
Liveness in Timed and Untimed Systems�Roberto Segalay Rainer Gawlickz J�rgen S�gaard-Andersenx Nancy Lynch{AbstractWhen proving the correctness of algorithms in distributed systems, one generally consid-ers safety conditions and liveness conditions. The Input/Output (I/O) automaton modeland its timed version have been used successfully, but have focused on safety conditions andon a restricted form of liveness called fairness. In this paper we develop a new I/O automa-ton model, and a new timed I/O automaton model, that permit the veri�cation of generalliveness properties on the basis of existing veri�cation techniques. Our models include anotion of receptiveness which extends the idea of receptiveness of other existing formalisms,and enables the use of compositional veri�cation techniques. The presentation includes anembedding of the untimed model into the timed model which preserves all the interestingattributes of the untimed model. Thus, our models constitute a coordinated framework forthe description of concurrent and distributed systems satisfying general liveness properties.Keywords: Automata, timed automata, I/O automata, liveness, receptiveness,formal veri�cation, simulation techniques.
�Supported by NSF grant CCR-89-15206, by DARPA contracts N00014-89-J-1988 and N00014-92-J-4033,by ONR contract N00014-91-J-1046, and by ARPA contract F19628-95-C-0118. Also supported in part at theTechnical University of Denmark by the Danish Technical Research Council.yDepartment of Computer Science, University of Bologna, Italy.zLaboratory for Computer Science, Massachusetts Institute of Technology and McKinsey & Co.xDepartment of Computer Science, Technical University of Denmark, DK-2800 Lyngby, Denmark.{Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cam-bridge, MA 02139.

Contents1 Introduction 12 Preliminaries 33 Untimed Systems 33.1 Automata : 43.2 Live Automata : 53.3 Safe I/O Automata : 53.4 Live I/O Automata : 73.5 Preorder Relations for Live I/O Automata : 153.6 Comparison with Other Models : 184 Timed Systems 194.1 Timed Automata : 204.2 Live Timed Automata : 234.3 Safe Timed I/O Automata : 234.4 Live Timed I/O Automata : 254.5 Preorder Relations for Live Timed I/O Automata : : : : : : : : : : : : : : : : : 374.6 Comparison with Other Timed Models : 385 Embedding the Untimed Model in the Timed Model 406 Generality of Receptiveness 487 Concluding Remarks 49

1 IntroductionThe increasing need for reliable software has led the scienti�c community to develop manyformalisms for veri�cation. Particularly important are formalisms that can model distributedand concurrent systems and those that can model real time systems, i.e., systems that relyon time constraints in order to guarantee correct behavior. Formalisms should be able tosupport veri�cation of both safety and liveness properties [AS85]. Roughly speaking, a livenessproperty speci�es that certain desirable events will eventually occur, while a safety propertyspeci�es that undesirable events will never occur.In this paper, we present a coordinated framework that permits modeling and veri�cationof safety and liveness properties for both timed and untimed systems. The framework con-sists of two models, one timed and one untimed, with an embedding of the untimed modelinto the timed model. Both models come equipped with notions of external behavior andof implementation, which are based simply on traces. The framework is intended to supporta variety of veri�cation techniques, including simulation methods, compositional reasoning,algebraic methods, and temporal logic methods.A successful technique for the veri�cation of safety properties and some special livenessproperties is based on the simulation method of [AL91a, LV91, LV93, LV95, Jon91], appliedto the Input/Output automaton model of [LT87] and to its generalization to the timed case[MMT91]. I/O automata are state machines with a labeled transition relation where the labels,also called actions , model communication. A key feature of I/O automata is the explicitdistinction between their input and output actions, which characterize the events under thecontrol of the environment and those under the control of the automaton, respectively. I/Oautomata can handle general safety properties and can also deal with a special kind of liveness,called fairness . Fairness captures the intuitive idea that each subcomponent of a composedsystem has fair chances to make progress. The notion of implementation for I/O automata,i.e., the way a concrete system is said to implement a more abstract speci�cation, is expressedthrough fair trace inclusion, where a fair trace of an I/O automaton is a sequence of actionsthat can occur whenever the I/O automaton respects its fairness property. I/O automata canbe composed in parallel, i.e., they can interact together so that they can be viewed as a singlelarge system. An important property of I/O automata is that the implementation relation iscompositional in the sense that it is always correct to replace a subcomponent in a large systemwith one of its implementations. Compositionality is needed for modular design techniques.Despite its success, the I/O automaton model is not general enough to handle some re-cent veri�cation work in [SLL93b, SLL93a]. In particular, [SLL93b, SLL93a] provide ex-amples where fairness is not adequate to express liveness naturally. Moreover, the work in[SLL93b, SLL93a] has shown the need for a connection between timed and untimed models toprove that an implementation that uses timing constraints correctly implements an untimedspeci�cation. The mutual exclusion algorithm of Fischer [Fis85, AL91b] is another instance ofa timed implementation for an untimed speci�cation.This motivates a generalization of the I/O automaton model and its timed version to handlegeneral liveness properties in such a way that the simulation based proof method still applies.1

A simple and natural generalization is motivated by [AL93], which models a machine as a pair(A;L) consisting of an automaton and A and a subset L of its behaviors satisfying the desiredliveness property. The implementation notion can then be expressed by live trace inclusionjust as fair trace inclusion expresses implementation for I/O automata. The use of live traceinclusion as the implementation notion is motivated by the fact that the simulation based proofmethod is known to work for implementation notions based on some form of trace inclusion.Unfortunately, if L is not restricted, simple examples show that live trace inclusion is notcompositional (cf. Examples 3.4 and 3.5).In this paper we identify the appropriate restrictions on L, in both the untimed model andthe timed model, so that live trace inclusion is compositional for the pair (A;L). A pair (A;L)satisfying these restrictions on L is called a live I/O automaton in the untimed model and alive timed I/O automaton in the timed model. The restrictions on L are given by a propertycalled receptiveness1, which captures the intuitive idea that a live (timed) I/O automaton mustnot constrain its environment. The receptiveness property is de�ned, using ideas from [Dil88],by means of a two-person game between a live (timed) I/O automaton and its environment.Speci�cally, the environment provides arbitrary inputs while the system tries to react so thatit behaves according to its liveness condition. A live (timed) I/O automaton (A;L) has awinning strategy against its environment if A can respond to any environment move in such away that it will always lead to a behavior of L. If a live (timed) I/O automaton has a winningstrategy, then it is said to be receptive.The de�nitions of receptiveness in the untimed and the timed model are closely related. Inparticular, the receptiveness property for the timed model is a natural extension of the recep-tiveness property for the untimed model up to some technical details involving the so calledZeno behaviors . The close relationship between the receptiveness property in the untimed andthe timed model allows the models to be tied together, thus permitting the veri�cation of timedimplementations of untimed speci�cations. Speci�cally, the paper presents a patient operator[NS92, VL92] that converts (untimed) live I/O automata into live timed I/O automata withouttiming constraints. The patient operator preserves receptiveness and the live trace preorderrelation of the untimed model. Thus, the patient operator provides the mechanism by whichthe timed and untimed models are uni�ed into a coordinated framework.Our models generalize several existing models. The fairness condition of I/O automatasatis�es the receptiveness property; thus, live I/O automata are a proper generalization ofI/O automata. Receptiveness also implies feasibility as de�ned in [LS89]. The failure freecomplete trace structures of [Dil88] are also properly generalized by our model. In the timedcase, our model generalizes [MMT91] and the notion of strong I/O feasibility introduced in[VL92]. Finally, in contrast to [AL91b], our timed model does not give either the system orthe environment control over the passage of time.We believe that our coordinated untimed and timed models comprise a good general frame-work for veri�cation of concurrent systems. Besides the fact that our models generalize several1In our original work [GSSL93, GSSL94] we used the term environment-freedom. Due to the close connec-tion between environment-freedom in our untimed model and receptiveness in other existing models, we haveuniformed our terminology to the existing literature. 2

others, our models support the simulation based proof method of [AL91a, LV91, LV93, LV95,Jon91]. In [GSSL93] we show how the simulation based proof method can be used to handleliveness by means of an Execution Correspondence Theorem, which extracts from a simulationrelation more information than just trace inclusion. Our models have already been used in[SLL93b, SLL93a] to verify a non-trivial communication protocol used in the Internet, and theveri�cations require all the new expressiveness provided in this paper and the simulation toolsprovided in [GSSL93].After some preliminary de�nitions, given in Section 2, the paper is divided into three mainsections. Section 3 presents the untimed model, Section 4 presents the timed model, andSection 5 embeds the untimed model into the timed model by means of the patient operator.The presentation of both the untimed and timed models starts with a general automatonmodel with liveness conditions in the style of [AL91b]; then the I/O distinction is introducedtogether with the receptiveness property and the proof of compositionality. The presentation ofthe untimed model also includes several examples that motivate the de�nition of receptivenessand show that there does not seem to be any trivial generalization of receptiveness that stillleads to the compositionality of the live trace preorder. Once live (timed) I/O automata arede�ned for each model, the paper introduces the corresponding notions of implementation andcompares our model with other existing models. The paper ends with some considerations onthe generality of receptiveness and additional considerations for further work.2 PreliminariesWe use \list" and \sequence" synonymously. The empty sequence is denoted by ". A �nite se-quence l1 = e1 : : :en and a sequence l2 = en+1en+2 : : : can be concatenated. The concatenation,written l1l2, is the sequence e1 : : : enen+1en+2 : : :. A sequence l1 is a pre�x of a sequence l2,written l1 � l2, if either l1 = l2, or l1 is �nite and there exists a sequence l01 such that l2 = l1l01.For any non-empty sequence l = e1e2e3 : : :, de�ne head(l) to be e1, the �rst element of l, andtail(l) to be the sequence e2e3 : : :, the rest of l. For any sequence l de�ne jlj, the length of l,to be the number of elements that occur in l. If l is in�nite, then jlj =1.3 Untimed SystemsThe discussion of untimed systems is organized as follows. Section 3.1 de�nes automata,without an Input/Output distinction. Section 3.2 introduces live automata, without an I/Odistinction. Section 3.3 de�nes safe I/O automata by adding an I/O distinction to automata,and introduces the parallel composition operator. Section 3.4 introduces receptiveness , de�neslive I/O automata, extends parallel composition to live automata, and shows that the parallelcomposition of two live I/O automata is a live I/O automaton. Section 3.5 de�nes two preorderrelations, the safe preorder and the live preorder, and shows in what sense the live preordercan express a notion of implementation. Section 3.6 compares our model with existing work.3

3.1 AutomataWe de�ne automata using the presentation style of [LT87]. Essentially, an automaton is alabeled transition system [Plo81].De�nition 3.1 (Automaton) An automaton A consists of four components:� a set states(A) of states.� a nonempty set start(A) � states(A) of start states.� an action signature sig(A) = (ext(A); int(A)) where ext(A) and int(A) are disjoint setsof external and internal actions, respectively. Denote by acts(A) the set ext(A)[int(A).� a transition relation steps(A) � states(A)� acts(A)� states(A).Thus, an automaton is a state machine with labeled steps. Its action signature describes theinterface with the environment. It speci�es which actions model events that are visible fromthe environment and which actions model internal events.An action a of automaton A is said to be enabled in state s if there exists a state s0 such thatthe step (s; a; s0) is an element of steps(A).An execution fragment � of an automaton A is a (�nite or in�nite) sequence of alternatingstates and actions starting with a state and, if the execution fragment is �nite, ending in astate, � = s0a1s1a2s2 � � � ;where each triple (si; ai+1; si+1) is an element steps(A). Denote by fstate(�) the �rst stateof � and, if � is �nite, denote by lstate(�) the last state of �. Furthermore, denote byfrag�(A); frag!(A) and frag(A) the sets of �nite, in�nite and all execution fragments of A,respectively. An execution is an execution fragment whose �rst state is a start state. Denote byexec�(A); exec!(A) and exec(A) the sets of �nite, in�nite and all executions of A, respectively.A state s of A is reachable if there exists a �nite execution of A that ends in s.A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =snan+1sn+1 � � � of A can be concatenated . In this case the concatenation, written �1 a �2, isthe execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution fragment �1 of A is a pre�xof an execution fragment �2 of A, written �1 � �2, if either �1 = �2, or �1 is �nite and thereexists an execution fragment �01 of A such that �2 = �1 a �01.The trace of an execution fragment � of an automatonA, written traceA(�), or just trace(�)when A is clear from context, is the list obtained by restricting � to the set of external actionsof A, i.e., trace(�) = � � ext(A), where � is the standard restriction operator on lists. For a setS of executions of an automaton A, denote by tracesA(S), or just traces(S) when A is clearfrom context, the set of traces of the executions in S. We say that � is a trace of an automatonA if there exists an execution � of A with trace(�) = �. Denote by traces�(A); traces!(A) andtraces(A) the sets of �nite, in�nite and all traces of A, respectively. Note, that a �nite tracemight be the trace of an in�nite execution. 4

3.2 Live AutomataThe automaton A of De�nition 3.1 can be thought of as expressing the safety properties of asystem [AS85], i.e, what always holds, or equivalently what is never supposed to happen. Theliveness properties of a system [AS85], i.e., what must eventually happen, can be expressedby a subset L of the executions of its safe part A, as proposed in [AL93]. Thus, informally, alive automaton is a pair (A;L) where A is an automaton and L is a subset of its executions.The executions of L, which satisfy both the safety and liveness requirements of (A;L), are theonly ones that can occur in the described system. However, in order to ensure that the setL of executions does not introduce any more safety than is already given by A, it should notbe possible to violate L in a �nite number of steps. As a consequence, any �nite executionof A must be extendible to an execution in L. In fact, if the safe part A of live automaton(A;L) has a �nite execution � that cannot be extended to an execution in L, then � cannotoccur in the system described by (A;L), and thus L introduces the additional safety propertythat � cannot occur. Our restriction on the pair (A;L) implies that the pair (exec(A); L) ismachine-closed as de�ned in [AL93].De�nition 3.2 (Live automaton) A liveness condition L for an automaton A is a subsetof the executions of A such that any �nite execution of A has an extension in L, i.e., for each� 2 exec�(A) there exists an �0 2 frag(A) such that � a �0 2 L.A live automaton is a pair (A;L), where A is an automaton and L is a liveness conditionfor A. The executions of L are called the live executions of (A;L).Informally, a liveness condition can be used to express (at least) two intuitively di�erent sortsof requirements. First, a liveness condition can be used to specify assumptions about the long-term behavior of a system that are based on its physical structure. For example, it is reasonableto assume that two independent processes running in parallel are both allowed to make progressin�nitely often. In a physical system this is ensured by executing the two processes on separateprocessors or by using a fair scheduler in a multiprogramming environment. The notion offairness of I/O automata [LT87] exactly captures this particular physical assumption. Second,a liveness condition can be used to specify additional properties that a system is required tosatisfy. For example, in a mutual exclusion problem we may require a process to eventuallyexit the critical region whenever it enters it.Even though a liveness condition can express many speci�c intuitive ideas, for the purposeof this paper a liveness condition simply represents the set of executions that a system canexhibit whenever it is \working properly".3.3 Safe I/O AutomataOur notion of safe I/O automaton is the same as the \unfair" I/O automaton of [LT87], i.e.,the automaton obtained by removing the partition of the locally-controlled actions from anI/O automaton of [LT87]. 5

