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Abstract

Concurrent Timestamp Systems (cTss) allow processes to temporally order concurrent events
in an asynchronous shared memory system. Bounded memory constructions of a CTss are
extremely powerful tools for concurrency control, and are the basis for solutions to many co-
ordination problems including mutual exclusion, randomized consensus, and multiwriter multi-
reader atomic registers. Unfortunately, known bounded cTss constructions seem to be complex
from the algorithmic point of view. Because of the importance of bounded ctss, the rather
involved original construction by Dolev and Shavit was followed by a series of papers that tried
to provide more easily verifiable CTSS constructions.

In this paper, we present what we believe is the simplest, most modular, and most easily
proven bounded cTss algorithm known to date. The algorithm is constructed and its correctness
proven by carefully reasoned use of several tools. Our algorithm combines the labeling method
of the Dolev-Shavit ¢Tss with the atomic snapshot algorithm proposed in Afek et. al, in
a way that limits the number of interleavings that can occur. To facilitate our correctness
proof, we introduce a specially tailored intermediate cTss specification using unbounded label
values taken from the positive reals. Our correctness proof first shows that the real-number
based specification meets the cTss axioms. Using the forward simulation techniques of the
I/O Automata model, we then show that our bounded algorithm implements the real-number
based specification. Finally, we prove that any cTss that meets the cTss axioms can be used
to implement multireader multiwriter atomic registers and first-some-first-serve (fcfs) mutual
exclusion.
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1 Introduction

The paradigm of concurrent timestamping is at the heart of solutions to some of the most fun-
damental problems in multiprocessor concurrency control. Examples of such problems include
fefs mutual exclusion [19], construction of a multireader multiwriter atomic register[34], and
randomized consensus [8]. A simple bounded construction of a cTss implies simple bounded
solutions to most of these extensively researched problems.

A timestamp system is somewhat like a ticket machine at an ice cream parlor. People’s
requests to buy the ice cream are timestamped based on a numbered ticket (label) taken from
the machine. Any person, in order to know in what order the requests will be served, can
scan through all the labels and establish the total order among them. A concurrent timestamp
system (CTss) is a timestamp system in which any process can either take a new ticket or scan
the existing tickets simultaneously with other processes. Furthermore, a CTSs is waitfree, which
means that a process is guaranteed to finish any of the two above mentioned tasks in a finite
number of steps, even if other processes experience stopping failures. Waitfree algorithms are
highly suited for fault tolerant and realtime applications (see [16]).

Israeli and Li, in [17], were the first to isolate the notion of bounded timestamping (time-
stamping using bounded size memory) as an independent concept, developing an elegant theory
of bounded sequential timestamp systems. Sequential timestamp systems prohibit concurrent
operations. This work was continued in several interesting papers on sequential systems with
weaker ordering requirements by Li and Vitanyi [26], Cori and Sopena [9] and Saks and Za-
haroglou [35]. Dolev and Shavit [11] were the first to define and construct a bounded concurrent
timestamp system. However, to quote [12]: “Their algorithm is ingenious but its proof is long
and involved.”

Because of the importance of the bounded concurrent timestamping problem, the original
solution by Dolev and Shavit has been followed by a series of papers directed at providing a
simpler bounded cTss algorithm. Israeli and Pinchasov [18] have simplified the [11] algorithm
and its proof by modifying the labeling scheme of [11], introducing a new label scanning method,
and simplifying the ordering-of-events based formal proof [23] by reasoning about global states
(However, it still takes over 40 pages...). Dwork and Waarts [12] have taken a totally different

approach, by having their bounded construction simulate a new and simpler type of unbounded



CTsS construction in which processes choose from “local pools” of label values instead of a
“global pool” as in [11, 18]. However, in order to bound the number of possible label values
in the local pools, they are forced to introduce a form of amortized garbage collection. This
greatly complicates their algorithm. (Their algorithm only has an informal operational proof.)

In this paper, we present a novel bounded algorithm that we believe is the simplest, most
modular, and most easily proven cTss algorithm known to date. Our basic approach is to

decompose the problem into several distinct pieces.

e We base our algorithm on the atomic snapshot primitive introduced by Afek et. al [1]
(we use it as a black box). This primitive is waitfree and allows a process to collect an
“instantaneous” view of an array of shared registers. [1] gives an implementation of this
primitive from atomic single writer multireader registers. By using a snapshot primitive,

we limit the number of interleavings that can occur.

e The labeling operation, the operation of choosing a new label given a set of older ones, is
very complex in all former algorithms. Based on the snapshot operation, we introduce a

much simplified version of the labeling algorithm of {11].

¢ Proving that the bounded algorithm satisfies the cTss specification has in the past led
to long and involved inductive arguments. We overcome this problem by introducing a
CTSS specification, that uses label values taken from the unbounded positive reals. Our
correctness proof first shows that the real-number based specification meets the CTSS
axioms of [11]. Using the forward simulation techniques of the I/O Automata model, we
then show that our bounded algorithm implements the real-number based specification.

(See [30] for references and a discussion of forward simulation techniques.)

The most efficient bounded cTss implementations [12, 18] require O(n) time per operation.
Though one might think that a high price in complexity must be paid for our algorithm’s
modularity and ease of proof, this is not the case. The size of the labels is O(n), and the time
complexity of our algorithm is just that of the underlying atomic snapshot algorithm. The
snapshot implementation of [3] requires O(ny/n) single writer multireader register operations

per snapshot operation. Hence the complexity of our algorithm is O(n+/n) for each operation.



The final section of this paper considers some applications of the cTss primitive. We present
specific algorithms for fcfs mutual exclusion and multireader multiwriter atomic registers and

prove that any cTSS can be used as a primitive in these algorithms.

2 I/0 Automata Model

We present our algorithm in the context of the I/O Automata model. This model, introduced
by Lynch and Tuttle [29], represents algorithms as I/O Automata which are characterized by
states, initial states, a set of actions called an action signature, state transitions called steps and
an equivalence relation on some of the actions of the action signature called a partition. For
a 1/0 Automaton A its five components are denoted by states(A), start(A), sig(A), steps(A),
and part(A) respectively.

A step that results from an action is denoted by (s, 7, s’) where s is the original state, 7 is the
action, and s is the new state. If an action can be executed in a state s, it is said to be enabledin
s. If an action is not enabled in state s, it is said to be disabled in s. Actions are classified into
external actions, ext(A), those visible to user of the algorithm, and internal actions, int(A),
which are not visible to the user. External actions are further classified into input actions,
in(A), which are under the control of the user of the algorithm, and output actions, out(A),
which are under the control of the algorithm. By definition input actions are enabled in all
states. For an I/O Automaton A the tuple consisting of in(A) and out(A) is called A’s external
action signature, ezsig(A). We now give a more precise definition for some of the elements of
an 1/0 Automaton. Specifically, for an I/O Automaton A, sig{A) = (in(A), out(A), int(A)).
Furthermore, part(A) defines an equivalence relation on the set of internal actions and output
actions of A. Finally, we define acts(A) = in(A) U out(A) U int(A).

An ezecution of an I/0 Automaton is an alternating sequence of states and actions that
could be produced if the algorithm is executed starting from an initial state. A state is called
reachable is it is the final state of some execution. A fair erecution, «, of infinite length is one
in which for all C' € part(A), if some action from C (not necessarily always the same action)
is continuously enabled, & contains infinitely many actions from C. A fair execution of finite
length is one in which for all C € part(A) no actions of C are enabled in the final state. A

schedule, sched(c), is the projection of an execution @ onto the actions of the I/O Automaton.



A fair schedule, fairsched(c), is the projection of a fair execution @ on the actions of the I/0
Automaton. A behavior, beh(a), is the projection of an execution a onto the external actions of
the I/O Automaton. A fair behavior, fairbeh(c), is the projection of a fair execution « on the
external actions of the I/O Automaton. The set of all possible behaviors of an I/O Automaton
A is called behs(A). The set of all possible fair behaviors of an I/O Automaton A is called
fairbehs( A).

In order to build complex I/0 Automata from simple ones, the I/O Automata model defines
the concept of composition. Composed I/O Automata interact using input and output actions
that have the same name. Specifically, assume A and B are two composed I/O Automata. Let
ACT be an output action of A and an input action of B. If A executes AcT this triggers the
execution of ACT for B. In order to compose a set of [/O Automata, we must place certain
restrictions on the action names the I/Q Automata. Specifically, we require that none of the
I/O Automata share any output actions, the internal actions of each I/O Automaton are not
elements of the action sets of any other I/0 Automaton, and no action can an element of the
action sets of infinitely many I/0 Automata (see [29] for a discussion of these restrictions). 1/0
Automata that satisfy these restrictions are said to be strongly compatible.

Definition 2.1 Let I = {l...n}. A composition A = HA,- of a countable collection of

il
strongly compatible I/O Automata {A;...A,} is the I/O Automaton defined as follows':

o sig(A) = (U in(4;) - U out(A,-),U out(A;), U int(A,-)) ,

o states(A) = Hstates A;),

iel

o start(A) = Hstart(A ),

iel
o steps(A) is the set of triples (§, 7, 8;) such that for all ¢ if = € acts(A),
then (§[7], 7, 85[i]) € steps(A) and if © ¢ acts(A) then $;[i] = §[i].

o part(A) = Uerpart(A;),

'The [] symbol used to define states(A) and start(A) represents the normal Cartesian product. The notation
3[i] denotes the i** component of the state vector 3.



We sometimes do not want the actions that constitute the interface between two composed
I/O Automata to be visible to the environment. Therefore, the I/O Automata Model makes it
possible to reclassify output actions to be internal actions. Such reclassified actions are said to
be hidden.

The I/O Automata model represent a problem specification, P, as an external action sig-
nature, ezsig(P), along with set of allowable behaviors, behs(P), on the actions in ezsig(P).
An I/O Automaton A is said to solve a problem specification P if ezsig(A) = ezsig(P) and
fairbehs(A) C behs(P). We say that an I/O Automaton A implements another I/O Automa-
ton B if the fairbehs(A) C fairbehs(B). Our correctness proof uses the following theorem on

simulation proofs which is a restricted version of a theorem in [29].

Theorem 2.1 Let A and B be I/O Automata with sig(A) = sig(B), part(A) = part(B), and

R a relation over the states of A and B. Suppose:
1. If a is an initial state of A, then there ezists an initial state b of B such that (a,b) € R.

2. Suppose a is a reachable state of A and b is a reachable state of B such that (a,b) € R. If
(a,m,a’) is a step of A then there exists a state b’ of B such that (b,7,¥') is a step of B
and (a’,b’) € Rr.

3. If action  is enabled in state b of B and (a,b) € R then action 7 is enabled in state a of

A.
Then fairbehs(A) C fairbehs(B).

The I/0 Automata model, while providing efficient techniques for reasoning about the
correctness of algorithms, is much more general than the shared memory model 23] for which
our timestamp algorithm is designed. Consequently, we introduce some added structure to the
I/O Automata model. This section describes the basics needed to understand our correctness
proof. Section 9 provides a more sophisticated development of shared memory concepts in the
I/O Automata model. Some of the concepts in this section and most of the concepts in Section 9
are due to Goldman, Lynch and Yelick [15]. (See [28] for discussion of similar issues.)

We first introduce a type of interface which will be used to characterize the external action

signature of I/O Automata and problem specifications for the shared memory model. The



interface captures the intuitive notion of a set of processes that perform operations on behalf

of some user. Typically, any process might be able to perform several types of operations.

Definition 2.2 (operational interface) An operational interface is an external action sig-
nature S that partitions its actions into disjoint sets called operation types. The set of operation
types of S is denoted by ops(S). Each operation type consists of at least one input and one

output action. L

As a short hand, we will sometime use the term operation instead of operation type. Notice
that an operational interface only describes an external action signature. Hence an operational
interface can be used to describe both /0O Automata and problem specifications. If we compose
two I/O Automata which have an operational interface, the set of operation types of the com-
posed I/Q Automaton is the union of the sets of operation types of each of the constituent 1/0
Automata. Again, we must add some restrictions on a set of [/O Automata being composed.
Assume that we wish to compose I/0 Automaton A and 1/O Automaton B. We require that
each action in acts(A) N acts(B) be an element of the same operation type in A and B. Fur-
thermore, if one action of an operation type of A or B is in acts(A) N acts(B) then all actions

of that operation type are in acts(A) N acts(B). An operation instance is defined as follows:

Definition 2.3 (operation instance) Let 8 be a behavior of an operational interface. Let a
be an operation type of the operational interface. An operation instance is the occurrence of
an input action of a and the first output action of a that follows the input action of a in the

behavior 3. u

We now introduce a set of notational conventions. Let S be an operational interface. For
an operation type a € ops(S) we refer to the input actions of ¢ by INVOKE(a,v) and the
output actions of a by RESPONSE(a, 7). The symbols v and r are syntactic placeholders for any
arguments? that are used by this operation type. The I/O Automata and problem specifications
that we consider typically allow several concurrent operations. We model concurrent operations

with I/O Automata whose operational interfaces are structured as follows. Assume that A is an

2Formally, v and r are used to uniquely identify the actions of operation type a. Intuitively, v and r represent
arguments. The arguments v and r are syntactic placeholders since the I/O Automata Model does not have the
concept of an argument. Arguments are implemented by having a separate action for each possible argument
value.
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I/0 Automaton with an operational interface that can handle up to n concurrent operations.
Then for each ¢ € {1...n} there exists a non empty set of operation types S; C ops(ezsig(A)).
S; and §; are disjoint when i # j. For each operation type a; € S; we refer to the input actions
of a; by INVOKE;(a;,v) and the output actions of a; by RESPONSE;(a;, 7). Intuitively there is a
process, p;, associated with all actions whose names include the index i. For the remainder of
the section, assume that all I/O Automata have an operational interface as described above.
We now define a set of concepts with which we can characterize the behaviors of I/O Au-
tomata and problem specifications that have operational interfaces. Let A be an I/O Automaton
or a problem specification with an operational interface. If 3 is a behavior of A, then §; is the

projection of 8 onto the actions that have the index i as part of their name.

Definition 2.4 (well-formed) Let A be an /O Automaton or a problem specification with
an operational interface. A behavior 8 of A is well-formed if, for all 3;, §; consists of an
alternating sequence of input and output actions, starting with an input action, such that
each output action is immediately preceded by an input action of the same operation type.
Specifically, if a; € ops(ezsig(A)), each RESPONSE;(a;, ) action is immediately preceded by an

INVOKE;(a;, v) action. ]

Definition 2.5 (well-formed-input) Let A be an I/0 Automaton or a problem specification
with an operational interface. A behavior 3 of A has a well-formed-input if, for all 3;, there

exist no two consecutive input actions. u

Definition 2.6 (well-formed-preserving) Let A be an I/O Automaton or a problem speci-
fication with an operational interface. Let 8 be a behavior of A. 3 is well-formed-preserving if,

for all prefixes 3’ of 8 that have a well-formed-input, 3’ is well-formed. [ |

We say that an I/O Automaton is well-formed-preserving if all of its behaviors are well-formed-
preserving. Similarly, a problem specification is well-formed-preserving of all of its behaviors are
well-formed-preserving. In addition to the safety properties described by the well-formedness

concepts, we require the following liveness property.

Definition 2.7 (response-live) Let A be an I/O Automaton or a problem specification with
an operational interface. Let 3 be a well-formed behavior of A. Then § is response-live if each

INVOKE;(a;, v) action is eventually followed by a RESPONSE;(ay, ) action. ]

11



We say that an I/O Automaton is response-live if all of its fair behaviors are response-live.
Similarly, a problem specification is response-live of all of its behaviors are response-live. We
can now define the following partial order on the operation instances of any well-formed and

response-live behavior.

Definition 2.8 (— order) Let 8 be a well-formed and response-live behavior of an I/0
Automaton or problem specification with an operational interface. Let a; and b; be any two
operation instances® in 3. In general a; and b; can be instances of the same operation type.
We say that a; — b; if and only if in the behavior 3 the RESPONSE;(a;, ) action associated

with a; precedes the INVOKE;(b;,v) action associated with b;. =

The order — is the same as the precedes relation of {22, 23]. Since 3 is a well-formed behavior,
all operations with same index are totally ordered by —.
An important type of I/O Automaton is called an atomic 1/O Automaton. Before defining

an atomic I/0 Automaton we introduce the notion of a serial specification [38].

Definition 2.9 (serial specification) A serial specification is a set of finite and/or infinite

sequences of operations. =

Intuitively, a serial specification characterizes a behavior consisting of a set of sequentially

executed operations.

Definition 2.10 (atomic I/0O Automata) An I/O Automaton A is atomic for a serial spec-
ification S if A has an operational interface, is well-formed-preserving, and is response-live.
Furthermore, for any behavior 8 € fairbehs(A) there exists a total order => on the operation

instances in 3 such that:
1. = is consistent with —.
2. The sequence consisting of the operation instances in § ordered by = is in 5.

®We sometimes use the same name for operation instances and operation types. The meaning of a name will
always be clear from context.
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3 Concurrent Timestamp System

The following is a formal definition of a cTss due to Dolev and Shavit [11]. It uses the axiomatic
specification formalism of Lamport [22, 23].

A cTss is a problem specification with an operational interface. A cTss that permits n
concurrent operations has 2n operation types, specifically LABEL; and scAN; for i € {1...n}.
Fach of these operation types consists of the following actions: LABEL; consists of the input
action BEGINLABEL;(val;) and the output action ENDLABEL;. SCAN; consists of the input action
BEGINSCAN; and the output action ENDSCAN;(3, ). A LABEL; operation associates a value, val;,
taken from any domain, V, with a label. In order correctly handle initial conditions the value
domain V must specify some initial value v,. A SCAN; operation returns a pair (0, ?), where
v = (v;...v,) is an indexed set of values (one per process), and o is an total order on these
indexes.

