
Computer-Assisted Veri�cation of
an Algorithm for Concurrent
Timestamps

Tsvetomir P. Petrov, Anna Pogosyants, Stephen J. Garland,

Victor Luchangco, and Nancy A. Lynch

MIT Laboratory for Computer Science

545 Technology Square, Cambridge, MA 02139

Formal Description Techniques and Protocol Speci�cation, Testing, and Veri�cation,
FORTE/PSTV'96, Kaiserslauten, Germany, 8{11 October 1996.

This paper is dedicated to the memory of one of its authors, Anna Pogosyants, who was

working on this paper and her Ph. D. thesis when she was killed in an automobile accident

in December 1995.

Abstract
A formal representation and machine-checked proof are given for the Bounded Concurrent
Timestamp (BCTS) algorithm of Dolev and Shavit. The proof uses invariant assertions
and a forward simulation mapping to a corresponding Unbounded Concurrent Timestamp
(UCTS) algorithm, following a strategy developed by Gawlick, Lynch, and Shavit. The
proof was produced interactively, using the Larch Prover.

Keywords
Veri�cation, validation and testing; tools and tool support; Larch; input/output automata;
concurrent timestamps

1 INTRODUCTION

In this paper, we describe a computer-assisted veri�cation, using the Larch Prover (Gar-
land and Guttag, 1991), of one of the most complicated algorithms in the distributed
systems theory literature: the Bounded Concurrent Timestamp (BCTS) algorithm of
Dolev and Shavit (1989). This algorithm runs in the single-writer, multi-reader, read/write
shared memory model. The veri�ed algorithm is a slight simpli�cation, due to Gawlick,
Lynch, and Shavit (1992), of the original algorithm. It uses atomic snapshots of the
shared memory, which Afek et. al. (1990) showed can be implemented in an e�cient and
fault-tolerant manner using read and write operations. Hence the simpli�cation is not a

Research supported in part by the Advanced Research Projects Agency of the Department of Defense,
monitored by the O�ce of Naval Research under contract N00014-92-J-1795 and by Hanscom Air Force
Base under contract F19628-95-C-0018, by the National Science Foundation under grants CCR-9504248
and CCR-9225124, and by the Air Force O�ce of Scienti�c Research and the O�ce of Naval Research
under contract F49620-94-1-0199.

2 Computer-Assisted Veri�cation of an Algorithm for Concurrent Timestamps

1 3

5

4

2

Figure 1 Domain T2 of timestamps for two users, with pairwise ordering relationships

signi�cant change in the original algorithm, though its introduction does remove some of
the complexities of the proof.
The algorithm allows n users to (asynchronously) submit data values in label oper-

ations, and to request information about recent values submitted by all users in scan

operations. Roughly speaking, a scan operation returns the most recent value submitted
by each user, together with a total order corresponding to the temporal order of those
submissions. Because operations can be concurrent, this temporal order is not always
clearly determined, so some care is needed in de�ning what it means for the algorithm to
be correct.
Originally, the correctness conditions were de�ned axiomatically. In this paper, we de�ne

them instead in terms of the behaviors exhibited by another, simpler algorithm|the
Unbounded Concurrent Timestamp (UCTS) algorithm of Gawlick, Lynch, and Shavit
(1992). An easy proof of the correctness of UCTS was given by Gawlick (1992).
UCTS maintains a global data vector with one component for each user and with each

component accompanied by a nonnegative real-valued timestamp.�A scan operation reads
the vector (all at once) and uses the timestamps to determine the total order, breaking
ties by user identi�ers. A label operation reads the vector (all at once), determines the
largest real-valued timestamp, and chooses any greater real number as a new timestamp.
(There is one exception: if the choosing process itself is already the \winner," it simply
retains its previous timestamp.) Then, in a separate step, it attaches this new timestamp
to the value to be written, and writes the pair into its component of the global vector.
Other operations may interleave between the reading and writing step of a label operation.
UCTS is interesting because it can be used as a building block in the solution of several

distributed system problems, including �rst-come �rst-serve mutual exclusion (Lamport,
1974) and the construction of a multi-writer multi-reader atomic register from single-
writer multi-reader registers (Vitanyi and Awerbuch, 1986).
The Dolev-Shavit BCTS algorithm implements UCTS (i.e., its behaviors are allowed

by UCTS), but uses a bounded domain of timestamps rather than the unbounded set of
nonnegative reals. The particular domain used is a nested graph, nested to depth n � 1,
where n is the number of users. The basis of the domain is the 5-node digraph T2 shown in
Figure 1, in which arrows indicate which nodes come before which in the ordering. Note
that this ordering is not a partial order, since it is not transitive|it only gives pairwise

�Any unbounded dense order, e.g., the nonnegative rationals, will work just as well.

Introduction 3

ordering relationships between nodes. The timestamp domain Tn for n users consists of
T2, with each node replaced by another instance of T2, nested to a depth of n�1. Pairwise
ordering relationships between nodes in Tn are determined from those in T2, based on the
smallest instance of T2 that contains both nodes.
The distributed algorithms community considers BCTS to be very complicated. The

correctness proof by Dolev and Shavit (1989), based on ordering relations de�ned by
Lamport (1986), is long, detailed, and hard to understand. In fact, the algorithm and proof
have been considered so complicated that there have been at least two serious attempts
to devise simpler algorithms (Israeli and Li, 1987; Dwork and Waarts 1992). Note that
the di�culty of the proof is entirely in the safety properties|liveness is obvious.
Gawlick, Lynch, and Shavit (1992) gave a correctness proof for BCTS that has a nicer