De�nition 3.3 (Safe I/O automaton) A safe I/O automaton A is an automaton aug-mented with an external action signature, esig(A) = (in(A); out(A)), which partitions ext(A)into input and output actions. In each state, each input action must be enabled. A is said tobe input-enabled.The internal and output actions of a safe I/O automaton A are referred to as the locally-controlled actions of A, written local(A). Thus, local(A) = int(A) [out(A).The interaction between safe I/O automata is speci�ed by the parallel composition operator.We use the synchronization style of [Hoa85, LT87], where automata synchronize on their com-mon actions and evolve independently on the others. We also retain the constraint of [LT87]that each action is under the control of at most one automaton by de�ning parallel compo-sition only for compatible safe I/O automata. Compatibility requires that each action be anoutput action of at most one safe I/O automaton. Furthermore, to avoid action name clashes,compatibility requires that internal action names be unique. Note that compatible automataare allowed to share input actions.De�nition 3.4 (Parallel composition) Two safe I/O automata A0 and A1 are compatibleif the following conditions hold:1. out(A0) \ out(A1) = ;2. int(A0) \ acts(A1) = int(A1) \ acts(A0) = ;.The parallel composition A0 k A1 of two compatible safe I/O automata A0 and A1 is the safeI/O automaton A such that1. states(A) = states(A0)� states(A1)2. start(A) = start(A0)� start(A1)3. out(A) = out(A0) [out(A1)4. in(A) = (in(A0) [in(A1))� out(A)5. int(A) = int(A0) [int(A1)6. ((s0; s1); a; (s00; s01)) 2 steps(A) i� for all i 2 f0; 1g(a) if a 2 acts(Ai) then (si; a; s0i) 2 steps(Ai)(b) if a =2 acts(Ai) then si = s0i.The executions of the parallel composition of compatible safe I/O automata A0 and A1 can becharacterized alternatively as those alternating sequences of states and actions of A that, whenprojected onto any component Ai, yield an execution of Ai. In particular, let A = A0 k A1.First let s be a state of A. Then, for any i 2 f0; 1g, de�ne sdAi to be the projection of sonto the ith component. Now, let � = s0a1s1a2s2 � � � be an alternating sequence of states and6

actions such that sk 2 states(A) and ak 2 acts(A), for all k, and � ends in a state if it is a�nite sequence. De�ne �dAi to be the sequence obtained from � by projecting the states ontotheir ith component and by removing each action not in acts(Ai) together with its followingstate.Lemma 3.5 Let A = A0 k A1. Let � = s0a1s1a2s2 � � � be an alternating sequence of statesand actions such that sk 2 states(A) and ak 2 acts(A), for all k, and � ends in a state if itis a �nite sequence. Then � 2 exec(A) i�, for each i 2 f0; 1g, �dAi 2 exec(Ai) and for eachj > 0, if aj =2 acts(Ai), then sj�1dAi = sjdAi.Proof. Direct consequence of Corollary 8 of [LT87].Parallel composition is typically used to build complex systems based on simpler components.Two other operators are de�ned and used for I/O automata: hiding, which transforms someoutput actions into internal actions, and renaming, which changes the name to some actions.Hiding and renaming can be handled trivially by extending slightly the theory developed inthis paper, and thus we omit their de�nition.3.4 Live I/O AutomataIn de�ning live I/O automata one could follow the approach of De�nition 3.2 and de�ne alive I/O automaton to be a pair (A;L) where A is a safe I/O automaton and L is a livenesscondition for A. However, such a naive de�nition would not capture the fact that a live I/Oautomaton should behave properly independently of the inputs provided by its environment.Given the structure of our liveness conditions, such independence from the environment willprove to play a fundamental role in the proofs for the closure of live I/O automata underparallel composition and the substitutivity of our trace based preorders.Example 3.1 Let A be a the safe I/O automaton described by the diagram,A : s! a;b# //where a is an input action and b is an output action. Let L be the set of executions ofA containing at least �ve occurrences of action a. L is trivially a liveness condition for A;however, the pair (A;L) would not behave properly if the environment does not provide morethan four a actions (recall that behaving properly means being an execution of L).Some of the problems arising from the requirement that a live I/O automaton should behaveproperly independently of the inputs provided by its environment are addressed in [Dil88,AL93]. Their solutions lead to the notion of receptiveness . Intuitively a system is receptive ifit behaves properly independently of the inputs provided by its environment, or equivalently, ifit does not constrain its environment. The interaction between a system and its environment7

is represented as a two-person game where each environment move consists of providing anarbitrary �nite number of inputs, i.e., in our model, a �nite number of input actions, and thesystem moves consist of performing at most one local step, i.e., in our model, at most onelocally-controlled step. A system is receptive if it has a way to win the game (i.e., to behaveproperly) independently of the moves of its environment. The fact that an environment movecan include at most a �nite number of actions represents the natural requirement that theenvironment cannot be in�nitely faster than the system.The behavior of the system during the game is determined by a strategy . In our modela strategy consists of a pair of functions (g; f). The function g decides which of the possiblestates the system reaches in response to any given input action; the function f determines thenext move of the system. The move can be a local step or no step (? move).De�nition 3.6 (Strategy) Consider any safe I/O automaton A. A strategy de�ned on Ais a pair of functions (g; f) where g : exec�(A) � in(A) ! states(A) and f : exec�(A) !(local(A)� states(A))[f?g such that1. g(�; a) = s implies �as 2 exec�(A)2. f(�) = (a; s) implies �as 2 exec�(A).In the game between the environment and the system the moves of the environment are repre-sented as an in�nite sequence I, called an environment sequence, of input actions interleavedwith in�nitely many � symbols. The symbol � represents the points at which the system isallowed to move. The occurrence of in�nitely many � symbols in an environment sequenceguarantees that each environment move consists of only �nitely many input actions.Suppose the game starts after a �nite execution �. Then the outcome of a strategy (g; f),given � and an environment sequence I, is the extension of � obtained by applying g at eachinput action in I and f at each � in I.De�nition 3.7 (Outcome of a strategy) Let A be a safe I/O automaton and (g; f) a strat-egy de�ned on A. De�ne an environment sequence for A to be any in�nite sequence of symbolsfrom in(A) [f�g with in�nitely many occurrences of �. Then de�ne R(g;f), the next-functioninduced by (g; f) as follows: for any �nite execution � of A and any environment sequence Ifor A,R(g;f)(�; I) = 8>>>>><>>>>>: (�as; I0) if I = �I 0; f(�) = (a; s)(�; I0) if I = �I 0; f(�) = ?(�as; I0) if I = aI0; g(�; a) = s:Let � be any �nite execution of A and I any environment sequence for A. The outcomesequence of (g; f) given � and I is the unique in�nite sequence (�n; In)n�0 that satis�es:8

� (�0; I0) = (�; I) and� for all n > 0, (�n; In) = R(g;f)(�n�1; In�1).Note, that (�n)n�0 forms a chain ordered by pre�x .The outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the execution limn!1 �n,where (�n; In)n�0 is the outcome sequence of (g; f) given � and I and the limit is taken underpre�x ordering.Lemma 3.8 Let A be a safe I/O automaton and (g; f) a strategy de�ned on A. Then for any�nite execution � of A and any environment sequence I for A, the outcome O(g;f)(�; I) is anexecution of A such that � � O(g;f)(�; I).Proof. Simple analysis of the de�nitions.The concepts of strategies and outcomes are used to de�ne formally the receptiveness property,i.e., the property that a system does not constrain its environment. Informally, receptivenessrequires the existence of a strategy, called a receptive strategy, that allows the system to winevery game against its environment. In other words, every outcome of the receptive strategyshould be an element of L. An important feature of the de�nition of receptiveness is that itconsiders outcomes where the receptive strategy for (A;L) is applied after any �nite executionof A. Example 3.2 shows that this feature leads to a clean separation of safety and livenessproperties.De�nition 3.9 (Receptiveness) Let A be a safe I/O automaton and L � exec(A). A strat-egy (g; f) de�ned on A is called a receptive strategy for (A;L) if for any �nite execution � of Aand any environment sequence I for A, the outcome O(g;f)(�; I) is an element of L. The pair(A;L) is receptive if there exists a receptive strategy for (A;L).Lemma 3.10 Consider the pair (A;L), where A is a safe I/O automaton and L � exec(A).If (A;L) is receptive, then L is a liveness condition for A.Proof. Consider any receptive strategy (g; f) for (A;L), any �nite execution � of A, and anyenvironment sequence I for A. Then, since (g; f) is a receptive strategy for (A;L), the outcomeO(g;f)(�; I) is an element of L. Furthermore, by Lemma 3.8, O(g;f)(�; I) is an extension of �.Hence, any �nite execution of A has an extension in L.De�nition 3.11 (Live I/O automaton) A live I/O automaton is a pair (A;L), where A isa safe I/O automaton and L � exec(A), such that (A;L) is receptive.Example 3.2 Consider the safe I/O automaton A described by the transition diagram below.The unique start state of A is s0. Action i is an input action and action o is an output action.Let L be the liveness condition for A consisting of the set of executions of A with at least9

s1s0 s2 s3s4 s5 s6"!i OOi //o||||||>>iBBBBBB "!i OO o // "!i OOi // "!i OO o // "!i OOone occurrence of action o. The pair (A;L) is not receptive. Speci�cally, consider the �niteexecution � = s0is4 and the environment sequence I = ��� � � �. Performing action o afterreaching state s4 requires receiving an input i. Therefore, there is no strategy whose outcomegiven � and I is an execution in L.De�ne a new automaton A0 from A by removing states s4; s5; s6, and let L0 be the setof executions of A0 containing at least one occurrence of action o. Then the pair (A0; L0) isreceptive. Function f chooses to perform action o whenever applied to an execution ending ins0 or s2 and chooses ? otherwise; function g always moves to the only possible next state.Remark 3.3 The de�nition of a receptive pair shows why we include the input-enabled prop-erty in our de�nition of a safe I/O automaton. Namely, consider any reachable state s of Aand any �nite execution � of A leading to state s. Since a receptive strategy must allow � tobe extended in response to any possible input action, each input action must be enabled in s.Thus, a receptive strategy can only exist for a pair (A;L) for which all inputs are enabled inall reachable states.The parallel composition operator can now be extended to live I/O automata by using theresult of Lemma 3.5.De�nition 3.12 (Parallel composition) Two live I/O automata (A0; L0) and (A1; L1) arecompatible i� the safe I/O automata A0 and A1 are compatible. The parallel composition(A0; L0) k (A1; L1) of two compatible live I/O automata (A0; L0) and (A1; L1) is de�ned to bethe pair (A;L) where A = A0 k A1 and L = f� 2 exec(A) j �dA0 2 L0 and �dA1 2 L1g.The parallel composition operator is closed for live I/O automata in the sense that it producesa new live I/O automaton whenever applied to live I/O automata. The proof of this result,however, is not trivial and needs some preliminary lemmas. Given (A;L) = (A0; L0) k (A1; L1),it is easy to see that A is a safe I/O automaton since its de�nition is based on the parallelcomposition of safe I/O automata. However, it is not as easy to see that the pair (A;L) isreceptive, and hence a live I/O automaton. The proof that (A;L) is receptive uses a strategy(g; f) for (A;L) based on receptive strategies (g0; f0) and (g1; f1) for (A0; L0) and (A1; L1),respectively, and shows that (g; f) is a receptive strategy for (A;L).10

Function g should compute, given input a, the next state according to the gi functions ofthose components of A for which a is an input action, and simply leave the state unchangedfor those components where a is not an action.Function f must ensure that every component of A gets a chance to control a step ofA in�nitely often. This fact accounts for much of the complexity in the de�nition of (g; f).Ensuring that each component of A gets a chance to control a step in�nitely often would mostnaturally be done by assigning the control of steps to the two components in an alternating way.The alternating approach, however, would give rise to a technical problem in the de�nitionof f : since the only argument to f is a �nite execution �, the component whose turn it is tocontrol the step in the alternating schedule must be determined from �. Unfortunately, the�nite execution � does not include enough information to make this determination. Considerthe following scenario. Assume that it is component Ai's turn to control the step after a �niteexecution �. Assume further that Ai decides to perform a ? move and that the next input is a� symbol. In this case � will not change and, thus, it will again be Ai's turn to control the nextstep. Therefore, the alternating protocol is violated. The problem is, of course, that ? and �moves are \invisible" in �. One solution to this problem would be to let f be a function of\extended" executions that contain information about ? and � moves. The problem with thissolution, however, is that it becomes messy due to the fact that this new notion of executionmust keep track of ? and � moves of subcomponents of components, and so on. An alternativesolution, adopted in our de�nition of f , uses the parity of the number of locally-controlledactions in � to determine which component has priority for a step. If the component havingpriority for a step wants to perform a ? move but the other component wants to performa local step, then the other component gets to perform a step even though it does not havepriority. Only if both components want to perform ? moves, does f yield a ? move.One �nal technicality in the de�nition of f is that it uses the gi functions. In particular, if acomponent performs a local step with action a, action a might be an input action of the othercomponent. In this case, the de�nition of f will need the gi function of the other component.De�nition 3.13 (Parallel composition of strategies) Let A = A0 k A1 be the parallelcomposition of two compatible safe I/O automata A0 and A1. For each �nite execution � 2exec�(A), let l(�) be the number of occurrences of locally-controlled actions of A in �, i.e.,l(�) = j� � local(A)j, and let p(�) = l(�) mod 2. Let (g0; f0) and (g1; f1) be strategies de�nedon A0 and A1, respectively. The parallel composition (g0; f0) k (g1; f1) of the strategies (g0; f0)and (g1; f1) is the pair of functions (g; f) de�ned as follows.Function g : exec�(A) � in(A) ! states(A) is de�ned as g(�; a) = s where, for eachi 2 f0; 1g,sdAi = (gi(�dAi; a) if a 2 in(Ai)lstate(�)dAi otherwise.Function f : exec�(A) ! (local(A)� states(A)) [f?g is de�ned as follows: if f0(�dA0) = ?and f1(�dA1) = ?, then f(�) = ?. Otherwise, let k be p(�) if fp(�)(�dAp(�)) 6= ?, and let k11

be 1�p(�) if fp(�)(�dAp(�)) = ?. Let (a; sk) denote fk(�dAk), and de�ne f(�) = (a; s) where,for each i 2 f0; 1g,sdAi = 8><>: sk if i = kgi(�dAi; a) if a 2 in(Ai)lstate(�)dAi otherwise.Lemma 3.14 Let A0 and A1 be two compatible safe I/O automata and let (g0; f0) and (g1; f1)be strategies de�ned on A0 and A1, respectively. Then (g0; f0) k (g1; f1) is a strategy de�nedon A0 k A1.Proof. Simple cases analysis on the di�erent cases of De�nition 3.13. In fact, for each one ofthose cases, it is su�cient to show that f and g give legal steps of A0 k A1.The following lemma is the key step for proving that the strategy of De�nition 3.13 is receptiveif the component strategies are receptive. The lemma shows that the projection of an outcomeof the composed strategy onto any Ai is an outcome of the strategy (gi; fi). Intuitively, thismeans that, even though the composed system uses its composed strategy to �nd its outcome,it still looks to each component as if it was using its own component strategy.Lemma 3.15 Let A0; A1 be compatible safe I/O automata and let (g0; f0) and (g1; f1) bestrategies de�ned on A0 and A1, respectively. Let A = A0 k A1 and let (g; f) = (g0; f0) k(g1; f1). Let � be an arbitrary �nite execution of A, I be an arbitrary environment sequencefor A, and i be either 0 or 1. Then, there exists an environment sequence Ii for Ai such thatO(g;f)(�; I)dAi = O(gi;fi)(�dAi; Ii).Proof. Let R(g;f) and R(gi;fi) be the next-functions induced by (g; f) and (gi; fi), respec-tively. Let (�n; In)n�0 be the outcome sequence of (g; f) given � and I. Then O(g;f)(�; I) =limn!1 �n. For any �nite execution �0 2 exec�(A), let l(�0) be the number of occurrences oflocally-controlled actions of A in �0, i.e., l(�0) = j�0 � local(A)j, and let p(�0) = (l(�0) mod 2).(Cf. De�nition 3.13.)The �rst step of the proof consists of constructing an environment sequence Ii for Ai suchthat O(g;f)(�; I)dAi = O(gi;fi)(�dAi; Ii). The sequence Ii is de�ned as I1i I2i � � �, where each Ijiconsists of 0, 1, or 2 symbols and is de�ned below. Along with the de�nition of Iji we provethe following property:P1 For every environment sequence I0 for Ai, (�ndAi; I 0) = R�(gi;fi)(�n�1dAi; Ini ; I 0),where, for any �nite execution fragment � of Ai, any �nite sequence I of elements fromin(Ai) [f�g, and any environment sequence J for Ai, R�(gi;fi)(�; I;J) is de�ned as follows:R�(gi;fi)(�; �;J) = (�;J), and if jIj � 1, then R�(gi;fi)(�; I;J) = R�(gi;fi)(�0; I0;J) where(�0; I0J) = R(gi;fi)(�; IJ). Informally, R�(gi;fi)(�; I;J) is the result of applying R(gi;fi) from(�; IJ) for a number of times equal to the length of I. In the rest of the proof we let I 0 denotea generic environment sequence for Ai. Let n > 0. The de�nition of R(g;f) suggests three caseswhich are considered in order. 12

Case 1 (�n; In) = (�n�1as; tail(In�1)) where f(�n�1) = (a; s) and head(In�1) = �.The de�nition of f in De�nition 3.13 suggests the following subcases:Case 1.1 p(�n�1) = i and a =2 acts(Ai).De�ne Ini = �. Since p(�n�1) = i and a =2 acts(Ai), the de�nition of f showsthat fi(�n�1dAi) = ?. Furthermore, since a =2 acts(Ai), �ndAi = �n�1dAi. Bycase 2 of the de�nition of R(gi;fi), (�ndAi; I0) = R(gi;fi)(�n�1dAi; Ini I 0). Thus,(�ndAi; I0) = R�(gi;fi)(�n�1dAi; Ini ; I 0).Case 1.2 p(�n�1) = i and a 2 in(Ai).De�ne Ini = �a. Since p(�n�1) = i and a 2 in(Ai), the de�nition of f showsthat fi(�n�1dAi) = ?. By case 2 of the de�nition of R(gi;fi), (�n�1dAi; aI 0) =R(gi;fi)(�n�1dAi; �aI 0). Since a 2 in(Ai), the de�nition of f shows that gi(�n�1dAi; a) =sdAi. By case 3 of the de�nition of R(gi;fi), (�ndAi; I 0) = R(gi;fi)(�n�1dAi; aI 0).Thus, (�ndAi; I 0) = R�(gi;fi)(�n�1dAi; Ini ; I 0).Case 1.3 a 2 local(Ai).De�ne Ini = �. Since a 2 local(Ai), the de�nition of f shows that fi(�n�1dAi) =(a; sdAi). By case 1 of the de�nition ofR(gi;fi), (�ndAi; I0) = R(gi;fi)(�n�1dAi; Ini I0).Thus, (�ndAi; I 0) = R�(gi;fi)(�n�1dAi; Ini ; I 0).Case 1.4 p(�n�1) 6= i and a 2 in(Ai).De�ne Ini = a. Since a 2 in(Ai) the de�nition of f shows that gi(�n�1dAi; a) =sdAi. By case 3 of the de�nition of R(gi;fi), (�ndAi; I0) = R(gi;fi)(�n�1dAi; Ini I0).Thus, (�ndAi; I 0) = R�(gi;fi)(�n�1dAi; Ini ; I 0).Case 1.5 p(�n�1) 6= i and a =2 acts(Ai).De�ne Ini = ". Observe that �ndAi = �n�1dAi. Thus, trivially (�ndAi; I0) =R�(gi;fi)(�n�1dAi; Ini I0).Case 2 (�n; In) = (�n�1; tail(In�1)) where f(�n�1) = ? and head(In�1) = �.De�ne Ini = �. Since f(�n�1) = ?, the de�nition of f shows that fi(�n�1dAi) =?. By case 2 of the de�nition of R(gi;fi), (�ndAi; I0) = R(gi;fi)(�n�1dAi; Ini I0). Thus,(�ndAi; I0) = R�(gi;fi)(�n�1dAi; Ini ; I 0).Case 3 (�n; In) = (�n�1as; tail(In�1)) where g(�n�1; a) = s and head(In�1) = a.The de�nition of g in De�nition 3.13 suggests the following subcases:Case 3.1 a 2 in(Ai).De�ne Ini = a. The de�nition of g shows that gi(�n�1dAi; a) = sdAi. By case 3 ofthe de�nition of R(gi;fi), (�ndAi; I0) = R(gi;fi)(�n�1dAi; Ini I 0). Thus, (�ndAi; I0) =R�(gi;fi)(�n�1dAi; Ini ; I 0). 13