We now introduce some notation. In a particular behavior S, LEk] denotes the k'* instance
of a LABEL; operation, and S,;[k] denotes the k** instance of a SCAN; operation. Furthermore,
vall*) denotes the value passed to operation L), (The superscript [k] is used only for notation,
and is not visible to the I/O Automaton). We call the superscript [k] an erecution number.
The domain of execution numbers is E = {1,2,...}. Finally, we define a choice function, c, as
a function mapping {1...n} x Ex {1...n} to EU{0}. Intuitively, the choice function provides
a way to determine which operation wrote a value returned by a SCAN operation. Specifically,
if ¢(¢,a,k) # 0, the value v; returned by operation S,.[“] was written by the operation L,Ec(i‘“’k)].
If ¢(¢,a,k) = 0, then the value v, returned by operation S,-[“] is the initial value v,.

The set of behaviors of a CcTss, behs(CTss), is defined as follows:
Definition 3.1 3 € behs(cTss) if and only if:

1. If 8 has a well-formed-input, then § is well-formed.

2. If 8 has a well-formed-input, then 3 is response-live.

3. If B is well-formed, then there exists a total order => on the set of all LABEL operations

and a choice function ¢ such that 8, => and c satisfy axioms P0-P4 given below.

13



Note: if 3 does not have a well-formed-input, then § can be arbitrary.
In order to handle initial conditions, we let val,-[ol = v, for all 7, where v, is the initial value

of the value domain V. Recall that execution numbers start with 1.

- val,Ec(i,a,k)]

PO choice function: For any value v; in v of S,-[a], Vg where val,go] = v,.

P1 ordering: = is a total order on the set of all LABEL operation instances in 3, such that:
a. precedence: For any pair of LABEL operation instances LE“] and Lg-b] (where possibly @
and j are the same index), if L}” — LJ-[b], then L/ = LJ-[b]
b. consistency: For any SCAN operation instance S,-[“] that returns © and o, if v;,v; € v:

e(i,a, and c(i,a,k) > 0: j < k in & if and only if L[/ = L[]

and ¢(i,a,k)=0: < kin oif and only if j < k.

o

0
c(i,a,j)=0 and c(¢,a,k)>0: j<kin
>0

ol

) >
c(i,a,5)
)=
) >

c(i,a,j and ¢(i,a,k)=0: k<jin

The above property implies that there is a unique total ordering on LABEL operation instances
of all processes, which is a serialization order (part a), and with which all SCAN operations are

consistent (part b).

P2 regularity: Let Sj[a] be a SCAN operation instance. If ¢(j,a,7) > 0, then Sj[a] — pleda]

and there is no L such that L0 —, pPI_, Sj[a]. If ¢(4,a,t) = 0, then there exists
no L such that LM — Sj[a].

Though a regular cTss (having properties PO-P2) would suffice for some applications (for ex-
ample Lamport’s “Bakery Algorithm” [19]), a more powerful concurrent timestamp system is
needed in applications such as the multireader multiwriter atomic register construction (see

[24, 34]). To this end the following third and fourth axioms are added:

P3 monotonicity: Let S return vy = vall*®**! and Sj[b] return vy = vall®*)! (where

possibly ¢ = 7). Then, sl S[] and c(i,a,k) # c(j,b, k) imply ¢(3,a,k) < ¢(4,b, k).

Note that c(i,a, k) < c(j,b, k) implies that LI — L[LGO] when e(i,a,k) > 0 and

c(j,b,k) > 0. Monotonicity is the property that in a unbounded real number cTSS can be

14



described by saying that the labels of any one process, as read by increasingly later SCAN
operations, are “monotonically non-decreasing.” It is important to note that P& does not
imply that one can serialize all LABEL and SCAN operation instances. It does however imply the
serializability of the SCAN operation instances of all processes relative to the LABEL operation
instances of any one process [37]. P4 4 is an extension of part of the regularity property to the
= order. The properties P8 and P4 together imply that all SCAN operations that consider
only the “largest” value, where “largest” is based on the o ordering, can be serialized with

respect to all LABEL operations.

P4 = regularity: Let $!* be a scAN operation instance. If ¢(i,a,k) > 0, then sl — Lj[b]

implies that Ly"** = L[]

4 An Unbounded Concurrent Timestamp System

This section introduces a particular implementation of a concurrent time stamp system, UCTSS,
that uses timestamps from R*. vcTss is introduced as an intermediary I/O Automaton whose
purpose is to simplify the correctness proof of our bounded cTSS.

The code for the operations of UCTSS is presented in two forms. Figure 1 presents the code
in the precondition-effect notation commonly used to describe I/O Automata®. Figure 2 uses
psuedocode. We use the precondition-effect notation as the basis for the correctness proof and
include the compact and intuitive psuedocode only for clarity.

The system models n processes indexed by {1...n}. Each process p; in UCTSS can perform
a SCAN; and LABEL; operation. A LABEL; operation allows process p; to associate a label
(timestamp) with a given value. A SCAN; operation allows process p; to determine the order
among values based on their associated labels. The function NEWLABEL;, which is used by
LABEL; is defined in Figure 3. A SNAP; operation, which is defined by Afek et al. in [1],
atomically reads an array of single writer multireader registers. A UPDATE; operation, also

defined by [1], writes a value to a single register in the array of single writer multireader registers

*A more powerful cTss satisfying P4 is needed in applications such as the multireader multiwriter atomic
register construction of [24, 34]. P4is included in the journal version of [11], but is not included in the conference
version of [11] or in [37].

5BeTss is the name for our bounded cTSs implementation. The name is included in the caption since the
code in the figure is shared by BcTss and UCTSS. BCTSS is introduced in Section 5.
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Shared State:

t;:  The current label associated with process p;; initially 0.
v;:  The current value associated with process p;; initially v,.

Local State:

nt;: The new label for p; determined by function MAKELABEL;; initially 0.
val;: The new value for p; passed to LABEL;; initially v,.
t;:  An array of labels returned by SNAP; initially (0...0).

?;:  An array of values returned by SNAP;; initially (v, ...v,).

d;:  An array of process indexes ordered based on the < order; initially (1...7n).
pc;:  The non-input action currently enabled; initially NIL.
op;: The current operation; initially NIL.

SCAN;:
BEGINSCAN;

SNAP;(t;, 0;)

ENDSCAN;(6;, 7;)

LABEL;:
BEGINLABEL;

UPDATE;((t;, v;), (nt;, val;))

ENDLABEL;

Eff: op; — SCAN;
pe; — SNAP;(t;,7;)

Pre: pc; = SNAP,(;,5;)
Eff: If op; = scaN; then
0; «— the sequence of indexes where
j appears before k in o; iff (¢;,7) < (¢, k)
pc; — ENDSCAN;(0;,7;)
If op; = LABEL; then
nt; «— NEWLABEL;(%;)
pe; — UPDATE;((t;, vi), (nt;, val;))

Pre: pc; = ENDSCAN;(d;, v;)
Eff: pe; < NIL
Eff: op; — LABEL;

pe; — SNAP;(1;, 7;)

Pre: pc; = UPDATE;((t;, v;), (nt;, val;))
Eff: pc; — ENDLABEL;

Pre: pc; = ENDLABEL;
Eff: pec; — NIL

Figure 1: Precondition-Effect code for ucTss and BCTss
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SCAN;
SNAP;(t;, 7;)
; — the sequence of indexes where j appears before k in o; iff (t;,5) < (t, k)
return (0;, ;)

LABEL;(val;)
SNAP;(¢;, ;)
nt; < NEWLABEL;({;)
UPDATE; ((ti, vi), (nt;, val;))

Figure 2: Psuedocode for ucTss and BCTSS

read by SNAP;. SNAP; and UPDATE; are waitfree, therefore their use does not compromise the

waitfree properties of our timestamp algorithm.

NEWLABEL;(%;)
if i Z Imas
then return (t,,., + X ) where X is nondeterministically selected from R>0

Figure 3: Code for NEWLABEL; of UCTSS

The state of UCTsS is defined by the shared state and the local state of each of the n process.
The shared and local state of each process, along with the initial values are defined in Figure 1.
The state of ucTss also has derived variables tmar and imaz. tmaz = MAX(Z1...1,) and ipeq is
the largest process index ¢ such that ¢; = t,,,,.

In terms of the I/O Automata model, ucTss is an I/O Automaton with an operational inter-
face. UCTSS is a composition of n I/O Automata called p,,...,p,. Each p; is an I/O Automaton
with an operational interface that consists of the operation types LABEL; and SCAN;. The LABEL;
operation type consists of the input action BEGINLABEL;(val;) and the output action ENDLABEL;.
The operation type SCAN; conmsists of the input action BEGINSCAN; and the output action
ENDSCAN;(6;, %;). The internal actions of p; are SNAP;(t;, ;) and UPDATE;((;, v;), (nt;, val;)).
The set steps(p;) is characterized by the precondition clause in each action. The set pari(p;)
consists of a single equivalence classes C; where the elements of C; are the actions SNAP;(t;, U;),
ENDSCAN;(6;,%;), UPDATE,((t;,v;), (nt;, val;)), and ENDLABEL;. The set states(p;) is the set of

all possible states of p; where each state is defined by the values of the variables of the shared
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and local state. The set start(p;) is the set consisting of the state defined by the initial values
of the variables of the shared and local state.

The shared state is accessed only using the atomic SNAP; and the UPDATE; actions. Since
SNAP; and UPDATE; are atomic, each action of UCTSS is atomic. Notice that the sNAP; action
makes references to the elements of the vector #; indirectly through the use of ¢4, and ¢4, and
in order to calculate 6;. Since SNAP; is atomic, the labels in #; are the same as the corresponding
labels in the shared state. In other words, t;; = t; during the action. Consequently, we refer
directly to the shared variables i,4z, tmaz, and t; rather than their copies ¢; ., .., and &,
when analyzing the SNAP; action.

UCTSS uses labels that are non-negative real numbers. The ordering between labels is the
usual < order of #*. The ordering « used in the ORDER; action is a lexicographical order

between label and process index pairs.
Definition 4.1 (< order) (¢, i) < (¢, j)iff ; < {; or {; =¢; and ¢ < j. u

We now prove some characteristics of < that will be used to prove that UCTSS solves CTSS.
First consider the following notation: ¢/ is the label written as a consequence of the Lk
operation. When a = 0, then t,-[“] is equal to the initial value for labels, which for vcTss is 0.
L,-[a](UPDATE) refers to the UPDATE; action executed as a consequence of the L,'[a] operation and
LI (sNaP) refers to the SNAP; action executed as a consequence of the LI operation. Similarly,
S,-[“l(SNAP) refers to the SNAP; action executed as a consequence of the §[* operation. The sNAP
and UPDATE actions model two atomic operations. In the usual model for atomic operations
[23], each operation is separated into a request (input) action and a response (output) action,
concurrent operations executions are allowed, and it is assumed that every request eventually
terminates in a matching response, in such a way as to produce the illusion of instantaneous
operations. Consequently, we model SNAP and UPDATE as single actions rather than separate
input and output actions. We present a formal justification for treating SNAP and UPDATE
operations as single actions rather than separate input and output actions in Section 9. Since
SNAP and UPDATE are single actions, there exists a total order on all SNAP and UPDATE actions.
We represent this order by ='. If a SNAP action returns the set of values, v, and labels, ¢, then

vk and t, are the value and label written by the UPDATE, action that immediately proceeds

the SNAP action in the =’ ordering. If a SNAP action is not proceeded by an UPDATE; action,
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then v, and t; are equal to their initial values.

Lemma 4.1 Consider any well-formed, response-live behavior 3 where 3 € fairbehs(uCTss).
For any i,a and SNAP operation Lj[b](SNAP), if either a > 0 and Li[a](UPDATE) = Lj[b](SNAP)

in 3, or a =0 then:
1. ()« (t}b],j) when t # j.

2. (t%,0) = M, 5) or (¢1%,0) < (¢, §) when i = ;.

Proof: Let ..., and iy, be the t,,, and ¢,,,, used in NEWLABEL; for Lj[b]. Since § is well-
formed, each process must read its current label when determining its new label. This fact,
along with the fact that X in NEWLABEL; is in £>°, shows that the labels for all process are
nondecreasing. In other words, a label for some process in a particular state of 3 is never larger

) < tmes When a = 0.

than the label for the same process in a subsequent state of 3. Thus ti[“
When a > 0, L,-[a](UPDATE) = LJ-[b](SNAP) shows that ¢/ < 7,..,. Consider the following

cases:

J = tmaer and ¢ # j: When j = i,,,,, then £, = tj[b_ll. Recall that t,-[“] < Tmaz- Consider the

Cases t!'[a] = tmﬂx and ti[a] < tmcu: Sep&mtely- When t,'[a] = tma:c’ then, since m = tj[b-l]a

¢l = tj[b_ll. Furthermore, since ¢ # j and j = imary & # tmage SINCE J = fmazy § # lmaz

and ti[“] = t]-[b_”, the definition of %,,,, shows that ¢ < j. As a result of the action L}b],

tj[b] = Tow. Hence, ¢/ = t]-[b] and 7 < j which implies that (tl-[“],i) < (t-[b] ). Now

7

consider the case t,-[a} < tmaz. As a result of the action Lj[b], tj[b] = tmaz. Hence t,-[“] < tj[b]

which implies that (t,-[“], ) <K (tj[b]aj)'

7 = tmaz and ¢ = j: As a result of the action L]-[b] and the fact that 7 = ¢4, tj[b] = tmaz- OlDCE

t1 < 7,..-, it must now be the case that ¢/ < tj[b]. This implies that (¢/4, ) = (tj[b],j) or
(&, < (1, ).

J # tmaz: As aresult of the action Lj[b] and the fact that 7 # %0z, tmaz < tj[b]. Since ti[a] < tmass

it must now be the case that t{* < t]-[b]. This implies that (¢/,7) < (tj[b], ).
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Corollary 4.2 Consider any well-formed, response-live behavior 3 where 3 € fairbehs(UCTSS).

For any two LABEL operations L,-[a] and LJ-[b], if L,-[a] — Lj[b] in B, then:
la] - ® . C
L (8%,0) < (¢, ]) when i # j.

2. (¢} i) = (M, 5) or (¢}, )) <« (¢, ) when i = 5.
Proof: If Li[a] - Lj[b]a then Li[a](UPDATE) =/ LJ-[b](SNAP). Now Lemma 4.1 proves the

corollary. =

Consider any well-formed, response-live behavior 8 where § € fairbehs(ucTss). Define =,
a total order on all the SNAP and UPDATE operations of 3, as before. We now define a total
order® => on the LABEL operations in 8 and a choice function c¢. Recall from Definition 2.8 that

— defines a partial order on the operation instances of a well-formed, response-live behavior.
Definition 4.2 (= order) L/ = Lj[b] iff either L") — Lj[b] or (t1) « (tj[b],j). ]

Definition 4.3 (choice function ¢) If §! returns & and Lj[b](UPDATE) is the UPDATE; action
that immediately proceeds S,-[a](SNAP) in =’, then ¢(i,a,j) = b. If no such UPDATE; action

exists, then ¢(7,a,7) = 0. [ |

For the following lemmas assume that 3 is well-formed, response-live, 3 € fairbehs(ucTss), and
— is defined as in Definition 2.8. Furthermore, =—> and c are defined as in Definition 4.2 and

Definition 4.2 respectively.

Lemma 4.3 The order = is a total order on all LABEL operation instances in 3.

Proof: In order to simplify the notation in this proof, we write L/ <« LJ-[b] instead of (t,-[a], i) <
(tj[b],j). Since — is a partial order, it is irreflexive, antisymmetric, and transitive. By definition,

& is irreflexive, antisymmetric, and transitive.
irreflexive: This follows immediately from the fact that — and < are irreflexive.

antisymmetric: To reach a contradiction assume that Li[al = L]-m and LJ-[b] = Li[a]. Since

— and < are antisymmetric, we can assume without loss of generality that L,-[“] — Lj[b] and

®Lemma 4.3 proves that => is a total order.
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Lj[b] < L. Using the fact that L — Lj[b] along with Corollary 4.2 we can conclude that
L« L}b] or L} = L}b]. However, this contradicts the fact that Lj[b] < LM

transitive: For a contradiction assume that L}” = Lj[b] and LJ-[b] — L3 but LI = Lk
Consider the case where L/ — L}b] and LJ-[b] < L9 but I/ -4 L} and AP SRS
Corollary 4.2 and the fact that L/ — LJ-[b] imply that L[ <« LJ-[b] or LI = Lj[b]. This fact
along with the fact that Lj[b] <« L} implies that L/ « L[, This contradicts that earlier
assumption that L/} & LI, Since — and « are transitive, the only other case is L« LJ-[b]
and L]-[b] — L but L% 4 LI and LM & L. We use the same reasoning as in the

previous case to show that this case also cannot arise.

total: Consider any two label operations L,-[“] and L]-m. When 7 # j then L,-[“] and Lj[b] are
ordered by <. When ¢ = j then L,-[a] and Lj[b] are ordered by —.
Since = is irreflexive, antisymmetric, transitive and total, we can conclude that = is a total

order. [ |
Lemma 4.4 3 using the order => and choice function ¢ satisfies aziom PO.

Proof: This follows immediate from the definition of ¢, the fact that 8 is well-formed, and

the definition of the SNAP and UPDATE actions. u
Lemma 4.5 (3 using the order = and choice function c satisfies aziom P1.

Proof: In order to simplify the notation in this proof, we write L« L]-[b] instead of (ti[“], i) <
(t]-[b],j). From Lemma 4.3 we know that => is a total order. Part a of P1, precedence, follows
immediately from the definition of =. For part b of P1, consistency, let S,;[a] return ;. There

are four cases to consider:

c(i,a,5)#0 and ¢(i,a,k)#0: = If j < k in 6; then, by the definition of 6; in the SNAP;
action, Lj[c(i’a’j)] < L,Ec(i’a’k)]. By definition of = this shows that Lj[c(i’“’j)] = L,Ec(i‘a’k)].
< If plEe) —  plGaR] thon either L[ — [FCaM] o [[CD] o p Lot
When L}c(i’“‘j)] — L,Ec(i’a’k)] Corollary 4.2 and the fact that j # k show that L}c(i’“’j)l &

LEGM Now j < k in 6; since LI « e,
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c(i,a,j)=0 and c(i,a,k)=0: In this case the definition of ¢ show that the ¢; and t; read
by S,-[a](SNAP) are equal to their initial values, which are 0. Now the definition of ¢; in

the SNAP action shows that j < k in ¢; if and only if j < k.

c(i,a,7)=0 and c(i,a,k)+# 0: Lemma 4.1 shows that (tJ-[c(i’a’j)],j) & (t,Ec(i’a‘k)], k). Now the

definition of ¢; in the SNAP action shows that j < k in o;.

c(i,a,j)#0 and ¢(i,a,k)=0: Lemma 4.1 shows that (tletekl gy « (tj[c(i’“'j)],j). Now the

definition of ¢; in the SNAP action shows that k < j in ¢;.

