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Abstract

When proving the correctness of algorithms in distributed systems, one generally consid-
ers safety conditions and liveness conditions. The Input/Output (I/O) automaton model
and 1its timed version have been used successfully, but have focused on safety conditions and
on a restricted form of liveness called fairness. In this paper we develop a new I/O automa-
ton model, and a new timed I/O automaton model, that permit the verification of general
liveness properties on the basis of existing verification techniques. Our models include a
notion of receptiveness which extends the idea of receptiveness of other existing formalisms,
and enables the use of compositional verification techniques. The presentation includes an
embedding of the untimed model into the timed model which preserves all the interesting
attributes of the untimed model. Thus, our models constitute a coordinated framework for
the description of concurrent and distributed systems satisfying general liveness properties.
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1 Introduction

The increasing need for reliable software has led the scientific community to develop many
formalisms for verification. Particularly important are formalisms that can model distributed
and concurrent systems and those that can model real time systems, i.e., systems that rely
on time constraints in order to guarantee correct behavior. Formalisms should be able to
support verification of both safety and liveness properties [AS85]. Roughly speaking, a liveness
property specifies that certain desirable events will eventually occur, while a safety property
specifies that undesirable events will never occur.

In this paper, we present a coordinated framework that permits modeling and verification
of safety and liveness properties for both timed and untimed systems. The framework con-
sists of two models, one timed and one untimed, with an embedding of the untimed model
into the timed model. Both models come equipped with notions of external behavior and
of implementation, which are based simply on traces. The framework is intended to support
a variety of verification techniques, including simulation methods, compositional reasoning,
algebraic methods, and temporal logic methods.

A successful technique for the verification of safety properties and some special liveness
properties is based on the simulation method of [AL91a, LVI1, LV93, LV95, Jon91], applied
to the Input/Output automaton model of [LT87] and to its generalization to the timed case
[MMT91]. I/O automata are state machines with a labeled transition relation where the labels,
also called actions, model communication. A key feature of I/O automata is the explicit
distinction between their input and output actions, which characterize the events under the
control of the environment and those under the control of the automaton, respectively. 1/0
automata can handle general safety properties and can also deal with a special kind of liveness,
called fairness. Fairness captures the intuitive idea that each subcomponent of a composed
system has fair chances to make progress. The notion of implementation for 1/O automata,
i.e., the way a concrete system is said to implement a more abstract specification, is expressed
through fair trace inclusion, where a fair trace of an I/O automaton is a sequence of actions
that can occur whenever the I/O automaton respects its fairness property. 1/O automata can
be composed in parallel, i.e., they can interact together so that they can be viewed as a single
large system. An important property of I/O automata is that the implementation relation is
compositional in the sense that it is always correct to replace a subcomponent in a large system
with one of its implementations. Compositionality is needed for modular design techniques.

Despite its success, the 1/O automaton model is not general enough to handle some re-
cent verification work in [SLL93b, SLL93a]. In particular, [SLL93b, SL193a] provide ex-
amples where fairness is not adequate to express liveness naturally. Moreover, the work in
[SLL93b, SLL93a] has shown the need for a connection between timed and untimed models to
prove that an implementation that uses timing constraints correctly implements an untimed
specification. The mutual exclusion algorithm of Fischer [Fis85, AL91b] is another instance of
a timed implementation for an untimed specification.

This motivates a generalization of the I/O automaton model and its timed version to handle
general liveness properties in such a way that the simulation based proof method still applies.



A simple and natural generalization is motivated by [AL93], which models a machine as a pair
(A, L) consisting of an automaton and A and a subset L of its behaviors satisfying the desired
liveness property. The implementation notion can then be expressed by live trace inclusion
just as fair trace inclusion expresses implementation for I/O automata. The use of live trace
inclusion as the implementation notion is motivated by the fact that the simulation based proof
method is known to work for implementation notions based on some form of trace inclusion.
Unfortunately, if L is not restricted, simple examples show that live trace inclusion is not
compositional (cf. Examples 3.4 and 3.5).

In this paper we identify the appropriate restrictions on L, in both the untimed model and
the timed model, so that live trace inclusion is compositional for the pair (A, L). A pair (A, L)
satisfying these restrictions on L is called a live 1/O automaton in the untimed model and a
live timed 1/O automaton in the timed model. The restrictions on L are given by a property
called receptiveness', which captures the intuitive idea that a live (timed) I/O automaton must
not constrain its environment. The receptiveness property is defined, using ideas from [Dil88],
by means of a two-person game between a live (timed) I/O automaton and its environment.
Specifically, the environment provides arbitrary inputs while the system tries to react so that
it behaves according to its liveness condition. A live (timed) I/O automaton (A, L) has a
winning strategy against its environment if A can respond to any environment move in such a
way that it will always lead to a behavior of L. If a live (timed) I/O automaton has a winning
strategy, then it is said to be receptive.

The definitions of receptiveness in the untimed and the timed model are closely related. In
particular, the receptiveness property for the timed model is a natural extension of the recep-
tiveness property for the untimed model up to some technical details involving the so called
Zeno behaviors. The close relationship between the receptiveness property in the untimed and
the timed model allows the models to be tied together, thus permitting the verification of timed
implementations of untimed specifications. Specifically, the paper presents a patient operator
[NS92, VL92] that converts (untimed) live I/O automata into live timed I/O automata without
timing constraints. The patient operator preserves receptiveness and the live trace preorder
relation of the untimed model. Thus, the patient operator provides the mechanism by which
the timed and untimed models are unified into a coordinated framework.

Our models generalize several existing models. The fairness condition of I/O automata
satisfies the receptiveness property; thus, live I/O automata are a proper generalization of
I/O automata. Receptiveness also implies feasibility as defined in [LS89]. The failure free
complete trace structures of [Dil88] are also properly generalized by our model. In the timed
case, our model generalizes [MMT91] and the notion of strong I/0 feasibility introduced in
[VL92]. Finally, in contrast to [AL91b], our timed model does not give either the system or
the environment control over the passage of time.

We believe that our coordinated untimed and timed models comprise a good general frame-
work for verification of concurrent systems. Besides the fact that our models generalize several

'In our original work [GSSL93, GSSL94] we used the term environment-freedom. Due to the close connec-
tion between environment-freedom in our untimed model and receptiveness in other existing models, we have
uniformed our terminology to the existing literature.



others, our models support the simulation based proof method of [AL91a, LV91, LV93, LV95,
Jon91]. In [GSSLI3] we show how the simulation based proof method can be used to handle
liveness by means of an Fzecution Correspondence Theorem, which extracts from a simulation
relation more information than just trace inclusion. Our models have already been used in
[SLL93b, SLL93a] to verify a non-trivial communication protocol used in the Internet, and the
verifications require all the new expressiveness provided in this paper and the simulation tools
provided in [GSSL93].

After some preliminary definitions, given in Section 2, the paper is divided into three main
sections. Section 3 presents the untimed model, Section 4 presents the timed model, and
Section 5 embeds the untimed model into the timed model by means of the patient operator.
The presentation of both the untimed and timed models starts with a general automaton
model with liveness conditions in the style of [AL91b]; then the I/O distinction is introduced
together with the receptiveness property and the proof of compositionality. The presentation of
the untimed model also includes several examples that motivate the definition of receptiveness
and show that there does not seem to be any trivial generalization of receptiveness that still
leads to the compositionality of the live trace preorder. Once live (timed) I/O automata are
defined for each model, the paper introduces the corresponding notions of implementation and
compares our model with other existing models. The paper ends with some considerations on
the generality of receptiveness and additional considerations for further work.

2 Preliminaries

We use “list” and “sequence” synonymously. The empty sequence is denoted by . A finite se-
quence l; = eq...e, and a sequence [y = e, 41€,42...can be concatenated. The concatenation,

written l1ly, is the sequence eq...e,€,41€042.... A sequence [y is a prefiz of a sequence [,
written [y < [y, if either Iy = lo, or [y is finite and there exists a sequence [} such that Iy = [1].
For any non-empty sequence [ = ejeqes . . ., define head(l) to be ey, the first element of [, and

tail(l) to be the sequence eges ..., the rest of [. For any sequence [ define [{|, the length of I,
to be the number of elements that occur in [. If [ is infinite, then |{| = oc.

3 Untimed Systems

The discussion of untimed systems is organized as follows. Section 3.1 defines automata,
without an Input/Output distinction. Section 3.2 introduces live automata, without an 1/0
distinction. Section 3.3 defines safe I/O automata by adding an I/O distinction to automata,
and introduces the parallel composition operator. Section 3.4 introduces receptiveness, defines
live 1/0 automata, extends parallel composition to live automata, and shows that the parallel
composition of two live I/O automata is a live [/O automaton. Section 3.5 defines two preorder
relations, the safe preorder and the live preorder, and shows in what sense the live preorder
can express a notion of implementation. Section 3.6 compares our model with existing work.



3.1 Automata

We define automata using the presentation style of [LT87]. Essentially, an automaton is a
labeled transition system [Plo81].

Definition 3.1 (Automaton) An automaton A consists of four components:
e a set states(A) of states.
e a nonempty set start(A) C states(A) of start states.

e an action signature sig(A) = (ext(A),int(A)) where ext(A) and int(A) are disjoint sets
of external and internal actions, respectively. Denote by acts(A) the set ext(A)Uint(A).

e a transition relation steps(A) C states(A) x acts(A) x states(A). |

Thus, an automaton is a state machine with labeled steps. Its action signature describes the
interface with the environment. It specifies which actions model events that are visible from
the environment and which actions model internal events.

An action @ of automaton A is said to be enabled in state s if there exists a state s’ such that
the step (s,a,s’) is an element of steps(A).

An execution fragment o of an automaton A is a (finite or infinite) sequence of alternating
states and actions starting with a state and, if the execution fragment is finite, ending in a
state,

Q= Spa1510282 -+,

where each triple (s;,a;11,5;+1) is an element steps(A). Denote by fstate(a) the first state
of a and, if « is finite, denote by Istate(a) the last state of . Furthermore, denote by
frag™(A), frag”(A) and frag(A) the sets of finite, infinite and all execution fragments of A,
respectively. An execution is an execution fragment whose first state is a start state. Denote by
evec*(A), exec”(A) and exec(A) the sets of finite, infinite and all executions of A, respectively.
A state s of A is reachable if there exists a finite execution of A that ends in s.

A finite execution fragment oy = sga1$y---a,s, of A and an execution fragment a; =
Splpt1Sn+1 - -+ of A can be concatenated. In this case the concatenation, written aq ™ aq, is
the execution fragment sga181 - - - Gy Sp@pt1Sn41 -~ An execution fragment oy of A4 is a prefix
of an execution fragment ay of A, written ay < aq, if either a; = as, or a4 is finite and there
exists an execution fragment o of A such that a; = a3 ™~ af.

The trace of an execution fragment a of an automaton A, written trace 4(«), or just trace(a)
when A is clear from context, is the list obtained by restricting « to the set of external actions
of A, i.e., trace(a) = a | ext(A), where | is the standard restriction operator on lists. For a set
S of executions of an automaton A, denote by tracess(.S), or just traces(S) when A is clear
from context, the set of traces of the executions in 5. We say that /3 is a trace of an automaton
A if there exists an execution a of A with trace(a) = 3. Denote by traces*(A), traces*(A) and
traces(A) the sets of finite, infinite and all traces of A, respectively. Note, that a finite trace
might be the trace of an infinite execution.



3.2 Live Automata

The automaton A of Definition 3.1 can be thought of as expressing the safety properties of a
system [AS85], i.e, what always holds, or equivalently what is never supposed to happen. The
liveness properties of a system [AS85], i.e., what must eventually happen, can be expressed
by a subset L of the executions of its safe part A, as proposed in [AL93]. Thus, informally, a
live automaton is a pair (A, L) where A is an automaton and L is a subset of its executions.
The executions of L, which satisfy both the safety and liveness requirements of (A, L), are the
only ones that can occur in the described system. However, in order to ensure that the set
L of executions does not introduce any more safety than is already given by A, it should not
be possible to violate L in a finite number of steps. As a consequence, any finite execution
of A must be extendible to an execution in L. In fact, if the safe part A of live automaton
(A, L) has a finite execution a that cannot be extended to an execution in L, then a cannot
occur in the system described by (A, L), and thus L introduces the additional safety property
that a cannot occur. Our restriction on the pair (A, L) implies that the pair (exec(A), L) is
machine-closed as defined in [AL93].

Definition 3.2 (Live automaton) A liveness condition L for an automaton A is a subset
of the executions of A such that any finite execution of A has an extension in L, i.e., for each
o € exec™(A) there exists an o' € frag(A) such that o™ o’ € L.

A live automaton is a pair (A, L), where A is an automaton and L is a liveness condition
for A. The executions of L are called the live executions of (A, L). [ ]

Informally, a liveness condition can be used to express (at least) two intuitively different sorts
of requirements. First, a liveness condition can be used to specify assumptions about the long-
term behavior of a system that are based on its physical structure. For example, it is reasonable
to assume that two independent processes running in parallel are both allowed to make progress
infinitely often. In a physical system this is ensured by executing the two processes on separate
processors or by using a fair scheduler in a multiprogramming environment. The notion of
fairness of I/O automata [LT87] exactly captures this particular physical assumption. Second,
a liveness condition can be used to specify additional properties that a system is required to
satisfy. For example, in a mutual exclusion problem we may require a process to eventually
exit the critical region whenever it enters it.

Even though a liveness condition can express many specific intuitive ideas, for the purpose
of this paper a liveness condition simply represents the set of executions that a system can
exhibit whenever it is “working properly”.

3.3 Safe I/O Automata

Our notion of safe I/O automaton is the same as the “unfair” I/O automaton of [LT87], i.e.,
the automaton obtained by removing the partition of the locally-controlled actions from an
I/O automaton of [LT87].



Definition 3.3 (Safe I/O automaton) A safe I/O automaton A is an automaton aug-
mented with an external action signature, esig(A) = (in(A), out(A)), which partitions ext(A)
into input and output actions. In each state, each input action must be enabled. A is said to
be input-enabled.

The internal and output actions of a safe I/O automaton A are referred to as the locally-
controlled actions of A, written local(A). Thus, local(A) = int(A) U out(A). |

The interaction between safe I/O automata is specified by the parallel composition operator.
We use the synchronization style of [Hoa85, L'T87], where automata synchronize on their com-
mon actions and evolve independently on the others. We also retain the constraint of [LT87]
that each action is under the control of at most one automaton by defining parallel compo-
sition only for compatible safe 1/O automata. Compatibility requires that each action be an
output action of at most one safe /O automaton. Furthermore, to avoid action name clashes,
compatibility requires that internal action names be unique. Note that compatible automata
are allowed to share input actions.

Definition 3.4 (Parallel composition) Two safe I/O automata Ag and Ay are compatible
if the following conditions hold:

1. out(Ag)Nout(A1) =10

2. int(Ag) Nacts(Ay) = int( A1) N acts(Ag) = 0.
The parallel composition Ag || A1 of two compatible safe I/O automata Ag and Ay is the safe
I/O automaton A such that

1. states(A) = states(Ag) x states(Ay)

2. start(A) = start(Ag) x start(Ay)

3. out(A) = out(Ap) U out(Ay)

4. in(A) = (in(Ag) U in(Ay)) — out(A)

5. int(A) = int(Ag) U int(Ay)

6. ((s0,51),a,(sh,8,)) € steps(A) iff for all i € {0,1}

(a) if a € acts(A;) then (s;,a,s)) € steps(A;)

(b) if a ¢ acts(A;) then s; = 5. |

The executions of the parallel composition of compatible safe I/O automata Ay and Ay can be
characterized alternatively as those alternating sequences of states and actions of A that, when
projected onto any component A;, yield an execution of A;. In particular, let A = Ag || 4;.
First let s be a state of A. Then, for any ¢ € {0, 1}, define s[A4; to be the projection of s
onto the i*h component. Now, let a = sgai51a252 - - - be an alternating sequence of states and



actions such that s, € states(A) and ay € acts(A), for all k, and a ends in a state if it is a
finite sequence. Define a[A; to be the sequence obtained from a by projecting the states onto
their i*h component and by removing each action not in acts(A;) together with its following
state.

Lemma 3.5 Let A = Ag || A1. Let a = spaisiazsy --- be an alternating sequence of states
and actions such that sy € states(A) and ay € acts(A), for all k, and a ends in a state if it
is a finite sequence. Then a € exec(A) iff, for each i € {0,1}, a[A; € exec(A;) and for each
J >0, ifa; ¢ acts(A;), then s;_1[A; = s;[A;.