structure than the original proof. Their proof is based on the input/output (I/O) automa-
ton model (Lynch and Tuttle, 1987; Lynch, 1996) and uses a set of invariant assertions
and a forward simulation mapping (Lynch and Vaandrager, 1991) from BCTS to UCTS.
The mapping and most of the invariants provide useful intuition about the algorithm and
make the proof much easier to understand. However, the proofs of the invariants and the
mapping are still rather long and detailed (about 20 pages in Gawlick, 1992). They consist
of many cases and large numbers of algebraic substitutions. The case arguments are so
detailed and delicate, in fact, that they did not seem to us to be su�ciently convincing.
Because we were unsatis�ed with the prior proof, and because the BCTS algorithm is so

fundamental, we undertook the task of verifying BCTS using the Larch Prover (Garland
and Guttag, 1991). Because of the complexity of the algorithm and proof, we believed this
would \push the limits" of current theorem-proving technology. We made one modi�cation
to the algorithm: to avoid clutter in the proofs, we suppressed the data values and worked

only with the timestamps.y We have completed the proof, and describe our results and
experiences in the rest of this paper.
Brie
y, our proof is based on that of Gawlick (1992), using essentially the same invari-

ants and simulation mapping. Our initial work involved formalizing many concepts (data
types, automata,: : :) that were previously de�ned only semi-formally. In doing this, we
discovered and resolved several small ambiguities in the earlier paper. Our formalization
led to an overall clari�cation and improvement of the earlier de�nitions.
Our proof meshes nicely with the earlier proof, �lling in gaps in the reasoning and

verifying the correctness of all the steps. Our proof contains a considerable amount of
advice from the user to the Larch Prover, but also many instances where the Larch Prover
�lled in steps that were done by hand in the earlier proof. We discovered no serious errors
in the earlier proof, but did discover some signi�cant missing steps, including a (simple)
missing invariant.
We constructed the proof without major di�culties. In fact, an MIT freshman with no

knowledge of automated theorem-proving or of distributed algorithms completed an initial
version of the entire proof in only 8 weeks. Subsequent weeks were spent polishing and
reorganizing the proof for maximum clarity and generality, and analyzing the speci�cation
for potential inconsistencies.
The contributions of this paper are (1) a formal proof for an important distributed

yThe values are merely \piggybacked" on the timestamps anyhow, so this should not be a signi�cant
modi�cation. Still, we plan to integrate the data values and re-run our proof.

4 Computer-Assisted Veri�cation of an Algorithm for Concurrent Timestamps

start(s) , 8 i 8 j (s[i].pc = nil ^ s[i].op = nil

^ s[i].t = 0 ^ s[i].nt = 0 ^ (s[i].ord)[j] = j);

enabled(s, beginscan[i]) , i 6= 0;

effect(s, beginscan[i], s') ,
s'[i].op = scan ^ s'[i].pc = snap ^ almostsame(s, s', i);

enabled(s, snap[i]) , i 6= 0 ^ s[i].pc = snap;

effect(s, snap[i], s') ,
(if s[i].op = scan

then 8 j 8 k ((s'[i].ord)[j] < (s'[i].ord)[k]

, s'[j].t < s'[k].t _ (s'[j].t = s'[k].t ^ j < k))

^ s'[i].pc = endscan ^ same_nt(s, s', i)

else s'[i].ord = s[i].ord ^ s'[i].pc = update

^ newlabel(s, i, s'[i].nt))

^ 8 j (i 6= j) s[j] = s'[j]) ^ same_t(s, s', i) ^ same_op(s, s', i);

enabled(s, endscan(o)[i]) , i 6= 0 ^ s[i].pc = endscan ^ s[i].ord = o;

effect(s, endscan(o)[i], s') ,
s'[i].op = nil ^ s'[i].pc = nil ^ o = s'[i].ord ^ almostsame(s, s', i);

enabled(s, beginlabel[i]) , i 6= 0;

effect(s, beginlabel[i], s') ,
s'[i].op = label ^ s'[i].pc = snap ^ almostsame(s, s', i);

enabled(s, update[i]) , i 6= 0 ^ s[i].pc = update;

effect(s, update[i], s') ,
s'[i].t = s[i].nt ^ s'[i].pc = endlabel ^ 8 j (i 6= j) s'[j] = s[j])

^ same_nt(s, s', i) ^ same_ord(s, s', i) ^ same_op(s, s', i);

enabled(s, endlabel[i]) , i 6= 0 ^ s[i].pc = endlabel;

effect(s, endlabel[i], s') ,
s'[i].op = nil ^ s'[i].pc = nil ^ almostsame(s, s', i)

Figure 2 Speci�cations for CTS actions

algorithm, and (2) a convincing demonstration of the practicality of using automated
theorem-provers in verifying full-scale distributed algorithms.

2 THE BCTS ALGORITHM

We model each of BCTS and UCTS as a shared memory I/O automaton (Lynch, 1996),

with one process for each user i 2 f1; : : : ; ng.z Each automaton has input actions beginscan i

and beginlabel i, output actions endscan i and endlabel i, and internal actions snapi and
update i for each i 2 f1; : : : ; ng. In fact the two algorithms are su�ciently similar that we
formalize them both in terms of a generic concurrent timestamp algorithm, CTS (speci�ed

zFor technical reasons related to the Larch type system, we have actually included a process 0; however,
it has no de�ned steps.