Lemma 4.8 (3 using the order = and choice function ¢ satisfies ariom P2.

Proof: Consider SJ-[“] with ¢(j,a,1) > 0. By definition of ¢, Ll yppaTe) = Sj[a](SNAP).
Hence Sj[a] — Li[c(j’a’i)]. In order to prove that the second part of the axiom holds for 3
we assume that there exists L such that L[V . [P SJ-[“]. This implies that
LF9*Nuppare) =' LM (uppare) =’ §[*)(sNap), which directly contradicts the defini-
tion of ¢. Now consider Sj[a] where ¢(j,a,:) = 0. The definition of ¢ shows that there exists no
L,-[b](UPDATE) such that Li[b](UPDATE) =’ Sj[a](SNAP). Consequently, there exists no L,»[b] such

that LM — 5[, .
Lemma 4.7 (3 using the order = and choice function ¢ satisfies aziom P3.

Proof: Consider 5/ — Sj[b], where ¢(i,a, k) > 0. By definition of ¢, L,Ec(i’a’k)](UPDATE) =’
[a] i [b] . 3 . .
5;%(snapr) = S/”(snAP). Now the definition of ¢ and the fact that c(i, a, k) # c(J, b, k) imply
that ¢(i,a,k) < ¢(j,b,k). When c(i,a,k) = 0 the fact that ¢(i,a,k) # c(j,b, k) immediately
shows that c(7,a,k) < ¢(j,b, k). ]

Lemma 4.8 [ using the order => and choice function ¢ satisfies aziom P4.

Proof: Since 5! — LJ-[b], S,-[“](SNAP) =’ LJ-[b](SNAP). Furthermore, the definition of ¢
and the fact that c(¢,a,k) > 0 imply that LEGeB (gppaTE) = 5tl(snap). Consequently,
LIt (yppaTE) = LJ-[b](SNAP). Now Lemma 4.1 implies that (¢{"**] k) « (t].[b],j). There-

fore the definition of => implies that L,Ec(i’“’k)] = Lj[b]. ]
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Lemma 4.9 If a behavior B, where § € fairbehs(ucTss), has a well-formed-input, then B8 is

well-formed and response-live.

Proof: Notice by inspecting the precondition clauses in the code of Figure 1 that for any
equivalence class C; of part(ucTss), there is always at most one action enabled. Farthermore
each action remains enabled until it is executed. Consequently, the actions must be executed in
the sequence in which they are enabled. Furthermore, in a fair execution each enabled action
will eventually be executed.

Now consider any fair execution that has a well-formed-input. The precondition-effects code
in Figure 1 shows that the following sequence of actions is executed in response to a BEGINSCAN;
input action: SNAP;(¢;,7;) and ENDSCAN;(0;,7;). In response to a BEGIN LABEL;(val;) input
action, the following sequence of actions is executed: SNAP;(%;, %), UPDATE;((t;, v;), (nti, val;)),
and ENDLABEL;. Also, no actions of C; are enabled between the execution of an ENDSCAN;(6;, ¥;)
or ENDLABEL; action and the next execution of a BEGINSCAN; or BEGINLABEL;(val;) action.
Inspection of these action sequences and the definitions of well-formed-preserving and response-

live, immediately shows that vcTss is well-formed-preserving and response-live. [ ]

We now have the necessary lemmas to show that ucTss solves CTss.

Lemma 4.10 ucTss solves CTSS.

Proof: By inspection ezsig(ucTss) = ezsig(cTss). In order to show that fairbehs(ucTss) C
behs(cTss) we consider any behavior 3 such that 8 € fairbehs(ucTss). If 3 does not have a well-
formed-input, then 8 € behs(cTss) trivially. So, assume that § has a well-formed-input. Now
Lemma 4.9 shows that 3 is well formed. Define an order = and a choice function ¢ as in Defini-
tion 4.2 and Definition 4.3 respectively. Now, Lemma 4.4, Lemma 4.5, Lemma 4.6, Lemma 4.7,

and Lemma 4.8 show that 8, = and c satisfy axioms P0-P4. Hence § € behs(CTsSs). [

5 A Bounded Concurrent Timestamp System

In this section we present our bounded implementation of a concurrent timestamp system,
BCTsS. BCTss differs from ucTss in three ways: the structure of the labels, the order between

labels, and the manner in which NEWLABEL; determines new labels. In all other aspects BCTsS
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5

Figure 4: A graphical illustration of the <4 order between the elements of A = {1.. 5}

and UCTSss are identical. Recall that a label in vcTss is an element of ®*. In BCTss, labels
are taken from a different domain. In order to construct the new domain we introduce the set

A = {1...5}. We define the order <4 and the function NEXT on the elements of A.
1<42,3,4,5 2<43,4,5 3<44 4-<45 5<43.

The graph in Figure 4 represents <4, where a <4 b iff there is a directed edge from b to a.

k+1 ifke {1,2,3,4}
3 ifk=5

NEXT(k) =

A BCTss label is an element of A”~1, where n is the number of processes in the system. We refer
to elements of A"~! using array notation. Specifically, the h'* digit of label £ will be denoted
by £[h]. Since we have redefined the label type, we must specify the order that is to be used
between elements of ,A™~! for the « order in the SNAP; action. The order between elements of

A"~ is represented by the symbol < and will be a lexicographical order based on <4.

Definition 5.1 (< order) £ < ¢; iff there exists h € {1...n — 1} such that £[h'] = ¢;[h'] for
all B’ < h and £4[h] <4 ¢;[h). ]

Example 5.1 4...4.52<4...43.1
Lemma 5.1 If{, and {, are elements of A*~! then ezactly one of the following is true: £; < {5,
EQ < EI} or 51 = Ez.

Proof: If a,b € A, then by definition of <4 exactly one of the following is true: a <4 b,

b <4 aora=b. Thelemma now follows since < is a lexicographical order defined by <4. =
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We define the following notation and functions for BcTss labels:

Definition 5.2 (£ equivalence relation) For any h € {0...n—1}, & L 0, iff 04[] = £o[R)
for all A’ < h. Note that £, = £, implies that £; = £,. |

Definition 5.3 (NEXTLABEL) For any h € {1...n — 1}, ¢ = NEXTLABEL({,h) iff ¢/ =

2'[h] = NExT(£[R]}) and ¢[A’]=1forall A’ € {h+1...n—1}. =

Definition 5.4 (cYcLE) For any h € {1...n — 1}, € € cYCLE({,h) iff & "=' ¢ and '[h] €
{3,4,5}. ]

Lemma 5.2 A set L of labels is not totally ordered by < iff there exist £1,45,43 € L and
he{l...n—1)} such that £, "=" £, "=' t5 and {£,[h], €:[R], £s[h]} = {3,4,5}.

Proof: => The < ordering on L is irreflexive by definition and antisymmetric by Lemma 5.1.
Therefore, it must be that transitivity does not hold. Specifically there exist £,£5,f5 € L
such that ¢, < £, < f3, and ¢; # f5. By Lemma 5.1 it cannot be that £, = {3, therefore
£3 < £;. Since < is a lexicographical order, there must exist h € {1...n — 1} such that
6 "= £y "=' 4y and £,[h] <4 £5[h] <4 f3[h] and £3[h] £4 €s[h]. Now by definition of A,
{E,[h], €2(h), Es[h]} = {3,4,5}.

< By definition of .4 we can conclude without loss of generality that £,[h] <4 £5[h] <4 £s[h]
and ¢;[h] £4 £3[h]. Since ¢, "=1 g, "=! ¢, and < is a lexicographical order, £; < £, < £3, and

£, 4 5. Hence, {;,¢,, and {3 are not totally ordered. u

We now define some functions on the states of BcTss. In order to reason about the states
of the system we introduce the notation b.z to refer to the variable z in state b. For a state b

and any label £ in state b:

Definition 5.5 (AGREE) For any h € {0...n — 1}, AGREE(b.£, k) = {j] b.t; L b.e}. ]
Definition 5.6 (NuM) For any h € {0...n — 1}, NuM(b.£, h) = |AGREE(b.Z, h)]. [ |
Definition 5.7 (NuM;) For any h € {0...n — 1}, NUM;(b.£, h) = |AGREE(b.£, h) — {3}]. ]

Definition 5.8 (choice vector) A choice vector for state b is any vector (b.4;...b.4,) such

that b.4; € {b.t;,b.nt;} for each i. ]
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FULL;(h), h € {l...n— 1}
if NUM;(tmaz, h) 20— h
then return (true)
else return (false)

NEWLABEL; (1;)
if § # tmaz
then h' «— minimum h € {1...n — 1} such that FuLL;(h) = true
return (NEXTLABEL(?n4z, h'))

Figure 5: Code for NEWLABEL; of BCTSS

Definition 5.9 (ToT) TOT(b) = true iff the set of values in every choice vector is totally

ordered by <; otherwise TOT(b) = false. u

Recall that the second difference between ucTss and BCTSS is the < order that is used in

SNAP;. We define < for BCTSS lexicographically.
Definition 5.10 (< order) (4, i) < (¢;, j) iff either ¢; < £; or {; = {; and 7 < j. |

In any state b in which TOT(b) = true, < defines a total order.

We now define b.t,,,, and b.i,n,, for a state, b, in which ToT(b) = true. Consider the choice
vector (b.t;...b.t,). Since TOT(b) = true, there must exist ¢ € {1...n} such that, for all j # ¢
and j € {1...n}, b.t; < b.t;. Let btpmar = b.t;. Let b.i,, be the largest index j such that
bt; = b.tyas.

The final difference between BCTSs and UCTSS is in the code for NEWLABEL;. Recall that in
UCTSS, NEWLABEL; nondeterministically picks a real number that is larger than t,,,,. In BCTSS,
NEWLABEL; also picks the new label based on t,,,,. In states in which ToT(d) = true, b.is,,
and b.i,,,, are defined. We let NEWLABEL; be a no—op for states in which ToT(b) = false. In
Section 6 we will show that TOT(d) = true for all reachable states. When i,,,4, is defined and
i # tmaz, NEWLABEL; finds the minimum h such that at least n — h t-labels, excluding ?;, agree
with the prefix of tmq. up to and including the h'* digit. Then the new label is the same as
tmae for the first h — 1 digits, it differs from t,,,, at the A'" digit based on the function NEXT,

and its remaining digits are equal to 1. The code for NEWLABEL; of BCTSsS is given in Figure 3.
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NEWLABEL; finds the minimum integer h such that FuLL;(h) returns true. We now show
that such an h exists in {1...n — 1}. The code that finds h is executed only when @ # Umar-
Notice that NUM;(maz,n — 1) > 1 when ¢ # ip,4z, hence FULL;(n — 1) = true.

The initial values for the labels in BCTss are: t; = nt; = 1", 6; = (1...n), % = (Vo...0,),

t; = (11, .17, v = val; = v,, op; = NIL, and pe; = NIL.

6 Invariants
For use in the simulation proof we define the following invariants:

Theorem 6.1 If b is a reachable state of BCTSS then, for alli € {1...n}:

I:  Tot(b) = true.

1I:  If i = b.iga, then b.t; = b.nt;.

II: Ifb.tpas < b.nt; then there exists h € {1...n—1} such that b.nt; = NEXTLABEL(b.tmas, h)-
IV: Ifb.nt; < btmes then for any h € {1...n = 1}, if bt; 2 btmgs then bant; = btmas.

V: Foranyhe {1...n—1}, if b.nt; € CYCLE(b.tynaz, ) then b.t; =

VI: Foranyhe {l...n—1},

a: if b.nt; = NEXTLABEL(b.t,0, h) then NUM;(b.tpap, h — 1) > n — h.

b: if btpae[h]) # 1 then NUM(b.t oz, h —1) > n—h+ 1.

I, II, and III are used in the simulation proof. We use an induction argument to show that
all reachable states of BCTsS satisfy these invariants. The purpose of invariants IV - VI is to
strengthen the induction hypothesis enough so that I can be proven. The only action that can
cause invariant I to be violated is SNAP; when op; = LABEL;. Specifically, we must show that
the new nt; picked by NEWLABEL; does not introduce any cycles in the < order of the t-labels
and nt-labels. Since the NEWLABEL; code can examine the all of the t-labels, the code can

be written to avoid any cycles involving nt; and the t-labels. However, the NEWLABEL; code
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cannot examine the local nt-labels of the other processes. In order to show that cycles that
include nt; and nt-labels are avoided, invariants IV and V are used to limit the possible values
of the nt-labels based on the corresponding t-labels.

For example invariant IV implies that nt; L3 t; when {; 3 tmaz for all nt; < tpne. If
nt; is in the cycle at level h, in other words nt;[h] € {3,4,5}, then invariant V states that

nt; h=t t;. Now assume that NEWLABEL; picks nt; = NEXTLABEL(?maz, h). Then the code for

NEWLABEL;, using the function FULL;, limits the number number of ¢-labels that are hot tmas
and consequently the number of t-labels that are = nt;. Now invariant V can be used to limit
the number of nt-labels that could, by being in the cycle at level h, cause a cycle to occur with
the new nt;.

Invariant III gives information about the structure of nt-labels that are > #naz- This
information is used to determine how the new nt; is ordered with respect to any nt-labels that
are > t,4,. Finally invariant VIb is used to prove invariant V, and invariant Vla is used to
prove VIb. If a new label nt; is picked in the cycle at level A then it must be that t,,,.[h] # 1;
hence VIb applies. VIb says that NUM(¢maz,h — 1) > n — h + 1. The code for NEWLABEL;
insures that NUM;(tmaz,h — 1) < — h + 1. Thus it must be the case that ¢; "zl ... This is
precisely what is required to prove invariant V.

The proof of Theorem 6.1 uses induction. It depends on a series of lemmas, one for the

initial state and one for each action in the inductive step.
Lemma 6.2 The initial state b of BCTSS, satisfies invariants I - VI.
Proof: This follows from the fact that b.t; = b.nt; = 1"~! for all 4,5 € {1...n}. [ ]

Lemma 6.3 Let b be a state of BCTSs that satisfies I - VI If (b,n,b) is a step of BCTSS
where T € {BEGINSCAN}, ENDSCAN(6}, U ), BEGINLABEL;(val; ), ENDLABEL, } for any k, then V'

satisfies I - VI

Proof: None of the ¢-labels or nt-labels change as a result of x. This suffices to show that b’

satisfies I - VI. ]

Lemma 6.4 Let b be a state of BCTss satisfying I - VI If (b, UPDATE,((tx, vk ), (nty, valy)), ')

is a step of BCTSS for any k, then b’ satisfies I - VI,
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Proof: The proof is divided into a series of claims. By invariant I for state b, b.t;., and
b.imae are defined. We split the argument into two cases: k = b.t,4, and k # b.ipma.. Consider

k = b.iyn,, fist.
Claim 6.4.1 If k = b.i,,,,, then b’ satisfies I - VI

Proof: By invariant II for state b, b.t, = b.nt;. Thus, none of the t-labels or nt-labels change

for BcTss. This suffices to show that & satisfies I - VI. u
So assume that k # b.i,,,, for the remainder of the proof.
Claim 6.4.2 If k # b.i,ug, then I is true in b'.

Proof: Assume for a contradiction that ToT(b’') = false. Since TOT(b) = true and ¢ is the
only label that changes, the choice vector whose values are not totally ordered must include
b'.t,. Now consider the same choice vector except that we substitute ' .nt; for b'.tx. Since
b'.t, = b'.nty, this new choice vector’s values are also not totally ordered. Since none of the
labels in this new choice vector change as a result of the action, the same choice vector must
not have had its values totally ordered in state b. However this contradicts the assumption that

TOT(b) = true. |

Having proved invariant I we now know that b'.i,,,, and '.t,,,. are defined. The proof for
II - VI is subdivided into the following two cases: b.nty <X b.tya. and b4, < b.nty. Assume

first that b.nt;, < b.t,,,,.

Claim 6.4.3 If k # b.ipee and b.nty < bidya, then b iy, = bilpmar and Viimee = b or

b tmae = k.

Proof: Let z = b.i,,,, then b.t, = b.t,n,, and z # k. We show first that d'.¢; < b.t, for all .
First consider ¢ # k. Since t; is the only label that changes, b'.t; = b.t;. Therefore, the fact that
b.t; < b.t, implies that &'.t; < b.t,. Now let ¢ = k. As a result of the action, b'.t; = b.nt;. By
assumption b.nt; < b.t,, so b'.t; < b.t,. Since z # k, t, does not change, so we can conclude that
b'.nt; < b'.t, for all . This implies that ¥'.t, = 8'.t,n... The following identity now establishes

the first part of the claim: b.t,,,, = b.t, = b'.t, = b tpas.
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Let § = {i|b.t; = b.tmaes} and §' = {i|b'.t; = b'.tmas} Then, b.imae = MAX(S) and V.ipmas =
MAX(S’). Since ¢ is the only t-label that changes and ¥'.tmaz = b.tmaz, §' = S 01 5’ = S —{k}
or §' = SU{k}. When 5 = § then MAX(S’) = MAX(S). Let 2 = b.ipmqa,. Since k # b.ipaz, the
definition of b.i,,,, shows that z € § and k < z when k € §. Consequently, when §' = § — {k}
then MAX(S”") = MAX(S). Finally, when S’ = SU {k} then MAX(S’) = MAX(S) or MAX(S') = k.

This shows that b'.i,,4; = b.imer OF Vilpar = k. [ ]

Claim 6.4.4 If k # b.ima, and bnty, < b.ipa, then NUM(V .tpaz, h) > NUM(b.tmaz, h) and

NUM; (b tpmaz, h) > NUM;(b.tmar, h) for all ¢ and h.