Proof. Direct consequence of Corollary 8 of [LT87]. ]

Parallel composition is typically used to build complex systems based on simpler components.
Two other operators are defined and used for I/O automata: hiding, which transforms some
output actions into internal actions, and renaming, which changes the name to some actions.
Hiding and renaming can be handled trivially by extending slightly the theory developed in
this paper, and thus we omit their definition.

3.4 Live I/O Automata

In defining live I/O automata one could follow the approach of Definition 3.2 and define a
live I/O automaton to be a pair (A, L) where A is a safe I/O automaton and L is a liveness
condition for A. However, such a naive definition would not capture the fact that a live 1/0
automaton should behave properly independently of the inputs provided by its environment.
Given the structure of our liveness conditions, such independence from the environment will
prove to play a fundamental role in the proofs for the closure of live I/O automata under
parallel composition and the substitutivity of our trace based preorders.

Example 3.1 Let A be a the safe I/O automaton described by the diagram,

" JJ

a,b

where @ is an input action and b is an output action. Let L be the set of executions of
A containing at least five occurrences of action a. I is trivially a liveness condition for A;
however, the pair (A, L) would not behave properly if the environment does not provide more
than four a actions (recall that behaving properly means being an execution of L). [ |

Some of the problems arising from the requirement that a live I/O automaton should behave
properly independently of the inputs provided by its environment are addressed in [Dil88,
AL93]. Their solutions lead to the notion of receptiveness. Intuitively a system is receptive if
it behaves properly independently of the inputs provided by its environment, or equivalently, if
it does not constrain its environment. The interaction between a system and its environment



is represented as a two-person game where each environment move consists of providing an
arbitrary finite number of inputs, i.e., in our model, a finite number of input actions, and the
system moves consist of performing at most one local step, i.e., in our model, at most one
locally-controlled step. A system is receptive if it has a way to win the game (i.e., to behave
properly) independently of the moves of its environment. The fact that an environment move
can include at most a finite number of actions represents the natural requirement that the
environment cannot be infinitely faster than the system.

The behavior of the system during the game is determined by a strategy. In our model
a strategy consists of a pair of functions (g, f). The function ¢ decides which of the possible
states the system reaches in response to any given input action; the function f determines the
next move of the system. The move can be a local step or no step (L move).

Definition 3.6 (Strategy) Consider any safe I/O automaton A. A strategy defined on A
is a pair of functions (g, f) where g : exec™(A) x in(A) — states(A) and f : evec*(A) —
(local(A) X states(A)) U {L} such that

1. g(a,a) = s implies aas € exec*(A)
2. f(a) = (a,s)implies aas € exec*(A). |

In the game between the environment and the system the moves of the environment are repre-
sented as an infinite sequence 7, called an environment sequence, of input actions interleaved
with infinitely many A symbols. The symbol A represents the points at which the system is
allowed to move. The occurrence of infinitely many A symbols in an environment sequence
guarantees that each environment move consists of only finitely many input actions.

Suppose the game starts after a finite execution a. Then the outcome of a strategy (g, f),
given a and an environment sequence Z, is the extension of a obtained by applying ¢ at each
input action in Z and f at each A in 7.

Definition 3.7 (Outcome of a strategy) Let A be a safe I/O automaton and (g, f) a strat-
egy defined on A. Define an environment sequence for A to be any infinite sequence of symbols
from in(A) U {A} with infinitely many occurrences of . Then define R, y), the next-function
induced by (g, f) as follows: for any finite execution a of A and any environment sequence 7

for A,
(was,I') T =M, f(a)=(a,s)
R(gdc)(a,I) =2 (a,7") iftZ =N, f(a)=L

(was,I') T =daI', g(a,a) = s.

Let a be any finite execution of A and 7 any environment sequence for A. The outcome
sequence of (g, f) given o and T is the unique infinite sequence (a”,71"),>¢ that satisfies:



e (7% = (a,7) and
o forall n >0, (a",I") = Ry py(a" 1, T771).
Note, that (a”),>o forms a chain ordered by prefiz.

The outcome O, gy(a, ) of the strategy (g, f) given a and I is the execution lim, .., a”,
where (a”,1"),>0 is the outcome sequence of (g, f) given o and 7 and the limit is taken under
prefix ordering. [

Lemma 3.8 Let A be a safe I/0 automaton and (g, f) a strategy defined on A. Then for any
[finite execution o of A and any environment sequence I for A, the outcome O(g,f)(avz) s an
execution of A such that a < O, ¢)(a,T).

Proof. Simple analysis of the definitions. [ |

The concepts of strategies and outcomes are used to define formally the receptiveness property,
i.e., the property that a system does not constrain its environment. Informally, receptiveness
requires the existence of a strategy, called a receptive strategy, that allows the system to win
every game against its environment. In other words, every outcome of the receptive strategy
should be an element of L. An important feature of the definition of receptiveness is that it
considers outcomes where the receptive strategy for (A, L) is applied after any finite execution
of A. Example 3.2 shows that this feature leads to a clean separation of safety and liveness
properties.

Definition 3.9 (Receptiveness) Let A be a safe [/O automaton and L C exec(A). A strat-
egy (g, f) defined on A is called a receptive strategy for (A, L) if for any finite execution a of A
and any environment sequence 7 for A, the outcome O(g,f)(avz) is an element of L. The pair
(A, L) is receptive if there exists a receptive strategy for (A, L). [

Lemma 3.10 Consider the pair (A, L), where A is a safe 1/0 automaton and L C exec(A).
If (A, L) is receptive, then L is a liveness condition for A.

Proof. Consider any receptive strategy (g, f) for (A, L), any finite execution a of A, and any
environment sequence 7 for A. Then, since (g, f) is a receptive strategy for (A, L), the outcome
Og.p)(@,I) is an element of L. Furthermore, by Lemma 3.8, O(, r)(a,7) is an extension of a.
Hence, any finite execution of A has an extension in L. [ |

Definition 3.11 (Live I/O automaton) A live [/O automaton is a pair (A, L), where A is
a safe I/O automaton and L C exec(A), such that (A, L) is receptive. |

Example 3.2 Consider the safe I/O automaton A described by the transition diagram below.

The unique start state of A is sg. Action ¢ is an input action and action o is an output action.
Let L be the liveness condition for A consisting of the set of executions of A with at least
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one occurrence of action o. The pair (A, L) is not receptive. Specifically, consider the finite
execution o = sgt84 and the environment sequence 7 = AAA---. Performing action o after
reaching state s4 requires receiving an input ¢. Therefore, there is no strategy whose outcome
given a and 7 is an execution in L.

Define a new automaton A’ from A by removing states sg4, s5, S, and let L’ be the set
of executions of A’ containing at least one occurrence of action o. Then the pair (A’, L) is
receptive. Function f chooses to perform action o whenever applied to an execution ending in
So or s9 and chooses | otherwise; function ¢ always moves to the only possible next state. m

Remark 3.3 The definition of a receptive pair shows why we include the input-enabled prop-
erty in our definition of a safe I/O automaton. Namely, consider any reachable state s of A
and any finite execution a of A leading to state s. Since a receptive strategy must allow o to
be extended in response to any possible input action, each input action must be enabled in s.
Thus, a receptive strategy can only exist for a pair (A, L) for which all inputs are enabled in
all reachable states. [

The parallel composition operator can now be extended to live I/O automata by using the
result of Lemma 3.5.

Definition 3.12 (Parallel composition) Two live I/O automata (Ao, Lo) and (Ay, L) are
compatible iff the safe 1/O automata Ay and Ay are compatible. The parallel composition
(Ao, Lo) || (A1, L1) of two compatible live I/O automata (Ag, Lo) and (Ay, Lq) is defined to be
the pair (A, L) where A = Ag || A1 and L = {a € exec(A) | a[Ag € Lo and a[Ay € Lq}. |

The parallel composition operator is closed for live I/O automata in the sense that it produces
a new live I/O automaton whenever applied to live I/O automata. The proof of this result,
however, is not trivial and needs some preliminary lemmas. Given (A, L) = (Ao, Lo) || (41, L1),
it is easy to see that A is a safe /O automaton since its definition is based on the parallel
composition of safe I/0 automata. However, it is not as easy to see that the pair (A, L) is
receptive, and hence a live I/O automaton. The proof that (A, L) is receptive uses a strategy
(g, f) for (A, L) based on receptive strategies (go, fo) and (g1, f1) for (Ao, Lo) and (Aq, L),
respectively, and shows that (g, f) is a receptive strategy for (A, L).
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Function ¢ should compute, given input a, the next state according to the g; functions of
those components of A for which @ is an input action, and simply leave the state unchanged
for those components where « is not an action.

Function f must ensure that every component of A gets a chance to control a step of
A infinitely often. This fact accounts for much of the complexity in the definition of (g, f).
Ensuring that each component of A gets a chance to control a step infinitely often would most
naturally be done by assigning the control of steps to the two components in an alternating way.
The alternating approach, however, would give rise to a technical problem in the definition
of f: since the only argument to f is a finite execution «a, the component whose turn it is to
control the step in the alternating schedule must be determined from a. Unfortunately, the
finite execution « does not include enough information to make this determination. Consider
the following scenario. Assume that it is component A;’s turn to control the step after a finite
execution «. Assume further that A; decides to perform a 1 move and that the next input is a
A symbol. In this case a will not change and, thus, it will again be A;’s turn to control the next
step. Therefore, the alternating protocol is violated. The problem is, of course, that L and A
moves are “invisible” in a. One solution to this problem would be to let f be a function of
“extended” executions that contain information about L and A moves. The problem with this
solution, however, is that it becomes messy due to the fact that this new notion of execution
must keep track of L and A moves of subcomponents of components, and so on. An alternative
solution, adopted in our definition of f, uses the parity of the number of locally-controlled
actions in a to determine which component has priority for a step. If the component having
priority for a step wants to perform a L move but the other component wants to perform
a local step, then the other component gets to perform a step even though it does not have
priority. Only if both components want to perform L moves, does f yield a L move.

One final technicality in the definition of f is that it uses the g; functions. In particular, if a
component performs a local step with action @, action @ might be an input action of the other
component. In this case, the definition of f will need the ¢; function of the other component.

Definition 3.13 (Parallel composition of strategies) Let A = Ag || A1 be the parallel
composition of two compatible safe I/O automata Ay and Ay. For each finite execution a €
evec*(A), let I(a) be the number of occurrences of locally-controlled actions of A in «a, i.e.,
l(a) = |a | local(A)], and let p(a) = I(a) mod 2. Let (go, fo) and (g1, f1) be strategies defined
on Ag and Ay, respectively. The parallel composition (go, fo) || (91, f1) of the strategies (go, fo)
and (g1, f1) is the pair of functions (g, f) defined as follows.

Function ¢ : exec*(A) x in(A) — states(A) is defined as g(a,a) = s where, for each
i € {0,1},

o[A; = gila[Aj,a)  if a € in(4))
"] Istate(a)[A; otherwise.

Function f : exec*(A) — (local(A) X states(A)) U {L} is defined as follows: if fy(a[Ag) = L
and fi(a[A;) = L, then f(a) = L. Otherwise, let k be p(a) if fo)(a[Apq)) # L, and let &
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be 1 —p(a)if fyo)(a[Ap@)) = L. Let (a,si) denote fr(a[Ay), and define f(a) = (a,s) where,
for each 7 € {0,1},

Sk ite=k
s[A; =3 gila[A;,a)  if a € in(4;)
Istate(a)[A; otherwise. -

Lemma 3.14 Let Ag and Ay be two compatible safe 1/0 automata and let (go, fo) and (g1, f1)
be strategies defined on Ag and Ay, respectively. Then (go, fo) || (91, f1) is a strategy defined
on AO H Al.

Proof. Simple cases analysis on the different cases of Definition 3.13. In fact, for each one of
those cases, it is sufficient to show that f and ¢ give legal steps of Ag || A;. [ |

The following lemma is the key step for proving that the strategy of Definition 3.13 is receptive
if the component strategies are receptive. The lemma shows that the projection of an outcome
of the composed strategy onto any A; is an outcome of the strategy (g;, f;). Intuitively, this
means that, even though the composed system uses its composed strategy to find its outcome,
it still looks to each component as if it was using its own component strategy.

Lemma 3.15 Let Ag, Ay be compatible safe 1/O automata and let (go, fo) and (g1, f1) be
strategies defined on Ag and Ay, respectively. Let A = Ag || A1 and let (g, f) = (g0, fo) ||
(g1, f1). Let a be an arbitrary finite execution of A, T be an arbitrary environment sequence
for A, and i be either 0 or 1. Then, there exists an environment sequence I; for A; such that

O, T)[Ai = Oy, gy (al Ai L)

Proof. Let R(, s and R, ;) be the next-functions induced by (g, f) and (g;, f;), respec-
tively. Let (a",Z"),>0 be the outcome sequence of (g, f) given a and Z. Then O, s)(a,7) =
lim, . @™. For any finite execution o € exec*(A), let {(a’) be the number of occurrences of
locally-controlled actions of A in o/, i.e., (o) = |& | local( A)], and let p(a) = (I(a) mod 2).
(Cf. Definition 3.13.)

The first step of the proof consists of constructing an environment sequence Z; for A; such
that Oy (e, I)[A; = Oy, 1y(a[Ai, T;). The sequence Z; is defined as Z}Z7 - - -, where each T}
consists of 0, 1, or 2 symbols and is defined below. Along with the definition of If we prove
the following property:

P1 For every environment sequence I’ for A;, (a"[A;,1") = RE, fi)(a”_l [A;, 17, 1'),

where, for any finite execution fragment o of A;, any finite sequence Z of elements from
in(A;) U{A}, and any environment sequence J for A;, R} (a,Z,7) is defined as follows:

(9i.fi)
R(*g“fi)(a,gj) = (a,J), and if |Z| > 1, then R(*g“fi)(a,z,j) = R(*g“fi)(a’,l’,j) where
(" T'T) = Ry, 5y(a,2J). Informally, R(*gi fi)(O"I’ J) is the result of applying R, ) from

(a,ZJ) for a number of times equal to the length of Z. In the rest of the proof we let Z' denote
a generic environment sequence for A;. Let n > 0. The definition of R, ;) suggests three cases
which are considered in order.
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Case 1 (a",I") = (a" tas, tail(Z"1)) where f(a"1) = (a,s) and head(Z"71) = A.
The definition of f in Definition 3.13 suggests the following subcases:

Case 1.1 p(a™!) =i and a ¢ acts(4;).
Define Z/" = A. Since p(a™™') = i and a ¢ acts(A;), the definition of f shows
that f;(a"1[A4;) = L. Furthermore, since a ¢ acts(4;), a™[A; = o™ 1[A;. By
case 2 of the definition of Ry, 1), (a"[Ai,T') = Ry, (" ' [A;, IT"). Thus,
(a"A;, 1) = R(*ﬁh,’fi)(a”_1 [A;, 17, T17).

Case 1.2 p(a™™!) =i and a € in(4;).
Define Z/' = Aa. Since p(a™™') = i and a € in(A4;), the definition of f shows
that fi(a""'[A;) = L. By case 2 of the definition of R, ), (a" '[A;,aZ’) =
Ry 50 (@ [ As, AaI'). Since a € in(A;), the definition of f shows that gi(a”" ™' [A;,a) =
s[A;. By case 3 of the definition of Ry, 1y, (@"[A:;,T) = Ry, sy (" ' [A;, a').
Thus, (a"[A;,7) = }2(*571,%,)(614”_1 [A;,I",T).

Case 1.3 a € local( 4;).
Define Z" = A. Since a € local(A;), the definition of f shows that f;(a""'[4;) =
(a,s[A;). By case 1 of the definition of Ry, 1y, (a"[A:,T') = Ry, sy (" [ A;, IPT").

Thus, (a"[A;,7) = ke, fi)(a”_l [A;,I",T).

Case 1.4 p(a" 1) # i and a € in(4;).
Define I = a. Since a € in(A;) the definition of f shows that g;(a" 1 [A;,a) =
s[A;. By case 3 of the definition of R(,, ), (o [A:,T") = Ry, sy(a" ' [A, IPT').

Thus, (a™[A;,T) = RE, fi)(a”_l [A;, 17, T17).

Case 1.5 p(a™™1) # i and a ¢ acts(4;).
Define 7" = . Observe that a"[A; = o™ 1[A;. Thus, trivially (a"[A;,7") =

Ry, 1y(a" A, I0T).

gisfi

gisfi

Case 2 (a",1") = (a" 7} tail(T"7 1)) where f(a"™1) = L and head(Z"71) = A.
Define I = X. Since f(a""') = L, the definition of f shows that f;(a""1[4;) =
L. By case 2 of the definition of R(,, 1), (a"[A;,T) = Ry, ;)(a" ' [A;, ZFT'). Thus,
(oA, 1) = R(*ﬁh,’fi)(a”_1 [A;,I",T).