Case 3.2 a =2 in(Ai).De�ne Ini = ". Observe that �ndAi = �n�1dAi. Thus, trivially (�ndAi; I0) =R�(gi;fi)(�n�1dAi; Ini I0).The second step of the proof consists of showing that Ii is indeed an environment sequence forAi. Showing that Ii is an environment sequence for Ai induces two proof obligations:1. Each element of Ii is in in(Ai) [f�g.This follows immediately from the de�nition of the Iji 's.2. There are in�nitely many �'s in I.For each n > 0, all the cases of the de�nition above except for 1:4, 1:5, 3:1, and 3:2 add anew � to I. Thus, the proof obligation is met as long as there exists no no � 0 such thatfor all n > no the sequence Ini is de�ned according to cases 1:4, 1:5, 3:1, or 3:2. For acontradiction assume such an no exists. Observe the following: if Ini is de�ned accordingto cases 3:1 or 3:2, then l(�n) = l(�n�1); if Ini is de�ned according to cases 1:4 or 1:5,then l(�n) = l(�n�1)+1. Furthermore, cases 1:4 and 1:5 require that p(�n�1) 6= i. Thus,there can be at most one n1 > n0 such that Ini is de�ned according to cases 1:4 or 1:5.In other words, there exists a number n1 > n0 such that for each n > n1 Ini is de�nedaccording to cases 3:1 or 3:2. However, since I is an environment sequence, for in�nitelymany n such that n > n1, head(In�1) = �. This is a contradiction since the Ini cannotbe de�ned according to cases 3:1 or 3:2 when head(In�1) = �.From the construction above and from P1, O(gi;fi)(�dAi; Ii) = limn!1 �ndAi. From the con-tinuity of the projection operator, limn!1 �ndAi = (limn!1 �n)dAi. Thus, O(g;f)(�; I)dAi =O(gi;fi)(�dAi; Ii).Lemma 3.16 Let (A0; L0) and (A1; L1) be two compatible live I/O automata and let (g0; f0)and (g1; f1) be receptive strategies for (A0; L0) and (A1; L1), respectively. Then (g0; f0) k(g1; f1) is a receptive strategy for (A0; L0) k (A1; L1).Proof. Let (A;L) = (A0; L0) k (A1; L1) and (g; f) = (g0; f0) k (g1; f1). Consider any environ-ment sequence I for A and any �nite execution � of A. By Lemma 3.15 there exists for allAi an environment sequence Ii such that O(g;f)(�; I)dAi = O(gi;fi)(�dAi; Ii). Since (gi; fi) isa receptive strategy for (Ai; Li), O(gi;fi)(�dAi; Ii) 2 Li. Consequently, O(g;f)(�; I)dAi 2 Li forall (Ai; Li). By De�nition 3.12, O(g;f)(�; I) 2 L.Theorem 3.17 (Closure of parallel composition) Let (A0; L0) and (A1; L1) be compati-ble live I/O automata. Then (A0; L0) k (A1; L1) is a live I/O automaton.Proof. Let (A;L) = (A0; L0) k (A1; L1). By De�nition 3.4, we know that A is a safe I/Oautomaton. Furthermore, by De�nition 3.12, Lemma 3.5, and the fact that each Li � exec(Ai),the set L is a subset of exec(A). 14

Let (g0; f0) and (g1; f1) be receptive strategies for (A0; L0) and (A1; L1), respectively. ByLemma 3.16 the strategy (g; f) = (g0; f0) k (g1; f1) is a receptive strategy for (A;L). Therefore,the pair (A;L) is receptive. Thus, by De�nition 3.11, (A;L) is a live I/O automaton.Receptiveness is a crucial property of live I/O automata since it guarantees that no pair ofcompatible live I/O automata constrain each other's environments. In particular, if a pair(A;L) is not receptive, the parallel composition operator may generate pairs that are not evenlive automata.Example 3.4 Consider safe I/O automata A and B described by the diagrams below.A : sA B : sB! a;b# // ! a;b# //For A, action b is an input action, and action a is an output action; for B, action a is an inputaction and action b is an output action. Let the liveness condition LA for A be the set ofexecutions � of A such that trace(�) ends in (ab)1 or a1, and let the liveness condition LBfor B be the set of executions � of B such that trace(�) ends in (aabb)1 or b1.The pairs (A;LA) and (B;LB) are not receptive. To see that (A;LA) is not receptiveconsider the environment sequence I = bb�bb� � � �; to see that (B;LB) is not receptive considerthe environment sequence I = aaa�aaa� � � �.Let (C;LC) = (A;LA) k (B;LB). In this case, LC = ;. Thus LC is not a liveness conditionfor C, which means that (C;LC) is not even a live automaton.Example 3.4 also exposes the
aw in a simpler and more intuitive de�nition for receptiveness weoriginally considered for this paper. The simpler de�nition, which is a natural generalizationof the fairness condition of [LT87] and is also discussed in [LS89], states that \a pair (A;L)is receptive if for each �nite execution � of A and each (�nite or in�nite) sequence � of inputactions there is an execution fragment �0 of A such that �0din(A) = � and � a �0 2 L." It iseasy to see that the pairs (A;LA) and (B;LB) of Example 3.4 are both receptive based on thesimpler de�nition. However, the example shows that their composition cannot be a live I/Oautomaton. The problem with the simpler de�nition is that it allows the system to choose itsrelative speed with respect to the environment, and it allows the system to base its decisionson the future behavior of the environment. Example 3.4 shows that the simpler de�nition thusgives the system too much power for parallel composition to be closed.3.5 Preorder Relations for Live I/O AutomataIn [LT87, Dil88, AL93] the notion of implementation is expressed through some form of traceinclusion. Similar notions of implementation can be de�ned on live I/O automata. In particularit is possible to identify two preorder relations, the safe and the live preorders, which aim atcapturing the safety and liveness aspects of live I/O automata, respectively.15

De�nition 3.18 (Trace preorders) Given two live I/O automata (A1; L1) and (A2; L2) suchthat esig(A1) = esig(A2), de�ne the following preorders:Safe: (A1; L1) vS (A2; L2) i� traces(A1) � traces(A2);Live: (A1; L1) vL (A2; L2) i� traces(L1) � traces(L2).The safe preorder is the same as the unfair preorder of I/O automata [LT87], while the livepreorder is a generalization of the fair preorder of [LT87]. In particular, the live preordercoincides with the fair preorder if, for each live I/O automaton (A;L), L is chosen to be theset of fair executions of A. The conformation preorder of [Dil88], which expresses the notionof implementation for complete trace structures, coincides with the live preorder when dealingwith failure free complete trace structures. Finally, the notion of implementation of [AL93],which works in a state based model, coincides with the live preorder up to a di�erent notionof traces arising from the state structure of the model. In [AL93], a system M1 implements asystem M2 i� the set of \traces" of the realizable part of M1 is a subset of the set of \traces"of the realizable part of M2. Furthermore, if a system M is receptive, then M is equal to itsrealizable part. Thus, for receptive systems, the implementation notion of [AL93] is just thelive trace preorder. The reader is referred to Section 3.6 for more discussion of realizability.Note that the live preorder implies the safe preorder whenever the involved automata have�nite internal nondeterminism. On the other hand, if the involved automata do not have �niteinternal nondeterminism, the live preorder only implies �nite trace inclusion. Essentially, �niteinternal nondeterminism requires that a live I/O automaton has a �nite internal branchingstructure. In particular, a �nite trace can lead to at most �nitely many states.De�nition 3.19 (Finite internal nondeterminism) An automaton A has �nite internalnondeterminism (FIN) i�, for each �nite trace � 2 traces�(A), the set flstate(�) j � 2exec�(A); trace(�) = �g is �nite.Proposition 3.20 Let (A1; L1) and (A2; L2) be two live I/O automata with esig(A1) = esig(A2).1. If (A1; L1) vL (A2; L2) then traces�(A1) � traces�(A2)2. If A2 has FIN and (A1; L1) vL (A2; L2), then (A1; L1) vS (A2; L2)Proof. Let � be a �nite trace of A1. By de�nition of trace, there is an execution �1 of A1 suchthat trace(�1) = �. By de�nition of a live I/O automaton there exists an execution �01 of A1such that �1 � �01 and �01 2 L1. Since (A1; L1) vL (A2; L2), there exists an execution �02 of L2such that trace(�01) = trace(�02). By de�nition of a live I/O automaton, �02 is an execution ofA2, and, since the set of executions of an automaton is closed under pre�x, there is a pre�x �2of �02 such that �2 is an execution of A2 and trace(�2) = �, i.e., � is a trace of A2. This showspart 1. For part 2 we need to show in�nite trace inclusion as well, which follows from �nitetrace inclusion, closure under pre�x of trace sets, and the fact that trace sets of automata with�nite internal nondeterminism are closed under pre�x ordering limit [LV91].16

The proof of Proposition 3.20 supports the requirement of our de�nition of a liveness condition(De�nition 3.2) that every safe execution be extendible to a live execution. Without thisrequirement, the live preorder could not be used to infer the safe preorder, i.e., neither part ofProposition 3.20 would hold.An important goal of this paper is the substitutivity of the safe and live preorders for parallelcomposition. This means that an implementation of a system made up of several parallelcomponents can be obtained by implementing each component separately.Theorem 3.21 (Substitutivity) Let (Ai; Li); (A0i; L0i), i 2 f0; 1g be live I/O automata, andlet vX be either vS or vL. If, for each i, (Ai; Li) vX (A0i; L0i), (A0; L0) and (A1; L1) are com-patible, and (A00; L00) and (A01; L01) are compatible, then (A0; L0)k(A1; L1) vX (A00; L00)k(A01; L01).Proof. The substitutivity results for the safe trace preorder are already proven in [LT87].The substitutivity results for the live trace preorder follow directly from the de�nition of theparallel composition operator after observing, as it is proved in Corollary 8 of [LT87], thatparallel composition of execution sets preserves trace equivalence.The following example shows that the absence of receptiveness can lead to situations wherethe substitutivity result of Theorem 3.21 breaks.Example 3.5 Consider the safe I/O automata A1; A2, and A3 with the transition diagramsbelow. A1 A2 A3s0 s0 s0s1 s2a{{xx bFF## !a;b"oo !a;b"oo! a# // !b"oowhere a and b are output actions for A1 and A2 and are input actions for A3. Let L1 (resp.L2) be the set of executions of A1 (resp. A2) containing at least one action and let L3 bethe set of executions of A3 whose trace contains the subsequence ab. It is easy to check that(A1; L1) and (A2; L2) are both receptive, and that (A3; L3) is not receptive since it requires atleast one input.Observe that (A1; L1) vL (A2; L2) and that (A2; L2)k(A3; L3) is receptive and thus a liveI/O automaton. One might want to conclude that (A1; L1)k(A3; L3) vL (A2; L2)k(A3; L3).Unfortunately, this conclusion is false. In particular, let (A;L) = (A1; L1)k(A3; L3). Then, theset L is not a liveness condition since A1 can never perform an action a followed by an action b.Thus, the fact that (A3; L3) is not receptive causes situations where the parallel compositionwith (A3; L3) fails to lead to a pair (A;L) where L is a liveness condition. This in turn causesthe substitutivity of the parallel composition operator to fail.There are several ways to justify the live preorder as an adequate notion of implementationfor live I/O automata. Since the live preorder captures the implementation notions of [LT87,17

Dil88, AL93] it can rest on the justi�cations provided for these implementation notions. Forexample, the fair preorder of [LT87] is justi�ed by two observations. First, the fact that I/Oautomata are input-enabled guarantees that a system must respond to any environment. In ourmodel the same property is guaranteed by the concept of receptiveness. Second, by restrictingattention to fair traces the correctness of an implementation is based only on executions wherethe system behaves fairly. In our model this property is guaranteed by restricting attention tolive traces.An additional justi�cation for the live preorder as a notion of implementation is based onthe concepts of safety and liveness properties. It is easy to see that the safe preorder preservesthe safety properties of a system, i.e., the safe preorder guarantees that an implementationcannot do anything that is not allowed by the speci�cation. The live preorder, on the otherhand, preserves the liveness properties of a system, thus guaranteeing that an implementationmust do something whenever it is required to by the speci�cation. Informally, if after a sequenceof actions � something has to happen, � is not a live trace of the speci�cation, and thus nota live trace of the implementation. Therefore, even in the implementation something has tohappen after � has occurred. If the involved systems have �nite internal nondeterminism, thenthe live preorder implies the safe preorder. Thus the live preorder guarantees both safety andliveness properties.It is well known that simulation based proof techniques [LV93] can be used for implemen-tation notions based on trace inclusion. In [GSSL93] simulation based proof techniques areextended to the live preorder, and in [SLL93b] the new proof techniques are used to verifynontrivial communication protocols.3.6 Comparison with Other ModelsThis section compares our model with the models of [Dil88, LT87, AL93] and the work of[RWZ92].The model of complete trace structures of [Dil88] is a special case of our model. Speci�cally,the model of [Dil88] does not include a state structure, so that the safe part of a live automatonin [Dil88] is given by a set of traces. Since there is no notion of a state in a complete tracestructure, a strategy for a system is simpler than our strategies in the sense that functiong is not necessary and that function f simply picks up a locally-controlled action based onprevious environment moves. By ignoring the state structure of a system, the model in [Dil88]may erroneously view as receptive a state machine that is not receptive based on our modelsince its traces may be receptive. Thus, complete trace structures are not adequate wheneverthe state structure of a system is important.The I/O automaton model of [LT87] is also a special case of our model. An I/O automatonM of [LT87] can be represented in our model as the receptive pair (A;L), where A is the I/Oautomaton M without the partition of its locally-controlled actions and L is the set of fairexecutions of M . The receptive strategy (g; f) for (A;L) is de�ned so that g picks up anypossible next state in response to an input action, while f gives fair turns to proceed (sayin a round robin way) to all the components of M that are continuously willing to perform18

some locally-controlled action. Thus [LT87] can only express some special cases of our generalliveness conditions.The model of [AL93] is based on unlabeled state transition systems and is suitable for themodeling of shared memory systems. An action in [AL93] is identi�ed with a set of transi-tions, and transitions are partitioned into environment transitions and system transitions. Theenvironment moves by performing an arbitrary �nite number of environment transitions andthe system responds by performing zero or one system transitions. Function g is not necessaryin a strategy for a system of [AL93] since the environment chooses the next shared state in itsmove and does not modify the internal state. Function f chooses a new transition based onthe past history of the system.In this paper we have de�ned receptiveness by requiring the existence of a strategy that can\win the game" after any �nite execution �. In [AL93] a weaker property called realizability isconsidered, where the requirement is the existence of a strategy that can win starting from anystart state. The realizable part of a system of [AL93] is the set of behaviors that can be theoutcome of some strategy. A system that coincides with its realizable part is called receptive.The notion of receptiveness of [AL93] corresponds to our notion of receptiveness, as can bederived easily from Proposition 9 of [AL93].Example 3.2 shows a live automaton (A;L) which is not receptive. However, (A;L) isrealizable, and (A0; L0), which is de�ned in the same example, is the realizable part of (A;L).In [AL93] systems are compared based on their realizable parts. Thus, it is necessary todetermine the realizable part of a system before its safety properties can be determined, and forthis reason realizable systems are closed under parallel composition in [AL93]. In other words,L can add new safety properties to A. However, later in [AL93] a notion ofmachine-realizabilityis introduced which separates safety and liveness properties and requires receptiveness just likeour live I/O automata.Finally, it is easy to show, given our de�nition of receptiveness, that the set of live traces ofany live I/O automaton is union-game realizable according to [RWZ92], and thus describableby means of a standard I/O automaton of [LT87]. However, in general the I/O automatondescription would involve a lot of encoding and would be extremely unnatural. That is, eventhough the I/O automata of [LT87] and our live I/O automata are formally equivalent, fairnessis not adequate to describe general liveness.4 Timed SystemsThe notion of liveness discussed in the previous section is now extended to the timed model.Section 4.1 introduces timed automata along with timed executions and timed traces , andshows the relationship between the new timed executions and the ordinary executions fromthe untimed model. Section 4.2 introduces live timed automata. Section 4.3 de�nes safetimed I/O automata by introducing the Input/Output distinction. Section 4.4 extends thenotion of receptiveness to the timed model and de�nes live timed I/O automata. Section 4.5introduces several preorders on live timed I/O automata, one of which is used to express a19