Proof: The Claim follows immediately if we show that AGREE(b .tnaz, B) O AGREE(b.timas, h).
Suppose i € AGREE(b.tpmas,h). If i # k, then since t; does not change and, by Claim 6.4.3,
tmaz does not change, i € AGREE(Y .tpmqaz,h). Now consider ¢ = k. By definition of AGREE,
b.t; 3 b.tmas. Since b.nt; < b.i.z, IV for state b implies that b.nt; 3 b.tmaz. As a result of the
action &'.t; = b.nt;, so b'.t; A b.t,naz. This fact along with the fact that t,,,, does not change

implies that ¢ € AGREE(V .tpaz, h). a
Claim 6.4.5 Ifk # b.i,,4, and b.nty, < b.t,4, then b’ satisfies II - VI

Proof: We proceed with a case analysis. Consider any i € {1...n} and h € {1...n —1}.

II: Suppose i = b.i;qey. By Lemma 6.4.3, i = k or ¢ = b.i,,,. First consider ¢ = k. As a direct
consequence of the action, b'.t; = b'.nt;. Now consider i = b'.i,,,, Where ¢ # k. In this

case II holds for & since ¢; and nt; do not change, and II holds for b.
ITI: 11T holds for &’ since t,,4, and nt; do not change, and III holds for b.

IV: First consider ¢ = k. As a consequence of the action b'.t; = b'.nt;. Hence, b'.1; L b trar
implies that b'.nt; £ b .tmas for all h. Now consider ¢ # k. Since IV holds in state b, and

tmaz, ti and nt; do not change, IV holds for state b'.

V: First consider i = k. b.nt; € CYCLE(b .tpnaz, k) and the definition of cYCLE imply that
b .nt; hot b tmas. As a consequence of the action, b'.t; = b'.nt;. Hence, b'.t; = W ez
Now consider i # k. In this case V is true in ¥ since t;, nt; , and #,,,, do not change and

V is true in b.
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VI: Since nt; and e, do not change, b’.nt; = NEXTLABEL(Y .t;40,h) implies that b.nt; =
NEXTLABEL(b.tpqg, h), and ¥.tna-[h] # 1 implies that b.ty[h] # 1. By Claim 6.4.4,
NUM( tmazy, h) > NUM(b.tmaz, B) and NUM;(V 2oz, h) > NUMi(b.trmaz, h). Hence, VI holds

for state b’ since it holds for state b.

Claim 6.4.5 shows that II - VI hold when b.nty < b.tn,,. For the remainder of the proof

assume that b.t,,., < b.ni.
Claim 6.4.8 If k # b.ipa, and b.tpe, < bonty then b tp,, = bty and b'.ipmar = k.

Proof: We proceed by showing that ¥'.t; < b'.t; for all ¢ # k. From the definition of ¢,,,, and
the assumption that b.t,,,, < b.nt;, we know that b.t; < b.tyar < b.ntg. Let 2 = b.tmae then
b.t, = bty and z # k. Since k # 2, k # 1, and b.t, = b.ty,., there exists a choice vector
that includes the values b.t;,b.tmaz, and b.nt;. Since TOT(b) = true, the values in this choice
vector are totally ordered. Hence, b.t; < b.tp,, < b.nt) implies that b.t; < b.nt;. As a result of
the action b.nt; = b'.t; and t; does not change. Therefore, b.t; < b.nt; implies that bt < bty

Hence b’ .t = b'.tx. Since k is the only process index for which &'.tp4, = b .te, Viimee = k. B
The following Claim lists some of the properties of b'.t,,,..

Claim 6.4.7 If k # b.ijas and b.ty., < b.nt; then there exists h' € {1...n — 1} such that:
1. Ve = bty = b .nty = b.nty = NEXTLABEL(b.t 4z, B').
2. V' tpmaz[h] = 1 for all h > h'.
3. For all i, b'.nt; ¥ U tpmae implies that b'.nt; = b .t,..
4. There ezists no i # k such that b'.t; ¥ b thex-

5. NUM(b s, B) > NUM(b.tppaz, h) and NUM;(8 oz, h) > NUM;(b.tpag, h) for all i and all
h<h.

Proof: By invariant III for state b and the assumption that b.t,,,, < b.nt;, we conclude that

b.nty = NEXTLABEL(b.t;,az,h’') for A € {1...n — 1}. Fix h'.
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1: By Claim 6.4.6 b'.t,,,, = b'.t;. The fact that b'.t, = b'.nty = b.ni; is a direct con-
sequence of the action UPDATE((t,v:),(ntr,val)). Finally, we have already shown that
b.nt, = NEXTLABEL(b.t;az, h').

2: This follows directly from the definition of NEXTLABEL.

3: Suppose that b'.nt; M b tmas. First consider ¢ # k. The fact that nt; does not change and
part 1 of the claim show that b.nt; = b'.nt; ¥ b tmar = NEXTLABEL(b.t;pas, h'). Consequently,
b.nt; LS NEXTLABEL(b.t;az, h'). Now the definition of NEXTLABEL implies that b.nt; = b.tmax
and b.nt;[h'] = NEXT(b.tmes[h’]). Thus bitmse < b.nt;. Now IIT for state b implies that
b.nt; = NEXTLABEL(b.tmqq, h) for some h € {1...n — 1}. Since b.nt;[h'] = NEXT(b.tnas(R]),
h = k. Hence, b'.nt; = b.nt; = NEXTLABEL(b.tymaz, h') = b tmar. Now consider ¢ = k. In this
case b'.t,., = b'.nty by part 1 of the claim.

4: We proceed by contradiction. Assume that there exists ¢ # k such that b'.t; LN O tmax-
Since t; does not change as a result of the action, b.t; = b'.t; 8 b .tpas = NEXTLABEL(b.tmaz, 1)
Consequently, b.t; B NEXTLABEL(b.tpmaz, h'). Now the definition of NEXTLABEL implies that
b.1; Rt b.tmar and b.t;[h’'] = NEXT(b.t;maz[h']). Thus b.t,,.. < b.t;. This contradicts the defini-
tion of b.t,.40-

5: Let h < h'. Part 5 of the Claim follows immediately if we show that AGREE(V .tmaz, h) 2
AGREE(b.t;45, h). Suppose i € AGREE(b.tymaz, h). If i # k, then t; does not change. By part 1 of
claim and the definition of NEXTLABEL, b .t,.a5 2 b.tyaz. Now the definition of AGREE implies

that i € AGREE(} .tyqz, h). Now consider i = k. Part 1 of the claim shows that b'.t; = "2,

Hence ¢ € AGREE(V' .t 14z, h). [

The remainder of the proof is structured as a series of claims, one for each of the five
remaining invariants. Fix A’ to be the b’ defined by Claim 6.4.7. Parts 1-5 of Claim 6.4.7 will

be used throughout the remaining claims.
Claim 6.4.8 If k # b.ij., and b.t,,., < b.nty then II is true in b'.
Proof: By Claim 6.4.6 b'.i,,., = k. Part 1 of Claim 6.4.7 shows that ¥'.ty = b'.nt;. ]

Claim 6.4.9 Ifk # b.i., and b.t,,., < b.nty then I is true in b'.
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Proof: Consider any 7 such that b'.t,,.; < b'.nt;. By part 1 of Claim 6.4.7, b'.tn0r = b’ .nty
$0 U'.tnes < b.nt; implies that i # k. Furthermore, nt; does not change as a result of the
action and part 1 of Claim 6.4.7 shows that b'.t,,, = b.nt;. Hence V'.tn., < b'.nt; implies
that b.nt, < b.nt;. By assumption b.t,ae < b.nty, 50 btn., < b.nty < b.nt;. Now consider
two cases, i = b.imae and i # b.ipe,. When i = b.i,,,, invariant II shows that .64, = b.nt;.
This implies that b.nt; < b.nt; < b.nt; which is impossible by Lemma 5.1. Therefore, it must
be that ¢ # b.imas. Since b.ipma, # ¢ and b.imsr # k there must exist a choice vector that
includes the values b.t,qz,b.nts, and b.nt;. Since TOT(b) = true, the values in this choice vector
are totally ordered. Hence, b.t,,., < b.nty < b.nt; implies that b.t,., < b.nt;. Now III for
state b and the fact that nt; does not change show that &'.nt; = NEXTLABEL(b.l,45, h) for some
h € {1...n—1}. Since b'.nt; = NEXTLABEL(b.tmaz, h), ¥ tymaz = NEXTLABEL(b.tmazs B'), and
b tmae < b.nt;, it must be that h < h'. Hence b'.nt; = NEXTLABEL(Y .timas, ), which directly

implies that I holds for state b’. u
Claim 6.4.10 If k # b.i,., and b.t., < b.nty, then IV is true in b'.

Proof: Let b./nt; < b .ty.e. First consider i = k. By part 1 of Lemma 6.4.7, b'.nt; = b'.tmas,

which directly implies IV. Now consider ¢ # k and any h:

h < h': Part 1 of Claim 6.4.7 and the definition of NEXTLABEL show that &' .14, 2 b.t,,.c When
h < h'. Now consider two cases: b.nt; < b.t,., and b.nt; £ b.tpmar. When bont; < b,
IV for state b shows that b.¢; 3 b.t,qz implies that b.nt; 2 bt,,0.. Now IV is truein b’ since
t; and nt; do not change and b'.1,,,, L b.tmae. Now consider the case b.nt; A b.tpna.. By
Lemma 5.1, b.t,;nar < b.nt;. Now III for state b shows that b.nt; = NEXTLABEL(b.tmaz, fi)
for some h; € {1...n — 1}. Furthermore, Since nt; does not change, the assumption that
b'.nt; < b tna, implies that b.nt; < b .t,..,. Finally, part 1 of Claim 6.4.7 shows that
b'.tmaz = NEXTLABEL(b.t,,4z, 1'). Using these facts and the definition of NEXTLABEL we
can conclude that h; > h'. Therefore, b.nt; 3 b tmee. Since nt; does not change, this

implies that b'.nt; 3 b taz. This suffices to show that IV is true in ¥'.

h > h': Part 4 of Claim 6.4.7 shows that b'.t; ¥ b tmar. Hence, IV is vacuously true in &'.
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Claim 6.4.11 If k # b.iyae and b.tpa, < b.nty then Vis true in b'.

Proof: Suppose b'.nt; € CYCLE(b .tpaq, h) for some ¢ and h. The definition of cYCLE implies

that b’ .nt; At gy maz- We consider two cases:

h < R': First consider i # k. Part 1 of Claim 6.4.7 and the definition of NEXTLABEL show that
bt hot b.tmaee. Thus, V is true in b’ since ¢; and nt; do not change, CYCLE(Y oz, h)
depends only on ¥ .t,a.[1...h — 1], and V is true in b. Now let ¢ = k. In this case, part
1 of Claim 6.4.7 shows that b'.; = b'.t,,4c. This suffices to show V.

h > h': Since ¥.nt; = b tmar and b > R/, it follows that b'.nt; ¥ b taz. Thus part 3 of
Claim 6.4.7 implies that b'.nt; = b'.t;a.. By part 2 of Claim 6.4.7, ¥.t;.-{h] = 1. Thus
b'.nt;[h] = 1, which implies that ¥'.nt; ¢ CYCLE(}'.tmaz, h). This contradicts our original

assumption that b'.nt; € CYCLE(Y .t;az, h). Therefore this case cannot arise.

Claim 6.4.12 Ifk # b.ima, and b.t,,., < b.nty then VIb is true in b'.

Proof: Assume that ¥'.1,,,.[h] # 1. We proceed with a case analysis:

h < h': Part 1 of Claim 6.4.7 and the definition of NEXTLABEL show that &'.t,,,, 2 btmas-
Thus b'.tm.-[h] # 1 implies that b.t,,q.[h] # 1. Since b.tma[h] # 1 and VIb is true
for b, NUM(b.t;paz, h — 1) > n — h 4+ 1. By part 5 of Claim 6.4.7 NUM(V trmaz, b — 1) >
NUM(b.tpmaz, b — 1). Thus, NUM(¥ .tpmez, h — 1) > n— h + 1 which implies that VIb is true
for ¥'.

h = h' and b.tya.[h] # 1: Since b.t,.[h] # 1 and VIb is true for b, NUM(b.tas, h—1) > n—h+1.
By part 5 of Claim 6.4.7 NUM(b'tpmaz, h— 1) > NUM(b.tyaz, B —1). Thus, NUM(b' b0z, b —
1) > n— h 4+ 1 which implies that VIb is true for &'

h =} and b.tyq.[h] = 1: Part 1 of Claim 6.4.7 and the fact that A’ = h imply that b.né; =
NEXTLABEL{b.tmaz, h). Since b.nty = NEXTLABEL(b.tymaz, k) and Vla is true for state
b, NUMg(b.tpaz,h — 1) > n — h. By part 5 of Claim 6.4.7 NUM(V .z, h — 1) >
NUMg(b.tmaz, b — 1). Thus, NUMy(b' tnaz, B — 1) > n — h. Since V'itpma, = Vily, k €
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AGREE(b 0z, ). Therefore NUM(Y .taz, B — 1) > NUMg(b' tpmaz, h — 1) > n — h. Thus,

NUM(b 4oz, h — 1) > n— h + 1, which implies that VIb is true for bv'.

h > h': Part 2 of Claim 6.4.7 and the fact that & > h' imply that b'.t,,,-[h] = 1. This contradicts

the assumption that b'.t,,,,[h] # 1. Therefore, this case cannot arise.

Claim 6.4.13 Ifk # b.ijma, and b.t,., < b.nty then Via is true in b'.

Proof: Let b'.nt; = NEXTLABEL(b'.tynaz, ) for some h and i. We proceed with a case analysis:

h < Rh': Part 1 of Claim 6.4.7 and the definition of NEXTLABEL show that b'.t,,,; A b.tpar. Now
the fact that nt; does not change and the fact that b'.nt; = NEXTLABEL(} .tmax, h) imply
that b.nt; = NEXTLABEL(b.tyez, h). Since b.nt; = NEXTLABEL(b.tmaz, h) and VIais truein
state b, NUM;(b.tnaz, h—1) > n—h. Part 5 of Claim 6.4.7 shows that NUM; (b taz, h—1) >
NUM;(b.tpmaz, b — 1). Therefore, NUM;(}.tmaz, h — 1) > n — h which implies that Vla is

true for b'.

h = I'": Using part 1 of Claim 6.4.7 and the definition of NEXTLABEL we can conclude that
Y tmaz[h] = NEXT(b.tmas[h]). There exists no z € A such that NExT(2) = 1. Hence
b tmas[h] # 1. Claim 6.4.13 implies that VIb holds for state ¥'. Since ¥'.tmaq[R] # 1, VIb
for state b’ implies that NUM(b' .tpmaz, A —1) > n—h+1. Thus NUM;(b ez, h — >n-h

and VIa is true in state b'.

h > h': The fact that ¥'.nt; = NEXTLABEL(b' .tpmqes, k) and the definition of NEXTLABEL imply
that b'.nt; = b .tmez. Now part 3 of Claim 6.4.7 and the fact that h > A’ imply that
b'.nt; = b'.tap. Thus b'.nt; # NEXTLABEL(Y .tymaz, B) Which contradicts our assumption

that b'.nt; = NEXTLABEL(} .4z, h). Therefore, this case cannot arise.

We now complete the proof of the lemma. To show that b satisfies I - VI we consider two

cases: k = b.i;ae and k # b.ipma,. Claim 6.4.1 shows that b’ satisfies I - VI when k = b.imas-

TActually, this case cannot arise. However, the argument that proves that the case cannot arise is more
complicated that the argument that proves that Vla is satisfied if the case does arise.
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When k # b.ipe, Claim 6.4.2 shows that invariant I holds in state &’. The proof for invariants
II - VI is subdivided into two cases: b.nt; =< b.tn. and b.tn.: < b.nty. Claim 6.4.5 shows
that II - VI hold when b.nt; < b.t;.z. Claim 6.4.8, Claim 6.4.9, Claim 6.4.10, Claim 6.4.11,
Claim 6.4.12 and Claim 6.4.13 each consider one of the invariants to show that II - VI hold

when b.t,,,; < b.nt;. [ ]

Lemma 6.5 Let b be a state of BCTSS that satisfies I - VI. If (b, SNAP (s, U ), ") is a step of
BCTSS for any k, then b’ satisfies [ - VI

Proof: Note that none of the t-labels or nt-labels change when op, = SCAN;. Therefore,
assume that op; = LABEL;. The proof is divided into s series of claims. First consider the case

where k = b.,45.
Claim 6.5.14 Ifk = b.iy,., then b satisfies I - VI

Proof: The definition of SNAP.(f;,v;) for BCTSS shows that no labels change. This suffices

to show that b’ satisfies I - V1. L]

So assume that k # b.i,,, for the remainder of the proof of the lemma. By definition of
NEWLABELy, b'.nty = NEXTLABEL(b.l,naz, ') for some A’ € {1...n — 1}. Fix h’. Note, by

definition of NEXTLABEL, b.t,,,, < b'.nt;.
Claim 6.5.15 If k # b.i,ues then NUMg(b.tpaz, B') = NUMg(bt oo, B — 1) = n — R/,

Proof: By definition of NEWLABELg, FULL;(h’) returns true in state b, so NUMg(b.tpaz, h') >
n — K. Moreover, FULL,(h’ — 1) returns false in state b, therefore NUMy(b.tmas, ' — 1) <
n—(h'=1). But by definition, NUM(b.t,naz, ' — 1) > NUMi(.tpnaz, h') 50 NUMg(b.troe, B/ — 1) =

NUMg(b.tmaz, V') =n— R [ |
Claim 6.5.16 If k # b.i,q, then I is true in b'.