Case 3 (a",1") = (a" tas, tail(I" 1)) where g(a"!,a) = s and head(Z"!) = a.

The definition of g in Definition 3.13 suggests the following subcases:

Case 3.1 « € in(A;).
Define Z/" = a. The definition of g shows that g;(a""'[A;,a) = s[A;. By case 3 of
the definition of Ry, 1), (a"[A:,Z') = Ry, s)(" 1 [A;, ZIPT'). Thus, (a"[A;, 1) =

G (" AL T T,

girfi
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Case 3.2 a ¢ in(A;).
Define I = e. Observe that a"[A; = o™ '[A;. Thus, trivially (a"[A4;,7') =

Rf, 1y(a" A, I0T").

The second step of the proof consists of showing that Z; is indeed an environment sequence for
A;. Showing that 7; is an environment sequence for A; induces two proof obligations:

1. Each element of Z; is in in(A;) U {A}.
This follows immediately from the definition of the I{’s.

2. There are infinitely many A’s in Z.

For each n > 0, all the cases of the definition above except for 1.4, 1.5, 3.1, and 3.2 add a
new A to Z. Thus, the proof obligation is met as long as there exists no n, > 0 such that
for all » > n, the sequence Z? is defined according to cases 1.4, 1.5, 3.1, or 3.2. For a
contradiction assume such an n, exists. Observe the following: if 71" is defined according
to cases 3.1 or 3.2, then {(a") = {(a"71); if Z" is defined according to cases 1.4 or 1.5,
then {(a™) = I(a"" 1)+ 1. Furthermore, cases 1.4 and 1.5 require that p(a™~') # 4. Thus,
there can be at most one n; > ng such that Z? is defined according to cases 1.4 or 1.5.
In other words, there exists a number n; > ng such that for each n > ny; I is defined
according to cases 3.1 or 3.2. However, since 7 is an environment sequence, for infinitely
many n such that n > ny, head(Z"~') = A. This is a contradiction since the Z" cannot
be defined according to cases 3.1 or 3.2 when head(Z"') = A.

From the construction above and from P1, (’)(g“fi)(a[Ai,L') =lim,,—c a,[A;. From the con-
tinuity of the projection operator, lim, . a,[A4; = (lim,—s a,)[A4;. Thus, O(g,f)(avz) [A; =
O(gufz‘)(a[Aiin)' [ |

Lemma 3.16 Let (Ag, Lo) and (Ay, L1) be two compatible live 1/O automata and let (go, fo)
and (g1, f1) be receptive strategies for (Ao, Lo) and (A1, L1), respectively. Then (go, fo) ||
(g1, f1) is a receptive strategy for (Ao, Lo) || (A1, L1).

Proof. Let (A, L) = (Ao, Lo) || (A1,L1) and (g, f) = (g0, fo) || (91, f1). Consider any environ-
ment sequence 7 for A and any finite execution a of A. By Lemma 3.15 there exists for all
A; an environment sequence Z; such that O, (o, Z)[A; = O, 5)(a[Ai, Z;). Since (g;, fi) is
a receptive strategy for (A;, L;), Oy, s (a[As, Z;) € Li. Consequently, O, (o, Z)[A; € L; for
all (A;, L;). By Definition 3.12, O, s(e,7) € L. |

Theorem 3.17 (Closure of parallel composition) Let (Ag, Lo) and (A1, L1) be compati-
ble live 1/0 automata. Then (Ao, Lo) || (A1, L1) is a live 1/O automaton.

Proof. Let (A, L) = (Ao, Lo) || (A1, L1). By Definition 3.4, we know that A is a safe I/O
automaton. Furthermore, by Definition 3.12, Lemma 3.5, and the fact that each L; C exec(A4;),
the set L is a subset of exec(A).
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Let (go, fo) and (g1, f1) be receptive strategies for (Ao, Lo) and (A4, L), respectively. By
Lemma 3.16 the strategy (g, f) = (9o, fo) || (91, f1) is a receptive strategy for (A, L). Therefore,
the pair (A, L) is receptive. Thus, by Definition 3.11, (A4, L) is a live I/O automaton. [

Receptiveness is a crucial property of live I/O automata since it guarantees that no pair of
compatible live I/O automata constrain each other’s environments. In particular, if a pair
(A, L) is not receptive, the parallel composition operator may generate pairs that are not even
live automata.

Example 3.4 Consider safe I/O automata A and B described by the diagrams below.

A CjA B CjB

a,b a,b

For A, action b is an input action, and action a is an output action; for B, action « is an input
action and action b is an output action. Let the liveness condition L4 for A be the set of
executions a of A such that trace(a) ends in (ab)™ or a*°, and let the liveness condition Lg
for B be the set of executions a of B such that trace(a) ends in (aabb)> or b>.

The pairs (A, L4) and (B, Lp) are not receptive. To see that (A, L,4) is not receptive
consider the environment sequence 7 = bbAbbA - - ; to see that (B, Lp) is not receptive consider
the environment sequence 7 = aaalaaal - - -

Let (C,Lc) = (A, L) || (B, Lp). In this case, Lc = . Thus L¢ is not a liveness condition
for €', which means that (C, L¢) is not even a live automaton. [ ]

Example 3.4 also exposes the flaw in a simpler and more intuitive definition for receptiveness we
originally considered for this paper. The simpler definition, which is a natural generalization
of the fairness condition of [LT87] and is also discussed in [LS89], states that “a pair (A, L)
is receptive if for each finite execution a of A and each (finite or infinite) sequence 3 of input
actions there is an execution fragment o of A such that o/[in(A) = fand a~a’ € L.” Tt is
easy to see that the pairs (A, L4) and (B, L) of Example 3.4 are both receptive based on the
simpler definition. However, the example shows that their composition cannot be a live 1/0
automaton. The problem with the simpler definition is that it allows the system to choose its
relative speed with respect to the environment, and it allows the system to base its decisions
on the future behavior of the environment. Example 3.4 shows that the simpler definition thus
gives the system too much power for parallel composition to be closed.

3.5 Preorder Relations for Live I/O Automata

In [LT87, Dil88, AL93] the notion of implementation is expressed through some form of trace
inclusion. Similar notions of implementation can be defined on live I/O automata. In particular
it is possible to identify two preorder relations, the safe and the live preorders, which aim at
capturing the safety and liveness aspects of live I/O automata, respectively.

15



Definition 3.18 (Trace preorders) Given twolive I/O automata (A, L1) and (Ag, Ly) such
that esig(A1) = esig(Asz), define the following preorders:

Safe: (A1, L1) Cs (Ag, Ly) iff  traces(Aq) C traces(Az);
Live: (A1, 11) Cy, (Ag, La) iff  traces(Ly) C traces(Ly). ]

The safe preorder is the same as the unfair preorder of I/O automata [LT87], while the live
preorder is a generalization of the fair preorder of [LT87]. In particular, the live preorder
coincides with the fair preorder if, for each live I/O automaton (A, L), L is chosen to be the
set of fair executions of A. The conformation preorder of [Dil88], which expresses the notion
of implementation for complete trace structures, coincides with the live preorder when dealing
with failure free complete trace structures. Finally, the notion of implementation of [AL93],
which works in a state based model, coincides with the live preorder up to a different notion
of traces arising from the state structure of the model. In [AL93], a system M; implements a
system Mo iff the set of “traces” of the realizable part of M, is a subset of the set of “traces”
of the realizable part of M5. Furthermore, if a system M is receptive, then M is equal to its
realizable part. Thus, for receptive systems, the implementation notion of [AL93] is just the
live trace preorder. The reader is referred to Section 3.6 for more discussion of realizability.

Note that the live preorder implies the safe preorder whenever the involved automata have
finite internal nondeterminism. On the other hand, if the involved automata do not have finite
internal nondeterminism, the live preorder only implies finite trace inclusion. Essentially, finite
internal nondeterminism requires that a live I/O automaton has a finite internal branching
structure. In particular, a finite trace can lead to at most finitely many states.

Definition 3.19 (Finite internal nondeterminism) An automaton A has finite internal
nondeterminism (FIN) iff, for each finite trace § € traces™(A), the set {Istate(a) | a €
evec*(A), trace(a) = B} is finite. |

Proposition 3.20 Let(Ay, L) and (Asg, Ly) be two live 1/O automata with esig(Ay) = esig(As).
1. If (A1, L1) Cy, (Ag, L) then traces* (A1) C traces™(Az)

2. IfA2 has FIN and (Al,Ll) EL (AQ,LQ), then (Al,Ll) ES (AQ,LQ)

Proof. Let 3 be a finite trace of Ay. By definition of trace, there is an execution aq of Ay such
that trace(ay) = §. By definition of a live I/O automaton there exists an execution o} of Ay
such that ay < of and o) € Ly. Since (Ay, L1) Cp, (Ag, L), there exists an execution o of Ly
such that trace(of) = trace(al). By definition of a live I/O automaton, o) is an execution of
Ao, and, since the set of executions of an automaton is closed under prefix, there is a prefix as
of o, such that ay is an execution of Ay and trace(ay) = [, i.e., 3 is a trace of Ay. This shows
part 1. For part 2 we need to show infinite trace inclusion as well, which follows from finite
trace inclusion, closure under prefix of trace sets, and the fact that trace sets of automata with
finite internal nondeterminism are closed under prefix ordering limit [LV91]. |
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The proof of Proposition 3.20 supports the requirement of our definition of a liveness condition
(Definition 3.2) that every safe execution be extendible to a live execution. Without this
requirement, the live preorder could not be used to infer the safe preorder, i.e., neither part of
Proposition 3.20 would hold.

An important goal of this paper is the substitutivity of the safe and live preorders for parallel
composition. This means that an implementation of a system made up of several parallel
components can be obtained by implementing each component separately.

Theorem 3.21 (Substitutivity) Let (A;, L;), (A% L), 1 € {0,1} be live I/O automata, and
let Cx be either Cg or Cy,. If, for each i, (A;, L;) Cx (AL, L), (Ao, Lo) and (A1, L1) are com-
patible, and (A{), Ly) and (A}, L}) are compatible, then (Ao, Lo)||(A1, L1) Ex (Ag, LH)||(AL, LY).

Proof. The substitutivity results for the safe trace preorder are already proven in [LT87].
The substitutivity results for the live trace preorder follow directly from the definition of the
parallel composition operator after observing, as it is proved in Corollary 8 of [LT87], that
parallel composition of execution sets preserves trace equivalence. [ |

The following example shows that the absence of receptiveness can lead to situations where
the substitutivity result of Theorem 3.21 breaks.

Example 3.5 Consider the safe I/O automata Ay, Ay, and Az with the transition diagrams
below.

Aq Ag As

S0 S0 S0

a b
/ \
s 9 a,b a,b
@ @

where a and b are output actions for A; and A, and are input actions for As. Let Ly (resp.
L3) be the set of executions of Ay (resp. Az) containing at least one action and let Lz be
the set of executions of A3 whose trace contains the subsequence ab. It is easy to check that
(A1, L1) and (Ay, Ly) are both receptive, and that (As, Ls) is not receptive since it requires at
least one input.

Observe that (A, Lq1) Ty, (Ag, Le) and that (A, Lg)||(As, Ls) is receptive and thus a live
I/O automaton. One might want to conclude that (Ay, L1)]|(As, Ls) Cr, (Asg, L2)||(As, Ls).
Unfortunately, this conclusion is false. In particular, let (A, L) = (Ay, L1)]|(As, L3). Then, the
set L is not a liveness condition since Ay can never perform an action a followed by an action b.
Thus, the fact that (As, L) is not receptive causes situations where the parallel composition
with (As, L) fails to lead to a pair (A, L) where L is a liveness condition. This in turn causes
the substitutivity of the parallel composition operator to fail. [ |

There are several ways to justify the live preorder as an adequate notion of implementation
for live I/O automata. Since the live preorder captures the implementation notions of [LT87,
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Dil88, AL93] it can rest on the justifications provided for these implementation notions. For
example, the fair preorder of [LT87] is justified by two observations. First, the fact that 1/0
automata are input-enabled guarantees that a system must respond to any environment. In our
model the same property is guaranteed by the concept of receptiveness. Second, by restricting
attention to fair traces the correctness of an implementation is based only on executions where
the system behaves fairly. In our model this property is guaranteed by restricting attention to
live traces.

An additional justification for the live preorder as a notion of implementation is based on
the concepts of safety and liveness properties. It is easy to see that the safe preorder preserves
the safety properties of a system, i.e., the safe preorder guarantees that an implementation
cannot do anything that is not allowed by the specification. The live preorder, on the other
hand, preserves the liveness properties of a system, thus guaranteeing that an implementation
must do something whenever it is required to by the specification. Informally, if after a sequence
of actions 8 something has to happen,  is not a live trace of the specification, and thus not
a live trace of the implementation. Therefore, even in the implementation something has to
happen after g has occurred. If the involved systems have finite internal nondeterminism, then
the live preorder implies the safe preorder. Thus the live preorder guarantees both safety and
liveness properties.

It is well known that simulation based proof techniques [LV93] can be used for implemen-
tation notions based on trace inclusion. In [GSSL93] simulation based proof techniques are
extended to the live preorder, and in [SLL93b] the new proof techniques are used to verify
nontrivial communication protocols.

3.6 Comparison with Other Models

This section compares our model with the models of [Dil88, LT87, AL93] and the work of
[RWZ92].

The model of complete trace structures of [Dil88] is a special case of our model. Specifically,
the model of [Dil88] does not include a state structure, so that the safe part of a live automaton
in [Dil88] is given by a set of traces. Since there is no notion of a state in a complete trace
structure, a strategy for a system is simpler than our strategies in the sense that function
g is not necessary and that function f simply picks up a locally-controlled action based on
previous environment moves. By ignoring the state structure of a system, the model in [Dil88]
may erroneously view as receptive a state machine that is not receptive based on our model
since its traces may be receptive. Thus, complete trace structures are not adequate whenever
the state structure of a system is important.

The I/O automaton model of [LT87] is also a special case of our model. An I/O automaton
M of [LT87] can be represented in our model as the receptive pair (A, L), where A is the I/O
automaton M without the partition of its locally-controlled actions and L is the set of fair
executions of M. The receptive strategy (g, f) for (A, L) is defined so that ¢ picks up any
possible next state in response to an input action, while f gives fair turns to proceed (say
in a round robin way) to all the components of M that are continuously willing to perform
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some locally-controlled action. Thus [LT87] can only express some special cases of our general
liveness conditions.

The model of [AL93] is based on unlabeled state transition systems and is suitable for the
modeling of shared memory systems. An action in [AL93] is identified with a set of transi-
tions, and transitions are partitioned into environment transitions and system transitions. The
environment moves by performing an arbitrary finite number of environment transitions and
the system responds by performing zero or one system transitions. Function g is not necessary
in a strategy for a system of [AL93] since the environment chooses the next shared state in its
move and does not modify the internal state. Function f chooses a new transition based on
the past history of the system.

In this paper we have defined receptiveness by requiring the existence of a strategy that can
“win the game” after any finite execution a. In [AL93] a weaker property called realizability is
considered, where the requirement is the existence of a strategy that can win starting from any
start state. The realizable part of a system of [AL93] is the set of behaviors that can be the
outcome of some strategy. A system that coincides with its realizable part is called receptive.
The notion of receptiveness of [AL93] corresponds to our notion of receptiveness, as can be
derived easily from Proposition 9 of [AL93].

Example 3.2 shows a live automaton (A, L) which is not receptive. However, (A, L) is
realizable, and (A’, L"), which is defined in the same example, is the realizable part of (A4, L).
In [AL93] systems are compared based on their realizable parts. Thus, it is necessary to
determine the realizable part of a system before its safety properties can be determined, and for
this reason realizable systems are closed under parallel composition in [AL93]. In other words,
L can add new safety properties to A. However, later in [AL93] a notion of machine-realizability
is introduced which separates safety and liveness properties and requires receptiveness just like
our live I/O automata.

Finally, it is easy to show, given our definition of receptiveness, that the set of live traces of
any live I/O automaton is union-game realizable according to [RWZ92], and thus describable
by means of a standard I/O automaton of [LT87]. However, in general the I/O automaton
description would involve a lot of encoding and would be extremely unnatural. That is, even
though the I/O automata of [LT87] and our live I/O automata are formally equivalent, fairness
is not adequate to describe general liveness.

4 Timed Systems

The notion of liveness discussed in the previous section is now extended to the timed model.
Section 4.1 introduces timed automata along with timed executions and timed traces, and
shows the relationship between the new timed executions and the ordinary executions from
the untimed model. Section 4.2 introduces live timed automata. Section 4.3 defines safe
timed 1/0 automata by introducing the Input/Output distinction. Section 4.4 extends the
notion of receptiveness to the timed model and defines live timed 1/0 automata. Section 4.5
introduces several preorders on live timed I/O automata, one of which is used to express a
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notion of implementation. Finally, Section 4.6 compares our model with existing work. Most
of the discussion for the untimed model applies to the timed model as well. In particular,
Examples 3.1, 3.2, 3.4, and 3.5 apply equally to the timed model. In the rest of the paper our
discussion focuses on issues specific to the timed model.

