1+ε), for some ε ∈ (0, 1).

1.3 Prior Work

In this section we overview related research. An extensive literature review is given in

Chapter 2.

7

Synchronous message-passing algorithms solving Do-All with processor crashes (a faulty

processor stops all activities and does not perform any further actions) have been provided by

Dwork, Halpern and Waarts [33], by De Prisco, Mayer and Yung [28], and by Galil, Mayer and

Yung [44]. (The analysis in [33] uses the task-oriented work measure that allows processors

to idle whereas the analyses in [28] and [44] use the work measure where idling processors

are charged.) These algorithms use point-to-point messaging and tolerate up to p − 1 proces-

sor crashes. The algorithm by Galil et al. [44] (the best among these algorithms) has work

S = O(n + fp) and message complexity M = O(fpε + p min{f + 1, log p}), where f is

number of crashes (f < p) and 0 < ε < 1. These deterministic algorithms rely on single coor-

dinators or checkpointing strategies for sharing the knowledge about the progress of a compu-

tation. Such strategies are subject to the lower bound of Ω(n + (f + 1)p) on work [28]. Chle-

bus, De Prisco and Shvartsman [17] developed an algorithm – Algorithm AN – that beats this

lower bound by using a strategy involving multiple coordinators. It has work S = O(log f(n+

p log p/ log log p)) and message complexity M = O(n+p log p/ log log p+pf), f < p. How-

ever algorithm AN uses reliable multicast [60], which is a strong assumption: if a processor

crashes while multicasting a message, then either all non-faulty processors deliver the message

or none do. Some local area networks (LANs) might approximate this assumption, but in gen-

eral it is too costly (or impossible) to provide in many types of distributed systems. Chlebus,

Gasieniec, Kowalski and Shvartsman [19] pursued an approach that uses point-to-point mes-

saging and avoids the use of coordinators and checkpointing and developed an algorithm with

the combined work and message complexity of O(n + p1.77), for all f < p. Observe that the

work bound is close to the quadratic bound obtained by the oblivious algorithm (where each

processor performs all tasks). All of the above give rise to the following question regarding

8

synchronous message-passing Do-All algorithms with processor crashes: “Can we develop al-

gorithms that obtain better work and message complexity than the existing ones and that use

only point-to-point messaging?”. This thesis gives a positive answer to this question.

Chlebus, De Prisco and Shvartsman [17] developed a message-passing solution for Do-

All – Algorithm AR – that can tolerate processor crashes and restarts (a faulty processor may

resume computation). Like algorithm AN, algorithm AR uses reliable multicast. It remains

an open problem whether it is possible to develop efficient message-passing algorithms that

solve Do-All for processor crashes and restarts, without the assumption of reliable multicast.

It is also worth mentioning that prior work did not consider the iterative Do-All problem in

message-passing systems. We define and study iterative Do-All in this thesis.

In shared-memory models, Write-All has been studied in synchronous systems under pro-

cessor crashes (e.g., [67, 66, 68]), in synchronous systems under processor crashes and restarts

(e.g., [15, 68]) and in asynchronous systems (e.g., [85, 87, 59, 68, 7, 18]). Also, Kanellakis,

Michailidis and Shvartsman [66], considered the Write-All problem for crash-prone proces-

sors in a synchronous shared-memory model where the memory access concurrency needs to

be controlled. The write (resp. read) concurrency is measured as the “redundant” write (resp.

read) memory accesses: consider a step of a parallel computation where x processors concur-

rently write to the same memory location the same value. Then these writes are redundant,

since a single write should suffice. Hence, the write concurrency for this step is x − 1. Read

concurrency is measured in a similar manner.

Write-All algorithms can be used iteratively to simulate parallel algorithms formulated for

synchronous failure-free processors on failure-prone processors (e.g., [72, 104, 68]). It was

shown that the execution of a single n-processor step on p failure-prone processors does not

9

exceed the work complexity of solving a n-size instance of Write-All using p failure-prone

processors. By iteratively using algorithm W ([67]), Kanellakis and Shvartsman [68] gave

the first upper bound for iterative Write-All under processor crashes. In a similar manner, by

iteratively using algorithm KMS ([66]), Kanellakis, Michailidis and Shvartsman [66] gave the

first upper bound for iterative Write-All under processor crashes in the shared-memory model

where memory access concurrency needs to be controlled. We note that the bounds [68, 66]

on iterative Write-All do not adequately demonstrate how the work complexity depends on the

number of failures f .

Prior lower/upper bound results for Do-All in message-passing and shared-memory mod-

els do not teach adequately how the work complexity depends on the number of failures. That

is, work was typically given as a function of n and p, but it was either not elucidated how f

impacts work, or, when f was a part of the equation, it was primarily due to the nature of a

specific algorithm, and not due to the inherent properties of the Do-All problem. For example,

the work of the best known synchronous shared-memory algorithm (algorithm W) is given as

a function of n and p (S = O(n + p log n log p/ log log p)) [67]. The work of the best syn-

chronous shared-memory algorithm with controlled memory access concurrency (algorithm

KMS) is also given only as a function of n and p (S = O(n + p log2 n log2 p/ log log n)) [66].

This is also the case with the best known asynchronous shared-memory algorithm (algorithm

AWT, S = O(npε), ∀ε > 0) [7]. Similarly, the best known lower bound for shared-memory

models (S = Ω(n + p log p)) [71] and the best known lower bound applicable to message-

passing models (S = Ω(n + p log p/ log log p)) [15] do not involve f . The work of message-

passing algorithms, e.g., [28, 44], typically does include f , but this is due to the use of single

10

coordinators (see discussion above), which means that for f coordinator failures the work nec-

essarily includes an additive term f · p. Two message-passing algorithms (algorithms AN and

AR) use multiple coordinators [17] to avoid this inefficiency and include a term in the bound

on work that depends on log f , but this term is due to the use of multiple coordinators (hence

it is due to the nature of the specific algorithms) and not due to the inherent properties of the

Do-All problem. Obtaining failure-sensitive lower/upper bounds for Do-All that demonstrate

precisely how failures affect Do-All efficiency, is important in identifying the trade-offs be-

tween efficiency and fault-tolerance in cooperative computing. As mentioned before, this is

the main focus of this thesis.

In partitionable networks, the first solution for Omni-Do given by Dolev, Segala and

Shvartsman [32], considers the case of group fragmentations: changes in the communica-

tion medium may partition (fragment) the network into several connected components, called

groups. No group merges are considered. They developed a work-efficient algorithm, called

AF, that uses a group communication service [95] to provide membership and communication

services to the processors. Algorithm AF has work S = O(n+n ·f), where f is the total num-

ber of new groups created due to fragmentations minus one (for example, if a group fragments

into k new groups, f = k − 1). We note that in [32] the message complexity of algorithm AF

was not analyzed since obtaining message efficiency was not one of the goals in that paper.

However, given the full details of the algorithm it is not difficult to observe that the message

complexity of AF is at least quadratic. For the case of fully dynamic changes (including frag-

mentations and merges), in the same paper, Dolev et al. showed that the termination time of

any on-line Omni-Do algorithm is greater than the termination time of an off-line Omni-Do

algorithm by a factor greater than p/12. They also developed an efficient scheduling strategy

11

for minimizing the execution redundancy showing that it is possible to schedule Θ(n
1
3) tasks

with at most one common task for any two processors.

Malewicz, Russell and Shvartsman [83, 84] extended the scheduling strategy of Dolev et

al. [32]. They introduced the notion of k-waste that measures the worst-case redundant work

performed by k groups (or processors) when started in isolation and merged into a single group

at some later time. They adequately investigate the case of 2-waste and they show that the work

redundancy increases gracefully as the number of tasks performed in isolation increases.

Thus prior work regarding the Omni-Do problem established reasonably tight (in the length

of the processor schedule) results for a single merge, illustrated the fact that on-line algorithms

subject to diverging reconfiguration patterns incur linear (in p) overhead relative to an off-line

algorithm, and showed an upper bound for an algorithm using group communication services

for a limited pattern of network reconfigurations (fragmentations). In this thesis we substan-

tially increase the understanding of solving Omni-Do and we demonstrate precisely how the

changes in the network topology affect the efficiency of Omni-Do algorithms.

1.4 Summary of Contributions

This dissertation substantially advances the understanding on how the adverse environ-

ment affects the efficiency of distributed cooperative computations. One of the contributions

includes upper and lower bounds for Do-All in certain models of computation, that are given

not only as a function of the number of tasks n and the number of participating processors p,

but also as a function of the number of failures f caused by the adverse environment during the

computation. Another contribution of the thesis is the definition and analysis of the iterative

Do-All problem, that models the repetitive use of Do-All algorithms. This thesis also studies

12

the distributed cooperation problem in partitionable networks, where partitions may interfere

with the progress of the computation. Group communication services are used to develop

robust algorithms for this settings. Moreover, it is shown that it is possible to obtain optimally-

competitive scheduling algorithms in partitionable networks by proving upper and lower bound

results. These results demonstrate precisely how partitions affect the efficiency of computation.

Overall, the dissertation is substantially contributing to the study of the trade-offs between ef-

ficiency and fault-tolerance in cooperative computing and is advancing the state-of-the-art in

principles of robust distributed computing.

We now overview the technical accomplishments detailed in later chapters of the the-

sis. The thesis presents Do-All lower bounds on work for synchronous crash-prone pro-

cessors that capture the dependence of work not only on n and p, but also on f , the num-

ber of crashes, for the enire range of f (1 ≤ f < p). Specifically we show that work

S = Ω(n + p log p/ log(p/f))1 is required to solve Do-All when f ≤ p/ log p, and work

S = Ω(n + p log p/ log log p) is required when f > p/ log n. This gives the first non-trivial

lower bound on Do-All work for a moderate number of crashes (f ≤ p/ log p). For the model

of computation where processors are able to make perfect load-balancing decisions locally (the

perfect knowledge assumption), matching upper bounds are given. Another contribution of the

thesis is the definition and analysis of the r-iterative Do-All problem that models the repetitive

use of Do-All algorithms such as found in algorithm simulations. Our failure-sensitive analysis

enables us to derive tight bounds for r-iterative Do-All work, that are stronger than the r-fold

work complexity of a single Do-All . Our approach that models perfect load-balancing allows

for the analysis of specific algorithms to be divided into two parts: (i) the analysis of the cost

1It is understood that when f = 0, then x/ log(y/f) = 0, for any x 6= 0 and y 6= 0.

13

of tolerating failures while assuming “free” load-balancing, and (ii) the analysis of the cost of

implementing load-balancing.

We demonstrate the utility and generality of the above approach by improving the anal-

ysis of three known efficient algorithms: (a) We derive a new and complete failure sensitiv-

ity analysis of the best known algorithm for the synchronous shared-memory model (algo-

rithm W [67]). Specifically we show that algorithm W solves the Write-All problem under

processors crashes with work S = O(n + log n log p/ log(p/f)) when f ≤ p log p, and

work S = O(n + log n log p/ log log p) when f > p log p, f being the number of crashes.

(b) We improve the analysis of the work and message complexity for an efficient synchronous

message-passing algorithm (algorithm AN [17]). We show that algorithm AN solves the

Do-All problem under processor crashes with work S = O(log f(n + p log p/ log(p/f)))

and message cost M = O(n + p log p/ log(p/f) + pf) when f ≤ p/ log p and, S =

O(log f(n + p log p/ log log p)) and M = O(n + p log p/ log log p + pf) when f > p/ log p.

(c) We derive a new and complete failure sensitivity analysis on the work of the best known al-

gorithm for the synchronous shared-memory model where the memory access concurrency

needs to be controlled (algorithm KMS [66]). Specifically, we show that algorithm KMS

achieves work S = O(n + p log2 n log2 p/ log(p/f)) when f ≤ p/ log p, and work S =

O(n + p log2 n log2 p/ log log p) when f > p/ log p. For each of the three algorithms, sub-

stantial improvement in the analysis is recorded, especially for a moderate number of failures

(f ≤ p/ log p). Finally, by iteratively using algorithms W, KMS, and AN and using our new

approach to their failure-sensitive analyses, we obtain tighter upper bounds for the iterative

Write-All problem in shared-memory systems, and the first non-trivial upper bound analysis

of the iterative Do-All problem in message-passing systems.

14

Another contribution of the thesis is the development of a new robust algorithm for p syn-

chronous processors that solves the Do-All problem with n tasks in the presence of up to f

crashes (f < p) with work complexity S = O(n + p min{f + 1, log3 p}) and message com-

plexity M = O(fpε + p min{f + 1, log p}), for any ε > 0. This result improves the work

complexity S = O(n + fp) of the algorithm of Galil et al. [44] mentioned in the previous

section, while obtaining the same message complexity. It also improves on the algorithm of

Chlebus et al. [19], also mentioned in the previous section, that has S = O(n + p1.77) and

M = O(p1.77). Unlike algorithm AN [17] that has comparable work complexity (even using

our new failure-sensitive analysis) but uses reliable multicast, the new algorithm uses simple

point-to-point messaging. The algorithm uses an approach for sharing knowledge among pro-

cessors that is less authoritarian than the use of coordinators and checkpointing (as used in

previously developed algorithms in the same setting). Instead, it uses an approach where pro-

cessors share information using a new gossip algorithm, where the point-to-point messaging

is constrained by means of a communication graph that represents a certain subset of edges

in a complete communication network. The processors decide where to send a gossip mes-

sage based on sets of permutations with special combinatorial properties that we show to exist.

This gossip algorithm tolerates up to p − 1 processor crashes and it runs in O(log2 p) time

and sends O(p1+ε) messages, for any ε > 0. This result substantially improves on the mes-

sage complexity M = O(p1.77) of the previously best known gossip algorithm of Chlebus and

Kowalski [21], while obtaining the same asymptotic time complexity.

The thesis also substantially contributes to the study of the Omni-Do problem in partition-

able networks, where algorithms must deal with groups of processors that become disconnected

and reconnected during the computation. We present a robust algorithm, called algorithm AX,

15

that solves the Omni-Do problem for asynchronous processors under group fragmentations and

merges. Algorithm AX uses a group communication service (GCS) [95] with certain properties

to provide membership and communication services to the groups of processors. We argue that

these properties are basic and are provided by several group communication systems and spec-

ifications [23]. It also uses a coordinator-based approach for load-balancing the tasks within

each group of processors. To analyze the algorithm we introduce view-graphs that are directed

acyclic graphs used to represent the partially-ordered view evolution history witnessed by the

processors (the group changes that processors undergo during the computation). We believe

that view-graphs have the potential of serving as a general tool for studying cooperative com-

puting with group communication services. We show that algorithm AX solves the Omni-Do

problem for n tasks, p processors and any pattern of group fragmentations and merges with

task-oriented work W < min{nfr +n, np} and message complexity M < 4(nfr +n+pfm),

where fr denotes the number of new groups created due to fragmentations and fm the number

of new groups created due to merges. This extends the work of Dolev, Segala and Shvartas-

man [32], mentioned in the previous section. In addition, algorithm AX has better message

complexity (subquadratic in n) than the algorithm of Dolev et al. (at least quadratic in n) and

the same asymptotic task-oriented work complexity, under group fragmentations.

An Omni-Do algorithm and its efficiency can only be partially understood through its worst

case work analysis. This is because the resulting worst case bound might depend on unusual or

extreme patterns of group reconfigurations where all algorithms perform poorly. In such cases,

worst case work may not be the best way to compare the efficiency of algorithms. Hence, in or-

der to understand better the practical implications of performing work in partitionable settings,

16

we initiate the study of the Omni-Do problem as an on-line problem and we pursue competi-

tive analysis [105]. Specifically, we study a simple randomized algorithm, called algorithm RS,

where each processor (or group) determines the next task to complete by randomly selecting

the task from the set of tasks this group does not know to be completed. We compare the ex-

pected task-oriented work of this algorithm to the task-oriented work of an “off-line” algorithm

that has full knowledge of the future changes in the communication medium. We consider ar-

bitrary patterns of network reconfigurations (including but not limited to fragmentations and

merges). We describe a notion of computation width, which associates a natural number with

a history of changes in the communication medium, and show both upper and lower bounds

on competitiveness in terms of this quantity. Specifically, we show that algorithm RS obtains

the competitive ratio (1 + cw/e), where cw is the computation width; we also show that this

ratio is tight. We note that cw captures precisely the effect of network reconfigurations on the

efficiency of the computation.

1.5 Document Structure

The rest of the thesis is organized as follows. In Chapter 2 we survey prior and related

work. In Chapter 3 we formally define the models of computation, the Do-All problem and

its variations, and the measures of efficiency we use to evaluate Do-All algorithms. In Chap-

ter 4 we present matching failure-sensitive upper and lower bounds on work for Do-All and

iterative Do-All . We consider the model with synchronous crash-prone processors that are

assisted by an “oracle” for load-balancing and termination decisions (assumption of perfect

knowledge). In Chapter 5 we present failure-sensitive bounds on work and messages for the

17

Do-All problem for synchronous message-passing processors prone to crashes. We first con-

sider a message-passing model where reliable multicast is available (Section 5.1) and then we

consider a message-passing model without reliable multicast (Section 5.2). In Chapter 6 we

present failure-sensitive bounds on work for the Write-All problem for synchronous crash-

prone processors, first in a shared-memory model where the memory access concurrency does

not need to be controlled (Section 6.1), and then in a shared-memory model where the memory

access concurrency must be controlled (Section 6.2). Chapter 7 considers the Omni-Do prob-

lem in partitionable networks. We first analyze algorithmic solutions to Omni-Do in terms of

worst case work (Section 7.1), and then we analyze the work of Omni-Do algorithms in terms

of competitive analysis (Section 7.2). We conclude in Chapter 8 with a discussion of future

research directions.

Chapter 2

Related Work

In this chapter we overview results for Do-All in several models of computation. We

also give an overview of group communication services, and two problems that are related

to Do-All , the cooperative collect and consensus problems. We conclude this section with a

discussion on web-based computing.

2.1 Do-All in Message-Passing Models

Dwork, Halpern and Waarts were the first to consider Do-All in message-passing systems

[33]. They developed several deterministic algorithms that solved the problem for synchronous

crash-prone processors. To evaluate the performance of their algorithms, they used the “total

number of tasks performed” work complexity measure (task-oriented work), denoted by W

and the “total number of messages sent” message complexity measure, denoted by M . They

also used the effort complexity measure, defined as the sum of W and M . This measure of

efficiency makes sense for algorithms for which the work and message complexities are similar,

which was the case for the algorithms in [33]. One algorithm presented in [33], called protocol

18

19

B has effort O(n+p
√

p), with work contributing the cost O(n+p) and the message complexity

contributing the cost O(p
√

p) toward the effort. The running time of the algorithm is O(n+p).

The algorithm uses synchrony to detect processor crashes by means of timeouts. The algorithm

operates as follows. The n tasks are divided into chunks and each chunk is divided into sub-

chunks. Processors checkpoint their progress by multicasting the completion information to

subsets of processors after performing a subchunk, and broadcasting to all processors after

completing chunks of work. Another algorithm, called protocol C has effort O(n + p log p). It

has optimal work W = O(n + p), message complexity M = O(p log p) and time O(p2(n +

p)2n+p). This shows that reducing the message complexity may cause a significant increase in

time. The last algorithm presented in [33], called protocol D, obtains work optimality and it is

designed for maximum speed-up (the ratio between the parallel time over the sequential time),

which is achieved with a more aggressive check-pointing strategy, thus trading-off time for

messages. The message complexity is quadratic in p for the fault-free case, and in the presence

of f < p crashes the message complexity degrades to Θ(fp2). Finally, the authors in [33]

demonstrate how each of their algorithms can be used to construct efficient algorithms for the

Byzantine agreement problem (see Section 2.7 for more details).

De Prisco, Mayer and Yung [28] provided an algorithmic solution for Do-All considering

the same setting as Dwork et al., (synchrony, processor crashes) but using the “available pro-

cessor steps” work complexity measure, denoted by S. De Prisco et al. use a “lexicographic”

criterion: first evaluate an algorithm according to its available processor steps and then accord-

ing to its message complexity. This approach makes sense when optimization of work is more

important than optimization of communication. They present a deterministic algorithm that

has S = O(n + (f + 1)p) and M = O((f + 1)p). The algorithm operates as follows. At each

20

step all the processors have a consistent (over)estimate of the set of all the available processors

(using checkpoints). One processor is designated to be the coordinator. The coordinator allo-

cates the undone tasks according to a certain load balancing rule and waits for notifications of

the tasks which have been performed. The coordinator changes over time. To avoid a quadratic

upper bound for S, substantial processor slackness is assumed (p ≪ n). We note that f ap-

pears in the equations mainly because of the use of the coordinator approach. The authors also

develop a lower bound of S = Ω(n + (f + 1)p) for any algorithm using the stage-checkpoint

strategy, this bound being quadratic in p for f comparable with p.

Galil, Mayer and Yung [44], while working in the context of Byzantine agreement (see

Section 2.7) assuming synchronous crash-prone processors, developed an efficient algorithm

that has the same work bound as De Prisco et al. [28] (S = O(n + (f + 1)p)) but has better

message complexity: M = O(fpε + min{f + 1, log p}p), for any ε > 0. The improvement

on the message complexity is mainly due to the improvement of the checkpoint strategy used

in [28] by replacing the “rotating coordinator” approach with what they called the “rotating

tree” (diffusion tree) approach.

Chlebus, De Prisco and Shvartsman [17] developed the only known efficient deterministic

algorithm, that solves Do-All in the synchronous model under processor crashes and restarts.

Their algorithm, called AR, uses an algorithmic technique that is based on an aggressive co-

ordination paradigm by which multiple coordinators may be active as the result of failures:

when the failures of coordinators disrupt the progress of the computation, the number of co-

ordinators is increased (doubled); when the failures recede, a single coordinator is chosen.

Algorithm AR has work S = O((n + p log p + f) · min{log p, log f}) and message com-

plexity M = O(n + p log p + fp), where f is the number of processor crashes and restarts.

21

En route to the solution for restartable processors, the authors presented another algorithm,

called AN, which is designed to solve Do-All for synchronous processors prone to crashes (no

restarts). Algorithm AN has work S = O((n+p log p/ log log p) log f) and message complex-

ity M = O(n + p log p/ log log p + fp), where f is the number of processor crashes. Observe

that algorithm AN has better work than the algorithms in [28] and [44] when n, p and f are

comparable. However, algorithms AN and AR assume reliable multicast [60] (if a processor

fails while multicasting a message, then either all non-faulty processors deliver the message or

none do), whereas prior solutions use simple point-to-point messaging. In Section 5.1 we give

a more detailed description of algorithm AN and we develop failure-sensitive bounds on the

work and message complexities that demonstrate precisely how processor crashes affect the

efficiency of the algorithm.

Chlebus and Kowalski [20] studied the Do-All problem for synchronous crash-prone pro-

cessors with reliable multicast under a weakly-adaptive linearly bounded adversary: the adver-

sary selects f < c · p (0 < c < 1) crash-prone processors prior to the start of the computation,

then any of these processors may crash at any time during the computation. They designed

a randomized algorithm with expected combined work complexity and message complexity

S + M = O(n + p(1 + log∗ p− log∗(p/n))). They also showed that the performance of their

randomized algorithm is better than that of any deterministic algorithm in the same setting,

where work S = Ω(p log p/ log log p) has to be performed.

Chlebus, Kowalski and Lingas [22] studied Do-All in the setting of broadcast networks

where processors communicate over a multiple access channel [45], synchronized by a global

clock. If exactly one processor broadcasts at a time, then the message is delivered to all proces-

sors. If more than one processor broadcasts then collision occurs and no message is delivered.

22

The authors provide randomized and deterministic solutions with and without collision detec-

tion, and for various size-bounded adversaries.

Chlebus, Gasieniec, Kowalski and Shvartsman [19] developed a deterministic algorithm

that solves Do-All for synchronous crash-prone processors with combined work and message

complexity S + M = O(n + p1.77). This is the first algorithm that achieves subquadratic in

p combined S and M for the Do-All problem for synchronous crash-prone processors. They

present another deterministic algorithm that has work S = O(n + p log2 p) against f -bounded

adversaries such that p−f = Ω(pα) for a constant 0 < α < 1. They also show how to achieve

S+M = O(n+p log2 p) against a linearly-bounded adversary by carrying out communication

on an underlying constant-degree network.

Recently, Kowalski and Shvartsman [75] considered the Do-All problem in asynchronous

message-passing systems. Recall that the Do-All problem can be solved without any com-

munication with work S = Θ(np) by an oblivious algorithm where each processor performs

all tasks. The authors observe that it is not possible to obtain subquadratic (in n) work when

the message delay d is substantial, e.g., d = Θ(n). Therefore, they pursue a message-delay-

sensitive approach: The upper bounds on work and communication are given as functions of p,

n, and d, the upper bound on message delays, however algorithms have no knowledge of d and

they cannot rely on the existence of an upper bound on d. The authors present two families of

asynchronous algorithms achieving, for the first time, subquadratic work as long as d = o(n).

The first, is a family of deterministic algorithms parameterized by a positive integer q and a

list of q permutations on the set [q] = {1, ..., q}, where 2 < q < p < n. It is shown that

for any constant ε > 0 there is a constant q such that the corresponding algorithm has work

S = O(npε +pd[n/d]ε) and message complexity M = O(p ·S). The algorithms in this family

23

are modeled after an algorithm of Anderson and Woll [7] (see next section), and use a list of q

permutations is a similar way. The second family, is a family of deterministic and randomized

algorithms, parametrized by a list of p permutations on the set [p]. The randomized algorithms

have expected work S = O(n log p + pd log(2 + n/d)) and expected message complexity

M = O(np log p + p2d log(2 + n/d)). It is shown that there exists a deterministic list of

schedules such that the deterministic algorithm has work S = O(n log p + pd log(2 + n/d))

and message complexity M = O(np log p + p2d log(2 + n/d)). The authors also present

the first delay-sensitive lower bound for Do-All in this setting, that helps explain the behav-

ior of the their algorithms. Specifically, they show that any deterministic (resp. randomized)

algorithm with p asynchronous processors and n tasks has work (resp. expected work) of

Ω(n + pd logd+1 n).

2.2 Write-All in Shared-Memory Models

Kanellakis and Shvartsman were the first to consider the Write-All problem [67]. They

developed the best known deterministic synchronous algorithm, called W, that solves Write-

All under processor crashes with work S = O(n+p log n log p/ log log p) [67]. The algorithm

uses binary trees of depth O(log n) for estimating the number of operational processors, the

number of completed tasks (elements of the input array that have value 1) and for balancing the

loads of the operational processors. In particular, the elements of the input array are associated

with the leaves of a binary tree of depth O(log n), called the progress tree. The processors

are initially distributed to the leaves of the progress tree where each of them performs a task

and writes 1 to the corresponding tree location. Then the processors traverse the tree bottom-

up recording the progress that it made. This gives an (under)estimate of the number of done

24

tasks. The processors also traverse, bottom-up, a tree of depth O(log p), called the processor

enumeration tree to estimate the number of operational processors. Using the two estimated

values, the processors traverse the progress tree top-down until they reach to a leaf of the tree.

This evenly distributes the operational processors onto undone tasks. The processors perform

the task associated with the leaf they reached, and then traverse the progress tree up to the

root to record the new progress. This is repeated until all tasks are performed. Observe that

the bound on work for algorithm W does not include f , the number of processor crashes. In

Section 6.1 we give a more detailed description of algorithm W and we present our failure-

sensitive analysis of its work complexity.

Kedem, Palem, and Spirakis [72] performed an average case analysis of algorithm W [67]

considering random processor crashes (each processor may crash with a fixed probabil-

ity). They showed that algorithm W can solve the Write-All problem with expected time

O(log p log n) and expected work O((p + n) log n). This shows that algorithm W performs

well under random failures. In the same paper, Kedem et al. developed a simple algorithm,

called algorithm PS, which is a trivial modification of the straightforward pointer-doubling al-

gorithm (PS is short for pointer shortcutting). The algorithm improves on the expected time of

algorithm W while it obtains the same expected work complexity. Specifically, algorithm PS

solves the Write-All problem under random failures with expected time O(log n) and expected

work O(n log n).

Kanellakis, Michailidis and Shvartsman [66] developed a deterministic synchronous algo-

rithm, algorithm KMS (called algorithm Wopt
CR/W in [66]) that solves Write-All under proces-

sor crashes while controlling the read and write memory access concurrency. The algorithm

uses the same data structures as algorithm W to record the progress of the computation and

25

to perform load balancing, and it uses two additional data structures to control the memory

access concurrency: (a) processor priority trees are used to determine which processors are

allowed to read or write each shared location that has to be accessed concurrently by more

than one processor, and (b) broadcast arrays are used to disseminate values among readers

and writers. The write concurrency, denoted ω, measures the redundant write memory ac-

cesses as follows: Consider a step of a synchronous parallel computation, where a particu-

lar location is written by x ≤ p processors. Then x − 1 of these writes are “redundant”,

because a single write should suffice. Hence, the write concurrency for this step is x − 1.

The read concurrency, denoted ρ, is measured in a similar manner. Algorithm KMS has

work S = O(n + p log2 n log2 p/ log log n), write concurrency ω ≤ f and read concurrency

ρ ≤ f log n, f being the number of crashes. Observe that although the bounds on the read and

write concurrencies are given as a function of f , the bound on work is not given as a function

of f . In Section 6.2 we give a more detailed description of algorithm KMS and we present a

failure-sensitive analysis of its work complexity.

Algorithm V [15] is a variation of algorithm W that solves Write-All with synchronous

restartable crash-prone processors. As in algorithm W, the processors use binary trees of depth

O(log n) to perform load balancing. Restarted processors join the computation at a pre-defined

phase. Algorithm V requires work S = O(n + p log2 n + f log n), where f is the number

of processor crashes and restarts. Observe that since f can be arbitrarily large, the work of

algorithm V might not be bounded by a function of n and p.

Anderson and Woll [7] developed the best deterministic asynchronous algorithm for Write-

All . We call this algorithm AWT. Algorithm AWT has work S = O(npε), for arbitrary

0 < ε < 1. The algorithm uses a q-ary tree, called progress tree to load balance processors

26

to tasks (array elements) and a list of q ≤ p permutations of [q], used in conjunction with

processor identifiers to let the processors know in what order to traverse each of the q subtrees

of each interior node in the progress tree. The work complexity does not account for the time

required for these permutations to be computed; it is assumed that they are known before

the execution of the algorithm. The authors of [7] provide a construction (exponential in q

processing time) of permutations needed by their algorithm. Groote et al. [59] introduced a

different approach that does not use permutation lists and hence no pre-processing is needed

to construct such lists. They present an algorithm that has work S = O(nplog(x+1
x

)) where

x = n
1

log p . The authors argue that their algorithm performs better than AWT under practical

circumstances where p ≪ n, e.g., when n = p2. Another practical algorithm, that does not

require a precomputed set of permutations is algorithm X, developed by Buss, Kanellakis,

Radge and Shvartsman [15]. Algorithm X is a special case of algorithm AWT, where q = 2

and it has work S = O(np0.59). Algorithm X can also be used to solve the Write-All problem

for synchronous processors prone to crashes and restarts using work S = O(np0.59).

Recently, Malewicz [82] developed a deterministic asynchronous algorithm for the Write-

All problem that has work S = O(n + p4 log n). This is the first asynchronous Write-All

algorithm that has optimal work for a nontrivial number of processors (p < (n/ log n)1/4), as

opposed to all previously known deterministic algorithms that require as much as ω(n) work

when p = n1/c, for any fixed c > 1. The algorithm operates on collision detection: each pro-

cessor has a collection of intervals of the input array and iteratively selects an interval to work

on. The processor proceeds from one edge of the interval toward the other edge, executing the

tasks associated with the cells in the interval. When processors “collide”, meaning that they are

allocated to the same input element, they exchange appropriate information and schedule their

27

future work accordingly. The algorithm uses Test-And-Set instructions to detect collisions, as

opposed to the previous algorithms that used only atomic Read/Write instructions.

Kedem, Palem, Raghunathan and Spirakis [71] showed that any crash-free execution of an

algorithm designed to solve Write-All deterministically for n = p with crash-prone processors

requires time Ω(log n) and work Ω(n log n). Martel and Subramonian [86] extended these

lower bounds for randomized algorithms. Specifically they showed that the lower bound on

expected time and expected work on randomized algorithms for Write-All is Ω(log n) and

Ω(n log n), for n = p, respectively (these lower bounds apply to both synchronous crash-prone

and asynchronous processors). Martel, Park, and Subramonian [85] developed a randomized

asynchronous algorithm for Write-All that matches the above lower bound on the expected

work for randomized algorithms. Their algorithm proceeds as follows: the locations of the

input array are viewed as n leaves of a binary tree that is Θ(log n) deep (this is similar to the

progress tree of algorithm X [15]). Initially all tree nodes are unmarked. Each processor selects

a tree node at random. If the node v is a leaf node or if its children are marked, then node v is

also marked. This is repeated until the root is marked.

Write-All algorithms can be used iteratively to simulate parallel algorithms formulated for

synchronous failure-free processors (see the works of Kedem, Palem, and Spirakis [72], Ke-

dem, Palem, Raghunathan, and Spirakis [71], Martel, Park, and Subramonian [85], Martel,

Subramonian, and Park [87], and Shvartsman [104]). It was shown that the execution of a sin-

gle n-processor step on p failure-prone processors does not exceed the complexity of solving

a n-size instance of Write-All using p failure-prone processors. This commonly requires that

(i) the individual processor steps are made idempotent (since they may have to be performed

multiple times due to failures or asynchrony), and that (ii) a linear in the number of processors

28

auxiliary memory is made available (to be used as a “scratchpad” and to store intermediate

results). While the former can be solved with the help of an automated tool, e.g., a compiler,

the latter requires sophisticated solutions because of the difficulty of (re)using the auxiliary

memory due to “late writers” (i.e., processors that are slow and that unknowingly write stale

values to memory). Examples of randomized solutions addressing these problems include the

works of Aumann and Rabin [9] , and Kedem, Palem, Rabin, and Raghunathan [70]. Another

important aspect of algorithm simulations is the use of an optimistic approach, where the com-

putation may proceed for several steps assuming that all tasks assigned to active processors are

successfully completed. Such approach was used by Kedem, Palem, Raghunathan and Spi-

rakis in [71]. In some deterministic models optimal simulations are possible (as demonstrated

by Shvartsman in [104]), however randomized solutions are able to achieve (expected) opti-

mality for broader ranges of models and algorithms. An example of a practical implementation

is discussed by Dasgupta, Kedem and Rabin in [25].

2.3 Do-All Under the Assumption of Perfect Knowledge

Kanellakis and Shvartsman [68] showed that Do-All can be solved using unit-time memory

snapshots (equivalently assuming perfect knowledge – see below) for synchronous crash-prone

processors with work S = O(n + p log p/ log log p) for f < p ≤ n (f is the number of

processor crashes). They showed that this bound is tight, by giving a matching lower bound.

The authors also presented a matching lower and upper bound on work for Do-All assuming

synchronous crash-prone and restartable processors. The bound is S = Θ(n + p log p) for

p ≤ n and any f , the number of processor crashes and restarts. This result also holds for the

29

model of perfect knowledge with asynchronous processors, where a crash and restart event can

be modeled as a delay.

The above bounds hold under the assumption that processors can read all memory in con-

stant time (memory snapshots). However, it is not difficult to see that the memory snapshot

assumption in shared-memory is equivalent to the assumption of perfect knowledge, where a

deterministic omniscient oracle provides load-balancing and termination to the processors in

constant time (information that can be obtained also in constant time in the memory snapshots

model). Hence any result provided in the “memory snapshots model” holds trivially in the

“perfect knowledge model”.

2.4 Omni-Do in Partitionable Networks

Omni-Do was introduced and studied by Dolev, Segala and Shvartsman in [32]. They

present the following results, under the assumption that p = n. (a) For the case of dynamic

group changes, including fragmentations and merges, they show that the termination time of

any on-line task assignment algorithm is greater than the termination time of an off-line task

assignment algorithm (that has the knowledge of the dynamic group changes pattern) by a

factor greater than n/12. (b) They present a load balancing algorithm, called AF that solves

the Omni-Do problem with group fragmentations (no merges) and under the assumption that

all processors belong initially to a single group, with work S = O(n + f · n), f < n being

the fragmentation-number of the computation. (The fragmentation-number of a fragmentation

is the number of new groups created due to this fragmentation minus one. The fragmentation-

number of the computation is the sum of all fragmentation-numbers of all the fragmentations

occurred in the computation.) The basic idea of algorithm AF is the following: each processor

30

performs undone tasks according to a certain load balancing rule until it learns the results of

all tasks. The algorithm uses a group communication service to handle group memberships

and communication within groups (see Section 2.5). The authors did not measure the message

complexity of algorithm AF, however it is not difficult to see that M is at least quadratic.

(c) They develop an effective scheduling strategy for minimizing the task execution redundancy

(see below) between any two processors that merge during the computation. More specifically,

they show that if initially all processors work in isolation, then the task redundancy incurred

when the communication is first established between any two processors is bounded by 1 as

long as no processor has executed more than Θ(n1/3) tasks. The task execution redundancy

is defined as follows. Consider two processors, i and j, that at some point of the computation

merge. Let Ti be the set of task identifiers of the tasks that processor i performed before the

merge and let Tj be the set of task identifiers of the tasks that processor i performed before the

merge. Let Ri = Ti ∩ Tj . Then the task execution redundancy of this merge is |Ri|. (Hence,

if processors i and j performed different tasks before they merge, then the task execution

redundancy is zero.) We note that all the results in [32] were shown for the asynchronous

timing model.

Malewicz, Russell, and Shvartsman in [83, 84] introduced the notion of k-waste that mea-

sures the redundant task-oriented work performed by k groups (or processors) when they start

in isolation and then merge into a single group. However, they only adequately investigate the

case of the pairwise waste (2-waste) until the first merge. This is the case when from a pool of

p processors, any two processors merge into one group having performed a and b (a, b ≤ n)

tasks respectively. The authors first show a lower bound on pairwise waste of Ω(a2/n) (when

31

n ≥ a ≥ b and n = p). Then they present an asymptotically optimal randomized construc-

tion as well as a near-asymptotically-optimal deterministic construction using elements from

design theory [63].

2.5 Group Communication Services

Group communication services (GCS) [95] provide membership and communication ser-

vices to the group of processors. GCSs have been established as effective building blocks for

constructing fault-tolerant distributed applications. These services enable the application com-

ponents at different processors to operate collectively as a group, using the service to multicast

messages. The basis of a group communication service is a group membership service. Each

processor, at each time, has a unique view of the membership of the group. The view includes

a list of the processors that are members of the group. Views can change and may become

different at different processors. There is a substantial amount of research dealing with speci-

fication and implementation of GCSs. Some GCS implementations are Isis [14], Transis [30],

Totem [91], Newtop [37], Relacs [10], Horus [110], Consul [88] and Ensemble [61]. Some

GCS specifications are presented in [97, 11, 38, 31, 24, 62, 90]. An extended study on speci-

fications of GCS can be found at [23]. Examples of recent work dealing with primary groups

are [27, 77]. An example of an application using a GCS for load balancing is by Fekete, Khazan

and Lynch [73]. Babaoglu et al. [12] study systematic support for partition awareness based

on group communication services in a wide range of application areas, including applications

that require load balancing. To evaluate the effectiveness of partitionable GCSs, Sussman and

Marzulo [107] proposed a measure (cushion) precipitated by a simple partition-aware applica-

tion.

32

2.6 Cooperative Collect

Omni-Do has an analogous counterpart in the shared-memory model of computation,

called the collect problem, introduced by Shavit [103] and studied by Saks, Shavit and Woll

in [100]. There are p processors each with a shared register. The goal is to have all the pro-

cessors learn (collect) all the register values. Computation is asynchronous, with the adversary

controlling timing of the processors. A trivial solution to this problem is to have all p proces-

sors reading all p registers. Saks, Shavit and Woll recognized the opportunity for improving the

efficiency of shared-memory algorithms by finding a way for processors to cooperate during

their collects [100]. They developed a randomized algorithm, which they analyzed in a model

where a time unit is the minimal interval in the execution of the algorithm during which each

processor executes at least one step (known as the big-step model). The goal is to minimize

the number of big-steps.

Ajtai, Aspnes, Dwork and Waarts [3] showed that the problem can be solved determin-

istically with work S = O(p3/2 log p), by adapting the algorithm of Anderson and Woll

(AWT) [7]. The authors assume single-writer, multi-reader registers, each of size O(p log p)

bits. The authors point out that for the asynchronous Write-All problem, usually some sort

of multi-writer registers are assumed, each of size O(log p) bits. Then, the authors argue that

for a model that provides multi-writer registers, the cooperative collect would be equivalent to

the Write-All problem: given a Write-All algorithm, if each of the writes to the registers is

replaced by a read, and the value read is propagated along with the certification that the par-

ticular register was accessed, then when each processor terminates, it knows that each register

was accessed along with each register’s value. The authors, using this observation, show that

the algorithm of Anderson and Woll [7] can be modified to solve the collect problem using

33

single-writer, multi-reader registers, by choosing “appropriate” set of permutations on [p] that

they show to exist.

Aspnes and Hurwood [8] developed a randomized algorithm for the cooperative collect

problem that has work S = O(n log3 n) with high probability. The idea of the algorithm is

that each processor keeps reading randomly selected registers. However, before a processor

attempts to read a register, it “leaves a note” saying where it is going. This is necessary to

prevent situations where the adversary chooses a specific register and delay each processor

that attempts to read that register (it is not difficult to see that this leads to quadratic work).