The BCTS Algorithm 5

UCTS (U, Label): trait

includes CTS(U, Label), RationalOrder(Label)

asserts with i, j: UID, s: States[U], l: Label

9 i (s[i].t = tmax(s)) ^ 8 i (s[i].t � tmax(s));

tmax(s) = s[imax(s)].t ^ 8 j (tmax(s) = s[j].t) j � imax(s));

newlabel(s, i, l) , (if i = imax(s) then l = tmax(s) else tmax(s) < l)

Figure 3 Speci�cation for UCTS

using Larch in Figure 2), which is parameterized by the sort Label used for timestamps,
an appropriate ordering and an appropriate de�nition of the newlabel relation.
The state of CTS has the following components, for each i:

� ti: The label currently used as a timestamp for user i, initially 0.
� nt i: A label (satisfying the newlabel predicate) to be used as a new timestamp for i,

initially 0.
� ord i: An array giving ranks of each process in timestamp order.
� pci: The currently enabled non-input action, initially nil .
� opi: the operation of which this action is a part, initially nil.

The ti are shared variables, each ti writable by process i and readable by all processes;
nt i, ord i, pci, and opi are private variables of process i.
The speci�cation of CTS (Figure 2) provides, for each action, an enabling predicate

on the state describing when the action can occur, and an e�ect predicate relating the
pre- and post-states when the action occurs. The state initialization is also described by
a predicate. The begin actions just set the op components appropriately and set the pc

components to snap. A snapi action within a scan operation sets ord i to the total ordering
of process indices given by the timestamps; ties are broken by process index. (The relation
< on the ord i components is the usual ordering of the integers; the relation < on the ti
components is the ordering assumed to be de�ned on the sort Label .) Then it sets pci
to endscan . A snapi within a label operation, on the other hand, places in nt i a new
timestamp satisfying the newlabel predicate, then sets pci to update. An update i sets the
shared component ti equal to the private component nt i. The end actions clean up the
state; endscan i also returns the current ord i.
Figure 2 does not contain the complete Larch speci�cation (or trait) for CTS. The rest

consists mostly of type de�nitions, function declarations, and de�nitions of predicates
like almostsame and same nt , which are used to specify that other state components
are unchanged. This speci�cation incorporates by reference other Larch traits, such as
IOAutomaton, which provide general de�nitions.
Figure 3 contains the speci�cation of a concurrent timestamp automaton, UCTS, that

uses an unbounded set of labels (namely, the nonnegative rational numbers) for time-
stamps. Here, the de�nition of the newlabel predicate is particularly simple, since there
is always a label that is greater than the maximum of the labels tj.
Figures 4 and 5 de�ne the �nite set of labels used as timestamps by BCTS. These

labels are lexicographic sequences of n� 1 symbols from the �ve-symbol alphabet shown

6 Computer-Assisted Veri�cation of an Algorithm for Concurrent Timestamps

Symbol: trait

introduces

s1, s2, s3, s4, s5: ! Symbol,

NS: Symbol ! Symbol,

__ <| __: Symbol, Symbol ! Bool

asserts

sort Symbol generated freely by s1, s2, s3, s4, s5

with t, t1, t2: Symbol

NS(s1) = s2; NS(s2) = s3; NS(s3) = s4; NS(s4) = s5; NS(s5) = s3;

t <| NS(t); s1 <| s3; s1 <| s4; s1 <| s5; s2 <| s4; s2 <| s5;

: (t1 <| t2 ^ t2 <| t1);

Figure 4 Axioms for symbols

TimeStamp (Symbol, Label, Index): trait

includes ZeroToN(Index, n), Symbol, Array(Label, Index, Symbol)

introduces
0: ! Label

__ < __: Label, Label ! Bool % lexicographic order

sameThrough: Label, Index, Label ! Bool

sameBefore: Label, Index, Label ! Bool

nextlabel: Label, Index ! Label

nextlabel3: Label, Label, Index ! Bool

inCycle: Label, Label, Index ! Bool

trans: Label, Label, Label ! Bool % transitivity

__�__: Label, Label ! Bool

asserts with t1, t2: Symbol, l, l1, l2, l3: Label, h, p: Index

sameThrough(l1, h, l2) , 8 p (p � h) l1[p] = l2[p]);

sameBefore(l1, h, l2) , 8 p (p < h) l1[p] = l2[p]);

l1 < l2 , 9 h (sameBefore(l1, h, l2) ^ l1[h] <| l2[h]);

l1 � l2 , l1 < l2 _ l1 = l2;

0[p] = s1;

trans(l1, l2, l3) , l1 < l2 ^ l2 < l3) l1 < l3;

inCycle(l1, l2, h) , sameBefore(l1, h, l2) ^ s2 <| l1[h];

nextlabel3(l1, l2, h) , h 6= 0 ^ sameBefore(l1, h, l2)

^ l1[h] = NS(l2[h]) ^ 8 p (h < p) l1[p] = s1);

h 6= 0) nextlabel3(nextlabel(l2, h), l2, h);

Figure 5 Axioms for timestamps

Manual proof of correctness 7

BCTS (B, n): trait

includes CTS(B, Label), TimeStamp(Symbol, Label, UID), IndexSet(UID, n)

introduces

agree: States[B], Label, UID ! FiniteSet[UID]

numi: States[B], UID, UID ! UID

fulli: States[B], UID, UID ! Bool

full: States[B], UID ! UID

asserts with l: Label, s: States[B], h, i, j, k: UID

8 i 8 j 8 k trans(s[i].t, s[j].t, s[k].t)

) 9 i (s[i].t = tmax(s)) ^ 8 i (s[i].t � tmax(s));

8 i 8 j 8 k trans(s[i].t, s[j].t, s[k].t)

) tmax(s) = s[imax(s)].t ^ 8 j (tmax(s) = s[j].t) j � imax(s));

j 2 agree(s, l, h) , j 6= 0 ^ sameThrough(s[j].t, h, l);

numi(s, i, h) = size(agree(s, tmax(s), h) - {i});

fulli(s, i, h) , (n - h) � numi(s, i, h);

fulli(s, i, full(s, i)) ^ 8 j (j < full(s, i)) : fulli(s, i, j));

newlabel(s, i, l) ,
l = (if i = imax(s) then s[i].t else nextlabel(tmax(s), full(s, i)))