4.1 Timed Automata

The following definition of a timed automaton is the same as the corresponding definition in
[LV95] except for the fact that our definition allows multiple internal actions. Also, the notions
of timed executions and timed traces are the same as the definitions of [LV95]. The definitions
are repeated here but the reader is referred to [LV95] for further details. Times are specified
using a dense time domain T. In this paper, as in [LV95], let T be RZ°, the set of non-negative
reals.

Definition 4.1 (Timed automaton) A timed automaton A is an automaton whose set of
external actions contains a collection of special time-passage actions {v(t) | t € R>°}. Define
the set of visible actions to be vis(A) = ext(A) — {v(t) | t € R>°}. The automaton A must
satisfy the following two axioms.

S1 If (s,v(t),s") € steps(A) and (s',v(t'),s") € steps(A), then (s,v(t+t'),s") € steps(A).

To be able to state the second axiom, the following auxiliary definition is needed. Let I be
an interval of RZ% with minimum element 0. Then a function w : I — states(A) is an A-
trajectory, sometimes called trajectory when A is clear from context, if for all ¢,¢' € I with
t <t (w(t),v(t' —t),w(t)) € steps(A). That is, w assigns a state to each time ¢ so that
time-passage steps can span between any pair of states in the range of w. Denote sup([)
by ltime(w). Denote w(0) by fstate(w), and if [ is right closed, then denote w(ltime(w)) by
Istate(w). If I is closed, then w is said to be an A-trajectory from fstate(w) to lstate(w). An
A-trajectory w whose domain dom(w) is the point interval [0, 0] is called a point trajectory and
is also denoted by the set {w(0)}. The range of w is denoted by rng(w).

The second axiom then becomes

S2 If (s,v(t),s") € steps(A) then there is an A-trajectory from s to s’ with domain [0,7]. =

Axioms S1 and S2 state natural properties of time, namely that if time can pass in two
steps, then it can also pass in a single step, and if time ¢ can pass, then it is possible to associate
states with all times in the interval [0,¢] in a consistent way. In [LV95] axiom S2 is explained
further and compared to the weaker axiom that says the following: if time can pass in one
step, then it can pass in two steps with the time of the intermediate state being any time in
the interval.

Timed Executions

Section 3 introduced the notions of execution and trace for automata. These notions carry over
to timed automata with the addition of one new idea. In particular, the notion of execution
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for automata allows one to associate states with only a countable number of points in time,
whereas the trajectory axiom S2 allows one to associate states with all real times. Also, the
intuition about the execution of a timed system is that visible actions occur at points in time,
and that time passes “continuously” between these points. These observations lead to the
definition of a timed execution. The definition is close to the notion of hybrid computation of
[MMP91] where continuous changes and discrete events alternate during the execution of a
system.

A timed execution fragment ¥ of a timed automaton A is a (finite or infinite) sequence of
alternating A-trajectories and actions in vis(A) U int(A), starting in a trajectory and, if the
sequence is finite, ending in a trajectory

Y = Woliwydowsy -+ -
such that the following holds for each index i:
1. If w; is not the last trajectory in ¥, then its domain is a closed interval.
2. If w; is not the last trajectory of X, then (Istate(w;), a;y1, fstate(w;y1)) € steps(A).

A timed execution is a timed execution fragment woajwyagws - -- for which fstate(wp) is a
start state. If ¥ is a timed execution fragment, then define fstate(X) to be fstate(wp), where
wo is the first trajectory of ¥. Also, define ltime(X) to be the sum of the suprema of the
domains of the trajectories of ¥. That is, ltime(woaiwiasws -+ - apwn) = Y gcicy, ltime(w;), and
ltime(woaiwiagwy - - -) = 350 ltime(w;). Finally, if ¥ is a finite sequence where the domain of
the last trajectory w is a closed interval, define Istate(X) to be Istate(w).

Finite, Admissible, and Zeno Timed Executions

The timed executions and timed execution fragments of a timed automaton can be partitioned
into finite, admissible, and Zeno timed executions and timed execution fragments.

A timed execution (fragment) X is defined to be finite, if it is a finite sequence and the do-
main of the last trajectory is a closed interval. A timed execution (fragment) ¥ is admissible if
ltime(X) = oo. Finally, a timed execution (fragment) X is Zeno if it is neither finite nor admis-
sible. Denote by t-frag*(A), t-frag™(A), t-frag?(A), and t-frag(A) the sets of finite, admissible,
Zeno, and all timed execution fragments of A. Similarly, denote by t-exec*(A), t-exec™(A),
t-exec?(A), and t-exec(A) the sets of finite, admissible, Zeno, and all timed executions of A.

There are basically two types of Zeno timed executions: those containing infinitely many
occurrences of non-time-passage actions, and those containing finitely many occurrences of
non-time-passage actions and for which the domain of the last trajectory is right-open. Thus,
Zeno timed executions represent executions of a timed automaton where an infinite amount of
activity occurs in a bounded period of time. (For the second type of Zeno timed executions, the
infinitely many time-passage steps needed to span the right-open interval should be thought
of as an “infinite amount of activity”.)
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A finite timed execution fragment ¥y = wpajwy - - - ayw, of A and a timed execution fragment
Yo = W ap41Wnt1 @ng2wnta - - - of A can be concatenated if Istate(Y1) = fstate(X3). The con-
catenation, written ¥y 7 g, is defined to be ¥ = woaywy -+ - (W, " W) ) p1Wnt1 Gngp2Wntz <
where, for any trajectories w and w’ with Istate(w) = fstate(w'),

~ (1) 2 { w(t) if t < ltime(w)

W'(t — ltime(w)) otherwise.

It is easy to see that X is a timed execution fragment of A.

The notion of prefix for timed execution fragments is defined as follows. A timed execution
fragment X1 of A is a prefiz of a timed execution fragment 35 of A, written Xy <; 3o, if
either ¥y = Yy or Xy is finite and there exists a timed execution fragment %} of A such that
Yo = Y17 Y. Likewise, X1 is a suffiz of ¥y if there exists a finite timed execution fragment

| such that ¥y = ¥ = X;. For a finite timed execution fragment Y%; and a timed execution
fragment Yo with ¥, <; Yg, define X3 — ¥ to be the (unique) timed execution fragment X
such that ¥y = Xy ™ X

Define Y «t, read “X before t”, for all t > 0, to be the prefix of 3 that includes exactly all

states with times not bigger than ¢. Formally,

Y if ¢ > ltime(Y)
Sat = X if t < ltime(X) and there exists ¥/ = wlla/w! - - such that
Y =X "Y" and ltime(¥') =t and w{ is not a point trajectory.

Likewise, define ¥ ¢, read “X after t”, for all ¢ < ltime(X) or all ¢ < ltime(X) when X is finite,
to be the suffix of ¥ that includes exactly all states with times not smaller than ¢. Formally,

vep 2 Y if  there exists ¥ = wlafw] - - -w! such that
N Y =YX"" Y% and ltime(X") =t and w! is not a point trajectory.

Observe that ¥ «t and ¥ > ¢t include also all the actions that occur at time ¢. In this paper
we apply the operators < and » mostly to trajectories. By specializing the definitions above,
w <t is the restriction of w to the interval [0,¢], while w1 is a trajectory w’ such that, for each
>0, () =w(t —1).

Timed Traces

In the untimed model automata are compared based on their traces. This turns out to be
inadequate in the timed model, since time is invisible in a trace (cf. [LV95] for more details).
This leads to timed traces, which consist of visible actions paired with their time of occurrence
(timed sequences) together with a time of termination.

A timed sequence over a set K is defined to be a (finite or infinite) sequence § over K x RZ°
in which the second components of every pair (the time components) are nondecreasing. Define
6 to be Zeno if it is infinite and the limit of the time components is finite. For any nonempty
timed sequence ¢, define ftime(d) to be the time component of the first pair in é.
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A timed sequence pair over K is a pair v = (4,t), where ¢ is a timed sequence over K and
t € TU{oo}, such that ¢ is greater than or equal to all time components in §. Let seq(y)
and [ltime(7y) denote the two respective components of v. Then define ftime(v) to be equal
ftime(seq(y)) in case seq(y) is nonempty, and equal to ltime(~y) otherwise. Denote by tsp(K')
the set of timed sequence pairs over K. A timed sequence pair v is said to be finite if both
seq(y) and ltime(y) are finite, and admissible if seq(7) is not Zeno and ltime(y) = cc.

Let ¥ = wpajwyiagws - - - be a timed execution fragment of a timed automaton A. For each
a;, define the time of occurrence t; to be 3 o<, ltime(w;). Then, define {-seq(¥) to be the
sequence consisting of the actions in Y paired with their time of occurrence:

t-seq(X) = (ay,t1)(ag, tz) - -

Then t-trace(X), the timed trace of X, is defined to be the timed sequence pair over vis(A):
t-trace(X) = (t-seq(X) | (vis(A) x T), ltime(X)).

Thus, t-trace(X) records the occurrences of visible actions together with their time of occur-
rence, and the limit time of the timed execution fragment. A timed trace suppresses both
internal and time-passage actions.

Let t-traces*(A), t-traces™( A), t-traces?( A), and t-traces( A) denote the sets of timed traces
of A obtained from finite, admissible, Zeno, and all timed executions of A, respectively.

4.2 Live Timed Automata

The definition of a live timed automaton is similar to the definition of a live automaton (Defi-
nition 3.2) except for the fact that the liveness condition is a set of timed executions.

Definition 4.2 (Live timed automaton) A liveness condition L for a timed automaton A
is a subset of the timed executions of A such that any finite timed execution of A has an
extension in L. Formally, I C t-exec(A) such that for all ¥ € t-exec™(A) there exists a
Y€ t-frag(A), such that ¥~ ¥ € L.

A live timed automaton is a pair (A, L), where A is a timed automaton and L is a liveness
condition for A. The timed executions of L are called the live timed executions of A. [

4.3 Safe Timed I/O Automata

Definition 4.3 (Safe timed I/O automaton) A safe timed 1/0O automaton is a timed au-
tomaton augmented with a wisible action signature, vsig(A) = (in(A), out(A)), which parti-
tions vis(A) into input and output actions. A must be input-enabled.

The internal and output actions of a safe timed I/O automaton A are referred to as the
locally-controlled actions of A, written local(A). Thus, local(A) = int(A) U out(A). |

Parallel composition of safe timed 1/O automata is defined similarly to the way it is defined
for the untimed model (Definition 3.4). All the time-passage actions synchronize. Thus, time
is only allowed to pass by a certain amount in the composition if all components allow the
same amount of time to pass.
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Definition 4.4 (Parallel composition) Two safe timed I/O automata Ag and Ay are com-
patible if the following conditions hold:

1. out(Ag)Nout(A1) =10
2. int(Ag) Nacts(Ay) = int( A1) N acts(Ag) = 0.

The parallel composition Ag||A; of two compatible safe timed 1/O automata Ag and A; is the
safe timed I/O automaton A such that

—_

. states(A) = states(Ao) x states(A;)
9. start(A) = start(Ao) x start(Ay)
out(A) = out(Ag) U out(Ay)

in(A) = (in(Ao) U in(A1)) — out(A)
int(A) = int(Ag) U int(Ay)

[ e

((s0, 1), a,(sh,s})) € steps(A) iff for all i € {0,1}

(a) if a € acts(A;) then (s;,a,s!) € steps(A;)
(b) if a ¢ acts(A;) then s; = s |

Note how Condition 6 of Definition 4.4 captures both time-passage steps (where all components
participate) and other steps (where a subset of the components participate).

Lemma 3.5 carries over to the timed case. However, a new definition of projection is needed
for timed executions. Specifically, let A = Ag||4;1. For any A-trajectory w, define w[A; to be
obtained from w by projecting every state in the range of w to A;. Let ¥ = wpajwiaswsy - - -
be an alternating sequence of A-trajectories and actions from acts(A) — {v(t) |t € R>°}. We
say that X is well-formed if ¥ does not end in an action if it is a finite sequence, the domain
of each trajectory w; that is not the last function of ¥ is closed, and, for each A; and each
J such that a; ¢ acts(A;), Istate(w;_1)[A; = fstate(w;)[A;. Then, if ¥ is well-formed, the
projection X [A; of ¥ onto A; is obtained by projecting each wy of ¥ onto A;, removing each
action a; that is not an action of A;, and concatenating each pair of (projected) functions wy,
wr+1 Whose interleaved action is removed. The next lemma is the analog of Lemma 3.5 in the
untimed model.

Lemma 4.5 Let A = Ag||A1. Let ¥ = woaywiagws - - - be a well-formed alternating sequence
of A-trajectories and actions from acts(A) — {v(t) | t € R>°}. Then,

1. XJA; € t-exec*(Ay), for all Ay, iff ¥ € t-exec*(A).

2. Y[A; € t-exec™(A;), for all A;, iff ¥ € t-exec™(A).

3. Y[A; € t-exec(A;y), for all A;, iff ¥ € t-exec(A).

4. If ¥ € t-exec(A) then, for all i, ltime(X) = ltime(X[A;). |
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4.4 Live Timed I/O Automata

In order to define live timed I/O automata, we generalize the notion of receptiveness to timed
systems. As for the untimed model, a live timed 1/O automaton is receptive if it can behave
properly independently of the behavior of the environment. Specifically, a game is set up
between a timed automaton and its environment and the timed automaton is receptive iff it
has a winning strategy against its environment. The notion of strategy is similar to the one
used for the untimed model. However, the presence of time has a strong impact on the type
of interactions that can occur between a timed automaton and its environment.

In the untimed model the environment is allowed to provide any finite number of input
actions at each move, and the system is allowed to perform at most one of its locally-controlled
actions at each move. Thus, the fact that the environment can be arbitrarily fast with respect
to the system, but not infinitely fast, is reflected in the structure of the environment moves.
This structure is not needed in the timed model since actions in the timed model are associated
with specific times. In particular, the relative speeds of the system and the environment are
given directly by their timing constraints. The behavior of the environment during the game
can be represented simply as a timed sequence over input actions.

In the untimed model a strategy is not allowed to base its decisions on any future input
actions from the environment. In the timed model, not only is the strategy not allowed to
know about the occurrence of future input actions, but the strategy is also not allowed to
know anything about the timing of such input actions, e.g., that no inputs will arrive in the
next € time units. Thus, if a strategy in the timed model decides to let time pass, it is required
to specify explicitly all intermediate states. By specifying all states at intermediate times for
a time-passage step, the current state of the system will always be known should the time-
passage step be interrupted by an input action. This leads us to the main idea behind the
definition of a timed strategy, that is, the system lets time pass by providing a trajectory.

As in the untimed model, a strategy in the timed model is a pair of functions (g, f).
Function f takes a finite timed execution and decides how the system behaves till its next
locally-controlled action under the assumption that no input are received in the meantime;
function ¢ decides what state to reach whenever some input is received.

Definition 4.6 (Strategy) Consider any safe timed I/O automaton A. A strategy defined on
A is a pair of functions (g, f) where ¢ : t-exzec*(A) x in(A) — states(A) and f : t-exzec*(A) —
(traj(A) X local(A) X states(A))U traj(A), where traj(A) is the set of A-trajectories, such that

1. g(¥,a) = s implies Ya{s} € t-exec*(A),
2.

(
(Y) = (w,a,s) implies ¥~ wa{s} € t-exec*(A),
3. f(

f
f(Y) = w implies ¥~ w € t-exec™(A),

4. f is consistent, i.e., if f(¥) = (w,a,s), then, for each ¢ < ltime(w), f(¥ "~ (w<at)) =
(wet,a,s), and, if f(X) = w, then, for each ¢t < ltime(w), f(X "~ (wat)) =wrt.
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For notational convenience define

o ) ow if f(X)=(w,a,s)

JX)drj = { w if f(¥) = w. u
Condition 1 of Definition 4.6 states that g returns a “legal” next state given an input. Condi-
tions 2 and 3 describe the two possible system moves given by f: either f specifies time-passage
followed by a local step, or f specifies that the system simply lets time pass forever. Note that
f specifies all states during time passage. The consistency condition (Condition 4) for f says
that, if after a finite timed execution ¥ the system decides to behave according to wa{s} or w,
then after performing a part of w the system decides to behave according to the rest of wa{s}
or w. In other words, a strategy decision cannot change in the absence of any inputs. The
consistency condition is required for the closure of the composition operator.