The authors show that the processors, using the notes left by other processors, can detect such

traps with high probability and hence avoid quadratic work with high probability. The work

achieved by this algorithm is very close to the lower bound of Ω(n log n), shown in [100].

Although the algorithmic techniques when dealing with the collect problem are different,

the goal of having all processors to learn a set of values is similar to the goal of having all

processor to learn the results of a set of tasks in Omni-Do.

2.7 Consensus

Consensus is the abstract problem of having p processors to agree on a common value.

This problem is one of the fundamental problems of distributed computing, and solutions to

this problems are used as building blocks in various distributed applications. Dwork, Halpern

and Waarts [33] showed that algorithmic solutions to Do-All can be used to provide efficient

solutions to consensus. Also, De Prisco, Mayer and Yung [28], and Galil, Mayer and Yung

34

showed that algorithmic solutions to consensus can be used to solve Do-All . The consen-

sus problem has been studied in various models of computation and we present an overview,

focusing mainly on work that is related to our research.

The Coordinated Attack Problem

The coordinated attack problem is a fundamental problem of reaching consensus in

message-passing systems, where messages may be lost. It was introduced by Gray [57] in

the context of distributed databases. Abstractly, there are several generals that want to agree

on an attack time, and that communicate using messengers who may be lost. Gray [57] proved

that this problem is impossible to be solved deterministically in the absence of reliable com-

munication, even if the system is synchronous. Due to this impossibility result, the randomized

version of the coordinator attach problem has been considered: agreement is reached with high

probability. Unlike the deterministic version, the randomized coordinated attack problem can

be solved (in synchronous systems). See, for example, [111].

Byzantine Agreement and its Connection to Do-All

When processors are subject to processor failures (rather than communication failures),

consensus is better known as Byzantine agreement. Byzantine agreement was introduced by

Lamport, Shostak and Pease [76] in which consensus was formulated in terms of Byzantine

generals prone to Byzantine failures (faulty processors may exhibit totally unconstrained be-

havior [76]): as in the coordinated attack problem, the generals want to agree on a time to carry

out an attack, but in this case, they do not worry about lost messengers, but about the traitorous

behavior by some general. Alternatively, the problem is formulated, for both crash and Byzan-

tine failures, as follows: p processors, a subset of which may be faulty, must agree on a value

35

broadcast by a distinguished processor called the sender or the general in such a way that all

non-faulty processors decide the same value, and when the general is non-faulty, they decide

on the value the general sent. The number of faulty processors is bounded in advance, by a

fixed number f .

For the synchronous message-passing model with Byzantine processor failures, Pease,

Shostak and Lamport [94, 76] presented upper and lower bounds of 3f + 1 for the number of

processors required for Byzantine agreement. Moses and Waarts [92], Berman and Garay [13]

and Garay and Moses [46] have produced f + 1 round Byzantine agreement algorithms (in

each round, each processor can send messages to other processors and receive the messages

sent by other processors in the same round) with polynomial communication (number of point-

to-point messages sent). Fischer and Lynch [40] showed that Byzantine agreement cannot be

solved in fewer than f + 1 rounds.

Byzantine agreement was also studied in the synchronous message-passing model under

processor crashes. In [80] two deterministic algorithms are presented that solve Byzantine

agreement (each using a different technique) in f + 1 rounds and with O((f + 1)p2) message

complexity, where p is the number of processors and f the number of processor crashes. For

the same model, Dwork and Moses [35] showed that Byzantine agreement cannot be solved in

fewer than f + 1 rounds (like in the case of Byzantine failures).

Dwork, Halpren and Waarts [33], while working in the context of the Do-All problem

assuming synchronous crash-prone processors (see Section 2.1), developed an algorithm that

can use a Do-All algorithm as a building block to solve the Byzantine agreement problem for

synchronous crash-prone processors. Their algorithm proceeds in two stages: first the general

broadcasts its value to processors with PID = 1, . . . , f + 1. Then these f + 1 processors use

36

one of the Do-All algorithms (Protocols B, C or D [33]) to perform the “work” of informing

processors 1, . . . p about the general’s value. Hence, performing a Do-All task here means

sending a message containing the general’s value. Initially all processors have the initial value

0 as the general’s value (the general of course has it own value as initial value). When a proces-

sor receives a message about a value for the general different from its current value, it adopts

the new value. Finally, at a predetermined time by which the underlying Do-All algorithm

is guaranteed to have terminated, each processor decides on its current value for the general.

Using protocol C as the Do-All algorithm the authors solve the Byzantine agreement problem

for synchronous crash-prone processors in O(2p) time and with O(p + f log f) message com-

plexity. When they use protocol B they obtain a Byzantine agreement solution of O(p) time

and O(p + f
√

f) message complexity. Observe that when p and f are comparable, the sec-

ond solution has the same asymptotic time complexity as the algorithms presented in [80] and

substantially better message complexity. This shows that Do-All solutions can yield efficient

solutions to the Byzantine agreement problem (and to the consensus problem in general).

Galil, Mayer and Yung [44] developed an algorithm that solves Byzantine agreement for

synchronous crash-prone processors that uses a linear number of messages (O(p)) and super-

linear time (O(p1+ε)). They also improved the message complexity of the Do-All algorithm of

De Prisco et al. [28] (see Section 2.1). This algorithm relies on two agreement-like protocols:

(a) the check-point protocol that processors use to agree on the set of operational processors,

and (b) the synchronization protocol that processors use to agree on the time that the next

check-point protocol will begin. Given the full details of the protocols, it is not difficult to

observe that these protocols solve multiple instances of the Byzantine agreement problem.

This shows that efficient solutions to consensus can lead to efficient solutions to Do-All .

37

FLP Impossibility Result

One of the fundamental impossibility results in the theory of distributed computing is the

FLP result which states that consensus cannot be solved in asynchronous models, even if there

is guaranteed to be no more than one processor failure. More precisely, every asynchronous

consensus algorithm has the possibility of nontermination (that is, a non-faulty processor might

never decide on a value and the algorithm runs indefinitely), even with only one faulty proces-

sor. This result was shown by Fischer, Lynch and Paterson (thus the name FLP) in [41] for the

asynchronous message-passing model and it was later extended to the read/write asynchronous

shared-memory model by Loui and Abu-Amara [78]. Since this impossibility result has prac-

tical implications for distributed applications in which agreement is required, a lot of research

has been done in solving consensus in asynchrony either by relying on randomized correctness

or by weakening the problem (e.g. k-Agreement, approximate agreement) or strengthening the

model (e.g. assuming read-modify-write or compare-and-swap shared memory, using failure

detectors, introducing some timing conditions — partial synchrony). For such solutions we

refer the reader to [34, 16, 80].

The research performed on consensus in the models that allow fault-tolerant solutions teach

that the maximum number of processor failures needs to be included in upper/lower bounds

and impossibility results. This contributes to the understanding of the impact that failures have

on the efficiency and dependability of algorithms and in identifying the trade-offs between

fault-tolerance and efficiency for solving distributed problems (such as Do-All). This research

motivated in part the research in this thesis: show failure-sensitive upper/lower bounds for the

Do-All problem.

38

2.8 Web-Based Computing

In recent years, the web has become the computing platform of choice for a variety of

computational problems that cannot be handled efficiently by the traditional fixed-size col-

lection of machines (such as clusters of workstations or multiprocessor machines). This has

given rise to the study of web-based computing (WBC) [99]: A large number of processing

elements cooperate in computing a large number of independent tasks. A usual WBC com-

putation proceeds as follows: Interested “volunteers” register with a specific web-site. Then,

each registered volunteer visits the web-site occasionally to receive a task to compute. Once

the volunteer performs the task, it returns the results from that task. The computation continues

in this manner.

Possibly the most popular web-based project is SETI@home [74]. SETI stands for “Search

of Extra-Terrestrial Intelligence”. The project, initiated at University of California at Berkeley,

was the first attempt to use large-scale distributed computing to perform a search for radio

signals possibly coming from extraterrestrial civilizations. It soon became obvious that great

amount of computer power would be necessary to get the job done: the universe is potentially

infinite, and the parameters of a possible alien signal are unknown. The SETI team counts

on using thousands of home personal computers that are idle most of the time, especially

when their owners are at work or are asleep. People, can register at the project’s web-site

(http://setiathome.ssl.berkeley.edu), and make their computer available to the project, when

they are not using it.

Several web-based projects similar to SETI@home are in existence. For example, the

RSA@home project [96]. The project is involved in finding the prime factors of large in-

tegers. The problem of factoring integers has drawn considerable attention due to the RSA

39

cryptographic scheme [98], since the security of RSA depends upon the difficulty of factoring

large numbers. Another example is the AIDS@home project [93]. Through the “donation”

of large computing power, scientists and researchers have an ideal system to model the evolu-

tion of drug resistance and design anti-HIV drugs necessary to fight AIDS. More examples of

web-based projects can be found at http://www.intel.com/cure.

As we demonstrate later on (see Section 4.3), complexity results obtained for Do-All in the

model of perfect knowledge can yield insight about the bounds on task execution redundancy

in settings where a server repeatedly allocates tasks to failure-prone processors (as in web-

based computing). This follows from the observation that the oracle assumed in the model of

perfect knowledge can be used to abstract the server that makes the load-balancing decisions

in web-based computing.

Chapter 3

Models of Computation and the Do-All Problem

In this chapter we define the models of computation, the Do-All problem and the efficiency

measures we use to evaluate Do-All algorithms.

3.1 General Setting and Definitions

Distributed setting: We consider a distributed system consisting of p processors; each pro-

cessor has a unique identifier (PID) from the set P = [p] = {1, 2, . . . , p}. We assume that p is

fixed and is known to all processors.

Each processor’s activity is governed by a local clock. When the processor clocks are

assumed to be globally synchronized, our distributed setting is synchronous and we say that

the processors are synchronous. In this case, processor activities are structured in terms of

synchronous steps (constant units of time). When the processors take steps at arbitrary rela-

tive speeds, our distributed setting is asynchronous and we say that the processors are asyn-

chronous.

40

41

Tasks: We define a task to be any computation that can be performed by a single processor in

constant time. The tasks are assumed to be similar, independent, and idempotent. By the sim-

ilarity of the tasks we mean that the task executions consume equal or comparable resources.

By the independence of the tasks we mean that the tasks can be executed in any order, that is,

the execution of a task is independent of the execution of any of the other tasks. By the idem-

potence of the tasks we mean that executing a task many times and/or concurrently has the

same effect as executing the task once. We define the result of a task to be the outcome of the

task execution. Each task has a unique identifier (TID) from the set T = [n] = {1, 2, . . . , n}.

We assume that n is fixed and known to all processors.

We also consider sequences of task-sets T1,T2, . . . ,Tr, where each Ti, for 1 ≤ i ≤ r, is

a set of n tasks and the execution of any task in Ti must be delayed until all tasks in Ti−1 are

performed. This models the situation where the execution of the tasks in Ti depends on the

execution of the tasks in Ti−1, for 2 ≤ i ≤ r. However we assume that the tasks within each

Ti are independent, similar and idempotent and that they are known to all processors. We also

assume that each task in Ti, 1 ≤ i ≤ r, has a unique TID. For example, each task in Ti may

have a TID from the set {(i− 1)n + 1, (i − 1)n + 2, . . . , in}.

Communication: In message-passing models, processors communicate by sending messages.

Unless otherwise stated (see partitionable networks below), the underlying communication

network is assumed to be fully connected, that is, any processor in P can send messages to any

other processor in P. We also assume that messages are neither lost nor corrupted in transit.

In partitionable networks, the processors may be partitioned into groups of communicating

processors. We assume that communication within groups is reliable but communication across

groups is not possible. Partitions may change over time.

42

In synchronous message-passing systems we assume that message delivery has fixed

known latency. Specifically, within a step, a processor can send messages to other proces-

sors and receive messages from other processors sent to it in the previous step (if any). In

asynchronous systems, we assume no bounds on the message delivery latency.

In shared-memory models, processors communicate by reading from and writing to shared-

memory locations. We assume that it takes a unit of time for a processor to read or write to a

memory cell, according to its local clock. We consider synchronous shared-memory systems

where the reads and writes can be concurrent. When two or more processors simultaneously

write to the same memory cell, either common or arbitrary concurrent write discipline is ob-

served. This follows the conventions established for the Parallel Random Access Machine

(PRAM) [43]: for the common writes it is assumed that all values concurrently written to a

memory location are the same, and for the arbitrary writes it is assumed that the concurrent

writes to the memory location are arbitrarily ordered.

The assumption of perfect knowledge: In Chapter 4 we consider computations where the

processors, instead of communicating with each other, communicate with some deterministic

omniscient oracle, call it oracle O, to obtain information regarding the status of the computa-

tion. In particular, the oracle informs the processors whether the computation is completed and

if not, what task to perform next. We assume that the oracle performs perfect load-balancing,

that is, the live processors are only allocated to unperformed tasks, and all such tasks are

allocated a balanced number of live processors. We also assume that a processor can obtain

load-balancing and termination information from the oracle in O(1) time and that it can consult

the oracle only once per local clock-tick.

43

The assumption of perfect knowledge (or the oracle assumption) abstracts away any con-

cerns about communication that normally dominate specific message-passing and shared-

memory models. This allows for the most general results to be established and it enables

us to use these results in the context of specific models by understanding how the information

provided by an oracle is simulated in specific algorithms. Also, any lower bound developed

under the assumption of perfect knowledge, applies equally well to message-passing or shared-

memory models.

3.2 Models of Adversity

In this section we present the models of adversity. We first present the failure types and

then we introduce the notion of an adversary and present specific adversarial models.

3.2.1 Failure Types

We consider the following failure types.

Processor stop-failures/crashes ([102]): We consider crash failures, where a processor may

crash at any moment during the computation and once crashed it does not restart. For message-

passing models we assume that messages sent to crashed processors are lost and no messages

are sent by crashed processors. For shared-memory models we assume that no reads and writes

are performed by crashed processors. We also assume that processor crashes do not corrupt

the contents of the shared-memory or make the shared-memory inaccessible. Following [102],

we define a fail-stop failure to be a crash failure that can be detected. In synchronous settings,

crash failures can be detected (by timeouts) and hence in such settings the two terms have the

same meaning.

44

Regroupings/partitionable networks (applicable only to message-passing systems): We con-

sider partitionable networks where dynamic changes to the network topology partition the pro-

cessors into non-overlapping groups of communicating processors (processors do not crash).

We represent each processor group g as a pair 〈g.id, g.set〉, where g.id is the unique identifier

of g and g.set is the set of processor identifiers that constitute the membership of the group.

To reduce notation clutter, for this point on, given a group named g we use g to stand for g.set

(e.g., if two, possibly distinct, groups g and g′ have identical membership, we express this by

g = g′). We refer to a transition from one partition to another as a regrouping. We also consider

special types of regroupings: when a single group partitions into a collection of new groups,

we call this a fragmentation. When a collection of groups merge and form a new group that

contains all the processors of the merging groups, we call this a merge.

3.2.2 Adversarial Models

The concept of the adversary is useful for obtaining lower bound results for specific prob-

lems. An event caused by the adversary, e.g., a processor crash, in a computation may nega-

tively affect the efficiency of the computation. We consider two adversary types:

(a) omniscient and on-line: the adversary has complete knowledge of the computation that

it is affecting, and it makes instant dynamic decisions on how to affect the computation.

(b) oblivious and off-line: the adversary determines the sequence of events it will cause

before the start of the computation and without having any a priori knowledge on how

the computation will be affected under this sequence.

45

Note that the distinction between the two adversary types is only useful when considering

randomized algorithms, where the knowledge or not of the random “coin tosses” may be signif-

icant. For deterministic algorithms the two adversary types are essentially the same, since the

adversary knows exactly, before the beginning of the computation, how a specific deterministic

algorithm would be affected by a specific event caused by the adversary.

Consider an adversaryA and an algorithm Λ that solves a specific problem under adversary

A. We denote by E(Λ,A) the set of all executions of algorithm Λ for adversary A. Let ξ be an

execution in E(Λ,A). We denote by ξ|A the set of events caused by A in ξ and we refer to it

as the adversarial pattern of ξ. For an adversarial pattern ξ|A of an execution ξ, we denote by

‖ξ|A‖ the weight of ξ|A. The value of ‖ξ|A‖ depends on the specific adversary A considered

(e.g., if adversary A causes processor crashes, then ‖ξ|A‖ is the number of crashes caused by

the adversary; if the adversary causes fragmentations, then ‖ξ|A‖ is the number of new groups

created due to the fragmentations). Unless otherwise stated, we assume that the processors

have knowledge neither of ξ|A nor of any bounds on ‖ξ|A‖.

We now present the adversaries we consider in the thesis. We first present the adversaries

that cause processor failures and then we present the adversaries that cause regroupings.

Adversaries Causing Processor Failures

We consider only one adversary that causes processor failures. In particular, we consider

an adversary that causes processor crashes.

Adversary AS: We denote by AS an omniscient and on-line adversary that can cause proces-

sor crashes (but not restarts). Consider an algorithm Λ that solves a problem under adversary

AS . Let ξ be an execution in E(Λ,AS). Then, the adversarial pattern ξ|AS
is a set of triples

46

(crash, PID, t), where crash is the event caused by the adversary, PID is the identifier of the

processor that crashes, and t is the time of the execution (according to some external clock not

available to the processors) in which the adversary forced processor PID to crash. Note that

any adversarial pattern contains at most one triple (crash, PID, t) for any PID, i.e., if processor

PID crashes, time t during which it crashes is uniquely defined.

For an adversarial pattern ξ|AS
we define ‖ξ|AS

‖ to be the number of processors that crash.

For the purpose of the thesis we consider only executions ξ where ‖ξ|AS
‖ < p, that is we

require that the adversary leaves at least one processor operational in the entire course of the

computation to ensure computational progress.

Adversaries Causing Regroupings

We consider three adversaries that cause regroupings. The first one is an omniscient and

on-line adversary that can cause only fragmentations and the second one is an omniscient and

on-line adversary that can cause fragmentations and merges. The third one is an oblivious

and off-line adversary that can cause arbitrary regroupings. This adversary is assumed to be

oblivious and off-line because later in the thesis we consider randomized algorithms under this

adversary, as opposed to the first two adversaries where we consider deterministic algorithms

(this is also the case for adversary AS).

Adversary AF : We denote by AF an omniscient and on-line adversary that can cause only

group fragmentations (no merges). Consider an execution ξ of an algorithm Λ that solves a

specific problem underAF , i.e., ξ ∈ E(Λ,AF). For the purpose of this thesis we consider only

executions where initially all processors belong in a single group.

47

When adversary AF forces group g to fragment into groups g1, g2, . . . , gk we require that

(a)
⋃

i∈[k] gi = g, and (b) ∀i, j s.t. 1 ≤ i, j ≤ k and i 6= j, gi ∩ gj = ∅. We say that the

fragmentation-number of this fragmentation is k. Note that k new groups are created due to this

fragmentation. Syntactically, we present such fragmentations in the adversarial pattern ξ|AF

as the triple (fragmentation, g, {g1 , g2, . . . , gk}). Consequently, we represent an adversarial

pattern ξ|AF
of an execution ξ as a set of such triples and we define the fragmentation-number

fr(ξ|AF
) = ‖ξ|AF

‖ to be the sum of the fragmentation-numbers of all the fragmentations in

ξ|AF
. In other words, fr(ξ|AF

) is the total number of new groups created due to the fragmen-

tations in ξ|AF
. By convention, when a group is regrouped in such a way that it forms a new

group with the same participants, we view this as a fragmentation.

Adversary AFM : We denote byAFM an omniscient and on-line adversary that can can cause

fragmentations and merges. Consider an execution ξ of an algorithm Λ that solves a specific

problem under AFM , i.e., ξ ∈ E(Λ,AFM). As for adversary AF , we consider only executions

where initially all processors belong in a single group.

When adversaryAFM forces groups g1, g2, . . . , gℓ to merge and form a group g, we require

that g =
⋃

i∈[ℓ] gi, and we say that the merge-number of this merge is 1 (note that a merge

results to the creation of only one new group). Syntactically, we present such a merge in

the adversarial pattern ξ|AF M
as the triple (merge, {g1, g2, . . . , gℓ}, g). Fragmentations are

presented as for adversary AF . Therefore, we represent an adversarial pattern ξ|AF M
of an

execution ξ as a set of “fragmentation” and “merge” triples, and we define the merge-number

fm(ξ|AF M
) to be the sum of all merge-numbers of all merges in ξ|AF M

. Then, ‖ξ|AF M
‖ =

fr(ξ|AF M
)+ fm(ξ|AF M

). In other words, ‖ξ|AF M
‖ is the total number of new groups created,

due to the fragmentations and merges in ξ|AF M
.

48

Observe that adversaryAFM is more powerful thanAF , and that E(Λ,AF) ⊆ E(Λ,AFM)

for an algorithm Λ that solves a specific problem. Also note that since we consider only

executions ξ where all processors initially belong in a single group (and from the convention

mentioned in the description of adversary AF regarding a group being formed by a group with

the same members), we have that fr(ξ|AF M
) > fm(ξ|AF M

).

Adversary AGR: We denote by AGR an oblivious and off-line adversary that can cause ar-

bitrary regroupings. Consider an algorithm Λ that solves a specific problem under adversary

AGR. The adversary determines a sequence of regroupings prior to the start of an execution

and it can not change this sequence once the execution has begun. We refer to such a pre-

determined sequence of regroupings as a computation template.

Adversary AGR is restricted in determining only computations templates that can be ex-

pressed as the following labeled directed acyclic graph (DAG) C = (V,E), which we call

(p)-DAG (p is the number of participating processors): each vertex corresponds to a group

of processors and a directed edge is placed from group g1 to group g2 if g2 is created by a

regrouping involving g1. Each vertex of the DAG is labeled with the group of processors

associated with that vertex. To this respect, the DAG is augmented with a labeling func-

tion γ : V → 2[p] \ {∅} (i.e., γ(v) is the set of PIDs of the processors that belong in the

group corresponding to vertex v). The function γ satisfies the following two conditions: (a)

[p] = ˙⋃
v: indegree(v)=0γ(v), and (b) there is a function φ : E → 2[p] \ {∅} so that for

each v ∈ V with indegree(v) > 0, γ(v) = ˙⋃
(u,v)∈Eφ((u, v)), and for each v ∈ V with

outdegree(v) > 0, γ(v) = ˙⋃
(v,u)∈Eφ((v, u)). Here ˙⋃ denotes disjoint union. Note that the

above definition allows for several initial groups (no more than p).

49

Given a (p)-DAG, we say that two vertices (groups) are independent if there is no direct

path connecting one to the other. Then, for a computation template C , we define the compu-

tation width of C , cw(C) to be the maximum number of independent groups reachable (along

directed paths) in the (p)-DAG, that represents C , from any vertex. This discussion is revisited

in Section 7.2.1 where we give a formal definition of cw(C) using elements from set-theory

and graph-theory.

Consider a problem of a specific size and all algorithms that solve this problem using

the same number of processors, under adversary AGR. The same computation template can

be applied to all these algorithms, however, the resulting execution might be different, de-

pending on the steps that each algorithm takes in the presence of this computation template.

Let C be a computation template determined by the adversary and let ξ be the resulting ex-

ecution of an algorithm under this computation template. Note that the execution might ter-

minate (meaning that the specific problem is solved) before all regroupings specified by the

computation template take place (since the adversary does not know a priori how the algo-

rithm would behave under this sequence of regroupings). Therefore, if (p)-DAG represents

the computation template C , then the adversarial pattern ξ|AGR
is represented by a subgraph

of (p)-DAG. Furthermore, the weight of ξ|AGR
is the computation width of this subgraph.

Hence, ‖ξ|AGR
‖ ≤ cw(C). For the purpose of this thesis, when considering algorithms under

adversary AGR, failure-sensitivity is measured in terms of the properties of the computation

templates. However, the efficiency of algorithms is measured based on the resulting executions.

50

3.3 The Do-All Problem

We now define the abstract problem of having p processors cooperatively perform n tasks

in the presence of adversity.

Definition 3.1 Do-All : Given a set T of n tasks, perform all tasks using p processors, under

adversary A.

We let Do-AllA(n, p, f) stand for the Do-All problem for n tasks, p processors and ad-

versary A constrained to adversarial patterns of weight less or equal to f . We consider Do-

AllA(n, p, f) to be solved when all n tasks are completed and at least one operational processor

knows about it. We let Do-AllOA(n, p, f) stand for the Do-AllA(n, p, f) problem when the pro-

cessors are assisted by oracle O (as discussed in paragraph Assumption of perfect knowledge

in Section 3.1).

In the shared-memory model the Do-All problem is known as the Write-All problem.

The main difference is that in Do-All the tasks may be supplied to the processors from some

external sources, while in Write-All the tasks are stored in shared-memory accessible to all

processors. In the context of this thesis we abstract away from the sources and the nature of the

tasks and we treat Do-All and Write-All as the same problem in that regard. However, when

we study Do-All in shared-memory models, we will be referring to the Write-All problem,

defined formally as follows:

Definition 3.2 Write-All : Given a zero-valued shared array of n elements, write the value 1

into each array location using p processors, under adversary A.

51

We note that each “Do-All task” is associated with each location of the input array. When

a processor sets the value of a certain location of the input array to 1, this implies that the

processor has performed the associated task.

We let Write-AllA(n, p, f) stand for the Write-All problem for a shared array of n el-

ements (or of n tasks), p processors and adversary A constrained to adversarial patterns of

weight less or equal to f . We consider Write-AllA(n, p, f) to be solved, when the value of

each of the n array elements is set to 1 (meaning that all tasks are performed) and at least one

operational processor knows about it.

Do-All algorithms have been used in developing simulations of failure-free algorithms on

failure prone processors [72, 104, 68]. This is done by iteratively using a Do-All algorithm

to simulate the steps of the n failure-free “virtual” processors on p failure-prone “physical”

processors (here the usual case is that the number of physical processors does not exceed

the number of virtual processors, i.e., p ≤ n). We abstract this idea as the iterative Do-All

problem:

Definition 3.3 r-Iterative Do-All : Given any sequence T1, . . . ,Tr of r sets of n tasks, perform

all r · n tasks using p processors by doing one set at a time, under adversary A.

We let r-Do-AllA(n, p, f) stand for the iterative Do-All problem for r sets of n tasks,

p processors and adversary A constrained to adversarial patterns of weight less or equal to

f . We consider r-Do-AllA(n, p, f) to be solved, when all r · n tasks are completed and at

least one operational processor knows about it. We let r-Do-AllOA(n, p, f) stand for the r-Do-

AllA(n, p, f) problem when processors are assisted by oracle O. The r-Iterative Write-All

problem is defined similarly and it is denoted as r-Write-AllA(n, p, f).

52

When solving Do-All in partitionable networks, our goal is to utilize the resources of every

group of the system during the entire computation. This is so for two reasons: (a) a client, at

any point of the computation, may request for a result of a task from a certain group. This might

be the only group that the client can communicate with. Hence, we would like all groups to be

able to provide the results of all tasks, and (b) if different groups happen to perform different

tasks and a regrouping merges these two groups, then more computational progress can be

achieved with less computation waste. Hence, we would like all components to be computing

in anticipation of regroupings.

Therefore, in partitionable networks, each processor must be computing until it learns the

results of all tasks. We call this variation of Do-All , Omni-Do.

Definition 3.4 Omni-Do: Given a set T of n tasks and p message-passing processors, each

processor must learn the result of all tasks, under adversary A.

We let Omni-DoA(n, p, f) stand for the Omni-Do problem for n tasks, p processors and

adversary A constrained to adversarial patterns of weight less or equal to f . (For adversary

AGR we consider computation templates with computation width less or equal to f .) We

consider Omni-DoA(n, p, f) to be solved when all operational processors know the results of

all n tasks.

Finally, we assume that the number of processors p is no more than the number of tasks n

(p ≤ n). Studying Do-All in the case of p > n is not as interesting. This is so for two reasons:

(1) the most interesting challenge is to consider the settings where maximum parallelism can be

extracted for the case when each processor can initially have at least one distinct task to work

53

on, (2) additionally, for the simulation results the most interesting case is when the number of

simulating processors does not exceed the number of simulated processors.

3.4 Measures of Efficiency

We now define the complexity measures that will determine the efficiency of algorithms.

Work complexity. We first define the notion of work. We are considering two versions of the

definition of work. The first definition of work, denoted by S, is based on the available pro-

cessor steps measure, introduced by Kanellakis and Shvartsman in [67]. The second definition

of work, denoted by W , is based on the number of tasks performed measure, introduced by

Dwork, Halpern and Waarts in [33]. We note that the second definition is meaningful only for

task-performing algorithms, while the first one is more general.

We assume that it takes a unit of time for a processor to perform a unit of work, according

to its local clock. Let Λ be an algorithm that solves a problem of size n with p processors

under adversary A. For an execution ξ ∈ E(Λ,A) denote by Si(ξ) the number of processors

completing a unit of work at time i of the execution, according to some external clock not

available to the processors (for synchronous computations, the external clock is assumed to

run in synchrony with the processors’ local clocks).

Definition 3.5 (available processor steps or work) Let Λ be an algorithm that solves a prob-

lem of size n with p processors under adversary A. If execution ξ ∈ E(Λ,A), where

‖ξ|A‖ ≤ f , solves the problem by time τ(ξ) (according to the external clock), then the work

complexity S of algorithm Λ is:

S = SA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

Si(ξ)






.

54

Note that in Definition 3.5 the idling processors consume a unit of work per idling step

even though they do not contribute to the computation.

Let Λ be a task-performing algorithm that solves a problem with n tasks and p processors

under adversary A. For an execution ξ ∈ E(Λ,A) denote by Wi(ξ) the number of processors

completing a task-oriented unit of work (a task-oriented unit of work is a unit of work that is

spent in performing a task) at time i of the execution, according to some external clock not

available to the processors (for synchronous computations, the external clock is assumed to

run in synchrony with the processors’ local clocks).

Definition 3.6 (number of tasks performed or task-oriented work) Let Λ be a task-

performing algorithm that solves a problem with n tasks and p processors under adversary A.

If execution ξ ∈ E(Λ,A), where ‖ξ|A‖ ≤ f , solves the problem by time τ(ξ) (according to

the external clock), then the task-oriented work complexity W of algorithm Λ is:

W = WA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

Wi(ξ)






.

Note that in Definition 3.6 the idling processors are not charged for work (since we count

only task-oriented units of work).

Observe from the above definitions that the work measure is more “conservative” than the

task-oriented work measure. Given an algorithm Λ that solves Do-All under adversary A

then WA(n, p, f) = O(SA(n, p, f)), since SA(n, p, f) counts the idle/wait steps, which are

not included in WA(n, p, f). The equality WA(n, p, f) = SA(n, p, f) can be achieved, for

example, by algorithms that perform at least one task during any fixed time period. Also note

that Definitions 3.5 and 3.6 do not depend on the specifics of the target model of computation,

e.g., whether it is message-passing or shared-memory. When presenting algorithmic solutions

or lower/upper bounds, we explicitly state which work measure is assumed.

55

Message complexity. The efficiency of message-passing algorithms is additionally character-

ized in terms of their message complexity. Let Λ be an algorithm that solves a problem of size

n with p processors under adversary A. For an execution ξ ∈ E(Λ,A) denote by Mi(ξ) the

number of point-to-point messages sent at time i of the execution, according to some exter-

nal clock not available to the processors (for synchronous computations, the external clock is

assumed to run in synchrony with the processors’ local clocks).

Definition 3.7 (message complexity) Let Λ be an algorithm that solves a problem of size n

with p processors under adversary A. If execution ξ ∈ E(Λ,A), where ‖ξ|A‖ ≤ f , solves

the problem by time τ(ξ) (according to the external clock), then the message complexity M of

algorithm Λ is:

M = MA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

Mi(ξ)






.

Note that when processors communicate using broadcasts or multicasts, each broacast /

multicast is counted as the number of point-to-point messages from the sender to each receiver.

Read and write memory access concurrency. In synchronous shared-memory systems, we

are also interested in studying the read and write memory access concurrency of Write-All

algorithms. Consider a step of a synchronous parallel computation, where a particular location

is written by x ≤ p processors. Then x−1 of these writes are potentially “redundant”, because

a single write suffices. The following read and write concurrency measures, introduced by

Kanellakis, Michailidis, and Shvartsman in [66], assess the worst case number of redundant

read and write memory accesses.

56

Definition 3.8 (read and write concurrency) Let Λ be a synchronous shared-memory algo-

rithm that solves a problem of size n with p processors under adversary A. Consider an ex-

ecution ξ ∈ E(Λ,A) with ‖ξ|A‖ ≤ f that solves the problem by time τ(ξ). If at time i

(1 ≤ i ≤ τ(ξ)), pr
i(ξ) processors complete reads from nr

i(ξ) distinct shared memory locations

and pw
i (ξ) processors complete writes to nw

i (ξ) distinct locations, then we define:

(i) the read concurrency ρ of Λ as:

ρ = ρA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

(
pr

i(ξ)− nr
i(ξ)

)






,

(ii) the write concurrency ω of Λ as:

ω = ωA(n, p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f







τ(ξ)
∑

i=1

(
pw

i (ξ)− nw
i (ξ)

)






.

Chapter 4

Perfect Knowledge: Do-All with Crashes

In this chapter we consider synchronous crash-prone processors under the assumption of

perfect knowledge, where an oracle provides termination and load-balancing information to

the processors (see paragraph “The assumption of perfect knowledge” in Section 3.1). The

assumption of perfect knowledge abstracts away communication and scheduling issues and al-

lows us to focus on the effects of processor failures on the efficiency of Do-All . We present a

complete analysis of Do-AllOAS
(n, p, f) and r-Do-AllOAS

(n, p, f) work complexity that demon-

strates precisely how failures affect efficiency. In particular, we provide matching upper and

lower failure-sensitive bounds on work that are given as functions of n, p and f , the num-

ber of processor crashes, for the entire range of f . This also establishes the first non-trivial

lower bound for Do-All for moderate number of failures (f ≤ p/ log p). In later sections, we

demonstrate the utility and generality of the results we obtain under the assumption of perfect

knowledge by improving the analysis of three efficient algorithms: Algorithm AN [17] that

solves Do-All in the message-passing model assuming reliable multicast (see Section 5.1), al-

gorithm W [67], the best known algorithm that solves Write-All in the shared-memory model

57

58

(see Section 6.1), and algorithm KMS [66] that solves Write-All with controlled memory ac-

cess concurrency (see Section 6.2). By iteratively using these algorithms we also give improved

failure-sensitive upper bounds for iterative Do-All in the corresponding models. Finally, our

results under the perfect knowledge assumption yield insight about the bounds on task exe-

cution redundancy incurred when a central authority repeatedly allocates tasks to crash-prone

processors (see Section 4.3).

4.1 Do-All Upper Bounds with Perfect Knowledge

To study the upper bounds for Do-All we give an oracle-based algorithm in Figure 1.

The algorithm uses oracle O that performs the termination and load-balancing computation on

behalf of the processors. In particular, during each synchronous iteration of an execution of

the algorithm, the oracle O makes available to each processor i two values: Oracle-complete,

a Boolean which takes the value true if and only if all tasks are complete at the beginning

of this iteration, and Oracle-task(i), a natural number from [n], whose value is a task iden-

tifier. Oracle-task is a function from processor identifiers to task identifiers, with the prop-

erty that processors are only allocated to undone tasks, and that all such tasks are allocated

a balanced number of processors. For example, if processors i1, . . . , ik ∈ [p] are alive and

tasks j1, . . . , jℓ ∈ [n] are undone at the beginning of a given iteration of the algorithm, then

Oracle-task(is) = jt, where t = (s − 1 mod ℓ) + 1.

for each processor PID = 1..p begin

while not Oracle-complete

perform task with TID = Oracle-task (PID)

end

Figure 1: Oracle-based algorithm.

59

We begin with a result shown by Kanellakis and Shvartsman [68]. This result was orig-

inally shown for the Write-All problem with memory snapshots (processors can access the

entire shared-memory in constant time). It is not difficult to see that this result is trivially

applicable to the Do-All problem with perfect knowledge (this is discussed in Section 2.3).

Lemma 4.1 [68] The Do-AllOAS
(n, p, f) problem can be solved with f < p using work

S = O

(

n + p
log p

log log p

)

.

Note that Lemma 4.1 does not show how, if at all, work depends on f . We now present an

upper bound considering moderate number of crashes (f ≤ p/ log p).

Lemma 4.2 The Do-AllOAS
(n, p, f) problem can be solved with f ≤ p/ log p using work

S = O
(

n + p log p
f

p
)

.

Proof: For an iteration of the algorithm in Figure 1, let ∆f denote the number of processor

crashes in this iteration. (∆f can be different for each iteration, though the sum of these for

all iterations cannot exceed f .) We set b = b(p, f) = p
2f , and we define S(n, p, f) to be the

work required to solve Do-AllOAS
(n, p, f). Our goal is to show that for all u, p and f , the work

S(u, p, f) is no more than 16p + u + p log p
2f

(min(u, p)), where u ≤ n denotes the number of

undone tasks. The proof proceeds by induction on u.

Base Case: Observe that when u ≤ 16, S(u, p, f) ≤ 16p < 16p + u + p logb(min(u, p)), for

all p and f .

Inductive Hypothesis: Assume that we have proved the theorem for all u < û (û ≤ n) and all

p and f .

Inductive Step: Consider u = û. We investigate two cases:

60

Case 1: p ≤ û (in particular, min(û, p) = p). In this case each processor is assigned to a

unique task, hence

S(û, p, f) ≤ p + max
0≤∆f≤f

S(û− p + ∆f, p−∆f, f −∆f).

As p−∆f > 0, û− p + ∆f < û and, by the induction hypothesis,

S(û, p, f) ≤ p + max
0≤∆f≤f

[

16(p −∆f) + (û− p + ∆f)

+ (p−∆f) logb(p−∆f,f−∆f)(min(û− p+ ∆f, p−∆f)
]

.

Now, b(p−∆f, f −∆f) ≥ b(p, f), and

logb(p,f)(min(û− p + ∆f, p−∆f) ≤ logb(p,f)(p−∆f),

so that

S(û, p, f) ≤ 16p + û + p logb(p,f) p = 16p + û + p logb(p,f)(min(û, p)),

as desired.

Case 2: p > û (in particular, min(û, p) = û). In this case, by assumption we have

S(û, p, f) ≤ p + max
0≤∆f≤f

S(γû, p−∆f, f −∆f),

where γ = γ(û, p,∆f) is the ratio of the number of the remaining tasks to û (0 ≤ γ < 1).

Let φ = ∆f/p ≤ f/p < 1, the fraction of processors which fail during this iteration; then

φ/2 < γ < 2φ.
(

To see this, observe that

φp

⌈p/û⌉û =
φp/⌈p/û⌉

û
≤ γ ≤ φp/⌊p/û⌋

û
=

φp

⌊p/û⌋û .

Let p = cû, c > 1. Then

c

⌈c⌉φ =
φcû

⌈c⌉û ≤ γ ≤ φcû

⌊c⌋û =
c

⌊c⌋φ.

Now observe that 1 ≤ c
⌊c⌋ < 2 and 1/2 < c

⌈c⌉ ≤ 1, ∀c > 1, and hence, φ/2 < γ < 2φ, as

desired.
)

Then,

S(û, p, f) ≤ p + max
φ∈[0,f/p]

S(γû, (1− φ)p, f − φp).

61

As γû < û, we may apply the induction hypothesis:

S(û, p, f)≤p+ max
φ∈[0,f/p]

[

16(1 − φ)p + γû + (1− φ)p logb′(min(γû, (1 − φ)p))
]

,

where b′ = b(p − φp, f − φp). As above, b′ ≥ b(p, f) and min(γû, (1 − φ)p)) ≤ γû, so that

S(û, p, f) ≤ p + max
φ∈[0,f/p]

[

16(1 − φ)p + γû + (1− φ)p logb(p,f)(γû)
]

.

To complete the proof, it suffices to show that for all φ ∈ [0, f/p],

15p + p logb(p,f) û− (1− φ)p logb(p,f)(γû) ≥ 16(1 − φ)p− û(1− γ).

Upper bounding 16(1 − φ)p − û(1 − γ) with 16(1 − φ)p and dividing through by p, it is

sufficient to show that

15 + logb(p,f) û− (1− φ) logb(p,f)(γû) ≥ 16(1 − φ),

or, equivalently,

logb(p,f) û− (1− φ) logb(p,f)(γû) ≥ 1− 16φ.

We now focus on the left hand side of the above equation:

logb(p,f) û− (1− φ)
[

logb(p,f) γ + logb(p,f) û
]

= φ logb(p,f) û + (1− φ) logb(p,f) γ−1.

Since f ≤ p
log(min(û,p)) = p

log û , for any û > 16 we have that p
2f > 2. Observe that,

φ logb(p,f) û + (1− φ) logb(p,f) γ−1 ≥ (1− φ) logb(p,f) γ−1

since û ≥ p/f > p/2f . (Note that if û < p/f , then all tasks are completed in this iteration.)

Recall that γ−1 ≥ (2φ)−1 and φ < f/p. Therefore,

(1− φ) logb(p,f) γ−1 ≥ (1− φ) logb(p,f)(2φ)−1 ≥ 1− 16φ.

Evidently,

S = O
(

n + p + p log p
f
(min(n, p)

)

= O
(

n + p log p
f

p
)

,

as desired. ✷

We now give our failure-sensitive upper-bound result.

