Implementing Sequentially Consistent Shared Objects using Broadcast and Point-To-Point Communication

Alan Fekete† M. Frans Kaashoek‡ Nancy Lynch‡

†Department of Computer Science FO9 ‡MIT Laboratory for Computer Science University of Sydney 2006, Australia. Cambridge MA 02139, U.S.A.

Abstract

This paper presents and proves correct a distributed algorithm that implements a sequentially consistent collection of shared read/update objects. This algorithm is a generalization of one used in the Orca shared object system. The algorithm caches objects in the local memory of processors according to application needs; each read operation accesses a single copy of the object, while each update accesses all copies. The algorithm uses broadcast communication when it sends messages to replicated copies of an object, and it uses point-to-point communication when a message is sent to a single copy, and when a reply is returned. Copies of all the objects are kept consistent using a strategy based on sequence numbers for broadcasts.

The algorithm is presented in two layers. The lower layer uses the given broadcast and point-to-point communication services, plus sequence numbers, to provide a new communication service called a context multicast channel. The higher layer uses a context multicast channel to manage the object replication in a consistent fashion. Both layers and their combination are described and verified formally, using the I/O automaton model for asynchronous concurrent systems.

1 Introduction

In this paper, we present and verify a distributed algorithm that implements a sequentially consistent collection of shared read/update objects using a combination of (reliable, totally ordered) broadcast and (reliable) point-to-point communication. This algorithm is a generalization of one used in the implementation of the Orca distributed programming language [10] over the Amoeba distributed operating system [35].

Orca is a language for writing parallel and distributed application programs to run on clusters of workstations, processor pools and massively parallel computers [10, 34]. It provides a simple shared object model in which each object has a state and a set of operations, classified as either read operations or update operations. Read operations do not modify the object state, while update operations may do so. Each operation involves only a single object and appears to be indivisible.

More precisely, Orca provides a sequentially consistent memory model [26]. Informally speaking, a sequentially consistent memory appears to its users as if it were centralized (even though it may be implemented in a distributed fashion). There are several formalizations of the notion of sequentially consistent memory, differing in subtle ways. We use the state machine definition of Afek, Brown and Merritt [4].
Orca runs over the Amoeba operating system [35], which provides two communication services: broadcast and point-to-point communication. Both services provide reliable communication, even in the presence of communication failures. No guarantees are made by Orca if processors fail; therefore, we do not consider processor failures either. In addition, the broadcast service promises delivery of the broadcast messages in the same total order at every destination, while the point-to-point service preserves the order of messages between any sender and receiver. The cost of an Amoeba broadcast, in terms of time and amount of communication, is higher than that of a single point-to-point message. Therefore, it is natural to design algorithms so that point-to-point communication is used whenever possible, i.e., when a message is intended for only a single destination, and broadcast is only used when necessary, i.e., when a message must go to several destinations.

In the implementation of Orca, user programs are distributed among the various processors in the system. The user program consists of threads, each of which runs on a single processor. In this paper, we call these threads clients of the Orca system. Each processor may support several clients. Shared objects are cached in the local memory of some of the processors. Each read operation by a client accesses a single copy of the object, while each update operation accesses all copies. The underlying broadcast primitive provided by the Amoeba system is used to send messages that must be sent to several destinations — that is, invocations of update operations for objects that have multiple copies. The underlying point-to-point primitive is used to send messages that have only a single destination, that is, invocations of reads from a site without a local copy of the object, invocations of writes for an object that has only single (remote) copy, and responses to all invocations.

An early version of the implementation used a “replicate-everywhere” algorithm that caches all shared objects at all processors. This strategy yields good performance for an object that has a high read-to-update ratio, since a read operation needs only to access the local copy of the object. A major drawback is that updates must be performed at all copies, using an (expensive) broadcast communication. Experience has shown that there are some objects for which this is not the best arrangement. For example, many applications use a job queue object to allow clients to share work; the job queue is updated whenever a client appends information to it about a task that needs to be done, and also whenever a client removes a task from the queue in order to begin work on it. Since all accesses to a job queue are updates, total replication is not an efficient strategy in this case. Another drawback of total replication is the space needed for the copies.

Because of objects like these, Orca has been re-implemented to allow more flexibility in the placement of copies. The new implementation uses an “all-or-one” replication algorithm that allows some objects to be totally replicated and others to have only a single copy. Operations on an object with only a single copy can now be done using only point-to-point messages, though broadcast must still be used for updates on replicated objects. The decision about whether or not to replicate an object is made at run time using information generated by the Orca compiler. The details of this decision process, and also performance measurements to show the benefits of not replicating all objects, can be found in [9].

The naive strategy of allowing each read operation to access any copy of the object and each update operation to access all copies is not by itself sufficient to implement a sequentially consistent shared memory. To see why, consider the execution depicted in Figure 1, where time runs down the page, each vertical line represents the activity at one processor, and messages are shown as arrows from the sending event at one processor to the receipt event at another. The example involves 3 processors, \(P_1 \), \(P_2 \) and \(P_3 \), and two objects, \(x \) and \(y \). Object \(x \) is replicated on all processors, while object \(y \) is stored only on \(P_2 \). The figure shows the invocation and response messages for an update of \(y \) by \(P_1 \), and the broadcast invocation messages for an update of \(x \) by \(P_2 \). In this execution, \(P_3 \)’s read operations indicate that \(y \) is updated before \(x \) is, while \(P_1 \) reads the new value of \(x \) before invoking the update of \(y \).

1 A broadcast service with such a consistent ordering guarantee is sometimes called a group communication service. Although group communication is widely discussed in the systems literature, there is no general agreement on its definition. In this paper, we sidestep the issue by using the term broadcast to indicate a communication to all sites in the system, and multicast to indicate a communication to a subset of the sites. This terminology does not say whether the service is provided by hardware or software.
In a centralized shared memory, such conflicting observations are impossible; thus this execution violates sequential consistency.

The “all-or-one” replication algorithm in Orca solves this consistency problem using a strategy based on sequence numbers for broadcasts. These broadcast sequence numbers are piggybacked on certain point-to-point messages and are used to determine certain ordering relationships among the messages.

Our original goal was to verify the correctness of the “all-or-one” Orca replication algorithm. In the early stages of our work, however, we discovered a logical error in the implemented algorithm. Namely, broadcast sequence numbers were omitted from some point-to-point messages (the replies returned to the operation invokers) that needed to include them. We produced a corrected version of the algorithm, which has since been incorporated into the Orca system.

The algorithm we study in this paper is our corrected algorithm, generalized beyond what is used in the Orca implementation to allow replication of a shared object at an arbitrary collection of processors, rather than just one processor or all processors. We call this a “partial” replication algorithm. There is one way in which this partial replication algorithm is less general than the Orca implementation, however: we assume for simplicity that the locations of copies for each object are fixed throughout a program execution, whereas Orca allows these locations to change dynamically, in response to changes in access patterns over time. We discuss the extension of our results to the case of dynamic reconfiguration in Section 7. We also require less of the underlying point-to-point primitive than Amoeba provides: we do not assume that the order of messages between the same sender and receiver is preserved.