notion of implementation. Finally, Section 4.6 compares our model with existing work. Mostof the discussion for the untimed model applies to the timed model as well. In particular,Examples 3.1, 3.2, 3.4, and 3.5 apply equally to the timed model. In the rest of the paper ourdiscussion focuses on issues speci�c to the timed model.4.1 Timed AutomataThe following de�nition of a timed automaton is the same as the corresponding de�nition in[LV95] except for the fact that our de�nition allows multiple internal actions. Also, the notionsof timed executions and timed traces are the same as the de�nitions of [LV95]. The de�nitionsare repeated here but the reader is referred to [LV95] for further details. Times are speci�edusing a dense time domain T. In this paper, as in [LV95], let T be R�0, the set of non-negativereals.De�nition 4.1 (Timed automaton) A timed automaton A is an automaton whose set ofexternal actions contains a collection of special time-passage actions f�(t) j t 2 R>0g. De�nethe set of visible actions to be vis(A) 4= ext(A) � f�(t) j t 2 R>0g. The automaton A mustsatisfy the following two axioms.S1 If (s; �(t); s0) 2 steps(A) and (s0; �(t0); s00) 2 steps(A), then (s; �(t+ t0); s00) 2 steps(A).To be able to state the second axiom, the following auxiliary de�nition is needed. Let I bean interval of R�0 with minimum element 0. Then a function ! : I ! states(A) is an A-trajectory , sometimes called trajectory when A is clear from context, if for all t; t0 2 I witht < t0, (!(t); �(t0 � t); !(t0)) 2 steps(A). That is, ! assigns a state to each time t so thattime-passage steps can span between any pair of states in the range of !. Denote sup(I)by ltime(!). Denote !(0) by fstate(!), and if I is right closed, then denote !(ltime(!)) bylstate(!). If I is closed, then ! is said to be an A-trajectory from fstate(!) to lstate(!). AnA-trajectory ! whose domain dom(!) is the point interval [0; 0] is called a point trajectory andis also denoted by the set f!(0)g. The range of ! is denoted by rng(!).The second axiom then becomesS2 If (s; �(t); s0) 2 steps(A) then there is an A-trajectory from s to s0 with domain [0; t].Axioms S1 and S2 state natural properties of time, namely that if time can pass in twosteps, then it can also pass in a single step, and if time t can pass, then it is possible to associatestates with all times in the interval [0; t] in a consistent way. In [LV95] axiom S2 is explainedfurther and compared to the weaker axiom that says the following: if time can pass in onestep, then it can pass in two steps with the time of the intermediate state being any time inthe interval.Timed ExecutionsSection 3 introduced the notions of execution and trace for automata. These notions carry overto timed automata with the addition of one new idea. In particular, the notion of execution20

for automata allows one to associate states with only a countable number of points in time,whereas the trajectory axiom S2 allows one to associate states with all real times. Also, theintuition about the execution of a timed system is that visible actions occur at points in time,and that time passes \continuously" between these points. These observations lead to thede�nition of a timed execution. The de�nition is close to the notion of hybrid computation of[MMP91] where continuous changes and discrete events alternate during the execution of asystem.A timed execution fragment � of a timed automaton A is a (�nite or in�nite) sequence ofalternating A-trajectories and actions in vis(A) [int(A), starting in a trajectory and, if thesequence is �nite, ending in a trajectory� = !0a1!1a2!2 � � �such that the following holds for each index i:1. If !i is not the last trajectory in �, then its domain is a closed interval.2. If !i is not the last trajectory of �, then (lstate(!i); ai+1; fstate(!i+1)) 2 steps(A).A timed execution is a timed execution fragment !0a1!1a2!2 � � � for which fstate(!0) is astart state. If � is a timed execution fragment, then de�ne fstate(�) to be fstate(!0), where!0 is the �rst trajectory of �. Also, de�ne ltime(�) to be the sum of the suprema of thedomains of the trajectories of �. That is, ltime(!0a1!1a2!2 � � �an!n) =P0�i�n ltime(!i), andltime(!0a1!1a2!2 � � �) =Pi�0 ltime(!i). Finally, if � is a �nite sequence where the domain ofthe last trajectory ! is a closed interval, de�ne lstate(�) to be lstate(!).Finite, Admissible, and Zeno Timed ExecutionsThe timed executions and timed execution fragments of a timed automaton can be partitionedinto �nite, admissible, and Zeno timed executions and timed execution fragments.A timed execution (fragment) � is de�ned to be �nite, if it is a �nite sequence and the do-main of the last trajectory is a closed interval. A timed execution (fragment) � is admissible ifltime(�) =1. Finally, a timed execution (fragment) � is Zeno if it is neither �nite nor admis-sible. Denote by t-frag�(A), t-frag1(A), t-fragZ(A), and t-frag(A) the sets of �nite, admissible,Zeno, and all timed execution fragments of A. Similarly, denote by t-exec�(A), t-exec1(A),t-execZ(A), and t-exec(A) the sets of �nite, admissible, Zeno, and all timed executions of A.There are basically two types of Zeno timed executions: those containing in�nitely manyoccurrences of non-time-passage actions, and those containing �nitely many occurrences ofnon-time-passage actions and for which the domain of the last trajectory is right-open. Thus,Zeno timed executions represent executions of a timed automaton where an in�nite amount ofactivity occurs in a bounded period of time. (For the second type of Zeno timed executions, thein�nitely many time-passage steps needed to span the right-open interval should be thoughtof as an \in�nite amount of activity".) 21

A �nite timed execution fragment �1 = !0a1!1 � � �an!n of A and a timed execution fragment�2 = !0nan+1!n+1an+2!n+2 � � � of A can be concatenated if lstate(�1) = fstate(�2). The con-catenation, written �1 a �2, is de�ned to be � = !0a1!1 � � �an(!n a !0n)an+1!n+1an+2!n+2 � � �,where, for any trajectories ! and !0 with lstate(!) = fstate(!0),! a !0(t) 4= (!(t) if t � ltime(!)!0(t � ltime(!)) otherwise:It is easy to see that � is a timed execution fragment of A.The notion of pre�x for timed execution fragments is de�ned as follows. A timed executionfragment �1 of A is a pre�x of a timed execution fragment �2 of A, written �1 �t �2, ifeither �1 = �2 or �1 is �nite and there exists a timed execution fragment �01 of A such that�2 = �1 a �01. Likewise, �1 is a su�x of �2 if there exists a �nite timed execution fragment�01 such that �2 = �01 a �1. For a �nite timed execution fragment �1 and a timed executionfragment �2 with �1 �t �2, de�ne �2 � �1 to be the (unique) timed execution fragment �01such that �2 = �1 a �01.De�ne � / t, read \� before t", for all t � 0, to be the pre�x of � that includes exactly allstates with times not bigger than t. Formally,� / t 4= 8><>: � if t � ltime(�)�0 if t < ltime(�) and there exists �00 = !000a001!001 � � � such that� = �0 a �00 and ltime(�0) = t and !000 is not a point trajectory.Likewise, de�ne �. t, read \� after t", for all t < ltime(�) or all t � ltime(�) when � is �nite,to be the su�x of � that includes exactly all states with times not smaller than t. Formally,� . t 4= (�0 if there exists �00 = !000a001!001 � � �!00n such that� = �00 a �0 and ltime(�00) = t and !00n is not a point trajectory.Observe that � / t and � . t include also all the actions that occur at time t. In this paperwe apply the operators / and . mostly to trajectories. By specializing the de�nitions above,! / t is the restriction of ! to the interval [0; t], while ! . t is a trajectory !0 such that, for eacht0 � 0, !0(t0) = !(t0 � t).Timed TracesIn the untimed model automata are compared based on their traces. This turns out to beinadequate in the timed model, since time is invisible in a trace (cf. [LV95] for more details).This leads to timed traces, which consist of visible actions paired with their time of occurrence(timed sequences) together with a time of termination.A timed sequence over a set K is de�ned to be a (�nite or in�nite) sequence � over K�R�0in which the second components of every pair (the time components) are nondecreasing. De�ne� to be Zeno if it is in�nite and the limit of the time components is �nite. For any nonemptytimed sequence �, de�ne ftime(�) to be the time component of the �rst pair in �.22

A timed sequence pair over K is a pair
 = (�; t), where � is a timed sequence over K andt 2 T [f1g, such that t is greater than or equal to all time components in �. Let seq(
)and ltime(
) denote the two respective components of
. Then de�ne ftime(
) to be equalftime(seq(
)) in case seq(
) is nonempty, and equal to ltime(
) otherwise. Denote by tsp(K)the set of timed sequence pairs over K. A timed sequence pair
 is said to be �nite if bothseq(
) and ltime(
) are �nite, and admissible if seq(
) is not Zeno and ltime(
) =1.Let � = !0a1!1a2!2 � � � be a timed execution fragment of a timed automaton A. For eachai, de�ne the time of occurrence ti to be P0�j<i ltime(!j). Then, de�ne t-seq(�) to be thesequence consisting of the actions in � paired with their time of occurrence:t-seq(�) = (a1; t1)(a2; t2) � � �Then t-trace(�), the timed trace of �, is de�ned to be the timed sequence pair over vis(A):t-trace(�) 4= (t-seq(�) � (vis(A)� T); ltime(�)):Thus, t-trace(�) records the occurrences of visible actions together with their time of occur-rence, and the limit time of the timed execution fragment. A timed trace suppresses bothinternal and time-passage actions.Let t-traces�(A), t-traces1(A), t-tracesZ(A), and t-traces(A) denote the sets of timed tracesof A obtained from �nite, admissible, Zeno, and all timed executions of A, respectively.4.2 Live Timed AutomataThe de�nition of a live timed automaton is similar to the de�nition of a live automaton (De�-nition 3.2) except for the fact that the liveness condition is a set of timed executions .De�nition 4.2 (Live timed automaton) A liveness condition L for a timed automaton Ais a subset of the timed executions of A such that any �nite timed execution of A has anextension in L. Formally, L � t-exec(A) such that for all � 2 t-exec�(A) there exists a�0 2 t-frag(A), such that � a �0 2 L.A live timed automaton is a pair (A;L), where A is a timed automaton and L is a livenesscondition for A. The timed executions of L are called the live timed executions of A.4.3 Safe Timed I/O AutomataDe�nition 4.3 (Safe timed I/O automaton) A safe timed I/O automaton is a timed au-tomaton augmented with a visible action signature, vsig(A) = (in(A); out(A)), which parti-tions vis(A) into input and output actions. A must be input-enabled.The internal and output actions of a safe timed I/O automaton A are referred to as thelocally-controlled actions of A, written local(A). Thus, local(A) = int(A) [out(A).Parallel composition of safe timed I/O automata is de�ned similarly to the way it is de�nedfor the untimed model (De�nition 3.4). All the time-passage actions synchronize. Thus, timeis only allowed to pass by a certain amount in the composition if all components allow thesame amount of time to pass. 23

De�nition 4.4 (Parallel composition) Two safe timed I/O automata A0 and A1 are com-patible if the following conditions hold:1. out(A0) \ out(A1) = ;2. int(A0) \ acts(A1) = int(A1) \ acts(A0) = ;.The parallel composition A0kA1 of two compatible safe timed I/O automata A0 and A1 is thesafe timed I/O automaton A such that1. states(A) = states(A0)� states(A1)2. start(A) = start(A0)� start(A1)3. out(A) = out(A0) [out(A1)4. in(A) = (in(A0) [in(A1))� out(A)5. int(A) = int(A0) [int(A1)6. ((s0; s1); a; (s00; s01)) 2 steps(A) i� for all i 2 f0; 1g(a) if a 2 acts(Ai) then (si; a; s0i) 2 steps(Ai)(b) if a =2 acts(Ai) then si = s0i.Note how Condition 6 of De�nition 4.4 captures both time-passage steps (where all componentsparticipate) and other steps (where a subset of the components participate).Lemma 3.5 carries over to the timed case. However, a new de�nition of projection is neededfor timed executions. Speci�cally, let A = A0kA1. For any A-trajectory !, de�ne !dAi to beobtained from ! by projecting every state in the range of ! to Ai. Let � = !0a1!1a2!2 � � �be an alternating sequence of A-trajectories and actions from acts(A)� f�(t) j t 2 R>0g. Wesay that � is well-formed if � does not end in an action if it is a �nite sequence, the domainof each trajectory !j that is not the last function of � is closed, and, for each Ai and eachj such that aj =2 acts(Ai), lstate(!j�1)dAi = fstate(!j)dAi. Then, if � is well-formed, theprojection �dAi of � onto Ai is obtained by projecting each !k of � onto Ai, removing eachaction aj that is not an action of Ai, and concatenating each pair of (projected) functions !k,!k+1 whose interleaved action is removed. The next lemma is the analog of Lemma 3.5 in theuntimed model.Lemma 4.5 Let A = A0kA1. Let � = !0a1!1a2!2 � � � be a well-formed alternating sequenceof A-trajectories and actions from acts(A)� f�(t) j t 2 R>0g. Then,1. �dAi 2 t-exec�(Ai), for all Ai, i� � 2 t-exec�(A).2. �dAi 2 t-exec1(Ai), for all Ai, i� � 2 t-exec1(A).3. �dAi 2 t-exec(Ai), for all Ai, i� � 2 t-exec(A).4. If � 2 t-exec(A) then, for all i, ltime(�) = ltime(�dAi).24

4.4 Live Timed I/O AutomataIn order to de�ne live timed I/O automata, we generalize the notion of receptiveness to timedsystems. As for the untimed model, a live timed I/O automaton is receptive if it can behaveproperly independently of the behavior of the environment. Speci�cally, a game is set upbetween a timed automaton and its environment and the timed automaton is receptive i� ithas a winning strategy against its environment. The notion of strategy is similar to the oneused for the untimed model. However, the presence of time has a strong impact on the typeof interactions that can occur between a timed automaton and its environment.In the untimed model the environment is allowed to provide any �nite number of inputactions at each move, and the system is allowed to perform at most one of its locally-controlledactions at each move. Thus, the fact that the environment can be arbitrarily fast with respectto the system, but not in�nitely fast, is re
ected in the structure of the environment moves.This structure is not needed in the timed model since actions in the timed model are associatedwith speci�c times. In particular, the relative speeds of the system and the environment aregiven directly by their timing constraints. The behavior of the environment during the gamecan be represented simply as a timed sequence over input actions.In the untimed model a strategy is not allowed to base its decisions on any future inputactions from the environment. In the timed model, not only is the strategy not allowed toknow about the occurrence of future input actions, but the strategy is also not allowed toknow anything about the timing of such input actions, e.g., that no inputs will arrive in thenext � time units. Thus, if a strategy in the timed model decides to let time pass, it is requiredto specify explicitly all intermediate states. By specifying all states at intermediate times fora time-passage step, the current state of the system will always be known should the time-passage step be interrupted by an input action. This leads us to the main idea behind thede�nition of a timed strategy, that is, the system lets time pass by providing a trajectory.As in the untimed model, a strategy in the timed model is a pair of functions (g; f).Function f takes a �nite timed execution and decides how the system behaves till its nextlocally-controlled action under the assumption that no input are received in the meantime;function g decides what state to reach whenever some input is received.De�nition 4.6 (Strategy) Consider any safe timed I/O automatonA. A strategy de�ned onA is a pair of functions (g; f) where g : t-exec�(A)� in(A)! states(A) and f : t-exec�(A)!(traj (A)� local(A)� states(A))[traj (A), where traj (A) is the set of A-trajectories, such that1. g(�; a) = s implies �afsg 2 t-exec�(A),2. f(�) = (!; a; s) implies � a !afsg 2 t-exec�(A),3. f(�) = ! implies � a ! 2 t-exec1(A),4. f is consistent , i.e., if f(�) = (!; a; s), then, for each t � ltime(!), f(� a (! / t)) =(! . t; a; s), and, if f(�) = !, then, for each t < ltime(!), f(� a (! / t)) = ! . t.25

For notational convenience de�nef(�):trj 4= (! if f(�) = (!; a; s)! if f(�) = !.Condition 1 of De�nition 4.6 states that g returns a \legal" next state given an input. Condi-tions 2 and 3 describe the two possible system moves given by f : either f speci�es time-passagefollowed by a local step, or f speci�es that the system simply lets time pass forever. Note thatf speci�es all states during time passage. The consistency condition (Condition 4) for f saysthat, if after a �nite timed execution � the system decides to behave according to !afsg or !,then after performing a part of ! the system decides to behave according to the rest of !afsgor !. In other words, a strategy decision cannot change in the absence of any inputs. Theconsistency condition is required for the closure of the composition operator.The game between the system and the environment works as follows. The environment canprovide any input at any time, while the system lets time pass and provides locally-controlledactions based on its strategy. At any point in time the system decides its next move usingfunction f . If an input comes, the system performs its current step just until the time theinput occurs, and then uses function g to compute the state reached as a result of the input.A new problem arises when the system decides to perform an action at the same timethe environment is providing some input. Our model does not rule out such race conditions.Practical examples of such situations arise whenever the system has some timeout mechanismand the input occurs exactly when the timeout period expires. The race conditions are modeledas nondeterministic choices. As a consequence, the outcome, that is, the result of the game,for a timed strategy is a set of timed executions.The following de�nition of the outcome of a strategy for safe timed I/O automata parallelsthe corresponding de�nition in the untimed model.De�nition 4.7 (Outcome of a strategy) Let A be a safe timed I/O automaton and (g; f)a strategy de�ned on A. De�ne a timed environment sequence for A to be a timed sequenceover in(A), and de�ne a timed environment sequence I for A to be compatible with a timedexecution fragment � of A if either I is empty, or � is �nite and ltime(�) � ftime(I). Thende�ne R(g;f), the next-relation induced by (g; f), as follows: for any �;�0 2 t-exec(A) and anyI; I 0 compatible with �;�0, respectively, ((�; I); (�0; I 0)) 2 R(g;f) i�(�0; I0) = 8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
(� a !afsg; I) if � is �nite, I = "; f(�) = (!; a; s);(� a !; I) if � is �nite, I = "; f(�) = !;(� a !afsg; I) if � is �nite, I = (b; t)I 00; f(�) = (!; a; s);ltime(� a !) � t;(� a !0afs0g; I 00) if � is �nite, I = (a; t)I 00; f(�):trj = !;ltime(� a !) � t; !0 = ! / (t� ltime(�)); s0 = g(� a !0; a);(�; I) if � is not �nite:26