62

Theorem 4.3 The Do-AllOAS
(n, p, f) problem can be solved using work

S = O

(

n + p
log p

log(p/f)

)

when f ≤ p

log p
, and

S = O

(

n + p
log p

log log p

)

when
p

log p
< f < p.

Proof: This follows from Lemmas 4.1 and 4.2. ✷

4.2 Do-All Lower Bounds

We now develop the lower bounds for Do-AllOAS
(n, p, f); these bounds match the upper

bounds presented in Section 4.1. Note that the results in this section hold also for the Do-

AllAS
(n, p, f) problem (without the oracle).

The following mathematical facts (from [67]) are used in the proofs.

Fact 4.1 If a1, a2, . . . , am (m > 1) is a sorted list of nonnegative integers, then for all j

(1 ≤ j < m) we have
(

1− j
m

)
∑m

i=1 ai ≤
∑m

i=j+1 ai.

Fact 4.2 Given n ∈ N, κ ∈ R, such that n · κ > 1, κ ≤ 1
2 , and σ ∈ N such that σ <

log n
log(κ−1)

− 1, then the following inequality holds: ⌊. . . ⌊⌊n · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

σ times

> 0.

Proof: To show the result it suffices to show that, after dropping one floor and strengthening

the inequality: (⌊. . . ⌊⌊n · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

σ−1 times

· κ)− 1 > 0, or that ⌊. . . ⌊⌊n · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

σ−1 times

> 1
κ .

Applying this transformation for σ − 1 more steps, we see that it suffices to show

that n > 1
κσ + 1

κσ−1 + . . . + 1
κ , or, using geometric progression summation, that n >

(κ−1)σ+1−(κ−1)
(κ−1)−1

.

We observe that (κ−1)σ+1 >
(κ−1)σ+1 − (κ−1)

(κ−1)− 1

63

for κ ≤ 1
2 , thus it is enough to show that n > (κ−1)σ+1. After taking logarithms of both

sides of the inequality, log n > (σ+1) log(κ−1), and so it suffices to have σ < log n
log(κ−1)

− 1. ✷

We now define a specific adversarial strategy of adversary AS used to derive our lower

bounds. Let Λ be an iterative algorithm that solves the Do-All problem. Let pi be the number

of processors remaining at the end of the ith iteration of an execution of Λ and let ui denote

the number of tasks that remain to be done at the end of iteration i. Initially, p0 = p and

u0 = n. The adversarial strategy is defined assuming the same initial number of tasks and

processors, that is, p0 = n0. The strategy of the adversary is defined for each iteration of the

algorithm. Based on a variable κ, defined in the interval (0, 1/2), the adversary determines

which processors will be allowed to work and which will be stopped in a given iteration. We

call this adversarial strategy A.

Adversarial strategy A:

Iteration 1: The adversary chooses u1 = ⌊κu0⌋ tasks with the least number of processors

assigned to them. This can be done since the adversary is omniscient; it knows all

the actions to be performed by Λ (as well as any advice provided by the oracle). The

adversary then crashes the processors assigned to these tasks, if any.

Iteration i: Among ui−1 tasks remaining after the iteration i− 1, the adversary chooses ui =

⌊κui−1⌋ tasks with the least number of processors assigned to them and crashes these

processors.

Termination: The adversary continues for as long as ui > 1. As soon as ui = 1, the adversary

allows all remaining processors to perform the single remaining task, and Λ terminates.

We now study the adversarial strategy A and derive lower bound results.

64

Remark 4.1 Relationship between n and κ: If κ is chosen so that κ ·n ≤ 1 then by the adver-

sarial strategy A, an algorithm solving Do-All may be able to solve it in a constant number of

iterations (namely two) with work O(p). This is because u1 = ⌊κu0⌋ ≤ κn ≤ 1. Henceforth

we consider κ to be such that κ · n > 1.

Lemma 4.4 For adversarial strategy A, if at iteration i the number of remaining tasks is ui−1 >

1, then

(a) ui = ⌊. . . ⌊⌊n · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

i times

, and

(b) pi ≥ (1− κ)i p0.

Proof: Part (a) is immediate from the definition of A. To express the number of surviving

processors pi for part (b), we use Fact 4.1 with the following definitions:

Let m = ui−1, and let a1, . . . , am be the quantities of processors assigned to each task,

sorted in ascending order. Let am also include the quantity of any un-assigned processors,

i.e., a1 is the least number of processors assigned to a task, a2 is the next least quantity of

processors, etc. (In other words, a1 ≤ a2 ≤ . . . ≤ am.) Let j = ui. Thus the adversary

stops exactly
∑j

i=1 ai processors. At the beginning of iteration i, the number of processors

pi−1 =
∑m

i=1 ai, therefore, the number of surviving processors pi =
∑m

i=j+1 ai.

Using Fact 4.1, we have pi ≥ (1− ui

ui−1
)pi−1, and after substituting for ui = ⌊κui−1⌋ we have

pi ≥
(

1− ⌊κui−1⌋
ui−1

)

pi−1 ≥ (1− κ) pi−1 ≥ (1− κ)i p0,

as desired. ✷

Lemma 4.5 Given any algorithm solving the Do-AllOAS
(p, p, f) problem (p = n), the adver-

sarial strategy A will cause the algorithm to cycle through at least log p
log(κ−1) − 1 iterations.

65

Proof: Let τ be the earliest iteration when the last task is performed. We use Fact 4.2 with σ

the largest integer such that σ < log p/ log(κ−1) − 1. Then uσ = ⌊. . . ⌊⌊p · κ⌋ · κ⌋ . . . · κ⌋
︸ ︷︷ ︸

σ times

> 0,

and so τ must be greater than σ because uτ = 0. Thus, τ ≥ log p

log(κ−1)
− 1 > σ. ✷

Lemma 4.6 Given any algorithm Λ that solves the Do-AllOAS
(p, p, f) problem (p = n) with

f < p, the adversarial strategy A with κ = 1
log p causes work S = Ω

(

p
log p

log log p

)

.

Proof: We first assume that p > 4 (we aim to establish an asymptotic result, and this eliminates

uninteresting cases). Since κ = 1/ log p, we have that κ ∈ (0, 1/2) when p > 4. From

Lemma 4.4(a) and Lemma 4.5 we see that A will cause algorithm Λ to iterate at least τ =

(log p/ log log p) − 1 times. Now observe that the work must be at least pτ · τ , where pτ

is the number of surviving processors after Λ terminates. From Lemma 4.4(b) we have that

pτ ≥ (1− κ)τp0 = (1− 1
log p)τp. Therefore,

pτ ≥ p
(

1− 1
log p

) log p
log log p

−1
≥ p

(

1− 1
log p

) log p
log log p

≥ p
(

1−
(

1
log p

)

·
(

log p
log log p

))

= p− p
log log p .

Let fτ denote the actual number of crashes caused by the adversary. Then, fτ = p− pτ ≤

p − p + p
log log p = p

log log p < p. Hence, A when using this specific κ does not exceed the

allowed number of crashes. Now, the work caused by A is:

S = Ω(pτ · τ) = Ω

((

p− p

log log p

)

·
(

log p

log log p
− 1

))

= Ω

(

p
log p

log log p

)

.

This completes the proof. ✷

Corollary 4.7 Given any algorithm Λ that solves the Do-AllOAS
(n, p, f) problem (p ≤ n) there

exists an adversarial strategy that causes work S = Ω

(

n + p
log p

log log p

)

.

66

Proof: Note that S = Ω(n) because all tasks must be performed. From Lemma 4.6 we know

that Do-AllOAS
(p, p, f) requires Ω(p log p/ log log p) work. Given that work is nondecreas-

ing in n (as follows from Definition 3.5) we obtain the desired result by combining the two

bounds. ✷

Observe that Lemma 4.6 and Corollary 4.7, by themselves, do not show how work depends

on f . We now give lower bounds considering moderate number of crashes (f ≤ p/ log p).

Lemma 4.8 Given any algorithm Λ that solves the Do-AllOAS
(p, p, f) problem (p = n),

the adversarial strategy A with (κ−1) log(κ−1) = p log p
f and f ≤ p

log p causes work S =

Ω
(

p log p
f

p
)

.

Proof: We assume that p > 4 (we aim to establish an asymptotic result, and this eliminates

uninteresting cases). From (κ−1) log(κ−1) = p log p
f , f ≤ p

log p , and p > 4 we see that

log(κ−1) > 4κ. This implies that κ ∈ (0, 1/2). Hence, from Lemma 4.5 we have that A

will cause algorithm Λ to iterate at least τ = (log p/ log(κ−1))− 1 times.

Now observe that the work must be at least pτ · τ , where pτ is the number of surviving proces-

sors after Λ terminates. Recall from Lemma 4.4(b) that pτ ≥ (1− κ)τp0. Therefore,

pτ ≥ p (1− κ)τ ≥ p (1− κ)
log p

log(κ−1)
−1

≥ p (1− κ)
log p

log(κ−1) ≥ p
(

1− κ · log p
log(κ−1)

)

= p
(

1−
(

κ
log(κ−1)

)

log p
)

= p
(

1−
(

f
p log p

)

log p
)

= p− f.

Let fτ denote the actual number of crashes caused by the adversary. Then, fτ = p− pτ ≤

p− (p− f) = f . Hence, A when using this specific κ does not exceed the allowed number of

crashes (f ≤ p/ log p).

67

Recall that (κ−1) log(κ−1) = p log p
f , therefore, (κ−1) = Θ

(
p log p

f

log(p log p
f

)

)

. Thus,

log(κ−1) = Θ

(

log

(
p log p

f

)

− log log

(
p log p

f

))

= Θ

(

log

(
p log p

f

))

.

Then, noting that pτ ≥ p − f ≥ p − p/ log p = Θ(p) and that κ · p > 1 (see Remark 4.1), we

assess the work S caused by A as follows:

S = Ω(pτ · τ) = Ω

(

p · log p

log(κ−1)

)

= Ω

(

p + p
log p

log(p log p
f)

)

.

Now recall that p/f ≥ log p. Hence, for any p > 4 we have that p/f > 2 and that

log((p log p)/f) = log(p/f) + log log p = Θ(log(p/f)). From the above,

S = Ω

(

p + p
log p

log(p
f)

)

= Ω
(

p log p
f

p
)

.

This completes the proof. ✷

Corollary 4.9 Given any algorithm Λ that solves the Do-AllOAS
(n, p, f) problem (p ≤

n), there exists an adversarial strategy that causes f ≤ p
log p crashes, and work S =

Ω
(

n + p log p
f

p
)

.

Proof: Note that S = Ω(n) because all tasks must be performed. From Lemma 4.8 we

know that Do-AllOAS
(p, p, f) requires Ω(p log p

f
p) work, for f ≤ p/ log p. Given that work is

nondecreasing in n we obtain the desired result by combining the two bounds. ✷

We now give our failure-sensitive lower-bound result.

Theorem 4.10 Given any algorithm Λ that solves the Do-AllOAS
(n, p, f) problem there exists

an adversarial strategy that causes work

S = Ω

(

n + p
log p

log(p/f)

)

when f ≤ p

log p
, and

S = Ω

(

n + p
log p

log log p

)

when
p

log p
< f < p.

68

Proof: For the range of failures f ≤ p/ log p, per Corollary 4.9, the work is Ω(n+p logp/f p).

From Corollary 4.9 we also obtain the fact that when f = p/ log p then work must be

Ω (n + p log p/ log log p). Note that this is the worst case work for any f (see Corollary 4.7).

Therefore, for the range p/ log p < f < p, the adversary establishes this worst case work using

the initial p/ log p failures. ✷

4.3 Iterative Do-All

Do-All algorithms have been used in developing simulations of failure-free algorithms on

failure-prone processors. This is done by iteratively using a Do-All algorithm to simulate the

steps of the failure-free processors. We study the iterative Do-All problems to understand the

complexity implications of iterative use of Do-All algorithms.

In studying simulations, a Do-AllAS
(n, p, f) solution abstracts the setting where p physical

crash-prone processors simulate n virtual processors, such that each task i among the n tasks

in Do-All represents a single step of the virtual processor i. The iterative Do-All then models

the simulation of multiple steps of the virtual processors.

In principle r-Do-AllAS
(n, p, f) can be solved by running an algorithm for Do-

AllAS
(n, p, f) for r iterations. For example, r-Do-AllOAS

(n, p, f) can be solved by running

the oracle-based algorithm in Figure 1 for r iterations. If the work of a Do-All solution is S,

then the work of the r-iterative Do-All is at most r · S. However we show that it is possible

to obtain a finer result that takes into account the diminishing number of failures “available” to

the adversary. We refer to each Do-All iteration as a round of r-Do-AllAS
(n, p, f).

For the model of perfect knowledge we obtain the following failure-sensitive upper bound

on work.

69

Theorem 4.11 The r-Do-AllOAS
(n, p, f) problem can be solved using work

S = O

(

r ·
(

n + p
log p

log(pr/f)

))

when f ≤ pr

log p
, and

S = O

(

r ·
(

n + p
log p

log log p

))

when
pr

log p
< f < p.

Proof: Let ri denote the ith round of the iterative Do-All . Let pi be the number of active

processors at the beginning of ri and fi be the number of crashes during ri. Note that p1 = p,

where r1 is the first round of r-Do-AllOAS
(n, p, f) and that pi ≤ p. We consider two cases:

Case 1: f > pr
log p . Consider a round ri. From Theorem 4.3 we see that the work for this

round is O
(

n + pi logpi/fi
pi

)

when fi ≤ pi/ log pi and O (n + pi log pi/ log log pi) other-

wise. However in this case, we can have fi = Θ (p/ log p) for all ri without “running out” of

processors. Thus,

S1 = O

(

r ·
(

n + p
log p

log log p

))

.

Case 2: f ≤ pr
log p . First observe that any reasonable adversarial strategy would not kill

more that pi/ log pi processors in round ri, since it would not cause more work than

O(n + pi log pi/ log log pi) (which is achieved when fi ≥ pi/ log pi). Therefore, we con-

sider fi ≤ pi/ log pi for all rounds ri. Hence, the work in every round ri (per Theorem 4.3) is

O (n + pi log pi/ log(pi/fi)) = O (n + p log p/ log(p/fi)).

Let S(n, p, f) be this one-round upper bound. As f =
∑

fi, an upper bound on r-Do-

AllOAS
(n, p, f) can be given by maximizing

∑

i S(n, pi, fi) over all such adversarial patterns.

As S(·, ·, ·) is monotone in p, we may assume that pi = p for the purposes of the upper bound.

We show that this maximum is attained at f1 = f2 = . . . = fr. For simplicity, treat fi as a con-

tinuous parameter and consider the factor in the single round work expression (given above)

that depends on fi : c/ log(p
fi

), where c is the constant hidden by the O(·) notation.

The first derivative over fi is
∂

∂fi

(

c/log

(
p

fi

))

= c/fi(log p− log fi)
2, and its second

70

derivative is
∂2

∂f2
i

(

c/log

(
p

fi

))

= 2c/f2
i (log p− log fi)

3 − c/f2
i (log p− log fi)

2. Observe

that the second derivative is negative in the domain considered (assuming p > 16). Hence the

first derivative is decreasing (with fi). In this case, given any two fi, fj where fi > fj , the

adversarial pattern obtained by replacing fi with fi−ǫ and fj by fj +ǫ (where ǫ < (fi−fj)/2)

results in increased work. This implies that the sum maximized when all fis are equal, specifi-

cally when fi = f/r.

As the above upper bound on the sum
∑

i S(n, pi, fi) is valid over all fi in this range, it holds

in particular for the choices made by the adversary which must, of course, cause an integer

number of faults in each round. Therefore,

S2 = O

(

r ·
(

n + p
log p

log(pr
f)

))

.

The result then follows by combining the two cases. ✷

We now show a matching lower bound.

Theorem 4.12 Given any algorithm that solves the r-Do-AllOAS
(n, p, f) problem, there exists

an adversarial strategy that causes work

S = Ω

(

r ·
(

n + p
log p

log(pr/f)

))

when f ≤ pr

log p
, and

S = Ω

(

r ·
(

n + p
log p

log log p

))

when
pr

log p
< f < p.

Proof: Consider two cases:

Case 1: f > pr
log p . In this case the adversary may crash p/ log p processors in every round

of r-Do-AllOAS
(n, p, f). Note that for this adversary Ω(p) processors remain alive during

the first ⌈r/2⌉ rounds. Per Theorem 4.10 this results in ⌈r/2⌉ · Ω (n + p log p/ log log p) =

Ω (Nr + pr log p/ log log p) work.

71

Case 2: f ≤ pr
log p . In this case the adversary ideally would crash f/r processors in every

round. It can do that in the case where r divides f . If this is not the case, then the adversary

crashes ⌈f/r⌉ processors in rA rounds and ⌊f/r⌋ in rB rounds in such a way that r = rA +

rB . Again considering the first half of the rounds and appealing to Theorem 4.10 results in

a Ω
(

Nr + pr logpr/f p
)

lower bound for work. Note that we consider only the case where

r ≤ f ; otherwise the work is trivially Ω(rN).

The result then follows by combining the two cases. ✷

Application of iterative Do-All: The bounds we obtained for Do-All and iterative Do-All

under the assumption of perfect knowledge, yield insight about the bounds on task execution

redundancy in settings where a server repeatedly allocates task to processors (e.g., SETI [74]).

Consider the setting where a central server repeatedly allocates tasks to crash-prone pro-

cessors. When a processor completes a task, it reports this to the server. If a server detects

processor failures, it must re-allocate the tasks to other processors. Processor crashes might

cause some tasks to be executed more than once. Our results obtained for synchronous Do-

AllOAS
(n, p, f) and r-Do-AllOAS

(n, p, f) are relevant to the bounds on task execution redun-

dancy in such a setting. When the server allocates n similar, independent and idempotent tasks

to p synchronous, crash-prone processors, then, per Theorems 4.3 and 4.10, the total num-

ber of task executions is Θ
(

n + p log p
log(pr/f)

)

when f ≤ p
log p , and Θ

(

n + p log p
log log p

)

when

p
log p < f < p. Similarly, if the server allocates r “waves” of n tasks (so that a task-wave is

completed before the next is begun) to p synchronous, crash-prone processors, then per The-

orems 4.11 and 4.12, the total number of task executions is Θ
(

r ·
(

n + p log p
log(pr/f)

))

when

f ≤ pr
log p , and Θ

(

r ·
(

n + p log p
log log p

))

when pr
log p < f < p.

Chapter 5

Message-Passing: Do-All with Crashes

We present failure-sensitive bounds on work and messages for the Do-AllAS
(n, p, f) prob-

lem with synchronous message-passing processors, for the entire range of f (1 ≤ f < p). In

Section 5.1 we assume that reliable multicast [60] is available (if a processor crashes while

multicasting a message, then either all targeted processors receive the message or none do),

whereas in Section 5.2 we assume that only traditional point-to-point messaging is available

(multicast is not reliable).

5.1 Failure-Sensitive Bounds with Reliable Multicast

In this section we give a new, failure-sensitive, analysis of algorithm AN [17] and establish

new complexity results for the iterative Do-All in the message-passing model. We achieve this

by separately assessing the cost of tolerating failures and the cost of achieving perfect knowl-

edge (that is, perfect load-balancing). The first analysis is derived from the results obtained

under the assumption of perfect knowledge. The latter is derived from the structure of the

algorithm.

72

73

Algorithm AN presented by Chlebus et al. [17] uses a multiple-coordinator approach to

solve Do-AllAS
(n, p, f) on crash-prone synchronous message-passing processors (p ≤ n).

The model assumes that messages incur a known bounded delay and that reliable multicast [60]

is available (when a processor multicasts a message to a collection of processors, either all

messages are delivered to non-faulty processors or no messages are delivered).

5.1.1 Description of Algorithm AN

We now give a brief description of the algorithm, but to avoid a complete restatement,

we refer the reader to [17]. Algorithm AN proceeds in a loop which is iterated until all the

tasks are executed. A single iteration of the loop is called a phase. A phase consists of three

consecutive stages. Each stage consists of three steps. In each stage processors use the first step

to receive messages sent in the previous stage, the second step to perform local computation,

and the third step to send messages. A processor can be a coordinator or a worker. A phase

may have multiple coordinators. The number of processors that assume the coordinator role is

determined by the martingale principle: if none of the expected coordinators survive through

the entire phase, then the number of coordinators for the next phase is doubled. If at least one

coordinator survives in a given phase, then in the next phase there is only one coordinator. A

phase that is completed with at least one coordinator alive is called attended, otherwise it is

called unattended.

Processors become coordinators and balance their loads according to each processor’s local

view. A local view contains the set of ids of the processors assumed to be alive. The local view

is partitioned into layers. The first layer contains one processor id, the second two ids, the ith

contains 2i−1 ids.

74

Given a phase, in the first stage, the processors perform a task according to the load-

balancing rule derived from their local views and report the completion of the task to the

coordinators of that phase (determined by their local views). In the second stage, the coordi-

nators gather the reports, they update the knowledge of the done tasks and they multicast this

information to the processors that are assumed to be alive. In the last stage, the processors

receive the information sent by the coordinators and update their knowledge of done tasks and

their local views. Given the full details of the algorithm, it is not difficult to see that the com-

bination of coordinators and local views allows the processors to obtain the information that

would be available from the oracle O in the algorithm in Figure 1 of Section 4.1.

It is shown in [17] that the work of algorithm AN is S = O((n + p log p/ log log p) log f)

and its message complexity is M = O(n + p log p/ log log p + fp), for p ≤ n.

In the rest of this section we present the new analysis of work and message complexity of

algorithm AN. Throughout we assume that the algorithm correctness is shown as in [17].

5.1.2 Analysis of Work Complexity

To assess the work S, we consider separately all the attended phases and all the unattended

phases of the execution. Let Sa be the part of S spent during all the attended phases and Su be

the part of S spent during all the unattended phases. Hence we have S = Sa + Su.

Lemma 5.1 [17] In any execution of algorithm AN with f < p we have Sa =

O
(

n+p log p
log log p

)

and Su = O (Sa log f).

We now give the new analysis of algorithm AN.

Lemma 5.2 In any execution of algorithm AN with f ≤ p
log p we have Sa =

O
(

n + p log p
f

p
)

.

75

Proof: Given a phase i of an execution of algorithm AN, we define pi to be the number of

live processors and ui to be the number of undone tasks at the beginning of the phase (p0 = p

and u0 = n). Let α1, α2, . . . ατ , denote all the attended phases of this execution (ατ is the last

phase of the execution).

Observe that for all αi, 1 ≤ i ≤ τ − 1 it holds that (a) uai > uai+1 , and (b) pai ≥ pai+1 .

This follows from the construction of algorithm AN: Since phase αi is attended, there is at

least one coordinator, call it c, alive in phase αi; c executes one task. Hence, at least one task

is executed and consequently at least one task is removed from uai . The number of processors

can only decrease, since we do not allow restarts.

In [17], Section 3.2, it is shown that if at the beginning of phase ai, the processors have

consistent information on the number of surviving processors (pai) and the number of remain-

ing tasks (uai), then the operational processors will have consistent information on pai+1 and

uai+1 at the beginning of phase ai+1. And since the processors have consistent information

at a0, that means that at the beginning of every attended phase, the surviving processors have

consistent view of the system. Hence, the processors in attended phases can perform perfect

load balancing, as in the case where the processors are assisted by the oracle O, in the oracle

model. Therefore, focusing only on the attended phases (and assuming that in the worst case

no progress is made in unattended phases), we obtain the desired result by induction on the

size of undone tasks u, as in the proof of Lemma 4.2. ✷

Theorem 5.3 In any execution of algorithm AN we have work

S = O

(

log f

(

n + p
log p

log(p/f)

))

when f ≤ p

log p
, and

S = O

(

log f

(

n + p
log p

log log p

))

when
p

log p
< f < p.

76

Proof: This follows from Lemmas 5.1 and 5.2, and the fact that S = Sa + Su. ✷

5.1.3 Analysis of Message Complexity

To assess the message complexity M we consider separately all the attended phases and all

the unattended phases of the execution. Let Ma be the number of messages sent during all the

attended phases and Mu the number of messages sent during all the unattended phases. Hence

we have M = Ma + Mu.

Lemma 5.4 [17] In any execution of algorithm AN with f < p we have Ma = O(Sa) and

Mu = O(fp).

Theorem 5.5 In any execution of algorithm AN we have

M = O

(

n + p
log p

log(p/f)
+ fp

)

when f ≤ p

log p
, and

M = O

(

n + p
log p

log log p
+ fp

)

when
p

log p
< f < p.

Proof: It follows from Lemmas 5.1, 5.2 and 5.4, and the fact that M = Ma + Mu. ✷

5.1.4 Analysis of Message-Passing Iterative Do-All

We now consider the message-passing, synchronous r-Do-AllAS
(n, p, f) problem.

Theorem 5.6 The r-Do-AllAS
(n, p, f) problem can be solved on synchronous crash-prone

message-passing processors when f ≤ pr
log p with

S = O

(

r · log
(

f

r

)

·
(

n + p
log p

log(pr/f)

))

and M = O

(

r ·
(

n + p
log p

log(pr/f)

)

+ fp

)

,

and when pr
log p < f < p with

S = O

(

r · log
(

f

r

)

·
(

n + p
log p

log log p

))

and M = O

(

r ·
(

n + p
log p

log log p

)

+ fp

)

.

77

Proof: The iterative Do-All can be solved by running algorithm AN on r instances of size n

in sequence. We call this algorithm AN*. To analyze the efficiency of AN* we use the same

approach as in the proof of Theorem 4.11. In the current context we base our work complexity

arguments on the result of Theorem 5.3, and we base our message complexity arguments on

the result of Theorem 5.5. ✷

5.2 Failure-Sensitive Bounds without Reliable Multicast

In this section we present a new efficient synchronous message-passing algorithm for Do-

AllAS
(n, p, f). The new algorithm has work complexity comparable to algorithm AN [17],

however it uses simple point-to-point messaging. This algorithm achieves better work com-

plexity than the algorithm of Galil et al. [44] (the previously best known algorithm not relying

on reliable multicast) while obtaining the same asymptotic message complexity. The new algo-

rithm does not use coordinator-based or checkpointing-based strategies to implement informa-

tion sharing among processors (as the previously mentioned algorithms do). Instead, it uses an

approach where processors share information using a gossip algorithm we developed to solve

the gossip problem in synchronous message-passing systems with processor crashes. Our gos-

sip algorithm achieves better message complexity than the previously best known algorithm of

Chlebus and Kowalski [21], while obtaining the same asymptotic time complexity. The point-

to-point messaging is constrained by means of a communication graph that represents a certain

subset of the edges in a complete communication network. Processors send messages based on

permutations with certain properties that we show to exist. We first define the gossip problem

and relevant measures of efficiency (Section 5.2.1). We then present combinatorial tools that

we use in the analysis of our gossip algorithm (Section 5.2.2). Then we present and analyze

78

our gossip algorithm (Section 5.2.3). Finally we present and analyze our Do-All algorithm

(Section 5.2.4).

5.2.1 The Gossip Problem

The Gossip problem is considered one of the fundamental problems in distributed com-

puting and it is normally stated as follows: each processor has a distinct piece of information,

called a rumor and the goal is for each processor to learn all rumors. In our setting, where we

consider processor crashes, it might not always be possible to learn the rumor of a processor

that crashed, since all the processors that have learned the rumor of that processor might have

also crashed in the course of the computation. Hence, we consider a variation of the traditional

gossip problem. We require that every non-faulty processor learns the following about each

processor v: either the rumor of v or that v has crashed. It is important to note that we do not

require for the non-faulty processors to reach agreement: if a processor crashes then some of

the non-faulty processors may get to learn its rumor while others may only learn that it has

crashed.

Formally, we define the Gossip problem with crash-prone processors, as follows:

Definition 5.1 The Gossip problem: Given a set of p processors, where initially each processor

has a distinct piece of information, called a rumor, the goal is for each processor to learn all

the rumors in the presence of processor crashes. The following conditions must be satisfied:

(1) Correctness: (a) All non-faulty processors learn the rumors of all non-faulty processors,

(b) For every failed processor v, non-faulty processor w either knows that v has failed,

or w knows v’s rumor.

(2) Termination: Every non-faulty processor terminates its protocol.

79

We let GossipAS
(p, f) stand for the Gossip problem for p processors (and p rumors) and

adversary AS constrained to adversarial patterns of weight less or equal to f .

We now define the measures of efficiency we use in studying the complexity of the Gossip

problem. We measure the efficiency of a Gossip algorithm in terms of its time complexity and

message complexity. Time complexity is measured as the number of parallel steps taken by the

processors until the Gossip problem is solved. The Gossip problem is said to be solved at step

τ , if τ is the first step where the correctness condition is satisfied and at least one (non-faulty)

processor terminates its protocol. More formally:

Definition 5.2 (time complexity) Let Λ be an algorithm that solves a problem with p proces-

sors under adversary A. If execution ξ ∈ E(Λ,A), where ‖ξ|A‖ ≤ f , solves the problem by

time τ(ξ), then the time complexity T of algorithm Λ is:

T = TA(p, f) = max
ξ∈E(Λ,A), ‖ξ|A‖≤f

{
τ(ξ)

}
.

The message complexity is defined as in Definition 3.7 where the size of the problem is p:

it is measured as the total number of point-to-point messages sent by the processors until the

problem is solved. As before, when a processor communicates using a multicast, its cost is the

total number of point-to-point messages.

The previously best deterministic solution for the Gossip problem in the message passing

model under adversary AS is due to Chlebus and Kowalski [21]. Their algorithm has T =

O(log2 p) time complexity and M = O(p1.77) message complexity. As we will see, our gossip

algorithm substantially improves on the message complexity of their algorithm while obtaining

the same asymptotic time complexity.

80

5.2.2 Combinatorial Tools

We now develop tools used to control the message complexity of our gossip algorithm.

5.2.2.1 Communication Graphs

We first describe communication graphs — conceptual data structures that constrain com-

munication patterns.

Informally speaking, the computation begins with a communication graph that contains

all nodes, where each node represents a processor. Each processor v can send a message to

any other processor w that v considers to be non-faulty and that is a neighbor of v according

to the communication graph. As processors crash, meaning that nodes are “removed” from

the graph, the neighborhood of the non-faulty processors changes dynamically such that the

graph induced by the remaining nodes guarantees “progress in communication”: progress in

communication according to a graph is achieved if there is at least one “good” connected

component, which evolves suitably with time and satisfies the following properties: (i) the

component contains “sufficiently many” nodes so that collectively they have learned “suitably

many” rumors, (ii) it has “sufficiently small” diameter so that information can be shared among

the nodes of the component without “undue delay”, and (iii) the set of nodes of each successive

good component is a subset of the set of nodes of the previous good component.

We use the following terminology and notation. Let G = (V,E) be a (undirected) graph,

with V the set of nodes (representing processors, |V | = p) and E the set of edges (representing

communication links). For a subgraph GQ of G induced by Q (Q ⊆ V), we define NG(Q) to

be the subset of V consisting of all the nodes in Q and their neighbors in G. The maximum

node degree of graph G is denoted by ∆.

81

Let GVi be the subgraph of G induced by the sets Vi of nodes. Each set Vi corresponds

to the set of processors that haven’t crashed by step i of a given execution. Hence Vi+1 ⊆ Vi

(since processor do not restart). Also, each |Vi| ≥ p− f , since no more than f < p processors

may crash in a given execution. Let GQi denote a component of GVi where Qi ⊆ Vi.

Chlebus et al. [19] formulated the notion of a “good” component GQi of a subgraph GVi

of graph G by setting Qi = P (Vi), where P is a function that satisfies a certain property called

property R:

Definition 5.3 ([19]) Graph G satisfies PROPERTY R(p, f) if there is a function P , which

assigns subgraph P (R) ⊆ G to each subgraph R ⊆ G of size at least p − f , such that the

following hold:

R.1 : P (R) ⊆ R. R.3 : The diameter of P (R) is at most 30 log p + 1.

R.2 : |P (R)| ≥ |R|/7. R.4 : If R1 ⊆ R2 then P (R1) ⊆ P (R2).

Let L(p,∆0) denote the family of constructive regular graphs of p nodes and degree ∆0,

that have good expansion properties. Such graphs were introduced by Lubotzky, Phillips and

Sarnak [79]. These graphs are defined and can be constructed for each number p′ of the form

q(q2 − 1)/2, where q is a prime integer congruent to 1 modulo 4. The node degree ∆0 can be

any number such that ∆0 − 1 is a prime congruent to 1 modulo 4 and a quadratic nonresidue

modulo q. It follows, from the properties of the distribution of prime numbers (see e.g. [26]),

that ∆0 can be selected to be a constant independent of p and q such that p′ = q(q2 − 1)/2 =

Θ(p). Since for each p there is a number p′ = Θ(p), we let each processor simulate O(1)

nodes, and we henceforth assume that p is as required so that L(p,∆0) can be constructed.

In [19] the authors extended the result of Upfal [109], who showed that there is a function P ′

such that if R is a subgraph of L(p) of size at least 71
72 · p then subgraph P ′(R) of R has size at

82

least |R|/6 and diameter at most 30 log p. (These constants in the case of linear-size subgraphs

can be improved, see [5].) Let Gk be the k-th power of graph G, that is, Gk = (V,E′), where

the edge (u, v) ∈ E′ if and only if there is a path between u and v in G of length at most k.

The authors in [19] proved the following lemma.

Lemma 5.7 ([19]) For every f < p there exists a positive integer j such that graph L(p)j has

PROPERTY R(p, f). Moreover, the maximum degree ∆ of graph L(p)j is O
((p

p−f

)2 logγ ∆0
)
,

for some absolute constant γ, which for ∆0 = 74 could be taken equal to γ = 27/5.

However, the above property is too strong for our purpose and applied to the communica-

tion analysis of our gossip algorithm does not yield the desired result. Therefore, we define a

weaker property that yields the desired results with our analysis:

Definition 5.4 Graph G = (V,E) has the Compact Chain Property CCP(p, f, ε), if:

I. The maximum degree of G is at most
(p

p−f

)1+ε
,

II. For a given sequence V1 ⊇ . . . ⊇ Vk (V = V1), where |Vk| ≥ p − f , there is a sequence

Q1 ⊇ . . . ⊇ Qk such that for every i = 1, . . . , k:

(a) Qi ⊆ Vi,

(b) |Qi| ≥ |Vi|/7, and

(c) the diameter of GQi is at most 31 log p.

We now prove existence of graphs satisfying CCP for some parameters.

Lemma 5.8 For p>2, every f<p, and constant ε>0, there is a graph G of O(p) nodes satis-

fying property CCP(p, f, ε).

Proof: Notice that for p − f ≤ √pε, the complete graph Kp satisfies property CCP(p, f, ε),

for every constant ε > 0. The same holds if p− f ≥ p/4, by applying Lemma 5.7 and setting

83

Qi = P (Gi) (in this case ∆ is constant). For the remainder of the proof we assume that

√
pε < p− f < p/4.

Fix f and ε > 0. Our candidate for graph G is a graph L(p,∆), where we take the smallest

possible ∆ ≥ 9+
(p

p−f

)1+ε
. (By properties of graphs L, we can find ∆ = O

(
1+
(p

p−f

)1+ε)
).

Let λ = 2
√

∆− 1 be the bound for the absolute value of the second eigenvalue of graph

L(p,∆) (see [79]). Alon and Chung [4] showed that for every set R ⊆ V , the number of edges

in the subgraph induced by R (denoted by e(R)) can be bounded as follows:

∣
∣
∣e(R)− ∆ · |R|2

2p

∣
∣
∣ ≤ λ

2

(

1− |R|
p

)

|R| . (1)

For a given graph induced by R such that
√

pε < |R| < p/4 and a subset Q ⊆ R, we denote

by SQ,R the family of sets S ⊇ Q such that S is a maximal (in the sense of inclusion) subset

of R such that no node in S has more than ∆ |R|
2p neighbors outside of S in graph G. We

call a subgraph induced by S a simple expander, if for every S′ ⊆ S of size at most |S|/2,

|NS(S′)| ≥ 4|S′|/3. We assume that Q is a simple expander that has size less than |R|/7.

Claim: For p > 2, if
√

pε < |R| < p/4 then for every subset S ∈ S , S is of size |R|/7 and

a subgraph induced by S is a simple expander. Hence a diameter of the subgraph induced by

S is at most 4 log p.

We prove the Claim. Consider any S ∈ S . First we show that |S| ≥ |R|/7. Suppose to the

contrary, that |S| < |R|/7. By applying inequality (1) and setting ∆ > 9 and λ = 2
√

∆− 1,

we obtain that

e(V \ S) ≤ ∆
(
p− |S|

)2

2p
+

λ|S|
2p

(

p− |S|
)

≤ ∆
(
p− |S|

)

2
− ∆

(
p− |S|

)

2

|S|
p

+
∆
(
p− |S|

)

3

|S|
p

=
∆
(
p− |S|

)

2
− ∆

(
p− |S|

)

6

|S|
p

<
∆
(
p− |S|

)

2
− ∆

(
p− |R|

7

)

6

|S|
p

.

84

This contradicts the definition of S, since from the definition of S it follows that the number of

edges having one end in S and other end outside of S, is at most
∆|R||S|

2p , and consequently

e(V \ S) ≥ ∆
(
p− |S|

)

2
− ∆|R||S|

4p
>

∆
(
p− |S|

)

2
− ∆

(
p− |R|

7

)

6

|S|
p

.

Next we show that for every S′ ⊆ S of size at most |S|/2, we have |NS(S′)| ≥ 4|S′|/3.

By definition of S, the total number of edges incident to nodes in S′ is at least |S′|∆
(
1− |R|

2p

)
.

On the other hand, using inequality (1) we obtain

e(S′) ≤ ∆ · |S′|2
2p

+
λ

2

(

1− |S
′|

p

)

|S′| .

Thus the number of edges having one end in S′ and other end outside of S′ is at least

|S′|∆
(
1− |R|

2p

)
− e(S′) ≥ |S′|∆

(
1− |R|

2p

)
− ∆ · |S′|2

2p
− λ

2

(

1− |S
′|

p

)

|S′|

≥ |S′|∆ ·
(

1− |R|+ |S
′|

2p
− 1√

∆ + 1

)

≥ |S′|∆/3 .

Since every node in NS(S′) \ S′ has at most ∆ neighbors in S′, it follows that |NS(S′) \

S′| ≥ |S′|∆/3
∆ = |S′|/3. Consequently S is a simple expander. We show that the diameter

of S is at most 2 log 3
2
p < 4 log p. Consider two nodes v,w ∈ S. By the simple-expansion

property, the number N
S

log3/2 p(v) (and also N
S

log3/2 p(w)) of nodes of distance log 3
2
p from v

(and also from w) in the graph induced by S is greater than p/2. Consequently N
S

log3/2 p(v)∩

N
S

log3/2 p(w) 6= ∅, and then the shortest path between v and w is of length at most 2 log 3
2
p <

4 log p. This completes the proof of the Claim.

We now show how to construct a sequence Q1 ⊇ . . . ⊇ Qk having a sequence V1 ⊇ . . . ⊇

Vk, so that property CCP(p, f, ε) is satisfied. We proceed inductively: we apply the Claim to

the set R = Vk and define Qk to be a set from SVk,∅. If we have defined set Qi, for 1 < i ≤ k,

we apply the Claim to the set R = Vi−1 and define Qi−1 to be a set in SVi−1,Qi including set

85

Qi. The inductive proof shows that the Qis are well defined and that graph G satisfies property

CCP(p, f, ε). More precisely, the following invariant holds after construction of set Qi:

(a) Qi ⊆ Vi and Qi ⊇ . . . ⊇ Qk,

(b) |Qi| ≥ |Vi|/7,

(c) the diameter of GQi is at most 31 log p,

(d) every node in Qi has at most ∆ |R|
2p neighbors outside of Qi in graph G.

We show that for i > 1 the set Qi−1 is well defined and satisfies the invariant. For i = k it

follows directly from the Claim. Consider 1 < i < k. From property (d) in invariant after

step i it follows that if we apply the Claim to the set R = Vi−1 then Qi is included in some

S ∈ SVi−1,Qi . Consequently the definition of Qi−1 is correct. By the thesis of the Claim

applied to such R and S we obtain properties (b) and (c) of invariant after step i−1. Properties

(a) and (d) follow directly from the definition of Qi−1. ✷

5.2.2.2 Sets of Permutations

We now deal with sets of permutations that satisfy certain properties. These permutations

are used by the processors in the gossip algorithm to decide to what subset of processors they

send their rumor in each step of a given execution. Consider the group St of all permutations

on set {1, . . . , t}, with the composition operation ◦, and identity et (t is a positive integer).

For permutation π = 〈π(1), . . . , π(t)〉 in St, we say that π(i) is a d-left-to-right maximum

(d-lrm in short), if there are less than d previous elements in π of value greater than π(i), i.e.,

|{π(j) : π(j) > π(i) ∧ j < i}| < d.

Let Υ and Ψ, Υ ⊆ Ψ, be two sets containing permutations from St. For every σ in St, let

σ ◦Υ denote the set of permutation {σ ◦π : π ∈ Υ}. For given permutation π, let (d)-LRM(π)

denote the number of d-left-to-right maxima in π. Now we define the notion of surfeit. (We will

show that surfeit relates to the redundant activity in our algorithms, i.e., “overdone” activity,

86

or literally “surfeit”.) For a given Υ and permutation σ ∈ St, let (d, |Υ|)-Surf(Υ, σ) be equal

to
∑

π∈Υ(d)-LRM(σ−1 ◦ π). We then define the (d, q)-surfeit of set Ψ as (d, q)-Surf(Ψ) =

max{(d, q)-Surf(Υ, σ) : Υ ⊆ Ψ ∧ |Υ| = q ∧ σ ∈ St}.