We present and verify the algorithm as the composition of two completely separate layers, each a distributed algorithm. The structure of this part of the system is depicted in Figure 2. The lower layer uses the given broadcast and point-to-point communication services, plus broadcast sequence numbers, to implement a new communication
service called a *context multicast channel*. A context multicast channel supports multicast of messages to designated subsets of the sites, according to a virtual total ordering of messages that is consistent with the order of message receipt at each site, and consistent with certain restricted “causality” relationships. The guarantees provided by a context multicast channel are weaker than those that are provided by *totally ordered causal multicast channels*, as provided by systems such as early versions of Isis [13, 14]. However, the properties of a context multicast channel are sufficiently strong to support the replica management of the Orca algorithm. We offer the context multicast channel as an intermediate abstraction that helps in understanding the algorithm of this paper, which provides partially replicated data using the primitives available in Amoeba. Whether it is valuable in other situations remains to be seen.

The lower layer uses the given point-to-point primitive for each multicast message with a single destination, and the given totally ordered broadcast primitive for each multicast message with more than one destination. (Sites that are not intended recipients simply discard the message.) Sites associate sequence numbers with broadcasts and piggyback the sequence number of the last received broadcast on each point-to-point message. When a point-to-point message reaches its destination, the recipient delays its delivery until the indicated number of broadcasts have been received. We prove that this algorithm correctly implements a context multicast channel.

The higher layer uses an arbitrary context multicast channel to manage the object replication in a consistent fashion. Each object is replicated at an arbitrary subset of the sites. A site performs a read operation locally if possible. Otherwise, it sends a request to any site that has a copy and that site returns a response. A site performs an update operation locally if it has the only copy of the object. Otherwise, it sends a multicast message to all sites that have copies, and waits to receive either its own multicast, or else an appropriate response from some other site. We prove that this algorithm, combined with any context multicast system, provides a sequentially consistent memory. Our proof uses a new method based on partial orders.

All our specifications and proofs are presented in terms of the I/O automaton model for asynchronous concurrent systems [30]; see [29] for a tutorial presentation of the model. General results about the composition of I/O automata allow us to infer the correctness of the complete system from our correctness results for the two separate layers.

1.1 Related Work

Many different correctness conditions have been proposed for shared memory, including strong conditions like memory coherence and weaker ones like release consistency. Sequential consistency is widely used because it appears to be closest to what programmers expect from a shared memory system; non-sequentially-consistent shared memory systems typically trade programmability for performance. Sequential consistency was first defined by Lamport [26]; in this paper, we use an alternative formulation proposed by Afek et al. [4], based on I/O automata. Other papers exploring correctness conditions for shared memory and algorithms that implement them include [2, 3, 5, 11, 12, 15, 17, 18, 19, 20, 21, 28, 33]. A valuable survey of these ideas is given by Adve and Gharachorloo [1].
In most of previous work, memory is modelled as a collection of items that are accessed through read and write operations. The study of correctness for shared memory with more general data types was initiated by Herlihy and Wing [22]. Sequential consistency and other consistency conditions for general data types has been studied by Attiya and Welch [8] and Attiya and Friedman [7].

The algorithms that provide each layer in this paper are closely related to some in the literature. In the lower layer, context multicast is provided by placing sequence numbers in messages, and delaying processing until after the receipt of messages that should be ordered ahead. This is similar to techniques used by Welch [36] and Neiger and Toueg [31], which delay point-to-point messages based on sequence numbers. The algorithm in the upper layer updates all copies, and reads any copy; this is folklore from the database community, where operation ordering is managed by locking. Attiya and Welch [8] proved that this algorithm provides sequential consistency when run over a totally ordered broadcast communication service. Our proof technique for sequential consistency based on a partial order is similar to a method used by Attiya and Friedman [7] to prove hybrid consistency.

1.2 Overview of this paper

The rest of the paper is organized as follows. Section 2 introduces basic terminology that is used in the rest of the paper. Section 3 contains the definition of a sequentially consistent shared memory and introduces our new method for proving sequential consistency. Section 4 contains definitions of multicast channels with various properties, and in particular, the definition of a context multicast channel. Section 5 contains the higher layer algorithm, which implements sequential consistency using context multicast, plus a proof of its correctness. Section 6 contains the lower layer algorithm, which implements context multicast in terms of broadcast and point-to-point messages, plus a proof of its correctness. Section 7 contains a discussion of dynamic reconfiguration, and some ideas for future work. Finally, in Section 8 we draw our conclusions.

2 Some Basics

2.1 Partial Orders

We use many partial (and total) orders, on events in executions, and on operations. Throughout the paper, we assume that partial and total orders are irreflexive, that is, they do not relate any element to itself. Also, we define a partial or total order P to be well-founded provided that each element has only finitely many predecessors in P. This assumption is needed to rule out various technical anomalies.

2.2 I/O Automata

The I/O automaton model is a simple labeled transition system model for asynchronous concurrent systems. An I/O automaton has a set of states, including some start states. It also has a set of actions, classified as input, output, or internal actions, and a set of steps, each of which is a (state, action, state) triple. Finally, it has a set of tasks, each of which consists of a set of output and/or internal actions. Inputs are assumed to be always enabled.

An I/O automaton executes by performing a sequence of steps. An execution is said to be fair if each task gets infinitely many chances to perform a step. External behavior of an I/O automaton is defined by the set of fair traces, i.e., the sequences of input and output actions that can occur in fair executions.

I/O automata can be composed, by identifying actions with the same name. The fair trace semantics is compositional. Output actions of an I/O automaton can also be hidden, which means that they are reclassified as internal actions. See [30] or [29] for more details.
3 Sequentially Consistent Shared Object Systems

In this section, we define a sequentially consistent shared object system and give a new method for proving that a system is sequentially consistent. Informally, a system is said to be a sequentially consistent shared object system if all operations receive responses that are “consistent with” the behavior of a serially-accessed, centralized memory. More precisely, the order of events at each client should be the same as in the centralized system, but the order of events at different clients is allowed to be different.

3.1 The Interface

We start by identifying the actions by which the shared object system interacts with its environment (the clients). The shared object system receives requests from its environment and responds with reports. Requests and reports are of two types: read and update. Each request and report is subscripted with the name of the client involved. Each request and report contains, as arguments, a unique operation identifier and the name of the object being accessed. In addition, each update request contains the function to be applied to the object and each read report contains a return value.

Formally, let C be a fixed finite set of clients, X a fixed set of shared objects, V a fixed set of values for the objects, including a distinguished initial value v_0, and Ξ a fixed set of operation identifiers, partitioned into subsets Ξ_c, one for each client c. Then the interface is as follows. (Here, c, ξ, x and v are elements of C, Ξ, X, and V, respectively, and f is a function from V to V.)

Input:

| request-read(ξ, x), $\xi \in \Xi_c$ | report-read(ξ, x, v), $\xi \in \Xi_c$ |
| request-update(ξ, x, f), $\xi \in \Xi_c$ | report-update(ξ, x), $\xi \in \Xi_c$ |

If β is a sequence of actions, we write $\beta|_c$ for the subsequence of β consisting of request-read$_c$, request-update$_c$, report-read$_c$, and report-update$_c$ actions. This subsequence represents the interactions between client c and the object system.

We assume that invocations are blocking: a client does not issue a new request until it has received a report for its previous request. This assumption, and the uniqueness of operation identifiers, are assumptions about the behavior of clients. We express these conditions in the following definition: we say that a sequence β of actions is client-well-formed provided that for each client c, no two request events in $\beta|_c$ contain the same operation identifier ξ, and that $\beta|_c$ does not contain two request events without an intervening report event.