The game between the system and the environment works as follows. The environment can
provide any input at any time, while the system lets time pass and provides locally-controlled
actions based on its strategy. At any point in time the system decides its next move using
function f. If an input comes, the system performs its current step just until the time the
input occurs, and then uses function ¢ to compute the state reached as a result of the input.

A new problem arises when the system decides to perform an action at the same time
the environment is providing some input. Our model does not rule out such race conditions.
Practical examples of such situations arise whenever the system has some timeout mechanism
and the input occurs exactly when the timeout period expires. The race conditions are modeled
as nondeterministic choices. As a consequence, the outcome, that is, the result of the game,
for a timed strategy is a set of timed executions.

The following definition of the outcome of a strategy for safe timed 1/0 automata parallels
the corresponding definition in the untimed model.

Definition 4.7 (Outcome of a strategy) Let A be a safe timed I/O automaton and (g, f)
a strategy defined on A. Define a timed environment sequence for A to be a timed sequence
over in(A), and define a timed environment sequence Z for A to be compatible with a timed
execution fragment ¥ of A if either 7 is empty, or X is finite and ltime(X) < ftime(Z). Then
define R, y), the next-relation induced by (g, f), as follows: for any ¥, ¥/ € t-ezec(A) and any
7,7’ compatible with ¥, 3, respectively, ((¥,7), (X, ")) € Ry, gy iff

(X~ wa{s},7) if ¥ is finite, Z = ¢, f(¥) = (w,a,s),

(X" w,7) if ¥ is finite, Z = ¢, f(¥) = w,
(X~ wa{s},Z) if ¥ is finite, Z = (b, )", f(¥) = (w, a, s),
(X, 1) = ltime(X ™ w) < t,
(X~ w'a{s'},7") if ¥ is finite, 7 = (a, )", f(X).trj = w,
ltime(X ™ w) >, Ww=walt— ltzme( ), & =g(X¥"uwa),
.7 if 3 is not finite.
(
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Let ¥ be a finite timed execution of A, and Z be a timed environment sequence for A compatible
with Y.

An outcome sequence of (g, f) given ¥ and T is an infinite sequence (X",7"),>¢ that satisfies:
o (X079 =(¥,7) and
o forall n >0, (X1, 7771), (X%, 7)) € Ry ).

Note, that (X"),>0 forms a chain ordered by prefiz.

The outcome O, ¢)(X,Z) of the strategy (g, f) given ¥ and Z is the set of timed executions
Y for which there exists an outcome sequence (X",Z7"),>0 of (g, f) given ¥ and 7 such that
Y =lim, o X" [ |

The set of outcome sequences of (g, f) given some ¥ and 7 is determined step by step using
the next-relation R(, fy. The first case of the definition of R, ;) deals with the situation where
no input occurs and the system performs an action; the second case deals with the situation
where no input occurs and the system lets time pass forever; the third case deals with the
situation where both the environment and the system provide some action and the system
does not provide its action after the environment does; the fourth case deals with the situation
where both the environment and the system provide some action and the environment does
not provide its action after the system does; the fifth case is needed for technical convenience,
since the second case produces an admissible timed execution. Note, that the third and fourth
cases may both be applicable whenever the next input action of 7 and the local action chosen
by f occur at the same time. This is why the outcome is a set of timed executions.

The following lemma states that an outcome set is never empty and that an element of
an outcome cannot be finite. Furthermore, if an element of an outcome is Zeno, it contains
infinitely many actions (other than the implicit time-passage actions).

Lemma 4.8 Let A be a safe timed 1/O automaton, (g, f) a strategy defined on A, ¥ a fi-
nite timed execution of A, and T a timed environment sequence for A compatible with X.
Then O, 5)(S,Z) # 0 and Oy 11(3.Z) C (t-exec™(A) U t-exec”?(A)). Furthermore, if &/ €
Oy 1)(3,Z) and X' € t-exec”(A), then |X' | acts(A)| = co.

Proof. Let R(, ;) be the next-relation induced by (g9, f). Construct an outcome sequence
of (g, f) given ¥ and 7 inductively as follows. Define (X° 7Z°) = (¥,Z). For any n > 0,
assume (X771 7771} has been defined. Then it is easy to see that the condition of at least
one case in the definition of R, sy is satisfied. Thus, define (X", Z") to be any pair such that
(21,2771, (X", 1")) € Ry, 5. This inductively defined outcome sequence gives rise to an
element in O, r)(¥,7). That proves that O, £)(¥,7) is not empty.

Let (X", Z™) be an arbitrary outcome sequence of (g, f) given ¥ and Z. Clearly, ¥° = % €
t-evec(A). Assume, that X"~ € t-exec(A). Then, by the four conditions of Definition 4.6, it
is easy to see that also X" € t-exec(A). Thus, by induction, ¥" € t-exec(A) for all n > 0.
Suppose by contradiction that ¥’ = lim,_ .. (X") ¢ t-exec(A). Then there must be a finite

27



prefic X' of ¥/ such that X7 ¢ t-exec*(A). Also, ¥’ must be a prefiz of X" for some n.
However, this contradicts the fact that X" € t-exec(A). Thus, ¥/ € t-exec(A).

Now, assume by contradiction that ¥’ is finite. Then there exists a number n’ such that
for all » > n', ¥" = ¥»~1 = ¥, but this contradicts the definition of Ry, 1), since X" = yn-l
only if X"~ is admissible. Thus, O, r)(2,7) C (t-exec™(A) U t-exec? (A)).

Finally, it is easy to see that if ¥/ € t-eavecZ(A), then Y/ is an infinite sequence of trajectories
and actions. Only the second case in the definition of R, ;) can lead to a finite sequence, but
in this case the outcome would be admissible (cf. Definition 4.6 Condition 3). [

Another problem due to the explicit presence of time in the model is the capability of a system
to block time. Under the reasonable assumption that it is natural for a system to require time
to advance forever, a timed automaton that blocks time cannot be receptive. Thus, we could
assume that finite and Zeno timed executions are not live and that the environment cannot
block time. However, as is illustrated in the following example due to Lamport, Zeno timed
executions cannot be ignored completely.

Example 4.1 Consider two safe timed I/O automata A, B such that in(A) = out(B) = {b}
and out(A) = in(B) = {a}. Let A start by performing its output action a and let B start
by waiting for some input. Furthermore, let both A and B reply to their n*® input with an
output action exactly 1/2" time units after the input has occurred.

Consider the following definition of receptiveness, which assumes that the environment does
not behave in a Zeno manner: a pair (A4, L) is receptive iff there exists a strategy (g, f) defined
on A such that for each finite timed execution ¥ of A and any admissible timed environment
sequence I for A compatible with 3 we have (’)(gj)(E,I) C L. Then it is easy to observe that,
if L4 and Lp are defined to be the set of admissible timed executions of A and B, respectively,
the pairs (A, L4) and (B, L) are receptive. However, the parallel composition of A and B
vields no admissible executions, rather it only yields a Zeno timed execution, which blocks time.
Thus, the parallel composition of (A, L4) and (B, Lg) constrains the environment. Observe
that (A, L4) and (B, Lg) “unintentionally” collaborate to generate a Zeno timed execution:
each pair looks like a Zeno environment to the other. [ |

To eliminate the problem of Example 4.1 one must ensure that a system does not collaborate
with its environment to generate a Zeno timed execution. We call those timed executions
where the environment is Zeno but the system does not collaborate with the environment to
generate the Zeno timed execution Zeno-tolerant.

Definition 4.9 (Special types of timed executions) Given a safe timed I/O automaton
A, and given a timed execution X of A,

e Y is said to be environment-Zeno if ¥ is a Zeno timed execution that contains infinitely
many input actions;

e Y is said to be system-Zeno if X is a Zeno timed execution that either contains infinitely
many locally-controlled actions or contains finitely many actions;
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e Y is said to be Zeno-tolerant if it is an environment-Zeno, non-system-Zeno timed exe-
cution; equivalently, ¥ is Zeno-tolerant if

1. ltime(X) is finite,
2. Y contains infinitely many input actions, and

3. 3 contains finitely many locally-controlled actions.

Denote by t-exec?!(A) the set of Zeno-tolerant timed executions of A. [ ]

The notion of environment-Zenoness captures the fact that the environment contributes to the
Zenoness of a timed execution. The environment can contribute only by providing infinitely
many actions in a finite time. The notion of system-Zenoness captures the fact that the
system contributes to the Zenoness of a timed execution. The system can contribute either
by providing infinitely many actions in a finite time, or by letting time pass in a Zeno way,
without producing any action, even though the environment does not provide any more actions.
The notion of Zeno-tolerance captures the fact that only the environment contributes to the
Zenoness of a timed execution.

In Example 4.1 the unique execution of A||B that contains infinitely many actions is an
example of an environment-Zeno and system-Zeno timed execution. We define a strategy to
be Zeno-tolerant if it guarantees that the system never chooses to block time in order to win
its game against the environment. That is, a Zeno-tolerant strategy produces Zeno timed
executions only when applied to a Zeno timed environment sequence Z, and in these cases the
outcome is Zeno-tolerant. Thus, the system does not respond to Zeno inputs by behaving in a
Zeno fashion.

Definition 4.10 (Zeno-tolerant strategy) A strategy (g, f) defined on a safe timed I/0
automaton A is said to be Zeno-tolerant if, for every finite timed execution ¥ € t-exec*(A) and
every timed environment sequence 7 for A compatible with ¥, O, (X,7) C t-evec™(A) U

t-exec?t(A). |

We can now define receptiveness by requiring a system to behave according to its liveness
condition under non-Zeno environments and in a Zeno-tolerant way under Zeno environments.

Definition 4.11 (Receptiveness) Let A be a safe timed I/O automaton and L C t-exec(A).
A timed strategy (g, f) defined on A is called a receptive strategy for (A, L) if (g, f) is Zeno-
tolerant and for each finite timed execution ¥ of A and each timed environment sequence 7
for A compatible with X, O, 7)(X,Z) C L U t-exzec?(A). The pair (A, L) is receptive if there
exists a receptive strategy for (A, ). [

A pair (A, L) is receptive if, after any finite timed execution and with any (Zeno or non-Zeno)
sequence of input actions, it can generate some admissible timed execution in L or some Zeno-
tolerant timed execution. Also, A must never generate one of its finite or system-Zeno timed
executions, since it would constrain its environment in this case. Thus liveness conditions
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should not include any finite or system-Zeno timed execution. Zeno-tolerant timed executions
are used only to handle illegal interactions, and therefore also should not be included in liveness
conditions. This leads to the definition of live timed 1/0 automata, where the liveness condition
contains only admissible timed executions, but the strategy is allowed to yield Zeno-tolerant
outcomes when given a Zeno timed environment sequence.

Definition 4.12 (Live timed I/O automaton) A live timed I/0 automaton is a pair (A, L),
where A is a safe timed I/O automaton and L C t-exec™(A), such that the pair (A, L) is re-
ceptive. [ |

Lemma 4.13 If (A, L) is a live timed 1/0 automaton, then L is a liveness condition for A.

Proof. Given a finite timed execution ¥ of A, consider a receptive strategy (g, f) for (A4, L).
Consider any timed execution ¥~ X' € O, 7y(¥,¢). Such a timed execution exists according
to Lemma 4.8. The timed execution ¥~ ¥/ is not Zeno-tolerant since it contains finitely many
input actions. Therefore ¥~ X/ is a timed execution of L, that is, ¥ can be extended to a
timed execution of L. [

There is an interesting property that connects Zeno-tolerance, receptiveness, and admissibility.
This property emphasizes the importance of admissible timed executions in the timed model.

Proposition 4.14 Let A be a timed I/0 automaton and (g, f) be a timed strategy defined on
A. Then (g, f) is receptive for (A, t-exec™(A)) iff (g, f) is Zeno-tolerant.

Proof. Follows trivially from the definitions. [ |

As in the untimed model, the parallel composition operator defined for safe timed 1/0
automata is extended to live timed I/O automata.

Definition 4.15 (Parallel composition) Two live timed I/O automata (Ao, Lo) and (Ay, Ly)
are compatible iff the safe timed I/O automata Ag and Ay are compatible. The parallel compo-
sition (Ao, Lo)||(Ay1, L1) of compatible live timed I/O automata (Ao, Lo) and (A, Lq) is defined
to be the pair (A, L) where A = Ag||4; and L = {¥ € t-exec(A) | ¥[Ag € Lo and ¥[A; € L1}.
|

As expected, parallel composition is closed for live timed 1/O automata in the sense that it
produces a new live timed I/O automaton; however, the proof of closure is quite complex.
For compatible live timed I/O automata (Ag, Lo) and (Aq, Ly), let (A, L) denote the parallel
composition (Ag, Lo)||(A1,L1). In order to prove that (A, L) is a live timed 1/O automaton
we must show that (A, L) is receptive, which, in turn, requires finding a receptive strategy for
(A, L).

The proof proceeds by first defining a strategy (g, f) for (A, L) based on a strategy (g, fi)
for each (A;, L;), and then proving that (g, f) is a receptive strategy for (A, L). Function ¢
computes, given input a, the next state according to the g; functions of those components of
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A for which a is an input action, and simply leaves the state unchanged for those components
for which @ is not an action. Function f determines, using the f; functions, which component
is allowed to execute the next locally-controlled action. Say this is component k and it wishes
to perform action a at time ¢t. Then each component A; evolves based on f; up to time t.
Furthermore, at time ¢, Ay takes a step based on fi and, if @ is an input action of A_p,
Aq1_y) takes a step based on g(;_p). If at time ¢ both Ay and A; want to take a step, then
priority is given to Ag. We do not need to enforce any specific tie breaking policy in the timed
case: the fact that time must elapse ensures that both Ay and A; have a chances take steps
under non-Zeno environments.

Definition 4.16 (Parallel composition of (timed) strategies) Let A = Ag||A; be the
parallel composition of two compatible safe timed I/O automata Ag and Ay, and let (go, fo) and
(g1, f1) be strategies defined on Ag and Ay, respectively. The parallel composition (go, fo)|l(g1, f1)
of the strategies (go, fo) and (g1, f1) is the pair of functions (g, f)

g :t-exec™(A) x in(A) — states(A)
[it-exec*(A) — (traj(A) X local(A) X states(A)) U traj(A)

such that

gi(X[A;,a) for a € in(A;)

g(X,a)=s where, forall : € {0,1}, s[A4; = { Istate(Z)[A; for a ¢ acts(A;)

and f is defined as follows: for all ¢ € {0, 1}, define w; to be fi(X[A;).trj. Pick the smallest k
such that ltime(wy) = min(ltime(wy), ltime(wy )). Define w such that

Wl A; = Wi ifi=k
] wialtime(wy) if i # k.

Distinguish two cases.

1 If fu(X[Ak) = (wg, a, s;) then f(Y) = (w,a,s),

Sk ifi=k
where, for all ¢ € {0,1}, s[4; = ¢ ¢i((X"w)[A;,a) if i # k and a € in(A4;)
Istate(w)[ A; if i # k and a ¢ acts(A4;).
2. If fr(¥]Ar) = wi then f(¥) = w. |

Lemma 4.17 Let Ag and Ay be compatible safe timed I/O automata and let (go, fo) and
(g1, f1) be strategies defined on Ag and Ay, respectively. Then (go, fo)ll(g1, f1) is a strategy
defined on Agl|A;.

Proof. Let (g, f) = (g0, fo)l|(91, f1). To prove that (g, f) is a strategy defined on A, the four
conditions of Definition 4.6 must be checked. Conditions 1-3 are trivial given the definitions of
g and f, and the fact that (go, fo) and (g1, f1) are strategies defined on Ag and Ay, respectively.
Condition 4 (consistency) needs more analysis.

31



Let ¥ € t-exec*(A), and suppose that f(X) = (w,a,s). We leave to the reader the case
for f(¥) = w since it is simpler. Let ¢ be an arbitrary time such that ¢ < ltime(w). We show
that f(X¥ " (w«<t)) = (wet,a,s). By the definition of f and by the compatibility of Ag and
Ay, there is a unique index 7 such that f;(¥[A;) = (w[Ai,a,s[A;). Let w; denote w[A; and
s; denote s[A;. Let j denote 1 — ¢. Then, f;(X[A;).trj = w; for some trajectory w; such that
wl[A; < w;, and s[A; is either ¢;((X[A;) "~ (w; < ltime(w)), @) or w;(ltime(w)) depending on
whether a is an input action of A;. Since f; is consistent, f;((X[A;) " (w; at)).trj = w; > t.
Furthermore, since f; is consistent, f;((¥[A4;) " (w<t)[A;) = ((w; > 1), a,s;). By the definition
of (9, f), (" (wat)) = (wrt,a,s). |

The following lemma is the key step for showing that the strategy of Definition 4.16 is recep-
tive if the component strategies are receptive. Specifically, up to a technical condition, the
projection of an outcome of (g, f) onto a component A; is an outcome of (g;, f;). Intuitively
this means that even though the composed system uses its composed strategy to find possible
outcomes, up to a technical restriction it still looks to each component as if it is using its
own component strategy. The restriction says that the projection of a Zeno execution onto
A; contains infinitely many actions. This restriction does not hurt the applicability of the
lemma later in Lemma 4.19. The proof of Lemma 4.18 is more complex than the proof of the
analogous result for the untimed case (cf. Lemma 3.15).