We obtain the following results for (d, q)-surfeit.

Lemma 5.9 Let Υ be a set of q random permutations on set {1, . . . , t}. For every fixed pos-

itive integer d, the probability that (d, q)-Surf(Υ, et) > t ln t + 10qd ln(t + p) is at most

e−[t ln t+9qdHt+p] ln(9/e).

Proof: First observe, that for d ≥ t/e the thesis is obvious. In the rest of the proof we assume

d < t/e.

First we describe the way of generating random permutation. This is done by induction on

the number of elements i ≤ t that are permuted. When i = 1, there is only one permutation and

this permutation is random. Suppose we can generate random permutation of i − 1 different

elements, we show how to permute i elements. First we choose randomly one element from

the i elements and put it as the last element in the permutation. By induction we generate a

random permutation from the remaining i − 1 elements and we put these elements as the first

i − 1 elements in the permutation. Simple induction proof shows that every permutation of

i elements has equal probability, since it is a concatenation of two independent and random

events.

It follows that the random set of permutation Υ can be selected by applying the above rule q

times, independently. Let X(π, i), for i = 1, . . . , t, be the random value such that X(π, i) = 1

if π(i) is a d-lrm in π, and X(π, i) = 0 otherwise.

Claim: Using the above method of generating random permutation we can show that if π

is a random permutation, then X(π, i) = 1 with probability min{d/i, 1}, independently of

87

other values X(π, j), for j > i. More precisely, Pr[X(π, i) = 1|∧j>i X(π, j) = aj] =

min{d/i, 1}, for any 0-1 sequence ai+1, . . . , at.

This is because π(i) might be a d-lrm if during the (t − i − 1)th step of the generation of

π we selected randomly one of the d greatest remaining elements (there are i ≥ d remaining

elements in this step of generation; if i = d, then by definition π(i) is a d-lrm with probability

one). Hence the Claim is proved.

First notice that for every π ∈ Υ and every i = 1, . . . , d, π(i) is d-lrm. Second, observe that

E
[∑

π∈Υ

∑t
i=d+1 X(π, i)

]
= qd·∑t

i=d+1
1
i = qd(Ht−Hd). We use Chernoff bound (see [6])

Pr




∑

j

Yj > E

[∑

j

Yj

]

(1 + b)



 <
(eb

(1 + b)1+b

)
E[
∑

j Yj]
< e−E[

∑

j Yj](1+b) ln 1+b
e ,

where Yj are independent random 0-1 variables and b > 0 is any constant, to prove the lemma.

We use Chernoff bound and derive the following (for some p < t):

Pr

[
∑

π∈Υ

t∑

i=d+1

X(π, i)>t ln t+9qdHt+p

]

=Pr

[
∑

π∈Υ

t∑

i=d+1

X(π, i)>qd(Ht −Hd)·
t ln t+9qdHt+p

qd(Ht −Hd)

]

≤ e
−qd(Ht−Hd)

t ln t+9qdHt+p
qd(Ht−Hd)

ln
t ln t+9qdHt+p
e·qd(Ht−Hd)

≤ e−[t ln t+9qdHt+p] ln(9/e)

since
t ln t+9qdHt+p

qd(Ht−Hd) > 1 (the condition for using Chernoff bound of this type).

From the above and the fact that ln i ≤ Hi ≤ ln i + 1, we obtain that

Pr
[∑

π∈Υ

t∑

i=1

X(π, i) > t ln t + 10qd ln(t + p)
]

≤ Pr
[∑

π∈Υ

t∑

i=d+1

X(π, i) > t ln t + 9qdHt+p

]

≤ e−[t ln t+9qdHt+p] ln(9/e) .

This completes the proof of the lemma. ✷

Theorem 5.10 For a random set of p permutations Ψ from St, the event

“for every positive integers d and q ≤ p, (d, q)-Surf(Ψ) > t ln t + 10qd ln(t + p)”

holds with probability at most e−t ln t·ln(9/e2).

88

Proof: Observe that for d ≥ t/e the result is straightforward. In the rest of the proof we

assume that d < t/e.

First notice, that if Υ is a random set of permutation, then for arbitrary permutation

σ on set {1, . . . , t}, set σ−1 ◦ Υ is also a random set of permutation, since composition

with a permutation is a bijective operation on sets of q permutations. Consequently, by

Lemma 5.9, (d, q)-Surf(Υ, σ) > t ln t + 10qd ln(t + p) holds with probability at most

e−[t ln t+9qdHt+p] ln(9/e).

Hence the probability that a random set Ψ of p permutation satisfies (d, q)-Surf(Ψ) > t ln t +

10qd ln(t + p) is at most

t! ·
(

p

q

)

· e−[t ln t+9qdHt+p] ln(9/e) ≤ et ln t+q ln(ep/q)−[t ln t+9qdHt+p] ln(9/e)

≤ e−[t ln t+8qdHt+p] ln(9/e2) .

It follows, that the probability of event:

“for every d and q, (d, q)-Surf(Ψ) > t ln t + 10qd ln(t + p)”,

is at most

⌈t/e⌉−1
∑

d=1

p
∑

q=1

e−[t ln t+8qdHt+p] ln(9/e2)
∞∑

d=⌈t/e⌉

p
∑

q=1

0 ≤ e−t ln t·ln(9/e2) ,

for p ≥ 1 and t ≥ 3. ✷

Using the probabilistic method [6] we obtain the following result.

Corollary 5.11 There is a set of p permutations Ψ from St such that, for every positive integers

d and q ≤ p, (d, q)-Surf(Ψ) ≤ t ln t + 10qd ln(t + p).

The efficiency of our gossip algorithm relies on the existence of the permutations in the

thesis of the corollary (however the algorithm is correct for any permutations).

89

5.2.3 The Gossip Algorithm

Our new gossiping algorithm, called GOSSIPε , improves on the algorithm of [21]. The

improvement is obtained by using the better properties of communication graphs described in

Lemma 5.8, the set of permutations with certain properties stated in Corollary 5.11, and by

using many epochs instead of the two epochs in [21] (in [21] they refer to epochs as phases).

Moreover, the communication graphs we consider have dynamically changing degree, as op-

posed to [21] that they consider graphs with fixed degree. The challenges motivating our tech-

niques are: (i) how to assure low communication during every epoch, and (ii) how to switch

between epochs without a “huge complexity hit”.

5.2.3.1 Description of Algorithm GOSSIPε

Suppose constant 0 < ε < 1/3 is given. The algorithm proceeds in a loop that is re-

peated until each non-faulty processor v learns either the rumor of every processor w or that

w has failed. A single iteration of the loop is called an epoch. The algorithm terminates after

⌈1/ε⌉ − 1 epochs. Each of the first ⌈1/ε⌉ − 2 epochs consists of α log2 p phases, where α is

such that α log2 p is the smallest integer that is larger than 341 log2 p. Each phase is divided

into two stages, the update stage, and the communication stage. In the update stage proces-

sors update their local knowledge regarding other processors’ rumor (known/unknown) and

condition (failed/operational) and in the communication stage processors exchange their local

knowledge (more momentarily). We say that processor v heard about processor w if either

v knows the rumor of w or it knows that w has failed. Epoch ⌈1/ε⌉ − 1 is the terminating

epoch where each processor sends a message to all the processors that it haven’t heard about,

requesting their rumor.

90

Iterating epochs

for ℓ = 1 to ⌈1/ε⌉ − 2 do

if BUSY is empty then

set status to idle;

NEIGHB= {v : v ∈ ACTIVE ∧ v ∈ NGℓ
};

repeat α log2 p times

update stage;

communication stage;

Terminating epoch (⌈1/ε⌉ − 1)

update stage;

if status = collector then

send 〈ACTIVE, BUSY, RUMORS, call〉 to

each processor in WAITING;

receive messages;

send 〈 ACTIVE, BUSY, RUMORS, reply〉 to

each processor in ANSWER;

receive messages;

update RUMORS;

Figure 2: Algorithm GOSSIPε . Code for processor v.

The pseudocode of the algorithm is given in Figure 2 (we assume, where needed, that

every if-then has an implicit else clause containing the necessary number of no-ops to match

the length of the code in the then clause).

Local knowledge and messages. Initially each processor v has its rumorv and permutation πv

from a set Ψ of permutations on [p], such that Ψ satisfies the thesis of Corollary 5.11. Moreover,

each processor v is associated with the variable statusv. Initially statusv = collector (and

we say that v is a collector), meaning that v has not heard from all processors yet. Once v hears

from all other processors, then statusv is set to informer (and we say that v is an informer),

meaning that now v will inform the other processors of its status and knowledge. When pro-

cessor v learns that all non-faulty processors w also have statusw = informer then at the

beginning of the next epoch, statusv becomes idle (and we say that v idles), meaning that v

idles until termination, but it might send responses to messages (see call-messages below).

Each processor maintains several lists and sets. We now describe the lists maintained by

processor v:

• List ACTIVEv : it contains the pids of the processors that v considers to be non-faulty.

Initially, list ACTIVEv contains all p pids.

91

• List BUSYv : it contains the pids of the processors that v consider as collectors. Initially

list BUSYv contains all pids, permuted according to πv.

• List WAITINGv : it contains the pids of the processors that v did not hear from. Initially

list WAITINGv contains all pids except from v, permuted according to πv.

• List RUMORSv : it contains pairs of the form (w, rumorw) or (w,⊥). The pair

(w, rumorw) denotes the fact that processor v knows processor w’s rumor and the pair

(w,⊥) means that v does not know w’s rumor, but it knows that w has failed. Initially

list RUMORSv contains the pair (v, rumorv).

A processor can send a message to any other processor, but to lower the message complexity,

in some cases (see communication stage) we require processors to communicate according to

a conceptual communication graph Gℓ, ℓ ≤ ⌈1/ε⌉ − 2, that satisfies property CCP(p, p −

p1−ℓε, ε) (see Definition 5.4 and Lemma 5.8). When processor v sends a message m to another

processor w, m contains lists ACTIVEv , BUSYv RUMORSv , and the variable type. When type =

call, processor v requires an answer from processor w and we refer to such message as a call-

message. When type = reply, no answer is required—this message is sent as a response to

a call-message.

We now present the sets maintained by processor v.

• Set ANSWERv : it contains the pids of the processors that v received a call-message.

Initially set ANSWERv is empty.

• Set CALLINGv : it contains the pids of the processors that v will send a call-message.

Initially CALLINGv is empty.

• Set NEIGHBv : it contains the pids of the processors that are in ACTIVEv and that

according to the communication graph Gℓ, for a given epoch ℓ, are neighbors of v

92

(NEIGHBv = {w : w ∈ ACTIVEv ∧ w ∈ NGℓ
(v)}). Initially, NEIGHBv contains all

neighbors of v (all nodes in NG1(v)).

Communication stage. In this stage the processors communicate in an attempt to obtain

information from other processors. This stage contains four sub-stages:

• First sub-stage: every processor v that is either a collector or an informer (i.e., statusv 6=

idle) sends message 〈ACTIVEv , BUSYv , RUMORSv , call〉 to every processor in

CALLINGv . The idle processors do not send any messages in this sub-stage.

• Second sub-stage: all processors (collectors, informers and idling) collect the informa-

tion sent to by the other processors in the previous sub-stage. Specifically, processor

v collects lists ACTIVEw , BUSYw and RUMORSw of every processor w that received a

call-message from and v inserts w in set ANSWERv .

• Third sub-stage: every processor (regardless of its status) responds to each processor

that received a call-message from. Specifically, processor v sends message 〈ACTIVEv ,

BUSYv , RUMORSv , reply〉 to the processors in ANSWERv and empties ANSWERv .

• Fourth sub-stage: the processors receive the responses to their call-messages.

Update stage. In this stage each processor v updates its local knowledge based on the messages

it received in the last communication stage. If statusv = idle, then v idles. We now present

the six update rules and their processing. Note that the rules are not disjoint, but we apply

them in the order from (r1) to (r6):

(r1) Updating BUSYv or RUMORSv : For every processor w in CALLINGv (i) if v is an in-

former, it removes w from BUSYv , (ii) if v is a collector and RUMORSw was included

in one of the messages that v received, then v adds the pair (w, rumorw) in RUMORSv

93

and, (iii) if v is a collector but RUMORSw was not included in one of the messages that v

received, then v adds the pair (w,⊥) in RUMORSv .

(r2) Updating RUMORSv and WAITINGv : For every processor w in [p], (i) if (w, rumorw) is

not in RUMORSv and v learns the rumor of w from some other processor that received

a message from, then v adds (w, rumorw) in RUMORSv , (ii) if both (w, rumorw) and

(w,⊥) are in RUMORSv , then v removes (w,⊥) from RUMORSv , and (iii) if either of

(w, rumorw) or (w,⊥) is in RUMORSv and w is in WAITINGv , then v removes w from

WAITINGv .

(r3) Updating BUSYv : For every processor w in BUSYv , if v receives a message from proces-

sor v′ so that w is not in BUSYv′ , then v removes w from BUSYv .

(r4) Updating ACTIVEv and NEIGHBv : For every processor w in ACTIVEv (i) if w is not in

NEIGHBv and v received a message from processor v′ so that w is not in ACTIVEv′ , then

v removes w from ACTIVEv , (ii) if w is in NEIGHBv and v did not receive a message

from w, then v removes w from ACTIVEv and NEIGHBv , and (iii) if w is in CALLINGv

and v did not receive a message from w, then v removes w from ACTIVEv .

(r5) Changing status: If the size of RUMORSv is equal to p and v is a collector, then v becomes

an informer.

(r6) Updating CALLINGv : Processor v empties CALLINGv and (i) if v is a collector then it

updates set CALLINGv to contain the first p(ℓ+1)ε pids of list WAITINGv (or all pids of

WAITINGv if sizeof(WAITINGv) < p(ℓ+1)ε) and all pids of set NEIGHBv , and (ii) if v is

an informer then it updates set CALLINGv to contain the first p(ℓ+1)ε pids of list BUSYv

(or all pids of BUSYv if sizeof(BUSYv) < p(ℓ+1)ε) and all pids of set NEIGHBv .

94

Terminating epoch. Epoch ⌈1/ε⌉ − 1 is the last epoch of the algorithm. In this epoch, each

processor v updates its local information based on the messages it received in the last commu-

nication stage of epoch ⌈1/ε⌉ − 2. If after this update processor v is still a collector, then it

sends a call-message to every processor that is in WAITINGv (containing pids of the processors

whose rumor v does not know or processors that failed). Then every processor receives the

call-messages sent by the other processors. Next, every processor that received a call-message

sends its local knowledge to the sender. Finally each processor v updates RUMORSv based on

any received information.

5.2.3.2 Correctness of Algorithm GOSSIPε

We show that algorithm GOSSIPε solves the GossipAS
(p, f) problem correctly, meaning

that by the end of epoch ⌈1/ε⌉ − 1 each non-faulty processor has heard about all other p − 1

processors. First we show that no non-faulty processor is removed from a processor’s list of

active processors.

Lemma 5.12 In any execution of algorithm GOSSIPε , if processors v and w are non-faulty by

the end of any epoch ℓ < ⌈1/ε⌉ − 1, then w is in ACTIVEv and vice-versa.

Proof: Consider processors v and w that are non-faulty by the end of epoch ℓ < ⌈1/ε⌉ − 1.

We show that w is in ACTIVEv . The proof of the inverse is done similarly. The proof proceeds

by induction on the number of epochs.

Initially all processors (including w) are in ACTIVEv . Consider phase s of epoch 1 (for

simplicity assume that s is not the last phase of epoch 1). By the update rule, a processor w is

removed from ACTIVEv if v is not idle and (a) during the communication stage of phase s, w is

not in NEIGHBv and v received a message from a processor v′ so that w is not in ACTIVEv′ , (b)

95

during the communication stage of phase s, w is in NEIGHBv and v did not receive a message

from w, or (c) v sent a call-message to w in the communication stage of phase s of epoch 1

and v did not receive a response from w in the same stage.

Case (c) is not possible: Since w is non-faulty in all phases s of epoch 1, w receives

the call-message from v in the communication stage of phase s and adds v in ANSWERw .

Then, processor w sends a response to v in the same stage. Hence v does not remove w

from ACTIVEv . Case (b) is also not possible: Since w is non-faulty and w is in NEIGHBv , by

the properties of the communication graph G1, v is in NEIGHBw as well (and since v is non-

faulty). From the description of the first sub-stage of the communication stage, if statusw 6=

idle, w sends a message to its neighbors, including v. If statusw = idle, then w will not

send a message to v in the first sub-stage, but it will send a reply to v′ call-message in the

third sub-stage. Therefore, by the end of the communication stage, v has received a message

from w and hence it does not remove w from ACTIVEv . Neither case (a) is possible: This

follows inductively, using points (b) and (c): no processor will remove w from its set of active

processors in a phase prior to s and hence v does not receive a message from any processor v′

so that w is not in ACTIVEv′ .

Now, assuming that w is in ACTIVEv by the end of epoch ℓ − 1, we show that w is still

in ACTIVEv by the end of epoch ℓ. Since w is in ACTIVEv by the end of epoch ℓ − 1, w is in

ACTIVEv at the beginning of the first phase of epoch ℓ. Using similar arguments as in the base

case of the induction and from the inductive hypothesis, it follows that w is in ACTIVEv by the

end of the first phase of epoch ℓ. Inductively it follows that w is in ACTIVEv by the end of the

last phase of epoch ℓ, as desired. ✷

96

Next we show if a non-faulty processor w has not heard from all processors yet then no

non-faulty processor v removes w from its list of busy processors.

Lemma 5.13 In any execution of algorithm GOSSIPε and any epoch ℓ < ⌈1/ε⌉− 1, if proces-

sors v and w are non-faulty by the end of epoch ℓ and statusw = collector, then w is in

BUSYv .

Proof: Consider processors v and w that are non-faulty by the end of epoch ℓ < ⌈1/ε⌉−1 and

statusw = collector. The proof proceeds by induction on the number of epochs.

Initially all processors w have status collector and w is in BUSYv (CALLINGv\

NEIGHBv is empty). Consider phase s of epoch 1. By the update rule, a processor w is re-

moved from BUSYv if (a) at the beginning of the update stage of phase s, v is an informer and

w is in CALLINGv , or (b) during the communication stage of phase s, v receives a message

from a processor v′ so that w is not in BUSYv′ .

Case (a) is not possible: Since v is an informer and w is in CALLINGv at the beginning

of the update stage of phase s, this means that in the communication stage of phase s − 1,

processor v was already an informer and it sent a call-message to w. In this case, w would

receive this message and it would become an informer during the update stage of phase s.

This violates the assumption of the lemma. Case (b) is also not possible: For w not being in

BUSYv′ it means that either (i) in some phase s′ < s, processor v′ became an informer and

sent a call-message to w, or (ii) during the communication stage of a phase s′′ < s, v′ received

a message from a processor v′′ so that w was not in BUSYv′′ . Case (i) implies that in phase

s′ + 1, processor w becomes an informer which violates the assumption of the lemma. Using

inductively case (i) it follows that case (ii) is not possible either.

97

Now, assuming that by the end of epoch ℓ− 1, w is in BUSYv we would like to show that

by the end of epoch ℓ, w is still in BUSYv . Since w is in BUSYv by the end of epoch ℓ − 1, w

is in BUSYv at the beginning of the first phase of epoch ℓ. Using similar arguments as in the

base case of the induction and from the inductive hypothesis, it follows that w is in BUSYv by

the end of the first phase of epoch ℓ. Inductively it follows that w is in BUSYv by the end of the

last phase of epoch ℓ, as desired. ✷

We now show that each processor’s list of rumors is updated correctly.

Lemma 5.14 In any execution of algorithm GOSSIPε and any epoch ℓ<⌈1/ε⌉−1,

(i) if processors v and w are non-faulty by the end of epoch ℓ and w is not in WAITINGv , then

(w, rumorw) is in RUMORSv , and (ii) if processor v is non-faulty by the end of epoch ℓ and

(w,⊥) is in RUMORSv , then w is not in ACTIVEv .

Proof: We first prove part (i) of the lemma. Consider processors v and w that are non-faulty

by the end of epoch ℓ and that w is not in WAITINGv . The proof proceeds by induction on the

number of epochs.

Initially w is in WAITINGv and RUMORSv contains only the pair (v, rumorv). Consider

phase s of epoch 1. By the update rule, processor w is removed from WAITINGv if during

the update stage of phase s, either (w, rumorw) or (w,⊥) is in RUMORSv . In order for

(w, rumorw) to be in RUMORSv by phase s one of the following must be true: (a) Proces-

sor v sent a call-message to processor w in the communication stage of phase s − 1 and v

received a response from w, (b) During the communication stage of phase s − 1 processor v

received a message from processor v′ so that (w, rumorw) is in RUMORSv′ .

Case (a) is possible, since w is non-faulty. In case (b), in order for processor v′ to know the

rumor of w it must either learned it (b′) from w or (b′′) from some other processor v′′ in a phase

98

s′ < s − 1. Case (b′) shows trivially that case (b) is possible. For case (b′′) to be possible,

it must be the case that either v′′ learned the rumor of w from w or some other node v′′′ in a

phase s′′ < s′. Using case (b′) inductively, it follows that case (b′′) is possible, and thus, case

(b) is possible. Hence, if by the end of epoch 1, w is not in WAITINGv , then (w, rumorw) is in

RUMORSv .

Now assuming that part (i) of the lemma holds by the end of epoch ℓ − 1, we would like

to show that it also holds by the end of epoch ℓ. This follows from the inductive hypothesis

and the fact that no processor identifier is ever added in WAITINGv and no pair of the form

(w, rumorw) is removed from RUMORSv .

The proof of part (ii) of the lemma is analogous to the proof of part (i). The key argument

is that the pair (w,⊥) is added in RUMORSv if w does not respond to a call-message sent

by v which in this case w is removed from ACTIVEv (if w was not removed from ACTIVEv

earlier). ✷

Finally we show the correctness of algorithm GOSSIPε .

Theorem 5.15 By the end of epoch ⌈1/ε⌉ − 1 of any execution of algorithm GOSSIPε , every

non-faulty processor v either knows the rumor of processor w or it knows that w has failed.

Proof: Consider a processor v that is non-faulty by the end of epoch ⌈1/ε⌉ − 1. In the update

stage of epoch ⌈1/ε⌉ − 1 processor v updates it local knowledge based on the knowledge it

had in the previous epochs and the new information it obtained in the communication stage of

the last phase of epoch ⌈1/ε⌉ − 2. Lemmas 5.12, 5.13, and 5.14 guarantee that this knowledge

does not contain false information.

99

If after this last update, processor v is still a collector, meaning that v did not hear from

all processors yet, according to the description of the algorithm, processor v will send a call-

message to the processors whose pid is still in WAITINGv (by Lemma 5.14 and the update rule,

it follows that list WAITINGv contains all processors that v did not hear from yet). Then all non-

faulty processors w receive the call-message of v and then they respond to v. Then v receives

these responses. Finally v updates list RUMORSv accordingly: if a processor w responded to

v’s call-message (meaning that v now learns the rumor of w), then v adds (w, rumorw) in

RUMORSv . If w did not respond to v’s call-message, and (w, rumorw) is not in RUMORSv (it

is possible for processor v to learn the rumor of w from some other processor v′ that learned

the rumor of w before processor w failed), then v knows that w has failed and adds (w,⊥) in

RUMORSv .

Hence the last update that each non-faulty processor v performs on RUMORSv maintains

the validity that the list had from the previous epochs (guaranteed by the above three lemmas).

Moreover, the size of RUMORSv becomes equal to p and v either knows the rumor of each

processor w, or it knows that v has failed, as desired. ✷

Note from the above that the correctness of algorithm GOSSIPε does not depend on whether

the set of permutations Ψ satisfy the conditions of Corollary 5.11. The algorithm is correct for

any set of permutations of [p].

5.2.3.3 Analysis of Algorithm GOSSIPε

Consider some set Vℓ, |Vℓ| ≥ p1−ℓε, of processors that are not idle at the beginning of

epoch ℓ and do not fail by the end of epoch ℓ. Let Qℓ ⊆ Vℓ be such that |Qℓ| ≥ |Vℓ|/7 and the

100

diameter of the subgraph induced by Qℓ is at most 31 log p. Qℓ exists because of Lemma 5.8

applied to graph Gℓ and set Vℓ (chains have size 2).

For any processor v, let CALLv = CALLINGv\ NEIGHBv . Recall that the size of CALL

is equal to p(ℓ+1)ε (or less if list WAITING, or BUSY, is shorter than p(ℓ+1)ε) and the size

of NEIGHB is at most p(ℓ+1)ε. We refer to the call-messages sent to the processors whose

pids are in CALL as progress-messages. If processor v sends a progress-message to processor

w, it will remove w from list WAITINGv (or BUSYv) by the end of current stage. Let d =

(31 log p + 1)p(ℓ+1)ε. Note that d ≥ (31 log p + 1) · |CALL|.

We begin the analysis of the gossip algorithm by proving a bound on the number of

progress-messages sent under certain conditions.

Lemma 5.16 The total number of progress-messages sent by processors in Qℓ from the begin-

ning of epoch ℓ until the first processor in Qℓ will have its list WAITING (or list BUSY) empty,

is at most (d, |Qℓ|)-Surf(Ψ).

Proof: Fix Qℓ and consider some permutation σ ∈ Sp that satisfies the following property:

“Consider i < j ≤ p. Let τi (τj) be the time step in epoch ℓ where some processor in Qℓ

hears about σ(i) (σ(j)) the first time among the processors in Qℓ. Then τi ≤ τj .” (We note

that it is not difficult to see that for a given Qℓ we can always find σ ∈ Sp that satisfies the

above property.) We consider only the subset Υ ⊆ Ψ containing permutations of indexes

from set Qℓ. To show the lemma we prove that the number of messages sent by processors

from Qℓ is at most (d, |Υ|)-Surf(Υ, σ) ≤ (d, |Qℓ|)-Surf(Ψ). Suppose that processor v ∈ Qℓ

sends a progress-message to processor w. It follows from the diameter of Qℓ and the size

of set CALL in epoch ℓ, that none of processor v′ ∈ Qℓ had sent a progress-message to w

101

before 31 log p phases, and consequently position of processor w in permutation πv is at most

d− |CALL| ≤ d− p(ℓ+1)ε greater than position of w in permutation πv′ .

For each processor v ∈ Qℓ, let Pv contain all pairs (v, i) such that v sends a progress-

message to processor πv(i) by itself during the epoch ℓ. We construct function h from the set

⋃

v∈Qℓ
Pv to the set of all d-lrm of set σ−1 ◦ Ψ and show that h is one-to-one function. We

run the construction independently for each processor v ∈ Qℓ. If πv(k) is the first processor

in the permutation πv to whom v sends a progress-message at the beginning of epoch ℓ, we set

h(v, k) = 1. Suppose that (v, i) ∈ Pv and we have defined function h for all elements from

Pv less than (v, i) in the lexicographic order. We define h(v, i) as the first j ≤ i such that

(σ−1 ◦ πv)(j) is a d-lrm not assigned yet by h to any element in Pv .

Claim: For every (v, i) ∈ Pv , h(v, i) is well defined.

We prove the Claim. For the first element in Pv function h is well defined. For the first

d elements in Pv it is also easy to show that h is well defined, since the first d elements in

permutation πv are d-lrms. Suppose h is well defined for all elements from Pv less than (v, i)

and (v, i) is at least the (d + 1)st element in Pv . We show that h(v, i) is also well defined.

Suppose to the contrary, that there is no position j ≤ i such that (σ−1 ◦ πv)(j) is a d-lrm and

j is not assigned by h before step of construction for (v, i) ∈ Pv. Let j1 < . . . < jd < i be the

positions such that (v, j1), . . . , (v, jd) ∈ Pv and (σ−1 ◦ πv)(h(j1)), . . . , (σ
−1 ◦ πv)(h(jd)) are

greater than (σ−1 ◦ πv)(i). They exist from the fact, that (σ−1 ◦ πv)(i) is not d-lrm and every

”previous” d-lrms in πv are assigned by L. Obviously processor w = πv(h(j1)) received a first

progress-message at least d
|CALL| = 31 log p + 1 phases before it received a progress-message

from v. From the choice of σ, processor w′ = πv(i) had received a progress-message from

some other processor in Q′
ℓ at least 31 log p + 1 phases before w′ received a progress-message

102

from v. This contradicts the remark at the beginning of the proof of the lemma. This completes

the proof of the Claim.

The fact that h is a one-to-one function follows directly from the definition of h. It follows

that the number of progress-messages sent by processors in Qℓ until the list WAITING (or list

BUSY) of a processor in Qℓ is empty, is at most (d, |Υ|)-Surf(Υ, σ) ≤ (d, |Qℓ|)-Surf(Ψ), as

desired. ✷

We now define an invariant, that we call Iℓ, for ℓ = 1, . . . , ⌈1/ε⌉ − 2:

Iℓ: There are at most p1−ℓε non-faulty processors having status collector or

informer in any step after the end of epoch ℓ.

Using Lemma 5.16 and Corollary 5.11 we show the following:

Lemma 5.17 In any execution of algorithm GOSSIPε , the invariant Iℓ holds for any epoch

ℓ = 1, . . . , ⌈1/ε⌉ − 2.

Proof: For p = 1 it is obvious. Assume p > 1. We will use Lemma 5.8 and Corollary 5.11.

Consider any epoch ℓ < ⌈1/ε⌉ − 1. Suppose to the contrary, that there is a subset Vℓ of non-

faulty processors after the end of epoch ℓ such that each of them has status either collector

or informer and |Vℓ| > p1−ℓε. Since Gℓ satisfies CCP(p, p−p1−ℓε, ε), there is a set Qℓ ⊆ Vℓ

such that |Qℓ| ≥ |Vℓ|/7 > p1−ℓε/7 and the diameter of the subgraph induced by Qℓ is at most

31 log p. Applying Lemma 5.16 and Corollary 5.11 to the set Qℓ, epoch ℓ, t = p, q = |Qℓ|

and d = 31p(ℓ+1)ε log p, we obtain that the total number of messages sent until some processor

v ∈ Qℓ has list BUSYv empty, is at most

2 · (31(log p + 1)p(ℓ+1)ε, |Qℓ|)-Surf(Ψ) + 31|Qℓ|p(ℓ+1)ε log p ≤ 341|Qℓ|p(ℓ+1)ε log2 p .

More precisely, until some processor in Qℓ has status informer, the processors in Qℓ

have sent at most (31(log p + 1)p(ℓ+1)ε, |Qℓ|)-Surf(Ψ) messages. Then, after the processors in

103

Qℓ send at most 31|Qℓ|p(ℓ+1)ε log p messages, every processor in Qℓ has status informer.

Finally, after the processors in Qℓ send at most (31(log p+1)p(ℓ+1)ε, |Qℓ|)-Surf(Ψ) messages,

some processor in Qℓ ⊆ Vℓ has its list BUSY empty.

Notice that since no processor in Qℓ has status idle in epoch ℓ, each of them sends in

every phase of epoch ℓ at most |CALL| ≤ p(ℓ+1)ε progress-messages. Consequently the total

number of phases in epoch ℓ until some of the processors in Qℓ has its list BUSY empty, is at

most
341|Qℓ|p(ℓ+1)ε log2 p

|Qℓ|p(ℓ+1)ε
≤ 341 log2 p.

Recall that α log2 p ≥ 341 log2 p. Hence if we consider the first 341 log2 p phases of

epoch ℓ, the above argument implies that there is at least one processor in Vℓ that has status

idle, which is a contradiction. Hence, Iℓ holds for epoch ℓ. ✷

We now show the time and message complexity of algorithm GOSSIPε .

Theorem 5.18 Algorithm GOSSIPε solves the GossipAS
(p, f) problem with time complexity

T = O(log2 p) and message complexity M = O(p1+3ε).

Proof: First we show the bound on time. Observe that each update and communication stage

takes O(1) time. Therefore each of the first ⌈1/ε⌉ − 2 epochs takes O(log2 p) time. The

last epoch takes O(1) time. From this and the fact that ε is a constant, we have that the

time complexity of the algorithm is in the worse case O(log2 p). We now show the bound on

messages. From Lemma 5.17 we have that for every 1 ≤ ℓ < ⌈1/ε⌉ − 2, during epoch ℓ + 1

there are at most p1−ℓε processors sending at most 2p(ℓ+2)ε messages in every communication

stage. The remaining processors are either faulty (hence they do not send any messages) or have

status idle — these processors only respond to call-messages and their total impact on the

message complexity in epoch ℓ+1 is at most as large as the others. Consequently the message

complexity during epoch ℓ + 1 is at most 4(α log2 p) · (p1−ℓεp(ℓ+2)ε) ≤ 4αp1+2ε log2 p ≤

104

4αp1+3ε. After epoch ⌈1/ε⌉ − 2 there are, per I⌈1/ε⌉−2, at most p2ε processors having list

WAITING not empty. In epoch ⌈1/ε⌉− 1 each of these processors sends a message to at most p

processors twice, hence the message complexity in this epoch is bounded by 2p · p2ε. From the

above and the fact that ε is a constant, we have that the message complexity of the algorithm

is O(p1+3ε). ✷

5.2.4 The Do-All Algorithm based on Gossip

We now put the gossip algorithm to use by constructing a new robust Do-All algorithm,

called algorithm DOALLε.

5.2.4.1 Description of Algorithm DOALLε

The algorithm proceeds in a loop that is repeated until all the tasks are executed and all non-

faulty processors are aware of this. A single iteration of the loop is called an epoch. Each epoch

consists of β log p+1 phases, where β > 0 is a constant integer. We show that the algorithm is

correct for any integer β > 0, but the complexity analysis of the algorithm depends on specific

values of β that we show to exist. Each phase is divided into two stages, the work stage and

the gossip stage. In the work stage processors perform tasks, and in the gossip stage processors

execute an instance of the GOSSIPε algorithm to exchange information regarding completed

tasks and non-faulty processors (more details momentarily). Computation starts with epoch 1.

We note that (unlike in algorithm GOSSIPε) the non-faulty processors may stop executing at

different steps. Hence we need to argue about the termination decision that the processors must

take. This is done in the paragraph “Termination decision”.

105

The pseudocode for a phase of epoch ℓ of the algorithm is given in Figure 3 (again we

assume that every if-then has an implicit else containing no-ops as needed).

Work stage

repeat Tℓ times

if TASK not empty then

perform task whose id is first in TASK;

remove task’s id from TASK;

elseif TASK empty and done = false

then set done to true;

if TASK empty and done = false then

set done to true;

Gossip stage

run GOSSIPε/3 with rumor =(TEMP,PROC,done);
if done = true and donew = true for all w
received rumor from then

TERMINATE;

else

update TASK and PROC;

Figure 3: A phase of epoch ℓ of algorithm DOALLε. Code for processor v.

Local knowledge. Each processor v maintains a list of tasks TASKv it believes not to be done,

and a list of processors PROCv it believes to be non-faulty. Initially TASKv = 〈1, . . . , n〉 and

PROCv = 〈1, . . . , p〉. The processor also has a boolean variable donev, that describes the

knowledge of v regarding the completion of the tasks. Initially donev is set to false, and

when processor v is assured that all tasks are completed donev is set to true.

Task allocation. Each processor v is equipped with a permutation πv from a set Ψ of per-

mutations on [n]. (This is distinct from the set of permutation on [p] required by the gossip

algorithm.) We show that the algorithm is correct for any set of permutations on [n], but its

complexity analysis depends on specific set of permutations Ψ that we show to exist.

Initially TASKv is permuted according to πv and then processor v performs tasks according

to the ordering of the tids in TASKv . In the course of the computation, when processor v learns

that task z is performed (either by performing the task itself or by obtaining this information

from some other processor), it removes z from TASKv while preserving the permutation order.

106

Work stage. For epoch ℓ, each work stage consists of Tℓ =
⌈

n+p log3 p
p

2l log p

⌉

work sub-stages. In

each sub-stage, each processor v performs a task according to TASKv . Hence, in each work

stage of a phase of epoch ℓ, processor v must perform the first Tℓ tasks of TASKv . However,

if TASKv becomes empty at a sub-stage prior to sub-state Tℓ, then v performs no-ops in the

remaining sub-stages (each no-op operation takes the same time as performing a task). Once

TASKv becomes empty, donev is set to true.

Gossip stage. Here processors execute algorithm GOSSIPε/3 using their local knowledge as

the rumor, i.e., for processor v, rumorv = (TASKv , PROCv , donev). At the end of the stage,

each processor v updates its local knowledge based on the rumors it received. The update rule

is as follows: (a) If v does not receive the rumor of processor w, then v learns that w has failed

(guaranteed by the correctness of GOSSIPε/3). In this case v removes w from PROCv . (b) If v

receives the rumor of processor w, then it compare TASKv and PROCv with TASKw and PROCw

respectively and updates its lists accordingly—it removes the tasks that w knows are already

completed and the processors that w knows that have crashed. Note that if TASKv becomes

empty after this update, variable donev remains false. It will be set to true in the next

work stage. This is needed for the correctness of the algorithm (see Lemma 5.22).

Termination decision. We would like all non-faulty processors to learn that the tasks are

done. Hence, it would not be sufficient for a processor to terminate once the value of its done

variable is set to true. It has to be assured that all other non-faulty processors’ done variables

are set to true as well, and then terminate. This is achieved as follows: If processor v starts

the gossip stage of a phase of epoch ℓ with donev = true, and all rumors it receives suggest

that all other non-faulty processors know that all tasks are done (their done variables are set to

true), then processor v terminates. If at least one processor’s done variable is set to false,

107

then v continues to the next phase of epoch ℓ (or to the first phase of epoch ℓ+1 if the previous

phase was the last of epoch ℓ).

Remark 5.1 In the complexity analysis of the algorithm we first assume that n ≤ p2 and then

we show how to extend the analysis for the case n > p2. In order to do so, we assume that

when n > p2, before the start of algorithm DOALLε, the tasks are partitioned into n′ = p2

chunks, where each chunk contains at most ⌈n/p2⌉ tasks. In this case it is understood that in

the above description of the algorithm, n is actually n′ and when we refer to a task we really

mean a chunk of tasks.

5.2.4.2 Correctness of Algorithm DOALLε

We show that the algorithm DOALLε solves the Do-AllAS
(n, p, f) problem correctly,

meaning that the algorithm terminates with all tasks performed and all non-faulty processors

are aware of this. Note that this is a stronger correctness condition than the one required by the

definition of Do-All .

First we show that no non-faulty processor is removed from a processor’s list of non-faulty

processors.

Lemma 5.19 In any execution of algorithm DOALLε, if processors v and w are non-faulty by

the end of the gossip stage of phase s of epoch ℓ, then processor w is in PROCv and vice-versa.

Proof: Let v be a processor that is non-faulty by the end of the gossip stage of phase s of

epoch ℓ. By the correctness of algorithm GOSSIPε/3 (called at the gossip stage), processor v

receives the rumor of every non-faulty processor w and vice-versa. Since there are no restarts,

v and w were alive in all prior phases of epochs 1, 2, . . . , ℓ, and hence, v and w received each

108

other rumors in all these phases as well. By the update rule it follows that processor v does not

remove processor w from its processor list and vice-versa. Hence w is in PROCv and w is in

PROCv by the end of phase s, as desired. ✷

Next we show that no undone task is removed from a processor’s list of undone tasks.

Lemma 5.20 In any execution of algorithm DOALLε, if a task z is not in TASKv of any pro-

cessor v at the beginning of the first phase of epoch ℓ, then z has been performed in a phase of

one of the epochs 1, 2, . . . , ℓ− 1.

Proof: From the description of the algorithm we have that initially any task z is in TASKv of a

processor v. We proceed by induction on the number of epochs. At the beginning of the first

phase of epoch 1, z is in TASKv . If by the end of the first phase of epoch 1, z is not in TASKv

then by the update rule either (i) v performed task z during the work stage, or (ii) during the

gossip stage v received rumorw from processor w in which z was not in TASKw . The latter

suggests that processor w performed task z during the work stage. Continuing in this manner

it follows that if z is not in TASKv at the beginning of the first phase of epoch 2, then z was

performed in one of the phases of epoch 1.

Assuming that the thesis of the lemma holds for any epoch ℓ, we show that it also holds for

epoch ℓ + 1. Consider two cases:

Case 1: If z is not in TASKv at the beginning of the first phase of epoch ℓ, then since no tid is

ever added in TASKv , z is not in TASKv neither at the beginning of the first phase of epoch ℓ+1.

By the inductive hypothesis, z was performed in one of the phases of epochs 1, . . . , ℓ− 1.

Case 2: If z is in TASKv at the beginning of the first phase of epoch ℓ but it is not in TASKv

at the beginning of the second phase of epoch ℓ, then by the update rule it follows that either

(i) v performed task z during the work stage of the second phase of epoch ℓ, or (ii) during the

109

gossip stage of the second phase of epoch ℓ, v received rumorw from processor w in which

z was not in TASKw . The latter suggests that processor w performed task z during the work

stage of the second phase of epoch ℓ or it learned that z was done in the gossip stage of the first

phase of epoch ℓ. Either case, task z was performed. Continuing in this manner it follows that

if z is not in TASKv at the beginning of the first phase of epoch ℓ + 1, then z was performed in

one of the phases of epoch ℓ. ✷

Next we show that under certain conditions, local progress is guaranteed. First we intro-

duce some notation. For processor v we denote by TASKv
(ℓ,s) the list TASKv at the beginning

of phase s of epoch ℓ. Note that if s is the last phase – (β log2 p)th phase – of epoch ℓ, then

TASKv
(ℓ,s+1) =TASKv

(ℓ+1,1), meaning that after phase s processor v enters the first phase of

epoch ℓ + 1.