The object systems we describe will generate responses to client requests. Here we define the syntactic properties required of these responses. Namely, we say that a sequence of actions is complete provided that there is a one-to-one correspondence between request and report events such that each report follows the corresponding request and has the same client, operation identifier, object and type. If a sequence β is client-well-formed and complete, then $\beta|_c$ must consist of a sequence of pairs of actions, each of the form request-read(ξ, x), report-read(ξ, x, v), or request-update(ξ, x, f), report-update(ξ, x).

We say that an operation identifier ξ occurs in sequence β provided that β contains a request event with operation identifier ξ. If β is any client-well-formed sequence and ξ occurs in β, then there is a unique request event in β for ξ. We sometimes denote this event simply by request(ξ). Also, if β is client-well-formed and complete, then there is a

2There are two ways in which Orca differs from our specification: in Orca, (1) an update may return a value and (2) an update might be delayed at the object in certain circumstances such as attempting to delete from an empty queue.
3We ignore the possibility of different data domains for the different objects.
4An event is an occurrence of an action in a sequence.
5Note that the completeness property includes both safety and liveness conditions.
unique report event with operation identifier ξ; we denote it by $\text{report}(\xi)$. We often refer to an operation identifier as just an operation.

If β is a complete client-well-formed sequence of actions, we define the totally-precedes partial order, $\text{totally-precedes}_\beta$, on the operations that occur in β by: $(\xi, \xi') \in \text{totally-precedes}_\beta$ provided that $\text{report}(\xi)$ occurs before $\text{request}(\xi')$ in β. Notice that for each client c, $\text{totally-precedes}_\beta|_c$ totally orders the operations that occur in $\beta|_c$.

3.2 Definition of Sequential Consistency

Our definition of sequential consistency is based on an atomic object [27, 29], also known as a linearizable object [22], whose underlying data type is the entire collection of data objects to be shared. In an atomic object, the operations appear to the clients “as if” they happened in some sequential order, and furthermore, that order must be consistent with the totally-precedes order. Specifically, we let AM, the atomic memory automaton, be just like the serial object automaton M_{serial} defined by Afek, Brown and Merritt [4] for the given collection of objects, except that we generalize it to allow updates that apply functions rather than just blind writes. The code appears in Figure 3. Here, c, ξ, x and v are elements of C, Ξ, X, and V, respectively, and f is a function from V to V. The actions of AM are those of the interface described in Section 3.1, plus additional internal actions of the form $\text{perform-read}(\xi, x)$, and $\text{perform-update}(\xi, x, f)$, where $\xi \in \Xi, x$. The state of the automaton AM consists of an array mem indexed by X, of elements of V, and an array active, indexed by C, of tuples or the special value null. Here, $\text{mem}(x)$ represents the current value for object x, and $\text{active}(c)$ represents the access by client c that is currently in progress, if any. The value null means that no access is currently in progress.

The steps of AM are described using a simple precondition-effect (i.e., guarded command) notation. The steps for each particular type of action are represented by a single code fragment. The automaton is allowed to perform any of these actions at any time when its precondition is satisfied; this style allows us to express the maximum allowable nondeterminism. Here, the request actions record the requests, the perform actions actually perform the operations using mem, and the report actions convey the results back to the clients.

AM has one task for the output and internal actions of each client. This means that the automaton keeps giving turns to the activities it does on behalf of each client. Note that every client-well-formed fair trace of AM is complete.

Sequential consistency is almost the same as atomicity; the difference is that sequential consistency does not respect the order of events at different clients. Thus, if β is a client-well-formed sequence of actions, we say that β is sequentially consistent provided that there is some fair trace γ of AM such that $\gamma|_c = \beta|_c$ for every client c. That is, β “looks like” γ to each individual client; we do not require that the order of events at different clients be the same in β and γ.

If A is an automaton that models a shared object system, then we say that A is sequentially consistent provided that every client-well-formed fair trace of A is sequentially consistent.

3.3 Proving Sequential Consistency

In order to show that the Orca shared object system is sequentially consistent, we use a new proof technique based on producing a partial order on the operations that occur in a fair trace. In this subsection, we collect the properties we need for the proof of correctness, in the definition of a “supportive” partial order.

For each $c \in C$, let β_c be a complete client-well-formed sequence of request and report events at client c. Suppose that P is a partial order on the set of all operations that occur in the sequences β_c. Then we say that P is supportive for the sequences β_c provided that it is consistent with the order of operations at each client and orders all conflicting operations (that is, two operations on the same object where at least one is an update); moreover, the responses provided by the reads are correct according to P. Formally, it satisfies the following four conditions:

1. P is well-founded.
AM:

Signature:

<table>
<thead>
<tr>
<th>Input:</th>
<th>Internal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>request-read(ξ, x)$_c$, $\xi \in \Xi_c$</td>
<td>perform-read(ξ, x)$_c$, $\xi \in \Xi_c$</td>
</tr>
<tr>
<td>request-update(ξ, x, f)$_c$, $\xi \in \Xi_c$</td>
<td>perform-update(ξ, x, f)$_c$, $\xi \in \Xi_c$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>report-read(ξ, x, v)$_c$, $\xi \in \Xi_c$</td>
<td></td>
</tr>
<tr>
<td>report-update(ξ, x)$_c$, $\xi \in \Xi_c$</td>
<td></td>
</tr>
</tbody>
</table>

States:

- mem, an array indexed by X of elements of V, initially identically v_0
- active, an array indexed by C of tuples or the special value null, initially identically null

Steps:

- **request-read(ξ, x)$_c$**
 - **Effect:** $\text{active}(c) := (\text{read-perform}, \xi, x)$
 - **Precondition:** $\text{active}(c) = (\text{read-perform}, \xi, x)$
 - **Effet:** $\text{active}(c) := (\text{read-report}, \xi, x, \text{mem}(x))$

- **perform-read(ξ, x)$_c$**
 - **Effect:** $\text{active}(c) := (\text{read-perform}, \xi, x)$
 - **Precondition:** $\text{active}(c) = (\text{read-perform}, \xi, x)$
 - **Effect:** $\text{active}(c) := (\text{update-perform}, \xi, x, f)$

- **report-update(ξ, x, v)$_c$**
 - **Precondition:** $\text{active}(c) = (\text{read-report}, \xi, x, \text{mem}(x))$
 - **Effect:** $\text{active}(c) := \text{null}$

Tasks:

- for every client c:
 - the set of output and internal actions of c

Figure 3: Automaton AM.

8
2. For each \(c \), \(P \) contains the order totally-precedes \(\beta_c \).

3. For each object \(x \in X \), \(P \) totally orders all the update operations of \(x \), and \(P \) relates each read operation of \(x \) to each update operation of \(x \).

4. Each read operation \(\xi \) of object \(x \) has a return value that is the result of applying to \(v_0 \), in the order given by \(P \), the update operations of \(x \) that are ordered ahead of \(\xi \). More precisely, let \(\xi_1, \xi_2, \ldots, \xi_m \) be the unique finite sequence of operations such that (a) \(\{\xi_j : 1 \leq j \leq m\} \) is exactly the set of updates \(\xi' \) of \(x \) such that \((\xi', \xi) \in P \), and (b) \((\xi_j, \xi_{j+1}) \in P \) for all \(j, 1 \leq j < m \). Let \(f_j \) be the function associated with request(\(\xi_j \)). Then the return value for \(\xi \) is \(f_m(f_{m-1}(\ldots(f_2(f_1(v_0))))\ldots)) \).