Let � be a �nite timed execution of A, and I be a timed environment sequence for A compatiblewith �.An outcome sequence of (g; f) given � and I is an in�nite sequence (�n; In)n�0 that satis�es:� (�0; I0) = (�; I) and� for all n > 0, ((�n�1; In�1); (�n; In)) 2 R(g;f).Note, that (�n)n�0 forms a chain ordered by pre�x .The outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the set of timed executions�0 for which there exists an outcome sequence (�n; In)n�0 of (g; f) given � and I such that�0 = limn!1 �n.The set of outcome sequences of (g; f) given some � and I is determined step by step usingthe next-relation R(g;f). The �rst case of the de�nition of R(g;f) deals with the situation whereno input occurs and the system performs an action; the second case deals with the situationwhere no input occurs and the system lets time pass forever; the third case deals with thesituation where both the environment and the system provide some action and the systemdoes not provide its action after the environment does; the fourth case deals with the situationwhere both the environment and the system provide some action and the environment doesnot provide its action after the system does; the �fth case is needed for technical convenience,since the second case produces an admissible timed execution. Note, that the third and fourthcases may both be applicable whenever the next input action of I and the local action chosenby f occur at the same time. This is why the outcome is a set of timed executions.The following lemma states that an outcome set is never empty and that an element ofan outcome cannot be �nite. Furthermore, if an element of an outcome is Zeno, it containsin�nitely many actions (other than the implicit time-passage actions).Lemma 4.8 Let A be a safe timed I/O automaton, (g; f) a strategy de�ned on A, � a �-nite timed execution of A, and I a timed environment sequence for A compatible with �.Then O(g;f)(�; I) 6= ; and O(g;f)(�; I) � (t-exec1(A) [t-execZ(A)). Furthermore, if �0 2O(g;f)(�; I) and �0 2 t-execZ(A), then j�0 � acts(A)j =1.Proof. Let R(g;f) be the next-relation induced by (g; f). Construct an outcome sequenceof (g; f) given � and I inductively as follows. De�ne (�0; I0) = (�; I). For any n > 0,assume (�n�1; In�1) has been de�ned. Then it is easy to see that the condition of at leastone case in the de�nition of R(g;f) is satis�ed. Thus, de�ne (�n; In) to be any pair such that((�n�1; In�1); (�n; In)) 2 R(g;f). This inductively de�ned outcome sequence gives rise to anelement in O(g;f)(�; I). That proves that O(g;f)(�; I) is not empty.Let (�n; In) be an arbitrary outcome sequence of (g; f) given � and I. Clearly, �0 = � 2t-exec(A). Assume, that �n�1 2 t-exec(A). Then, by the four conditions of De�nition 4.6, itis easy to see that also �n 2 t-exec(A). Thus, by induction, �n 2 t-exec(A) for all n � 0.Suppose by contradiction that �0 = limn!1(�n) =2 t-exec(A). Then there must be a �nite27

pre�x �00 of �0 such that �00 =2 t-exec�(A). Also, �00 must be a pre�x of �n for some n.However, this contradicts the fact that �n 2 t-exec(A). Thus, �0 2 t-exec(A).Now, assume by contradiction that �0 is �nite. Then there exists a number n0 such thatfor all n > n0, �n = �n�1 = �0, but this contradicts the de�nition of R(g;f), since �n = �n�1only if �n�1 is admissible. Thus, O(g;f)(�; I) � (t-exec1(A) [t-execZ(A)).Finally, it is easy to see that if �0 2 t-execZ(A), then �0 is an in�nite sequence of trajectoriesand actions. Only the second case in the de�nition of R(g;f) can lead to a �nite sequence, butin this case the outcome would be admissible (cf. De�nition 4.6 Condition 3).Another problem due to the explicit presence of time in the model is the capability of a systemto block time. Under the reasonable assumption that it is natural for a system to require timeto advance forever, a timed automaton that blocks time cannot be receptive. Thus, we couldassume that �nite and Zeno timed executions are not live and that the environment cannotblock time. However, as is illustrated in the following example due to Lamport, Zeno timedexecutions cannot be ignored completely.Example 4.1 Consider two safe timed I/O automata A;B such that in(A) = out(B) = fbgand out(A) = in(B) = fag. Let A start by performing its output action a and let B startby waiting for some input. Furthermore, let both A and B reply to their nth input with anoutput action exactly 1=2n time units after the input has occurred.Consider the following de�nition of receptiveness, which assumes that the environment doesnot behave in a Zeno manner: a pair (A;L) is receptive i� there exists a strategy (g; f) de�nedon A such that for each �nite timed execution � of A and any admissible timed environmentsequence I for A compatible with � we have O(g;f)(�; I) � L. Then it is easy to observe that,if LA and LB are de�ned to be the set of admissible timed executions of A and B, respectively,the pairs (A;LA) and (B;LB) are receptive. However, the parallel composition of A and Byields no admissible executions, rather it only yields a Zeno timed execution, which blocks time.Thus, the parallel composition of (A;LA) and (B;LB) constrains the environment. Observethat (A;LA) and (B;LB) \unintentionally" collaborate to generate a Zeno timed execution:each pair looks like a Zeno environment to the other.To eliminate the problem of Example 4.1 one must ensure that a system does not collaboratewith its environment to generate a Zeno timed execution. We call those timed executionswhere the environment is Zeno but the system does not collaborate with the environment togenerate the Zeno timed execution Zeno-tolerant.De�nition 4.9 (Special types of timed executions) Given a safe timed I/O automatonA, and given a timed execution � of A,� � is said to be environment-Zeno if � is a Zeno timed execution that contains in�nitelymany input actions;� � is said to be system-Zeno if � is a Zeno timed execution that either contains in�nitelymany locally-controlled actions or contains �nitely many actions;28

� � is said to be Zeno-tolerant if it is an environment-Zeno, non-system-Zeno timed exe-cution; equivalently, � is Zeno-tolerant if1. ltime(�) is �nite,2. � contains in�nitely many input actions, and3. � contains �nitely many locally-controlled actions.Denote by t-execZt(A) the set of Zeno-tolerant timed executions of A.The notion of environment-Zenoness captures the fact that the environment contributes to theZenoness of a timed execution. The environment can contribute only by providing in�nitelymany actions in a �nite time. The notion of system-Zenoness captures the fact that thesystem contributes to the Zenoness of a timed execution. The system can contribute eitherby providing in�nitely many actions in a �nite time, or by letting time pass in a Zeno way,without producing any action, even though the environment does not provide any more actions.The notion of Zeno-tolerance captures the fact that only the environment contributes to theZenoness of a timed execution.In Example 4.1 the unique execution of AkB that contains in�nitely many actions is anexample of an environment-Zeno and system-Zeno timed execution. We de�ne a strategy tobe Zeno-tolerant if it guarantees that the system never chooses to block time in order to winits game against the environment. That is, a Zeno-tolerant strategy produces Zeno timedexecutions only when applied to a Zeno timed environment sequence I, and in these cases theoutcome is Zeno-tolerant. Thus, the system does not respond to Zeno inputs by behaving in aZeno fashion.De�nition 4.10 (Zeno-tolerant strategy) A strategy (g; f) de�ned on a safe timed I/Oautomaton A is said to be Zeno-tolerant if, for every �nite timed execution � 2 t-exec�(A) andevery timed environment sequence I for A compatible with �, O(g;f)(�; I) � t-exec1(A) [t-execZt(A).We can now de�ne receptiveness by requiring a system to behave according to its livenesscondition under non-Zeno environments and in a Zeno-tolerant way under Zeno environments.De�nition 4.11 (Receptiveness) Let A be a safe timed I/O automaton and L � t-exec(A).A timed strategy (g; f) de�ned on A is called a receptive strategy for (A;L) if (g; f) is Zeno-tolerant and for each �nite timed execution � of A and each timed environment sequence Ifor A compatible with �, O(g;f)(�; I) � L [t-execZt(A). The pair (A;L) is receptive if thereexists a receptive strategy for (A;L).A pair (A;L) is receptive if, after any �nite timed execution and with any (Zeno or non-Zeno)sequence of input actions, it can generate some admissible timed execution in L or some Zeno-tolerant timed execution. Also, A must never generate one of its �nite or system-Zeno timedexecutions, since it would constrain its environment in this case. Thus liveness conditions29

should not include any �nite or system-Zeno timed execution. Zeno-tolerant timed executionsare used only to handle illegal interactions, and therefore also should not be included in livenessconditions. This leads to the de�nition of live timed I/O automata, where the liveness conditioncontains only admissible timed executions, but the strategy is allowed to yield Zeno-tolerantoutcomes when given a Zeno timed environment sequence.De�nition 4.12 (Live timed I/O automaton) A live timed I/O automaton is a pair (A;L),where A is a safe timed I/O automaton and L � t-exec1(A), such that the pair (A;L) is re-ceptive.Lemma 4.13 If (A;L) is a live timed I/O automaton, then L is a liveness condition for A.Proof. Given a �nite timed execution � of A, consider a receptive strategy (g; f) for (A;L).Consider any timed execution � a �0 2 O(g;f)(�; "). Such a timed execution exists accordingto Lemma 4.8. The timed execution � a �0 is not Zeno-tolerant since it contains �nitely manyinput actions. Therefore � a �0 is a timed execution of L, that is, � can be extended to atimed execution of L.There is an interesting property that connects Zeno-tolerance, receptiveness, and admissibility.This property emphasizes the importance of admissible timed executions in the timed model.Proposition 4.14 Let A be a timed I/O automaton and (g; f) be a timed strategy de�ned onA. Then (g; f) is receptive for (A; t-exec1(A)) i� (g; f) is Zeno-tolerant.Proof. Follows trivially from the de�nitions.As in the untimed model, the parallel composition operator de�ned for safe timed I/Oautomata is extended to live timed I/O automata.De�nition 4.15 (Parallel composition) Two live timed I/O automata (A0; L0) and (A1; L1)are compatible i� the safe timed I/O automata A0 and A1 are compatible. The parallel compo-sition (A0; L0)k(A1; L1) of compatible live timed I/O automata (A0; L0) and (A1; L1) is de�nedto be the pair (A;L) where A = A0kA1 and L = f� 2 t-exec(A) j �dA0 2 L0 and �dA1 2 L1g.As expected, parallel composition is closed for live timed I/O automata in the sense that itproduces a new live timed I/O automaton; however, the proof of closure is quite complex.For compatible live timed I/O automata (A0; L0) and (A1; L1), let (A;L) denote the parallelcomposition (A0; L0)k(A1; L1). In order to prove that (A;L) is a live timed I/O automatonwe must show that (A;L) is receptive, which, in turn, requires �nding a receptive strategy for(A;L).The proof proceeds by �rst de�ning a strategy (g; f) for (A;L) based on a strategy (gi; fi)for each (Ai; Li), and then proving that (g; f) is a receptive strategy for (A;L). Function gcomputes, given input a, the next state according to the gi functions of those components of30

A for which a is an input action, and simply leaves the state unchanged for those componentsfor which a is not an action. Function f determines, using the fi functions, which componentis allowed to execute the next locally-controlled action. Say this is component k and it wishesto perform action a at time t. Then each component Ai evolves based on fi up to time t.Furthermore, at time t, Ak takes a step based on fk and, if a is an input action of A(1�k),A(1�k) takes a step based on g(1�k). If at time t both A0 and A1 want to take a step, thenpriority is given to A0. We do not need to enforce any speci�c tie breaking policy in the timedcase: the fact that time must elapse ensures that both A0 and A1 have a chances take stepsunder non-Zeno environments.De�nition 4.16 (Parallel composition of (timed) strategies) Let A = A0kA1 be theparallel composition of two compatible safe timed I/O automataA0 and A1, and let (g0; f0) and(g1; f1) be strategies de�ned onA0 andA1, respectively. The parallel composition (g0; f0)k(g1; f1)of the strategies (g0; f0) and (g1; f1) is the pair of functions (g; f)g : t-exec�(A)� in(A)! states(A)f : t-exec�(A)! (traj (A)� local(A)� states(A))[traj (A)such thatg(�; a) = s where, for all i 2 f0; 1g, sdAi = (gi(�dAi; a) for a 2 in(Ai)lstate(�)dAi for a =2 acts(Ai)and f is de�ned as follows: for all i 2 f0; 1g, de�ne !i to be fi(�dAi):trj . Pick the smallest ksuch that ltime(!k) = min(ltime(!0); ltime(!1)). De�ne ! such that!dAi = (!k if i = k!i / ltime(!k) if i 6= k.Distinguish two cases.1. If fk(�dAk) = (!k; a; sk) then f(�) = (!; a; s),where, for all i 2 f0; 1g, sdAi = 8><>: sk if i = kgi((� a !)dAi; a) if i 6= k and a 2 in(Ai)lstate(!)dAi if i 6= k and a =2 acts(Ai).2. If fk(�dAk) = !k then f(�) = !.Lemma 4.17 Let A0 and A1 be compatible safe timed I/O automata and let (g0; f0) and(g1; f1) be strategies de�ned on A0 and A1, respectively. Then (g0; f0)k(g1; f1) is a strategyde�ned on A0kA1.Proof. Let (g; f) = (g0; f0)k(g1; f1). To prove that (g; f) is a strategy de�ned on A, the fourconditions of De�nition 4.6 must be checked. Conditions 1{3 are trivial given the de�nitions ofg and f , and the fact that (g0; f0) and (g1; f1) are strategies de�ned on A0 and A1, respectively.Condition 4 (consistency) needs more analysis.31

Let � 2 t-exec�(A), and suppose that f(�) = (!; a; s). We leave to the reader the casefor f(�) = ! since it is simpler. Let t be an arbitrary time such that t � ltime(!). We showthat f(� a (! / t)) = (! . t; a; s). By the de�nition of f and by the compatibility of A0 andA1, there is a unique index i such that fi(�dAi) = (!dAi; a; sdAi). Let wi denote wdAi andsi denote sdAi. Let j denote 1� i. Then, fj(�dAj):trj = !j for some trajectory wj such thatwdAj � wj , and sdAj is either gj((�dAj) a (!j / ltime(!)); a) or !j(ltime(!)) depending onwhether a is an input action of Aj . Since fj is consistent, fj((�dAj) a (!j / t)):trj = wj . t.Furthermore, since fi is consistent, fi((�dAi) a (! / t)dAi) = ((!i . t); a; si). By the de�nitionof (g; f), f(� a (! / t)) = (! . t; a; s).The following lemma is the key step for showing that the strategy of De�nition 4.16 is recep-tive if the component strategies are receptive. Speci�cally, up to a technical condition, theprojection of an outcome of (g; f) onto a component Ai is an outcome of (gi; fi). Intuitivelythis means that even though the composed system uses its composed strategy to �nd possibleoutcomes, up to a technical restriction it still looks to each component as if it is using itsown component strategy. The restriction says that the projection of a Zeno execution ontoAi contains in�nitely many actions. This restriction does not hurt the applicability of thelemma later in Lemma 4.19. The proof of Lemma 4.18 is more complex than the proof of theanalogous result for the untimed case (cf. Lemma 3.15).Lemma 4.18 Let A0 and A1 be compatible safe timed I/O automata and let (g0; f0) and(g1; f1) be strategies de�ned on A0 and A1. Let A = A0kA1 and (g; f) = (g0; f0)k(g1; f1). Let� be an arbitrary �nite timed execution of A, I be an arbitrary timed environment sequencefor A compatible with �, �0 be an arbitrary timed execution of O(g;f)(�; I), and i be either 0or 1. Assume that j�0 � acts(Ai)j = 1 if �0 is Zeno. Then there exists a timed environmentsequence Ii for Ai compatible with �dAi, such that �0dAi 2 O(gi;fi)(�dAi; Ii).Proof. Let R(g;f) and R(gi;fi) be the next-relations induced by (g; f) and (gi; fi), respectively,and let (�n; In)n�0 be an outcome sequence of (g; f) given � and I such that �0 = limn!1 �n.Since (�n)n�0 forms an in�nite chain ordered by pre�x and �0 = �, � �t �0. De�ne Ii =t-seq(�0��)� (in(Ai)�R�0). Then either Ii is empty or ftime(Ii) � ltime(�) = ltime(�dAi).Thus, Ii is compatible with �dAi. For each n > 0 de�ne Ini = t-seq(�0��n) � (in(Ai)�R�0).De�ne a sentence to be a �nite timed execution that ends with a point trajectory, i.e., atrajectory whose domain consists of a singleton set. For each n > 0, de�ne sentence(�ndAi)to be the maximum between �dAi and the maximum pre�x of �ndAi that is a sentence. Sincefor each n > 0 the number of actions in �n and �n�1 di�er by at most 1, and since �0 = �, itis easy to show that for each n � 0 there exists m � n such that sentence(�ndAi) = �mdAi.Denote the minimum such m by m(n). Observe that m(n) is monotonic non-decreasing.Finally, for each n > 0, since in �n � �m(n) no action from Ai occurs, Ini = Im(n)i .We prove the following facts by induction on n:P1 If n > 0 and �ndAi is not a sentence and is �nite, then�ndAi = (�m(n�1)dAi a fi(�m(n�1)dAi):trj) / ltime(�n);32