Lemma 5.21 In any execution of algorithm DOALLε, if processor v enters a work stage of a

phase s of epoch ℓ with donew = false, then sizeof(TASKv
(ℓ,s+1)) < sizeof(TASKv

(ℓ,s)).

Proof: Let v be a processor that starts the work stage of phase s of epoch ℓ with donew =

false. According to the description of the algorithm, the value of variable donev is initially

false and it is set to true only when TASKv becomes empty. Hence, at the beginning of the

work stage of phase s of epoch ℓ there is at least one task identifier in TASKv
(ℓ,s), and therefore

v performs at least one task. From this and the fact that no tid is ever added in a processor’s

task list, we get that sizeof(TASKv
(ℓ,s+1)) < sizeof(TASKv

(ℓ,s)). ✷

We now show that when during a phase s of an epoch ℓ, a processor learns that all tasks are

completed and it does not crash during this phase, then the algorithm is guaranteed to terminate

by phase s + 1 of epoch ℓ; if s is the last phase epoch ℓ, then the algorithm is guaranteed to

110

terminate by the first phase of epoch ℓ + 1. For simplicity of presentation, in the following

lemma we assume that s is not the last phase of epoch ℓ.

Lemma 5.22 In any execution of algorithm DOALLε, for any phase s of epoch ℓ and any

processor v, if donev is set to true during phase s and v is non-faulty by the end of phase s,

then the algorithm terminates by phase s + 1 of epoch ℓ.

Proof: Consider phase s of epoch ℓ and processor v. According to the code of the algorithm,

the value of variable donew is updated during the work stage of a phase (the value of the

variable is not changed during the gossip stage). Hence, if the value of variable donew is

changed during the phase s of epoch ℓ this happens before the start of the gossip stage. This

means that TASKv contained in rumorv in the execution of algorithm GOSSIPε/3 is empty.

Since v does not fail during phase s, the correctness of algorithm GOSSIPε/3 guarantees that

all non-faulty processors learn the rumor of v, and consequently they learn that all tasks are

performed. This means that all non-faulty processors w start the gossip stage of phase s + 1

of epoch ℓ with donew = true and all rumors they receive contain the variable done set to

true.

The above in conjunction with the termination guarantees of algorithm GOSSIPε/3 lead to

the conclusion that all non-faulty processors terminate by phase s+1 (and hence the algorithm

terminates by phase s + 1 of epoch ℓ). ✷

Finally we show the correctness of algorithm DOALLε.

Theorem 5.23 In any execution of algorithm DOALLε, the algorithm terminates with all tasks

performed and all non-faulty processors being aware of this.

111

Proof: By Lemma 5.19, no non-faulty processor leaves the computation, and by our model at

least one processor does not crash (f < p). Also from Lemma 5.20 we have that no undone

task is removed from the computation. From the code of the algorithm we get that a processor

continues performing tasks until its TASK list becomes empty and by Lemma 5.21 we have

that local progress is guaranteed. The above in conjunction with the correctness of algorithm

GOSSIPε/3 lead to the conclusion that there exist a phase s of an epoch ℓ and a processor v

so that during phase s processor v sets donev to true, all tasks are indeed performed and v

survives phase s. By Lemma 5.22 the algorithm terminates by phase s + 1 of epoch ℓ (or by

the first phase of epoch ℓ + 1 if s is the last phase of epoch ℓ). Now, from the definition of Tℓ

it follows that the algorithm terminates after at most O(log p) epochs: consider epoch log p;

Tlog p = ⌈(n + p log3 p)/ log p⌉ = ⌈n/ log p + p log2 p⌉. Recall that each epoch consists of

β log p+1 phases. Say that β = 1. Then, when a processor reaches epoch log p, it can perform

all n tasks in this epoch. Hence, all tasks that are not done until epoch log p− 1 are guaranteed

to be performed by the end of epoch log p and all non-faulty processors will know that all tasks

have been performed. ✷

Note from the above that the correctness of algorithm DOALLε does not depend on the

set of permutations that processors use to select what tasks to do next. The algorithm works

correctly for any set of permutations on [n]. It also works for any integer β > 0.

5.2.4.3 Analysis of Algorithm DOALLε

We now derive the work and message complexities for algorithm DOALLε. Our analysis

is based on the following terminology. Consider a phase i in epoch ℓ of an execution ξ ∈

E(DOALLε,AS). Let Vi(ξ) denote the set of processors that are non-faulty at the beginning

112

of phase i. Let pi(ξ) = |Vi(ξ)|. Let Ui(ξ) denote the set of tasks z such that z is in some list

TASKv , for some v ∈ Vi(ξ), at the beginning of phase i. Let ui(ξ) = |Ui(ξ)|.

Now we classify the possibilities for phase i as follows. If at the beginning of phase i,

pi(ξ) > p/2ℓ−1, we say that phase i is a majority phase. Otherwise, phase i is a minority

phase. If phase i is a minority phase and at the end of i the number of surviving processors

is less than pi(ξ)/2, i.e., pi+1(ξ) < pi(ξ)/2, we say that i is an unreliable minority phase. If

pi+1(ξ) ≥ pi(ξ)/2, we say that i is a reliable minority phase. If phase i is a reliable minority

phase and ui+1(ξ) ≤ ui(ξ) − 1
4pi+1(ξ)Tℓ, then we say that i is an optimal reliable minority

phase (the task allocation is optimal – the same task is performed only by a constant number of

processors on average). If ui+1(ξ) ≤ 3
4ui(ξ), then i is a fractional reliable minority phase (a

fraction of the undone tasks is performed). Otherwise we say that i is an unproductive reliable

minority phase (not much progress is obtained). The classification possibilities for phase i of

epoch ℓ are depicted in Figure 4.

phase i of
epoch ℓ

“minority”

pi ≤
p

2ℓ−1

pi > p
2ℓ−1

“majority”

✲ pi+1 ≥ pi

2

“reliable”

pi+1 < pi

2

“unreliable”

✲

✲ ui+1 ≤ ui −
pi+1

4
Tℓ

ui+1 ≤ 3ui

4

otherwise

“optimal”

“fractional”

“unproductive”

✲

✲

✲

✲

Figure 4: Classification of a phase i of epoch ℓ; execution ξ is implied.

Our goal is to choose a set Ψ of permutations such that for any execution there will be

no unproductive and no majority phases. To do this we analyze sets of random permutations,

prove certain properties of our algorithm for such sets (in Lemmas 5.24 and 5.25), and finally

use the probabilistic method to obtain an existential deterministic solution.

113

Lemma 5.24 Let Q be a fixed nonempty subset of processors. Then the probability of event

“for every execution ξ of algorithm DOALLε such that Vi+1(ξ) ⊇ Q and ui(ξ) > 0, the

following inequality holds ui(ξ)−ui+1(ξ) ≥ min{ui(ξ), |Q|Tℓ}/4,” is at least 1−1/eΩ(|Q|Tℓ).

Proof: Let ξ be an execution of algorithm DOALLε such that Vi+1(ξ) ⊇ Q and ui(ξ) > 0. Let

c = min{ui(ξ), |Q|Tℓ}/4. Let Si(ξ) be the set of tasks z such that z is in every list TASKv

for v ∈ Q, at the beginning of phase i. Let si(ξ) = |Si(ξ)|. Note that Si(ξ) ⊆ Ui(ξ), and

that Si(ξ) describes some properties of set Q, while Ui(ξ) describes some properties of set

Vi(ξ) ⊇ Q.

Consider the following cases:

Case 1: si(ξ) ≤ ui(ξ) − c. Then after the gossip stage of phase i we obtain the required

inequality with probability 1.

Case 2: si(ξ) > ui(ξ) − c. We focus on the work stage of phase i. Consider a conceptual

process in which the processors in Q perform tasks sequentially, the next processor takes over

when the previous one has performed all its Tℓ steps during the work stage of phase i. This

process takes |Q|Tℓ steps to be completed. Let U
(k)
i (ξ) denote the set of tasks z such that: z is

in some list TASKv , for some v ∈ Q, at the beginning of phase i and z has not been performed

during the first k steps of the process, by any processor. Let u
(k)
i (ξ) = |U (k)

i (ξ)|. Define the

random variables Xk, for 1 ≤ k ≤ |Q|Tℓ, as follows:

Xk =







1 if either ui(ξ)− u
(k)
i (ξ) ≥ c or u

(k)
i (ξ) 6= u

(k−1)
i (ξ) ,

0 otherwise .

Suppose some processor v ∈ Q is to perform the kth step. If ui(ξ)− u
(k)
i (ξ) < c then we also

have the following:

si(ξ)−
(
ui(ξ)− u

(k)
i (ξ)

)
> si(ξ)− c ≥ ui(ξ)/2 ≥ sizeof(TASKv)/2,

114

where TASKv is taken at the beginning of phase i, because 3c ≤ 3ui(ξ)/4 ≤ si(ξ). Thus at

least a half of the tasks in TASKv , taken at the beginning of phase i, have not been performed

yet, and so Pr[Xk = 1] ≥ 1/2.

We need to estimate the probability Pr[
∑

Xk ≥ c], where the summation is over all |Q|Tℓ

steps of all the processors in Q in the considered process. Consider a sequence 〈Yk〉 of indepen-

dent Bernoulli trials, with Pr[Yk = 1] = 1/2. Then the sequence 〈Xk〉 statistically dominates

the sequence 〈Yk〉, in the sense that Pr
[∑

Xk ≥ d
]
≥ Pr

[∑

Yk ≥ d
]
, for any d > 0. Note

that E[
∑

Yk] = |Q|Tℓ/2 and c ≤ E[
∑

Yk]/2, hence we can apply Chernoff bound to obtain

Pr
[∑

Yk ≥ c
]

≥ 1− Pr

[
∑

Yk <
1

2
E

[∑

Yk

]]

≥ 1− e−|Q|Tℓ/8 .

Hence the number of tasks in Ui(ξ), for any execution ξ such that Vi+1(ξ) ⊇ Q, performed

by processors from Q during work stage of phase i is at least c with probability 1−e−|Q|Tℓ/8. ✷

Lemma 5.25 Assume n ≤ p2. There exists a constant integer β > 0 such that for every phase

i of any epoch ℓ of any execution ξ of algorithm DOALLε, if there is a task unperformed by

the beginning of phase i then: (a) the probability that phase i is a majority phase is at most

e−Ω(p log p), and (b) the probability that phase i is a minority reliable unproductive phase is at

most e−Ω(Tℓ).

Proof: The proof is by induction on phase i. For phase 1 claim (a) holds even with the proba-

bility 0, since p ≤ p
2ℓ−1 . We prove claim (b). Consider executions such that phase 1 is minority

reliable. We can partition these executions according to the following equivalence relation:

executions ξ1 and ξ2 are in the same class iff V2(ξ1) = V2(ξ2). Consider a set of processors Q

of size at least p/2, and any execution ξ such that V2(ξ) = Q. By Lemma 5.24 applied to Q

and phase 1 we get that the probability that u1(ξ)− u2(ξ) < min{u1(ξ), |Q|T1}/4 is at most

115

e−Ω(|Q|T1) ≤ e−Ω(p log p). There are at most 2p different groups of executions represented by

different sets Q, hence the probability that for every execution ξ, phase 1 is a minority reliable

unproductive phase is at most 2p · e−Ω(p log p) = e−Ω(p log p) ≤ e−Ω(T1). Thus claim (b) holds

for phase 1. Note that so far we have not obtained any bounds on β.

Suppose that claims (a) and (b) hold for every phase up to i− 1, where i− 1 ≥ 1 and there

is an unperformed task at the beginning of phase i−1. We prove that if there is an unperformed

task at the beginning of phase i then claims (a) and (b) hold for phase i.

Assume that phase i belongs to epoch ℓ, for some ℓ ≥ 1. First we group executions ξ

such that phase i is a majority phase in ξ, according to the following equivalence relation:

execution ξ1 and ξ2 are in the same class iff Vi+1(ξ1) = Vi+1(ξ2). Every such equivalence

class is represented by some set of processors Q of size greater than p
2ℓ−1 , such that for every

execution ξ in this class we have Vi+1(ξ) = Q. We now define conditions for β that keep

claim (a) satisfied.

Claim: There is a constant β > 0 such that for any execution ξ in the class represented

by Q, where |Q| > p
2ℓ−1 , all tasks were performed by the end of epoch ℓ− 1 with probability

e−Ω(p log p).

We now prove the Claim. Consider an execution ξ from a class represented by Q. Consider

all steps taken by processors in Q during phase j of epoch ℓ − 1. By Lemma 5.24, since

Vj+1(ξ) ⊇ Q, we have that the probability of event “if uj(ξ) > 0 then uj(ξ) − uj+1(ξ) ≥

min{uj(ξ), |Q|Tℓ−1}/4,” is at least 1 − 1/eΩ(|Q|Tℓ−1). If the above condition is satisfied we

call phase j productive (by similarity to names optimal and fractional, but the difference is that

these names are used only for minority phases, but now we use it according to the progress

made by processors in Q), and this happens with probability 1− 1/eΩ(|Q|Tℓ−1). Since the total

116

number of tasks is n, we have that the number of productive phases during epoch ℓ−1 sufficient

to perform all tasks using only processors in Q is either at most
n

|Q|Tℓ−1/4
≤ n

n/(4 log p)
=

4 log p, or, since n ≤ p2, is at most log1/4 n = O(log p).

Therefore there are a total of O(log p) productive phases, which is sufficient to perform all

tasks. Furthermore, every phase in epoch ℓ−1 is productive. Hence, all tasks are performed by

processors in Q during β log p phases, for some constant β > 0, of epoch ℓ−1 with probability

1 − O(log p) · e−Ω(|Q|Tℓ−1) = 1 − e−Ω(p log p). Consequently all processors terminate by the

end of phase β log p+1 with probability 1−e−Ω(p log p). This follows by the correctness of the

gossip algorithm and the argument of Lemma 5.22, since epoch ℓ− 1 lasts β log p + 1 phases

and processors in Q are non-faulty at the beginning of epoch ℓ. This completes the proof of the

Claim.

There are at most 2p of possible sets Q of processors, hence by the Claim the probability

that phase i is a majority phase is at most 2p · e−Ω(p log p) ≤ e−Ω(p log p), which proves claim

(a) for phase i.

Now we prove claim (b) for phase i. Consider executions such that phase i in epoch ℓ

is a minority reliable phase. Similarly as above, we partitions executions according to the

following equivalence relation: executions ξ1 and ξ2 are in the same class if there is set Q such

that H = Vi+1(ξ1) = Vi+1(ξ2). Set Q is a representative of a class. By Lemma 5.24 applied to

phase i and set Q we obtain that the probability that phase i is unproductive for every execution

ξ such that Vi+1(ξ) = Q is e−Ω(|Q|Tℓ). Hence the probability that for any execution ξ phase i

is a minority reliable unproductive phase is at most

p/2ℓ−1
∑

x=1

(
p

x

)

· e−Ω(xTℓ) ≤
p/2ℓ−1
∑

x=1

2x log p · e−Ω(xTℓ) ≤ e−Ω(Tℓ) ,

and claim (b) is shown for phase i. ✷

117

Recall that epoch ℓ consists of β log p + 1 phases for some β > 0 and that Tℓ =

⌈ n+p log3 p
(p/2ℓ) log p

⌉. Also by the correctness proof of algorithm DOALLε (Theorem 5.23), the al-

gorithm terminates in at most O(log p) epochs, hence, the algorithm terminates in at most

O(log2 p) phases. Let gℓ be the number of steps that each gossip stage takes in epoch ℓ, i.e.,

gℓ = Θ(log2 p).

We now show the work and message complexity of algorithm DOALLε.

Theorem 5.26 There is a set of permutations Ψ and a constant integer β > 0 such that algo-

rithm DOALLε, using permutations from Ψ, solves the Do-AllAS
(n, p, f) problem with work

S = O(n + p log3 p) and message complexity M = O(p1+2ε).

Proof: We show that for any execution ξ ∈ E(DOALLε,AS) that solves the Do-AllAS
(n, p, f)

problem there exists a set of permutations Ψ and an integer β > 0 so that the complexity

bounds are as desired. We consider two cases:

Case 1: n ≤ p2. Consider phase i of epoch ℓ of execution ξ for randomly chosen set of

permutations Ψ. We reason about the probability of phase i belonging to one of the classes

illustrated in Figure 4, and about the work that phase i contributes to the total work incurred

in the execution, depending on its classification. From Lemma 5.25(a) we get that phase i

may be a majority phase with probability e−Ω(p log p) which is a very small probability. More

precisely, the probability that for a set of permutations Ψ, in execution ξ obtained for Ψ some

phase i is a majority phase, is O(log2 p · e−Ω(p log p)) = e−Ω(p log p), and consequently using

the probabilistic method argument we obtain that for almost any set of permutations Ψ there is

no execution in which there is a majority phase.

Therefore, we focus on minority phases that occur with high probability (per

Lemma 5.25(a)). We can not say anything about the probability of a minority phase to be

118

a reliable or unreliable, since this depends on the specific execution. Note however, that by

definition, we cannot have more than O(log p) unreliable minority phases in any execution ξ

(at least one processor must remain operational). Moreover, the work incurred in an unreli-

able minority phase i of an epoch ℓ in any execution ξ is bounded by O(pi(ξ) · (Tℓ + gℓ)) =

O(p
2ℓ−1 · (n+p log3 p

p

2ℓ log p
+ log2 p)) = O(n

log p + p log2 p). Thus, the total work incurred by all

unreliable minority phases in any execution ξ is O(n + p log3 p).

From Lemmas 5.24 and 5.25(b) we get that a reliable minority phase may be fractional or

optimal with high probability 1 − e−Ω(Tℓ), whereas it may be unproductive with very small

probability e−Ω(Tℓ) ≤ e− log2 p. Using a similar argument as for majority phases, we get that

for almost all sets of permutations Ψ (probability 1−O(log2 p · e−Ω(Tℓ)) ≥ 1− e−Ω(Tℓ)) and

for every execution ξ, there is no minority reliable unproductive phase. The work incurred by

a fractional phase i of an epoch ℓ in any execution ξ is bounded by O(pi(ξ) · (Tℓ + gℓ)) =

O(n
log p + p log2 p). Also note that by definition, there can be at most O(log3/4 n) (= O(log p)

since n ≤ p2) fractional phases in any execution ξ and hence, the total work incurred by all

fractional reliable minority phases in any execution ξ is O(n + p log3 p). We now consider the

optimal reliable minority phases for any execution ξ. Here we have an optimal allocation of

tasks to processors in Vi(ξ). By definition of optimality, in average one task in Ui(ξ) \Ui+1(ξ)

is performed by at most four processors from Vi+1(ξ), and by definition of reliability, by at

most eight processors in Vi(ξ). Therefore, in optimal phases, each unit of work spent on

performing a task results to a unique task completion (within a constant overhead), for any

execution ξ. It therefore follows that the work incurred in all optimal reliable minority phases

is bounded by O(n) in any execution ξ.

119

Therefore, from the above we conclude that when n ≤ p2, for random set of permutations

Ψ the work complexity of algorithm DOALLε executed on such set Ψ is S = O(n + p log3 p)

with probability 1 − e−Ω(p log p) − e−Ω(Tℓ) = 1 − e−Ω(Tℓ) (the probability appears only from

analysis of majority and unproductive reliable minority phases). Consequently such set Ψ ex-

ists. Also, from Lemma 5.25 and the above discussion, β > 0 exists. Finally, the bound on

messages using selected set Ψ and constant β is obtained as follows: there are O(log2 p) exe-

cutions of gossip stages. Each gossip stage requires O(p1+ε) messages (message complexity

of one instance of GOSSIPε/3). Thus, M = O(p1+ε log2 p) = O(p1+2ε).

Case 2: n > p2. In this case, the tasks are partitioned into n′ = p2 chunks, where each chunk

contains at most ⌈n/p2⌉ tasks (see Remark 5.1). Using the result of Case 1 and selected set Ψ

and constant β, we get that S = O(n′+p log3 p) ·Θ(n/p2) = O(p2 ·n/p2 +n/p2 ·p log3 p) =

O(n). The message complexity is derived with the same way as in Case 1. ✷

5.2.4.4 Sensitivity Training and Failure-Sensitive Analysis

We note that the complexity bounds we obtained in the previous section do not show how

the bounds depend on f , the maximum number of crashes. In fact it is possible to subject the

algorithm to “failure-sensitivity-training” and obtain better results. To do so we slightly modify

algorithm DOALLε/2 and obtain an algorithm we call DOALL
′
ε. We first describe and analyze

the modified version of algorithm GOSSIPε , called GOSSIP
′
ε , which algorithm DOALL

′
ε uses

as a building block (in a similar manner that algorithm DOALLε uses algorithm GOSSIPε) to

solve the Do-All problem. Then we present algorithm DOALL
′
ε and its analysis.

Algorithm GOSSIP
′
ε . Algorithm GOSSIP

′
ε is a modified version of algorithm GOSSIPε . In

particular, algorithm GOSSIP
′
ε contains a new epoch, called epoch 0. Epochs 1, . . . , ⌈1/ε⌉ − 1

120

are the same epochs as in algorithm GOSSIPε . Assume for simplicity of presentation that

p/ log2 p is an even integer. Epoch 0 is similar to the epoch 1 of algorithm GOSSIPε , except

from the following:

• Epoch 0 contains α′ log2 p phases, for some positive constant α′, possibly different than

α from algorithm GOSSIPε ;

• The communication graph G0 used in epoch 0 is defined as follows: let V ′ be the set

consisting of arbitrarily chosen 2p/ log2 p processors from V , where V denotes the set

of all processors (V = [p]); G0 is a graph on the set of nodes V ′ satisfying PROPERTY

R(|V ′|, |V ′|/2).

• The processors in V ′ perform the normal phase of an epoch of algorithm GOSSIPε .

• To every processor in V ′ we attach one permutation from the set Ψ consisting of

2p/ log2 p permutations from set Sp; we show in the analysis that suitable set Ψ exists.

• For every processor v ∈ V ′, the size of set CALLINGv\ NEIGHBv is equal 1.

• The processors that are not in V ′ perform a different code of the phase: they begin

with a new status answer and do not change it by the end of epoch 0; if during epoch

0 processor v /∈ V ′ receives a message from a processor of status collector or

informer, it replies to this processor in the same communication stage.

• If at the end of epoch 0, processor’s v list sizeof(RUMORS) = p, then v sets its status to

idle and removes its id from list BUSYv , otherwise v sets its status to collector.

Remark 5.2 Note that each processor that sets its status to idle at the end of epoch 0 might

have its list BUSY not empty, as opposed to the processors that become idle after epoch

121

greater than 0, where their list BUSY is empty. However, this does not affect the correctness of

the epochs of number greater than 0: List BUSY is used by each processor to decide the subset

of the processors it sends a call-message at each step of the computation (when the proces-

sor has status informer) and once it becomes empty, the processor sets it status to idle.

According to the code of the algorithm, processors that are idle do not send call messages

(they only respond to such messages). Therefore, the processors that become idle by the end

of epoch 0 no longer use their list BUSY (whether is empty or not). However it is important

to notice that they remove their id from their list BUSY so that when their local information

is propagated to other processors (via responses to call messages), the other processors get to

know that these processors are no longer collectors.

We now prove the complexity of algorithm GOSSIP
′
ε .

Theorem 5.27 There exist constant α′ and set Ψ such that algorithm GOSSIP
′
ε , using set Ψ,

solves the GossipAS
(p, f) problem with time complexity T = O(log2 p) and message com-

plexity M = O(p) when f ≤ p
log2 p

, and with T = O(log2 p) and M = O(p1+3ε) otherwise.

Proof: First we consider the case where there are at most p
log2 p

failures by the end of epoch 0.

Let Q′ ⊆ V ′ be a set of processors such that |Q′| ≥ |V ′|/2 ≥ p
log2 p

. By PROPERTY

R(|V ′|, |V ′|/2) there exists Q ⊆ Q′ such that |Q| ≥ |Q′|/7 and the diameter of graph GQ

is at most 31 log p. Consider all executions ξ ∈ E(GOSSIP
′
ε ,AS) such that every proces-

sor in Q′ is not failed by the end of epoch 0, and choose Ψ randomly. We may look at

the process of collecting rumors by processors in Q (when every processor in Q works as a

collector) as performing tasks: if a rumor of processor w (or information that processor

w is failed), for every processor w, is known by some processor in Q then we say that task

122

w is performed. We partition the execution into consecutive blocks, each containing 31 log p

consecutive phases. Notice that during each block all processors in Q exchange information

between themselves, by definition of Q. We may use Lemma 5.24 to bound progress: the

probability that “for every considered execution ξ (such that all processors in Q are not failed

at the end of epoch 0) after every consecutive block in epoch 0 the number of rumors unknown

by processors in Q decreases either by (3/4)|Q| log p or by factor 3/4 ” is 1 − e−Ω(|Q| log p).

Consequently, for every considered execution ξ, O(
p

|Q| log p
+ log3/4 p) = O(log p) num-

ber of blocks are sufficient to collect all rumors by processors in Q, with probability at least

1 − log p · e−Ω(|Q| log p) ≥ 1 − e−Ω(|Q| log p). Using the probabilistic method we choose one

such Ψ, which additionally satisfies the thesis of Theorem 5.10 (to assure that Ψ is good also

for the other cases in this proof) and constant α′ follows from the fact that O(log p) blocks,

each of 31 log p phases, suffices to collect all rumors by processors in Q for every execution ξ.

The process in which processors in Q, acting as informer, inform all other processors

about collected rumors and the status of all processors, is similar to the process of collecting,

and do not influence the asymptotic complexity. In this case performing task w, for every

processor w, is defined as informing processor w by some processor in Q.

Since the communication graph G has constant degree and in every phase the size of set

CALLINGv\ NEIGHBv is equal 1, the number of messages sent in every phase is O(|V ′|) =

O(p
log2 p

), which, in view of the number O(log2 p) of phases in epoch 0, gives message com-

plexity O(p) in epoch 0.

Consider the case where at the end of epoch 0 there are more than p
log2 p

faulty processors.

In this case there may be some processor v ∈ V such that sizeof(RUMORS)v < p at the end of

epoch 0 (if not then all non-faulty processors become idle at the end of epoch 0 and we are

123

done). It follows that all such processors start executing epoch 1 of algorithm GOSSIP
′
ε which

is the same as in algorithm GOSSIPε .

Using the same argument as in the proof of Theorem 5.18 and by the fact that Ψ was

chosen to satisfy the thesis of Theorem 5.10, we obtain that the message complexity during

execution of GOSSIP
′
ε is O(p1+2ε log3 p) = O(p1+3ε), which together with O(p) messages

sent in epoch 0 yields the thesis of the theorem, with respect to message complexity. The time

complexity yields from the fact that epoch 0 runs O(log2 p) phases, and the remaining epochs

run also for O(log2 p) phases. ✷

Algorithm DOALL
′
ε. Algorithm DOALL

′
ε is a modified version of algorithm DOALLε/2. In

particular, algorithm DOALL
′
ε contains two new epochs, called epoch −1 and epoch 0. Epochs

1, . . . , log p are the same epochs as in algorithm DOALLε/2.

Epoch −1 of algorithm DOALL
′
ε uses the check-pointing algorithm from [28], where the

check-pointing and the synchronization procedures are taken from [44]. We refer to the algo-

rithm used in epoch −1 as algorithm DGMY. The goal of using this algorithm in epoch −1 is

to solve Do-All with work O(n+p(f +1)) and communication O(fpε +p min{f +1, log p})

if the number of failures is small, mainly concerning the case f ≤ log3 p. Hence, in epoch −1,

we execute DGMY only until step a · (n/p + log3 p), for some constant a such that the early-

stopping condition of DGMY holds for every f ≤ log3 p.

Epoch 0 of algorithm DOALL
′
ε is similar to an epoch of algorithm DOALLε, except that

instead of algorithm GOSSIPε/3 , we use algorithm GOSSIP
′
ε/3 in each gossip stage of every

phase of epoch 0. Each gossip stage lasts g0 = α′ log2 p steps, for a fixed constant α′ which

depends on algorithm GOSSIP
′
ε/3.

124

We now show the work and message complexity of algorithm DOALL
′
ε, which is the main

result of this section.

Theorem 5.28 There exists a set of permutations Ψ and a constant integer β > 0 such that

algorithm DOALL
′
ε solves the Do-AllAS

(n, p, f) problem with work S = O(n + p ·min{f +

1, log3 p} and message complexity M = O(fpε + p min{f + 1, log p}).

Proof: We consider three cases:

Case 1: If the number of failures f during the execution of DGMY (recall that we execute the

algorithm up to step a · (n/p + log3 p)) is not greater than log3 p then by the early-stopping

property of algorithm DGMY, all non-faulty processors terminate by the end of this execution

of DGMY. Work performed by the algorithm is O(n + (f + 1)p) and the message complexity

is O(fpε + p min{f + 1, log p}). This follows from the results in [28] and [44].

Case 2: If the number of failures f during the execution of DGMY is greater than log3 p and

some processor terminates in epoch −1, then by correctness of algorithm DGMY all tasks are

performed, thus we stop counting work and communication and apply analysis as in previous

case.

Case 3: If the number of failures f during the execution of DGMY is greater than log3 p and no

processor terminates during the execution of DGMY, then every non-faulty processor, unlike

the previous two cases, starts executing epoch 0 of DOALL
′
ε, each at the same time. The work

during the execution of DGMY is O(n + p log3 p) = O(n + p ·min{f + 1, log3 p}) and the

message complexity is O(f ′pε + p min{f ′ +1, log p}), where f ′ ≤ f is the number of crashes

occurred during epoch −1. We now analyze the work and communication complexity of the

remaining epochs.

125

The analysis of the remaining epochs, starting from epoch 0, is done similarly as in The-

orem 5.26. The only difference in the analysis is that we use one more epoch (epoch 0), in

which the message complexity of every gossip stage is O(p), if f ≤ p/ log2 p (per Theo-

rem 5.27). Notice that the total number of phases is still O(log2 p), as used in the proof of

Theorem 5.26 (but constant may differ from the original). Hence the choice of set Ψ is the

same as in the proof of Theorem 5.26, as well as the conditions for an integer constant β > 0,

where β log p + 1 is the number of phases in one epoch (only the constants hidden in asymp-

totic notation may differ, and this may increase the constant β with respect to the original one).

The analysis for the general case where f < p is the same as in the proof of Theorem 5.26.

Therefore, we focus on executions ξ ∈ E(DOALL
′
ε,AS) such that ‖ξ|AS

‖ ≤ f ≤ p/ log2 p.

We have |Vi(ξ)| ≥ p − p/ log2 p for every phase i in epoch 0, and consequently the number

of phases in epoch 0 sufficient to perform all the tasks, which (by the proof of Theorem 5.26

means performing work O(n + p log3 p)) is

O
(n + p log3 p

T0 · (p− p/ log2 p)

)

= O
(n + p log3 p

[n/(p log p) + log2 p] · (p − p/ log2 p)

)

= O(log p) .

Assuring that the constant hidden in the above O(log p) notation must be less than β is

an additional condition for β > 0 (β must also satisfy the conditions in the proof of The-

orem 5.26). This condition proves, that for every execution ξ ∈ E(DOALL
′
ε,AS) such that

‖ξ|AS
‖ ≤ f ≤ p/ log2 p, there exist a set of permutations Ψ and a constant β > 0, such

that algorithm DOALL
′
ε terminates by the end of epoch 0, and by the property of algorithm

GOSSIP
′
ε/3 , the total number of messages sent is O(p · log p) = O(p min{f + 1, log p}), since

f > log3 p and f ≤ p/ log2 p.

The thesis of the theorem follows from Theorem 5.26 and the three cases. ✷

Chapter 6

Shared-Memory: Write-All with Crashes

We present failure-sensitive bounds on work for the Write-AllAS
(n, p, f) and r-Write-

AllAS
(n, p, f) problems with synchronous processors, for 1 ≤ f < p, in Section 6.1. In

Section 6.2 we are concerned with bounding the memory access concurrency. Kanellakis and

Shvartsman [68] showed that in the presence of processor crashes, the work of any (determin-

istic) Write-All algorithm must be quadratic if processors are not allowed to access certain

memory cells concurrently; specifically the showed a lower bound of Ω(p · n) work for CREW

(concurrent-read, exclusive-write) machines. Hence, in the presence of crashes and in the ab-

sence of concurrency, parallel computation can be extremely inefficient. However, this is not

surprising, since redundancy is necessary for achieving fault-tolerance and concurrent memory

access provides redundancy. Therefore, since concurrency must be allowed in order to achieve

fault-tolerance and efficiency, it is interesting to understand whether concurrent memory ac-

cess can be controlled in the presence of failures and at what expense on the complexity of

algorithms.

126

127

6.1 Failure-Sensitive Bounds

In this section we give a new refined analysis of the most work-efficient known algorithm

for the shared-memory model, algorithm W [67]. We also establish the complexity results for

the iterative Write-All and for simulations of synchronous parallel algorithms on crash-prone

processors. As in Section 5.1, our analysis is obtained by combining the results derived under

the assumption of perfect knowledge for tolerating failures and the cost of achieving perfect

load balancing, derived from the structure of the algorithm.

Algorithm W solves Write-AllAS
(n, p, f) in the shared-memory model under synchronous

crash-prone processors. In [67] it was shown that the work of the algorithm is O(n +

p log n log p/ log log p) for p ≤ n. Observe that this bound does not include f , the number

of crashes.

6.1.1 Description of Algorithm W

We now give a brief description of the algorithm but to avoid a complete restatement,

we refer the reader to [68]. Algorithm W is structured as a parallel loop through four phases:

(W1) a failure detecting phase, (W2) a load rescheduling phase, (W3) a work phase, and (W4) a

phase that estimates the progress of the computation (the remaining work) and that controls the

parallel loop. These phases use full binary trees with O(n) leaves. The processors traverse the

binary trees top-down or bottom-up according to the phase. Each such traversal takes O(log n)

time (the height of a tree). For a single processor, each iteration of the loop is called a block-

step; since there are four phases with at most one tree traversal per phase, each block-step takes

O(log n) time.

128

In algorithm W the trees stored in shared memory serve as the gathering places for global

information about the number of active processors, remaining tasks and load-balancing. Given

the full details of the algorithm, it is not difficult to see that by traversing these trees syn-

chronously, processors obtain the information that would be available from the oracle O in the

algorithm of Figure 1, in Section 4.1. Specifically, phase W1 provides to the processors an

(under)estimate on the number of operational processors and phase W4 an (over)estimate on

the number of remaining tasks. This information is put together in phase W2 where the remain-

ing tasks are allocated a balanced number of processors. The binary tree used in phase W2 to

implement load-balancing and phase W3 to assess the remaining work is called the progress

tree.

Here we use the parameterized version of the algorithm with p ≤ n and where the progress

tree has u = max{p, n/ log n} leaves. The “Do-All tasks” are associated with the leaves of

this tree, with n/u tasks per leaf. Note that each block-step still takes time O(log n).

6.1.2 Complexity Analysis

We now give the work analysis. We charge each processor for each block step it starts,

regardless of whether or not the processor completes it or crashes.

Lemma 6.1 [68] The number of block-steps required by any execution of algorithm W with

f < p processors crashes is

B = O

(

u + p
log p

log log p

)

.

Lemma 6.2 The number of block-steps required by any execution of algorithm W with f ≤

p
log p processors crashes is

B = O
(

u + p log p
f

p
)

.

129

Proof: It is not difficult to see, that the processor block-steps are equivalent to the processor

steps under the assumption of perfect knowledge. Hence, the proof is the same as the proof of

Lemma 4.2. ✷

Theorem 6.3 Algorithm W solves Write-AllAS
(n, p, f) using work

S = O

(

n + p log n
log p

log(p/f)

)

when f ≤ p

log p
, and

S = O

(

n + p log n
log p

log log p

)

when
p

log p
< f < p.

Proof: We consider the following two cases:

Case 1: p < n
log n . Here the number of leaves in the progress tree is u = n/ log n and in the

work phase W3 each processor performs n/u = log n tasks. The cost of a single block-step

is C1 = O(log n) since each of the four phases takes at most log n time. We consider two

subcases:

(1a) f ≤ p
log p . Per Lemma 6.2, the number of blocks-steps B1a for this case is:

B1a = O

(

u + p
log p

log p
f

)

= O

(

n

log n
+ p

log p

log p
f

)

.

Therefore,

S1a = B1a · C1 = O

(

n

log n
+ p

log p

log p
f

)

·O(log n) = O

(

n + p log n
log p

log p
f

)

.

(1b) f > p
log p . Per Lemma 6.1, the number of block-steps B1b for this case is:

B1b = O

(

u+p
log p

log log p

)

= O

(
n

log n
+ p

log p

log log p

)

.

Therefore,

S1b = B1b · C1 = O

(
n

log n
+ p

log p

log log p

)

·O(log n) = O

(

n + p log n
log p

log log p

)

.

Case 2: n
log n ≤ p ≤ n. Here the number of leaves in the progress tree is u = p and in the

work phase W3 each processor performs ⌈n/p⌉ = O(log n) tasks. Thus the cost of a single

block-step is C2 = O(log n). We again consider two subcases:

130

(2a) f ≤ p
log p . Per Lemma 6.2, the number of block-steps B2a for this case is:

B2a = O

(

u + p
log p

log p
f

)

= O

(

p + p
log p

log p
f

)

= O

(

p
log p

log p
f

)

.

Therefore,

S2a = B2a · C2 = O

(

p
log p

log p
f

)

·O(log n) = O

(

p log n
log p

log p
f

)

.

(2b) f > p
log p . Per Lemma 6.1, the number of block-steps B2b for this case is:

B2b = O

(

p + p
log p

log log p

)

= O

(

p
log p

log log p

)

.

Therefore,

S2b = B2b · C2 = O

(

p
log p

log log p

)

·O(log n) = O

(

p log n
log p

log log p

)

.

Combining Case 1 and Case 2 we obtain the desired result for 1 ≤ p ≤ n. ✷

6.1.3 Iterative Write-All and Parallel Algorithm Simulations

We now consider the complexity of shared-memory synchronous r-Write-AllAS
(n, p, f)

and of simulations of parallel algorithms on crash-prone processors.

Theorem 6.4 The r-Write-AllAS
(n, p, f) problem can be solved on p synchronous crash-

prone processors with work

S = O

(

r ·
(

n + p log n
log p

log(pr/f)

))

when f ≤ pr

log p
, and

S = O

(

r ·
(

n + p log n
log p

log log p

))

when
pr

log p
< f < p.

Proof: The iterative Write-All can be solved by running algorithm W on r instances of size

n in sequence. We call this algorithm W*. To analyze the efficiency of W* we use the same

approach as in the proof of Theorem 4.11. In the current context we base our work complexity

arguments on the result of Theorem 6.3. ✷

The above result on iterative Write-All leads to the following result for PRAM simulations:

131

Theorem 6.5 Any synchronous n-processor, r-time shared-memory parallel algorithm

(PRAM) can be simulated on p crash-prone synchronous processors with work

S = O

(

r ·
(

n + p log n
log p

log(pr/f)

))

when f ≤ pr

log p
, and

S = O

(

r ·
(

n + p log n
log p

log log p

))

when
pr

log p
< f < p.

Proof: The complexity of simulating a single parallel step of n ideal processors on p crash-

prone processors does not exceed the complexity of solving a single Write-AllAS
(n, p, f) in-

stance [72, 104]. The result then follows from Theorem 6.4. ✷

This last result shows a failure-sensitive improvement over the previously known bounds of

O (r · (n + p log n log p/ log log p)) for deterministic parallel algorithm simulations on crash-

prone processors [104].

6.2 Failure-Sensitive Bounds for Controlled Memory Access Concurrency

In this section we derive failure-sensitive bounds on work for the Write-All and iterative

Write-All problems in the setting where memory access concurrency must be controlled. In

particular, we give a new failure-sensitive analysis of algorithm KMS [66] (the only algorithm

for Write-All in this setting) and we refine its range of optimality. We then use the algo-

rithm to establish new failure-sensitive bounds on work for the iterative Write-All problem for

synchronous shared-memory systems, while simultaneously bounding memory access concur-

rency. This yields tighter bounds on work (vs. [66]) for simulations of parallel algorithms on

crash-prone processors with bounded memory access concurrency. Our analysis is performed

by separately assessing the cost of tolerating failures derived from the results under the as-

sumption of perfect knowledge and the cost of implementing perfect load balancing, derived

from the structure of the algorithm.

132

6.2.1 Description of Algorithm KMS

We now give a brief description of the algorithm but to avoid a complete restatement, we

refer the reader to [66]. The algorithm consists of two layers, where the top layer provides the

overall control structure for solving Write-All and the bottom layer is responsible for control-

ling memory access concurrency.

The top layer control structure is based on algorithm W [67]: It consists of the main loop

that iterates through fours phases (phases W1,W2,W3 and W4; see Section 6.1.1) until the

Write-All problem is solved. The algorithm uses two complete binary trees: the processor

enumeration tree with p leaves (used in phase W1 to detect failed processors and renumber the

processors compactly) and the progress tree (used in phase W2 to implement load-balancing

and in phase W3 to assess the remaining work) with h leaves (1 ≤ h ≤ n), where a cluster of

n/h elements of the Write-All array (or the “Do-All” tasks) are associated with each leaf.