The following lemma describes how a supportive partial order can be used to prove sequential consistency.

Lemma 3.1 For each \(c \in C \), let \(\beta_c \) be a complete client-well-formed sequence of request and report events at client \(c \). Suppose that \(P \) is a partial order on the set of all operations that occur in the sequences \(\beta_c \).

If \(P \) is supportive for the sequences \(\beta_c \), then there is a fair trace \(\gamma \) of AM such that \(\gamma|c = \beta_c \) for every \(c \) and totally-precedes \(\beta_c \) contains \(P \).

Proof: Let \(P \) be a supportive partial order. We first show that we can extend \(P \) to a total order \(Q \) such that \(Q \) is also supportive for the sequences \(\beta_c \). We define \(Q \) as follows: suppose \(\xi \) and \(\xi' \) are operations that occur in \(\beta \) and \(\beta', \) respectively. Let \((\xi, \xi') \in Q \) provided that either \(\xi \) has fewer predecessors in \(P \) than \(\xi' \), or else the two operations have the same number of predecessors and \(c \) precedes \(c' \) in some fixed total ordering of the clients. It is clear by construction that \(Q \) is a total order on the operations that occur in the sequences and that \(P \subseteq Q \).

To show that \(Q \) is supportive, we note that the second and third conditions follow from the fact that \(P \) is supportive (since \(Q \) contains \(P \)).

To show the first condition, we observe that \(P \) totally orders all the operations that occur in \(\beta \) (for the same \(c \)), and so it is not possible for two operations \(\xi \) and \(\xi' \) that are both in \(\beta \) to have the same number of predecessors. (Whichever is later will have a set of predecessors that include all the predecessors of the other, together with the other operation itself and possibly more.) It follows that there are at most \(n(N + 1) \) operations that have \(\leq N \) predecessors in \(P \), where \(n \) is the number of clients in the system. Now, if an operation has \(N \) predecessors in \(P \), then by definition of \(Q \), each of its predecessors in \(Q \) must have at most \(N \) predecessors in \(P \). Since there are at most \(n(N + 1) \) such operations, the operation has at most \(n(N + 1) \) predecessors in \(Q \). This shows the first condition.

Finally the fourth condition holds for \(Q \) because it holds for \(P \), and the set of update operations of \(x \) that precede a given read of \(x \) is identical whether \(P \) or \(Q \) is used as the order.

Now since \(Q \) is a total order in which each element has only a finite number of predecessors, arranging the operations in the order given by \(Q \) defines a sequence of operations. We obtain the required sequence \(\gamma \) by replacing each operation in this sequence by its report event followed by its request event.

We claim that \(\gamma \) has the required properties. The fact that each \(\beta_c \) is client-well-formed and complete implies that totally-precedes \(\beta_c \) is a total order on the operations that occur in \(\beta_c \), and so these operations occur in \(Q \) in the same order; since \(\gamma \) is constructed to be well-formed and complete, the events in \(\gamma|c \) are the same as the events in \(\beta_c \), and their order is also the same. Thus \(\gamma|c = \beta_c \). By construction, totally-precedes \(\beta_c \) equals \(Q \) which contains \(P \). Finally, \(\gamma \) is a trace of AM because the fourth condition ensures that return values are appropriate; the trace is fair since \(\gamma \) is complete.

The following lemma is what we actually use later in our proof.

Lemma 3.2 Suppose that \(A \) is an automaton with the interface for a shared object system described in Section 3.1. Suppose that, for every client-well-formed fair trace \(\beta \) of \(A \), the following are true:

1. \(\beta \) is complete.
2. There is a supportive partial order for the sequences $\beta | e$.

Then A is a sequentially consistent shared object system.

Proof: Immediate by Lemma 3.1.

The literature contains other definitions of sequential consistency, besides the automaton-based one we have adopted from Afek, Brown and Merritt [4]. The original definition of Lamport [26] says that a multiprocessor is sequentially consistent if “the result of every operation is the same as if the operations of all the processors were executed in some sequential order, and the operations of each individual processor appear in this sequence in the order specified by its program.” This corresponds directly to the existence of a total order that is supportive for the sequences $\beta | e$. Thus our proof technique using a supportive partial order can be seen as a generalization of the techniques that are based on Lamport’s definition.

4 Multicast Communication

In this section, we define properties for multicast channels, and use them to define context multicast channels. We also define some alternative kinds of multicast channels considered elsewhere, and compare these channels to context multicast channels.

4.1 Context Multicast Channels

As in Section 3, we start by defining the actions by which a multicast channel interacts with its environment; this time, the environment is a set of sites in a distributed network. The multicast channel receives requests from sites to send messages to specified collections of sites, and responds by delivering the messages to the requested recipients. Thus, the channel provides multicast messages. There are two special cases: when the destination set consists of the entire collection of sites (including the sender), the communication is called broadcast, and when the destination set contains a single site, the communication is called point-to-point.

Formally, let M be a set of messages, I be a set of sites, and \mathcal{I} be a fixed set of subsets of I, representing the possible destination sets for messages. If $\mathcal{I} = \{I\}$ we say that the channel is broadcast, since the only possible destination set includes all the sites. When $\mathcal{I} = \{\{i\} : i \in I\}$ we say the channel is point-to-point, since each destination set consists of a single site. The interface is as follows:

Input:

\[
\text{mcast}(m)_{i,J}, m \in M, i \in I, J \in \mathcal{I}
\]

Output:

\[
\text{receive}(m)_{j,i}, m \in M, j, i \in I
\]

The action $\text{mcast}(m)_{i,J}$ represents the submission of message m by site i to the channel, with J as the set of intended destinations. The action $\text{receive}(m)_{j,i}$ represents the delivery of message m to site i, where j is the site where the message originates. In each case, the action occurs at site i.

Now we describe various correctness properties for fair traces of multicast channels. First, we require reliable delivery of all messages, each exactly once, and to exactly the specified destinations. Formally, in any fair trace β of any multicast channel, there should be a cause function mapping each receive event in β to a preceding mcast event (i.e., the mcast event that “causes” this receive event). The two corresponding events should have the same message contents, the site of the mcast should be the originator argument of the receive, and the site of the receive should be a member of the destination set given in the mcast. Furthermore, the cause function should be one-to-one on receive events at the same site (which means there is no duplicate delivery at the same site). Finally, the destination set for any mcast event should equal the set of sites where corresponding receive events occur (which means that every message is in fact delivered everywhere it should be).

In addition to these basic properties, there are additional properties of multicast systems that are of interest. These involve a “virtual ordering” of multicasts. We define these properties as conditions on a particular sequence β that
we assume satisfies all the basic reliability requirements described just above, and a particular well-founded partial order \(Q \) (the "virtual ordering") of \(mcast \) events in \(\beta \).

The first condition says that the order in which each site receives its messages is consistent with the virtual ordering \(Q \). That is, the observations at a single site do not contradict the virtual ordering.

Receive Consistency \(\beta \) and \(Q \) are receive consistent provided that the following holds. If \(\pi \) and \(\pi' \) are \(mcast \) events in \(\beta \), and \((\pi, \pi') \in Q\), and for some site \(i \) the sequence \(\beta \) contains both a receive event \(\phi \) at \(i \) corresponding to \(\pi \) and also a receive event \(\phi' \) at \(i \) corresponding to \(\pi' \), then \(\phi \) precedes \(\phi' \) in \(\beta \).