P2 If n > 0 and �ndAi is either a sentence or admissible, then either �ndAi = �n�1dAi and�ndAi is a sentence, or ((�m(n�1)dAi; Im(n�1i)); (�ndAi; Ini)) 2 R(gi;fi).The base case is trivial. For the inductive step assume that properties P1 and P2 hold foreach j < n. Observe �rst that, if �n is �nite, thenP3 (�n�1dAi) a fi(�n�1dAi):trj = (�m(n�1)dAi) a fi(�m(n�1)dAi):trj .In fact, if n = 1 or �n�1dAi is a sentence, then m(n � 1) = n � 1 and P3 holds trivially; if�n�1dAi is not a sentence, then m(n� 1) = m(n� 2), and thus(�n�1dAi) a fi(�n�1dAi):trj1= (((�m(n�2)dAi) a fi(�m(n�2)dAi):trj) / ltime(�n�1)) afi(((�m(n�2)dAi) a fi(�m(n�2)dAi)) / ltime(�n�1)):trj2= (�m(n�2)dAi) a fi(�m(n�2)dAi):trj3= (�m(n�1)dAi) a fi(�m(n�1)dAi):trj ;where step 1 follows by induction and from the fact that �n�1 is not a sentence, step 2 followsfrom consistency of fi (cf. Condition 4 of De�nition 4.6), and step 3 follows from the fact thatm(n� 1) = m(n� 2). We now distinguish the following cases.Case 1 �n�1 is not �nite.Then �n is not �nite, and statementP1 is satis�ed trivially. Since ((�n�1; In�1); (�n; In)) 2R(g;f) and �n�1 is not �nite, then (�n�1; In�1) = (�n; In).By induction, ((�m(n�1)dAi; Im(n�1)i); (�n�1dAi; In�1i)) 2 R(gi;fi).Since �n = �n�1, ((�m(n�1)dAi; Im(n�1)i); (�ndAi; Ini)) 2 R(gi;fi).Case 2 �n�1 is �nite and �n is not �nite.Since �n is not �nite, statement P1 is satis�ed trivially. Since ((�n�1; In�1); (�n; In)) 2R(g;f), by De�nition 4.7, �n = �n�1 a !, where ! = f(�n�1), and Ini = In�1i = ".Observe that�ndAi 1= (�n�1dAi) a (!dAi)2= (�n�1dAi) a fi(�n�1dAi)3= (�m(n�1)dAi) a fi(�m(n�1)dAi)where step 1 is trivial, step 2 follows from de�nition of (g; f) (De�nition 4.16) and thefact that ltime(!) =1 (because (g; f) is a strategy), and step 3 follows from P3. Thus,by case 2 of De�nition 4.7, ((�m(n�1)dAi; Im(n�1)i); (�ndAi; Ini)) 2 R(gi;fi).Case 3 �n�1 and �n are �nite.The de�nition of R(g;f) gives three cases to consider: the �rst, third, and fourth cases inDe�nition 4.7. We consider the �rst and third cases together.33

Case 3.1 First and third cases.By the de�nition of R(g;f), �n = �n�1 a !afsg, where f(�n�1) = (!; a; s).Case 3.1.1 a =2 acts(Ai).Then �ndAi 1= (�n�1 a !afsg)dAi2= �n�1dAi a !dAi3= �n�1dAi a (fi(�n�1dAi):trj4= (�m(n�1)dAi) a fi(�m(n�1)dAi):trjwhere step 1 is trivial, step 2 follows from the fact that a =2 acts(Ai), step 3follows from the de�nition of (g; f) (cf. De�nition 4.16), and step 4 follows fromP3. This is su�cient to show statement P1. For statement P2, either �ndAiis not a sentence, or �ndAi is a sentence, but in this case �ndAi = �n�1dAi,since ! would be a point trajectory.Case 3.1.2 a 2 local(Ai).Statement P1 is satis�ed trivially since �ndAi is a sentence. By the de�ni-tion of (g; f) (De�nition 4.16) and the fact that a 2 local(Ai), fi(�n�1dAi) =(!dAi; a; sdAi). Observe that�ndAi 1= �n�1dAi a (!dAi)afsdAig2= �m(n�1)i a (fi(�m(n�1)dAi):trj)afsdAigwhere step 1 follows from the fact that a 2 acts(Ai) and step 2 follows fromP3. By consistency of (g; f), fi(�m(n�1)dAi) = (fi(�m(n�1)dAi):trj ; a; fsdAig).Thus, by cases 1 or 3 of De�nition 4.7, ((�m(n�1)dAi; Im(n�1)i); (�ndAi; Ini)) 2R(gi;fi).Case 3.1.3 a 2 in(Ai).StatementP1 is satis�ed trivially since �ndAi is a sentence. Let t = ltime(�n�1a!). Observe that Im(n�1)i = (a; t)Ini . Furthermore,�ndAi 1= �n�1dAi a (!dAi)afsdAig2= (((�n�1dAi) a fi(�n�1dAi):trj) / t) agi(((�n�1dAi) a fi(�n�1dAi):trj) / t; a)3= (((�m(n�1)dAi) a fi(�m(n�1)dAi):trj) / t) agi(((�m(n�1)dAi) a fi(�m(n�1)dAi):trj) / t; a):where step 1 is trivial, step 2 follows from the de�nition of (g; f), and step 3 fol-lows fromP3. By case 4 of De�nition 4.7, ((�m(n�1)dAi; Im(n�1)i); (�ndAi; Ini)) 2R(gi;fi).Case 3.2 Fourth case.The de�nition ofR(g;f) gives us �n = �n�1a!0afs0g, In�1 = (a; t)In, f(�n�1):trj =!, ltime(�n�1 a !) � t, !0 = ! / t, and g(�n�1 a !0; a) = s0. Distinguish threesubcases. 34

Case 3.2.1 a =2 acts(Ai).Similar to subcase 3.1.1.Case 3.2.2 a 2 local(Ai).This situation cannot occur since a 2 in(A) (cf. the de�nition of parallel com-position).Case 3.2.3 a 2 in(Ai).Similar to subcase 3.1.3.Let k0; k1; k2; k3; : : : be the sequence of indices such that k0 = 0 and for each n > 0, �kndAi iseither a sentence or is an admissible timed execution. By statements P1 and P2, the sequence(�k0dAi; Ik0i); (�k1dAi; Ik1i); (�k2dAi; Ik2i); : : : is a pre�x of an outcome sequence of (gi; fi) given�dAi and Ii, possibly with repeated elements. We distinguish the following cases.1. There exists n0 > 0 such that �n0 is not �nite.Then, by de�nition of R(g;f), there exists a number n0 > 0 such that �n0 is admissible,and for all n > n0, �n = �n0 = �0. In particular, the kj's are in�nite, and there existsn00 > 0 such that for each n � n00, �kndAi = �0dAi. Thus, limn!1(�kndAi) = �0dAi.By case 2 of De�nition 4.7, for each n � n00, ((�kndAi; Ikni); (�kn+1dAi; Ikn+1i) 2 R(gi;fi).Therefore, �0dAi 2 O(gi;fi)(�dAi; Ii).2. All the �n's are �nite and there are �nitely many kj's.Then there is a number n0 such that for all n � n0, �n0dAi is not a sentence nor admissible.This means that �0 � �n0 contains no actions from acts(Ai), which implies that j�0 �acts(Ai)j = j�n0 � acts(Ai)j 6=1 since �n0 is �nite. Thus, by hypothesis �0 is not Zeno.Lemma 4.8 then implies that �0 is admissible.Let �k be the index of the maximum of the kj 's. Then, for each n > k�k, since �ndAi isnot a sentence nor admissible, �ndAi = (�k�kdAi a fi(�k�kdAi):trj) / ltime(�n)). Since�0 is admissible, limn!1 ltime(�n) = 1 which implies that ltime(fi(�k�kdAi):trj) = 1.Thus, fi(��k) = ! for some admissible trajectory !. Furthermore, for each n > �k,since �0 � �n does not contain any action from acts(Ai), Ini = ". Thus, the sequence(�k0dAi; Ik0i); (�k1dAi; Ik1i); (�k2dAi; Ik2i); : : :(�k�kdAi; "); (�k�kdAi a!; "); (�k�kdAi a!; "),(�k�kdAi a !; "); (�k�kdAi a !; "); : : : is an outcome sequence of (gi; fi) given �dAi and Ii,possibly with repeated elements. The limit of the timed executions of such sequenceis �k�k dAi a !, which is given by limn!1(��kdAi a fi(��kdAi):trj) / ltime(�n). Since foreach n > �k �ndAi is not a sentence nor admissible, the limit above is the same aslimn!1 �ndAi, which in turn is �0dAi. Thus, �0dAi 2 O(gi;fi)(�dAi; Ii).3. All the �n's are �nite and there are in�nitely many kj 's.In this case (�kni dAi; Ini)n�0 is an outcome sequence of (gi; fi) given �dAi and Ii, possiblywith repeated elements. Then �0dAi = (limn!1 �n)dAi = limn!1(�ndAi), which meansthat �0dAi 2 O(gi;fi)(�dAi; Ii). 35

Lemma 4.19 Let (A0; L0) and (A1; L1) be compatible live timed I/O automata and let (gi; fi),i 2 f0; 1g, be a receptive strategy for (Ai; Li). Furthermore, let (A;L) = (A0; L0)k(A1; L1).Then (g; f) = (g0; f0)k(g1; f1) is a receptive strategy for (A;L).Proof. We need to show that O(g;f)(�; I) � L [t-execZt(A), for all � 2 t-exec�(A) and alltimed environment sequences I for A that are compatible with �.Let � 2 t-exec�(A) be an arbitrary �nite timed execution of A and I be an arbitrary timedenvironment sequence for A that is compatible with �. Since (gi; fi) is a receptive strategyfor (Ai; Li), (gi; fi) is, by De�nition 4.11, a Zeno-tolerant strategy de�ned on Ai. Let �0 be anarbitrary element of the outcome O(g;f)(�; I). By Lemma 4.8, �0 is either Zeno or admissible.We distinguish the two cases.1. �0 is Zeno.By Lemma 4.8, �0 contains in�nitely many actions (j�0 � acts(A)j = 1). Assume �0 isnot Zeno-tolerant. Then j�0 � local(A)j = 1. Since each locally-controlled action in �0belongs to the locally-controlled actions of either A0 or A1, there exists an i such thatj�0 � local(Ai)j = 1, which also implies j(�0dAi) � local(Ai)j = 1. Thus, Lemma 4.18is applicable. Lemma 4.18 now implies the existence of a timed sequence Ii over in(Ai)compatible with �dAi such that �0dAi 2 O(gi;fi)(�dAi; Ii). By Lemma 4.5, since �0 isZeno, ltime(�0dAi) is �nite. Furthermore, since j(�0dAi) � local(Ai)j =1, �0dAi is Zenobut not Zeno-tolerant. This contradicts the fact that (gi; fi) is Zeno-tolerant. Thus,�0 2 t-execZt(A).2. �0 is admissible.By Lemma 4.18, for each i 2 f0; 1g there exists a timed sequence Ii over in(Ai) compat-ible with �dAi, such that �0dAi 2 O(gi;fi)(�dAi; Ii). By Lemma 4.5, �0dAi is admissible.Since (gi; fi) is a receptive strategy for the pair (Ai; Li), �0dAi 2 Li. This implies, byDe�nition 4.15, that �0 2 L.Theorem 4.20 (Closure of parallel composition) Let (A0; L0) and (A1; L1) be compati-ble live timed I/O automata. Then the parallel composition (A0; L0)k(A1; L1) is a live timedI/O automaton.Proof. Let (A;L) = (A0; L0)k(A1; L1). By the de�nition of parallel composition, A is a safetimed I/O automaton. Furthermore, since Li � t-exec1(Ai), Lemma 4.5 and De�nition 4.15show that L � t-exec1(A).For each i 2 f0; 1g, let (gi; fi) be a receptive strategy for (Ai; Li). By Lemma 4.19 thestrategy (g; f) = (g0; f0)k(g1; f1) is a receptive strategy for (A;L). Therefore, the pair (A;L)is receptive. By De�nition 4.12 of a live timed I/O automaton, (A;L) is a live timed I/Oautomaton. 36

4.5 Preorder Relations for Live Timed I/O AutomataFor safe timed I/O automata there are several ways of de�ning a timed trace preorder thatdepend upon which kinds of traces are being considered. A naive choice would be to considerall the timed traces of a safe timed I/O automaton; however, one might not be interested in,e.g., the Zeno timed traces of a system. For the live preorder, on the other hand, there is aunique natural choice.De�nition 4.21 (Timed trace preorders) Given two live timed I/O automata (A1; L1)and (A2; L2) such that esig(A1) = esig(A2) de�ne the following preorders:Safe: (A1; L1) vSt (A2; L2) i� t-traces(A1) � t-traces(A2):Safe-�nite: (A1; L1) v�St (A2; L2) i� t-traces�(A1) � t-traces�(A2):Safe-admissible: (A1; L1) v1St (A2; L2) i� t-traces1(A1) � t-traces1(A2):Safe-non-Zeno: (A1; L1) vnzSt (A2; L2) i� (A1; L1) v�St (A2; L2) and (A1; L1) v1St (A2; L2):Live: (A1; L1) vLt (A2; L2) i� t-traces(L1) � t-traces(L2):The safe-non-Zeno preorder is the relation that is used in [VL92]. This preorder is used in[VL92] instead of the more natural safe-admissible preorder since �nite timed traces are neededfor substitutivity of a sequential composition operator.Note that the live preorder implies the safe preorder whenever the involved safe timed I/Oautomata have timed �nite internal nondeterminism. On the other hand, if the involved safetimed I/O automata do not have timed �nite internal nondeterminism, then the live preorderonly implies �nite timed trace inclusion. Essentially, timed �nite internal nondeterminismrequires that a timed automaton has a �nite internal branching structure. In particular, a�nite timed trace can lead to at most �nitely many states.De�nition 4.22 (Timed �nite internal nondeterminism) A timed automatonA has timed�nite internal nondeterminism (t-FIN) i�, for each trace
 2 t-traces�(A), the set flstate(�) jt-trace(�) =
g is �nite.Proposition 4.23 Let (A1; L1) and (A2; L2) be two live timed I/O automata with vsig(A1) =vsig(A2).1. If (A1; L1) v1St (A2; L2) then (A1; L1) v�St (A2; L2).2. If A2 has t-FIN and (A1; L1) v�St (A2; L2) then (A1; L1) vSt (A2; L2).3. If (A1; L1) vLt (A2; L2) then (A1; L1) v�St (A2; L2).Proof.1. Let
 be a �nite timed trace of A1. By de�nition of timed trace, there is a timed execution�1 ofA1 such that t-trace(�1) =
. By de�nition of live timed I/O automaton there existsan admissible timed execution �01 of A1 such that �1 �t �01 and t-trace(�01) 2 L1 (justapply any receptive strategy for (A1; L1) to �1 and to an admissible timed environment37

sequence for A compatible with �1). By de�nition of live timed I/O automaton, �01 isa timed execution of A1. Since (A1; L1) v1St (A2; L2), there exists a timed execution �02of A2 such that t-trace(�01) = t-trace(�02). Since the set of timed executions of a timedI/O automaton is closed under pre�x, there is a pre�x �2 of �02 such that �2 is a timedexecution of A2 and t-trace(�2) =
, i.e.,
 is a timed trace of A2.2. This is a standard result that appears in [LV91].3. Similar to the proof of Proposition 3.19, part 1. Use timed executions and timed tracesinstead of executions and traces, respectively.The important property of the safe and live preorders is that they are substitutive for parallelcomposition. This means that an implementation of a system made up of several parallelcomponents can be obtained by implementing each component separately.Theorem 4.24 (Substitutivity) Let (Ai; Li); (A0i; L0i), i 2 f0; 1g be live timed I/O automata,and let vX be one relation among vSt, v�St, v1St, vnzSt and vLt. If (A0; L0); (A1; L1) arecompatible, (A00; L00); : : : ; (A01; L01) are compatible, and, for each i, (Ai; Li) vX (A0i; L0i), then(A0; L0)k � � � k(A1; L1) vX (A00; L00)k � � � k(A01; L01).Proof. The substitutivity result is a direct consequence of Lemma 4.5 and the observation,analogous to the one of the untimed model, that parallel composition of timed execution setspreserve timed trace equivalence.It is well known that simulation based proof techniques [LV91, LV95] can be used for imple-mentation notions based on trace inclusion. In [GSSL93] simulation based proof techniquesare extended to live preorder, and in [SLL93b] the new proof techniques are used to verifynontrivial communication protocols.4.6 Comparison with Other Timed ModelsThis section compares our timed model with the work of [AL91b, MMT91, VL92].The formalism that is used in [AL91b] is the Temporal Logic of Actions (TLA) [Lam91]extended with a new variable now that models time. A speci�cation S consists of the conjunc-tion of three formulas Init ^�^ L where Init represents the initial con�gurations of S, � is asafety property , and L is a liveness property . The subformula Init ^� corresponds to our safetimed I/O automata, while the subformula L corresponds to our timed liveness conditions. In[AL91b] L can also be satis�ed by �nite or Zeno executions or by executions that do not satisfyInit ^�. The formula L is a liveness condition for Init ^� based on our de�nition i� the pair(Init ^ �; L) is machine-closed based on the de�nition in [AL91b].There is a special formula NZ in [AL91b] that is used to express non-Zenoness, i.e., thattime advances forever. Time blocking or Zeno behaviors are undesirable in [AL91b] as well asin our model; however, it is possible for the safety part of a speci�cation to describe systems for38

which time cannot advance past a given upper bound whenever a particular state is reached.Such a situation is eliminated in [AL91b] by requiring the pair (�;NZ) to be machine-closed.In our model, on the other hand, the same situation is eliminated by the fact that system-Zenoexecutions are not allowed in the liveness part of a live timed I/O automaton and that a livetimed I/O automaton is machine-closed by de�nition.A major di�erence between our notion of receptiveness and the notion of receptiveness of[AL91b] is in the role of time: in our model no one is allowed to have control over time; in[AL91b] either the system or its environment must have control over time. We believe that itis more reasonable to assume that no one has control over time.The model of [MMT91] is an extension to the timed model of the I/O automaton model of[LT87]. The locally-controlled actions of an automaton are partitioned into classes, each one ofwhich is associated with a lower bound (possibly 0 but not1) and an upper bound (possibly1but not 0). Actions from one class with lower bound c1 and upper bound c2 must stay enabledfor at least c1 time units before one of them can be performed, and cannot stay enabled morethan c2 time units without any one of them being performed.An automatonM of [MMT91] can be represented in our model as a pair (A;L) where A is asafe timed I/O automaton with a transition relation that satis�es all the timing constraints ofM , and L is the set of all admissible executions of A. It is easy to check that (A;L) is receptiveand that admissible timed trace inclusion in [MMT91] coincides with live trace inclusion inour model. However, there are liveness conditions that can be represented in our model butcannot be represented naturally in the model of [MMT91].The work in [VL92] does not deal with general liveness properties, and argues that �nite andadmissible timed traces inclusion is generally su�cient to express a useful notion of implemen-tation whenever time is involved. The work in [SLL93b], however, has shown that liveness isuseful even in a timed model. In general, the automata of [VL92] are not receptive; however, inorder to avoid trivial implementations, [VL92] assumes some form of I/O distinction and someform of receptiveness at the lower level of implementation. There is a very close connectionbetween the technical de�nitions of I/O feasibility and strong I/O feasibility of [VL92] and ournotion of receptiveness. It is possible to represent each timed I/O automaton A of [VL92] withthe pair (A;L) where L is the set of admissible executions of A. The notion of I/O feasibilityof [VL92], which requires each �nite timed execution of A to be extendible to an admissibletimed execution of A using locally-controlled actions only, is stronger than requiring that L isa liveness condition for A and weaker than requiring that (A;L) is a live timed I/O automaton.In order to have closure under parallel composition, [VL92] introduces a stronger requirementon I/O automata called strong I/O feasibility. Strong I/O feasibility adds to I/O feasibilitythe requirement that the safe part of an I/O automaton A does not exhibit any system-Zenoexecution. However, receptiveness, which is weaker than strong I/O feasibility since the safepart of a live timed I/O automaton is allowed to exhibit system-Zeno behaviors, is su�cientto guarantee closure under parallel composition and hence substitutivity.39

SPEC
IMPL?
?
??qqq
qqq?