The bottom layer provides specific access routines for reading from, and writing to, the

shared memory; it uses two data structures represented as binary trees: (1) The processor pri-

ority tree (PPT) coordinates access to memory by determining which processors are allowed

to read or write each shared location that has to be accessed concurrently by more than one

processor. The nodes of the tree are associated with processors based on a processing num-

bering. Priorities are assigned to the processors according to the tree levels: the root has the

highest priority and priority decrease with each successive level. In the top layer, processors

traverse the progress and enumeration trees in a bottom-up fashion. At each intermediate node

of a tree two PPTs need to be combined into one as the processors that come up form the chil-

dren of the node “meet” at the parent. This involves compacting and merging the PPTs. PPTs

are compacted to eliminate “certifiably” faulty processors. Two PPTs are merged by having

133

the processors of the left PPT appended to the tree formed by the processors of the right one

(see [66] for details). (2) The broadcast tree is used to disseminate values among readers and

writers. The use of broadcast trees in conjunction with priority trees serves to bound read and

write concurrency.

Algorithm CR/W is the main algorithm of the bottom layer that uses the above structures to

control memory access concurrency for individual reads and writes. Specifically, it implements

broadcast (using the broadcast tree) for processors within different levels of a PPT and allows

processors to write to a shared location L only if processors at higher levels haven’t done so.

Communication between processors in a PPT takes place through a shared memory array, call

it B, where the processors communicate based on their positions in the PPT. B[k] stores values

read by the kth processor of the PPT. Each processor on levels 0, . . . , i − 1 is associated with

exactly one processor on each of the levels i and lower. Specifically, the jth processor of the

PPT broadcasts to the jth processor of each level below its own (in a left-to-right numbering

within each level). The algorithm proceeds in ⌊log p⌋+ 1 iterations that correspond to the PPT

levels. At iteration i, each processor of level i reads its B location. If this location has not been

updated, then the processor reads L directly. Since each full PPT level has one more processor

than all the levels above it combined (PPT is a binary tree), there may be at least one processor

on each level that reads L directly since no processor at a higher level is assigned to it (for a

full level, this processor is the rightmost one, or the root itself for level 0). As long as there

are no failures this is the only direct access to L. Concurrent accesses can occur only in the

presence of failures. In such a case several processors on the same level may fail to receive

values from processors at higher levels, in which case they concurrently read L directly. A

processor reading L directly checks whether it contains the value to be written, then writes to

134

it if it does not. Whenever processors update L they write the new value for L as well as the

index of the level that effected the write. If a processor k accesses L and determines that L has

the correct value, and if the failed processor ℓ that should have broadcast to k is at or below

the level that effected the write, then k assumes the position of processor ℓ in the PPT. This

effectively moves failed processors toward the leaves of the PPT. Failed processors are moved

downwards only if they are not above the level that effects the write – processors above this

level are eliminated by PPT compaction that takes place at the end of each run of CR/W.

Algorithm CR/W combines a read with a write. However, when the processors of a PPT

need to read a common location but no write is involved, two simpler algorithms are used:

Algorithm CR1 which is used for bottom-up traversals and algorithm CR2 which is used for

top-down traversals. Algorithm CR1 is similar to CR/W but includes no write step. This

algorithm is simpler than CR/W in that the processors that are found to have failed are pushed

toward the bottom of the PPT independent of their level. Algorithm CR2 uses a simple top-

down broadcast through the PPT. Starting with the root each processor broadcasts to its two

children; if a processor fails then its two children read T directly. Thus the processors of level

i broadcast only to processors of level i + 1. Unlike CR1, no processor movement takes place.

From the description of algorithms CR/W, CR1, and CR2 it follows that each takes time

O(log p).

We now describe how algorithm KMS integrates algorithms CR/W, CR1, CR2, and PPT

merging and compaction within its four phases.

Phase 1: Processors begin this phase by forming single-processor PPTs. The objective is to

write to each internal node of the enumeration tree the sum of the values stored at its two

children. Algorithm CR/W is used to store the new value, the size of the PPT and the

135

index of the level that completed the write. Then all PPTs are compacted. In order to

merge PPTs the processors use algorithm CR1 to read the data stored at the enumeration

tree node that is the sibling of the node they just updated. Then PPTs are merged. At this

point the processors of the merged PPTs know the value they need to write at the next

level of the enumeration tree. This value is the sum of the value written by CR/W and

the value read by CR1. Therefore one call to each of CR/W and CR1 is needed for each

level of the enumeration tree.

Phase 2: This phase involves no concurrent writes. Processors traverse top-down the progress

tree to allocate themselves to the unvisited leaves. The only global information needed

at each level is the values stored at the two children of the current node of the progress

tree. Two calls to CR2 are used to read these values, one for each child. Using this

information the processors of a PPT compute locally whether they need to go left or

right based on their identifiers. Here each PPT must be split in two. If a PPT has k

processors of which k′ need to go left and the remaining k − k′ need to go right, then

by convention the first k′ processors of the PPT form the PPT of the left child and the

remaining k− k′ processors form the PPT of the right child. No compaction or merging

is done in this phase.

Phase 3: Processors form PPTs based on the information they gathered during Phase 2 and

proceed to write 1 to the n/h locations that correspond to the leaf they reached. At

this point, processors decide whether they need to use algorithm CR/W, followed by

compaction for each of these writes. This is done locally by each processor: at the

beginning of this phase, the processors have consistent information on the number of

unvisited leaves, call it u, and the number of available processors, call it a (this is the

136

information they used to allocate themselves at the leaves they reached by the end of

Phase 2). When u > a, it is guaranteed (see [66]) that there is at most one processor

per leaf, and therefore the processors do not use CR/W and compaction. Instead the

processors go sequentially through the cluster of n/h elements at the leaf they reached

and simply write to each element. When u ≤ a, several processors may be allocated

to the same leaf and the processors use algorithm CR/W followed by compaction to

perform each write in the cluster. In any case, no merging is involved.

Phase 4: This phase initially uses the PPTs that resulted at the end of Phase 3. The task

to be performed is similar to that of Phase 1. As before, algorithm CR/W is used for

writing followed by compaction and one call to algorithm CR1, after which the PPTs are

merged.

We now state previously known results [66] for algorithm KMS and for simulations using this

algorithm.

Theorem 6.6 [66] Algorithm KMS solves the Write-AllAS
(n, p, f) problem with work S =

O
(
n + p log2 n log2 p/ log log n

)
, write concurrency ω ≤ f , and read concurrency ρ ≤

7 f log n.

Theorem 6.7 [66] Any n-processor, r-time exclusive-read, exclusive-write parallel algorithm

(EREW PRAM) can be simulated on a p synchronous crash-prone processors with work

S = O
(
r ·
(
n + p log2 p log2 n/ log log n

))
, with write concurrency ω ≤ f , and the read

concurrency ρ ≤ 7f log n

These prior results do not show how the work depends on the number of processor crashes.

137

6.2.2 Complexity Analysis

We now give a new, failure-sensitive, analysis of algorithm KMS, based on the results

obtained for Do-All under the assumption of perfect knowledge.

In the analysis we use the parameterized version of algorithm KMS with p ≤ n and where

the progress tree has u = max{p, n/ log n log p} leaves. The array elements are associated

with the leaves of this tree, with n/u array elements per leaf. Henceforth we use KMS to

denote this parameterized algorithm.

For an execution of algorithm KMS, we define ui to be the number of unvisited leaves of

the progress tree (ui ≤ u), and pi to be the number of non-faulty processors (pi ≤ p), at the

start of the i-th iteration of the main loop. We define σ1 to be the time required for a processor

to complete one iteration of the main loop when pi < ui. We define σ2 to be the time required

for a processor to complete one iteration of the main loop when pi ≥ ui. We define a block-step

to be the execution by one processor of the body of the main loop.

Lemma 6.8 The work required by algorithm KMS to solve the Write-AllAS
(n, p, f) problem

is S = O

(

σ1 · u + σ2 ·
p log p

log log p

)

.

Proof: We consider two cases.

Case 1: Consider all iterations i in which pi < ui. In this case the number of block-steps is

O(u) since no more than one processor is assigned to each leaf of the progress tree. Then,

using the definition of σ1, the work of algorithm KMS in this case is O(σ1 · u).

Case 2: We now account for all iterations in which pi ≥ ui. In this case the number of block-

steps is O(p log p
log log p). Given the load-balancing properties of algorithm KMS, this follows

directly from the case analysis of Theorem 3.1 [50], where Case 2 considers the work of perfect

138

load-balancing iterative algorithms when pi > ui. (The simpler subcase of pi = ui is dealt

similarly.) Then, using the definition of σ2, the work of algorithm KMS in this case is O(σ2 ·

p log p
log log p).

Combining the two cases yields the result. ✷

Note that in the above lemma, work is not expressed as a function of f , the number of

processor crashes. In the next lemma, we give work as a function of f , for f ≤ p/ log p. The

proof of the lemma is based on the proof of Lemma 4.2

Lemma 6.9 The work required by algorithm KMS to solve the Write-AllAS
(n, p, f) problem

when f ≤ p
log p is S = O

(

σ1 · (u + p) + σ2 ·
p log u

log(p/f)

)

.

Proof: Let u′ be the number of unvisited leaves of the progress tree (recall that the tree has u

leaves with n/u array elements assigned to each leaf). Let ∆f denote the number of proces-

sor crashes within a particular iteration of an execution of the algorithm. ∆f is, in general,

different for each iteration, though the sum of these for all iterations cannot exceed f . We set

b = b(p, f) = p/(2f), and we define S(u′, p, f), where u′ ≤ u, to be the work required to

solve Write-AllAS
(u′ ·n/u, p, f). We show that for all u′, p and f , S(u′, p, f) is no more than

σ1(p + u′) + 3σ2p + σ2p logp/(2f) u′. The proof proceeds by induction on u′ (following our

approach in Lemma 4.2).

Base Case: Observe that when u′ = 1 and p ≥ 1 (hence p ≥ u′), S(u′, p, f) ≤ σ2p ≤

σ1(p + u′) + 3σ2p + σ2p logb u′, for all p and f , as desired.

Inductive Hypothesis: Assume that we have proved the result for all u′ < û and all p and f .

Inductive Step: Consider u′ = û. We investigate two cases:

139

Case 1: p < û. In this case each processor is assigned to a unique unvisited leaf (this follows

from the load-balancing properties of algorithm KMS), hence

S(û, p, f) ≤ σ1p + max
0≤∆f≤f

S(û− p + ∆f, p−∆f, f −∆f).

As p−∆f > 0, û− p + ∆f < û and, by the induction hypothesis,

S(û, p, f) ≤ σ1p + max
0≤∆f≤f

[

σ1(p −∆f + û− p + ∆f) + 3σ2(p−∆f)

+ σ2(p−∆f) logb(p−∆f,f−∆f)(û− p + ∆f)
]

.

Now, b(p−∆f, f −∆f) ≥ b(p, f), so that

S(û, p, f) ≤ σ1(p + û) + 3σ2p + σ2p logb(p,f) û,

as desired.

Case 2: p ≥ û. In this case, by assumption we have

S(û, p, f) ≤ σ2p + max
0≤∆f≤f

S(γû, p−∆f, f −∆f),

where γ = γ(û, p,∆f) is the ratio of the number of the remaining unvisited leaves to û

(0 ≤ γ < 1). Let φ = ∆f/p ≤ f/p < 1, the fraction of processors which fail during this

iteration; then φ/2 < γ < 2φ (see proof of Lemma 4.2). Then,

S(û, p, f) ≤ σ2p + max
φ∈[0,f/p]

S(γû, (1 − φ)p, f − φp).

As γû < û, we may apply the induction hypothesis:

S(û, p, f) ≤ σ2p + max
φ∈[0,f/p]

[

σ1(γû + (1− φ)p) + 3σ2(1− φ)p

+ σ2(1− φ)p logb′(γû)
]

,

where b′ = b(p − φp, f − φp). As above, b′ ≥ b(p, f), so that

S(û, p, f) ≤ σ2p + max
φ∈[0,f/p]

[

σ1(γû + (1− φ)p) + 3σ2(1− φ)p

+ σ2(1− φ)p logb(p,f)(γû)
]

.

To complete the proof, it suffices to show that for all φ ∈ [0, f/p],

σ1φp + 2σ2p + σ2p logb(p,f) û− (1− φ)σ2p logb(p,f)(γû) ≥ 3σ2(1− φ)p − σ1û(1− γ).

140

Upper bounding 3σ2(1 − φ)p − σ1û(1 − γ) with 3σ2(1 − φ)p, removing σ1φp from the left

hand side, and dividing through by σ2p, it is sufficient to show that

2 + logb(p,f) û− (1− φ) logb(p,f)(γû) ≥ 3(1− φ),

or, equivalently,

logb(p,f) û− (1− φ) logb(p,f)(γû) ≥ 1− 3φ.

We now focus on the left hand side of the above equation:

logb(p,f) û− (1− φ)
[

logb(p,f) γ + logb(p,f) û
]

= φ logb(p,f) û + (1− φ) logb(p,f) γ−1.

Since f ≤ p/ log p, for any p ≥ 16 we have that p/(2f) > 2. Observe that,

φ logb(p,f) û + (1− φ) logb(p,f) γ−1 ≥ (1− φ) logb(p,f) γ−1

since û ≥ p/f > p/(2f). (Note that if û < p/f , then all leaves are visited in this iteration.)

Recall that γ−1 ≥ (2φ)−1 and φ < f/p. Therefore,

(1− φ) logb(p,f) γ−1 ≥ (1− φ) logb(p,f)(2φ)−1 ≥ 1− 3φ.

Evidently,

S = O

(

σ1 · (u′ + p) + σ2 ·
p log u′

log(p/f)

)

= O

(

σ1 · (u + p) + σ2 ·
p log u

log(p/f)

)

,

as desired. ✷

Lemma 6.10 Algorithm KMS solves the Write-AllAS
(n, p, f) problem with work

S = O

(

σ1 · (u + p) + σ2 · p
log n

log(p/f)

)

when f ≤ p

log p
, and

S = O

(

σ1 · (u + p) + σ2 · p
log n

log log p

)

when
p

log p
< f < p.

Proof: We first record that u < u+p, log p ≤ log n and log u ≤ log n. Then the result follows

by combining Lemmas 6.8 and 6.9. ✷

The above result shows the cost (work) of tolerating failures, while the cost of imple-

menting load-balancing is hidden in σ1 and σ2. We now compute the cost of implementing

load-balancing by algorithm KMS (that is, compute the values of σ1 and σ2).

141

Lemma 6.11 For algorithm KMS, σ1 = O(log n log p) and σ2 = O(log n log2 p).

Proof: We consider the following two cases.

Case 1: p < n
log n log p . Here the number of leaves in the progress tree is u = n/ log n log p and

in Phase 3 each processor writes to n/u = log n log p array elements. The time required to

traverse the enumeration and progress trees is O(log n log p) and the execution of CR/W takes

O(log p) time.

For the iteration i when ui ≥ pi, algorithm CR/W is not used in Phase 3 and there-

fore the time to update a leaf is O(log n log p) (the number of elements). Therefore, σ1 =

O(log n log p) + O(log n log p) = O(log n log p) (the time to reach a leaf plus the time to

update a leaf).

For the iteration i when ui < pi, algorithm CR/W is used in Phase 3. In the worst

case, all processors could be allocated to the same leaf (e.g., when there is only one unvis-

ited leaf left) and hence, log p time must be spent at each element of the leaf. Since there are

log n log p elements per leaf the worst case time to update a leaf is O(log n log2 p). Hence,

σ2 = O(log n log p) + O(log n log2 p) = O(log n log2 p).

Case 2: n
log n log p ≤ p ≤ n. Here the number of leaves in the progress tree is u = p and in

Phase 3 each processor writes to n/p = O(log n log p) array elements. Then the bounds on σ1

and σ2 are obtained similarly to Case 1. ✷

We now state and prove our main result for algorithm KMS.

Theorem 6.12 Algorithm KMS solves the Write-AllAS
(n, p, f) problem with write concur-

rency ω ≤ f , read concurrency ρ ≤ 7 f log n and work

S = O

(

n + p log2 n
log2 p

log(p/f)

)

when f ≤ p

log p
, and

142

S = O

(

n + p log2 n
log2 p

log log p

)

when
p

log p
< f < p.

Proof: The bounds on ω and ρ are obtained from Theorem 6.6 (see [66]). We now show the

bounds on S. The bounds are derived by combining the cost of tolerating failures and the cost

implementing load-balancing. We consider two cases:

Case 1: p < n
log n log p . Here the number of leaves in the progress tree is u =

n/ log n log p. Combining Lemmas 6.10 and 6.11 we get S = O(σ1 · (u + p) + σ2 ·

p log n/ log(p/f)) = O((log n log p) · n/(log n log p) + (log n log2 p) · p log n/ log(p/f)) =

O(n + p log2 n log2 p/ log(p/f)) when f ≤ p/ log p and similarly S = O(n +

p log2 n log2 p/ log log p) when f > p/ log p.

Case 2: n
log n log p ≤ p ≤ n. Here the number of leaves in the progress tree is u = p. Combining

Lemmas 6.10 and 6.11 we have S = O(σ1 ·(u+p)+σ2 ·p log n/ log(p/f)) = O((log n log p)·

p + (log n log2 p) · p log n/ log(p/f)) = O(p log2 n log2 p/ log(p/f)) when f ≤ p/ log p and

similarly S = O(p log2 n log2 p/ log log p) when f > p/ log p.

The result is obtained by combining Case 1 and Case 2. ✷

This analysis establishes the following processor ranges for which algorithm KMS be-

comes optimal.

Corollary 6.13 Algorithms KMS is work-optimal if p = O(n log(n/f)/ log4 n), when f ≤

p/ log p, and if p = O(n log log n/ log4 n)), when f > p/ log p.

Theorem 6.6 teaches that algorithm KMS becomes optimal if p = O(n log log n/ log4 n),

for all f < p. Corollary 6.13 shows that our failure-sensitive analysis extends the range of

optimality of the algorithm when f ≤ p/ log p.

143

6.2.3 Iterative Write-All and Parallel Algorithm Simulations

Using algorithm KMS and its new analysis, we obtain new failure-sensitive bounds for the

iterative Write-All problem with controlled read and write memory access concurrency.

Theorem 6.14 The r-Write-AllAS
(n, p, f) problem can be solved on p synchronous crash-

prone processors with write concurrency ω ≤ f , read concurrency ρ ≤ f log n and work

S = O

(

r ·
(

n + p log2 n
log2 p

log(pr/f)

))

when f ≤ pr

log p
, and

S = O

(

r ·
(

n + p log2 n
log2 p

log log p

))

when
pr

log p
< f < p.

Proof: We solve r-Write-AllAS
(n, p, f) by running algorithm KMS r times, once for each

Write-All instance. We enumerate the r instances of Write-All using numbers 1, . . . , r, and

we refer to instance i as the round i. For round i, let pi be the number of active processors at

the beginning of the round and fi be the number of crashes during the round. Note that p1 = p,

and that pi ≤ p.

We first establish the bounds on the memory access concurrency. Let ωi and ρi be the write

and read memory access concurrency accrued in round i, respectively. Then, ω =
∑r

i=1 ωi

and ρ =
∑r

i=1 ρi. Using Theorem 6.12 for each round, we have that ωi ≤ fi and ρi ≤ fi log n.

Therefore,

ω =
r∑

i=1

ωi ≤
r∑

i=1

fi = f, and ρ =
r∑

i=1

ρi ≤ log n
r∑

i=1

fi = f log n,

as desired.

Observe that the choice of each fi does not affect the bounds on the memory access concur-

rency. However, in order to establish the bounds on work we need to determine the values of

the fis that maximize the overall work of r-Write-AllAS
(n, p, f). The work analysis is done as

in the proof of Theorem 4.11. In the current context we base our work complexity arguments

on the result of Theorem 6.12. ✷

144

Theorem 6.14 enables us to obtain a tighter bound on work when algorithm KMS is it-

eratively used to obtain efficient parallel algorithm simulations on crash-prone processors (as

opposed to the bound of Theorem 6.7).

Theorem 6.15 Any n processor, r-time exclusive-read, exclusive-write parallel (EREW

PRAM) algorithm can be simulated on p synchronous crash-prone processors with work

S = O

(

r ·
(

n + p log2 n
log2 p

log(pr/f)

))

when f ≤ pr

log p
, and

S = O

(

r ·
(

n + p log2 n
log2 p

log log p

))

when
pr

log p
< f < p,

so that the write concurrency of the simulation is ω ≤ f and the read concurrency is ρ ≤

7f log n.

Proof: The complexity of simulating a single parallel step of n ideal processors on p failure-

prone processors does not exceed the complexity of solving a single Write-AllAS
(n, p, f) in-

stance [72, 104]. The result then follows from Theorem 6.14. ✷

Note that this last result can be extended to other PRAM variants, such as concurrent-read,

exclusive-write (CREW) and concurrent-read, concurrent-write (CRCW), however in these

cases the read and write concurrency bounds depend on the actual read and write concur-

rency of the simulated algorithm. Another way is to convert the simulated algorithm into an

equivalent EREW algorithm (using the standard PRAM conversion techniques [69]). Then, the

simulation obtains the same concurrency bounds as in Theorem 6.15 at the expense of increas-

ing the work by a logarithmic factor (the overhead is due to the cost of the conversion).

Chapter 7

Omni-Do in Partitionable Networks

In the settings where network partitions may interfere with the progress of computation,

the challenge is to maintain efficiency in performing the tasks and learning the results of the

tasks (solving Omni-Do), despite the dynamically changing group connectivity. However, no

amount of algorithmic sophistication can compensate for the possibility of groups of processors

or even individual processors becoming disconnected during the computation. In general, an

adversary that is able to partition the network into g components will cause any task-performing

algorithm to have work Ω(n · g) even if each group of processors performs no more than the

optimal number of Θ(n) tasks. In the extreme case where all processors are isolated from the

beginning, the work of any algorithm is Ω(n · p).

Even given the pessimistic lower bounds on work for partitionable networks, it is desirable

to design and analyze efficient algorithmic approaches that can be shown to be better than

the oblivious approach where each processor or each group performs all tasks. In Section 7.1

we extend the work of Dolev, Segala, and Shvartsman [32]. We present an asynchronous

Omni-Do algorithm, called AX, and we show that it is optimal in terms of worst case task-

oriented work, under fragmentations and merges (as opposed to the algorithm in [32] that

145

146

deals only with fragmentations). The algorithm uses a group communication service [95] to

provide membership and communication services.

An Omni-Do algorithm and its efficiency can only be partially understood through its worst

case work analysis. This is because the resulting worst case bound might depend on unusual

or extreme patterns of regroupings. In such cases, worst case work may not be the best way

to compare the efficiency of algorithms. Hence, in Section 7.2, in order to understand better

the practical implications of performing work in partitionable settings, we initiate the study

of the Omni-Do problem as an on-line problem and we pursue competitive analysis [105].

In particular, we study a simple randomized algorithm, called RS, and we compare its ex-

pected task-oriented work to the task-oriented work of an “off-line” algorithm that has full

knowledge of future changes in the communication medium. We show that algorithm RS is

“optimally-task-oriented-work-competitive” under arbitrary patterns of regroupings, including

but not limited to fragmentations and merges.

7.1 Worst Case Analysis of Omni-Do

In this section we present algorithm AX and we show that it is work-optimal under adver-

sary AFM . We assume that initially the processors belong to a single group. The algorithm

specification is done in terms of Input/Output Automata of Lynch and Tuttle [81, 80]. In Sec-

tion 7.1.1 we give a brief introduction to Input/Output Automata. In Section 7.1.2 we present

the group communication service used for providing membership and communication services.

In Section 7.1.3 we define view-graphs that we use in the analysis. In Section 7.1.4 we describe

algorithm AX and we show its correctness. Finally, in Section 7.1.5 we present the complexity

analysis of the algorithm.

147

7.1.1 Input/Output Automata

The algorithm specification is done in terms of Input/Output automata of Lynch and Tut-

tle [81, 80]. Each automaton is a state machine with states and transitions between states,

where actions are associated with sets of state transitions. There are input, output and internal

actions. A particular action is enabled if the preconditions of that action are satisfied. Input

actions are always enabled. The statements given as effects are executed as a program started

in the existing state and atomically producing the next state as the result of the transition.

An execution ξ of an Input/Output automaton Aut is a finite or infinite sequence of alternat-

ing states and actions (events) of Aut starting with the initial state, i.e., ξ = s0, e1, s1, e2, . . .,

where si’s are states (s0 is the initial state) and ei’s are actions (events). We denote by

execs(Aut) the set of all executions in Aut.

Consider an algorithm Λ that is specified in I/O automata and it solves a specific problem

under an adversary A. Then, following the notation established in Section 3.2.2, execs(Λ) =

E(Λ,A).

7.1.2 A Group Communication Service

We assume a group communication service (GCS) with certain properties. The assump-

tions are basic, and they are provided by several group communication systems and specifica-

tions [23]. The service maintains group membership information and it is used to communicate

information concerning the executed tasks within each group. Each processor, at each time, has

a unique view of the membership of the group. The view includes a list of the processors that

are members of the group. Views can change and may become different at different processors.

The GCS provides the following primitives:

148

• NEWVIEW(v)i : informs processor i of a new view v = 〈id, set〉, where id is the identifier

of the view and set is the set of processor identifiers in the group. When a NEWVIEW(v)i

primitive is invoked, we say that processor i installs view v.

• GPMSND(message)i: processor i multicasts a message to the group members.

• GPMRCV(message)i: processor i receives multicasts from other processors.

• GP1SND(message,destination)i: processor i unicasts a message to another member of

the current group.

• GP1RCV(message)i: processor i receives unicasts from another processor.

To distinguish between the messages sent in different send events, we assume that each

message sent by the application is tagged with a unique message identifier.

We assume the following safety properties on any execution ξ of an algorithm that uses GCSs:

1. A processor is always a member of its view ([23] Prop. 3.1). If NEWVIEW(v)i occurs in

ξ then i ∈ v.set.

2. The view identifiers of the views that each processor installs are monotonically increas-

ing ([23] Prop.3.2). If event NEWVIEW(v1)i occurs in ξ before event NEWVIEW(v2)i,

then v1.id < v2.id. This property implies that: (a) A processor does not install the same

view twice, and (b) if two processors install the same two views, they install these views

in the same order.

3. For every receive event, there exists a preceding send event of the same mes-

sage ([23] Prop. 4.1). If GPMRCV(m)i (GP1RCV(m)i) occurs in ξ, then there exists

GPMSND(m)j (GP1SND(m, i)j) earlier in execution ξ.

149

4. Messages are not duplicated ([23] Prop. 4.2). If GPMRCV(m1)i (GP1RCV(m1)i) and

GPMRCV(m2)i (GP1RCV(m2)i) occur in ξ, then m1 6= m2.

5. A message is delivered in the same view it was sent in ([23] Prop. 4.3). If processor

i receives message m in view v1 and processor j (it is possible that i = j) sends m in

view v2, then v1 = v2.

6. In the initial state s0, all processors are in the initial view v0, such that v0.set =

P ([23] Prop. 3.3 with [39, 88]).

We assume the following additional liveness properties on any execution ξ of an algorithm

that uses GCSs (cf. [23] Section 10):

7. If a processor i sends a message m in the view v, then for each processor j in v.set,

either j delivers m in v, or i installs another view (or i crashes).

8. If a new view event occurs at any processor i in view v (or i crashes), then a view change

will eventually occur at all processors in v.set− {i}.

7.1.3 View-Graphs

We introduce view-graphs that represent view changes at processors in executions and that

are used to analyze properties of executions. View-graphs are directed graphs (digraphs) that

are defined by the states and by the NEWVIEW events of executions of algorithms that use group

communication services. Representing view changes as digraphs enables us to use common

graph analysis techniques to formally reason about the properties of executions. Our view-

graph approach to the analysis of executions is general, and we believe it can be used to study

other properties of group communication services and algorithms for partitionable networks.

150

Consider an algorithm Λ that uses a group communication service (GCS). We modify al-

gorithm Λ by introducing, for each processor i, the history variable cvi that keeps track of the

current view at i as follows: In the initial state, we set cvi to be v0, the distinguished initial

view for all processors i ∈ P. In the effects of the NEWVIEW(v)i action for processor i, we in-

clude the assignment cvi := v. From this point on (and until the end of Section 7.1) we assume

that algorithms are modified to include such history variables. We now define view-graphs by

specifying how a view-graph is induced by an execution of an algorithm.

Definition 7.1 Given an execution ξ of algorithm Λ, the view-graph Γξ = 〈V,E,L〉 is defined

to be the labeled directed graph as follows:

1. Let Vξ be the set of all views v that occur in NEWVIEW(v)i events in ξ. The set V of

nodes of Γξ is the set Vξ ∪ {v0}. We call v0 the initial node of Γξ .

2. The set of edges E of Γξ is a subset of V × V determined as follows. For each

NEWVIEW(v)i event in ξ that occurs in state s, the edge (s.cvi, v) is in E.

3. The edges in E are labeled by L : E → 2P , such that L(u, v) = {i : NEWVIEW(v)i

occurs in state s in ξ such that s.cvi = u}.

Observe that the definition ensures that all edges are labeled.

Example 7.1 Consider the following execution ξ (we omit all events other than NEWVIEW and

any states that do not precede NEWVIEW events).

ξ = s0, NEWVIEW(v1)p1 , . . . , s1, NEWVIEW(v2)p2 , . . . , s2, NEWVIEW(v3)p4, . . . ,

s3, NEWVIEW(v4)p1 , . . . , s4, NEWVIEW(v1)p3 , . . . , s5, NEWVIEW(v4)p2, . . . ,

s6, NEWVIEW(v4)p3 , . . .

151

Let v1.set = {p1, p3}, v2.set = {p2}, v3.set = {p4} and v4.set = {p1, p2, p3}. Additionally,

v0.set = P = {p1, p2, p3, p4}.

The view-graph Γξ = 〈V,E,L〉 is given in Figure 5. The initial node of Γξ is v0. The

set of nodes of V of Γξ is V = Vξ ∪ {v0} = {v0, v1, v2, v3, v4}. The set of edges E of Γξ

is E = {(v0, v1), (v0, v2), (v0, v3), (v1, v4), (v2, v4)}, since for each of these (vk, vℓ) the event

NEWVIEW(vℓ)i occurs in state st where st.cvi = vk for some certain i (by the definition of

the history variable). The labels of the edges are L(v0, v1) = {p1, p3}, L(v0, v2) = {p2},

L(v0, v3) = {p4}, L(v1, v4) = {p1, p3} and L(v2, v4) = {p2}, since for each pi ∈ L(vk, vℓ)

the event NEWVIEW(vℓ)pi occurs in state st where st.cvpi = vk.

✡

☛

✠

✟

✡

☛

✠

✟

✡

☛

✠

✟

✡

☛

✠

✟

✡

☛

✠

✟❄

❳❳❳❳❳❳❳❳❳❳❳③

✑
✑

✑
✑✑✰

✘✘✘✘✘✘✘✘✘✘✘✘✾

✡

☛

✠

✟

✡

☛

✠

✟

❍
❍

❍
❍

❍❍❥

v0

v4

v2v1 v3

v0.set = {p1, p2, p3, p4}

v1.set = {p1, p3} v2.set = {p2} v3.set = {p4}

v4.set = {p1, p2, p3}

L(v0, v1) = {p1, p3}
L(v0, v2) = {p2}

L(v0, v3) = {p4}

L(v1, v4) = {p1, p3} L(v2, v4) = {p2}

B

A

Figure 5: Example of a view-graph

We now show certain properties of view-graphs. Given a graph H and a node v of H , we

define indegree(v,H) (outdegree(v,H)) to be the indegree (outdegree) of v in H .

Lemma 7.1 For any execution ξ, indegree(v0 ,Γξ) = 0.

Proof: In the initial state s0, s0.cv is defined to be v0 for all processors in P and v0.set = P.

Assume that indegree(v0 ,Γξ) > 0. By the construction of view-graphs, this implies that some

processor i ∈ P installs v0 a second time. But this contradicts the property 2(a) of GCS. ✷

152

Lemma 7.2 Let ξ be an execution and Γξ|i be the projection of Γξ on the edges whose label

includes i, for some i ∈ P. Γξ|i is an elementary path and v0 is the path’s source node.

Proof: Let execution ξ be s0, e1, s1, e2, Let ξ(k) be the prefix of ξ up to the kth state. i.e.,

ξ(k) = s0, e1, s1, e2, . . . , sk. Let Γk
ξ be the view-graph that is induced by ξ(k). Then define

Γk
ξ |i to be the projection of Γk

ξ on the edges whose label includes i, for some i ∈ P. For an

elementary path π, we define π.sink to be its sink node.

We prove by induction on k that Γk
ξ |i is an elementary path, that Γk

ξ |i.sink = sk.cvi and that

v0 is the path’s source node.

Basis: k = 0. Γ0
ξ |i has only one vertex, v0, and no edges (ξ(0) = s0). Thus, Γ0

ξ |i.sink =

s0.cvi = v0 and v0 is the source node of this path.

Inductive Hypothesis: Assume that ∀n ≤ k, Γn
ξ |i is an elementary path, that Γn

ξ |i.sink

= sn.cvi and that v0 is the path’s source node.

Inductive Step: n = k + 1. For state sk+1 we consider two cases:

Case 1: If event ek+1 is not a NEWVIEW event involving processor i, then Γk+1
ξ |i = Γk

ξ |i.

Thus, by inductive hypothesis, Γk+1
ξ |i is an elementary path and v0 is its source node. From

state sk to state sk+1, processor i did not witness any new view. By the definition of the history

variable, sk+1.cvi = sk.cvi. Thus, Γk+1
ξ |i.sink = sk.cvi = sk+1.cvi.

Case 2: If event ek+1 is a NEWVIEW(v)i event that involves processor i, then by the construc-

tion of the view-graph, (sk.cvi, v) is a new edge from node sk.cvi to node v. By inductive

hypothesis, Γk
ξ |i.sink = sk.cvi. Since our GCS does not allow the same view to be installed

twice (property 2(a)), v 6= u for all u ∈ Γk
ξ |i. Thus, Γk+1

ξ |i is also an elementary path, with v0

its source node and Γk+1
ξ |i.sink = v. From state sk to state sk+1, processor i installs the new

153

view v. By the definition of the history variable, sk+1.cvi = v. Thus, Γk+1
ξ |i.sink = sk+1.cvi.

This completes the proof. ✷

Theorem 7.3 Any view-graph Γξ , induced by any execution ξ of algorithm Λ is a connected

graph.

Proof: The result follows from Definition 7.1(2), from the observation that all edges of the

view-graph are labeled and from Lemma 7.2 ✷

We now demonstrate how we can use view-graphs to represent group fragmentations and

merges. We begin with fragmentations.

Definition 7.2 For a view-graph Γξ = 〈V,E,L〉, a fragmentation subgraph is a connected

labeled subgraph H = 〈VH , EH , LH〉 of Γξ such that:

1. H contains a unique node v such that indegree(v,H) = 0; v is called the fragmentation

node of H .

2. VH = {v} ∪ V ′
H , where V ′

H is defined to be {w : (v,w) ∈ E}.

3. EH = {(v,w) : w ∈ V ′
H}.

4. LH is the restriction of L on EH .

5.
⋃

w∈V ′
H

(w.set) = v.set.

6. ∀u,w ∈ V ′
H such that u 6= w, u.set ∩ w.set = ∅.

7. ∀w ∈ V ′
H , LH(v,w) = w.set.

We refer to all NEWVIEW events that collectively induce a fragmentation subgraph for a

fragmentation node v as a fragmentation.

154

Example 7.2 Area A in Figure 5 (solid box) shows the fragmentation subgraph H =

〈VH , EH , LH〉 of Γξ from Example 7.1. Here VH = {v0, v1, v2, v3}, EH =

{(v0, v1), (v0, v2), (v0, v3)} and the labels are the labels of Γξ restricted on EH . We can con-

firm that H is a fragmentation subgraph by examining the individual items of Definition 7.2.

We continue with the representation of group merges using view-graphs.

Definition 7.3 For a view-graph Γξ = 〈V,E,L〉, a merge subgraph is a connected labeled

subgraph H = 〈VH , EH , LH〉 of Γξ such that:

1. H contains a unique node v such that outdegree(v,H) = 0 and indegree(v,H) > 1; v

is called the merge node of H .

2. VH = {v} ∪ V ′
H , where V ′

H is defined to be {w : (w, v) ∈ E}.

3. EH = {(w, v) : w ∈ V ′
H}.

4. LH is the restriction of L on EH .

5.
⋃

w∈V ′
H

(w.set) = v.set.

6. ∀u,w ∈ V ′
H such that u 6= w, u.set ∩ w.set = ∅.

7.
⋃

w∈V ′
H

LH(w, v) = v.set.

We refer to all NEWVIEW events that collectively induce a merge subgraph for a merge

node v as a merge.

Note that a regrouping of a group g1 to a group g2 such that g1.set = g2.set can be rep-

resented either as a fragmentation subgraph (fragmentation) or as a merge subgraph (merge).

Following the convention established in the definition of adversary AFM (Section 3.2.2), we

represent it as a fragmentation subgraph by requiring that indegree(v,H) > 1 for any merge

node v.

155

Example 7.3 Area B in Figure 5 (dashed box) of Example 7.1 shows the merge subgraph

H = 〈VH , EH , LH〉 of Γξ , where VH = {v1, v2, v3, v4}, EH = {(v1, v4), (v2, v4)} and the

labels are the labels of Γξ restricted on EH . We can verify this by examining all conditions of

Definition 7.3.

We now give some additional definitions and show that any view graph is a directed acyclic

graph (DAG).

Definition 7.4 Given a view-graph Γξ we define:

(a) frag(Γξ) to be the set of all the distinct fragmentation nodes in Γξ,

(b) merg(Γξ) to be the set of all the distinct merge nodes in Γξ .

Definition 7.5 Given a view-graph Γξ:

(a) if all of its non-terminal nodes are in frag(Γξ), then Γξ is called a fragmentation view-

graph.

(b) if each of its non-terminal nodes is either in frag(Γξ), or it is an immediate ancestor of a

node which is in merg(Γξ), then Γξ is called an fm view-graph.

For Γξ in the example in Figure 5 we have v0 ∈ frag(Γξ) by Definition 7.4(a). Also,

v4 ∈ merg(Γξ) per Definition 7.4(b); additionally, the nodes v1 and v2 are immediate ancestors

of v4 ∈ merg(Γξ). By Definition 7.5(b), Γξ is an fm view-graph. Observe that Γξ is a DAG.

This is true for all view-graphs:

Theorem 7.4 Any view-graph Γξ = 〈V,E,L〉 is a Directed Acyclic Graph (DAG).

Proof: Assume that Γξ is not a DAG. Thus, it contains at least one cycle. Let

((v1, v2)(v2, v3) . . . (vk, v1)) be an elementary cycle of Γξ . By the construction of view-graphs

156

(Definition 7.1(3)) and by the monotonicity property (property 2) of GCS, vi.id < vi+1.id for

1 ≤ i ≤ k and vk.id < v1.id. But, by the transitivity of “<”, v1.id < vk.id, a contradiction. ✷

Corollary 7.5 Any fm view graph is a DAG and any fragmentation view-graph is a rooted

tree.

In the complexity analysis of our algorithm, we exploit the fact that view graphs are DAGs.

In particular we use the following fact.

Fact 7.1 In any (non-empty) DAG, there is at least one vertex, such that all of its descendants

have outdegree 0.

Remark 7.1 Consider an execution ξ of algorithm Λ under adversary AFM . In Section 3.2.2

we defined the fragmentation-number fr(ξ|AF M
) and merge-number fm(ξ|AF M

) of the adver-

sarial pattern ξ|AF M
of execution ξ. We can also use view-graphs to define these quantities.

Namely, fr(ξ|AF M
) = |{w : NEWVIEW(w)i occurs in ξ ∧ (v,w) ∈ E ∧ v ∈ frag(Γξ)}|, and

fm(ξ|AF M
) = |{v : NEWVIEW(v)i occurs in ξ ∧ v ∈ merg(Γξ)}|, where Γξ is the view-graph

of execution ξ.

7.1.4 Algorithm AX

We present Algorithm AX, that deals with fragmentations and merges and that relies on the

GCS as specified in Section 7.1.2, and prove its correctness. We give its complexity analysis

in Section 7.1.5.

157

7.1.4.1 Description of the Algorithm

Algorithm AX uses a coordinator approach within each group view. The high level idea of

the algorithm is that each processor performs (remaining) tasks according to a load balancing

rule, and a processor completes its computation when it learns the results of all the tasks.

Task allocation. The set T of the initial tasks is known to all processors. During the exe-

cution each processor i maintains a local set D of tasks already done, a local set R of the

corresponding results, and the set G of processors in the current group. (The set D may be

an underestimate of the set of tasks done globally.) The processors allocate tasks based on the

shared knowledge of the processors in G about the tasks done. For a processor i, let rank(i,G)

be the rank of i in G when processor identifiers are sorted in ascending order. Let U be the

tasks in T −D. For a task u in U , let rank(u,U) be the rank of u in U when task identifiers

are sorted in ascending order. Our load balancing rule for each processor i in G is that:

• if rank(i,G) ≤ |U |, then processor i performs task u such that rank(u,U) =

rank(i,G);

• if rank(i,G) > |U |, then processor i does nothing.

Algorithm structure. The algorithm code is given in Figure 6 using Input/Output automata

notation [81]. The algorithm uses the group communication service to structure its computation

in terms of rounds numbered sequentially within each group view.