Lemma 4.18 Let Ay and Ay be compatible safe timed 1/0O automata and let (go, fo) and
(g1, f1) be strategies defined on Ag and Ay. Let A = Ag||Ay and (g, f) = (go, fo)l|(g1, f1). Let
3 be an arbitrary finite timed execution of A, I be an arbitrary timed environment sequence
for A compatible with 3, X' be an arbitrary timed ezecution of Oy, 1(X,1), and i be either 0
or 1. Assume that |X' | acts(A;)| = oo if ¥ is Zeno. Then there exists a timed environment
sequence I; for A; compatible with ¥.[A;, such that X'TA; € Oy, 5,)(X[A;, T;).
Proof. Let R, ;) and R(,, 1) be the next-relations induced by (g, f) and (g;, fi), respectively,
and let (X",7"),>0 be an outcome sequence of (g, f) given ¥ and Z such that ¥/ = lim,,_., X".
Since (X"),>0 forms an infinite chain ordered by prefix and X° = ¥, ¥ <; ¥/, Define 7; =
t-seq(X' — ) | (in(A;) x RZ%). Then either Z; is empty or ftime(Z;) > ltime(X) = ltime(X[A;).
Thus, Z; is compatible with X[ A4;. For each n > 0 define Z% = t-seq(X' — ¥") | (in(4;) x RZ°).
Define a sentence to be a finite timed execution that ends with a point trajectory, i.e., a
trajectory whose domain consists of a singleton set. For each n > 0, define sentence(¥"[A4;)
to be the maximum between Y[ A; and the maximum prefix of X" [A; that is a sentence. Since
for each n > 0 the number of actions in X" and ¥"~! differ by at most 1, and since ¥g = 3, it
is easy to show that for each n > 0 there exists m < n such that sentence(¥X"[A;) = X[ A;.
Denote the minimum such m by m(n). Observe that m(n) is monotonic non-decreasing.
Finally, for each n > 0, since in ¥ — ¥™(") 1o action from A; occurs, 1 = Izm(n).
We prove the following facts by induction on n:

P1 If n > 0 and X"[A; is not a sentence and is finite, then
S [A; = (B[4~ fi(Em=DT A trf) < ltime(E7);
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P2 If n > 0 and ¥"[ A, is either a sentence or admissible, then either ¥"[4; = ¥""![A4; and
Y[ A; is a sentence, or ((L7™(=1) [Ai,IZ»m(n_l)), (XA IE)) € Rg, 5

The base case is trivial. For the inductive step assume that properties P1 and P2 hold for
each j < n. Observe first that, if X" is finite, then

P3 (X" A) ™ fi R A = (XTI [A) 7~ fi(Sm DAy
In fact, if n = 1 or ¥"71[A; is a sentence, then m(n — 1) = n — 1 and P3 holds trivially; if
Y711 4; is not a sentence, then m(n — 1) = m(n — 2), and thus
(En_l [AZ) - fi(En_l [Az)tr]

= ((2TD[A) " f(EMOTDTA) ) @ ltime(S7T1))
FE™=D1A) ™ f(2™7D[47)) @ ltime(X"71)).trj
(B2 [A4) ™ fi(EOTD [ A1
(2D A4~ fi( DA 8,

2
3

where step 1 follows by induction and from the fact that ¥”~! is not a sentence, step 2 follows
from consistency of f; (cf. Condition 4 of Definition 4.6), and step 3 follows from the fact that
m(n — 1) = m(n — 2). We now distinguish the following cases.

Case 1 X" ! is not finite.

Then ¥" is not finite, and statement P1 is satisfied trivially. Since (X", Z"71), (X", 1)) €
Ry 5y and X"~ is not finite, then (¥"~1,Z771) = (¥",77).

By induction, ((Em(”_l)[Ai,IZm(n_l)), (ynt [Ai,If_l)) € Rp)-
Since £ = L0t (S0 [A;, 70TV (S04, 1) € Ry, -
Case 2 Y"1 is finite and X" is not finite.

Since Y™ is not finite, statement P1 is satisfied trivially. Since ((X"~1,7771), (X", 7)) €
Ry, 1), by Definition 4.7, X" = Yl ~ ) where w = f(X"71), and I = 707! = ..
Observe that
A (B"7HA) 7 (w[4))
(Z"71A) ™ fi(B" A

(Zm0mD[4) 7~ f(Sm D[ 4))

e (o [I=

where step 1 is trivial, step 2 follows from definition of (g, f) (Definition 4.16) and the
fact that ltime(w) = oo (because (g, f) is a strategy), and step 3 follows from P3. Thus,

by case 2 of Definition 4.7, ((Em(”_l)[Ai,IZn(n_l)), (XA I7)) € Ry, 1)

Case 3 Y"1 and X" are finite.

The definition of R, sy gives three cases to consider: the first, third, and fourth cases in
Definition 4.7. We consider the first and third cases together.
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Case 3.1 First and third cases.
By the definition of R, y), X" = Yl ~wa{s}, where f(X"71) = (w,a,s).
Case 3.1.1 a ¢ acts(A;).

Then
YA, (Xt~ wa{s})[A;

yrol [AZ ~w [AZ

yr-l [A; 7 (fi(En_l [A;).trj

(2D 1A~ £ DAL 8
where step 1 is trivial, step 2 follows from the fact that a ¢ acts(A;), step 3
follows from the definition of (g, f) (cf. Definition 4.16), and step 4 follows from
P3. This is sufficient to show statement P1. For statement P2, either X" [A4;
is not a sentence, or X"[A4; is a sentence, but in this case X"[A; = X" 71[4;,
since w would be a point trajectory.

Case 3.1.2 a € local( A;).
Statement P1 is satisfied trivially since ¥™"[A; is a sentence. By the defini-
tion of (g, f) (Definition 4.16) and the fact that a € local(4;), f;(E"71[A;) =
(w[A;, a,s]A;). Observe that

SrA; = STTUA (W[ Ag)a{s[ A}

2 w70 (R LA e s Ay)
where step 1 follows from the fact that a € acts(A;) and step 2 follows from
P3. By consistency of (g, /), fi( SV [Ai) = (S DAy ], a, {s[A}).
Thus, by cases 1 or 3 of Definition 4.7, ((¥™(*=1) [Ai,IZ»m(n_l)), (X"[A;,17)) €
Rigi.z)-

Case 3.1.3 a € in(4;).
Statement P1 is satisfied trivially since " [ A, is a sentence. Let ¢ = ltime(X"~17

w). Observe that Izm(n_l) = (a,t)I}. Furthermore,
N4 = NUTA (W Ada{s[ A}
2 (B4 F(ET A tr) <) a
gi(((E -1 [AZ) A fi(En_l [Az)tr]) at, a)
= (x4~ (S DA i) at) @
gi((EmC=D[A) " (=D))<t a).
where step 1 is trivial, step 2 follows from the definition of (g, f), and step 3 fol-
lows from P3. By case 4 of Definition 4.7, ((¥™(*=1) [Ai,IZ»m(n_l)), (XA, IM)) €
Rg. 5)-
Case 3.2 Fourth case.
The definition of R, ) gives us X" = yrlowa{s'}, 177 = (a, )7, f(27 1Y) =
w, ltime(X" 1~ w) > 1, W' = wat, and g(X"! "W’ a) = &', Distinguish three
subcases.

s (oo [l [I=

Em(n
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Case 3.2.1 a ¢ acts(A;).
Similar to subcase 3.1.1.
Case 3.2.2 a € local( A;).
This situation cannot occur since a € in(A) (cf. the definition of parallel com-
position).
Case 3.2.3 a € in(4;).
Similar to subcase 3.1.3.

Let ko, k1, k2, k3, ... be the sequence of indices such that ko = 0 and for each n > 0, ¥ [A; is
either a sentence or is an admissible timed execution. By statements P1 and P2, the sequence
(Sho[A;, TF0), (Sk[A;, ZF), (SR [ Ay, ZF2), . . .is a prefix of an outcome sequence of (g;, f;) given
Y[A; and Z;, possibly with repeated elements. We distinguish the following cases.

1. There exists n’ > 0 such that ¥ is not finite.

Then, by definition of R(, s, there exists a number n' > 0 such that " is admissible,
and for all n > n/, % = ©% = Y. In particular, the k;’s are infinite, and there exists
n" > 0 such that for each n > n', ¥*»[A; = Y/[A;. Thus, lim,_ (3% [4;) = S/[A;.
By case 2 of Definition 4.7, for each n > n, (SFn[A;, IF), (Skot1 [4;, T € Ry 5)-
Therefore, ¥'[A; € O, 1)(X[ A, L)

2. All the ¥™’s are finite and there are finitely many k;’s.

Then there is a number n’ such that forall n > n’, wr' [A; is not a sentence nor admissible.
This means that ¥’ — ¥ contains no actions from acts(A;), which implies that |/ |
acts(A;)| = |z} acts(A;)| # oo since Y7 is finite. Thus, by hypothesis X/ is not Zeno.
Lemma 4.8 then implies that ¥ is admissible.

Let k be the index of the maximum of the k;’s. Then, for each n > kg, since ¥"[4; is
not a sentence nor admissible, Y"[A; = (SF[A; ~ f;(SF[A;).tr]) < ltime(X™)). Since
%' is admissible, lim,, ., {time(¥") = oo which implies that ltime(f;(X*5[A;).trj) = oc.
Thus, f;(¥¥) = w for some admissible trajectory w. Furthermore, for each n > F,
since X/ — X" does not contain any action from acts(A;), " = ¢. Thus, the sequence
(Sho[Ay, TR, (S A;, I8, (SR Ay, TF2), . (SFR[As €), (SRR [ A~ w, ), (SRR [ A~ w, €),
(SR [A; " w,e), (N*[A; " w,¢), ... is an outcome sequence of (g;, f;) given Y[A; and Z;,
possibly with repeated elements. The limit of the timed executions of such sequence
is YFR[A; ~ w, which is given by lim,_oo(XSF[A; © fi(XF[A;).trf) < ltime(X™). Since for
each n > k Y7"[A; is not a sentence nor admissible, the limit above is the same as

lim,, oo X" [A;, which in turn is X'[A;. Thus, 3'[A; € Oy, 5 (X[ A, Li).

3. All the ¥™’s are finite and there are infinitely many £;’s.

In this case (Ef" [Ai, I7)n>0 is an outcome sequence of (g;, f;) given X[ A; and Z;, possibly
with repeated elements. Then X/[A; = (limy,—eo X)) [A; = lim,— oo (X"[A;), which means
that E/[AZ' € O( )(E[AZ’,IZ'). [ |

gisfi
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Lemma 4.19 Let (Ag, Lo) and (A1, L1) be compatible live timed 1/0 automata and let (g;, f;),
i € {0,1}, be a receptive strategy for (A;, L;). Furthermore, let (A, L) = (Ao, Lo)||(A1, L1).
Then (g, f) = (g0, fo)||(g1, f1) is a receptive strategy for (A, L).

Proof. We need to show that Oy, ,(¥,7) C L U t-ezec?!(A), for all ¥ € t-exec*(A) and all
timed environment sequences 7 for A that are compatible with X.

Let ¥ € t-exec*(A) be an arbitrary finite timed execution of A and Z be an arbitrary timed
environment sequence for A that is compatible with ¥. Since (g;, fi) is a receptive strategy
for (A;, L;), (¢i, fi) is, by Definition 4.11, a Zeno-tolerant strategy defined on A;. Let ¥’ be an
arbitrary element of the outcome (’)(Mc)(E,I). By Lemma 4.8, ¥/ is either Zeno or admissible.
We distinguish the two cases.

1. ¥ is Zeno.

By Lemma 4.8, ¥ contains infinitely many actions (|%' | acts(A)| = 00). Assume X' is
not Zeno-tolerant. Then |¥ | local(A)| = oo. Since each locally-controlled action in '
belongs to the locally-controlled actions of either Ag or Ay, there exists an ¢ such that
|X | local(A;)| = oo, which also implies |(X/[A;) I local(A;)| = oco. Thus, Lemma 4.18
is applicable. Lemma 4.18 now implies the existence of a timed sequence Z; over in(4;)
compatible with ¥[A; such that ¥'[A; € O, 5,)(X[A;,Z;). By Lemma 4.5, since X/ is
Zeno, ltime(X'[A;) is finite. Furthermore, since |(X/[A;) | local(A;)| = oo, X/[A; is Zeno
but not Zeno-tolerant. This contradicts the fact that (g;, fi) is Zeno-tolerant. Thus,
Y € t-evec?t(A).

2. ¥ is admissible.

By Lemma 4.18, for each i € {0, 1} there exists a timed sequence Z; over in(A;) compat-
ible with X[ A;, such that X'[A; € Oy, 5,)(X[A;,Z;). By Lemma 4.5, Y[ A; is admissible.
Since (g, f;) is a receptive strategy for the pair (A;, L;), ¥'[A; € L;. This implies, by
Definition 4.15, that ¥/ € L. [ ]

Theorem 4.20 (Closure of parallel composition) Let (Ag, Lo) and (A1, L1) be compati-
ble live timed 1/0O automata. Then the parallel composition (Ag, Lo)||(A1, L1) is a live timed
1/0 automaton.

Proof. Let (A, L) = (Ao, Lo)||(A1, L1). By the definition of parallel composition, A is a safe
timed I/O automaton. Furthermore, since L; C t-exec™(A;), Lemma 4.5 and Definition 4.15
show that L C t-exec™(A).

For each ¢ € {0,1}, let (g;, fi) be a receptive strategy for (A;, L;). By Lemma 4.19 the
strategy (g, f) = (g0, fo)||(g1, f1) is a receptive strategy for (A, L). Therefore, the pair (A, L)
is receptive. By Definition 4.12 of a live timed I/O automaton, (A, L) is a live timed 1/0
automaton. ]
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4.5 Preorder Relations for Live Timed I/O Automata

For safe timed 1/O automata there are several ways of defining a timed trace preorder that
depend upon which kinds of traces are being considered. A naive choice would be to consider
all the timed traces of a safe timed 1/O automaton; however, one might not be interested in,
e.g., the Zeno timed traces of a system. For the live preorder, on the other hand, there is a
unique natural choice.

Definition 4.21 (Timed trace preorders) Given two live timed /O automata (A;, Lq)
and (Agz, Lz) such that esig(A;) = esig(Az) define the following preorders:

Safe: (A1, L1) Cgy (Ag, La) iff t-traces(Ay) C t-traces(Az).

Safe-finite: (A1, L1) C§, (Ag, La) iff  t-traces™(Ay) C t-traces™(Asy).

Safe-admissible: (Aq, L1) Cg (Ag, Ly) i t-traces™(Ay) C t-traces™(As).

Safe-non-Zeno: (Aq, L1) T8 (Ag, Lg) it (Ay, L1) CF, (Ag, L) and (Aq, L1) Cg (Ag, L).
Live: (A1, L1) Ty (Ag, Ly) iff  t-traces(Ly) C t-traces(Lz). ]

The safe-non-Zeno preorder is the relation that is used in [VL92]. This preorder is used in
[VL92] instead of the more natural safe-admissible preorder since finite timed traces are needed
for substitutivity of a sequential composition operator.

Note that the live preorder implies the safe preorder whenever the involved safe timed 1/0
automata have timed finite internal nondeterminism. On the other hand, if the involved safe
timed 1/O automata do not have timed finite internal nondeterminism, then the live preorder
only implies finite timed trace inclusion. Essentially, timed finite internal nondeterminism
requires that a timed automaton has a finite internal branching structure. In particular, a
finite timed trace can lead to at most finitely many states.

Definition 4.22 (Timed finite internal nondeterminism) A timed automaton A has timed
finite internal nondeterminism (t-FIN) iff, for each trace v € t-traces*(A), the set {lstate(X) |
t-trace(X) = v} is finite. |

Proposition 4.23 Let (A, L1) and (Az, Ly) be two live timed 1/0 automata with vsig(Ay) =
vsig(As).

1. If (A1, L1) Cg, (Ag, L) then (Aq, L1) CF, (Ag, Lo).
2. If Ay has t-FIN and (Aq, L1) CF, (Ag, Lo) then (Aq, L1) Cg (Ag, La).
3. If (A1, L) Cr (Ag, Lo) then (Aq, L) C§, (Ag, Lo).