9>>>>>>>=>>>>>>>;9>>>>>>>=>>>>>>>;TimedUntimed
Figure 1: A stepwise development from an untimed speci�cation to a timed implementation.5 Embedding the Untimed Model in the Timed ModelThe untimed model, presented in Section 3, is used to specify systems where the amount oftime that passes between actions is considered unimportant. Many problems in distributedcomputing can be stated and solved using this model. However, it is not possible to stateanything about, e.g., response times in the untimed model. It is implicitly assumed that the�nal implementation on a physical machine is \fast enough" for practical use.An untimed system can be thought of as a timed system that allows arbitrary time-passage.This indicates that the timed model is, in some sense, more general than the untimed model,and that one could use the timed model in situations where one would usually use the untimedmodel. However, the timed model is more complicated than the untimed model; furthermore,it does not seem natural to be required to deal with time, when the problem to be solved doesnot mention time.Thus, one would like to work in the untimed model as much as possible and only switchto the timed model when it is needed. Sometimes, however, an algorithm that uses timeimplements a speci�cation that does not use time. For example, [SLL93a] shows how anuntimed speci�cation (of the at-most-once message delivery problem) is implemented by asystem that assumes upper time bounds on certain process steps and channel delays. Fischer'smutual exclusion algorithm [Fis85, AL91b] is another such example. Figure 1 depicts thestepwise development one would use for an implementation proof like the one in [SLL93a]. Thestepwise development in Figure 1, however, raises the issue of what it means to implement anuntimed speci�cation with a timed implementation. Our approach to this issue is to convertthe untimed systems in the stepwise development to timed systems by applying a patient40

operator that adds arbitrary time-passage steps. The patient operator we use is similar to theone of [NS92, VL92]. To complement the patient operator, this section proves the EmbeddingTheorem which states that a concrete level implements an abstract level in the untimed modelif and only if the patient version of the concrete level implements the patient version of theabstract level in the timed model. Thus, the �rst part of the stepwise development of Figure 1can be carried out entirely in the simpler untimed model, and the last part in the timed model.In the intermediate development step which goes from untimed to timed, one must prove thatthe timed level implements the patient version of the untimed level. The embedding theoremcan then be applied to show that the implementation IMPL implements the patient version ofthe speci�cation SPEC.De�nition 5.1 (Patient operator on safe I/O automata) LetA be a safe (untimed) I/Oautomaton such that f�(t) j t 2 R>0g \ acts(A) = ;. Then de�ne patient(A) to be the safetimed I/O automaton with� states(patient(A)) = states(A).� start(patient(A)) = start(A).� ext(patient(A)) = ext(A) [f�(t) j t 2 R>0g.� (in(patient(A)); out(patient(A)); int(patient(A))) = (in(A); out(A); int(A)).� steps(patient(A)) = steps(A) [f(s; �(t); s) j t 2 R>0g.The following lemma states a simple but important property of the patient operator. That is,the state of an automaton patient(A) does not change during any trajectory.Lemma 5.2 Let A be a safe I/O automaton such that f�(t) j t 2 R>0g \ acts(A) = ;, and let� = !0a1!1a2!2 � � � be a timed execution of patient(A). Then, for all i, jrng(!i)j = 1.In order to state what it means to apply the patient operator to a live I/O automaton, thefollowing auxiliary de�nition of what it means to untime a timed execution is needed.De�nition 5.3 Let A be a safe I/O automaton with such that f�(t) j t 2 R>0g \ acts(A) = ;,and let � = !0a1!1a2!2 � � � be a timed execution of patient(A). Then de�neuntime(�) = fstate(!0)a1fstate(!1)a2fstate(!2) � � �Similarly, let
 = ((a1; t1)(a2; t2) � � � ; t) be a timed trace of patient(A). Then de�neuntime(
) = a1a2 � � �Lemma 5.4 Let A be a safe I/O automaton such that f�(t) j t 2 R>0g \ acts(A) = ;. Then� 2 t-exec(patient(A)) i� untime(�) 2 exec(A). Furthermore, if � is �nite, then untime(�)is �nite. 41

Proof. Follows trivially from Lemma 5.2, De�nition 5.1, and the de�nition of untime .The patient operator can now be extended to live I/O automata. For any live I/O automaton(A;L), the patient live I/O automaton of (A;L) should be the live timed I/O automaton whosesafety part is patient(A) and whose liveness part consists of all those admissible executionsthat, when made untimed, are in L. Thus, the liveness condition of the patient live I/Oautomaton allows time to pass arbitrarily, as long as the liveness prescribed by L is satis�ed.De�nition 5.5 (Patient operator on live I/O automaton) Let (A;L) be a live I/O au-tomaton such that f�(t) j t 2 R>0g \ acts(A) = ;. The patient live I/O automaton of (A;L),denoted by patient(A;L), is the pair (patient(A); patientA(L)), where patientA(L) is the setf� 2 t-exec1(patient(A)) j untime(�) 2 Lg.We prove that for any live I/O automaton (A;L), patient(A;L) is a live timed I/O automaton.This means showing the existence of a receptive strategy for the pair (patient(A); patientA(L)).This is accomplished by de�ning the patient strategy of an (untimed) strategy (g; f) de�ned onA, and showing that the patient strategy of (g; f) is receptive for (Ap; Lp), where (Ap; Lp) =patient(A;L), if (g; f) is receptive for (A;L). To ensure that the patient strategy of (g; f)is Zeno-tolerant, which is required for receptiveness, the patient strategy of (g; f) insists onletting time pass for at least � time units between local steps.De�nition 5.6 For any safe timed I/O automaton A and any �nite timed execution � of A,de�ne lloctime(�) to be the time of occurrence of the last locally-controlled action in �, or 0 ifno such action exists. Formally, let � = !0a1!1 � � �an!n. If a1; : : : ; an =2 local(A), then de�nelloctime(�) = 0; otherwise, de�ne lloctime(�) = ltime(!0a1!1 � � �ak!k) where ak 2 local(A)and ak+1; : : : ; an =2 local(A).Given a positive real number �, let nloctime�(�) denote max (0; lloctime(�)+�� ltime(�)).That is, nloctime�(�) is the minimum time that must elapse after � before performing anylocal action so that the minimum distance � between any two local actions is preserved.De�nition 5.7 (Patient strategy) Let A be a safe I/O automaton such that f�(t) j t 2R>0g \ acts(A) = ;, and let (g; f) be an (untimed) strategy de�ned on A. Furthermore, letAp = patient(A). Then de�ne the patient strategy of (g; f) with respect to some positive realnumber �, written patient �(g; f), to be the pair of functionsgp : t-exec�(Ap)� in(Ap)! states(Ap)fp : t-exec�(Ap)! (traj (Ap)� local(Ap)� states(Ap)) [traj (Ap)de�ned as follows:gp(�; a) 4= g(untime(�); a)fp(�) 4= 8>>><>>>: (!; a; s) if f(untime(�)) = (a; s); where rng(!) = flstate(�)g andltime(!) = nloctime�(�)! if f(untime(�)) = ?; where rng(!) = flstate(�)g andltime(!) =1:42

For a �nite timed execution � of Ap, Lemma 5.4 implies that untime(�) is a �nite executionof A. Also, by De�nition 5.1, A and Ap have the same input, output, and internal actions.Thus, in the de�nition of (gp; fp), the domains and ranges of g and f are compatible with theusage of g and f . The following lemma states that the patient strategy is indeed a strategy.Lemma 5.8 Let A be a safe I/O automaton such that f�(t) j t 2 R>0g \ acts(A) = ;, andlet (g; f) be an (untimed) strategy de�ned on A, and � be any positive real number. Thenpatient�(g; f) is a (timed) strategy de�ned on patient(A).Proof. Let (gp; fp) = patient�(g; f) and Ap = patient(A). We verify that (gp; fp) satis�es thefour conditions of De�nition 4.6.1. Let � 2 t-exec�(Ap) and a 2 in(Ap). Let s denote, gp(�; a). By the de�nition of gp andthe fact that (g; f) is a strategy de�ned onA (cf. De�nition 3.6), (lstate(untime(�)); a; s) 2steps(A). By the de�nition of untime and Lemma 5.2, lstate(untime(�)) = lstate(�).Thus, (lstate(�); a; s) 2 steps(A). By De�nition 5.1, (lstate(�); a; s) 2 steps(Ap).2. Let � 2 t-exec�(Ap) and let (!; a; s) denote fp(�). Similar to the �rst condition, it iseasy to see that (lstate(!); a; s) is a step of Ap. Then, by the de�nition of ! and the factthat Ap allows time to pass arbitrarily, !afsg is a timed execution fragment of Ap andfstate(!) = lstate(�). Thus, � a !afsg 2 t-exec�(Ap).3. The argument parallels that for Condition 2.4. We consider only the case where fp(�) = (!; a; s), and we leave to the reader the similarand simpler case where fp(�) = !.Let t � ltime(!). By de�nition of fp, f(untime(�)) = (a; s), ltime(!) = nloctime�(�)and rng(!) = flstate(�)g. By de�nition of untime , untime(� a (! / t)) = untime(�),which implies f(untime(� a (! / t))) = f(untime(�)). Thus, fp(� a (! / t)) = (!0; a; s),where ltime(!0) = nloctime�(� a (! / t)) and rng(!0) = flstate(�)g. We need to showthat ltime(!0) = ltime(!)� t, i.e., that nloctime�(�a (!/t)) = nloctime�(�)� t. Observethat, since ! does not contain any action, lloctime(� a (! / t)) = lloctime(�). Thennloctime�(� a (! / t)) 1= lloctime(� a (! / t)) + � � ltime(� a (! / t))2= lloctime(�) + � � ltime(�)� t3= nloctime�(�)� twhere steps 1 and 3 follow from the de�nition of nloctime�(), and step 2 follows fromlloctime(� a (! / t)) = lloctime(�) and from ltime(� a (! / t)) = ltime(�) + t.The proof that for any receptive (untimed) strategy (g; f) for a live I/O automaton (A;L), andany positive �, the patient strategy patient�(g; f) is a receptive (timed) strategy for (Ap; Lp),where (Ap; Lp) = patient(A;L), is based on two technical lemmas. The �rst of these lem-mas states that if �0 is an admissible timed execution of an outcome of patient�(g; f), then43

untime(�0) is an outcome of (g; f). This expresses the intuitive idea that the only signi�cantdi�erence between (g; f) and patient(g; f) is due to time-passage. The second lemma statesthat the di�erence in the time of occurrence of any two locally-controlled actions in a timedexecution of an outcome of patient �(g; f), is at least �. This is, of course, due to the fact thatpatient�(g; f) insists on letting time pass for at least � time units between local steps.Lemma 5.9 Let A be a safe I/O automaton such that f�(t) j t 2 R>0g \ acts(A) = ;, and let(g; f) be an (untimed) strategy de�ned on A. Let Ap = patient(A) and (gp; fp) = patient�(g; f)for some arbitrary positive real number �. Then, for all � 2 t-exec�(Ap), all timed environmentsequences Ip for Ap compatible with �, and all admissible �0 2 O(gp;fp)(�; Ip), there exists anenvironment sequence I for A such that untime(�0) = O(g;f)(untime(�); I).Proof. Let � 2 t-exec�(Ap) be an arbitrary �nite timed execution of A, Ip an arbitrarytimed environment sequence for Ap compatible with �, and �0 be an arbitrary admissibletimed execution of the outcome O(gp;fp)(�; Ip). Let R(gp;fp) be the next-relation induced by(gp; fp) and R(g;f) be the next-function induced by (g; f). Also, let (�n; Inp)n�0 be an outcomesequence of (gp; fp) given � and Ip such that �0 = limn!1 �n. We �rst de�ne a sequence Ias I1I2 � � �, and for each n > 0 we prove the following:P1 For each environment sequence I0 for A, (untime(�n); I 0) 2 R�(g;f)(untime(�n�1); In; I0).In the rest of the proof we let I0 denote a generic environment sequence for A. We distinguishthe �ve cases that appear in the de�nition of R(gp;fp).Case 1 De�ne In = �. Here (�n; Inp) = (�n�1 a !afsg; In�1p) with fp(�n�1) = (!; a; s).Then, by de�nition of (gp; fp), f(untime(�n�1)) = (a; s). Observe that untime(�n) =untime(�n�1)auntime(!afsg). Since rng(w) = flstate(�n�1)g, �n = �n�1alstate(�n�1) a s.Thus, (untime(�n); I0) 2 R�(g;f)(untime(�n�1); In; I0).Case 2 De�ne In = ". Here �n = �n�1a! where ! = fp(�n�1). Furthermore, untime(�n) =untime(�n�1a!) = untime(�n�1). Thus, (untime(�n); I 0) 2 R�(g;f)(untime(�n�1); In; I 0).Case 3 This case is handled in the same way as case 1.Case 4 Let (a; t) = head(In�1p). Then, (�n; Inp) = (�n�1 a !afsg; tail(In�1p)), where ! =(fp(�n�1):trj) / (t � ltime(�n�1)) and s = gp(�n�1 a !; a). By the de�nition of (gp; fp),since rng(w) = flstate(�n�1)g, g(untime(�n�1 a !); a) = g(untime(�n�1); a). We dis-tinguish two cases.Case 4.1 fp(�n�1) = !.De�ne In = �a. By the de�nition of fp, f(untime(�n�1)) = ?. Thus, by case 2of the de�nition of R(g;f), (untime(�n�1); aI 0) = R(g;f)(untime(�n�1); �aI 0). Bythe de�nition of gp, g(untime(�n�1); a) = s. By case 3 of the de�nition of R(g;f),(untime(�n); I 0) = R(g;f)(untime(�n�1); aI 0). This means that (untime(�n); I 0) 2R�(g;f)(untime(�n�1); In; I 0). 44