Initially all processors are members of the distinguished initial view v0, such that v0.set =

P. Rounds numbered 1 correspond to the initial round either in the original group or in a

new group upon a regrouping as notified via the NEWVIEW event. If a regrouping occurs, the

processor receives the new set of members from the group membership service and starts the

158

Data types and identifiers:

T : tasks
R : results
Result : T → R
Mes: messages
P : processor ids
G : group ids
views = G × 2P : views, selectors id and set

m ∈ Mes
i, j ∈ P
v ∈ views
Z ∈ 2T

Q ∈ 2R

round ∈ N

results ∈ 2R

States:

T ∈ 2T , the set of n = |T | tasks
D ∈ 2T , the set of done tasks, initially ∅
R ∈ 2R, the set of known results, initially ∅
G ∈ 2P , current members, init. v0.set = P
X ∈ 2Mes, messages since last NEWVIEW,

initially ∅
Rnd ∈ N, round number, initially 1
Phase ∈ {send , receive, sleep,mcast ,mrecv},

initially send

Derived variables:

U = T −D, the set of remaining tasks
Coordinator (i) : Boolean,

if i = maxj∈G{j}
then true else false

Next(U, G), next task u, such that
rank(u, U) = rank(i, G)

History variables:

cvi ∈ views (i ∈ P),
initially ∀i, cvi = v0.

MSGi ∈ 2Mes (i ∈ P),
initially ∀i, MSGi = ∅.

Transitions at i:

input NEWVIEW(v)i

Effect:

G← v.set
X ← ∅
Rnd← 1
Phase ← send

cv := v

output GP1SND(m, j)i

Precondition:

Coordinator(j)
Phase = send

m = 〈i, D, R, Rnd〉
Effect:

MSG := MSG ∪ {m}
Phase ← receive

input GP1RCV(〈j, Z, Q, round〉)i
Effect:

X ← X ∪ {〈j, Z, Q, round〉}
R← R ∪Q
D ← D ∪ Z
if G = {j : 〈j, ∗, ∗, Rnd〉 ∈ X} then

Phase ← mcast

output GPMSND(m)i

Precondition:

Coordinator(i)
m = 〈i, D, R, Rnd〉
Phase = mcast

Effect:

MSG := MSG ∪ {m}
Phase ← mrecv

input GPMRCV(〈j, Z, Q, round〉)i
Effect:

D ← D ∪ Z
R← R ∪Q
if D = T then

Phase ← sleep

else

if rank(i, G) < |U | then

R← R ∪ {Result(Next(U, G))}
D ← D ∪ {Next(U, G)}

Rnd← Rnd + 1
Phase ← send

Figure 6: Algorithm AX.

159

first round of this view (NEWVIEW action). At the beginning of each round, denoted by a round

number Rnd, processor i knows G, the local set D of tasks already done, and the set R of the

results. Since all processors know G, they “elect” the group coordinator to be the processor

which has the highest processor id (no communication is required since the coordinator is

uniquely identified). In each round each processor reports D and R to the coordinator of G

(GP1SND action). The coordinator receives and collates these reports (GP1RCV action) and

sends the result to the group members (GPMSND action). Upon the receipt of the message from

the coordinator, processors update their D and R, and perform work according to the load

balancing rule (GPMRCV action).

For generality, we assume that the messages may be delivered by the GCS out of order. The

set of messages within the current view is saved in the local variable X. The saved messages

are also used to determine when all messages for a given round have been received. Processing

continues until each member of G knows all results (the processors enter the sleep stage).

The variables cv and MSG are history variables that do not affect the algorithm, but play a

role in its analysis.

7.1.4.2 Correctness of the Algorithm

We now show the safety of algorithm AX. We first show that no processor stops working

as long as it knows of any undone tasks.

Theorem 7.6 (Safety 1) For all states of any execution of Algorithm AX it holds that

∀i ∈ P : Di 6= T ⇒ Phase 6= sleep.

Proof: The proof follows by examination of the code of the algorithm, and more specifically

from the code of the input action GPMRCV(〈j, Z,Q, round〉)i . ✷

160

Note that the implication in Theorem 7.6 cannot be replaced by iff (⇔). This is because

if Di = T , we may still have Phase 6= sleep. This is the case where processor i becomes a

member of a group in which the processors do not know all the results of all the tasks.

Next we show that if some processor does not know the result of some task, this is because

it does not know that this task has been performed (Theorem 7.8 below). We show this using

the history variables MSGi (i ∈ P).

We define MSGi to be a history variable that keeps on track all the messages sent by proces-

sor i ∈ P in all GP1SND and GPMSND events of an execution of algorithm AX. Formally, in the

effects of the GP1SND(m, j)i and GPMSND(m)i actions we include the assignment MSGi :=

MSGi ∪ {m}. Initially, MSGi = ∅ for all i. We defineMSG to be
⋃

i∈P MSGi.

Lemma 7.7 If m is a message received by processor i ∈ P in a GP1RCV(m)i or GPMRCV(m)i

event of an execution of algorithm AX, then m ∈MSG.

Proof: Property 3 of the GCS (Section 7.1.2) requires that for every receive event there exists

a preceding send event of the same message (the GCS does not generate messages). Hence,

m must have been sent by some processor j ∈ P (possible j = i) in some earlier event of

the execution. Messages can be sent only in GP1SND(m, i)j or GPMSND(m)j events. By

definition, m ∈ MSGj . Hence, m ∈MSG. ✷

Theorem 7.8 (Safety 2) For all states of any execution of Algorithm AX:

(a) ∀t ∈ T, ∀i ∈ P : result(t) 6∈ Ri ⇒ t 6∈ Di, and

(b) ∀t ∈ T,∀〈i,D′, R′, Rnd〉 ∈ MSG : result(t) 6∈ R′ ⇒ t 6∈ D′.

Proof: Let ξ be an execution of AX and ξk be the prefix of ξ up to the kth state, i.e., ξk =

s0, e1, s1, e2, . . . , sk. The proof is done by induction on k.

161

Base Case: k = 0. In s0, ∀i ∈ P,Di = ∅, Ri = ∅ andMSG = ∅.

Inductive Hypothesis: For a state sℓ such that ℓ ≤ k, ∀t ∈ T, ∀i ∈ P : result(t) 6∈ Ri ⇒ t 6∈

Di, and ∀t ∈ T,∀〈i,D′, R′, Rnd〉 ∈ MSG : result(t) 6∈ R′ ⇒ t 6∈ D′.

Inductive Step: ℓ = k + 1. Consider the following seven types of actions leading to the state

sk+1:

1. ek+1 = NEWVIEW(v′)i: The effect of this action does not affect the invariant. By the

inductive hypothesis, in state sk+1, the invariant holds.

2. ek+1 = GP1SND(m, j)i : Clearly, the effect of this action does not affect part (a) of the

invariant but it affects part (b). Since m = 〈i,Di, Ri, Rnd〉, by the inductive hypothesis

part (a), the assignment m ∈MSG reestablishes part (b) of the invariant. Thus, in state

sk+1, the invariant is reestablished.

3. ek+1 = GP1RCV(〈j, Z,Q, round〉)i: Processor i updates Ri and Di according to Q and

Z respectively. The action is atomic, i.e., if Ri is updated, then Di must be also updated.

By Lemma 7.7, 〈j, Z,Q, round〉 ∈ MSG. Thus, by the inductive hypothesis part (b),

∀t ∈ T : result(t) 6∈ Z ⇒ t 6∈ Q. From the fact that Di and Ri are updated according to

Z and Q respectively and by the inductive hypothesis part (a), in state sk+1, the invariant

is reestablished.

4. ek+1 = GPMSND(m)i: Clearly, the effect of this action does not affect part (a) of the

invariant but it affects part (b). Since m = 〈i,Di, Ri, Rnd〉, by the inductive hypothesis

part (a), the assignment m ∈MSG reestablishes part (b) of the invariant. Thus, in state

sk+1, the invariant is reestablished.

5. ek+1 = GPMRCV(〈j, Z,Q, round〉)i: By Lemma 7.7, 〈j, Z,Q, round〉 ∈ MSG. By the

inductive hypothesis part (b), ∀t ∈ T : result(t) 6∈ Z ⇒ t 6∈ Q. Processor i updates Ri

and Di according to Q and Z respectively. Since Z and Q have the required property, by

162

the inductive hypothesis part (a), the assignments to Di and Ri reestablish the invariant.

In the case where Di 6= T , processor i performs a task according to the load balancing

rule. Let u ∈ T be this task. Because of the action atomicity, when processor i updates

Ri with result(u), it must also update Di with u. Hence, in state sk+1, the invariant is

reestablished.

6. ek+1 = REQUESTq,i : The effect of this action does not affect the invariant.

7. ek+1 = REPORT(results)q,i: The effect of this action does not affect the invariant.

This completes the proof. ✷

7.1.5 Analysis of Algorithm AX

Per Definition 3.6, we express the task-oriented work complexity of algorithm AX un-

der adversary AFM as WAF M
(n, p, f) = WAF M

(n, p, fr + fm), where fr and fm is the

fragmentation-number and merge-number, respectively, of the execution of algorithm AX that

maximizes work. Per Definition 3.7, the message complexity is expressed as MAF M
(n, p, f) =

MAF M
(n, p, fr + fm). Our analysis focuses on assessing the impact of the fragmentation-

number fr and the merge-number fm on the work and message complexity, and in the rest of

this section for clarity we let Wfr,fm stand for WAF M
(n, p, fr + fm), and Mfr ,fm stand for

MAF M
(n, p, fr + fm).

7.1.5.1 Work Complexity

We begin the analysis of algorithm AX by first providing definitions and then proving

several lemmas that lead to the work complexity of the algorithm.

163

Definition 7.6 Let ξµ be any execution of algorithm AX in which all the processors learn the

results of all tasks and that includes a merge of groups g1, . . . , gk into the group µ, where the

processors in µ undergo no further view changes. We define ξ̄µ to be the execution we derive by

removing the merge from ξµ as follows: (1) We remove all states and events that correspond to

the merge of groups g1, . . . , gk into the group µ and all states and events for processors within

µ. (2) We add the appropriate states and events such that the processors in groups g1, . . . , gk

undergo no further view changes and perform any remaining tasks.

Definition 7.7 Let ξϕ be any execution of algorithm AX in which all the processors learn the

results of all tasks and that includes a fragmentation of the group ϕ to the groups g1, . . . , gk

where the processors in these groups undergo no further view changes. We define ξ̄ϕ to be

the execution we derive by removing the fragmentation from ξϕ as follows: (1) We remove all

states and events that correspond to the fragmentation of the group ϕ to the groups g1, . . . , gk

and all states and events of the processors within the groups g1, . . . , gk . (2) We add the ap-

propriate states and events such that the processors in the group ϕ undergo no further view

changes and perform any remaining tasks.

Note: In Definitions 7.6 and 7.7, we claim that we can remove states and events from an exe-

cution and add some other states and events to it. This is possible because if the processors in

a single view installed that view and there are no further view changes, then the algorithm will

continue making computation progress. So, if we remove all states and events corresponding

to a view change, then the algorithm can always proceed as if this view change never occurred.

Lemma 7.9 In algorithm AX, for any view v, including the initial view, if the group is not

subject to any regroupings, then the work required to complete all tasks in the view is no more

164

than n −maxi∈v.set{|Di|}, where Di is the value of the state variable D of processor i at the

start of its local round 1 in view v.

Proof: In the first round, all the processors send messages to the coordinator containing Di.

The coordinator computes ∪i∈v.set{Di} and broadcasts this result to the group members. Since

the group is not subject to any regroupings, the number of tasks t, that the processors need to

perform is: t = n− | ∪i∈v.set {Di}|. In each round of the computation, by the load balancing

rule, the members of the group perform distinct tasks and no task is performed more than once.

Therefore, t is the work performed in this group. On the other hand, maxi∈v.set{|Di|} ≤

| ∪i∈v.set {Di}|, thus, t ≤ n−maxi∈v.set{|Di|}. ✷

In the following lemma, groups µ, g1, . . . , gk are defined as in Definition 7.6.

Lemma 7.10 Let ξµ be an execution of Algorithm AX as in Definition 7.6. Let W1 be the work

performed by the algorithm in the execution ξµ. Let W2 be the work performed by Algorithm

AX in the execution ξ̄µ. Then W1 ≤W2.

Proof: For the execution ξµ, let W ′ be the work performed by the processors in P −
⋃

1≤i≤k(gi.set) − µ.set. Observe that the work performed by the processors in P −
⋃

1≤i≤k(gi.set) in the execution ξ̄µ is equal to W ′. The work that is performed by proces-

sor j in gi.set prior to the NEWVIEW(µ)j event in ξµ, is the same in both executions. Call this

work Wi,j . Define W ′′ =
∑k

i=1

∑

j∈gi.set
Wi,j . Define Ws = W ′ + W ′′. Thus, Ws is the

same in both executions, ξµ and ξ̄µ. Define Wµ to be the work performed by all processors in

µ.set in execution ξµ. For each processor j in gi.set, let Dj be the value of the state variable

D just prior to the NEWVIEW(µ)j event in ξµ. For each gi, define: di = |⋃j∈gi.set
Dj|. Thus

there are at least n− di tasks that remain to be done in each gi.

165

In execution ξ̄µ, the processors in each group gi proceed and complete these remaining

tasks. This requires work at least n − di. Define this work as Wgi . Thus, Wgi ≥ (n − di).

In execution ξµ, groups g1, . . . , gk merge into group µ. The number of tasks that need to be

performed by the members of µ is at most n − dj , where dj = maxi{di} for some j. By

Lemma 7.9, Wµ ≤ n− dj . Observe that:

W1 = Ws + Wµ ≤Ws + n− dj ≤Ws +
k∑

i=1

(n− di) ≤Ws +
k∑

i=1

Wgi = W2,

as desired. ✷

In the following lemma, groups ϕ, g1, . . . , gk are defined as in Definition 7.7.

Lemma 7.11 Let ξϕ be an execution of Algorithm AX as in Definition 7.7. Let W1 be the

work performed by the algorithm in the execution ξϕ. Let W2 be the worked performed by

Algorithm AX in the execution ξ̄ϕ. Then W1 ≤ W2 + W3, where W3 is the work performed

by all processors in
⋃

1≤i≤k(gi.set) in the execution ξϕ.

Proof: Let W ′ be the work performed by all processors in P − ⋃1≤i≤k(gi.set) − ϕ.set in

the execution ξϕ. Observe that the work performed by all processors in P − ϕ.set in the

execution ξ̄ϕ is equal to W ′. The work that is performed by processor j in ϕ.set prior to

the NEWVIEW(gi)j event in ξϕ, is the same in both executions. Call this work Wϕ,j . Define

W ′′ =
∑

j∈ϕ.set Wϕ,j . Define Ws = W ′ + W ′′. Thus, Ws is the same in both executions, ξϕ

and ξ̄ϕ. Define Wϕ to be the work performed by all processors in ϕ.set in execution ξ̄ϕ. Let

W ′′′ = Wϕ −W ′′. Observe that:

W1 = Ws + W3 ≤Ws + W3 + W ′′′ = W2 + W3,

as desired. ✷

Lemma 7.12 Wfr ,fm ≤ n · p.

166

Proof: By the construction of algorithm AX, when processors are not able to exchange in-

formation about task execution due to regroupings, in the worst case, each processor has to

perform all n tasks by itself. Since we can have at most p processors doing that the result

follows. ✷

Lemma 7.13 Wfr ,fm ≤ n · fr + n.

Proof: By induction on the number of views, denoted by ℓ, occurring in an execution. For a

specific execution ξℓ with ℓ views, let fr(ξℓ) = f
(ℓ)
r be the fragmentation-number and fm(ξℓ) =

f
(ℓ)
m the merge-number.

Base Case: ℓ = 0. Since f
(ℓ)
r and f

(ℓ)
m must also be 0, the base case follows from Lemma 7.9.

Inductive Hypothesis: Assume that for all ℓ ≤ k,W
f
(ℓ)
r ,f

(ℓ)
m
≤ n · f (ℓ)

r + n.

Inductive Step: Need to show that for ℓ = k + 1,W
f
(k+1)
r ,f

(k+1)
m

≤ n · f (k+1)
r + n.

Consider a specific execution ξk+1 with ℓ = k + 1. Let Γξk+1
be the view-graph induced by

this execution. The view-graph has at least one vertex such that all of its descendants are sinks

(Fact 7.1). Let ν be such a vertex. We consider two cases:

Case 1: Vertex ν has a descendant µ that corresponds to a merge in the execution. Therefore all

ancestors of µ in Γξk+1
have outdegree 1. Since µ is a sink vertex, the group that corresponds

to µ performs all the remaining (if any) tasks and does not perform any additional work. Let

ξk = ξ̄µ
k+1 (per Definition 7.6) be an execution in which this merge does not occur. In execution

ξk, the number of views is k. Also, f
(k+1)
r = f

(k)
r and f

(k+1)
m = f

(k)
m + 1. By inductive

hypothesis,W
f
(k)
r ,f

(k)
m
≤ n · f (k)

r + n. By Lemma 7.10, the work performed in execution ξk+1,

is no worse than the work performed in execution ξk. Hence, the total work complexity is:

W
f
(k+1)
r ,f

(k+1)
m

≤ W
f
(k)
r ,f

(k)
m
≤ n · f (k)

r + n = n · f (k+1)
r + n.

167

Case 2: Vertex ν has no descendants that correspond to a merge in the execution. Therefore,

the group that corresponds to ν must fragment, say into q groups. These groups correspond to

sink vertices in Γξk+1
, thus they perform all the remaining (if any) tasks and do not perform

any additional work. Let ξk+1−q = ξ̄ν
k+1 (per Definition 7.7) be an execution in which the

fragmentation does not occur. In execution ξk+1−q, the number of views is k+1−q ≤ k. Also,

f
(k+1−q)
r = f

(k+1)
r −q and f

(k+1−q)
m = f

(k+1)
m . By inductive hypothesis,W

f
(k+1−q)
r ,f

(k+1−q)
m

≤

n · f (k+1−q)
r + n. From Lemma 7.9, the work performed in each new group caused by the

fragmentation is no more than n. Let Wσ be the total work performed in all q groups. Thus,

Wσ ≤ qn. By Lemma 7.11, the work performed in execution ξk+1, is no worse than the work

performed in execution ξk+1−q and the work performed in all q groups. Hence, the total work

complexity is:

W
f
(k+1)
r ,f

(k+1)
m

≤ W
f
(k+1−q)
r ,f

(k+1−q)
m

+ Wσ ≤ n · f (k+1−q)
r + n + Wσ

= n ·
(

f
(k+1)
r − q

)

+ n + Wσ ≤ n ·
(

f
(k+1)
r − q

)

+ n + qn

= nf
(k+1)
r − qn + n + qn = n · f (k+1)

r + n.

This completes the inductive proof. ✷

Note that it is not difficult to see that if f ≥ p, then there exists an adversarial strategy

that can cause any Omni-Do algorithm to have task-oriented work Ω(n · p) (the adversary

can arrange so that all processors work in isolation for the entire computation). Similarly, if

f < p, then there exists an adversarial strategy that can cause any Omni-Do algorithm to have

task-oriented work Ω(n · f + n) (the adversary partitions the processors in f groups at the

beginning of the computation, and then lets the f groups to run in isolation for the remainder

of the computation). Therefore, Ω(min{n · f +n, n · p}) is a lower bound on the task-oriented

work for Omni-Do. We now show that algorithm AX is optimal under adversary AFM .

168

Theorem 7.14 Algorithm AX solves the asynchronous Omni-DoAF M
(n, p, f) problem with

task-oriented work

Wfr,fm ≤ min{n · fr + n, n · p}.

Proof: It follows directly from Lemmas 7.12 and 7.13. ✷

Observe that Wfr,fm does not depend on fm (this of course does not imply that for any

given execution, the work does not depend on merges). This observation substantiates the

intuition that merges lead to a more efficient computation.

7.1.5.2 Message Complexity

We start by showing several lemmas that lead to the message complexity of the algorithm.

Lemma 7.15 For algorithm AX, in any view v, including the initial view, if the group is not

subject to any regroupings, and for each processor i ∈ v.set, Di is the value of the state

variable D at the start of its local round 1 in view v, then the number of messages M that are

sent until all tasks are completed is 2(n − d) ≤ M < 2(q + n − d) where q = |v.set|, and

d = |⋃i∈v.set Di|.

Proof: By the load balancing rule, the algorithm needs ⌈n−d
q ⌉ rounds to complete all tasks. In

each round each processor sends one message to the coordinator and the coordinator responds

with a single message to each processor. Thus, M = 2q · (⌈n−d
q ⌉). Using the properties of the

ceiling, we get: 2(n − d) ≤M < 2(q + n− d). ✷

In the following lemma, groups µ, g1, . . . , gk are defined as in Definition 7.6.

Lemma 7.16 Let ξµ be an execution of Algorithm AX as in Definition 7.6. Let M1 be the

message cost of the algorithm in the execution ξµ. Let M2 be the message cost of Algorithm

AX in the execution ξ̄µ. Then M1 < M2 + 2p.

169

Proof: For the execution ξµ, let M ′ be the number of messages sent by the processors in

P −⋃1≤i≤k(gi.set) − µ.set. Observe that the number of messages sent by the processors in

P −⋃1≤i≤k(gi.set) in the execution ξ̄µ is equal to M ′.

The number of messages sent by any processor j in gi.set prior to the NEWVIEW(µ)j

event in ξµ, is the same in both executions. Call this message cost Mi,j . Define M ′′ =

∑k
i=1

∑

j∈gi.set
Mi,j . Define Ms = M ′ + M ′′. Thus, Ms is the same in both executions, ξµ

and ξ̄µ. Define Mµ to be the number of messages sent by all processors in µ.set in execution

ξµ. For each processor j in gi.set, let Dj be the value of the state variable D just prior to the

NEWVIEW(µ)j event in ξµ. For each gi, define di = |⋃j∈gi.set
Dj|. Thus there are at least

n− di tasks that remain to be done in each gi.

In execution ξ̄µ, the processors in each group gi proceed and complete these remaining

tasks. Let Mgi be the number of messages sent by all processors in gi.set in order to complete

the remaining tasks. By Lemma 7.15, Mgi ≥ 2(n − di). In execution ξµ, groups g1, . . . , gk

merge into group µ. The number of tasks that need to be performed by the members of µ is at

most n− dj , where dj = maxi{di} for some j. By Lemma 7.15, Mµ < 2(q + n− dj), where

q = |µ.set|. Observe that:

M1 = Ms + Mµ < Ms + 2(q + n− dj)

≤ Ms + 2q + 2
∑k

i=1(n− di) ≤ Ms + 2q +
∑k

i=1 Mgi

= M2 + 2q ≤ M2 + 2p,

as desired. ✷

In the following lemma, groups ϕ, g1, . . . , gk are defined as in Definition 7.7.

Lemma 7.17 Let ξϕ be an execution of Algorithm AX as in Definition 7.7. Let M1 be the

message cost of the algorithm in the execution ξϕ. Let M2 be the message cost of Algorithm

170

AX in the execution ξ̄ϕ. Then M1 ≤M2 + M3, where M3 is the number of messages sent by

all processors in
⋃

1≤i≤k(gi.set) in the execution ξϕ.

Proof: For the execution ξϕ, let M ′ be the number of messages sent by the processors in

P −⋃1≤i≤k(gi.set)− ϕ.set. Observe that the number of messages sent by the processors in

P − ϕ.set in the execution ξ̄ϕ is equal to M ′. The number of messages sent by processor j in

ϕ.set prior to the NEWVIEW(gi)j event in ξϕ, is the same in both executions. Call this message

cost Mϕ,j . Define M ′′ =
∑

j∈ϕ.set Mϕ,j . Define Ms = M ′ + M ′′. Thus, Ms is the same in

both executions, ξϕ and ξ̄ϕ. Define Mϕ to be the number of messages sent by all processors in

ϕ.set in execution ξ̄ϕ. Let M ′′′ = Mϕ −M ′′. Observe that:

M1 = Ms + M3 ≤Ms + M3 + M ′′′ = M2 + M3,

as desired ✷

We now give the message complexity of algorithm AX.

Theorem 7.18 Algorithm AX solves the asynchronous Omni-DoAF M
(n, p, f) problem with

message complexity
Mfr,fm < 4 (n · fr + n + p · fm) .

Proof: By induction on the number of views, denoted by ℓ, occurring in any execution. For a

specific execution ξℓ with ℓ views, let fr(ξℓ) = f
(ℓ)
r be the fragmentation-number and fm(ξℓ) =

f
(ℓ)
m be the merge-number.

Base Case: ℓ = 0. Since f
(ℓ)
r and f

(ℓ)
m must also be 0, the base case follows from Lemma 7.15.

Inductive Hypothesis: Assume that for all ℓ ≤ k,M
f
(ℓ)
r ,f

(ℓ)
m

< 4(n · f (ℓ)
r + n + p · f (ℓ)

m).

Inductive Step: Need to show that for ℓ = k+1,M
f
(k+1)
r ,f

(k+1)
m

< 4(n·f (k+1)
r +n+p·f (k+1)

m).

Consider a specific execution ξk+1 with ℓ = k + 1. Let Γξk+1
be the view-graph induced by

171

this execution. The view-graph has at least one vertex such that all of its descendants are sinks

(Fact 7.1). Let ν be such a vertex. We consider two cases:

Case 1: Vertex ν has a descendant µ that corresponds to a merge in the execution. Therefore all

ancestors of µ in Γξk+1
have outdegree 1. Since µ is a sink vertex, the group that corresponds

to µ performs all the remaining (if any) tasks and no further messages are sent. Let ξk = ξ̄µ
k+1

(per Definition 7.6) be an execution in which this merge does not occur. In execution ξk,

the number of new views is k. Also, f
(k+1)
r = f

(k)
r and f

(k+1)
m = f

(k)
m + 1. By inductive

hypothesis, M
f
(k)
r ,f

(k)
m

< 4(n · f (k)
r + n + p · f (k)

m). Hence, the message complexity, using

Lemma 7.16 is:

M
f
(k+1)
r ,f

(k+1)
m

<M
f
(k)
r ,f

(k)
m

+ 2p

< 4(n · f (k)
r + n + p · f (k)

m) + 2p

= 4(n · f (k+1)
r + n + p · f (k+1)

m − p) + 2p

= 4nf (k+1)
r + 4n + 4pf (k+1)

m − 4p + 2p

≤ 4(n · f (k+1)
r + n + p · f (k+1)

m).

Case 2: Vertex ν has no descendants that correspond to a merge in the execution. Therefore,

the group that corresponds to ν must fragment, say into q groups. These groups correspond

to sink vertices in Γξk+1
, thus they perform all of the remaining (if any) tasks and do not

send any additional messages. Let ξk+1−q = ξ̄ν
k+1 (per Definition 7.7) be an execution in

which the fragmentation does not occur. In the execution ξk+1−q, the number of new views is

k+1−q ≤ k. Also, f
(k+1−q)
r = f

(k+1)
r −q and f

(k+1−q)
m = f

(k+1)
m . By inductive hypothesis,

M
f
(k+1−q)
r ,f

(k+1−q)
m

< 4(n ·f (k+1−q)
r +n+p ·f (k+1−q)

m). From Lemma 7.15, the message cost

in each new group caused by a fragmentation is no more than 4n. Let Mσ be the total number

of messages sent in all q groups. Thus, Mσ ≤ 4qn. By Lemma 7.17, the number of messages

172

sent in execution ξk+1, is less than the number of messages sent in execution ξk+1−q and the

number of messages sent in all q groups. Hence, the message complexity is:

M
f
(k+1)
r ,f

(k+1)
m

≤M
f
(k+1−q)
r ,f

(k+1−q)
m

+ Mσ

< 4(n · f (k+1−q)
r + n + p · f (k+1−q)

m) + Mσ

= 4(n · f (k+1)
r − qn + n + p · f (k+1)

m) + Mσ

≤ 4nf (k+1)
r − 4qn + 4n + 4pf (k+1)

m + 4qn

= 4(n · f (k+1)
r + n + p · f (k+1)

m).

This completes the proof. ✷

7.1.5.3 Analysis Under Adversary AF

Algorithm AX solves the Omni-Do problem also under patterns of only fragmentations.

Observe that f = fr and fm = 0 for adversary AF . The following corollary is derived from

Theorems 7.14 and 7.18.

Corollary 7.19 Algorithm AX solves the asynchronous Omni-DoAF
(n, p, f) problem with

task-oriented work complexity WAF
(n, p, f) ≤ min{n ·f +n, n ·p} and message complexity

MAF
(n, p, f) < 4(n · f + n).

The adversary considered in [32] was not allowed to “fragment” a group into a single group

with the same membership. Such fragmentation is allowed by our definition of AF . In order

to compare our results with the results of [32], we define a more restricted adversary A′
F that

is constrained to fragmenting each group into at least 2 groups. Clearly AF is more powerful

than A′
F , and from Corollary 7.19 we have the following.

Corollary 7.20 Algorithm AX solves the asynchronous Omni-DoA′
F
(n, p, f) problem with

WA′
F
(n, p, f) = O(n · f + n) and MA′

F
(n, p, f) = O(n · f + n).

173

In the rest of this section we deal with adversary A′
F . Our definition of the fragmentation-

number f is slightly different from the definition of the fragmentation-number f ′ in [32]. When

a group fragments into k groups, f is defined to be equal to k, but f ′ is defined to be equal to

k − 1. The next Lemma relates f and f ′.

Lemma 7.21 f ′ < f < 2f ′.

Proof: Assume that k fragmentations occur. Enumerate the fragmentations arbitrarily. Let the

number of the new views in the ith fragmentation be fi. By the definition of f ′
i , f ′

i = fi − 1.

Thus, f ′
i +1 = fi which implies that fi < f ′

i +f ′
i = 2f ′

i . But f ′ =
∑k

i=1 f ′
i and f =

∑k
i=1 fi.

Hence, f < 2f ′. Now observe that, f ′ =
∑k

i=1 f ′
i =

∑k
i=1(fi − 1) =

∑k
i=1 fi − k = f − k.

Therefore f > f ′. ✷

In [32] the work is counted in terms of the rounds executed by the processors. In our

analysis we count only the number of task executions (including redundancies). However in our

algorithm, for as long as any tasks remain undone in a given group, the processors perform the

tasks in rounds, except for the last round. Therefore the difference in work complexity for these

two algorithms is at most f · n. Thus the different definitions of f , f ′ and work are subsumed

in the big-oh analysis, and without substantial variation in the constants. On the other hand,

the message complexity of our algorithm, as shown in Corollary 7.20, is substantially better

than the at least quadratic message complexity of the algorithm from [32].

174

7.2 Competitive Analysis of Omni-Do

Given that no algorithm is able to maintain low total work in the presence of network

reconfigurations, we pursue competitive analysis of the Omni-Do problem. We consider asyn-

chronous message-passing processors under arbitrary regroupings; in particular, we consider

the Omni-Do problem under adversary AGR (presented in Section 3.2.2).

Processors in the same group can share their knowledge of completed tasks and, while

they remain connected, avoid doing redundant work. The challenge is to avoid redundant work

“globally”, in the sense that processors should be performing tasks with anticipation of future

changes in the network topology. An optimal algorithm, with full knowledge of the future

regroupings, can schedule the execution of the tasks in each group in such a way that the overall

task-oriented work is the smallest possible, given the particular sequence of regroupings.

As an example, consider the scenario with 3 processors which, starting from isolation,

are permitted to proceed synchronously until each has completed n/2 tasks; at this point an

adversary chooses a pair of processors to merge into a group. It is easy to show that if N1, N2,

and N3 are subsets of [n] of size n/2, then there is a pair (Ni, Nj) (where i 6= j) so that |Ni ∩

Nj | ≥ n/6: in particular, for any scheduling algorithm, there is a pair of processors which, if

merged at this point, will have n/6 duplicated tasks; this pair alone must then expend n + n/6

task-oriented work to complete all n tasks. The optimal off-line algorithm that schedules tasks

with full knowledge of future merges, of course, accrues only n task-oriented work for the

merged pair, as it can arrange for zero overlap. Furthermore, if the adversary partitions the two

merged processors immediately after the merge (after allowing the processors to exchanged

information about task executions), then the task-oriented work performed by the merged and

175

then partitioned pair is n + n/3; the task-oriented work performed by the optimal algorithm

remains unchanged, since it terminates at the merge.

To focus on scheduling issues, we assume that processors in a single group work as a

single virtual unit; indeed, we treat them as a single asynchronous processor. To this respect,

we assume that communication within groups is instantaneous and reliable. We note that the

above assumptions can be approximated by group communication services [95], however the

task-oriented work of Omni-Do algorithms can be negatively affected in large scale wide-area

networks [64].

In this section we formulate a simple randomized algorithm, called algorithm RS, and we

compare its expected task-oriented work to the task-oriented work of an optimal off-line algo-

rithm which may schedule tasks with full knowledge of future regroupings. In Section 7.2.1 we

formally define the notion of competitiveness and we present terminology borrowed from set

theory and graph theory that we use in the remainder sections. In Section 7.2.2 we present al-

gorithm RS and in Section 7.2.3 its analysis. Finally, in Section 7.2.4 we present lower bounds

on the competitiveness of Omni-Do algorithms that show the optimality of algorithm RS.

7.2.1 Preliminaries

As we already mentioned, we consider adversaryAGR. That is, we consider computational

topologies C that can be expressed as a (p)-DAG (see Section 3.2.2). For the purpose of

the analysis of our randomized algorithm (Section 7.2.3) and to provide lower bound results

(Section 7.2.4), we require that adversary AGR also determines the number of tasks that each

group is allowed to complete, before it is involved in another regrouping. To this respect,

we annotate the number of tasks that the adversary allows to each group to perform on the

176

(p)-DAGs. In particular, we augment a given (p)-DAG C = (V,E) with a weight function

h : V → N, so that h(v), v ∈ V , is the number of tasks allowed by the adversary for the

processors in group γ(v) to performed before the next regrouping (recall that γ is a labeling

function from V to 2[p] \ {∅}— see “Adversary AGR” in Section 3.2.2). Function h respects

the following two conditions: (a) ∀v ∈ V, h(v) ≤ n, and (b) for any maximal path (v1, . . . , vk)

in C,
∑

h(vi) ≥ n. We refer to each “annotated” (p)-DAG as a (p, n)-DAG. Note that a given

(p)-DAG may derive several different (p, n)-DAGs.

To facilitate for a better understanding of the materials presented in the remainder subsec-

tions, we give the definition of a (p, n)-DAG along with an example of a (p, n)-DAG.

Definition 7.8 A (p, n)-DAG is a directed acyclic graph C = (V,E) augmented with a weight

function h : V → N and a labeling γ : V → 2[p] \ {∅} so that:

1. ∀v ∈ V , h(v) ≤ n and for any maximal path (v1, . . . , vk) in C ,
∑

h(vi) ≥ n. (This

guarantees that any algorithm terminates during the computation described by the DAG.)

2. γ possesses the following “initial conditions”: [p] =
⋃̇

v: indegree(v)=0

γ(v).

3. γ respects the following “conservation law”: there is a function φ : E → 2[p] \ {∅} so

that for each v ∈ V with indegree(v) > 0, γ(v) =
⋃̇

(u,v)∈E

φ
(
(u, v)

)
,

and for each v ∈ V with outdegree(v) > 0, γ(v) =
⋃̇

(v,u)∈E

φ
(
(v, u)

)
.

Here ∪̇ denotes disjoint union. Finally, for two vertices u, v ∈ V , we write u ≤ v if there is a

directed path from u to v; we then write u < v if u ≤ v and u and v are distinct.

Example 7.4 Consider the (12, n)-DAG shown on Figure 7. Here we have g1 = {p1}, g2 =

{p2, p3, p4}, g3 = {p5, p6}, g4 = {p7}, g5 = {p8, p9, p10, p11, p12}, g6 = {p1, p2, p3, p4, p6},

177

g7 = {p8, p10}, g8 = {p9, p11, p12}, g9 = {p1, p2, p3, p4, p6, p8, p10}, g10 = {p5, p11}, and

g11 = {p9, p12}.

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘
g1, 5 g3, 8 g4, n g5, 2✚✙

✛✘
g2, 3

✚✙
✛✘
g6, 4 ✚✙

✛✘
g7, 5 ✚✙

✛✘
g8, 6

✚✙
✛✘
g10, n ✚✙

✛✘
g11, n✚✙

✛✘
g9, n

❘

❥❄✙ ✠ ✇

s ❯✰ ✢

Figure 7: An example of a (12, n)-DAG.

This computation template models all (asynchronous) computations with the following

behavior: (i) The processors in groups g1 and g2 and processor p6 of group g3 are regrouped

during some regrouping to form group g6. Processor p5 of group g3 becomes a member of

group g10 during the same regrouping (see below). Prior to this regrouping, processor p1 (the

singleton group g1) has performed exactly 5 tasks, the processors in g2 have cooperatively

performed exactly 3 tasks and the processors in g3 have cooperatively performed exactly 8

tasks (assuming that n > 8). (ii) Group g5 is partitioned during some regrouping into two new

groups, g7 and g8. Prior to this regrouping, the processors in g5 have performed exactly 2 tasks.

(iii) Groups g6 and g7 merge during some regrouping and form group g9. Prior to this merge,

the processors in g6 have performed exactly 4 tasks (counting only the ones performed after

the formation of g6 and assuming that there are at least 4 tasks remaining to be done) and the

processors in g7 have performed exactly 5 tasks. (iv) The processors in group g8 and processor

p5 of group g3 are regrouped during some regrouping into groups g10 and g11. Prior to this

regrouping, the processors in group g8 have performed exactly 6 tasks (assuming that there are

178

at least 6 tasks remaining, otherwise they would have performed the remaining tasks). (v) The

processors in g9, g10, and g11 run until completion with no further regroupings. (vi) Processor

p7 (the singleton group g4) runs in isolation for the entire computation.

Before we formally define the notion of competitiveness, we introduce some terminology.

Let D be a deterministic algorithm for Omni-Do and C a computation template. We let

WD(C) denote the task-oriented work expended by algorithm D, where regroupings are deter-

mined according to the computation template C . That is, if ξ ∈ E(D,AGR) is the resulting

execution of algorithm D under computation template C , then WD(C) is the task-oriented

work of execution ξ. We let OPT denote the optimal (off-line) algorithm. Specifically, for each

C we define WOPT(C) = minD WD(C).

We treat randomized algorithms as distributions over deterministic algorithms; for a set Z

and a family of deterministic algorithms {Dζ | ζ ∈ Z} we let R = R({Dζ | ζ ∈ Z}) denote

the randomized algorithm where ζ is selected uniformly at random from Z and scheduling is

done according to Dζ . For a real-valued random variable X, we let E[X] denote its expected

value. Then,

Definition 7.9 Let α be a real valued function defined on the set of all (p, n)-DAGs (for all p

and n). A randomized algorithm R is α-competitive if for all computation templates C ,

E[WDζ
(C)] ≤ α(C)WOPT(C),

this expectation being taken over uniform choice of ζ ∈ Z .

Note that usually α is fixed for all inputs; we shall see that this would be meaningless in our

model. Presently, we use a function α that depends on a certain parameter (see Definition 7.13)

of the graph structure of C .

179

We conclude this subsection with some terminology that we use in the remainder of Sec-

tion 7.2.

Definition 7.10 A partially ordered set or poset is a pair (P,≤) where P is a set and ≤ is a

binary relation on P for which (i) for all x ∈ P , x ≤ x, (ii) if x ≤ y and y ≤ x, then x = y,

and (iii) if x ≤ y and y ≤ z, then x ≤ z. For a poset (P,≤) we overload the symbol P , letting

it denote both the set and the poset.

Definition 7.11 Let P be a poset. We say that two elements x and y of P are comparable if

x ≤ y or y ≤ x; otherwise x and y are incomparable. A chain is a subset of P such that any

two elements of this subset are comparable. An antichain is a subset of P such that any two

distinct elements of this subset are incomparable. The width of P , denoted w(P), is the size

of the largest antichain of P .

Associated with any directed acyclic graph (DAG) C = (V,E) is the natural vertex poset

(V,≤) where u ≤ v if and only if there is a directed path from u to v. Then the width of C ,

denoted w(C), is the width of the poset (V,≤).

Definition 7.12 Given a DAG C = (V,E) and a vertex v ∈ V , we define the predecessor

graph at v, denoted PC(v), to be the subgraph of C that is formed by the union of all paths in

C terminating at v. Likewise, the successor graph at v, denoted SC(v), is the subgraph of C

that is formed by the union of all the paths in C originating at v.

In Section 3.2.2 we informally defined the notion of the computation width of a computa-

tion template (that is, of a (p, n)-DAG)). We now give its formal definition.

Definition 7.13 The computation width of a DAG C = (V,E), denoted cw(C), is defined as

cw(C) = max
v∈V

w(SC(v)).

180

Note that the processors that comprise a group formed during a computation template C

may be involved in many different groups at later stages of the computation, but no more than

cw(C) of these groups can be computing in ignorance of each other’s progress.

Example 7.5 In the (12, n)-DAG of Figure 7, the maximum width among all successor graphs

is 3: w(S((g5, 2))) = 3. Therefore, the computation width of this DAG is 3. Note that

the width of the DAG is 6 (nodes (g1, 5), (g2, 3), (g3, 8), (g4, n), (g7, 5) and (g8, 6) form an

antichain of maximum size).