Proof: For a contradiction assume that TOT(b') = false. Then there must exist a choice vector
C whose values are not totally ordered. By Lemma 5.2, there exists 0'.4;,b0'.£;,b'.£, € C such
that b.4; "=" b.4; "=' b0, and {b'.;[h],b'.4;[h],b".L,[R]} = {3,4,5} for some h € {1...n— 1}.
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Since b'.4;,b'.¢; and b'.L, are elements of a choice vector, ¥'.¢; € {b'.t;, b'.nt;}, b'.4; € {V.;,
bunt;}, 0L, € {V'.t,, ¥ nt,} and i # 2, j # z, j # i. By I for state b, TOT(b) = true. Therefore
the values of C for state b must be totally ordered. The only label that changes as a result of
the action is nt;. Consequently, we can assume without loss of generality that b'.¢, = b'.nt;
and z = k. Furthermore, since 1 # k and j # k, ¢ and ¢; do not change as a result of the

action. Thus, b.f; = b'.{; and b.{; = b'.£;. Now we can conclude that:
b6 "= 0.4; "= ¥'.nt,  and  {b.4;[R], b.4;[R), .nt[h]} = {3,4,5}. (1)

Recall that b'.nt; = NEXTLABEL(b.t,n,z,h'). We will now show that h = A'. Let 2 = b.is40,
then b.t, = b.ity.,. Since k # b.ina., & # 2. The definition of NEXTLABEL implies that
b.t, = b'.nt,. For a contradiction assume that A < h’. Now substitute b.t, for b’ .nt; in
Equation 1 to conclude that b.¢; "=' b.¢; "=' b.t, and {b.6:[h),b.4[h],b.t,[R]} = {3,4,5}. By
Lemma 5.2 any set of labels containing b.£;,b.4;, and b.t, is not totally ordered. We now show
that ¢ # z and 7 # z since this will allow us to conclude that there exists a choice vector
that includes b.£;,b.4;, and b.t,. Since {b.4;[h],b.¢;[h],b.1,[h]} = {3,4,5}, and b.¢4; € {b.t;, b.nt;}
either b.t;[h] # b.t,[h] or b.nt;[h] # b.t,[h]). If i = 2z the former is clearly impossible and the
later is impossible since b.nt, = b.t, by invariant II. Thus ¢ # 2. The same argument shows
that j # 2. Now we have a choice vector for state b whose values are not totally ordered. The
existence of such a choice vector contradicts invariant I for state 8. Thus h ¢ hA’. The definition
of NEXTLABEL implies that &.nti[h"”] = 1 for all A” > R’. Since ¥'.nti[h] € {3,4,5}, h # R’
Now h £ h' and h # ' so h = A'.

We now construct a set of labels which is not totally ordered and which includes b.t,,,.
and b'.nt;. First show that b.t,,.,[h'] € {3,4,5}. Since b'.nt;[h'] € {3,4,5}, the definition of
NEXTLABEL implies that b.t,,..[h'] € {2,3,4,5}. We proceed by showing that b.t,,.,[h'] # 2.
In order to reach a contradiction we assume that b.t,,..[h'] = 2. Since b.t,0r = b .ty
and b .nt, ot bty btar = b.f;. Furthermore, b.tnq[h'] = 2 and b.4;[A'] € {3,4,5} thus
b.tmaz[h'] <4 b.;[R']. Consequently, b.t,,q, < b.f;. We consider the cases b.f; = b.t; and b.{; =
b.nt; separately. When b.4; = b.t;, b.t,,,, < b.t;, which contradicts the definition of b.t,,,,. Thus,
this case cannot arise. When b.¢; = b.nt;, b.t,,,, < b.nt;. Now invariant III and the definition
of NEXTLABEL imply that b.nt;[h'] = b.tmaz[Rh'] or b.nt;[h'] = NEXT(b.tmaz[h']) or b.nt;[h] =
1. Thus, when b.t,,,.[h'] = 2, b.nt;[h'] & {4,5}. Therefore we can conclude that b.4;[h'] ¢
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{4,5} when b.t,,.;[h'] = 2. Using the same argument we can show that b.4;[h'] ¢ {4,5} when
b.tmaz[h'] = 2. This contradicts Equation 1 according to which {b.4,[h'], b.4;(h'], b .nti[h']} =
{3,4,5}. Thus b.t,..[h'] # 2 and b.t,..[F] € {3,4,5}.

Since {b.4;[h'],b.¢;[h'],b'.ntr[h']} = {3,4,5}, using the definition of <4, we can assume
without loss of generality that:

b.4;[R] < b;[R] <4 b'.nty['] and  bL[R] £a b mti[B]. (2)

Recall that z = b.iyaz, 0.1, = b.tpag, 0.1, = b'.nt, and b.t,[h'] <4 b’ .nt;[h']. Hence, we can

replace b.{; by b.t,,,, in Equation 1 and Equation 2 which yields the following:

bt B bty Z0onty and  {b.L[A], btmas[h], b nts[R]} = {3,4,5}, (3)

bli[R'] <4 btmaz[P] <4 U'.ntp[h'] and  b.4[R'] £ b .nti[R]. (4)
Consequently,

bl; < bin.s <b.nty and b.f; £ b .nt, (5)

{0.4;,b.t 00, b0t} C CYCLE(b. 0z, B). (6)

Consider the cases b.f; = b.nt; and b.{; = b.t; separately:

b.nt;: Since b.nt; € CYCLE(b.tpmaz, h'), V for state b shows that b.1; = b.tyaz. By Claim 6.5.15
NUMg(b.tpaz, B — 1) = NUMy(b.t10z, h'). Therefore, since i # k, b.t; ot b.tpmas implies
that b.%; ¥ b.tmaz. Now, from IV for state b and the fact that b.nt; < b.1,,,,, it follows that

b.nt; v b.tmaz, & contradiction to Equation 4 according to which b.nt;[h'] <4 b.tmae[P].

b.t;: By Claim 6.5.15, NUMg(b.tya0, B — 1) = NUMg(b.t00s, 2'). Therefore, since ¢ # k, b.t; ot
b.t,.: implies that b.t; ¥ b.tyar. Now, b.t; X b.t,.qaz contradicts Equation 4 according to

which b.t;[A'] < b.tmas[B'].

We have reached a contradiction in each case. Consequently, there exists no choice vector such

that its values are not totally ordered. Hence, TOT(¥') = true. n

Claim 6.5.17 If k # b.i,,4, then II - VI are true in b'.
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Proof: VIb holds in state &’ since it holds in state b and no t-labels change. Now consider
II - VIa. If i # k, then the definition of SNAP({,0) shows that neither t;, nt;, tmas, nor
NUM;(¢maz, h) change. Therefore, II - VIa are true in state b’ since II - VIa are true in state b.
So assume that i = k. In this case b'.nt; = NEXTLABEL(b.tmaz, h') and b’ tmar < b'.0t;. Consider

IT - VIa separately:

II: Since k # b.imaz, ¢ # b.imas. Furthermore, b.ipae = b'.ima, thus ¢ # b tmae. Now I is

vacuously true in state b'.
III: Since b'.typar = b.tmag, and b'.nt; = NEXTLABEL(b.tmer, A'), b/ .0t = NEXTLABEL(Y taz, h).
IV: Since b .tpar = btz < b'.nt; IV is vacuously true in b'.

V: Suppose that b'.nt; € CYCLE(V .tymaz, ) where h € {1...n — 1}. The definition of CYCLE
now implies that &.nt;[h] € {3,4,5}. Recall that b'.nt; = NEXTLABEL(b.tnaz, h'). The
definition of NEXTLABEL implies that &'.nt;[h”] = 1 for all A” > h’. Since b'.nt;[h] €
{3,4,5}, we can conclude that h < h’. We consider the two cases h = A’ and h < W

separately.

First consider the case h = h'. Since NEXT(1) ¢ {3,4,5}, and NEXT(b.tmas[h]) =
b .nt;[h] € {3,4,5}, b.tmas[h] # 1. Now VIb for state b shows that NUM(b.tmazy b — 1) >
n—h+1. Furthermore, Claim 6.5.15 and the fact that i = k show that NUM;(b.tpas, h—1) <
n—h+ 1. Since NUM(b.tpmaz, b — 1) > n — h + 1 and NUM;(b.tmaz, b — 1) < mn — A+ 1,

h=1

k €AGREE(b.tpar, h — 1). Thus b.t; A2l bt ... Since t; and tme, do not change, b'.t; =
b tmaz-

Now consider the case h < h’. The fact that b'.nt; = NEXTLABEL(b.tmqa-,h') and the
definition of NEXTLABEL imply that b.t,,.,[h] = b'.nt;[h]. Therefore, b.t;nac[h] # 1 since
b.tmas[h] = b'.nt;[h] € {3,4,5}. Now VIb for state b shows that NUM(b.tmaz, B — 1) 2> 1 —
h+1. The definition of NEWLABEL; and the fact that i = k show that FuLL;(h—1) returns
false, which implies that NUM;(b.tmaz, h—1) < n—h+1. Since NUM(b.tpep, h~1) > n—h+1
and NUM;(b.tpaz,h—1) < n—h+1,% € AGREE(b.tmaz, h —1). Thus b.¢; "Z! bt,es. Since

t; and t,,,, do not change, '.t; hot Vitmes-
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Vla: Since b'.tpee = b.tpma, and b'.nt; = NEXTLABEL(b.tmaz, h'), we conclude that b'.nt; =

NEXTLABEL(Y fmaz, h'). Now, Claim 6.5.15 implies that NUM;(8 e, B — 1) = n — K.

We can now complete the proof of the lemma. Claim 6.5.14 shows that I - VI hold for &
when k = b.i,,,,. When k # b.i,,,, Claim 6.5.16 shows that I holds in & and Claim 6.5.17
shows that II - VI hold for ¥'. u

Proof: (For Theorem 6.1) We proceed by induction on the length of the execution end-
ing in the reachable state b. The base case is established by Lemma 6.2. The induction
step is a case analysis based on the action =, where (¥',7,5") is a step in the execution. If
T € {BEGINSCAN},, ENDSCAN(0;, %), BEGINLABEL;(valy), ENDLABEL; }, the induction step fol-
lows from Lemma 6.3. If 7 = UPDATEL((tk, vs), (nts, val;)), the induction step follows from

Lemma 6.4. If 7 = sNAP({;, U%), the induction step follows from Lemma 6.5. |

7 Simulation Proof

In this section we prove that BCTss solves cTss. Specifically, we use Theorem 2.1 to show that
fairbehs(BcTss) C fairbehs(ucTss). This implies that BcTss implements vcTss. Recall that
we have already shown that ucTss solves cTss. In order to use Theorem 2.1, we define the

relation R between the states of BcTss and the states of UCTSs as follows:

Definition 7.1 (relation R) If b is a state of BCTSS and u is a state of ucTss then (b, u) € R

iff forall i,5€{1...n},71# j:
1. b(j, = U.0;.

b.t; < b.nt; iff u.t; < u.nt;,

b.nt; < b.nt; iff u.nt; < u.nt,.

3. bov; = u.w;.
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4. b.val; = u.val;.

6. b.op; = u.op;.
7. b.pc; = u.pc;.
|

Parts 1 and 5 ensure that a process p; returns the same response to a SCAN; request in
BCTSs and in UcTss. Recall that o; contains the order of the labels that was last observed by
p;. Part 2 states that the < ordering of any choice vector from BCTSS is the same as the <
ordering of the corresponding labels from ucTss. Notice that part 2 gives no information about
the relation between t; and nt;. Parts 3 and 5 ensure that BCTSs and UCTSS associate values
with labels in the same manner. Part 6 ensures that ucTss and BCcTss will execute the same
part of the SNAP; action code. Finally, part 7 ensures that ucTss and BCTss will be able to
execute the corresponding action during each state transition.

The following lemma, proves that the first of the three assumptions required by Theorem 2.1

is true.

Lemma 7.1 For the initial state b of BCTSS, there exists an initial state u of uCTSs such that

(byu) € R.

Proof: In the initial states b of BcTss and % of uctss, 6; = (1...n) forall i € {1...n}. Hence
part 1 of R is satisfied. Part 2 is satisfied since ¢; = nt; for all ¢,j € {1...n} in both BcTss and
UCTss. Parts 3 — 5 are satisfied since %; = (0...0) and v; = val; = 0 for all € {1...n} in both
BCTss and UvcTss. Parts 6 and 7 of R is satisfied for the initial states since op; = pe; = NIL in

both systems. u

The following lemma shows that the mapping R is preserved by all of the actions of BCTss.

This lemma proves that the second of the three assumptions required by Theorem 2.1 is true.

Lemma 7.2 Let b be a reachable state of BcTss and u be a reachable state of UCTSS such that
(b,u) € R. If (b,7,b') is a step of BCTSS then, there exists u' such that (u,m,u’) is a step of

vcTss and (W, v') € R.
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Proof: We proceed by case analysis on 7.

Case m € {BEGINSCANy, ENDSCAN(0;, % ), ENDLABEL} }:

Since (b,u) € R, we can conclude that b.pc;, = u.pcy, b.0; = u.0;, and b.0 = u.7;. Hence,
7 is enabled in u. Let u' be the unique state of ucTss such that (u,m,u’) is a step of vCTSS.
In both BcTss and vcTss only op, and pe; change as a result of 7. Inspection of the code in

Figure 1 shows that ¥'.0p;y = u'.op; and b'.pcy = u'.pcy. This suffices to shows that (b',u’) € R.

Case: T = BEGINLABEL(valy):

Since BEGINLABELg(val;) is an input action, it is clearly enabled in state u. Let u' be
the unique state of ucTss such that (u,7,u’) is a step of ucTss. Only valg, opx, and pcy
change as a result of the action. By definition of the action d'.val, = u'.val;. Furthermore
b'.opy = w'.opy = LABEL; and b'.pc, = u'.pey = SNAPy(t;,v;). This suffices to shows that

(', u') € r.

Case m = SNAP (i, Ux ) when b.op, = SCAN,:

Since (b,u) € R, b.pcy = u.pc;. Hence, 7 is enabled in u. Furthermore u.op, = b.op; =
SCANg. Let u’ be the unique state such that (u,w,u’) is a step of ucTss.

SNAP.(t,Ux), when op; = SCAN, determines 6, based on the < ordering. Recall that < is
a lexicographical order defined by the order between the t-labels, using < for BcTss and < for
UCTSsS, and the order between the process indices. By assumption (b,u) € R. This implies that
bt; < bt iff ut; <wu.t;foralli,je {1...n}; thus SNAP.(f, 7} ) will produce the same ordering
for BcTss and ucTss. Hence b'.6; = u'.0;. Furthermore, part 3 of R implies that b'.7;, = u'.0%.
Figure 1 shows ¥'.pc, = u'.pcy, = ENDSCAN(0k, U%). Only 6, 0, and pc; change as a result of

the action and thus we can conclude that (¥, u') € R.

Case m = SNAP({x, U;) when b.opy = LABELy:

Since (b,u) € R, b.pc;, = u.pc;. Hence, 7 is enabled in u. Furthermore u.op;, = b.op; =
LABELy. There are two case: k = b.1,,4, and k # b.ip05.

We first consider the case k = b.i,54,. Since (b,u) € R, part 2 of R implies that b.i,., =
Ubrmae. Hence, £ = u.1,,,,. Let u’ be the unique state such that (u,n,u’) is a step of vCTss.

Now the definition of NEWLABEL; for BcTss and ucTss shows that only pc; changes for both
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BCTss and vcTss. Figure 1 shows b.pey = w'.pcy = UPDATER((tk, vi), (nte, valy)). This suffices
to show that (¥, u') € R.

So assume that k # b.ipq, for the remainder of the proof of this case. Since (b,u) € R, part
2 of R implies that b.i,,4p = U.imaz. Hence, k # U.img,. In this case there are many states u
such that (u,7,u) is a step of UCTss; these states differ only by the value of w’.nt. We now
define a particular value u’.nt; and hence a particular state u’.

Define § = {i|i # k and b.tyma, < b.nt;}. Let 2 = b.imas, then b2, = b.tpay. Invariant II
shows that b.nt, = b.t,. Hence, b.nt, = b.t,na,. This implies that z ¢ S. Thus, b.iys, € S. For
all i € S, III for state b shows that b.nt; = NEXTLABEL(b.t,paz, hi) for some h; € {1...n —1}.
Furthermore, the definition of NEWLABEL, implies that &'.nt; = NEXTLABEL(b.tmas, M) for

some hy € {1...n — 1}. Define:

Sy ={ili€ 8 hi>hy}, Sy={ili€ S hi=h} and Ss={ili€ 8, hi <hi}. (7)
Note that:

SiNS,=85NnN8S3=5N8S=0 and S,USUS;=25. (8)

Since < is a lexicographical order, the order between any two labels in BCTsS is determined by
the first digit at which they differ. Therefore, for any i, € 51, iz € Ss, and i3 € S3, it is the

case that:
b.tm(w =< b.’fltil < b.nt,-a = b’.ntk - b.nt,‘s. (9)

Recall z = b.ipma,. Thus, b.t, < b.nt;, < b.nt;, = b'.nt; < b.nt;,. Since z ¢ § and (b,u) € R,
part 2 of R now shows that u.t, < u.nt;, < w.nt;, < w.nt;,. Since b.imer = U.imazs 2 = Uslmas

and u.l, = u.t,,4,. This shows that:
Ubmar < u.nt;, < u.nt;, < u.nt;,. (10)

We use the following rules for picking u'.nt;. If §; # 0, then v'.nt, = u.nt; for any i € Ss. If
on the other hand Sy = 0, define u.ntmap and w.nty;, as follows: w.nt,,q, = max(w.nt;|i € S)
if §; # 0, otherwise w.ntpmay = Udmag. U.Nbmin = min(u.nt;|i € S3) if Sz # @, otherwise
U.ntmin = 00. Choose any u'.nt; such that u.nt,,., < v'.nt; < w.ntn;,. Forany i; € 51,43 € Sy,

and 73 € Ss, the two rules and Equation 10 imply that:
Utmar < Wty < w.nt;, = u'.nt, < u.nt,,. (11)
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With both rules for choosing u'.nty, u.tme, < u'.nt;. Hence, there exists an X € £>0 such that
u' nty = Udpes + X,

We now show that (b’,v') € R. Only nt; and pc; change as a result of the action. Figure 1
shows b'.pc;, = w'.pex = UPDATE( (2, vk), (nty, val;)). Consequently, (b',u') € R if we can show
that part 2 of R holds for states ¥ and u'. For part 2 of the relation there are four cases to

consider. All other cases do not involve b'.nt;. Let i € {1...n} and ¢ # k:

1. b.nt, < b4, iff w'.nty < u't;,
b.t; < b.nt, iff v'.t; < v.nty:
Since no t-labels change, b .tpmas = b.tmar and b.imaz = b.imar. Recall that k # bimar,
hence b'.nt; = NEXTLABEL(b.tmar,hr) and b'.tpmer = bimas < b.ntp as a result of the
action. Furthermore, b'.t; = b.t;. Therefore, b'.t; < b'.tpar < b'.ntp. Let 2 = b'iipg,. In
this case z # k and b'.t, = b .typas. Since i # k, z # k and ¥'.t, = V' .tm,,, there exists
a choice vector that includes ¥'.t;, ¥ tmay, and b'.nt;. By invariant I the values of this
choice vector are totally ordered by <. Therefore, b'.t; <X V' .ty4 < b'.nt; implies that

b'.t; < b .nty.