The remaining two conditions in this subsection describe ordering relationships that must be included in \(Q \). The next condition says that \(Q \) must relate a multicast that arrives at a site to any subsequent multicast originating at the same site. This describes a restricted "causality" relationship.

Context safety \(\beta \) and \(Q \) are context safe provided that the following holds. If \(\pi \) is any \(mcast \) event, \(\pi' \) is an \(mcast \) event at site \(i \), and a receive event corresponding to \(\pi \) precedes \(\pi' \) at site \(i \) in \(\beta \), then \((\pi, \pi') \in Q\).

The final condition says that \(Q \) must relate all pairs of multicasts, that is, must be a total order.

Totality \(\beta \) and \(Q \) are total provided that \(Q \) relates any pair of distinct multicasts in \(\beta \); that is, if \(\pi \) and \(\pi' \) are any two distinct \(mcast \) events in \(\beta \), then either \((\pi, \pi') \in Q\) or \((\pi', \pi) \in Q\).

Finally, we define a context multicast channel to be any automaton with the proper interface, in which every fair trace \(\beta \):

- satisfies the basic reliability requirements, and
- has a well-founded partial order \(Q \) such that \(\beta \) and \(Q \) are receive consistent, context safe, and total.

4.2 Other Types of Multicast Channels

Many researchers have proposed the development of distributed applications based on multicast services [6, 13, 16, 32, 35]. The proposed services make different guarantees on the ordering of message deliveries. In this subsection, we define two more conditions similar to those used to define context multicast channels. Based on these conditions and those previously defined, we then define some different channels and compare them with context multicast channels.

The channels we define are simplifications of services provided in actual systems, since our definitions do not take the possibility of failure into account. When failure is considered, a level of indirection is usually introduced: messages are addressed to a named group rather than to individual sites, and each group has a varying set of sites which are its members. The interaction of group membership changes with message ordering is complex, and there is no consensus yet on appropriate definitions. We avoid these issues here.

The two conditions we define in this subsection describe ordering relationships that must be included in the virtual ordering \(Q \). The first says that \(Q \) must relate any multicast to any later multicast originating at the same site.

FIFO \(\beta \) and \(Q \) are FIFO provided that the following holds. If \(\pi \) and \(\pi' \) are \(mcast \) events at site \(i \) in \(\beta \), with \(\pi \) preceding \(\pi' \), then \((\pi, \pi') \in Q\).

The second condition says that \(Q \) must relate any two multicasts with the same destination set.

Group-Ordered \(\beta \) and \(Q \) are group-ordered provided that \(Q \) relates any distinct multicasts with the same destination set; that is, if \(\pi = mcast(m)_i \) and \(\pi' = mcast(m')_i \) are two distinct events in \(\beta \), then either \((\pi, \pi') \in Q\) or \((\pi', \pi) \in Q\).
The CBCAST multicast primitive of the Isis system[14, 13] guarantees that message delivery respects “Lamport causality” [25]. Informally speaking, this ensures that when a message is delivered, the recipient has already seen any other message whose contents could have been known to the sender at the time of sending. We represent the CBCAST channel by the following definition: A causal multicast channel is any automaton with the proper interface, in which every fair trace \(\beta \):

- satisfies the basic reliability requirements, and
- has a well-founded partial order \(Q \) such that \(\beta \) and \(Q \) are receive consistent, context safe, and FIFO.

This idea has been widely adopted in systems for group communication [6, 32].

The Isis CBCAST primitive does not guarantee consistent order of receipt of all messages at different sites, and so it does not provide a context multicast channel. Also, there are interesting communication systems (e.g., the one described in Section 6) that are context multicast channels but are not causal multicast channels because some fair traces do not satisfy the FIFO condition. That is, causal multicast channels and context multicast channels are incomparable concepts: there are fair traces that are permitted by each but not by the other.

For some distributed applications, especially those based on replicated data, it is necessary not only to ensure causality but also to ensure that non-causally-related messages are received in the same order at different destinations. The ABCAST multicast primitive in the early versions of ISIS [14] guarantees these properties. We represent the ABCAST channel by the following definition: A totally ordered causal multicast channel is any automaton with the proper interface, in which every fair trace \(\beta \):

- satisfies the basic reliability requirements, and
- has a well-founded partial order \(Q \) such that \(\beta \) and \(Q \) are receive consistent, context safe, total, and FIFO.

Note that, by definition, any totally ordered causal multicast channel is also a context multicast channel. However, the algorithm of Section 6 gives a context multicast channel that is not a totally ordered causal multicast channel.

In the absence of hardware support for broadcast (such as the local area networks used in Amoeba), the known algorithms for implementing totally ordered causal multicast are fairly slow. This has led some system designers to weaken their multicast service guarantees so that consistent message delivery is ensured not for all messages, but only for messages intended for the same group. We represent such a weaker service by the following definition: A group-ordered causal multicast channel is any automaton with the proper interface, in which every fair trace \(\beta \):

- satisfies the basic reliability requirements, and
- has a well-founded partial order \(Q \) such that \(\beta \) and \(Q \) are receive consistent, context safe, FIFO and group-ordered.

Of course, any totally ordered causal multicast channel is also a group-ordered causal multicast channel, and any group-order causal multicast channel is a causal multicast channel. When Isis designers re-implemented the ABCAST service, they chose a new algorithm that provided group-ordered traces but not the stronger total order property present in the original implementation.

In Figure 4, we show the inclusion relationships between the definitions given. An arrow from one type of multicast channel to another indicates that every example of the first type is necessarily an example of the second type. Whenever there is no path from one type to another in the diagram, then there are examples of the first type that are not examples of the second type.

5 The Higher Layer

Now we present the replica management algorithm, which uses a context multicast channel to implement a sequentially consistent shared memory (see Figure 5).
Figure 4: Inclusion relationships between multicast channel definitions.

Figure 5: The architecture of the higher layer.
5.1 The Partial Replication Algorithm

The partial replication algorithm is modelled as a collection of automata P_i, one for each site i in a distributed network. As in the previous section, we let I denote the set of sites. The entire shared object system is, formally, the composition of the site automata P_i, $i \in I$, and a context multicast channel. Each client c is assumed to run at a particular site, $\text{site}(c)$. We let $\text{clients}(i)$ denote the set of clients that run at site i.5

The algorithm replicates each object x at an arbitrary (but fixed) subset $\text{sites}(x)$ of the sites, one of which is distinguished as the primary site, $\text{primary}(x)$. We assume that the set of sites at which each object x is replicated is a possible destination set for the multicast channel, i.e., that for every x, $\text{sites}(x) \in \mathcal{I}$.

A site automaton P_i performs a read operation on an object x locally if it has a copy of x. Otherwise, it sends a request to any site that has a copy of x and that site returns a response. P_i performs an update operation on x locally if it has the only copy of x. Otherwise, P_i sends a multicast message to all sites that have copies of x, and waits to receive either its own multicast (in case P_i has a copy of x), or else an acknowledgment from the primary site (in case P_i does not have a copy).

The set of messages \mathcal{M} used in the algorithm consists of $(\text{read-do}, c, \xi, x), (\text{update-do}, c, \xi, x, f), (\text{read-reply}, c, \xi, x, v)$, and $(\text{update-reply}, c, \xi, x)$, where $c \in C$, $\xi \in \Xi$, $x \in X$, $v \in V$, and $f : V \rightarrow V$. The “do” messages are requests to perform operations, and the “reply” messages are responses to these requests.