Figure 6 Speci�cation for BCTS

in Figure 1.x Figure 6 uses these de�nitions to de�ne a bounded concurrent timestamp
automaton, BCTS. In order to de�ne the newlabel predicate here, we �rst de�ne agree(l; h)
as the set of all process indices whose timestamps agree with l in the �rst h components.
Then, assuming that there is some maximum timestamp tmax, and letting imax be the
largest process index with t = tmax, we de�ne the unique label l satisfying newlabel

as follows. It is ti if i = imax. Otherwise, we let h be the minimum index such that
size(agree(tmax; h)�fig) � n�h, and we let l be the timestamp that agrees with tmax in
the �rst h�1 components, whose h component is the graph-successor of the h component
of tmax, and whose other components are all s1.
A technicality: Note that this de�nition assumes that there is some maximum time-

stamp. This is not the case in general, because < is only de�ned pairwise and is not a
true partial order. Our conventions say that, if there is no such maximum, then tmax and
imax are de�ned arbitrarily. In places where the de�nition of newlabel is used, however,
state invariants will show that for all i, j, and k, ti < tj ^ tj < tk) ti < tk, which implies
that tmax is de�ned.

3 MANUAL PROOF OF CORRECTNESS

The correctness proof in (Gawlick, 1992) proceeds by showing that there is some relation
between the states of BCTS and those of UCTS that is a (multivalued) forward simulation,
as de�ned in Figure 7. An easy proof by induction shows that the existence of such

xFor technical reasons, we have actually formalized the labels as sequences of n + 1 symbols; however,
positions 0 and n are not used (a fact that we verify).

8 Computer-Assisted Veri�cation of an Algorithm for Concurrent Timestamps

SimulationMap (A1, A2, F): trait

assumes IOAutomaton(A1), IOAutomaton(A2)

introduces F: States[A1], States[A2] ! Bool

asserts with s, s': States[A1], u: States[A2], a: Actions[A1],

alpha: StepSeq[A2]

start(s) ^ inv(s)) 9 u (start(u) ^ F(s, u));

F(s, u) ^ inv(s) ^ inv(s') ^ isStep(s, a, s'))
9 alpha (execFrag(alpha) ^ first(alpha) = u ^ F(s', last(alpha))

^ trace(alpha) = trace(a))

Figure 7 Requirements for a forward simulation relation

SimulationBU (B, U, n): trait

includes BCTS(B, n), UCTS(U, ULabel)

introduces F: States[B], States[U] ! Bool

asserts with b: States[B], u: States[U], i, j, k: UID

F(b, u) ,
8 i ((b[i]).ord = (u[i]).ord ^ (b[i]).op = (u[i]).op

^ (b[i]).pc = (u[i]).pc)

^ 8 i 8 j ((u[i]).t = (u[i]).nt , (b[i]).t = (b[i]).nt)

^ 8 i 8 j (i 6= j

) (((b[i]).t < (b[j]).t , (u[i]).t < (u[j]).t)

^ ((b[i]).t = (b[j]).t , (u[i]).t = (u[j]).t)

^ ((b[i]).nt < (b[j]).nt , (u[i]).nt < (u[j]).nt)

^ ((b[i]).nt < (b[j]).t , (u[i]).nt < (u[j]).t)

^ ((b[i]).t < (b[j]).nt , (u[i]).t < (u[j]).nt)))

Figure 8 Simulation relationship between BCTS and UCTS

a forward simulation implies that all behaviors of BCTS are also behaviors of UCTS
(Lynch and Vaandrager, 1987) and hence that BCTS is correct.
Figure 8 de�nes the purported simulation relation, which basically says that the ordering

relationships between occurrences of timestamps in the states of the two algorithms are

the same.{ The fact that this relation is a forward simulation follows from a list of
invariants for BCTS, shown in Figure 9. Invariant inv1 says that all \signi�cant" triples
of timestamp occurrences have consistent pairwise ordering relationships. Invariant inv2
says that the t and nt components of process imax are equal. Invariant inv3 says that
any nt greater than tmax must have been assigned as a result of a nextlabel operation.
The other four are more technical; they are used in an inductive proof of invariants inv1
through inv3 .
The proof also uses several auxiliary lemmas about timestamps, the most interesting

{The de�nition in Figure 8 actually adds two clauses to the one in (Gawlick, 1992). We needed these for
our computer-assisted proof; we have not yet determined whether they can be eliminated.

Manual proof of correctness 9

inv1(s) ,
8 i 8 j 8 k (

trans(s[i].t, s[j].t, s[k].t)

^ (k 6= i ^ k 6= j) trans(s[i].t, s[j].t, s[k].nt))

^ (j 6= i ^ j 6= k) trans(s[i].t, s[j].nt, s[k].t))

^ (i 6= j ^ i 6= k) trans(s[i].nt, s[j].t, s[k].t))

^ (i 6= j ^ i 6= k) trans(s[i].t, s[j].nt, s[k].nt))

^ (j 6= i ^ j 6= k) trans(s[i].nt, s[j].t, s[k].nt))

^ (k 6= i ^ k 6= j) trans(s[i].nt, s[j].nt, s[k].t))

^ trans(s[i].nt, s[j].nt, s[k].nt));

inv2(s) ,
s[imax(s)].t = s[imax(s)].nt;

inv3(s) ,
8 p (tmax(s) < s[p].nt

) 9 h (s[p].nt = nextlabel(tmax(s), h) ^ h 6= 0));

inv4(s) ,
8 i 8 h (s[i].nt � tmax(s) ^ sameThrough(s[i].t, h, tmax(s))