Similarly, since k # %.imazs W tmazr = U.bmar < .0ty as a result of the action. Further-

more, u'.t; = u.t;, Therefore u'.t; < ' .tmar < w'.ntp. This implies that u'.t; < u'.ntx.

2. b .nt; < b.nty, iff v'.nt; < u'.nig,

b .nt, < b .nt; iff v'.nt, < ' .nt;:

We can divide the nt-labels of UcTss into two disjoint sets: Recall that S = {j|j # k and
b.tmar < b.nt;}. Define T = {j|j # k and b.t;mqe = b.nt;}. Similarly, define S, = {j|j # k
and .t < u.nt;}. Define T, = {j|j # k and .t > u.nt;}. By part 2 of R and the
fact that (b,u) € R, § = S, and T = T,,. Consider i € T and ¢ € § separately.

Suppose i € T. Since i # k, b'.nt; = b.nt;. Therefore b'.nt; < b’ < b'.nt;. Let
z = b .ipa,. In this case z # k and b'.t, = b'.t;,. Since 1 £ k, 2z # k and b'.t, = b .tpas,
there exists a choice vector that includes b'.nt;, b .tyqz, and &'.nt;. By invariant I the
values of this choice vector are totally ordered by <. Therefore, ¥'.nt; < b'.t1. < 0.0t}
implies that b'.nt; < b'.nt,. Similarly, u'.nt; = u.ni;, since ¢ # k. Therefore, v'.nt; <

' tpas < u'.ntg. This implies that u'.nt; < u'.nty.
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Now suppose 7 € S. Consider any i; € §, i, € S5, and i3 € S3 where S;, S5, S5 are defined
by Equation 7. Since k ¢ S, b'.nt; = b.nt; and u'.nt; = u.nt; for all j € 5. Consequently
Equation 9 and Equation 11 show that b.t,., < b'.nt;, < b.nt;, = b.nt, < b.nt,
and u.dme < u'.nt;, < w.nt;, = v'.nt; < w'.nt;,. Using these facts we now consider
the following cases: ¢ € §), 1 € S,, and i € S5. If 7 € S,, then ¥.nt; < b.nt, and
uw'nt; < u'anty. If i € Sy, then bnt; = b.nt, and v'.nt; = v'.nt,. If i € S5, then

b'.nt, < b'.nt; and v'.nt; < u'.nt;.

Case 7 = UPDATE((tx, vi), (nty, valy)):

Since (b,u) € R, b.pcy = u.pc;. Hence, 7 is enabled in u. Let u’' be the unique state such
that (u, 7, u’) is a step of vcTss.

Only vy, & and pe; change as a result of the action. Since (b,u) € R, part 4 of R shows
that b.valy = w.waly. Thus, ¥'.v; = uw'.v;. Figure 1 shows ¥.pcy = w'.pcy = ENDLABEL;.
Consequently, (&',u') € R if we can show that part 2 of R holds for states b’ and u’. For part 2
of R there are four cases to consider. All other cases are immediate since they do not involve

tx, and since #; is the only label that changes as a result of the action. Let 7 € {1...n} and
1 # k:
1. ., < bty iff u'.ty, < u'.t;:

Since (b,u) € R and t; is the only label that changes, b.nt, < b'.t; iff u.nt, < u'.t;. As a

result of the action, b'.t; = b.nt; and v'.t; = u.nt,. Hence b'.t, < b'.t; iff w'.t, < u'.t;.

2. bl.t,' < bl.tk iff u’.t,- < ’U.l.ik,
b’.nt,- < b’.t}c iff u’.nt,- < Ul.tk,

bty < b.nt; iff v, < u'.nt;:

For all three statements, the reasoning is similar to that of case 1.

We can now conclude that BCTSs correctly implements the properties of CTss.

Theorem 7.3 BCTSS solves CTSS.

45



Proof: By definition of BcTss and ucTss, sig(BcTss) = sig(ucTss) and part(BCTSS) =
part(ucTss). Lemma 7.1, and Lemma 7.2 show that BCTss and UCTss satisfy the first two
conditions of Theorem 2.1. For the third condition note that action = is enabled in UcTss if
and only if 7 is enabled in BcTss. Consequently, Theorem 2.1 shows that fairbehs(BCTSS) C
fairbehs(ucTss). Thus BCTss implements UCTSsS. Since UCTSS solves CTSS, BCTSS solves CTSS.

8 Applications

This section discusses two applications of a CTss in the area of waitfree algorithms. Specifi-
cally, we discuss multireader multiwriter atomic registers and first-come-first-serve (fefs) mutual
exclusion®. Both of these problems are solved by very simple algorithms based on a cTss. Us-
ing our bounded cTss, these problems have a simple bounded solution. For both problems
we present an algorithm based on a cTss along with a correctness proof for the algorithm.
In the correctness proof, we assume nothing about the cTss except that it satisfies the cTss
specification of Section 3.

I-exclusion (see [13, 14]) and randomized consensus (see [4, 8, 27, 2]) are also important
problems that have simple cTss based solutions. [-exclusion seeks to limit the number of
processes concurrently executing a section of code called the critical section to l. Mutual
exclusion is the same as [-exclusion when [ = 1. Randomized consensus provides a random
algorithm by which a set of asynchronous processes can agree on a common value. A consensus
algorithm is consider valid if all processes agree on value a whenever a was the input originally
given to all processes. Finally a consensus algorithm must guarantee that each process will
terminate in a finite number of steps with probability 1 even if other processes exhibit stopping
failures. Shavit [37] presents an algorithm based on a cTss along with a correctness proof
for both the l-exclusion and randomized consensus problems. In the correctness proofs, he
assumes nothing about the cTSs except that it satisfies axioms P0-P3 of the cTss specification

of Section 3.

8The algorithms for fcfs mutual exclusion and multireader multiwriter registers presented in this paper are
based on similar algorithms presented in [37]. We discuss the algorithms since [37] does not prove their correctness.
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8.1 Multireader Multiwriter Atomic Registers

This section presents a simple bounded algorithm for solving the famous problem of construct-
ing a multireader multiwriter atomic register, MRMW, from single writer multireader atomic
registers (see (33, 17, 36]). Informally, the read and write operations of a multireader mul-
tiwriter atomic register are separated into a request (input) action and a response (output)
action, concurrent operations executions are allowed, and every request eventually terminates
in a matching response, in such a way as to produce the illusion of instantaneous operations.

The algorithm in Figure 6 is a version (due to Li and Vitanyi [25]) of the elegant and simple
unbounded Vitanyi-Awerbuch algorithm [34]. The original solution is based on an unbounded
construction that behaves in a manner similar a cTss. We replace this construction by the
LABEL and SCAN operations of the cTss specification®.

The code for the operations of MRMW is presented in two forms. Figure 7 presents the code
in the precondition-effect notation commonly used to describe I/0 Automata. Figure 6 uses
psuedocode. We use the precondition-effect notation as the basis for the correctness proof and
include the compact and intuitive psuedocode only for clarity. The only shared variables of
MRMW are those of the cTss. The local variables 6; and 7; contain the results of the SCAN;
operation. Recall that the n'* process index in the array 6; contains the process index of the

process currently associated with the “largest” label in the => ordering of LABEL operations.

READ;
SCAN;(;, %)
return (v;, . ) where maz = o;,

WRITE;(val;)
LABEL;(val;)

Figure 6: Psuedocode for MRMW.

In terms of the I/O Automata model, MRMW is an I/0 Automaton with an operational
interface. MRMW is the composition of n I/0 Automata {p,...p,} and any I/O Automa-

ton solving cTss for n concurrent operations. The actions BEGINSCAN;, ENDSCAN;(6;, 7;),

®(37] erroneously claims that the Vitanyi-Awerbuch algorithm [34] can be implement using a cTss that only
satisfies axioms P0-P3.
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Shared State:

The shared state of the cTss with initial values given by Figure 1.
Local State:

The local state of the cTss with initial values given by Figure 1.
val;: The value written by WRITE;; initially v,.

%i,.... The value returned by READ;; initially v,.

7;: An array of values returned by SCAN;; initially (v, ...,).

0;: An array of process indexes returned by SCAN;; initially (1...7n).

READ;: BEGINREAD; Eff: pc; — BEGINSCAN;
BEGINSCAN; Pre: pc; = BEGINSCAN;
Eff: pe; — NIL

ENDSCAN;(0;,%;)  Eff: pc; «— ENDREAD;(v;,,,..) where maz = o;,

ENDREAD;(v;._) Pre: pc; = ENDREAD;(v;,. )
Eff: pc; — N1L

WRITE,: BEGINWRITE;(val;) Eff: pe; — BEGINLABEL;(val;)

BEGINLABEL; (val;) Pre: pc; = BEGINLABEL;(val;)

Eff: pe; — NIL
ENDLABEL; Eff: pe; — ENDWRITE;
ENDWRITE; Pre: pc; = ENDWRITE;

Eff: pe; — N1L;

Figure 7: Precondition-Effect code for MRMW.
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BEGINLABEL; (val;), and ENDLABEL; are the means by which p; and the I/O Automaton solving
cTss communicate. These actions are hidden in MrRMW. Each p; is an I/O Automaton with
an operational interface. The operation types of p; are READ;, WRITE;, SCAN;, and LABEL,.
The operation type READ; consists of the input action BEGINREAD; and the output action
ENDREAD;(v;,_._). The operation type WRITE; consists of the input action BEGINWRITE;(val;)
and the output action ENDWRITE;. The operation type SCAN; consists of the output action
BEGINSCAN; and the input action ENDSCAN;(6;, 7;). The operation type LABEL; consists of the
output action BEGINLABEL;(val;) and the input action ENDLABEL;. There are no internal ac-
tions for p;. The set states(p;) is the set of all possible states of p; where each state is defined by
the values of the variables of the shared and local state. The set starts(p;) is the set consisting
of the state defined by the initial values of the variables of the shared and local state. The set
steps(p;) is characterized by the precondition clause in each action. The set part(p;) consists of
the equivalence class C; where C; consists of BEGINSCAN;, ENDREAD;(v; .. ), BEGINLABEL;(val;),
and ENDWRITE;.

We introduce the following notation: In any schedule 3, where beh(8) € fairbehs(MRMW)
and beh(f) is well-formed and response-live, denote the a'* execution of WRITE; by W'i[“] and
the a** execution of READ; by R,-[“]. Since each WRITE operation results in exactly one LABEL
operation and each READ operation results in exactly one SCAN operation, L,-[“] and S,-[“] are the
the LABEL; operation of W% and the scAN; operation of R}* respectively. Define z(i,a) = o;,
for operation R,-[“]. Intuitively, z(i,a) is the index of the process that wrote the value returned
by R,-["]. Let ¢ be a choice function for 3 as characterized by P0-P4 of Section 3. Define
r(i,a) = ¢(t,a,z(i,a)) for operation R}, Intuitively, 7(i,a) is the execution number of the
WRITE operation that wrote the value returned by R,.[a]. Since MRMW has an operational
interface and beh(3) is well-formed and response-live, Definition 2.8 gives a partial order —
on all READ and WRITE operations of 3. By inspection of the code in Figure 7, the projection
of 3 onto the actions in ezsig(cTss), 8., yields a well-formed and response-live behavior, where
B. € behs(cTss). Consequently, Definition 2.8 gives a partial order —' on all SCAN and LABEL
operations of 3. Note that W[ — Rj[b] implies that L[ — Sj[b]. However L[ —' Sj{b] does
not imply W, — RJ-[b].

An atomic multireader multiwriter register is characterized by the following serial specifi-
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cation S [23],[28]:

Definition 8.1 (serial specification §) Let s be a sequence of READ and WRITE operations.
Then s € S, if every READ operation returns the value written by the WRITE operation that
immediately precedes the READ operation in s. If no such WRITE operation exists, the READ

operation returns the initial value v,. »

In order to prove that the MRMW is an atomic multireader multiwriter register, we must show
that MRMW is well-formed-preserving and response-live. Furthermore, we must show that for
every well-formed and response-live behavior 3, where 3 € fairbehs(MRMW), there exists an

order => such that (see Definition 2.10):
1. = is a total order on all READ and WRITE operations that is consistent with —.

2. If s is the sequence of READ and WRITE operations ordered by =, then s € § of Defini-

tion 8.1.

Consider any schedule § where beh(3) € fairbehs(MRMW) and beh(B) is well-formed and
response-live. Define order =’ and choice function ¢ for 3, as characterized by PO-P4. We
construct => in several steps.

Notice that each WRITE operation includes a LABEL operation from the underlying cTss.
By P1 the LABEL operations are totally ordered by =5’ in a manner that is consistent with

the partial order —’. Now define == as follows:
Wi = wliff L} = L1,

Note that = so far is only defined on the WRITE operations. Now extend = to include the

READ operations.

Insert R/ in = such that R is between WU and the WRITE operation that

z(i,a)

immediately succeeds WU jn — . If r(i,a) = 0 then let R[* precedes the first

z(i,a)

WRITE operation.

Now == orders each READ operation with respect to every WRITE operation. However, =
is not yet a total order. READ operations are ordered amongst themselves only if they are

transitively ordered by a WRITE operation. Let R be any set of READ operations that are
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ordered between two WRITE operations that are consecutive in the = order. Now extend —
such that the elements of R are totally ordered in a manner that is consistent with —. Repeat
this procedure for each set of READ operations that are ordered between two WRITE operations
that are consecutive in the => order. Finally, extend = for the READ operations that are
ordered before any WRITE operations in a manner that is consistent with —. Now = is a
total order. Specifically, = is irreflexive, antisymmetric, transitive and total. We now show

that = is consistent with —.
Lemma 8.1 Foranyi,j € {1...n}, if Wi[al = W'j(b] then W'j[b] — VV,-[G].

Proof: Since W/* — W'J-[b], the construction of = shows that L[ = Lj[b]. Now Pla
implies that LJ-[b] —' L. Consequently VVj[b] — Wil (]

Lemma 8.2 For anyi,j € {1...n}, if RI¥ = W'j[b] then Vij — R
Proof: We consider the cases b = ¢(¢,a,7), b < ¢(4,qa,j), and b > ¢(i, a, j) separately.

b= c(i,a,j): There are two cases to consider: j = z(i,a) and j # z(i,a). When j = z(i,a),
then by construction of the =’ order, ¢(7,a,j) = 7(7,a) and W]-[b] = Ri[a]. This contra-
dicts the assumption that R,-[“] = VVj[b], so this case cannot arise. Now consider the case
J # z(i,a). Assume that r(i,a) > 0. Since R,-[a] = I/ij, the construction of the =
order implies that Wr[(',.(,';’;)] — Rl = W'j[b]. Consequently, Lir(gf;“))] =’ L]-[b]. Now, P1b
implies that Si[“] finds z(7,a) < 7 in ;. However, by definition of (i, a) no such j exists.
Therefore, this case cannot arise. Now consider the case j # z(i,a) when r(i,a) = 0.
Since b # 0, P1b implies that S finds z(i,a) < j in 0;. However, by definition of (i, a)

no such j exists. Therefore, this case cannot arise.

b < c(i,a,j): In the previous case we proved that VI/j[C(i’“’j)] = R!. Since b < ¢(4,a,7),
it must be the case that Lj[b] — LJ[C(i’a’j)]. Now, Pla shows that Lj[b] =/ Lj[c(i’a’j)].
Consequently, the construction of the = order implies W'J-[b] = W/j[c(i’“’j)l = Rl

which contradicts the assumption that Rl = Wj[b]. Therefore, this case cannot arise.

b > c(i,a,j): We proceed by showing that Lj[b] At S,-[a}. In order to reach a contradiction,

assume that Lj[b] —f S,-[a]. Assume also that ¢(7,a,j) > 0. Since b > ¢(¢,a, j), it follows
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that LJIC(i’a’j)] —' LJ-[b]. Thus LJ-[E("’“”‘)] — LJ-[b] —' Sl which is impossible by P2.
Therefore LJ-[b] ! S,.[“]. Furthermore, if ¢(7, a, 7) = 0, P2 directly show that Lj[b] RNIS
Since L]-[b] ' 55 we conclude that W'j[b] > R,

Lemma 8.3 For anyi,j€ {1...n}, if W'J-[b] => R then R/ - I/Vj[b].
Proof: We consider the cases b = ¢(i,q,7), b < c(i,a,7), and b > c(i, a, j) separately.
b= c(i,a,j): P2 implies that Si[al —- Lj[b]. This shows directly that R,-[“] ' VVj[b].

b < c(i,a,j): P2 implies that S —4 LJ-[C("""J.)]. Since b < ¢(3,a,j), Lj[b] —' L]-[c(i'“'j)]. Conse-
quently, S -4 Lj[b]. This shows directly that R!* -4/ W'j[b].

b> c(i,a,j): We proceed by showing that S —-' ij. In order to reach a contradiction,
assume that S — LJ-[b]. Assume that 7(,a) > 0. Now P4 implies that Lz[r(gf(’;;)] =’ LJ-[b].
By construction of the => order, this implies that R} =» I/Vj[b}. If 7(i,a) = 0, the
construction of the = order shows that Ri[“] = VVj[b]. However, the fact that Ri[“] =
VVJ-[b] contradicts that assumption that I/Vj[b] =3 R,-["]. Consequently, S,-[“] —- Lj[b]. This

shows immediately that B/ —£ W'j[b].

Lemma 8.4 Foranyi,je {1...n}, If R,-[“] = RJ-[b] then Rj[b] —- R,-[a].