7.2.2 Description of Algorithm RS

We consider the natural randomized algorithm RS where a processor (or group) with

knowledge that the tasks τ in a set K ⊂ [n] have been completed selects to next complete

a task at random from the set [n] \ K . (Recall that we treat randomized alorithms as distri-

butions over deterministic algorithms.) More formally, let Π = (π1, . . . , πp) be a p-tuple of

permutations, where each πi is a permutation of [n]. We describe a deterministic algorithm DΠ

so that

RS = R
(
{DΠ | Π ∈ (Sn)p}

)
;

here Sn is the collection of permutations on [n]. Let G be a group of processors and q ∈ G

the processor in G with the lowest processor identifier. Then the deterministic algorithm DΠ

specifies that the group G, should it know that the tasks in K ⊂ [n] have been completed, next

completes the first task in the sequence πq(1), . . . , πq(n) which is not in K .

7.2.3 Analysis of Algorithm RS

We now analyze the competitive ratio (in terms of task-oriented work) of algorithm RS.

For algorithm RS subjected to a computation template C we write WRS(C) = E [WRS(C)],

181

this expectation taken over the random choices of the algorithm. Where C can be inferred from

context, we simply write WRS and WOPT.

We first recall Dilworth’s Lemma [29], a duality theorem for posets:

Lemma 7.22 [29] The width of a poset P is equal to the minimum number of chains needed

to cover P . (A family of nonempty subsets of a set Q is said to cover Q if their union is Q.)

We will also use a generalized degree-counting argument:

Lemma 7.23 Let G = (U, V,E) be an undirected bipartite graph with no isolated vertices

and h : V → R a non-negative weight function on G. For a vertex v, let Γ(v) denote

the vertices adjacent to v. Suppose that for some B1 > 0 and for each vertex u ∈ U we

have
∑

v∈Γ(u) h(v) ≤ B1 and that for some B2 > 0 and for each vertex v ∈ V we have

∑

u∈Γ(v) h(u) ≥ B2, then

∑

u∈U h(u)
∑

v∈V h(v)
≥ B2

B1
.

Proof: We compute the quantity
∑

(u,v)∈E h(u)h(v) by expanding according to each side of

the bipartition:

B1

∑

u∈U

h(u)≥
∑

u∈U

(

h(u)·
∑

v∈Γ(u)

h(v)
)

=
∑

(u,v)∈E

h(u)h(v)=
∑

v∈V

(

h(v)·
∑

u∈Γ(v)

h(u)
)

≥B2

∑

v∈V

h(v).

As B1 > 0 and
∑

v h(v) ≥ B2 > 0, we conclude that

∑

u∈U h(u)
∑

v∈V h(v)
≥ B2

B1
, as desired. ✷

We now establish an upper bound on the competitive ratio of the algorithm RS.

Theorem 7.24 Algorithm RS is (1 + cw(C)/e)-competitive for any (p, n)-DAG C = (V,E).

Proof: Let C be a (p, n)-DAG; recall that associated with C are the two functions h : V → N

and γ : V → 2[p] \ {∅}. For a subgraph C ′ = (V ′, E′) of C , we let H(C ′) =
∑

v∈V ′ h(v).

Recall that PC(v) and SC(v) denote the predecessor and successor graphs of C at v. Then,

182

we say that a vertex v ∈ V is saturated if H(PC(v)) ≤ n; otherwise, v is unsaturated.

Note that if v is saturated, then the group γ(v) must complete h(v) tasks regardless of the

scheduling algorithm used. Along these same lines, if v is an unsaturated vertex for which

n >
∑

u<v h(u), the group γ(v) must complete at least max(h(v), n −∑u<v h(u)) tasks

under any scheduling algorithm. As these portions of C which correspond to computation

which must be performed by any algorithm will play a special role in the analysis, it will be

convenient for us to rearrange the DAG so that all such work appears on saturated vertices. To

achieve this, note that if v is an unsaturated vertex for which
∑

u<v h(u) < n, we may replace

v with a pair of vertices, vs and vu, where all edges directed into v are redirected to vs, all

edges directed out of v are changed to originate at vu, the edge (vs, vu) is added to E, and h is

redefined so that

h(vs) = n−
∑

u<v

h(u) and h(vu) = h(v)− h(vs).

Note that the graph C ′ obtained by altering C in this way corresponds to the same computation,

in the sense that WD(C) = WD(C ′) for any algorithm D. For the remainder of the proof we

will assume that this alteration has been made at every relevant vertex, so that the graph C

satisfies the condition

v unsaturated ⇒
∑

u<v

h(u) ≥ n. (2)

Finally, for a vertex v, we let Tv be the random variable equal to the number of tasks that

RS completes at vertex v. Note that if v is saturated, then Tv = h(v). Let S and U denote

the sets of saturated and unsaturated vertices, respectively. Given the above definitions, we

immediately have
WOPT ≥

∑

s∈S

h(s)

and, by linearity of expectation,

WRS = E

[∑

v

Tv

]

=
∑

s∈S

h(s) +
∑

u∈U

E[Tu] ≤WOPT +
∑

u∈U

E[Tu]. (3)

183

Our goal is to conclude that for some appropriate β,

E

[
∑

u∈U

Tu

]

≤ β ·
∑

s∈S

h(s) ≤ β ·WOPT

and hence that RS is 1+ β competitive. We will obtain such a bound by applying Lemma 7.23

to an appropriate bipartite graph, constructed next.

Given C = (V,E) construct the (undirected) bipartite graph G = (S,U , EG) where EG =

{(s, u) | s < u}. As in Lemma 7.23, for a vertex v, we let Γ(v) denote the set of vertices

adjacent to v. Now assign weights to the vertices of G according to the rule h∗(v) = E[Tv].

Note that for s ∈ S, h∗(s) = h(s) and hence by condition (2) above, we immediately have the

bound

∀u ∈ U ,
∑

s∈Γ(u)

h∗(s) ≥ n. (4)

We now show that ∀s ∈ S,
∑

u∈Γ(s)

h∗(u) ≤ cw(C) · n
e
. (5)

Before proceeding to establish this bound, note that equations (4) and (5), together with

Lemma 7.23 imply that

WRS(C) ≤
∑

s∈S

h(s) +
∑

u∈U

h∗(u) ≤
(

1 +
cw(C)

e

)∑

s∈S

h(s) ≤
(

1 +
cw(C)

e

)

WOPT(C),

as desired.

Returning now to equation (5), let s ∈ S be a saturated vertex and consider the successor

graph (of C) at s, SC(s). By Lemma 7.22 (Dilworth’s Lemma), there exist w , w(SC(s)) ≤

cw(C) paths in SC(s), P1, P2, . . . Pw so that their union covers SC(s). Let Xi be the random

variable whose value is the number of tasks performed by RS on the portion of the path Pi

consisting of unsaturated vertices. Note that if u ∈ V is unsaturated and u ≤ v, then v is

unsaturated and hence, for each path Pi, there is a first unsaturated vertex u0
i after which every

vertex of Pi is unsaturated. Note now that for a fixed individual task τ , conditioned upon the

184

event that τ is not yet complete, the probability that τ is not chosen by RS for completion at

a given selection point in PC(u0
i) is no more than (1 − 1/n). Let Li be the random variable

whose value is the set of tasks left incomplete by RS at the formation of the group γ(u0
i). As

u0
i is unsaturated,

∑

v<u0
i
h(v) ≥ n by condition (2) and hence, for each i,

Pr[τ ∈ Li] ≤ (1− 1/n)n ≤ 1/e.

As there are a total of n tasks,

E[|Li|] ≤ n/e.

Of course, since RS completes a new task at each step, Xi ≤ |Li| so that E[Xi] ≤ n/e and by

the linearity of expectation

E

[∑

i

Xi

]

≤ w · n/e.

Now every unsaturated vertex in SC(s) appears in some Pi and hence

∑

u∈Γ(s)

h∗(u) ≤ E

[∑

i

Xi

]

≤ wn/e ≤ cw(C) · n/e,

as desired. ✷

7.2.4 Lower Bounds

We now show that the competitive ratio achieved by algorithm RS is tight. We begin with

a lower bound for deterministic algorithms. This is then applied to give a lower bound for

randomized algorithms in Corollary 7.26.

Theorem 7.25 Let a : N → R and D be a deterministic algorithm for Omni-Do so that

D is a(cw(·))-competitive (that is D is α-competitive, for a function α = a ◦ cw)). Then

a(c) ≥ 1 + c/e.

Proof: Fix k ∈ N. Consider the case when n = p = g ≫ k and n mod k = 0, g being

the number of initial groups. We consider a computation template CG determined by a tuple

G = (G1, . . . , Gn/k) where each Gi ⊂ [n] is a set of size k and
⋃

i Gi = [n]. Initially, the

185

computation template CG has the processors synchronously proceed until each has completed

n/k tasks; at this point, the processors in Gi are merged and allowed to exchange information

about task executions. Each Gi is then immediately partitioned into c groups. Note that the off-

line optimal algorithm accrues exactly n2/k work for this computation template (it terminates

prior to the partitions of the Gi).

We will show that for any D, there is a selection of the Gi so that

WD(CG) ≥ n2/k

[

1 + c(1− 1

k
)k − o(1)

]

,

and hence that a(c) ≥ 1 + c/e. Consider the behavior of D when the G is selected at random,

uniformly among all such tuples. Let Pi ⊂ [n] be the subset of n/k tasks completed by

processor i before the merges take place; these sets are determined by the algorithm D. We

begin by bounding

E
G





∣
∣
∣

⋃

i∈G1

Pi

∣
∣
∣



 .

To this end, consider an experiment where we select k sets Q1, . . . , Qk, each Qi selected

independently and uniformly from the set {Pi}. Now, for a specific task τ , let pτ = PrQ1[τ 6∈

Q1], so that PrQi [τ 6∈ ⋃i Qi] = pk
τ . As the Qi are selected independently,

E
Qi

[∣
∣[n]−

⋃

i

Qi

∣
∣

]

=
∑

τ

pk
τ .

Observe now that

∑

τ

(1− pτ) =
∑

τ

Pr
Q1

[τ ∈ Q1] = E
Q1

[|Q1|] = n/k

and hence
∑

τ pτ = n(1 − 1/k). As the function x 7→ xk is convex on [0,∞),
∑

τ pk
τ is

minimized when the pτ are equal and we must have

E
Qi

[∣
∣[n]−

⋃

i

Qi

∣
∣

]

≥ n ·
(

1− 1

k

)k

.

Now observe that, conditioned on the Qi being distinct, the distribution of (Q1, . . . , Qk) is

identical to that of (Pg1
1
, . . . , Pg1

k
) where the random variable G1 = {g1

1 , . . . , g1
k}. Considering

186

that Pr[∃i 6= j,Qi = Qj] ≤ k2/n, we have

E
Qi

[∣
∣[n]−

⋃

i

Qi

∣
∣

]

≤
(

1− k2

n

)

E
G

[

n−
∣
∣
⋃

i∈G1

Pi

∣
∣

]

+ 1 · k
2

n

and hence as n→∞ we see that the expected number of tasks remaining for those processors

in group G1 is

E
G



n−
∣
∣
∣

⋃

i∈G1

Pi

∣
∣
∣



 ≥ n(1− 1/k)k − o(1).

Of course, the distribution of each Gi is the same, so that

E
G





n/k
∑

i=1

(

n−
∣
∣
⋃

j∈Gi

Pj

∣
∣

)



 = [1− o(1)]
(n

k

)

· n
(

1− 1

k

)k

.

In particular, there must exist a specific selection of G = (G1, . . . , Gn/k) which achieves this

bound. Recall that every Gi is partitioned into c groups. Therefore, for such G, the total work

is at least
n2

k
·
(

1 + [1− o(1)] · c · (1− 1

k
)k
)

.

As limk→∞(1− 1
k)k = 1

e , this completes the proof. ✷

As the above stochastic computation template CG is independent of the deterministic al-

gorithm D, this immediately gives rise to a lower bound for randomized algorithms:

Corollary 7.26 Let a : N → R and R
(
{Dζ | ζ ∈ Z}

)
be a randomized algorithm for Omni-

Do that is (a ◦ cw)-competitive. Then a(c) ≥ 1 + c/e.

Proof: Assume for contradiction that for some c, a(c) < 1 + c/e and let k be large enough so

that (1− 1
k)k > a(c)−1. For this k we proceed as in the proof above, considering a random G

and the computation template CG with n = g = p congruent to 0 mod k, g being the number

of initial groups. Then, as above,

E
G

[

E
ζ

[
WDζ

(CG)
]
]

= E
ζ

[

E
G

[
WDζ

(CG)
]
]

≥ min
ζ

[

E
G

[
WDζ

(CG)
]
]

≥ n2

k
·
(

1 + [1− o(1)] · c · (1− 1

k
)k
)

.

187

Hence there exists a G so that Eζ

[
WDζ

(CG)
]
≥ n2

k ·
(
1 + [1− o(1)] c

e

)
, which completes the

proof. ✷

The above result yields the optimality of algorithm RS. Specifically, RS achieves the op-

timal competitive ratio over the set of all computation templates with a given computation

width.

Chapter 8

Conclusions and Future Work

This thesis studies the impact of the adverse environment on the efficiency of distributed

cooperative computing. In particular, the thesis considers the Do-All problem where p pro-

cessors must cooperatively perform n tasks in the presence of adversity, and develops upper

and lower bound results that demonstrate precisely how adversity affects Do-All solutions. We

summarize the contributions of the thesis and discuss future research directions.

The thesis presents Do-All lower bounds on work for synchronous crash-prone proces-

sors that capture the dependence of work not only on n and p, but also on f , the number of

crashes, for the entire range of f (1 ≤ f < p). This gives the first non-trivial lower bound for

Write-All work for a moderate number of failures (f ≤ p/ log p). For the model of compu-

tation where processors are able to make perfect load-balancing decisions locally (the perfect

knowledge assumption), matching upper bounds are given. An important contribution of the

thesis is the definition of the iterative Do-All problem that models the repetitive use of Do-All

algorithms, such as found in algorithm simulations, and the development of failure-sensitive

bounds for r-iterative Do-All work, that are stronger than the r-fold work complexity of a sin-

gle Do-All . The thesis introduces an approach where the analysis of specific algorithms can be

188

189

divided into two parts: (i) the analysis of the cost of tolerating failures while assuming “free”

load-balancing, and (ii) the analysis of the cost of implementing load-balancing. The utility

and generality of this approach is demonstrated by deriving new failure-sensitive analysis of

three known efficient algorithms: algorithm W (for the synchronous shared-memory model),

algorithm KMS (for the synchronous shared-memory model with controlled memory access

concurrency), and algorithm AN [17] (for the synchronous message-passing model). For each

of the three algorithms, substantial improvement in the analysis is recorded, especially for a

moderate number of failures (f ≤ p/ log p). Also, by iteratively using algorithms W, KMS,

and AN and using the new approach to their failure-sensitive analyses, we obtain tighter upper

bounds for the iterative Write-All problem in shared-memory systems, and the first non-trivial

upper bound analysis of the iterative Do-All problem in message-passing systems.

An interesting research direction is to develop failure-sensitive upper and lower bounds

on the work of Do-All for the model with processor crashes and restarts. As mentioned in

Section 2.3, the prior bounds for Do-All under the assumption of perfect knowledge for this

setting are not failure-sensitive [68] (both upper and lower bounds are given as functions of

only n and p). Also, the bounds on work given for Do-All in the message-passing and shared-

memory models for processor crashes and restarts do not adequately show the dependence of

work on the crashes and restarts (see Sections 2.1 and 2.2). A possible direction toward this

is to investigate whether the approach used in the model with processor crashes can also be

successfully applied here: given an algorithm, first analyze the cost of tolerating crashes and

restarts assuming perfect load-balancing, and then analyze the cost of implementing perfect

load-balancing based on the structure of the algorithm. The challenge here is to overcome the

additional complication resulted by the ability of processors to restart after crashing.

190

Another contribution of the thesis is the development of a new robust algorithm for p syn-

chronous processors that solves the Do-All problem with n tasks in the presence of any pattern

of f crashes (f < p). This algorithm achieves asymptotically better work complexity than the

algorithm of Galil, Mayer, and Yung [44] (the previously best known algorithm for this setting)

while obtaining the same message complexity. Unlike algorithm AN [17] that has comparable

work complexity (even using our new failure-sensitive analysis) but uses reliable multicast, the

new algorithm uses simple point-to-point messaging. The algorithm uses an approach where

processors share information using a new gossip algorithm. The processors decide where to

send a gossip message based on sets of permutations with special combinatorial properties

that we show to exist. This gossip algorithm achieves substantially better message complexity

than the message complexity of the previously best known gossip algorithm of Chlebus and

Kowalski [21], while obtaining the same asymptotic time complexity.

Both our Gossip and Do-All algorithms work correctly under any set of permutations, but

the complexity result can only be guaranteed under the permutations with specific combinato-

rial properties that we show only to exist. A future direction is to investigate how to efficiently

construct these permutations. Another direction is to extend the technique of using a gossip

algorithm for information sharing to the model with synchronous restartable crash-prone pro-

cessors and develop an efficient algorithm that solves Do-All using point-to-point messaging.

(Recall that algorithm AR [17] is the only known algorithm that efficiently solves Do-All for

synchronous restartable crash-prone processors, but it does so under the strong assumption of

reliable multicast.) This gives rise to another interesting research problem: how is the Gossip

problem formulated in the presence of crashes and restarts? The challenge is to specify the

termination condition: When should the problem be considered as solved? In the presence

191

of only processor crashes, the problem is considered solved when each non-faulty processor

either knows the rumor of a processor or it knows that the processor crashed. This is no longer

sufficient for the case of processor crashes and restarts.

The thesis substantially contributes to the study of the Omni-Do problem in partitionable

networks, where algorithms must deal with groups of processors that become disconnected

and reconnected during the computation. The thesis presents a new robust algorithm, called

algorithm AX, that solves Omni-Do for asynchronous processors under group fragmentations

and merges. This extends the work of Dolev, Segala and Shvartasman [32], that considers only

group fragmentations. In addition, algorithm AX has better message complexity (subquadratic

in n) than the algorithm of Dolev et al. (at least quadratic in n) and the same task-oriented

work complexity under group fragmentations. Algorithm AX relies on a group communication

service (GCS) [95] with certain properties to provide membership and communication services.

These properties are basic and are provided by several group communication systems and

specifications [23]. For the analysis of the algorithm, the notion of view-graphs is introduced.

View-graphs are directed acyclic graphs used to represent the partially-ordered view evolution

history witnessed by the processors. We believe that view-graphs have the potential of serving

as a general tool for studying cooperative computing with group communication services.

A recent study performed by Jacobsen, Zhang, and Marzullo [64] demonstrated that algo-

rithm AX may not be practical in wide-area networks. In particular, they showed, via trace

analysis, that algorithm AX performs poorly with respect to the total completion time. The au-

thors argue that the reason for this is the use of group communication services that do not scale

well in large networks, where communication is less likely to be transitive and symmetric (as

assumed by group communications). They substantiate this argument by simulating algorithm

192

AX in a wide-area network and comparing its performance with that of a simpler algorithm.

The simpler algorithm, which has much larger worst case task-oriented work complexity than

AX, appears to work much better in practice. That algorithm does not use group communica-

tion services, but instead it uses a technique that relies on leases [56]. However, as the authors

point out, group communications can be used effectively in LANs. Thus it is interesting to

evaluate the performance of AX in LANs.

Given that no algorithm is able to maintain low total worst case task-oriented work in the

presence of network partitions, the thesis initiates the study of Omni-Do as an on-line problem

and pursues competitive analysis. Specifically, a simple randomized algorithm, called algo-

rithm RS, is introduced and analyzed under arbitrary patterns of network reconfigurations. The

thesis establishes bounds on the competitive ratio of algorithm RS and shows that for the rele-

vant gradation of the computation templates these bounds are tight, by proving lower bounds.

These results lead to a better understanding on the effectiveness of Omni-Do computations in

partitionable networks and demonstrate precisely the impact of partitions on the efficiency of

the computation.

One outstanding problem is to derandomize the schedules used by task-performing algo-

rithms and produce task-oriented work- and message-competitive deterministic algorithms for

Omni-Do. Another promising direction is to study the task-performing paradigm in models

of computation that combine network reconfigurations with processor failures. The goal is

to establish complexity results that show how the performance of task-performing algorithms

depends on both on the extent of the network reconfiguration and on the number of processor

failures.

193

The thesis has considered the Do-All problem under the assumption that the number of

participating processors p and the number of tasks n is fixed, bounded, and known a priori.

It would be equally important to consider Do-All in dynamic systems, where the number of

processors and tasks are not known and are not bounded. The Do-All problem in such settings

abstracts web-based computing (see section 2.8), where a large number of processing elements

cooperate via the Internet in computing a large number of independent tasks (e.g., SETI [74])

that a fixed-size collection of processing machines would not be able to handle. The set of

processing elements available to the computation may dynamically change, possibly due to

processor failures or processors becoming unavailable during periods when they are required

to perform other unrelated (local) computations, or due to repaired or idle processors joining

the computation already in progress. Furthermore, tasks are generated dynamically and dif-

ferent tasks may be known to different processors. Developing algorithms for Do-All in such

dynamic systems is very challenging, since these algorithms must not only tolerate component

failures, but they must also deal with the dynamic nature of the system. The Do-All problem

must be formulated for such settings, and new efficiency measures need to be defined, since

the established measures of efficiency assume that the number of tasks and the number of pro-

cessors are known. One approach to evaluating Do-All algorithms in dynamic systems is to

express the measures of efficiency as functions of time. Ongoing research is attempting to for-

mulate a theoretical framework, that would enable the study of the Do-All problem in dynamic

systems.

Bibliography

[1] M. Abdelguerfi and S. Lavington. Emerging Trends in Database and Knowledge-Base

Machines: The Application of Parallel Architectures to Smart Information Systems.

IEEE Press, 1995.

[2] C. Aguirre, J. Martinez-Munoz, F. Corbacho, and R. Huerta. Small-world topology

for multi-agent collaboration. In Proceedings of the 11th International Workshop on

Database and Expert Systems Applications, pages 231–235, 2000.

[3] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. A theory of competitive analysis for dis-

tributed algorithms. In Proceedings of the 35th Symposium on Foundations of Computer

Science (FOCS 1994), pages 401–411, 1994.

[4] N. Alon and F.R.K. Chung. Explicit construction of linear sized tolerant networks.

Discrete Mathematics, 72:15–19, 1988.

[5] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. Stern. Scalable secure storage

when half the system is faulty. In Proceedings of the 27th International Colloquium on

Automata, Languages and Programming (ICALP 2000), pages 577–587, 2000.

[6] N. Alon and J.H. Spencer. The Probabilistic Method. J. Wiley and Sons, Inc., second

edition, 2000.

[7] R.J. Anderson and H. Woll. Algorithms for the certified Write-All problem. SIAM

Journal of Computing, 26(5):1277–1283, 1997.

[8] J. Aspnes and W. Hurwood. Spreading rumors rapidly despite an adversary. Journal of

Algorithms, 26(2):386–411, 1998.

[9] Y. Aumann and M.O. Rabin. Clock construction in fully asynchronous parallel systems

and PRAM simulation. In Proceedings of the 33rd IEEE Symposium on Foundations of

Computer Science (FOCS 1992), pages 147–156, 1992.

[10] O. Babaoglu, R. Davoli, L. Giachini, and M. Baker. Relacs: A communication in-

frastructure for constructing reliable applications in large-scale distributed systems. In

Proceedings of the 28th Hawaii International Conference on System Science (HICSS

1995), pages 612–621, 1995.

194

195

[11] O. Babaoglu, R. Davoli, and A. Montresor. Group communication in partitionalbe sys-

tems: Specification and algorithms. Technical Report UBLCS98-01, Dept. of Computer

Science, University of Bologna, 1998.

[12] O. Babaoglu, R. Davoli, A. Montresor, and R. Segala. System support for partition-

aware network applications. In Proceedings of the 18th IEEE International Conference

on Distributed Computing Systems (ICDCS 1998), pages 184–191, 1998.

[13] P. Berman and J. Garay. Cloture voting: (n/4)-resilient distributed consensus in t + 1
rounds. Mathematical Systems Theory, 26(1):3–20, 1993.

[14] K.P. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit.

IEEE Computer Society Press, 1994.

[15] J. Buss, P.C. Kanellakis, P. Ragde, and A.A. Shvartsman. Parallel algorithms with pro-

cessor failures and delays. Journal of Algorithms, 20(1):45–86, 1996.

[16] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2):225–267, 1996.

[17] B. Chlebus, R. De Prisco, and A.A. Shvartsman. Performing tasks on restartable

message-passing processors. Distributed Computing, 14(1):49–64, 2001.

[18] B. Chlebus, S. Dobrev, D. Kowalski, G. Malewicz, A.A. Shvartsman, and I. Vrto. To-

wards practical deterministic Write-All algorithms. In Proceedings of the 13th ACM

Symposium on Parallel Algorithms and Architectures (SPAA 2001), pages 271–280,

2001.

[19] B.S. Chlebus, L. Gasieniec, D.R. Kowalski, and A.A. Shvartsman. Bounding work and

communication in robust cooperative computation. In Proceedings of the 16th Interna-

tional Symposium on Distributed Computing (DISC 2002), pages 295–310, 2002.

[20] B.S. Chlebus and D. R. Kowalski. Randomization helps to perform tasks on processors

prone to failures. In Proceedings of the 13th International Symposium on Distributed

Computing (DISC 1999), pages 284–296, 1999.

[21] B.S. Chlebus and D.R. Kowalski. Gossiping to reach consensus. In Proceedings of the

14th ACM Symposium on Parallel Algorithms and Architectures (SPAA 2002), pages

220–229, 2002.

[22] B.S. Chlebus, D.R. Kowalski, and A. Lingas. The Do-All problem in broadcast net-

works. In Proceedings of the 20th ACM Symposium on Principles of Distributed Com-

puting (PODC 2001), pages 117–126, 2001.

[23] G.V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A

comprehensive study. ACM Computing Surveys, 33(4):1–43, 2001.

[24] F. Cristian. Group, majority and strict agreement in timed asynchronous distributed

systems. In Proceedings of the 26th Conference on Fault-Tolerant Computer Systems,

pages 178–187, 1996.

196

[25] P. Dasgupta, Z. Kedem, and M. Rabin. Parallel processing on networks of workstation:

A fault-tolerant, high performance approach. In Proceedings of the 15th IEEE Inter-

national Conference on Distributed Computer Systems (ICDCS 1995), pages 467–474,

1995.

[26] H. Davenport. Multicative Number Theory. Springer, second edition, 1980.

[27] R. De Prisco, A. Fekete, N. Lynch, and A.A. Shvartsman. A dynamic view-oriented

group communication service. In Proceedings of the 17th ACM Symposium on Princi-

ples of Distributed Computing (PODC 1998), pages 227–236, 1998.

[28] R. De Prisco, A. Mayer, and M. Yung. Time-optimal message-efficient work perfor-

mance in the presence of faults. In Proceedings of the 13th ACM Symposium on Princi-

ples of Distributed Computing (PODC 1994), pages 161–172, 1994.

[29] R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathe-

matics, 51:161–166, 1950.

[30] D. Dolev and D. Malki. The transis approach to high availability cluster communica-

tions. Communications of the ACM, 39(4):64–70, 1996.

[31] D. Dolev, D. Malki, and R. Strong. A framework for partitionable membership service.

Technical Report TR 95-4, Institute of Computer Science, The Hebrew University of

Jerusalem, 1995.

[32] S. Dolev, R. Segala, and A.A. Shvartsman. Dynamic load balancing with group commu-

nication. In Proceedings of the 6th International Colloquium on Structural Information

and Communication Complexity (SIROCCO 1999), pages 111–125, 1999.

[33] C. Dwork, J. Halpern, and O. Waarts. Performing work efficiently in the presence of

faults. SIAM Journal on Computing, 27(5):1457–1491, 1998. A preliminary version

appears in the Proceedings of the 11th ACM Symposium on Principles of Distributed

Computing (PODC 1992), pages 91–102, 1992.

[34] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial syn-

chrony. Journal of the ACM, 35(2):288–323, 1988.

[35] C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine environ-

ment: Crash failures. Information and Computation, 88(2):156–186, 1990.

[36] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Addison-Wesley

publishing company, second edition, 1994.

[37] P. Ezhilchelvan, R. Macedo, and S. Shrivastava. Newtop: A fault-tolerant group com-

munication protocol. In Proceedings of the 15th IEEE International Conference on

Distributed Computing Systems (ICDCS 1995), pages 296–306, 1995.

[38] A. Fekete, N. Lynch, and A.A. Shvartsman. Specifying and using a partitionable group

communication service. In Proceedings of the 16th ACM Symposium on Principles of

Distributed Computing (PODC 1997), pages 53–62, 1997.

197

[39] A. Fekete, N. Lynch, and A.A. Shvartsman. Specifying and using a partitionable

group communication service. ACM Transactions on Computer Systems, 19(2):171–

216, 2001.

[40] M.J. Fischer and N.A. Lynch. A lower bound for the time to assure interactive consis-

tency. Information Processing Letters, 14(4):183–186, 1982.

[41] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus

with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[42] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics: Principle

and Practice. Addison-Wesley publishing company, second edition, 1996.

[43] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the

10th ACM Symposium on Theory of Computing (STOC 1978), pages 114–118, 1978.

[44] Z. Galil, A. Mayer, and M. Yung. Resolving message complexity of byzantine agree-

ment and beyond. In Proceedings of the 36th IEEE Symposium on Foundations of Com-

puter Science (FOCS 1995), pages 724–733, 1995.

[45] G.R. Gallager. A perspective on multi-access channels. IEEE Transactions on Informa-

tion Theory, 31(2):124–142, 1985.

[46] J.A. Garay and Y. Moses. Fully polynomial Byzantine agreement for processors in

rounds. SIAM Journal on Computing, 27(1):247–290, 1998.

[47] Ch. Georgiou, D.R. Kowalski, and A.A. Shvartsman. Efficient gossip and robust dis-

tributed computation. In Proceedings of the 17th International Symposium on Dis-

tributed Computing (DISC 2003), pages 224–238, 2003.

[48] Ch. Georgiou, A. Russell, and A.A. Shvartsman. The complexity of synchronous itera-

tive Do-All with crashes. Distributed Computing. To appear.

[49] Ch. Georgiou, A. Russell, and A.A. Shvartsman. The complexity of synchronous it-

erative Do-All with crashes. In Proceedings of the 15th International Symposium on

Distributed Computing (DISC 2001), pages 151–165, 2001.

[50] Ch. Georgiou, A. Russell, and A.A. Shvartsman. The complexity of distributed cooper-

ation in the presence of failures. In Proceedings of the 4th International Conference on

Principles of Distributed Systems (OPODIS 2000), pages 245–264, 2000.

[51] Ch. Georgiou, A. Russell, and A.A. Shvartsman. Failure-sensitive analysis of paral-

lel algorithms with controlled memory access concurrency. In Proceedings of the 6th

International Conference on Principles of Distributed Systems (OPODIS 2002), pages

127–138, 2002.

[52] Ch. Georgiou, A. Russell, and A.A. Shvartsman. Work-competitive scheduling for co-

operative computing with dynamic groups. In Proceedings of the 35th ACM Symposium

on Theory of Computing (STOC 2003), pages 251–258, 2003.

[53] Ch. Georgiou and A.A. Shvartsman. Cooperative computing with fragmentable and

mergeable groups. Journal of Discrete Algorithms, 1(2):211–235, 2003.

198

[54] Ch. Georgiou and A.A. Shvartsman. Cooperative computing with fragmentable and

mergeable groups. In Proceedings of the 7th International Colloquium on Structural

Information and Communication Complexity (SIROCCO 2000), pages 141–156, 2000.

[55] A. Gharakhani and A.F. Ghoniem. Massively parallel implementation of a 3D vortex-

boundary element method. In Proceedings of the European Series in Applied and In-

dustrial Mathematics, volume 1, pages 213–223, 1996.

[56] C.G. Gray and D.R. Cheriton. Leases: An efficient fault-tolerant mechanism for dis-

tributed file cache consistency. In Proceedings of the 12th ACM Symposium on Operat-

ing Systems Principles (SOSP 1989), pages 202–210, 1989.

[57] J.N. Gray. Notes on database operating systems. In R. Bayer, R.M. Graham, and

G. Seegmuller, editors, Operating Systems: An Advanced Course, volume 60 of Lec-

ture Notes in Computer Science, chapter 3.F, pages 393–481. Springer-Verlag, 1978.

[58] S.A. Green. Parallel Processing for Computer Graphics. MIT Press/Pitman Publishing,

1991.

[59] J.F. Groote, W.H. Hesselink, S. Mauw, and R. Vermeulen. An algorithm for the

asynchronous Write-All problem based on process collision. Distributed Computing,

14(2):75–81, 2001.

[60] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Dis-

tributed Systems, chapter 5, pages 97–145. ACM Press/Addison-Wesley, 1993.

[61] M. Hayden. The Ensemble System. PhD thesis, Cornell University, 1998.

[62] M. Hiltunen and R. Schlichting. Properties of membership services. In Proceedings

of the 2nd International Symposium on Autonomous Decentralized Systems, pages 200–

207, 1995.

[63] D.R. Hughes and F.C. Piper. Design Theory. Cambridge University Press, 1985.

[64] K. Jacobsen, X. Zhang, and K. Marzullo. Group membership and wide-area master-

worker computations. In Proceedings of the 23rd IEEE International Conference on

Distributed Computing Systems (ICDCS 2003), pages 570–581, 2003.

[65] C.B. Jenssen. Parallel Computational Fluid Dynamics 2000: Trends and Applications.

Elsevier Science Ltd., first edition, 2001.

[66] P.C. Kanellakis, D. Michailidis, and A.A. Shvartsman. Controlling memory access con-

currency in efficient fault-tolerant parallel algorithms. Nordic Journal of Computing,

2(2):146–180, 1995.

[67] P.C. Kanellakis and A.A. Shvartsman. Efficient parallel algorithms can be made robust.

Distributed Computing, 5(4):201–217, 1992. A preliminary version appears in the Pro-

ceedings of the 8th ACM Symposium on Principles of Distributed Computing (PODC

1989), pages 211–222, 1989.

[68] P.C. Kanellakis and A.A. Shvartsman. Fault-Tolerant Parallel Computation. Kluwer

Academic Publishers, 1997.

199

[69] R.M. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory

machines. Handbook of Theoretical Computer Science, Volume A: Algorithms and

Complexity, pages 869–941, 1990.

[70] Z.M. Kedem, K.V. Palem, M.O. Rabin, and A. Raghunathan. Efficient program trans-

formations for resilient parallel computation via randomization. In Proceedings of the

24th ACM Symposium on Theory of Computing (STOC 1992), pages 306–318, 1992.

[71] Z.M. Kedem, K.V. Palem, A. Raghunathan, and P. Spirakis. Combining tentative and

definite executions for dependable parallel computing. In Proceedings of the 23rd ACM

Symposium on Theory of Computing (STOC 1991), pages 381–390, 1991.

[72] Z.M. Kedem, K.V. Palem, and P. Spirakis. Efficient robust parallel computations. In

Proceedings of the 22nd ACM Symposium on Theory of Computing (STOC 1990), pages

138–148, 1990.

[73] R. Khazan, A. Fekete, and N.A. Lynch. Multicast group communication as a base for a

load-balancing replicated data service. In Proceedings of the 12th International Sympo-

sium on Distributed Computing (DISC 1998), pages 258–272, 1998.

[74] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@home:

Massively distributed computing for SETI. Computing in Science and Engineering,

3(1):78–83, 2001.

[75] D.R. Kowalski and A.A. Shvartsman. Performing work with asynchronous processors:

message-delay-sensitive bounds. In Proceedings of the 22nd ACM Symposium on Prin-

ciples of Distributed Computing (PODC 2003), pages 265–274, 2003.

[76] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans-

actions on Programming Languages and Systems, 4(3):382–401, 1982.

[77] E. Y. Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary compo-

nents. In Proceedings of the 16th ACM Symposium on Principles of Distributed Com-

puting (PODC 1997), pages 63–71, 1997.

[78] M.C. Loui and H.H. Abu-Amara. Memory requirements for agreement among unreli-

able asynchronous processes. In F.P. Preparata, editor, Parallel and Distributed Com-

puting, volume 4 of Advances in Computing Research, pages 163–183. JAI Press, 1987.

[79] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261–

277, 1988.

[80] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[81] N.A. Lynch and M.R. Tuttle. An introduction to Input/Output automata. CWI Quar-

terly, 2(3):219–246, 1989.

[82] G. Malewicz. A work-optimal deterministic algorithm for the asynchronous certified

Write-All problem. In Proceedings of the 22nd ACM Symposium on Principles of Dis-

tributed Computing (PODC 2003), pages 255–264, 2003.

200

[83] G. Malewicz, A. Russell, and A.A. Shvartsman. Distributed cooperation during the

absence of communication. In Proceedings of the 14th International Symposium on

Distributed Computing (DISC 2000), pages 119–133, 2000.

[84] G. Malewicz, A. Russell, and A.A. Shvartsman. Optimal scheduling for disconnected

cooperation. In Proceedings of the 8th International Colloquium on Structural Infor-

mation and Communication Complexity (SIROCCO 2001), pages 259–274, 2001.

[85] C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algorithms for

shared memory parallel computers. SIAM Journal on Computing, 21(6):1070–1099,

1992.

[86] C. Martel and R. Subramonian. On the complexity of certified Write-All algorithms.

Journal of Algorithms, 16(3):361–387, 1994.

[87] C. Martel, R. Subramonian, and A. Park. Asynchronous PRAMs are (almost) as good

as synchronous PRAMs. In Proceedings of the 31st IEEE Symposium on Foundations

of Computer Science (FOCS 1990), pages 590–599, 1990.

[88] S. Mishra, L.L. Peterson, and R.D. Schlichting. Consul: A communication substrate for

fault-tolerant distributed programs. Distributed Systems Engineering Journal, 1(2):87–

103, 1993.

[89] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-speed rendering using image

composition. Computer Graphics, 26(2):231–240, 1992.

[90] L.E. Moser, Y. Amir, P.M. Melliar-Smith, and D.A. Agarwal. Extended virtual syn-

chrony. In Proceedings of the 14th IEEE International Conference on Distributed Com-

puting Systems (ICDCS 1994), pages 56–65, 1994.

[91] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia, and C.A. Lingley-

Papadopolous. Totem: A fault-tolerant multicast group communication system. Com-

munications of the ACM, 39(4):54–63, 1996.

[92] Y. Moses and O. Waarts. Coordinated traversal: (t + 1)-round Byzantine agreement in

polynomial time. Journal of Algorithms, 17(1):110–156, 1994.

[93] The Olson laboratory fight AIDS@home project. At http://www.fightaidsathome.org.

[94] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.

Journal of the ACM, 27(2):228–234, 1980.

[95] D. Powell, editor. Special Issue on Group Communication Services, volume 39(4) of

Communications of the ACM. ACM Press, 1996.

[96] The RSA factoring by web project. At http://www.npac.syr.edu/factoring.

[97] A. Ricciardi, A. Schiper, and K. Birman. Understanding partitions and the “no parti-

tion” assumption. In Proceedings of the 4th Workshop on Future Trends of Distributed

Computing Systems, pages 354–360, 1993.

201

[98] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[99] A.L. Rosenberg. Accountable web-computing. In Proceedings of the 7th IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS 2002), 2002.

[100] M. Saks, N. Shavit, and H. Woll. Optimal time randomized consensus – making re-

silient algorithms fast in practice. In Proceedings of the 2nd ACM-SIAM Symposium on

Discrete Algorithms (SODA 1991), pages 351–362, 1991.

[101] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J.P. Singh. Load balancing for

multi-projector rendering systems. In SIGGRAPH/Eurographics Workshop on Graphics

Hardware, pages 107–116, 1999.

[102] R.D. Schlichting and F.B. Schneider. Fail-stop processors: An approach to designing

fault-tolerant computing systems. ACM Transactions on Computing Systems, 1(3):222–

238, 1983.

[103] N. Shavit. Concurrent Time Stamping. PhD thesis, The Hebrew University of

Jerusalem, 1989.

[104] A.A. Shvartsman. Achieving optimal CRCW PRAM fault-tolerance. Information Pro-

cessing Letters, 39(2):59–66, 1991.

[105] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Commu-

nications of the ACM, 28(2):202–208, 1985.

[106] D.R. Stinson. Cryptography: Theory and practice. CRC PRess, 1995.

[107] J.B. Sussman and K. Marzullo. The bancomat problem: An example of resource allo-

cation in a partitionable asynchronous system. In Proceedings of the 12th International

Symposium on Distributed Computing (DISC 1998), pages 363–377, 1998.

[108] M. Tambe, J. Adibi, Y. Alonaizon, A. Erdem, G.A. Kaminka, S. Marsella, and I. Muslea.

Building agent teams using an explicit teamwork model and learning. Artificial Intelli-

gence, 110(2):215–239, 1999.

[109] E. Upfal. Tolerating a linear number of faults in networks of bounded degree. Informa-

tion and Computation, 115:312–320, 1994.

[110] R. van Renesse, K.P. Birman, and S. Maffeis. Horus: A flexible group communication

system. Communications of the ACM, 39(4):76–83, 1996.

[111] G. Varghese and N. A. Lynch. A tradeoff between safety and liveness for randomized

coordinated attack protocols. In Proceedings of the 11th ACM Symposium on Principles

of Distributed Computing (PODC 1992), pages 241–250, 1992.

[112] S.G. Ziavras and P. Meer. Adaptive multiresolution structures for image processing

on parallel computers. Journal of Parallel and Distributed Computing, 23(3):475–483,

1994.