The code for process P_i appears in Figure 6. In this code, we assume that $c \in \text{clients}(i)$, ξ, x and v are elements of Ξ, X, and V, respectively, and f is a function from V to V. Also, m is an arbitrary message in \mathcal{M}, $j \in I$, and $J \in \mathcal{I}$.

The input and output actions of P_i are all the actions of all clients c at site i, plus actions to send and receive multicasts. The internal action $\text{perform-read}(c, \xi, x)$ represents the reading of a local copy of x, whereas $\text{global-read}(c, \xi, x)$ represents the decision to send a message to another site requesting the value of x. Similarly, $\text{perform-update}(c, \xi, x, f)$ represents the local performance of an update (when site i has the only copy of x), whereas $\text{global-update}(c, \xi, x, f)$ represents the decision to send a message in order to update x.

The status components of the state keep track of operations being processed at the site. For example, if $\text{status}(c) = (\text{update-wait}, \xi, x)$, it means that P_i has sent a message asking for x to be updated on behalf of operation ξ, and is waiting to receive either its own message or an acknowledgment before reporting back to client c. Because of client-well-formedness, status information needs to be kept for at most one operation of c at a time. The $\text{val}(x)$ component records the current value of the copy of x at site i. The buffer contains messages scheduled to be sent via the context multicast channel.

The steps of P_i are organized into code fragments, one for each type of action. In order to make the code easier to read, we have organized it so that the fragments involved in processing reads, plus the code for mcast, appear in the left column and the fragments for processing updates appear in the right column. Also, the fragments appear in the approximate order of their execution. However, note that the order in which the fragments are presented has no formal significance in the underlying model. As we described earlier, the automaton can perform any one of its steps at any time when that step’s precondition is satisfied.

The code fragments follow the informal description we gave above. For example, a perform-read is allowed to occur provided that the operation has the right status and i has a copy of the object x; its effect is to change the status to record the value read (and the fact that the read has occurred). For another example, a global-update is allowed to occur provided that the operation has the right status and i is not the only site with a copy of the object x; its effect is to change the status to record that P_i is now waiting and also to put a message in the buffer. The most interesting code fragment is that for $\text{receive}(\text{update-do})$. When this occurs, P_i always updates its local copy of the object x. In addition, if the message received is P_i’s own message, then P_i uses this as an indication to stop waiting and report

5 In theoretical work on distributed shared memory, it is common to assume that only one client runs per site. This issue has little impact on the proofs, but we prefer to include multiple clients as a realistic model for systems like Orca.
\(P_i \):

Signature:

Input:
- request-read(\(\xi, x \))\(_c \), \(\xi \in \Xi_c \)
- request-update(\(\xi, x, f \))\(_c \), \(\xi \in \Xi_c \)
- receive(\(m \))\(_{j,i}\)

Output:
- report-read(\(\xi, x, v \))\(_c \), \(\xi \in \Xi_c \)
- report-update(\(\xi, x \))\(_c \), \(\xi \in \Xi_c \)
- mcast(\(m \))\(_{j,i}\)

Internal:
- perform-read(\(c, \xi, x \))\(_c \), \(\xi \in \Xi_c \)
- global-read(\(c, \xi, x \))\(_c \), \(\xi \in \Xi_c \)
- perform-update(\(c, \xi, x, f \))\(_c \), \(\xi \in \Xi_c \)
- global-update(\(c, \xi, x, f \))\(_c \), \(\xi \in \Xi_c \)

States:

- for every \(c \in \text{clients}(i) \):
 - status\((c) \), a tuple or quiet, initially quiet
- for every \(x \) for which there is a copy at \(i \):
 - val\((x) \in V \), initially \(r_0 \)
- buffer, a FIFO queue of (message, destination set) pairs, initially empty

Steps:

- **request-read(\(\xi, x \))\(_c \)**
 - Effect:
 - status\((c) := \) (read-perform, \(\xi, x \))

- **perform-read(\(c, \xi, x \))\(_i \)**
 - Precondition:
 - status\((c) := \) (read-perform, \(\xi, x \))
 - \(i \in \text{sites}(x) \)
 - Effect:
 - status\((c) := \) (read-report, \(\xi, x, \text{val}(x) \))

- **global-read(\(c, \xi, x \))\(_i \)**
 - Precondition:
 - status\((c) := \) (read-perform, \(\xi, x \))
 - \(i \notin \text{sites}(x) \)
 - Effect:
 - add \(\{(\text{read-do}, c, \xi, x), \{j\}\} \) to buffer
 - where \(j \) is any element of sites\((x) \)
 - status\((c) := \) (read-wait, \(\xi, x \))

- **receive(\(\text{read-do}, c, \xi, x \))\(_{j,i}\)**
 - Effect:
 - add \(\{(\text{read-reply}, c, \xi, x, \text{val}(x)), \{j\}\}\) to buffer

- **report-read(\(\xi, x, v \))\(_c \)**
 - Precondition:
 - status\((c) := \) (read-report, \(\xi, x, v \))
 - Effect:
 - status\((c) := \) quiet

- **mcast(\(m \))\(_{j,i}\)**
 - Precondition:
 - \((m, j) \) is first on buffer
 - Effect:
 - remove first element of buffer

Tasks:

- For each \(c \), the set of all output and internal actions that involve \(c \) comprise a task.

Figure 6: Automaton \(P_i \).
back to the client. On the other hand, if the message received is from a site that does not have a copy of \(x \), and \(P_1 \) is the primary site for \(x \), then \(P_1 \) sends a reply back to the sender.

There is one task of automaton \(P_2 \) devoted to the non-input actions involving each client. This means that \(P_2 \) keeps trying to make progress on behalf of each client.

5.2 Correctness

Let \(A \) denote the composition of the site automata \(P_1 \) and an automaton \(B \) that is a context multicast channel, with the \texttt{mcast} and \texttt{receive} actions hidden. We prove the following theorem:

Theorem 5.1 \(A \) is a sequentially consistent shared object system.

It is an immediate consequence of Theorem 5.1 that the replication algorithm also works correctly when used over a totally ordered causal multicast channel. However, perhaps not surprisingly, the algorithm does not give sequential consistency when used over an arbitrary group-ordered causal multicast channel, such as the ABCAST service provided by recent versions of Isis. This is shown by the example depicted in Figure 7, involving sequential consistency when used over an arbitrary group-ordered causal multicast channel, such as the over a totally ordered causal multicast channel. However, perhaps not surprisingly, the algorithm does not give sequential consistency when used over an arbitrary group-ordered causal multicast channel, such as the over a totally ordered causal multicast channel. However, perhaps not surprisingly, the algorithm does not give sequential consistency when used over an arbitrary group-ordered causal multicast channel, such as the over a totally ordered causal multicast channel.

Theorem 5.1 is a sequentially consistent shared object system.

It is also worth pointing out that although the partial replication algorithm provides sequential consistency when configured to work with a context multicast layer, it does not provide the stronger linearizability condition [22]. This is shown in Figure 8, in which an object \(x \) is replicated on three processors \(P_1, P_2, \) and \(P_3 \). The execution shows how a read can observe a value that does not reflect an update, even though the update’s completion is reported to the client at \(P_2 \) earlier (in absolute time) than when the read is requested at \(P_1 \). Thus the apparent order of non-overlapping operations at different processors does not agree with the temporal order seen by an outside observer.