Proof.

1. Let v be a finite timed trace of A;. By definition of timed trace, there is a timed execution
Y1 of Ay such that t-trace(¥1) = v. By definition of live timed I/O automaton there exists
an admissible timed execution X} of Ay such that ¥y <; ¥} and t-trace(X)) € Ly (just
apply any receptive strategy for (A1, L1) to ¥; and to an admissible timed environment
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sequence for A compatible with ¥1). By definition of live timed I/O automaton, X} is
a timed execution of Ay. Since (Aq, L1) C& (A, Lg), there exists a timed execution X
of A such that t-trace(X}) = t-trace(X4). Since the set of timed executions of a timed
I/O automaton is closed under prefix, there is a prefix Y5 of ¥4 such that ¥, is a timed
execution of Ay and t-trace(Xy) = 7, i.e., v is a timed trace of Aj.

2. This is a standard result that appears in [LVI1].

3. Similar to the proof of Proposition 3.19, part 1. Use timed executions and timed traces
instead of executions and traces, respectively. [ |

The important property of the safe and live preorders is that they are substitutive for parallel
composition. This means that an implementation of a system made up of several parallel
components can be obtained by implementing each component separately.

Theorem 4.24 (Substitutivity) Let(A;, L;), (AL L), ¢ € {0,1} be live timed 1/0 automata,
and let Cx be one relation among Csy, Tf,, C&, C8 and Cre. If (Ao, Lo), (A1, L1) are
compatible, (A{, L{),...,(A}, L) are compatible, and, for each i, (A;, L;) Cx (AL L)), then
(Ao, Lo)ll - - [I(A1, L1) Ex (Ag, L)l - - - [I(Ag, L)

Proof. The substitutivity result is a direct consequence of Lemma 4.5 and the observation,
analogous to the one of the untimed model, that parallel composition of timed execution sets
preserve timed trace equivalence. [ |

It is well known that simulation based proof techniques [LV91, LV95] can be used for imple-
mentation notions based on trace inclusion. In [GSSL93] simulation based proof techniques
are extended to live preorder, and in [SLL93b] the new proof techniques are used to verify
nontrivial communication protocols.

4.6 Comparison with Other Timed Models

This section compares our timed model with the work of [AL91b, MMT91, V1.92].

The formalism that is used in [AL91b] is the Temporal Logic of Actions (TLA) [Lam91]
extended with a new variable now that models time. A specification S consists of the conjunc-
tion of three formulas Init AIl A L where Init represents the initial configurations of 5, Il is a
safety property, and L is a liveness property. The subformula Init A 1l corresponds to our safe
timed I/O automata, while the subformula L corresponds to our timed liveness conditions. In
[AL91b] L can also be satisfied by finite or Zeno executions or by executions that do not satisfy
Init A1, The formula L is a liveness condition for Init A Il based on our definition iff the pair
(Init AL, L) is machine-closed based on the definition in [AL91b].

There is a special formula N7 in [AL91b] that is used to express non-Zenoness, i.e., that
time advances forever. Time blocking or Zeno behaviors are undesirable in [AL91b] as well as
in our model; however, it is possible for the safety part of a specification to describe systems for
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which time cannot advance past a given upper bound whenever a particular state is reached.
Such a situation is eliminated in [AL91b] by requiring the pair (1I, N7) to be machine-closed.
In our model, on the other hand, the same situation is eliminated by the fact that system-Zeno
executions are not allowed in the liveness part of a live timed I/O automaton and that a live
timed I/O automaton is machine-closed by definition.

A major difference between our notion of receptiveness and the notion of receptiveness of
[AL91Db] is in the role of time: in our model no one is allowed to have control over time; in
[AL91Db] either the system or its environment must have control over time. We believe that it
is more reasonable to assume that no one has control over time.

The model of [MMT91] is an extension to the timed model of the I/O automaton model of
[LT87]. The locally-controlled actions of an automaton are partitioned into classes, each one of
which is associated with a lower bound (possibly 0 but not oo) and an upper bound (possibly co
but not 0). Actions from one class with lower bound ¢; and upper bound ¢z must stay enabled
for at least ¢; time units before one of them can be performed, and cannot stay enabled more
than ¢, time units without any one of them being performed.

An automaton M of [MMT91] can be represented in our model as a pair (A, L) where A is a
safe timed I/O automaton with a transition relation that satisfies all the timing constraints of
M, and L is the set of all admissible executions of A. It is easy to check that (A, L) is receptive
and that admissible timed trace inclusion in [MMT91] coincides with live trace inclusion in
our model. However, there are liveness conditions that can be represented in our model but
cannot be represented naturally in the model of [MMT91].

The work in [VL.92] does not deal with general liveness properties, and argues that finite and
admissible timed traces inclusion is generally sufficient to express a useful notion of implemen-
tation whenever time is involved. The work in [SLL93b], however, has shown that liveness is
useful even in a timed model. In general, the automata of [VL92] are not receptive; however, in
order to avoid trivial implementations, [VL92] assumes some form of I/O distinction and some
form of receptiveness at the lower level of implementation. There is a very close connection
between the technical definitions of 1/0 feasibility and strong 1/0 feasibility of [V1.92] and our
notion of receptiveness. It is possible to represent each timed I/O automaton A of [VL92] with
the pair (A, L) where L is the set of admissible executions of A. The notion of I/O feasibility
of [VL92], which requires each finite timed execution of A to be extendible to an admissible
timed execution of A using locally-controlled actions only, is stronger than requiring that L is
a liveness condition for A and weaker than requiring that (A, L) is a live timed I/O automaton.
In order to have closure under parallel composition, [VL92] introduces a stronger requirement
on I/O automata called strong I/0 feasibility. Strong I/O feasibility adds to I/O feasibility
the requirement that the safe part of an I/O automaton A does not exhibit any system-Zeno
execution. However, receptiveness, which is weaker than strong I/O feasibility since the safe
part of a live timed 1/O automaton is allowed to exhibit system-Zeno behaviors, is sufficient
to guarantee closure under parallel composition and hence substitutivity.

39



SPEC

Untimed

. Timed
'
IMPL

Figure 1: A stepwise development from an untimed specification to a timed implementation.

5 Embedding the Untimed Model in the Timed Model

The untimed model, presented in Section 3, is used to specify systems where the amount of
time that passes between actions is considered unimportant. Many problems in distributed
computing can be stated and solved using this model. However, it is not possible to state
anything about, e.g., response times in the untimed model. It is implicitly assumed that the
final implementation on a physical machine is “fast enough” for practical use.

An untimed system can be thought of as a timed system that allows arbitrary time-passage.
This indicates that the timed model is, in some sense, more general than the untimed model,
and that one could use the timed model in situations where one would usually use the untimed
model. However, the timed model is more complicated than the untimed model; furthermore,
it does not seem natural to be required to deal with time, when the problem to be solved does
not mention time.

Thus, one would like to work in the untimed model as much as possible and only switch
to the timed model when it is needed. Sometimes, however, an algorithm that uses time
implements a specification that does not use time. For example, [SLL93a] shows how an
untimed specification (of the at-most-once message delivery problem) is implemented by a
system that assumes upper time bounds on certain process steps and channel delays. Fischer’s
mutual exclusion algorithm [Fis85, AL91b] is another such example. Figure 1 depicts the
stepwise development one would use for an implementation proof like the one in [SL1.93a]. The
stepwise development in Figure 1, however, raises the issue of what it means to implement an
untimed specification with a timed implementation. Our approach to this issue is to convert
the untimed systems in the stepwise development to timed systems by applying a patient
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operator that adds arbitrary time-passage steps. The patient operator we use is similar to the
one of [NS92, V1.92]. To complement the patient operator, this section proves the Embedding
Theorem which states that a concrete level implements an abstract level in the untimed model
if and only if the patient version of the concrete level implements the patient version of the
abstract level in the timed model. Thus, the first part of the stepwise development of Figure 1
can be carried out entirely in the simpler untimed model, and the last part in the timed model.
In the intermediate development step which goes from untimed to timed, one must prove that
the timed level implements the patient version of the untimed level. The embedding theorem
can then be applied to show that the implementation IMPL implements the patient version of
the specification SPEC.

Definition 5.1 (Patient operator on safe I/O automata) Let A be asafe (untimed) /0O
automaton such that {v(¢) | t € R”°} N acts(A) = 0. Then define patient(A) to be the safe
timed I/O automaton with

o states(patient(A)) = states(A).

o start(patient(A)) = start(A).

o ext(patient(A)) = ext(A) U {v(t) | t € R>C}.

o (in(patient(A)), out(patient(A)), int(patient(A))) = (in(A), out(A), ini( A)).

o steps(patient(A)) = steps(A) U {(s,v(t),s) |t € R70}. u

The following lemma states a simple but important property of the patient operator. That is,
the state of an automaton patient(A) does not change during any trajectory.

Lemma 5.2 Let A be a safe I/0 automaton such that {v(t) |t € R°°} Nacts(A) = 0, and let
Y = woagwragws - - - be a timed execution of patient(A). Then, for all i, |rng(w;)| = 1. [

In order to state what it means to apply the patient operator to a live I/O automaton, the
following auxiliary definition of what it means to untime a timed execution is needed.

Definition 5.3 Let A be a safe 1/0 automaton with such that {v(t) |t € R>°} N acts(A) = 0,
and let ¥ = wpajwragws - - - be a timed execution of patient(A). Then define

untime(X) = fstate(wp)aqfstate(wy )asfstate(wsy) - - -
Similarly, let v = ((a1,t1)(ag, t2) -+ -, t) be a timed trace of patient(A). Then define

untime(y) = araz - - - n
Lemma 5.4 Let A be a safe 1/0 automaton such that {v(t) |t € R>°} N acts(A) = 0. Then
Y € t-exec(patient(A)) iff untime(X) € exec(A). Furthermore, if ¥ is finite, then untime(X)

is finite.
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Proof. Follows trivially from Lemma 5.2, Definition 5.1, and the definition of untime. [ |

The patient operator can now be extended to live I/O automata. For any live I/O automaton
(A, L), the patient live I/O automaton of (A, L) should be the live timed I/O automaton whose
safety part is patient(A) and whose liveness part consists of all those admissible executions
that, when made untimed, are in L. Thus, the liveness condition of the patient live 1/0
automaton allows time to pass arbitrarily, as long as the liveness prescribed by L is satisfied.

Definition 5.5 (Patient operator on live I/O automaton) Let (A, L) be a live I/O au-
tomaton such that {v(¢) | ¢t € R>°} N acts(A) = 0. The patient live 1/O automaton of (A, L),
denoted by patient(A, L), is the pair (patient(A), patient 4(L)), where patient 4(L) is the set
{¥ € t-exec™(patient(A)) | untime(X) € L}. |

We prove that for any live I/O automaton (A, L), patient( A, L) is a live timed I/O automaton.
This means showing the existence of a receptive strategy for the pair (patient( A), patient 4(L)).
This is accomplished by defining the patient strategy of an (untimed) strategy (g, f) defined on
A, and showing that the patient strategy of (g, f) is receptive for (A,, L,), where (A4,,L,) =
patient(A, L), if (g, f) is receptive for (A, L). To ensure that the patient strategy of (g, f)
is Zeno-tolerant, which is required for receptiveness, the patient strategy of (g, f) insists on
letting time pass for at least ¢ time units between local steps.

Definition 5.6 For any safe timed I/O automaton A and any finite timed execution ¥ of A,
define lloctime(X) to be the time of occurrence of the last locally-controlled action in X, or 0 if
no such action exists. Formally, let ¥ = woaqwy - - -apw,. If a1,...,a, ¢ local(A), then define
lloctime(X) = 0; otherwise, define lloctime(X) = ltime(woaiwy - - - agpwy ) where ay € local(A)
and agq1,...,a, ¢ local(A).

Given a positive real number é, let nloctimes(X) denote maxz (0, loctime(X) + 6 — ltime(X)).
That is, nloctimes(¥) is the minimum time that must elapse after ¥ before performing any
local action so that the minimum distance ¢ between any two local actions is preserved. [ |

Definition 5.7 (Patient strategy) Let A be a safe I/O automaton such that {v(t) | t €
R>°} N acts(A) = 0, and let (g, f) be an (untimed) strategy defined on A. Furthermore, let
A, = patient(A). Then define the patient strategy of (g, f) with respect to some positive real
number 8, written patients(g, f), to be the pair of functions

gp : t-exec™(A,) X in(A,) — states(A,)

Jp i trexec™(A,) — (traj(A,) X local(Ap) x states(Ay)) U traj(A,)
defined as follows:

(S a) 2 gluntime(S),0)

(w,a,s) if f(untime(X)) = (a,s), where rng(w) = {lstate(X)} and
5 ltime(w) = nloctimes(X)
(%) w if  f(untime(X)) = L, where rng(w) = {lstate(X)} and

ltime(w) = . u

>
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For a finite timed execution ¥ of A,, Lemma 5.4 implies that untime(X) is a finite execution
of A. Also, by Definition 5.1, A and A, have the same input, output, and internal actions.
Thus, in the definition of (g,, f,), the domains and ranges of ¢ and f are compatible with the
usage of g and f. The following lemma states that the patient strategy is indeed a strategy.

Lemma 5.8 Let A be a safe I/O automaton such that {v(t) | t € R”°} N acts(A) = 0, and
let (g, f) be an (untimed) strategy defined on A, and § be any positive real number. Then
patients(g, f) is a (timed) strategy defined on patient(A).

Proof. Let (g,, f,) = patients(g, f) and A, = patient(A). We verify that (g,, f,) satisfies the
four conditions of Definition 4.6.

1. Let ¥ € t-exec*(A,) and a € in(A,). Let s denote, ¢,(X,a). By the definition of ¢, and
the fact that (g, f)is astrategy defined on A (cf. Definition 3.6), (Istate(untime(X)), a,s) €
steps(A). By the definition of untime and Lemma 5.2, Istate(untime(X)) = Istate(X).
Thus, (Istate(X), a, s) € steps(A). By Definition 5.1, (Istate(X), a,s) € steps(A,).

2. Let ¥ € t-exec™(A,) and let (w,a,s) denote f,(X). Similar to the first condition, it is
easy to see that (Istate(w), a, s)is a step of A,. Then, by the definition of w and the fact
that A, allows time to pass arbitrarily, wa{s} is a timed execution fragment of A, and
Jstate(w) = Istate(X). Thus, ¥~ wa{s} € t-exec™(A)).

3. The argument parallels that for Condition 2.

4. We consider only the case where f,(X) = (w,a, s), and we leave to the reader the similar
and simpler case where f,(¥) = w.
Let ¢ < ltime(w). By definition of f,, f(untime(X)) = (a,s), ltime(w) = nloctimes(X)
and rng(w) = {lstate(¥)}. By definition of untime, untime(X ™ (w < t)) = untime(X),
which implies f(untime(X " (w<at))) = f(untime(X)). Thus, f,(X " (wat)) = (W', a,s),
where ltime(w') = nloctimes(X ™ (w <)) and rng(w’) = {lstate(X)}. We need to show
that ltime(w') = ltime(w) —t, i.e., that nloctimes(X " (wat)) = nloctimes(X) —t. Observe
that, since w does not contain any action, lloctime(X "~ (w <)) = lloctime(X). Then

nloctimes(X 7 (w at)) loctime(X 7™ (wat)) + 6 — ltime(X " (wat))
loctime(X) + 6 — ltime(X) — t

nloctimes(X) — ¢

e (e [I=

where steps 1 and 3 follow from the definition of nloctimes(), and step 2 follows from
lloctime(X ™ (w at)) = loctime(X) and from ltime(X ™ (w < t)) = ltime(X) + t. |

The proof that for any receptive (untimed) strategy (g, f) for a live I/O automaton (A, L), and
any positive ¢, the patient strategy patients(g, f) is a receptive (timed) strategy for (A,, L,),
where (A,,L,) = patient(A, L), is based on two technical lemmas. The first of these lem-
mas states that if ¥’ is an admissible timed execution of an outcome of patients(g, f), then
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untime(X') is an outcome of (g, f). This expresses the intuitive idea that the only significant
difference between (g, f) and patient(g, f) is due to time-passage. The second lemma states
that the difference in the time of occurrence of any two locally-controlled actions in a timed
execution of an outcome of patients(g, f), is at least §. This is, of course, due to the fact that
patients(g, f) insists on letting time pass for at least § time units between local steps.