Case 4.2 fp(�n�1) = (!; b; s).De�ne In = a. By the de�nition of gp, g(untime(�n�1); a) = s. By case 3 of thede�nition of R(g;f), (untime(�n); I 0) 2 R�(g;f)(untime(�n�1); In; I 0).Case 5 De�ne In = �. In this case (�n; Inp) = (�n�1; In�1p). By de�nition of (�n)n�0, thereexists an n0 < n such that �n0 is �nite, fp(�n0) = !, for some admissible trajectory!, and �n0+1 = �n0+2 = � � � = �n�1 = �n = �n0 a !. Then, by the de�nition of fp,f(untime(�n0)) = ?. Since untime(�n0) = untime(�n�1), f(untime(�n�1)) = ?. Thisimplies that (untime(�n); I0) 2 R�(g;f)(untime(�n�1); In; I0).We now argue that I is an environment sequence for A. It is immediate to observe thateach element of I is either � or an input action of A. Suppose by contradiction that Idoes not contain in�nitely many occurrences of �. Then there exists a number n0 such thatfor all n > n0, the de�nition of In0 is handled by case 4.2 above (case 2 occurs at mostonce). Let, for each n � n0, fp(�n) = (!n; an; sn). Then by de�nition of fp, ltime(!n) =max (0; lloctime(�n) + � � ltime(�n)) which, since case 4.2 adds only input actions, equalsmax (0; lloctime(�n0) + � � ltime(�n)).We show by induction that for each n � n0, ltime(�n) � ltime(�n0) + �. The case forn = n0 is trivial. For the inductive step suppose by induction that ltime(�n�1) � ltime(�n0)+�. We have shown already that ltime(!n�1) = max (0; lloctime(�n0) + � � ltime(�n�1)). Ifltime(!n�1) = 0, then ltime(�n�1 a !n�1) = ltime(�n�1) � ltime(�n0) + �, where the laststep follows by induction; if ltime(!n�1) = lloctime(�n0)+ �� ltime(�n�1), then ltime(�n�1 a!n�1) = ltime(�n�1) + lloctime(�n0) + � � ltime(�n�1) = lloctime(�n0) + �. Thus, in bothcases ltime(�n�1 a !n�1) � ltime(�n0) + �. Since, by de�nition of R(gp;fp), ltime(�n) �ltime(�n�1 a !n�1), ltime(�n) � ltime(�n0) + �.Since �0 = limn!1 �n, ltime(�0) � ltime(�n0) + �. Since �n0 is �nite, we contradict thehypothesis that �0 is admissible. Therefore, I contains in�nitely many occurrences of �.From the construction above, O(g;f)(untime(�); I) = limn!1 untime(�n). By the continu-ity of the untiming operator, limn!1 untime(�n) = untime(limn!1 �n). Thus, untime(�0) =O(g;f)(untime(�); I).Lemma 5.10 Let A be a safe I/O automaton such that f�(t) j t 2 R>0g\acts(A) = ;, and let(g; f) be an (untimed) strategy de�ned on A. Let Ap = patient(A) and (gp; fp) = patient�(g; f)for some arbitrary positive real number �. Let � 2 t-exec�(Ap) be an arbitrary �nite timedexecution of Ap, I an arbitrary timed environment sequence for Ap compatible with �, and �0an arbitrary timed execution of the outcome O(gp;fp)(�; I). Then for any two elements (a1; t1)and (a2; t2) in t-seq(�0 � �) � (local(Ap)� T), jt2 � t1j � �.Proof. Let (a1; t1) and (a2; t2) be two arbitrary pairs in
 = t-seq(�0 � �) � (local(Ap) � T)and assume, without loss of generality, that (a1; t1) occurs before (a2; t2) in
. This impliesthat t2 � t1. Furthermore, assume, again without loss of generality, that (a1; t1) and (a2; t2)are consecutive in
. Let (�n; In)n�0 be an outcome sequence of (gp; fp) given � and I suchthat �0 = limn!1 �n. 45

De�nition 4.7 now implies the existence of a number n such that (a2; t2) is not in t-seq(�n��) � (local(Ap)� T) and �n+1 = �n a !a2fsg with fp(�n) = (!; a2; s) and ltime(�n a !) = t2.Also, (a1; t1) must be in t-seq(�n � �) � (local(Ap) � T) since otherwise it could not occurbefore (a2; t2) in
. Let tl = lloctime(�n). Since a1 2 local(Ap), t1 � tl.By de�nition of fp (De�nition 5.7), ltime(!) = max (0; lloctime(�n)+�� ltime(�n)). Thus,t2 = ltime(�n a !) � tl + � � t1 + �, or equivalently, t2 � t1 � �. That su�ces.It is now possible to prove that for any receptive strategy (g; f) for a live I/O automaton(A;L) and any positive �, patient�(g; f) is a receptive (timed) strategy for (Ap; Lp), where(Ap; Lp) = patient(A;L).Lemma 5.11 Let (A;L) be a live I/O automaton such that f�(t) j t 2 R>0g \ acts(A) = ;,and let (g; f) be an (untimed) receptive strategy for (A;L). Furthermore, let (Ap; Lp) =patient(A;L). Then, for any positive real number �, patient�(g; f) is a (timed) receptive strat-egy for (Ap; Lp).Proof. Let � be an arbitrary positive real number and let (gp; fp) = patient�(g; f). Note thatby Lemma 5.8 (gp; fp) is a (timed) strategy de�ned on Ap. By De�nition 4.11 we need to showthat O(gp;fp)(�; Ip) � Lp [t-execZt(Ap), for all � 2 t-exec�(Ap) and all timed environmentsequences Ip for Ap compatible with �.Let � 2 t-exec�(Ap) be an arbitrary �nite timed execution of Ap and Ip be an arbitrarytimed environment sequence for Ap compatible with �. Let �0 2 O(gp;fp)(�; Ip) be an arbitraryelement of the outcome. By Lemma 4.8, �0 is either Zeno or admissible. We distinguish thetwo cases.1. �0 is Zeno.Then, by Lemma 5.10 there are only �nitely many locally-controlled actions of Ap in �0.By Lemma 4.8, �0 contains in�nitely many input actions. Thus, � 2 t-execZt(Ap).2. �0 is admissible.By Lemma 5.9 there exists an environment sequence I for A such that untime(�0) =O(g;f)(untime(�); I). Since (g; f) is a receptive strategy for (A;L), untime(�0) 2 L.Thus, by De�nition 5.5, �0 2 Lp.Finally, we can prove that for any live I/O automaton (A;L), patient(A;L) is a live timed I/Oautomaton.Theorem 5.12 Let (A;L) be a live I/O automaton. Then patient(A;L) is a live timed I/Oautomaton.Proof. Let (Ap; Lp) = patient(A;L). De�nition 5.1 implies that Ap is a safe timed I/Oautomaton. Furthermore, L � t-exec1(Ap) by De�nition 5.5. Finally, Lemma 5.11 impliesthat the pair (Ap; Lp) is receptive. By De�nition 4.12, this su�ces.46

Now attention is turned to proving the Embedding Theorem, which states that the safe and livepreorders of live I/O automata are preserved by the patient operator. A few simple preliminarylemmas are needed.Lemma 5.13 Let A be a safe I/O automaton such that f�(t) j t 2 R>0g \ acts(A) = ;, andlet Ap = patient(A). Furthermore, let � 2 t-exec(Ap). Then,untime(t-traceAp(�)) = traceA(untime(�)):Lemma 5.14 Let (A;L) be a live I/O automaton such that f�(t) j t 2 R>0g \ acts(A) = ;.Then,1. If
 2 t-traces(patient(A)) then untime(
) 2 traces(A).2. If � 2 traces(A) and
 2 tsp(ext(A)) with � = untime(
) such that if seq(
) is Zeno,then ltime(
) is the limit of the times in seq(
), then
 2 t-traces(patient(A)).3. If
 2 t-traces(patientA(L)) then untime(
) 2 traces(L).4. If � 2 traces(L) and
 2 tsp(ext(A)) is admissible with � = untime(
), then
 2t-traces(patientA(L)).Theorem 5.15 (Embedding Theorem) Let (A;L) and (B;M) be live I/O automata suchthat f�(t) j t 2 R>0g \ (acts(A) [acts(B)) = ;. Then1. (A;L) vS (B;M) i� patient(A;L) vSt patient(B;M).2. (A;L) vL (B;M) i� patient(A;L) vLt patient(B;M).Proof. Let (Ap; Lp) = patient(A;L) and (Bp;Mp) = patient(B;M). The two parts of thelemma are considered separately.1. =): Let
 2 t-traces(Ap). By Lemma 5.14 Part 1, � = untime(
) 2 traces(A), whichimplies, since (A;L) vS (B;M), that � 2 traces(B). Now, the fact that
 is a timedsequence pair over vis(Ap) = vis(Bp) = ext(B) and the fact that
 satis�es the propertyseq(
) being Zeno implies ltime(
) is the limit of the times in seq(
), Lemma 5.14 Part 2implies that
 2 t-traces(Bp), as required.(=: Let � 2 traces(A) and let
 be any, say, admissible timed sequence pair overext(A) such that untime(
) = �. (Such a timed sequence pair clearly exists.) Then,by Lemma 5.14 Part 2,
 2 t-traces(Ap). Thus, the assumption that patient(A;L) vStpatient(B;M) implies
 2 t-traces(Bp). Lemma 5.14 Part 1 shows that � = untime(
) 2traces(B), as required.2. Similar to Part 1 by using Lemma 5.14 Parts 3 and 4.47

Finally we prove a result which is important when doing speci�cation and veri�cation ina modular fashion. Namely, the patient operator commutes with the parallel compositionoperator on safe and live (timed) I/O automata. First, let �St and �Lt denote the kernels ofthe preorders vSt and vLt, respectively.2Proposition 5.16 Let (A0; L0) and (A1; L1) be two compatible live I/O automata and let �Xbe one of �St and �Lt. Then,patient((A0; L0)k(A1; L1)) �X patient(A0; L0)kpatient(A1; L1):Proof. We show the proof for �St. The proof for �Lt is similar. First note that, since (A0; L0)and (A1; L1) are compatible, then also patient(A0; L0) and patient(A1; L1) are compatible.Observe that for each timed execution �, untime(�)dAi = untime(�dAi). Then,� 2 t-exec(patient(A0kA1))i� untime(�) 2 exec(A0kA1) Lemma 5.4i� 8i2f0;1g : untime(�)dAi 2 exec(Ai) Lemma 3.5i� 8i2f0;1g : untime(�dAi) 2 exec(Ai) observation abovei� 8i2f0;1g : �dAi 2 t-exec(patient(Ai)) Lemma 5.4i� � 2 t-exec(patient(A0)kpatient(A1)) Lemma 4.5.6 Generality of ReceptivenessReceptiveness could be a severe restriction if very few protocols can be described within (timed)live I/O automata. In this section we argue that receptiveness is not severe by providingexamples of su�cient conditions for receptiveness. Other examples are likely to be derived inthe future based on new applications.Ordinary I/O automata [LT87] are examples of receptive systems. That is, systems speci�edusing weak fairness assumptions are receptive. Romijn and Vaandrager [RV96] provide an evenstronger syntactic criterion for receptiveness in our model by introducing fair I/O automata.A fair I/O automaton is a safe I/O automaton A equipped with sets wfair (A) and sfair(A) ofsubsets of local(A), called the weak fairness and strong fairness sets, respectively. The elementsof wfair (A) are sets of actions over which weak fairness is enforced, while the elements ofwfair(A) are sets of actions over which strong fairness is enforced. It is proven in [RV96] thata fair I/O automaton A is receptive if each reachable state in A enables at most countablymany sets in wfair(A) [sfair(A) and each set of sfair(A) is input resistant, i.e., each set insfair(A) is never disabled by the occurrence of an input action.In the timed case we have seen that the automata of [MMT91] are receptive, and we havementioned that the strong I/O feasibility condition of [VL92] is a su�cient conditions forreceptiveness. Furthermore, any patient construction over a live I/O automaton leads to areceptive pair. A more general su�cient condition for receptiveness is given in [BPV94], where2The kernel of a preorder v is de�ned to be the equivalence � de�ned by x � y 4= x v y ^ y v x.48

linear hybrid systems are introduced as a basic model for the study of an audio control proto-col. Roughly speaking, a linear hybrid system is an automaton with discrete and continuousvariables. The continuous variables are allowed to change during time passage with a rate thatis bounded by a convex polyhedron. Furthermore the values of the continuous variables can bebounded to remain on one side of a hyperplane. Reaching a bound means forcing some actionto occur before time can elapse.7 Concluding RemarksThis paper extends I/O automata [LT87, MMT91] to handle general liveness properties inboth the timed and untimed model, and creates a coordinated framework where timed anduntimed systems can be analyzed. A key aspect of the models is the notion of receptiveness ,which expresses the fact that a live (timed) I/O automaton does not constrain its environment.Moreover, [GSSL93] extends the simulation method of [AL91a, LV91, LV93, LV95, Jon91] toour model, making the results of this paper immediately applicable in practice. A substantialveri�cation project using the model appears in [SLL93b, SLL93a]. In addition to generalizingthe I/O automaton model [LT87] and its timed version [MMT91], our model generalizes thefailure free complete trace structures of [Dil88] and the strong I/O feasibility notion of [VL92].People familiar with process algebras might object to our model, arguing that receptivenessis too restrictive since it rules out several systems that might be of interest at a high level ofabstraction. We recognize this objection and regard the generalization of the model as futurework. In fact, our model is closer to the classical models of the process algebraic community(e.g., labeled transition systems) than the models of [AL93, AL91b], and thus may represent anatural starting point for possible generalizations. Some promising results come from [Seg93],which shows that there is a strong connection between the trace semantics of I/O automataand the must preorder of the theory of testing [DH84].Another line of research consists of extending the current model to handle systems withprobabilistic behaviors. The ultimate goal would be a model where probabilistic behaviors,timing constraints, safety properties, and liveness properties can be integrated together.AcknowledgmentsWe thank Hans Henrik L�vengreen and Frits Vaandrager for their valuable criticism and usefulcomments on this paper.References[AL91a] M. Abadi and L. Lamport. The existence of re�nement mappings. Theoretical ComputerScience, 2(82):253{284, 1991.[AL91b] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In de Bakker et al.[dBHRR91], pages 1{27. 49

[AL93] M. Abadi and L. Lamport. Composing speci�cations. ACM Transactions on ProgrammingLanguages and Systems, 15(1):73{132, 1993.[AS85] B. Alpern and F.B. Schneider. De�ning liveness. Information Processing Letters, 21(4):181{185, 1985.[BG91] J.C.M. Baeten and J.F. Groote, editors. Proceedings of CONCUR 91, Amsterdam, volume527 of Lecture Notes in Computer Science. Springer-Verlag, 1991.[BPV94] D.J.B. Bosscher, I. Polak, and F.W. Vaandrager. Veri�cation of an audio control protocol.In Langmaack, de Roever, and Vytopil, editors, Proceedings of the Symposium on For-mal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes inComputer Science, pages 170{192, 1994. Full version available as Report CS-R9445, CWI,Amsterdam, July 1994.[Cle92] W.R. Cleaveland, editor. Proceedings of CONCUR 92, Stony Brook, NY, USA, volume 630of Lecture Notes in Computer Science. Springer-Verlag, 1992.[dBHRR91] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors. Proceedingsof the REX Workshop \Real-Time: Theory in Practice", volume 600 of Lecture Notes inComputer Science. Springer-Verlag, 1991.[DH84] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical ComputerScience, 34:83{133, 1984.[Dil88] D. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent Cir-cuits. ACM Distinguished Dissertations. MIT Press, 1988.[Fis85] M. Fischer. Re: Where are you? E-mail message to Leslie Lamport. Arpanet messagenumber 8506252257.AA07636@YALE-BULLDOG.YALE/ARPA (47 lines), June 25 1985.[GSSL93] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N.A. Lynch. Liveness in timed anduntimed systems. Technical Report MIT/LCS/TR-587, MIT Laboratory for ComputerScience, November 1993.[GSSL94] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N.A. Lynch. Liveness in timed and un-timed systems. In S. Abiteboul and E. Shamir, editors, Proceedings 21th ICALP, Jerusalem,volume 820 of Lecture Notes in Computer Science. Springer-Verlag, 1994. A full versionappears as MIT Technical Report number MIT/LCS/TR-587.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Engle-wood Cli�s, 1985.[Jon91] B. Jonsson. Simulations between speci�cations of distributed systems. In Baeten andGroote [BG91], pages 346{360.[Lam91] L. Lamport. The temporal logic of actions. Technical Report 79, Digital Equipment Cor-poration, Systems Research Center, December 1991.[LS89] N.A. Lynch and E.W. Stark. A proof of the Kahn principle for Input/Output automata.Information and Computation, 82(1):81{92, 1989.[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms.In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Comput-ing, pages 137{151, Vancouver, Canada, August 1987. A full version is available as MITTechnical Report MIT/LCS/TR-387. 50

[LV91] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-basedsystems. In de Bakker et al. [dBHRR91], pages 397{446.[LV93] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part I: Untimedsystems. Technical Report MIT/LCS/TM-486, MIT Laboratory for Computer Science,May 1993.[LV95] Nancy Lynch and Frits Vaandrager. Forward and backward simulations { Part II: Timing-based systems. Information and Computation, 121(2):214{233, September 1995.[MMP91] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In de Bakker et al.[dBHRR91], pages 447{484.[MMT91] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In Baeten andGroote [BG91], pages 408{423.[NS92] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In K.G.Larsen and A. Skou, editors, Proceedings of the Third Workshop on Computer Aided Veri-�cation, Aalborg, Denmark, July 1991, volume 575 of Lecture Notes in Computer Science,pages 376{398. Springer-Verlag, 1992.[Plo81] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMIFN-19, Computer science Department, Aarhus University, 1981.[RV96] J.M.T. Romijn and F. Vaandrager. A note on fairness in I/O automata. InformationProcessing Letters, 59(5):245{250, 1996.[RWZ92] N. Reingold, D.W.Wang, and L.D. Zuck. Games I/O automata play. In Cleaveland [Cle92],pages 325{339.[Seg93] R. Segala. Quiescence, fairness, testing and the notion of implementation. In E. Best,editor, Proceedings of CONCUR 93, Hildesheim, Germany, volume 715 of Lecture Notes inComputer Science. Springer-Verlag, 1993.[SLL93a] J.F. S�gaard-Andersen, B. Lampson, and N.A. Lynch. Correctness of at-most-once messagedelivery protocols. In FORTE '93 - Sixth International Conference on Formal DescriptionTechniques, 1993.[SLL93b] J.F. S�gaard-Andersen, N.A. Lynch, and B.W. Lampson. Correctness of communicationprotocols. a case study. Technical Report MIT/LCS/TR-589, MIT Laboratory for Com-puter Science, November 1993.[VL92] F.W. Vaandrager and N.A. Lynch. Action transducers and timed automata. In Cleaveland[Cle92], pages 436{455.
51