) sameThrough(s[i].nt, h, tmax(s)));

inv5(s) ,
8 i 8 h (inCycle(s[i].nt, tmax(s), h)) sameBefore(s[i].t, h, tmax(s)));

inv6(s) ,
8 i 8 h (s[i].nt = nextlabel(tmax(s), h) ^ h 6= 0

) (n - h) � numi(s, i, pred(h)));

inv7(s) ,
8 h (tmax(s)[h] 6= s1 ^ h 6= 0

) (n - h) < size(agree(s, tmax(s), pred(h))));

Figure 9 Invariants preserved by BCTS

implies with l1, l2, l3: Label, h: Index

: (l1 < l2 ^ l2 < l1);

l1 < l2 _ l1 = l2 _ l2 < l1;

l1 < l2 ^ l2 < l3 ^ : (l1 < l3)

) 9 h (sameBefore(l1, h, l2) ^ sameBefore(l2, h, l3)

^ ((l1[h] = s3 ^ l2[h] = s4 ^ l3[h] = s5)

_ (l1[h] = s4 ^ l2[h] = s5 ^ l3[h] = s3)

_ (l1[h] = s5 ^ l2[h] = s3 ^ l3[h] = s4)))

Figure 10 Lemmas about timestamps

of which are shown in Figure 10. The �rst two imply trichotomy: for any two labels l1
and l2, exactly one of the relations l1 < l2, l1 = l2, l1 > l2 is true. The third describes the
circumstances in which a set of three labels can fail to be linearly ordered by <.
An example of a typical claim (about an updatek step) and its manual proof appear in

Figure 11.

10 Computer-Assisted Veri�cation of an Algorithm for Concurrent Timestamps

Claim 6.4.6: If k 6= b:imax and b:tmax � b:ntk then b0:tmax = b0:tk and b0:imax = k.

Proof. We proceed by showing that b0:ti � b0:tk for all i 6= k. From the de�nition of
tmax and the assumption that b:tmax � b:ntk, we know that b:nti � b:tmax � b:ntk. Let
z = b:imax; then b:tz = b:tmax and z 6= k. Since k 6= z, k 6= i, and b:tz = b:tmax, there
exists a choice vector that includes the values b:ti; b:tmax, and b:ntk. Since tot(b) = true,
the values in this choice vector are totally ordered. Hence, b:ti � b:tmax � b:ntk implies
that b:ti � b:ntk. As a result of the action b:ntk = b0:tk and ti does not change. Therefore,
b:ti � b:ntk implies that b0:ti � b0:tk. Hence b0:tmax = b0:ntk. Since k is the only process
index for which b0:tmax = b0:tk, b0:imax = k.

Figure 11 Manual proof of Claim 6.4.6 (Gawlick, 1992)

4 COMPUTER-ASSISTED PROOF OF CORRECTNESS

Our computer-assisted proof was carried out using the Larch Prover (Garland and Guttag,
1991), an automated proof assistant for multisorted �rst-order logic that employs built-in
knowledge about boolean operations and quanti�ers, equational term rewriting, and proof
techniques like case analysis and structural induction. Our proof follows Gawlick's (1992)
closely, di�ering mainly in the following respects.

� It provides axioms for the underlying data types.
� It supplies proofs for the required properties of these data types.
� It de�nes the automata with greater precision.
� It provides more details for the proofs of invariance and simulation (although, in some

cases, it suppresses routine algebraic reasoning that the Larch Prover carries out auto-
matically).

We discovered no serious errors in the invariance and simulation proofs, but we did
discover some missing steps and ambiguities. One missing step involved a simple invari-
ant, pci = snap) opi = label _ opi = scan, that follows \by inspection," but was
neither stated nor proved in the manual proof. Another involved the well-de�nedness of
the transition relation. For an I/O automaton to be well-de�ned, whenever an action is
enabled in a reachable pre-state, there must be a post-state satisfying the transition rela-
tion. Although this fact is fairly \obvious" for UCTS, it is by no means obvious for BCTS
and depends on a careful handling of the technicality mentioned at the end of Section 2.
Gawlick does address this technicality, but less formally than we do.
The computer-assisted proof involves extensive case analysis, as well as explicit com-

mands to eliminate existential quanti�ers in axioms and conjectures. Figures 11 and 12 il-
lustrate the similarities and di�erences between the manual and computer-assisted proofs.
Figure 12 contains the portion of our proof corresponding to the typical proof fragment
in Figure 11. The two proofs have roughly the same size and structure, but the organiza-
tion of the computer-assisted proof is more transparent. For example, it contains separate
lemmas to show b0:tmax = b0:tk and b0:imax = k. In the computer-assisted proofs, kc, bc,
and b0c are constants corresponding to k, b, and b0 in the manual proof; the �x command
applies the de�nition of tmax in state b0c to produce a process index ic; the critical-pairs