Lemma 5.9 Let A be a safe I/0 automaton such that {v(t) |t € R°°} Nacts(A) = 0, and let
(g, f) be an (untimed) strategy defined on A. Let A, = patient(A) and (gp, f,) = patients(g, f)
for some arbitrary positive real number 6. Then, for all ¥ € t-exec*(A,), all timed environment
sequences I, for A, compatible with ¥, and all admissible ¥/ € (’)(gpfp)(E,Ip), there exists an
environment sequence I for A such that untime(X') = O, p(untime(X), ).

Proof. Let ¥ € t-exec™(A,) be an arbitrary finite timed execution of A, 7, an arbitrary
timed environment sequence for A, compatible with ¥, and ¥’ be an arbitrary admissible
timed execution of the outcome O, ;1 (X, Z,). Let R, 1) be the next-relation induced by
(9ps fp) and R, 5y be the next-function induced by (g, f). Also, let (X", Z0'),>0 be an outcome
sequence of (g,, f,) given ¥ and Z, such that ¥/ = lim,_.., ¥". We first define a sequence 7
as Z'7% ... and for each n > 0 we prove the following:

P1 For each environment sequence I’ for A, (untime(X").1') € Ry, f)(untz'me(E”_l),I”,I’).

In the rest of the proof we let Z' denote a generic environment sequence for A. We distinguish

the five cases that appear in the definition of R, ).

Case 1 Define 7" = . Here (¥",77) = (X" " wa{s}, 2771 with f(¥"71) = (w,a,s).
Then, by definition of (g, f,), f(untime(%""')) = (a,s). Observe that untime(%") =
untime(X" 1)~ untime(wa{s}). Since rng(w) = {lstate(X"~1)}, ¥" = L1 state(T" 1) a s.
Thus, (untime(X"),1') € R, f)(untz'me(E”_l),I”,I’).

Case 2 Define 7" = ¢. Here ¥" = X"~ 17w where w = f,(X"7!). Furthermore, untime(X") =

untime(X" "1 w) = untime(X" ). Thus, (untime(X"),1') € kY, f)(untz'me(E”_l),I”,I’).

Case 3 This case is handled in the same way as case 1.

Case 4 Let (a,t) = head(Z)7'). Then, (X",17) = (X" "~ wa{s}, tail(Z)7")), where w =
(fp(Z 1) tr) a(t — ltime(X"71)) and s = g,(X""! " w, a). By the definition of (g,, f,),
since rng(w) = {istate(X""1)}, g(untime(X"! "~ w),a) = g(untime(X""1), a). We dis-
tinguish two cases.

Case 4.1 f,(X"!) = w.
Define 7" = Aa. By the definition of f,, f(untime(X"~1)) = L. Thus, by case 2
of the definition of Ry, sy, (untime(X"7'),al’) = R, )(untime(X""1), AaZ’). By
the definition of g,, g(untime(X"!),a) = s. By case 3 of the definition of Ry 5,
(untime(X"),1') = Ry ) (untime(X""1),aZ’). This means that (untime(¥"), 1) €
R(*gj)(untime(E”_l),I”,I’).
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Case 4.2 f,(X"71) = (w,b,s).
Define 7" = a. By the definition of g,, g(untime(X"71),a) = s. By case 3 of the
definition of R, r), (untime(¥"),7') € R(*gj)(untime(E”_l),I”,I’).
Case 5 Define 7" = A. In this case (X", 7)) = (¥"~1,Z771). By definition of (¥"),>0, there
exists an n’ < n such that " is finite, fp(E”/) = w, for some admissible trajectory
w, and ¥V = ¥'H2 — L. — ool = w7 = 9%~ 0 Then, by the definition of f,,
fluntime(X™)) = L. Since untime(X™) = untime(3"), f(untime(3"~')) = L. This

implies that (untime(X"),7') € R(*gj)(untime(E”_l),I”,I’).

We now argue that Z is an environment sequence for A. It is immediate to observe that
each element of 7 is either A or an input action of A. Suppose by contradiction that 7
does not contain infinitely many occurrences of A. Then there exists a number n’ such that
for all n > n', the definition of 7" is handled by case 4.2 above (case 2 occurs at most
once). Let, for each n > n/, f,(¥") = (w”,a",s"). Then by definition of f,, ltime(w™) =
maz (0, lloctime(X™) + 6 — ltime(X™)) which, since case 4.2 adds only input actions, equals
maz (0, Hoctime(X™ ) + & — ltime(X")).

We show by induction that for each n > n', ltime(X") < ltime(X") + §. The case for
n = n'is trivial. For the inductive step suppose by induction that ltime(X"~') < ltime(X™) +
§. We have shown already that ltime(w" ') = maz(0, Hoctime(X™) 4+ 6 — ltime(X""1)). If
ltime(w™ 1) = 0, then ltime(X"~' ~ W™ 1) = lime(X"~1) < ltime(3™) + §, where the last
step follows by induction; if ltime(w™ 1) = lloctime(X™ ) + 6§ — ltime(X"~1), then ltime(X"~1
W'Y = ltime(S"1) + loctime(S™) + & — ltime(X" ) = lloctime(X™) 4+ 6. Thus, in both
cases ltime(X""1 ~ wn1) < ltime(Y™) 4+ 8. Since, by definition of R ltime(X™) <
ltime(S7~1 ~ W), Itime(X™) < ltime(S™) + 6.

Since Y/ = lim, o, ¥7, ltime(X') < ltime(X™) + 6. Since ¥ is finite, we contradict the
hypothesis that Y’ is admissible. Therefore, 7 contains infinitely many occurrences of A.

From the construction above, O, ¢)(untime(X),T) = lim,,_o. untime(%"). By the continu-
ity of the untiming operator, lim,,_,~, untime(¥") = untime(lim,_, ¥™). Thus, untime(X') =
Og.p)(untime(X), T). |

9p7fp)7

Lemma 5.10 Let A be a safe I/O automaton such that {v(t) |t € R"°}Nacts(A) = 0, and let
(g, f) be an (untimed) strategy defined on A. Let A, = patient(A) and (gp, f,) = patients(g, f)
for some arbitrary positive real number 6. Let ¥ € t-exec*(Ap) be an arbitrary finite timed
execution of A,, T an arbitrary timed environment sequence for A, compatible with X, and X'

an arbitrary timed execution of the outcome Oy, ¢\(3,T). Then for any two elements (ay, 1)
and (az,t3) in t-seq(X' — X) | (local(A,) X T), |ta — t1] > 6.

Proof. Let (a1,?1) and (ag,t3) be two arbitrary pairs in v = t-seq(X' — X) [ (local(A,) x T)
and assume, without loss of generality, that (ay,?1) occurs before (ag,t3) in v. This implies
that to > #1. Furthermore, assume, again without loss of generality, that (aq,?1) and (ag,t2)

are consecutive in y. Let (X",71"),>0 be an outcome sequence of (g,, f,) given ¥ and I such
that ¥/ = lim,_., X7.
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Definition 4.7 now implies the existence of a number n such that (ag, ;) is not in t-seq(X" —
) 1 (local(Ay) x T) and ¥ = ¥ ~waz{s} with f,(3") = (w,az,s) and ltime(X" " w) = 5.
Also, (a1,t;) must be in t-seq(X" — X) | (local(A,) x T) since otherwise it could not occur
before (aq,ty) in . Let ¢; = lloctime(X"™). Since ay € local(Ay), t1 < 1.

By definition of f, (Definition 5.7), ltime(w) = maz (0, lloctime(X")+ 6 — ltime(X™)). Thus,
to = ltime(¥" ~w) >t + 6 > t1 + 6, or equivalently, t; — 1 > ¢. That suffices. ]

It is now possible to prove that for any receptive strategy (g, f) for a live I/O automaton
(A, L) and any positive 6, patients(g, f) is a receptive (timed) strategy for (A,, L,), where
(Ap, L) = patient(A, L).

Lemma 5.11 Let (A, L) be a live 1/O automaton such that {v(t) | t € R>°} N acts(A) = 0,
and let (g, f) be an (untimed) receptive strategy for (A, L). Furthermore, let (A,, L,) =
patient(A, L). Then, for any positive real number 8, patients(g, f) is a (timed) receptive strat-

eqy for (A, L,).

Proof. Let 6 be an arbitrary positive real number and let (g,, f,) = patients(g, f). Note that
by Lemma 5.8 (g,, f,) is a (timed) strategy defined on A,. By Definition 4.11 we need to show
that O, 1,)(3,Z,) C Ly U t-ezec?t(A,), for all ¥ € t-exec*(A,) and all timed environment
sequences 7, for A, compatible with .

Let ¥ € t-exec*(A,) be an arbitrary finite timed execution of A, and Z, be an arbitrary
timed environment sequence for A, compatible with ¥. Let X' € (’)(gwfp)(E,Ip) be an arbitrary
element of the outcome. By Lemma 4.8, ¥/ is either Zeno or admissible. We distinguish the
two cases.

1. ¥ is Zeno.
Then, by Lemma 5.10 there are only finitely many locally-controlled actions of A4, in X'
By Lemma 4.8, ¥/ contains infinitely many input actions. Thus, & € t-evec?t(A,).

2. Y is admissible.

By Lemma 5.9 there exists an environment sequence Z for A such that untime(X') =
Oy.5)(untime(X), 7). Since (g, f) is a receptive strategy for (A, L), untime(¥') € L.
Thus, by Definition 5.5, X' € L,. [ |

Finally, we can prove that for any live I/O automaton (A, L), patient(A, L) is a live timed 1/0
automaton.

Theorem 5.12 Let (A, L) be a live 1/O automaton. Then patient(A, L) is a live timed 1/0
automaton.

Proof. Let (A,,L,) = patient(A, L). Definition 5.1 implies that A, is a safe timed I/O
automaton. Furthermore, L C t-exec®™(A,) by Definition 5.5. Finally, Lemma 5.11 implies
that the pair (A,, L,) is receptive. By Definition 4.12, this suffices. [
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Now attention is turned to proving the Embedding Theorem, which states that the safe and live
preorders of live I/O automata are preserved by the patient operator. A few simple preliminary
lemmas are needed.

Lemma 5.13 Let A be a safe 1/O automaton such that {v(t) |t € R”°} N acts(A) = 0, and
let A, = patient(A). Furthermore, let ¥ € t-exec(A,). Then,

untime(t-traceq, (X)) = trace 4(untime(X)). n

Lemma 5.14 Let (A, L) be a live 1/O automaton such that {v(t) | t € R>°} N acts(A) = 0.
Then,

1. If v € t-traces(patient(A)) then untime(y) € traces(A).

2. If B € traces(A) and v € tsp(ext(A)) with 8 = untime(7y) such that if seq(v) is Zeno,
then ltime(~y) is the limit of the times in seq(7y), then v € t-traces(patient(A)).

3. If v € t-traces(patient 4 (L)) then untime(y) € traces(L).

4. If B € traces(L) and v € tsp(ext(A)) is admissible with § = untime(y), then v €
t-traces(patient 4(L)). |

Theorem 5.15 (Embedding Theorem) Let (A, L) and (B, M) be live I/O automata such
that {v(t) |t € R7°} N (acts(A) U acts(B)) = 0. Then

1. (A, L) Cg (B, M) iff patient( A, L) Cs; patient(B, M).
2. (A, L)Cy, (B, M) iff patient(A, L) Cr patient(B, M ).

Proof. Let (A,,L,) = patient(A, L) and (B,, M,) = patient(B, M). The two parts of the
lemma are considered separately.

1. = Let v € t-traces(A,). By Lemma 5.14 Part 1, § = untime(y) € traces(A), which
implies, since (A, L) Cg (B, M), that 3 € traces(B). Now, the fact that v is a timed
sequence pair over vis(Ay,) = vis(B,) = ext(B) and the fact that v satisfies the property
seq() being Zeno implies ltime(y) is the limit of the times in seq(y), Lemma 5.14 Part 2
implies that v € t-traces(B,), as required.

<: Let 3 € traces(A) and let v be any, say, admissible timed sequence pair over
ext(A) such that untime(y) = 8. (Such a timed sequence pair clearly exists.) Then,
by Lemma 5.14 Part 2, v € t-traces(A,). Thus, the assumption that patient(A, L) Cg;
patient(B, M) implies v € t-traces(B,). Lemma 5.14 Part 1 shows that 3 = untime(y) €
traces(B), as required.

2. Similar to Part 1 by using Lemma 5.14 Parts 3 and 4. |
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Finally we prove a result which is important when doing specification and verification in
a modular fashion. Namely, the patient operator commutes with the parallel composition
operator on safe and live (timed) I/O automata. First, let =g; and =, denote the kernels of
the preorders Cg; and Cp,, respectively.?

Proposition 5.16 Let (Ag, Lo) and (A1, L1) be two compatible live I/0 automata and let =x
be one of =s¢ and =1. Then,

patient(( Ao, Lo)||(A1, L1)) =x patient(Ag, Lo)||patient( Ay, L1).

Proof. We show the proof for =g¢. The proof for = is similar. First note that, since (Ag, Lo)
and (Aj, Ly) are compatible, then also patient(Ag, Lo) and patient( Ay, L1) are compatible.
Observe that for each timed execution X, untime(X)[A; = untime(X[A;). Then,

Y € t-exec(patient(Apl|Ay))
iff  untime(X) € exec(Agl|Aq) Lemma 5.4
iff Vierony : untime(X)[A; € evec(A;)  Lemma 3.5
iff Vierony : untime(X[A;) € evec(A;)  observation above
iff Vieroay 1 X[A; € t-evec(patient(A;)) Lemma 5.4
iff X € t-exec(patient( Ag)||patient(A1)) Lemma 4.5. |

6 Generality of Receptiveness

Receptiveness could be a severe restriction if very few protocols can be described within (timed)
live I/O automata. In this section we argue that receptiveness is not severe by providing
examples of sufficient conditions for receptiveness. Other examples are likely to be derived in
the future based on new applications.

Ordinary I/O automata [LT87] are examples of receptive systems. That is, systems specified
using weak fairness assumptions are receptive. Romijn and Vaandrager [RV96] provide an even
stronger syntactic criterion for receptiveness in our model by introducing fair I/O automata.
A fair I/O automaton is a safe I/O automaton A equipped with sets wfair(A) and sfair(A) of
subsets of local( A), called the weak fairness and strong fairness sets, respectively. The elements
of wfair(A) are sets of actions over which weak fairness is enforced, while the elements of
wfair(A) are sets of actions over which strong fairness is enforced. It is proven in [RV96] that
a fair I/O automaton A is receptive if each reachable state in A enables at most countably
many sets in wfair(A) U sfair(A) and each set of sfair(A) is input resistant, i.e., each set in
sfair(A) is never disabled by the occurrence of an input action.

In the timed case we have seen that the automata of [MMT91] are receptive, and we have
mentioned that the strong I/O feasibility condition of [VL92] is a sufficient conditions for
receptiveness. Furthermore, any patient construction over a live I/O automaton leads to a
receptive pair. A more general sufficient condition for receptiveness is given in [BPV94], where

2The kernel of a preorder C is defined to be the equivalence = defined by z = y 2z CyAyLCux.
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linear hybrid systems are introduced as a basic model for the study of an audio control proto-
col. Roughly speaking, a linear hybrid system is an automaton with discrete and continuous
variables. The continuous variables are allowed to change during time passage with a rate that
is bounded by a convex polyhedron. Furthermore the values of the continuous variables can be
bounded to remain on one side of a hyperplane. Reaching a bound means forcing some action
to occur before time can elapse.

7 Concluding Remarks

This paper extends I/O automata [LT87, MMT91] to handle general liveness properties in
both the timed and untimed model, and creates a coordinated framework where timed and
untimed systems can be analyzed. A key aspect of the models is the notion of receptiveness,
which expresses the fact that a live (timed) I/O automaton does not constrain its environment.
Moreover, [GSSL93] extends the simulation method of [AL91a, LV91, V93, LV95, Jon91] to
our model, making the results of this paper immediately applicable in practice. A substantial
verification project using the model appears in [SLL93b, SL.L93a]. In addition to generalizing
the I/O automaton model [LT87] and its timed version [MMT91], our model generalizes the
failure free complete trace structures of [Dil88] and the strong I/O feasibility notion of [VL92].

People familiar with process algebras might object to our model, arguing that receptiveness
is too restrictive since it rules out several systems that might be of interest at a high level of
abstraction. We recognize this objection and regard the generalization of the model as future
work. In fact, our model is closer to the classical models of the process algebraic community
(e.g., labeled transition systems) than the models of [AL93, AL91b], and thus may represent a
natural starting point for possible generalizations. Some promising results come from [Seg93],
which shows that there is a strong connection between the trace semantics of I/O automata
and the MUST preorder of the theory of testing [DH84].

Another line of research consists of extending the current model to handle systems with
probabilistic behaviors. The ultimate goal would be a model where probabilistic behaviors,
timing constraints, safety properties, and liveness properties can be integrated together.
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