The rest of this section is devoted to the proof of Theorem 5.1. The proof is based on Lemma 3.2. For the rest of the section, fix \(\beta \) to be an arbitrary client-well-formed fair trace of \(A \), and let \(\alpha \) be any fair execution of \(A \) that gives rise to \(\beta \). As indicated by the statement of Lemma 3.2, our goals are to show both of the following:

1. \(\beta \) is complete.
2. There is a supportive partial order \(P \) for the sequences \(\beta | e \).

If \(\xi \) is an operation that occurs in \(\beta \) then since \(\beta \) is client-well-formed, we know that there is a unique request(\(\xi \)) event in \(\beta \). We classify each operation \(\xi \) that occurs in \(\beta \) as one of the following mutually exclusive cases:

1. \(\xi \) is a \texttt{local read} operation if \(\xi \) is a read operation of object \(x \) by client \(e \) and site(\(e \)) \(\in \) sites(\(x \)).
2. \(\xi \) is a \texttt{local update} operation if \(\xi \) is an update operation of \(x \) by \(e \) and \{site(\(e \))\} = sites(\(x \)).
3. \(\xi \) is a \texttt{remote read} operation if \(\xi \) is a read operation of \(x \) by \(e \) and site(\(e \)) \(\notin \) sites(\(x \)).
4. \(\xi \) is a \texttt{remote update} operation if \(\xi \) is an update operation of \(x \) by \(e \) and site(\(e \)) \(\notin \) sites(\(x \)).
Figure 7: A problem with group-ordered multicast.
Figure 8: Non-linearizable execution.
5. \(\xi \) is a shared update operation if \(\xi \) is an update operation of \(x \) by \(c \), site(\(c \)) \(\in sites(x) \) and \(\{\text{site}(c)\} \neq \text{sites}(x) \).

We define a local operation to be either a local read or a local update, and similarly for a remote operation. Also, a global operation is either a remote operation or a shared update operation.

The classification of operations reflects the different ways they are carried out. Namely, a local operation is processed using a perform event, a remote operation is processed using an mcast(reply) message, and a shared update operation is processed using an mcast(do) message only.

It is straightforward that in fair client-well-formed executions, each operation has a report event following the request. Therefore, we have reached the first of our two goals:

Lemma 5.2 \(\beta \) is complete.

Now we turn to our second goal, of producing a supportive partial order \(P \) for the sequences \(\beta[c] \). First, we draw some easy conclusions about the order of events at a single client \(c \), in \(\alpha \). The events singled out are perform events for local operations, mcast(do) events for global operations, receive(reply) events for remote operations, and receive(do) events for shared updates.

Lemma 5.3 Suppose that \((\xi, \xi') \in \text{totally-precedes}_{\beta[c]}\) for some client \(c \) at site \(i \).

1. If \(\xi \) and \(\xi' \) are both local, then the perform event for \(\xi \) precedes the perform event for \(\xi' \) in \(\alpha \).

2. If \(\xi \) is local and \(\xi' \) is global, then the perform event for \(\xi \) precedes the mcast of the do message for \(\xi' \) in \(\alpha \).

3. If \(\xi \) is local and \(\xi' \) is shared, then the perform event for \(\xi \) precedes the receipt of the do message for \(\xi' \) by \(i \), in \(\alpha \).

4. If \(\xi \) is shared and \(\xi' \) is local, then the receipt of the do message for \(\xi \) by \(i \) precedes the perform event for \(\xi' \) in \(\alpha \).

5. If \(\xi \) is remote and \(\xi' \) is local, then the receipt of the reply message for \(\xi \) precedes the perform event for \(\xi' \) in \(\alpha \).

6. If \(\xi \) is shared and \(\xi' \) is global, then the receipt of the do message for \(\xi \) by \(i \) precedes the mcast of the do message for \(\xi' \) in \(\alpha \).

7. If \(\xi \) and \(\xi' \) are both shared, then the receipt of the do message for \(\xi \) by \(i \) precedes the receipt of the do message for \(\xi' \) by \(i \), in \(\alpha \).

8. If \(\xi \) is remote and \(\xi' \) is global, then the receipt of the reply message for \(\xi \) precedes the mcast of the do message for \(\xi' \) in \(\alpha \).

Proof: We prove Part 2. The algorithm code shows that the perform for \(\xi \) precedes report(\(\xi \)). By the definition of totally-precedes_{\beta[c]}, this in turn precedes request(\(\xi' \)). The code also shows that this precedes the mcast of the do message for \(\xi' \).

The proofs of the other parts of the lemma are similar.

We now provide some terminology for discussing the crucial actions of the various operations, namely, those actions that actually affect or use the values of object copies.

Let \(x \) be an object, and let \(i \) be any element of \(sites(x) \). Thus, there is a replica of \(x \) at site \(i \). From the definitions of the steps, we see that the events that can modify this replica are those of the form perform-update(\(c, \xi, x, f \); \(j \); \(i \)); and receive(update-do, \(c, \xi, x, f \); \(j \); \(i \)). We say that each of these is a modification of \(x \) at \(i \) on behalf of \(\xi \). The only other events that use this replica are those of the form perform-read(\(c, \xi, x \); \(j \); \(i \)) and receive(read-do, \(c, \xi, x \); \(j \); \(i \)). We say that
each of these is a lookup of \(x \) at \(i \) on behalf of \(\xi \). A crucial event for \(x \) at \(i \) on behalf of \(\xi \) is either a modification or a lookup.

Note that for any site \(i \) and operation \(\xi \), \(\alpha \) contains at most one crucial event at \(i \) on behalf of \(\xi \). The code shows that in processing each operation, we also have some guarantees that certain crucial events must occur:

Lemma 5.4 Let \(\xi \) be a read operation of object \(x \). Then there is some site \(i \) in \(\text{sites}(x) \) such that there is a lookup of \(x \) at \(i \) on behalf of \(\xi \).

Lemma 5.5 Let \(\xi \) be an update operation of object \(x \). Then for every site \(i \) in \(\text{sites}(x) \), there is a modification of \(x \) at \(i \) on behalf of \(\xi \).

Now we are ready to define \(P \). Since \(B \) is a context multicast channel, there is a well-founded total order on the mcast events satisfying receive consistency and context safety. We choose one such order and call it \(T \). Now we define \(P \) to be the transitive closure of the union of the following three relations:

1. \texttt{mcast-order}.

 This relates any two global operations that occur in \(\alpha \), ordering them in the total order \(T \) provided by the context multicast channel \(B \) for the corresponding do multicasts.

 That is, each global operation gives rise to a unique \texttt{mcast(read-do)} or \texttt{mcast(update-do)} event. If \(\xi \) and \(\xi' \) are global operations that occur in \(\alpha \), then we define \((\xi, \xi') \in \texttt{mcast-order}\) provided that the \texttt{mcast(do)} event of \(\xi \) precedes the \texttt{mcast(do)} event of \(\xi' \) in \(T \).

2. For each site \(i \), \texttt{crucial-order}.

 This relates any two (local or global) operations that both perform crucial events at site \(i \) in \(\alpha \), ordering them in the order of their crucial events.

 That is, if \(\xi \) and \(\xi' \) are operations that occur in \(\alpha \), then we define \((\xi, \xi') \in \texttt{crucial-order} \) provided that \(\alpha \) contains a crucial event at \(i \) on behalf of \(\xi \) and a later crucial event at \(i \) on behalf of \(\xi' \). (Note that these events may be for different objects.)