Computer-assisted proof of correctness 11

resume by case kc 6= imax(bc) ^ tmax(bc) < bc[kc].nt

prove tmax(b'c) = b'c[kc].t

resume by case b'c[kc].t < tmax(b'c)

fix i as ic in descendants($tmaxDef) / c-o(b'c)

resume by case ic = kc

critical-pairs *caseHyp with *hyp, $tmaxDef

resume by case ic = imax(bc)

instantiate l1 by tmax(bc), l2 by bc[kc].nt in TimeStamp

instantiate i by ic, j by imax(bc), k by kc in descendants($inv1Def)

resume by case tmax(bc) = tmax(b'c)

critical-pairs *caseHyp with $tmaxDef

instantiate l1 by tmax(bc), l2 by bc[kc].nt in TimeStamp

instantiate l1 by tmax(b'c), l2 by bc[kc].nt in TimeStamp

critical-pairs *caseHyp with $tmaxDef

instantiate l1 by tmax(b'c), l2 by b'c[kc].t in TimeStamp

critical-pairs *caseHyp with $tmaxDef

instantiate i by kc in $tmaxDef

prove kc = imax(b'c)

resume by cases imax(b'c) < kc, kc < imax(b'c), kc = imax(b'c)

instantiate j by kc in proper-descendants($imaxDef)

instantiate y by kc, x by imax(b'c) in TotalOrder
instantiate i by imax(b'c) in $tmaxDef

resume by case (bc[imax(b'c)]).t < tmax(bc)

resume by case imax(b'c) = imax(bc)

resume by case kc = imax(b'c)

instantiate

i by imax(b'c), j by imax(bc), k by kc in descendants($inv1Def)

..

instantiate j by imax(b'c) in *Hyp

resume by case kc = imax(b'c)

instantiate j by imax(b'c) in *Hyp

instantiate i by imax(b'c) in $tmaxDef

Figure 12 Computer-assisted proof of Claim 6.4.6

and instantiate commands replace variables by appropriate constants (such as ic) in def-
initions and case hypotheses; the Larch Prover then uses these facts to prove the stated
conjectures by rewriting them to true. Note that the computer-assisted proof does not
need to appeal to a high-level notion of a \choice vector." The proofs of these two lemmas
are typical and require no human interaction other than what is shown.
An MIT freshman produced the �rst version of our proof in only 8 weeks, learning

about distributed algorithms and the Larch Prover in the process. Checking his proof
required about an hour of CPU time on a 100mHz DEC Alpha. We spent a good deal of
subsequent time polishing the proof because we believe that such polishing can improve all
proofs, whether manual or computer-assisted, by clarifying the presentation, highlighting
important aspects, and suppressing less important aspects. We polished the computer-
assisted proof by:

12 Computer-Assisted Veri�cation of an Algorithm for Concurrent Timestamps

� Making it correspond more closely to Gawlick's manual proof, after it had diverged
somewhat because of various technical details that arose in using the Larch Prover.

� Decreasing the length of the proof by �nding systematic ways of handling similar cases.
� Raising the level of abstraction in the guidance supplied to the Larch Prover, thereby

making it easier to modify the proof and recheck it after each modi�cation.
� Decreasing the amount of time required to recheck the proof (by memoizing guidance

that the Larch Prover had discovered automatically).
� Making the correctness of the formulation more apparent, as discussed below.
� Reducing the number of axioms. This both made the soundness of the axioms more

apparent and improved the performance.

Since one of the primary goals of computer assistance is to increase con�dence in the
correctness of a proof, we paid particular attention to ensuring that our proof did not
simply replace one source of uncertainty (e.g., gaps in the manual proof) by another (e.g.,
questions about whether the computer-assisted proof established the same result as the
manual proof, or whether some subtle inconsistency had crept into the axiomatization).
In order to keep our formalization, as shown in Figures 2-10, readable by the distributed
algorithms community, we chose not to use a prover like the Boyer-Moore (1988) prover,
which forces its users to code axioms and conjectures in a style that precludes inconsisten-
cies at the expense of readability. Instead, we analyzed our axiomatization for potential
sources of inconsistency, and we proved lemmas to show that various de�nitions did not
introduce inadvertent inconsistencies.
Explicit (i.e., nonrecursive) de�nitions and de�nitions by induction over freely generated

types are guaranteed to be consistent. Thus our axioms for I/O automata, natural number
indices, and �nite sequences are all consistent (at least relative to Peano arithmetic,
which justi�es the consistency of recursive de�nitions). We proved lemmas to establish
the consistency of other de�nitions, e.g., implicit de�nitions and recursive de�nitions over
nonfreely generated types. For example, to show that the implicit de�nition of tmax in
UCTS does not introduce an inconsistency, we proved the following easy lemma:
9l(9i(s[i]:t= l) ^ 8i(s[i]:t� l))

In order to show the same for the corresponding de�nition of tmax in BCTS, we proved
a similar, but nontrivial lemma, using ideas sketched by Gawlick:
8i8j8k trans(s[i]:t; s[j]:t; s[k]:t)) 9l(9i(s[i]:t= l) ^ 8i(s[i]:t� l))

In this manner, we showed that the de�nitions of imax , tmax , full , and nextlabel in
Figures 3, 5, and 6 do not introduce any inconsistencies.
We exercised particular care with special purpose traits such as Symbol, TimeStamp,

BCTS, and UCTS. Since Symbol axiomatizes a �nite type, we veri�ed its consistency by
checking its axioms in a �nite model; in addition, we used the Knuth-Bendix completion
procedure in the Larch Prover to show that its equational axiomatization contains no
inconsistencies. For general purpose traits (such as those axiomatizing arrays, ordering
relations, and �nite sets), we relied on short, published speci�cations (Guttag and Horning,
1991). We were careful to combine these speci�cations only in ways that did not doubly
constrain relations like <.
Table 1 shows the number, structure, and size of our speci�cations and computer-

assisted proofs. We speci�ed axioms for all relevant data types by Larch traits, and we
formalized all relevant lemmas and theorems as implications of those traits. For each trait,
Table 1 lists those other traits that contribute axioms to it, the number of new axioms