Proof: We consider two cases. First consider the case where there does not exist Wk[d] such
that Ri[“] = Wk[d] - Rj[b]. In this case the construction of the = order immediately shows
that RJ-[b] —~ R,.[“] when R,-[a] = R}b]. For the second case assume that there exists Wk[d] such
that R,.["] = Wk[d] = Rj[b]. The right-most Wk[d] is given by k = z(j,b) and d = r(j,b). Now

define k' = z(i,a) and d' = r(i,a) assuming that r(i,a) > 0. Consequently,
Wil = R = Wi = rM, (12)

In order to reach a contradiction, we assume that RJ-[b] — R,-[a]. Consider Equation 12. By

definition of z and r, SJ-U’} sees v}%, and S sees v["**) We now wish to show that c(i, a, k) #
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d. To reach a contradiction assume that c(i,a,k) = d. Since S,-[a] sees v,Ed] and v,E',i , and
k' = z(i,a), S,-[a] finds £ < k' in 6;. Now P1b shows that L,Ed] =’ L,E‘fl]. By definition of =
this implies that Wk[d] = W,c[,dll, which contradicts Equation 12. Thus ¢(4,a, k) # d.

By assumption Rj[b] — R, thus Sj[b] —' S Since Sj[b] sees v[4 S sees p[**)} and
c(i,a,k) # d, P3 now shows that d < ¢(4,a, k). This implies that L[ =’ [[***"] Thys, by

definition of = it follows that:
Wk[d] — kac(",“:k)]. (13)

Next we show that W[¢e®)! — R If not, the construction of the => order and the facts
that k' = (i,a) and &' = r(4,a) imply that W1 = R/ — w[Ca®l  Consequently,
L,E‘f,] = L,Ec(i'a‘k)]. Then, P1b implies that S finds &' = z(i,a) < k in o;. However, by
definition of (i,a), no such k exists. Therefore W["*®) — RI%  This fact along with
Equation 13 and the fact that = is transitive implies that Wk[d] = R,-[“]. Thus we have a
contradiction to Equation 12.

Finally, consider the case where r(i,a) = 0. As in the previous case, R,-[a] = Wk[d] = RJ-[b],
where Wl is given by k = z(j,b) and d = r(j,b). Since r(i,a) = 0, the definition of r(,a)
and P1b imply that ¢(i,a,2) = 0 for all z € {1...n}. In order to reach a contradiction
assume that Rj[b] — R!”. This implies that Sj[b] — §I4. Furthermore since c(i,a,k) =0 and
d=r1(j,b) >0, c(i,a,k) # r(j,b). Now P3 shows that r(j,b) < ¢(i, a, k), which contradicts the
fact that c(¢,a,k) =0 and d = 7(5,b) > 0. n

We now show that the READ and WRITE operations ordered by the = order form a sequence

permitted by the serial specification S of Definition 8.1.

Lemma 8.5 Let s be the sequence of READ and WRITE operations of 3 ordered by the =

order. Then s € §.

Proof: There are two cases: 7(i,a) > 0 and r(i,a) = 0. When 7(¢,a) > 0 the definition of =

implies that R} is immediately preceded by WI® where r(i,a) = ¢(i,a,z(i,a)). Now, PO

z(i,a)

shows that v;_, = ”alx[zg,i;;)]- When r(i,a) = 0, the definition of => implies that R[* precedes

all WRITE operations. Also, PO shows that Visie) = valx[(()z.’a) = v,. Noting that Ri[a] returns

Vi ..., cOmpletes the proof. [ ]
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Finally, we prove that MRMW is well-formed-preserving and response-live.

Lemma 8.6 MRMW is well-formed-preserving and response-live.

Proof: Notice, by inspecting the precondition clauses in the code of Figure 7, that for equiv-
alence class C; of part(MRMW), there is always at most one action enabled. Furthermore each
action remains enabled until it is executed. Consequently, the actions must be executed in the
sequence in which they are enabled. Furthermore, in a fair execution each enabled action will
eventually be executed.

Now consider any fair execution whose behavior has a well-formed-input. Since CTSS is
well-formed-preserving and response-live, inspection of the precondition-effects code in Figure 7
shows that the following sequence of actions are executed in response to a BEGINREAD; input ac-
tion: BEGINSCAN;, ENDSCAN;(0;, 7;), and ENDREAD;(v; .. ). In response to a BEGINWRITE; (val;)
input action, the following sequence of actions is executed: BEGINLABEL;(val;), ENDLABEL,, and
ENDWRITE;. Finally, no actions of C; are enabled between the execution of a ENDREAD;(v;,,,)
or ENDWRITE; action and the next execution of a BEGINREAD; or a BEGINWRITE;(val;) ac-
tion. Inspection of these action sequences and the definitions of well-formed-preserving and

response-live, immediately show that MRMW is well-formed-preserving and response-live. [ |

We can now conclude that MRMW, if it uses our bounded cTss construction, is a bounded

atomic multireader multiwriter register.

Lemma 8.7 MRMW is an atomic register satisfying serialization specification S.

Proof: By Lemma 8.6, MRMW is well-formed-preserving and response-live. Now consider
any behavior 3 € fairbehs(MRMW) that has a well-formed-input. Since MRMW is well-formed-
preserving and response-live, 3 is well-formed and response-live. Consider the order => on the
operations in 3 defined in the preceding discussion. Lemma 8.5 shows that the order satisfies
the serial specification S. Lemma 8.1, Lemma 8.2, Lemma 8.3, and Lemma 8.4 show that =

is consistent with partial order —. u
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8.2 Mutual Exclusion

The mutual exclusion problem, originally due to Dijkstra [10], is stated informally as follows
(a more formal treatment that also introduces fault tolerance issues, can be found in [22])°.
A system of n asynchronous processes communicate via shared memory consisting of single
writer multireader atomic registers. The program of every process consists of two distinguished
sections: a remainder section and a critical section. Processes alternate between executing the
remainder and the critical section. The fundamental goal of the mutual exclusion algorithm
is to limit the number of processes concurrently executing the critical section to 1. To solve
the mutual exclusion problem, one is required to design trying and ezit program sections to be
performed before and after executing the critical section respectively. The trying section coor-
dinates the entry into the critical section. In our algorithm the trying section has a subsection
called the doorway section. This section is the first part of the trying section and is waitfree.
The behavior of a mutual exclusion algorithm is characterized as follows (in order to simplify

the discussion, this section uses a slightly less formal approach than the previous sections):
Mutual Ezclusion: In any reachable state, no two process are executing the critical section.

Deadlock Freedom: In any reachable state, if there exists some process that is in the trying
section, then there exist a process that is in the critical section or a process that will

eventually enter the critical section.

Lockout Freedom:

1. In any execution, if there is no process that is forever executing the critical section,

any process executing the trying section will eventually execute the critical section.

2. In any reachable state, if there is some process in the exit section, then some process

will eventually enter the remainder section.
The fairness property of lockout freedom is strengthened in the following way.

First Come First Serve: If process p; finishes executing the doorway section before process p;

begins executing the doorway section, then p; executes the critical section before p; does.

°Many solutions to the problem have been proposed over the years. (See [31].)
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The psuedocode version of our mutual exclusion algorithm is presented in Figure 8. The
algorithm is a simplified version of Lamport’s Bakery Algorithm [19]. Our notation uses
BEGINLABEL; () and ENDLABEL; instead of just LABEL;() in order to clearly indicate what the
atomic actions are. The reason for using BEGINSCAN; and ENDSCAN; instead of SCAN; is the
same. Lines 1 — 8 represent the trying section and line 10 the exit section. The doorway
section consists of lines 1 — 4. In addition to the shared variables associated with the cTss,
each processes, p;, has a shared variable called z; which is implemented as a single writer mul-
tireader atomic register. Process p; writes z; and all other processes read z;. The variable
0; is a local variable that contains the result of the SCAN; operation of lines 6 and 7. Lines
1,2,3,4,6,7,9,10, and 11 each represent atomic actions. Since lines 5 and 8 read the shared
atomic variables z; for j € {1...n}, lines 5 and 8 consist of one atomic action for each time
a particular z; is read. For every execution of lines 5 and 8 each z;, for j € {1...n}, is read
once. The states of the Lamport-Bakery mutual exclusion algorithm are defined by the values
of the variables associated with the cTss, the shared variables z; for all 7, as well as all local
variables and the program counter, pe, of each process.

Our correctness proof essentially follows the arguments given in [28] and [22]. The contribu-
tion of our proof is that it is based on the cTss specification. We now introduce some notation
that will be used in the correctness proof. Consider the state s in any execution. If process p;
is not executing the LABEL; operation in state s, in other words pc; # 2 and pe; # 3, we define
the function I(7, s) which is a function from the set of process indexes and the set of states to
the set of execution numbers of the LABEL operations of the execution. s(7,s) is defined in a

similar manner for the SCAN; operations.

Definition 8.2 (function !) Consider an execution a. Let s be a state in « where pe; # 2
and pe; # 3. Then, define [(¢,5) to be the execution number of the LABEL; operation whose

ENDLABEL; action was the last ENDLABEL; action executed in « before state s. ]

Definition 8.3 (function s) Consider an execution a. Let s be a state in a where pc; # 6
and pc; # 7. Then, define s(4,s) to be the execution number of the SCAN; operation whose

ENDSCAN; action was the last ENDSCAN; action executed in a before state s. ]
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Intuitively, for a state s, LI®*) is the most recently executed LABEL; operation and e

is the most recently executed SCAN; operation. In order to simplify the presentation, we do
not provide the argument for why p; has pc; # 2 and pe; # 3 or pe; # 6 and pe; # 7 when
discussing L,-[l("’)] or S,-[’("’)] in cases where it is obvious. The order — is used to order states

of an execution as well as the cTss operation instances in the execution.

Definition 8.4 (— order) Let A, and A, be cTss operation instances and s, and s, be

occurrences of states in an execution a of the Lamport-Bakery mutual exclusion algorithm.

Then:

1. A; — A, iff the response action associated with A; occurs before the request action

associated with A,.
2. A, — s, iff the response action associated with A; occurs before s;.
3. s; — A, iff the request action associated with A; occurs after s;.
4. s — 8, iff s, occurs before s,.

Note that — provides a total order for the states and a partial order for the cTss operation
instances. Now consider any execution a of the Lamport-Bakery mutual exclusion algorithm.
We wish to show that the execution satisfies the four properties for mutual exclusion given
above. Notice that the projection of the execution onto the external actions of cTss, gives a
behavior of cTss that has a well-formed-input. Consequently, the projection of the execution
onto the external actions of CTSs must satisfy axioms PO, P1, and P2!! of Section 3. Let =
and ¢ be an order and a choice function that satisfy PO, P1, and P2 for the projection of «
onto the external actions of cTss. Now consider the following lemma which will be used to

prove the mutual exclusion property.

Lemma 8.8 In any state s of the ezecution «, if p; is in the critical section and x; = T then

LUG [ UG
1 ¥ ‘

11 Axioms P3 and P4 are not needed for the Lamport-Bakery mutual exclusion algorithm.
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repeat forever
z; — L
BEGINLABEL;()
ENDLABEL;
Ty < T
L1: 1If 3j such that z; = L then goto L1
L2: BEGINSCAN;
0; — ENDSCAN;
If 35 such that j < 7 in ¢; and z; = T then goto L2
critical section
T; — NIL
remainder section
end repeat

HEQDOO\]OUO!A&MH

—

Figure 8: Psuedocode for Lamport-Bakery mutual exclusion algorithm

Proof: Consider the first state in the execution a after the action in which p; reads z; # L
in line 5 for the last time before state s. Call this state s;. Since z; # L, pc; # 2 and pe; # 3
[1(5.,2)] [1(5,2)]
j j .

in state s;. Hence we can now consider two cases: L — 8, and s; — L

Lj[l(j”)] — s;: Consider the last state in « before the action in which p; considers p; for the
last time in line 8 before state s. Call this state s,. Since p; enters the critical section,
there are three cases to consider: i < jin 6; and z; = T, 1 < j in 6; and z; # T, and
j < iin é; and z; # T. We consider the last two cases together by showing that the case

z; # T cannot arise.

i< jin ¢; and z; = T: In this case L}I(j”)] — 8 — SEE ) therefore Lj[l(j”)] —

Sl Pyrthermore, by definition of I(j, s) there exists no Lj[b], where b # 1(j, s), such
that L}l(j”)] — ij — §PEIl - Consequently, P2 shows that ¢(i, s(3, 89),7) = I(4, ).
The same argument shows that c(i,s(i,s3),7) = I(¢,5). Since p; found ¢ < j in o; of

Si[’(i”’)], P1b shows that L,-[I(i”)] = L}I(j”)].

z; #T: In this case z; = NIL or z; = L. If ; = NIL, then since z; = T in state s

and s, — s, p; must execute the LABEL; operation of lines 2 and 3 between s, and s.

Consequently s; — L]-[I(j”)], which contradicts the assumption that LJ-U(j”)] —s 8;. So,

it must be that z; = L in state s;. Recall that z; # L in s; and z; = T in s. Since
s, — 83 — s, inspection of the code shows that p; must execute the LABEL; operation
G,
i

of lines 2 and 3 between s; and s. This implies that s; — L , which contradicts the
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assumption that LJ-[I(j el s;. Therefore this case cannot arise.

8, — L_,-U(j”)]: Since Li[‘("’)l — s;, we can conclude that L,.[I(""’)] — LJ-[I(j”)]. Now Pla implies

that LI = [0,

With this lemma, it is easy to show mutual exclusion.

Lemma 8.9 In any state s of the execution a, if p; is in the critical section, then there exists

no j # i such that p; is in the critical section.

Proof: We proceed by contradiction. Assume that there exists a state s such that p; and p;
are in the critical section where i # j. Since p; and p; are in the critical section, z; = T" and
z; = T. Now Lemma 8.8 implies that L,-[I("”)l = Lj[l(j”)] and LJ-[’U”)] — [ By P1, =

is a total order, so we have a contradiction. u

The following Lemma shows that Lamport-Bakery mutual exclusion algorithm satisfies the fcfs

property.

Lemma 8.10 Consider the ezecution a. Let s; be any state after p; executes the action on line
3 but before p; is in the critical section for the first time after the erecution of the action. Let
s; be any state before p; executes the action on line 2 such that p; must execute line 2 before 1t
enters the critical section for the first time after s;. Assume that s; — s;. Let s., be the first
state in which p; is in the critical section after s;. Let s, be the first state in which p; is in the

critical section after s;. Then s;, — s,,.
i 3

Proof: For a contradiction assume that s,; — s.,. In s.;, p; is in the critical section and

z; = T. Hence Lemma 8.8 implies that L]-[ ’.[I(i’”f)]

know that L'.[I(""i ] — Lj[l(j,s.:j b

1(4,5¢,)] .
9= [ . However, since s; — s;, we

, which by P1la is a contradiction. |

Next we consider the deadlock freedom property of the Lamport-Bakery mutual exclusion al-

gorithm. We consider the second part of the property first.

Lemma 8.11 Suppose that process p; is in the exit section in state s of execution a. Then p;

will eventually enter the remainder section.
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Proof: The lemma follows immediately from the fact that the exit section, line 10, consists

of a single waitfree action. u

Lemma 8.12 If p; is in the trying section in state s; of ezecution «, then there exist some
process that is in the critical section, or there exists some process that eventually enters the

critical section.

Proof: Let p; be in the trying section in s;. If there exist some process in the critical section
in s;, then we are done. Therefore, assume that no such process exists. Let s., where s; — s,
be the state in which the first processes is in the critical region after s;. Since the code of
Figure 8 is waitfree, except for lines 5 and 8, p; will eventually reach line 5. Label this state in
the execution as s;. Now let S be the set of processes that are in the trying section in state s;.
If there are any processes in the exit section in state s;, Lemma 8.11 implies that there exists
a state s,, where s; — s,, such that there are no processes in the exit section in state s,.

Let p, € {1...n} — S. If 2, = T in any state between s, and s., it must be that p;
executes the LABEL; operation of lines 2 and 3 after the state s;. Furthermore p; last executes
the LABEL; operation before state s; Hence Pla shows that for any state s between s, and s,

where 2, =T
L{[’(i:-’)] — L’EI(":’)]' (14)

Consider any p; € §. If z; = T, then L}I(j”’)] is defined. If z; = L, then Lj[l(j’”)] may not
be defined. Since lines 1 — 4 are waitfree, it will eventually be the case that z; = T for all
p; € S. Call this state s3. Now L}I(j”s)] is defined for all p; € §. Consider p; € S such that
L]-U(j’“)] = LI®* ) for all p, € S and k # j. By P1, => is a total order, hence p; exists.
Since none of the processes in S pick a new label between s3 and s, L]-[I(j”)] = L,El(k”)] for
all k # j, k € 5, and s between s3 and s.. Furthermore, for all p; € {1...n} — 5 where 2, =T
and s between sz and s, L}I(j”)] = L,El(k")]. This is a consequence of Equation 14 which
shows that LM = LI**) and the definition of p; which shows that L0 = LG,

The process p; will progress past line 5 unless there exists some process p; such that z; = L.
Eventually, it must be that z; # L. Furthermore, z; # L at least until s.. Thus each
process that is preventing p;’s process at line 5 will eventually have z, # L. At this point

p; will advance to line 8. Process p; will advance to the critical section unless there exists
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some processes pj such that z; = T and p; orders k < j in the o; returned by the SCAN;
operation executed in lines 6 and 7 just prior to p; finding k < j in line 8. Since the SCAN;
operation of lines 6 and 7 continues to be executed while there exists some processes p; such
that z; = T and k < j in 6;, there must eventually be a state s between states s3 and s. such
that LJ&T Sj[’(j"')]. By definition of I(k,s) there exists no LM, where b # I(k, s), such
that L,El(k")] — LM Sj[’(j”)]. Consequently P2 shows that ¢(j,s(7,s),k) = I(k,s). The
same argument shows that ¢(j, s(4, 8),7) = I(4, s). Since p; orders k < j in 6;, P1b shows that
L,El(k")] = L}I(j”)]. However, such a k cannot exist in state s since s is between the states
s3 and s, and, for all states s’ between s3 and s, Lj[l(j"")] = L,El(k”’)] for all £ € S and all

ke {1...n} — S where 2, = T. Therefore, p; will eventually enter the critical section. [

Finally, we consider the no lockout property.