Assessment 13

Table 1 Larch traits used in proof

Trait Subtraits, included Numbers of
(and implied) axioms lemmas proof lines

Array 2 0 0
BCTS CTS, TimeStamp, IndexSet; 20

) ExistsPostState, InductiveInv 12 � 1500
BoundedMap Finite, TotalOrder 0 1 10
CTS Array, IOAutomaton, ZeroToN 31 0 0
ExistsPostState IOAutomaton 1 0 0
Finite Sequence 1 0 0
FiniteSet 7 0 0
IOAutomaton 17 0 0
IndexSet ZeroToN, FiniteSet 2 5 70
InductiveInv IOAutomaton 2 0 0
PartialOrder 3 4 15
Permutation Finite 5 0 0
RationalOrder TotalOrder 3 0 0
Sequence 3 0 0
SimulationBU BCTS, UCTS;) SimulationMap 1 0 � 600
SimulationMap IOAutomaton 2 0 0
Symbol 14 12 10
TimeStamp ZeroToN, Symbol, Array 9 15 125
TotalOrder PartialOrder 1 2 5
UCTS CTS, RationalOrder; 5

) ExistsPostState, InductiveInv 3 30
ZeroToN TotalOrder, Finite 8 0 0

it introduces, those traits it implies (with proper instantiations for their parameters), the
number of lemmas and theorems we proved about it (in addition to the axioms of its
implied traits), and a rough count of the number of lines of guidance we supplied to the
Larch Prover to prove these lemmas. These numbers are necessarily somewhat arbitrary,
because any �nite number of axioms can be conjoined into a single axiom, and because
the total number of lines of guidance can be reduced by combining several lines into
one. However, the statistics were not arti�cially manipulated, and they re
ect accurately
where e�ort had to be invested: in proving that BCTS preserves its invariants, in proving
that F is indeed a forward simulation relation, and in formalizing and proving elementary
properties of the symbols used for timestamps.

5 ASSESSMENT

The task of transforming Gawlick's 20-page proof into a machine-checked version was
not unduly di�cult. This was mainly because the proof was already in a style, based
on invariants and a forward simulation, that matched the capabilities of our theorem-
proving tools. We have found this style to be very successful for manual proofs of many

14 Computer-Assisted Veri�cation of an Algorithm for Concurrent Timestamps

other complicated distributed algorithms, so there is every reason to believe that machine
proofs are feasible for these algorithms as well.
There are many bene�ts that accrued from our proof e�ort:
Clarity. Contrary to some expectations, the attention we needed to pay to details

in carrying out our machine proof did not lead to clutter in the �nal proof. Rather, the
computer-assisted proof process yielded clarity by removing ambiguities, enforcing precise
notation, and suppressing routine detail (e.g., straightforward algebraic manipulations).
The structure of the resulting proof is more apparent than that of the manual proof.

Working out the proofs in complete detail helped us discover additional structure and
lemmas, as well as to identify case splits and applications of axioms and lemmas. The
Larch Prover handled many trivial cases automatically. In nontrivial cases, it expanded
and simpli�ed high-level abstractions used in the manual proof, thereby making it easier
to distinguish the important parts of the abstractions from the technicalities. All this
makes the computer-assisted proof easier to read than the manual proof.
Reliability. Our computer-assisted proof supplies details for all cases, thereby elim-

inating a major source of oversights and errors in ordinary proofs, where similar cases
are often dismissed with short phrases like \by analogy" or \similarly." Such reasoning
is particularly error prone in the case of concurrent algorithms, where nondeterministic
execution makes analogies harder to de�ne and more dangerous to use. The computer-
assisted proof eliminates lacunae at the cost of additional work that should, in fact, be in
every good manual proof.

Easier rechecking. No matter how carefully one formulates axioms and conjectures
before carrying out a large proof, it is likely that invariants, simulation relations, or
other de�nitions will have to be modi�ed during the course of carrying out the proof.
Furthermore, even after the proof is complete, one may wish to polish or revise it. These
activities can require rechecking large portions of an already-completed proof.
Such rechecking is much safer and easier with a computer-assisted proof than a man-

ual proof. Computer-assisted rechecking eliminates the chance of overlooking a case or
assuming properties that are no longer true after a change: the user can rely on the Larch
Prover to identify all the places where the changes have an e�ect. Furthermore, if one
uses appropriately abstract proof strategies, rechecking a proof is easy and fast.
Experimentation. Computer-assistance makes it easier to experiment with a proof.

One can try to restructure a proof to make it more concise, to \
ow" more intuitively, to
use better high-level abstractions, or to isolate key lemmas. In all cases, the Larch Prover
can be used to determine the impact of the modi�cations.

Furthermore, the Larch Prover can provide statistics about how many times and where
an axiom was used. In this way, axioms that are never used can be identi�ed and removed,
and those that are seldom used can be reconsidered. In this way, users can often generalize
their results.
Reusable structure. If a computer-assisted proof (or manual proof) is su�ciently

modular, its pieces can generally be reused directly for related proofs. In addition, because
of the ease of rechecking, a computer-assisted proof can be used as a template for other
similar proofs.

On the other hand, there are some drawbacks to computer-assisted proof e�orts such as
ours. A computer-assisted proof requires all assumptions and claims to be stated precisely;

Conclusions and future work 15

while that is generally an advantage, it can also be a disadvantage during early states
of algorithm and proof development, where it may be easier to think intuitively and
imprecisely. However, it is not necessary to prove all assertions in early stages of proof
development: the Larch Prover allows the user to assert lemmas without having to prove
them immediately. A computer-assisted proof also requires formalizing all data types.
Although this can be tedious, it is not a recurring cost: each data type only needs to be
de�ned once, and useful lemmas can be accumulated as they are proved.
In our current framework, an annoying requirement is that all components of the post-

state must be speci�ed, rather than only those that change. Also, the user must specify
proof strategies that are often more detailed than we would wish (e.g., to deal with
properties such as transitivity).
There are still potential sources of error in computer-assisted proofs. It is always possi-

ble to make mistakes in formalizing or transcribing an algorithm. Using natural, readable
notations helps with this problem, as does having many computer tools (e.g., a prover, a
simulator, and a model-checker) use the same representation. As discussed in Section 4,
inconsistent axiomatizations can be another source of error. However, as discussed there,
we feel that proving appropriate lemmas is the proper way to address consistency, rather
than using more restrictive logical formalisms, which may increase the likelihood of for-
malization errors. Furthermore, an automated prover can formulate lemmas whose proof
will ensure consistency.

6 CONCLUSIONS AND FUTURE WORK

We have provided a machine-checked proof for the Bounded Concurrent Timestamp algo-
rithm of Dolev and Shavit, based on a pre-existing manual proof by Gawlick, Lynch, and
Shavit. This demonstrates the feasibility of machine veri�cation of full-scale distributed
algorithms (with arbitrary numbers of processes), provided that a good manual proof is
already available. Although our proof was carried out using the Larch Prover, we expect
that much of the work should be portable to other theorem provers.
We believe that the e�ort we put into formalizing the algorithm was completely repaid

by the help it provided in clarifying ambiguities. In fact, we believe that the technol-
ogy works so well that designers of similarly complicated distributed algorithms should
routinely formalize their algorithms with the same degree of precision and computer as-
sistance. On the other hand, we are not yet prepared to advocate that all such algorithms
should be veri�ed mechanically; the work required to do this is still quite substantial and
time-consuming. Still, even if non-experts cannot yet easily produce computer-assisted
proofs, they can read them and use them to polish their manual proofs. Furthermore,
when the algorithm's correctness is especially critical (e.g., when it is to be used for a
safety-critical application or as a building block for other algorithms), we believe that the
extra work is justi�ed.
We are currently working to stylize and facilitate the proof process by de�ning a formal

language for expressing I/O automata. This language will provide a clear discipline for
describing I/O automata, and it will make the programming task easier in other ways
(e.g., by providing a default treatment of unchanged state components, which now need
to be described explicitly, and by supporting the description of systems as compositions
of automata). We are also working on tools to check the syntax and static semantics of

16 Computer-Assisted Veri�cation of an Algorithm for Concurrent Timestamps

automata descriptions, to generate lemmas that must be proved to establish the consis-
tency of these descriptions, to translate these descriptions into input for theorem provers,
simulators, and model checkers, and to generate guidance (e.g., proof strategies) for the
operation of these tools. We believe that progress on this combination of languages and
tools will put computer-assisted proofs within the reach of the entire distributed algo-
rithms community.

REFERENCES

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. (1993) Atomic snapshots of
shared memory. Journal of the ACM, 40(4)), 873-890.

Robert S. Boyer and J Strother Moore. (1988) A Computational Logic Handbook, Academic
Press.

Danny Dolev and Nir Shavit. (1989) Bounded concurrent timestamps are constructible. SIAM
Journal of Computing, to appear. Also in 21st ACM Symposium on Theory of Computing,
454{465.

Cynthia Dwork and O. Waarts. (1992) Simple and e�cient bounded concurrent timestamping
or bounded concurrent timestamp systems are comprehensible! ACM Symposium on Theory
of Computing.

Stephen Garland and John Guttag. (1991) A guide to LP, the Larch Prover. TR-82, DEC
Systems Research Center. Updated version available as
http://larch.lcs.mit.edu:8001/larch/LP/overview.html.

Rainer Gawlick. (1992) Concurrent timestamping made simple. Master's Thesis, MIT EECS.
Rainer Gawlick, Nancy Lynch, and Nir Shavit. (1992) Concurrent timestamping made simple.

Israel Symposium on Theory and Practice of Computing.
John Guttag and James Horning. (1993) Larch: Languages and Tools for Formal Speci�cation.
Springer-Verlag.

A. Israeli and M. Li. (1987) Bounded time stamps. 28th Annual Symposium on Foundations of
Computer Science, 371{382.

Leslie Lamport. (1974) A new solution of Dijkstra's concurrent programming problem. Commu-
nications of the ACM, 78(8), 453{455.

Leslie Lamport. (1986). On interprocess communication. Parts I and II. Distributed Computing,
1, 77{101.

Victor Luchangco. (1994) Using simulation techniques to prove timing properties. Master's The-
sis, MIT EECS.

Victor Luchangco, Ekrem S�oylemez, Stephen Garland, and Nancy Lynch. (1994)Verifying timing
properties of concurrent algorithms. FORTE'94.

Nancy Lynch. (1996) Distributed Algorithms. Morgan Kaufmann.
Nancy Lynch and Mark Tuttle. (1987) Hierarchical correctness proofs for distributed algorithms.
Technical Report MIT/LCS/TR-387, MIT Laboratory for Computer Science.

Nancy Lynch and Frits Vaandrager. (1991) Forward and backward simulations | Part I: Un-
timed Systems. (1995) Information and Computation, 121(2), 214{233.

Anna Pogosyants. (1994) Incorporating specialized theories in a general purpose theorem prover.
Master's Thesis, MIT EECS.

Nir Shavit. (1989) Concurrent timestamping. Ph.D. Thesis, The Hebrew University.
J�rgen Sogaard-Andersen, Stephen Garland, John Guttag, Nancy Lynch, and Anna Pogosyants.
(1993) Computer-assisted simulation proofs. 4th Conference on Computer Aided Veri�cation.

P. Vitanyi and B. Awerbuch. Shared register access by asynchronous hardware. 27th Symposium

on Foundations of Computer Science.