Lemma 8.13 Suppose in the state s; in execution a, p; is in the trying section. If there is no
p;, such that p; is in the critical section for all states after some state s;, then p; will eventually

enter the critical section.

Proof: The first 4 lines of the trying section are waitfree. Therefore, p; will eventually com-
plete these lines. Call the first state after line 4 completes s;. Let S be the set of processes
p; for which it is possible that p; is in the critical section in some state which succeeds s,
but proceeds the state in which p; enters the critical section. Clearly S C {1,...,n} — {7}.
Since p; is in the trying section Lemma 8.12 says that p; or some p; € S will eventually enter
the critical section. The proof is complete if p; enters the critical section, so assume that p;
enters the critical section. After p; exits the critical section, p; must start executing line 2 after
some state s;, where s; — s;, before p; enters the critical section a subsequent time. Now
Lemma 8.10, shows that § = S — {j} after after p; exits the critical section. We repeat this

argument until $ = . Then Lemma 8.12 says that p; eventually enters the critical section. m

9 Formal Justification for Use of Snapshot

The purpose of this section is to formally justify the manner in which the snapshot operations
SNAP and UPDATE of [1] are used in BcTss and ucTss. Specifically, we must justify the fact

that we do not use separate actions for the invocation and response of each snapshot operation.
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9.1 Theory

In order to provide a strong theoretical foundation for the discussion, we extend some of the
concepts introduced in Section 2. Most of the ideas in following discussion are taken from
Goldman, Lynch and Yelick [15]. We present a simplified and less general version of their
results.

Goldman et al. introduce the concept of an environment, a process and an object. Intuitively,
an environment refers to the user of a particular I/O Automaton. The I/O Automata model
generally does not model the users of [/O Automata except to describe the situations in which
a user is expected to issue input actions. A process is an /0 Automaton that performs an
operation on behalf of the environment. Typically the interface between the environment and
a process is described by a set of input actions that are used by the environment to request an
operation and output actions that are used by the process to respond to an operation request.
Finally, objects are I/0O Automata that model shared data types that provide a means for a set
of processes to communicate. The following discussion formalizes these concepts. Note that we

largely retain the notational conventions used in Section 2.

Definition 9.1 (object I/O Automata) An object [/O Automaton, o, which can be used
by n process 1/0 Automata (see Definition 9.2) is an I/O Automaton with an operational
interface which is characterized as follows. For each ¢ € {1...n}, there exists a disjoint set of
operation types ops;(0) C ops(exsig(o)). For each operation type a; € ops;(0), we denote the

input actions by INVOKE, ,,(a;,v) and the output actions by RESPONSE,,, (a;,T). ]

As a shorthand for an object /O Automaton we use the term object. The subscript o,p;
indicate that a process 1/0 Automaton denoted by p; will use this action to communicate with
the object o when o and p; are composed. We now present a formal definition for a process 1/0

Automaton.

Definition 9.2 (process I/O Automata) A process I/O Automaton, p;, is an I/O Automa-

ton with an operational interface which is comprised of two disjoint sets of operation types:

e There are a set of operation types which describe the interface between the process and
the environment. For any such operation type called a; we denote the input actions by

INVOKE,,(@;,v) and the output actions by RESPONSE, (a;, 7).
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e There are a set of operation types which describe the interface between the process and
an object!? denoted by o. For any such operation type called a; we denote the input

actions!® by RESPONSE, ,,(a;,7) and the output actions by INVOKE, ,, (@i, v).

For the discussion that follows, let A be any I/O Automaton that is a composition of n pro-
cesses {p; ...p,} and one object o where the external actions of o are hidden. We now define
various characteristics of schedules of A. These characteristics will be used in the definition of
an I/O Automaton called an IR system. Let 3 be a schedule of A. Then 3|p; is the projec-
tion of 3 onto all INVOKE,,(a;,v) and RESPONSE,,(a;,r) actions that constitute p;’s interface
with the environment. Similarly, 3|o,p; is the projection of 3 onto all INVOKE,p,(a;,v) and
RESPONSE, ,,(a;,7) actions that constitute p;’s interface with the object o. In order to insure
that a process only issues requests to an object when that process is servicing a request from the
environment, we introduce the concept of a process p; being active after a prefix of a particular
schedule. Specifically, a process p; is active after a prefix 3’ of the schedule 3 of A if the last

action in f'|p; is an INVOKEy, (a;, v) action.

Definition 9.3 (IR-well-formed) Let 8 be a schedule of A. We say 3 is IR-well-formed if
1. beh(f) is well-formed.
2. Every INVOKE, ,,(a;,v) action in o, p; occurs from a prefix of 8 after which p; is active.

3. B|o, p; consists of an alternating sequence of input and output actions of o, starting with
an input action, such that each RESPONSE, ,,(a;, ) action is immediately preceded by an

INVOKE, ,,(a;, v) action.

4. In B no actions of p; occur between any pair of corresponding INVOKE,,,(a;,v) and

RESPONSE, . (a;,7) actions.

12[15] allows processes to have an interface to an arbitrary number of objects. For the sake of simplicity, we
restrict attention to processes which have an interface to only one object.

13Notice that we have changed the notational convention for the process’ interface with the object. This arises
from the fact that the input actions of the object must have the same name as the output actions of the process.
In this way, the process can initiate operation instances on the object (see discussion of composition in Section 2).
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Definition 9.4 (IR-well-formed-preserving) Let 3 be a schedule of A. § is IR-well-formed-
preserving if, for all prefixes 8’ of 8, where beh(3') has a well-formed-input, 3’ is IR-well-formed.

We say that A is IR-well-formed-preserving if every schedule of A is IR-well-formed-preserving.

Definition 9.5 (IR system) Let A be an I/O Automaton that is a composition of n pro-
cesses, {p; ...Pn}, and one object, o, where the external actions of o are hidden. A is an IR

system iff:
1. The object o of A is an atomic I/O Automaton that satisfies some specification S.
2. A is IR-well-formed-preserving,.
3. A is response-live.
n

We now define an IRA system which is the same as an IR system except that it combines the

INVOKE, ,,(a;,v) and RESPONSE, ,,(a;,) actions into a single action called ATOMIC,,,(a:, v, 7).

Definition 9.6 (IRA system) Let I = {1...n}. Let A be an IR system composed of n
processes, {p; ...p,}, and an atomic object, o, satisfying specification S. Then the TRA system

A’ that corresponds to A is defined as follows:
e states(A’) = states(A)
o start(A') = start(A)
o sig(A') = (in(A), out(A), (int(A) — | J{INVOKE, ; (4, ), RESPONSE, 5, (a;,7)})

i€l

u | J{aromic,,,(a;,v,7)}.
sel

o steps(A') = the set of all steps (@, ,a”) such that either:

— ¢ [ J{INVOKE,, (ai, v), RESPONSE, ,,(a;,7)} and (a, 7,a") € steps(A).
iel
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-TE€ U{ATOMICo’p_.(a.-,v, )} and there exists state a’ of A such that:
ier
(a,INVOKE, p,(a;, v),a’) € steps(A) and (@', RESPONSE, p,(a;, 1), a") € steps(A), and,
for any schedule 3 of A’, the projection of 8 onto the set of all ATOMIC,,,(a;,v,T)

actions must be an element of the sequential specification of the atomic object o.

o part(A’') = part(A) except that the set of ATOMIC,,,(a;, v, ) actions, for all v and r,

replace the set of INVOKE, ,,(a;, v) actions for all v.
|

In the action signature we are replacing pair of actions INVOKE, ,,(a;,v), RESPONSE, , (a;,T)
by a single action ATOMIC, ,, (a;,v,7) such that ATOMIC, ,,(a;,v,7) can be executed in A’ for
situations where the pair of actions INVOKE, p,(a;,v), RESPONSE, p,(a;,7) can be executed in
A. The following significant theorem due to Goldman et al. [15] can be used to show that A’

implements A.

Theorem 9.1 Let A be an IR system and A’ be the IRA system corresponding to A. If a is

a fair execution of A, then there ezists a fair execution o of A’ such that beh(o’) = beh(a).
Corollary 9.2 Let A be an IR system. Then A implements the IRA system corresponding it.

Proof: This follows immediately from Theorem 9.1. u

9.2 Proof

Figure 9 shows the code for ucTss and BcTss!* that uses the invocation and response actions for
SNAP; and UPDATE;. We call these new I/O Automata ucTss’ and BcTss’. Since the interface
provided by [1] uses request and response actions, we can technically only use the sNAP; and
UPDATE; primitives as is done in vcTss’ and BcTss'. In order to show that ucTss’ and BCTss’
solve c¢Tss will will show that ucTss’ implements UcTss and BCTss’ implements BCTSS.

We proceed as follows. We show that ucTss’ and BcTss’ are IR systems, and then note

that the IRA systems corresponding to vcTss’ and BCTss’ are ucTss and BCTSS respectively.

Mycrss and BeTss share the code that is relevant to this discussion.
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SCAN;:
BEGINSCAN;

BEGINSNAP;

ENDSNAP;(;, 7;)

ENDSCAN;(6;, ¥;)

LABEL;:
BEGINLABEL;(val;)

BEGINUPDATE;((;, v;), (nt;, val;))

ENDUPDATE;

ENDLABEL;

Eff:

Eff:
Eff:

Pre:
Eff:

Eff:

Pre:

Eff:
Eff:

op; «+— SCAN;
pc; < BEGINSNAP;

pc; = BEGINSNAP;
pe; — NIL

If op; = scaN; then
0; — the sequence of indexes where
j appears before k in o; iff (t;,7) < (tx, k)
pc; «— ENDSCAN,(0;, ¥;)
If op; = LABEL; then
nt; «— NEWLABEL;({;)
pe; — BEGINUPDATE;((t:, vi), (nt;, val;))

pc; = ENDSCAN;(6;, ;)
pe; — NIL
op; «— LABEL;

pc; < BEGINSNAP;

pc; = BEGINUPDATE;((t;, v;), (nt;, val;))
pc; — NIL;

pe; — ENDLABEL;

Pre: pc; = ENDLABEL;

Eff:

pc; < NIL

Figure 9: Precondition-Effect code for ucTss’ and BCcTSS’
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This will allows us to use Corollary 9.2 to conclude that ucTss’ implements UCcTss and BCTSS'
implements BCTSS.

Formally, ucTss’ and BCTss' are a composition of n process [/O Automata {p; .. .Pn} and
one object I/O Automaton o where p; and o are defined as follows: Each process I/0 Au-
tomaton has two operation types that constitute its interface with the environment, LABEL;
and SCAN;. The object interface of p; consists of the SNAP; and the UPDATE; operation types.
These operation types consist of the following external actions: LABEL; consists of the input
action BEGINLABEL;(val;) and the output action ENDLABEL;. SCAN; consists of the input ac-
tion BEGINSCAN; and the output action ENDSCAN;(d;,7;). SNAP; consists of the output action
BEGINSNAP; and the input action ENDSNAP;(Z;,7;). UPDATE; comsists of the output action
BEGINUPDATE;((%;, v;), (nt;, val;)) and the input action ENDUPDATE;. There are no internal ac-
tions. The partition is the same as it was for the vcTss and BcTSs version of p; (see Section 4)
except that BEGINSNAP; replaces SNAP;({;,%;) and BEGINUPDATE;((t;,v;), (nt;, val;)) replaces
UPDATE;((2;, v;), (nt;, val;)). The steps of p; are determined by the pe; variable, and the states
and start states are defined as they were for the ucTss and BcTss version of p;. The object
I/O Automaton o is the implementation of the snapshot object given in [1]. We do not provide
the code for o, but present some of its characteristics relevant to our discussion. The interface
with the processes consists of 2n operations types SNAP; and UPDATE; for 7 € {1...n}. Each
of theses operation types consists of the following external actions: SNAP; consists of the input
action BEGINSNAP; and the output action ENDSNAP;(¢;,7;), and UPDATE; consists of the input
action BEGINUPDATE;((t;, v;), (nt;,val;)) and the output action ENDUPDATE;. Furthermore, o

is an atomic I/O Automaton satisfying the SNAPSHOT serial specification.

Definition 9.7 (SNAPSHOT serial specification) A sequence of operations instances « is in
SNAPSHOT if and only if the following conditions hold. For any ¢, if a SNAP; operation instance
returns the set of values, ¥, and labels, {, v; and ¢; are the value and label written by the
UPDATE; operation instance that immediately proceeds SNAP; in a. If a SNAP; operation in-
stance is not proceeded by a UPDATE, operation instance, then v, and t; are equal to their

initial values. u

Lemma 9.3 ucTss’ and BCTss' are IR systems.
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Proof: From [1] we know that the object I/O Automaton of ucTss’ and BcTSs' is an atomic
object I/O Automaton that satisfies the SNAPSHOT serial specification given in Definition 9.7.
So we must show that ucTss’ and BcTss’ are IR-well-formed-preserving and response-live.

Notice by inspecting the precondition clauses in the code of Figure 9 that for any equiv-
alence class C; of part{ucTss’) and part(BCTSs'), there is always at most one action enabled.
Furthermore each action remains enabled until it is executed. Consequently, the actions must
be executed in the sequence in which they are enabled. Furthermore, in a fair execution each
enabled action will eventually be executed.

Now consider any fair execution whose behavior has a well-formed-input. Since the object o
is well-formed-preserving and response-live, inspection of the precondition-effects code in Fig-
ure 9 shows that the following sequence of actions is executed in response to a BEGINSCAN; input
action: BEGINSNAP;, ENDSNAP;(¢;, 7;), and ENDSCAN,(d;,?;). Following a BEGINLABEL,(val;)
input action, the following sequence of actions is executed: BEGINSNAP;, ENDSNAP;(%;,0;),
BEGINUPDATE; ((t;, v;), (nt;, val;)), ENDUPDATE;, and ENDLABEL;. Finally, no actions of C; are
enabled between the execution of a ENDSCAN;(6;, ¥;) or ENDLABEL; action and the next execu-
tion of a BEGINSCAN; or BEGINLABEL;(val;) action. Inspection of these action sequences and
the definitions of IR-well-formed-preserving and response-live, immediately show that vcrTss’

and BcTss' are IR-well-formed-preserving and response-live. u

Now that we have shown that ucTss’ and BcTss’ are IR systems, note that the IRA systems
corresponding to UcTss’ and BCTSS' are UCTSS and BCTSS respectively. Specifically, in ucTss
and BCTSs the BEGINSNAP; and ENDSNAP;({;, ;) actions of ucTss’ and BcTss’ are replaced
by the sNAP;(f;, ;) action. Similarly, the BEGINUPDATE;((t;, v;), (nt;, val;)) and ENDUPDATE;

actions are replaced by the UPDATE;((t;, v;), (nt;, val;)) action (see Definition 9.6).
Theorem 9.4 BCTSS' and vCcTss' solve CTSS.

Proof: Using Corollary 9.2 we conclude that BcTss’ implements BCTSS and ucTss’ imple-
ments UCTSS. From Theorem 7.3 we know that BCTss solves CTss, hence BCTSS’ solves CTSS.

Similarly, Lemma 4.10 shows that vcTss solves cTss, therefore ucTss’ solves CTsS. ]
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10 Discussion and Future Work

Critical to constructing and proving the correctness of our simple bounded timestamping sys-
tem are the design technique of composition and the analysis techniques provided by the I/O
Automata Model.

The composition of the label structure of [11] with the atomic snapshot primitive of [1]
greatly reduces the complexity of our algorithm relative to [11]. Many possible executions are
eliminated by the fact that the snapshot primitive returns an instantaneous (in the sense of
[20]) view of the current labels. Even though the construction of the snapshot primitive is
complex, its complexity is hidden from the timestamping system. Our simple constructions for
the multireader multiwriter atomic register and first come first serve mutual exclusion further
demonstrate the power of using composition to simplify the design and analysis of algorithms.

Due to the fact that our algorithm uses the snapshot primitive, the complexity of our
timestamping system is worse by O(4/n) than the most efficient known bounded timestamping
system [12]. The complexity of our bounded timestamping system is the same as the complexity
of the underlying snapshot primitive. The complexity of the original construction in [1] was
O(n?). The best construction currently known has complexity O(ny/n) [3]. In addition to our
bounded timestamping system, there are several other areas in which the snapshot primitive
is useful (see [1]). Consequently, improving the complexity of the snapshot primitives would
provide a significant contribution. Since the SNAP operation must read n registers, (n) is a
lower bound for the SNAP operation. We see no reason why O(n) algorithms for both the sSNAP
and UPDATE operations should not be possible.

An important feature of the I/O Automata Model is the concept of stepwise refinements
[29], [21]. Specifically, the I/O Automata Model defines the concept of one I/0 Automaton
implementing another I/O Automaton. Therefore the correctness of complex algorithms can
be proved by designing a series of algorithms of increasing complexity. The simulation proof
techniques are used to show that the complex algorithms implement the simpler ones. In this
way, the complexities of an algorithm are introduced in a stepwise manner. Our use of the simple
unbounded real number based timestamping specification demonstrates these techniques (see
[29] for thorough discussion of these issues).

The use of the I/O Automata Model in our paper suggests several avenues of research for
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I/O Automata theory. The reader will notice that the I/O Automata section is fairly long since
it develops several concepts. The need to develop these concepts is due to the fact that the I/O
Automata Model is much more general than the shared memory system model that is needed
in this paper. Hence much of the structure of the shared memory model must be developed for
the I/O Automata Model. A research effort that develops structure for specific system models
such as the shared memory model and the network model would be an invaluable contribution.
[15] is a good step in this direction for the shared memory model.

In recent years, much progress has been made in the area of automatic theorem provers.
Large parts of our correctness proof, especially the proof for the invariants in Section 6 use an
extensive, well structured case analysis. Each case is proved by a simple but tedious argument.
Consequently, we view the correctness proof of our bounded timestamp algorithms as an ideal
candidate with which to test the effectiveness of automatic theorem provers {6]. In testing a
theorem prover on our algorithm we hope to determine wether or not I/0 Automata proofs

might in the future utilize theorem provers on a regular basis.
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