3. For each client \(c \), the \texttt{totally-precedes} \(\beta|c \) order on operations invoked by \(c \), which totally orders the operations of client \(c \).

It turns out that most of the work of the proof is devoted to showing that \(P \) is a partial order; it is then easy to show that \(P \) is supportive for the sequences \(\beta|c \).

In order to show that \(P \) is a partial order, we show that between global operations, only \texttt{mcast-order} is needed; the other constituent orders are redundant. This involves a case analysis, using the receive consistency and context safety properties. Then the combined order \(P \) just inserts local operations in appropriate places in the sequence of global operations (using parts 2 and 3 of the definition of \(P \)), but no cycle is created. The following six lemmas carry out this argument carefully.

Lemma 5.6 Suppose that \(\xi \) and \(\xi' \) are local or shared operations of the same client \(c \) that occur in \(\alpha \). Let \(i = \text{site}(c) \). If \((\xi, \xi') \in \texttt{totally-precedes} \beta|c \), then \((\xi, \xi') \in \texttt{crucial-order} \).

Proof: Four of the parts of Lemma 5.3 together imply that a crucial event at \(i \) on behalf of \(\xi \) precedes a crucial event at \(i \) on behalf of \(\xi' \), in \(\alpha \). Therefore, \((\xi, \xi') \in \texttt{crucial-order} \).

Lemma 5.7 Suppose that \(\xi \) is a remote operation. Then \(T \) orders the mcast of the do message for \(\xi \) before the mcast of the reply message for \(\xi \).
Proof: Let \(j \) be the site performing the \textit{mcast} of the \textit{reply} for \(\xi \). The code of the algorithm shows that the \textit{mcast} of the \textit{reply} for \(\xi \) must be preceded by the receipt by \(j \) of a \textit{do} message for \(\xi \). Then the context safety property implies that \(T \) orders the \textit{mcast} of the \textit{do} message for \(\xi \) before the \textit{mcast} of the \textit{reply} message.

Lemma 5.8 Suppose that \(\xi \) and \(\xi' \) are two global operations and \(i \) is any site. If \((\xi, \xi') \in \text{crucial-order}_i\), then \((\xi, \xi') \in \text{mcast-order}_i\).

Proof: For global operations on behalf of which a crucial event occurs at site \(i \), \textit{crucial-order}_i is the order in which \(i \) receives the multicast \textit{do} messages. By receive consistency, this is the same as the order given by \(T \) to the \textit{mcast} events, which is exactly the order given to the operations by \textit{mcast-order}_i.

Lemma 5.9 Suppose that \(\xi \) and \(\xi' \) are two global operations of the same client \(c \). If \((\xi, \xi') \in \text{totally-precedes}_{\beta_c}\), then \((\xi, \xi') \in \text{mcast-order}\).

Proof: If \(\xi \) is shared, then by Lemma 5.3, the receipt by \(i \) of the \textit{do} message for \(\xi \) precedes the \textit{mcast} of the \textit{do} message for \(\xi' \) in \(\alpha \). Then the context safety property implies that \(T \) orders the \textit{mcast} of the \textit{do} message for \(\xi \) before the \textit{mcast} of the \textit{do} message for \(\xi' \). Thus, \((\xi, \xi') \in \text{mcast-order}_i\).

On the other hand, if \(\xi \) is remote, then by Lemma 5.3, the receipt by \(i \) of the \textit{reply} for \(\xi \) precedes the \textit{mcast} of the \textit{do} message for \(\xi' \), in \(\alpha \). Then the context safety property implies that \(T \) orders the \textit{mcast} of the \textit{reply} message for \(\xi \) before the \textit{mcast} of the \textit{do} message for \(\xi' \). So by transitivity, \(T \) orders the \textit{mcast} of the \textit{do} message for \(\xi \) before the \textit{mcast} of the \textit{do} message for \(\xi' \). Again, \((\xi, \xi') \in \text{mcast-order}_i\).

The previous four lemmas are now used to show that any two global operations related by \(P \) are related in the same way by \textit{mcast-order}.

Lemma 5.10 Suppose that \(\xi \) and \(\xi' \) are global operations. If \((\xi, \xi') \in P\), then \((\xi, \xi') \in \text{mcast-order}_i\).

Proof: If \(\xi \) and \(\xi' \) are directly related by one of the constituent relations of \(P \), then the result is either trivial, or exactly the conclusion of Lemma 5.8 or 5.9.

Next, we consider the situation when \(\xi \) and \(\xi' \) are related through a chain of local operations, which must therefore all be at a single site \(i \). Let these local operations be named \(\xi_1, \xi_2, \ldots, \xi_m \). Lemma 5.6 shows that for each \(k, 1 \leq k \leq m-1 \), \((\xi_k, \xi_{k+1}) \in \text{crucial-order}_i \). Since \textit{crucial-order}_i is transitive, we have either \(m = 1 \) or \((\xi_1, \xi_m) \in \text{crucial-order}_i \). We divide the argument into cases, depending on which constituent relations give the initial and final edges in the chain.

1. \((\xi, \xi_1) \in \text{crucial-order}_i\).

Then by transitivity, or trivially when \(m = 1 \), \((\xi, \xi_m) \in \text{crucial-order}_i\). That is, the receipt by \(i \) of the \textit{do} message for \(\xi \) precedes the \textit{perform} event for \(\xi_m \). We consider subcases.

(a) \((\xi_m, \xi') \in \text{crucial-order}_i\).

Then by transitivity, \((\xi, \xi') \in \text{crucial-order}_i\), so Lemma 5.8 implies that \((\xi, \xi') \in \text{mcast-order}_i\).

(b) \((\xi_m, \xi') \in \text{totally-precedes}_{\beta_c} \) for some \(c \).

Then \(i = \text{site}(c) \) and \(\xi' \) is an operation of \(c \). Lemma 5.3 implies that the \textit{perform} for \(\xi_m \) precedes the \textit{mcast} of the \textit{do} message for \(\xi' \). Thus, the receipt by \(i \) of the \textit{do} message for \(\xi \) precedes the \textit{mcast} (by \(i \)) of the \textit{do} message for \(\xi' \). Context safety then implies that \((\xi, \xi') \in \text{mcast-order}_i\).
Proof: Suppose not. Then there is a cycle of length at least 2 consisting of operations, each related to the following by one of the constituent relations. If the cycle contains any global operation \(\xi \), then we have \((\xi, \xi) \in P \), which implies that \((\xi, \xi) \in mcast-order \) by Lemma 5.10; this contradicts the fact that \(mcast-order \) is an irreflexive partial order. If, on the other hand, every operation in the cycle is local, then all must be at a single site \(i \), and by Lemma 5.6, there must be a cycle in crucial-order, which is also a contradiction.

Finally, we show that \(P \) is supportive.

Lemma 5.12 \(P \) is supportive for the sequences \(\beta|\xi \).

Proof: We show the four properties in the definition of “supportive.”

We first show that \(P \) is well-founded, that is, that each operation has finitely many predecessors in \(P \). Note that in each constituent relation, each operation has finitely many predecessors. So if this property does not hold in \(P \), König’s lemma [24, 23] implies the existence of an infinite chain of direct predecessors. If infinitely many operations in this chain are global, then Lemma 5.10 gives an infinite chain of predecessors in \(mcast-order \), contradicting the well-founded property of the multicast service. On the other hand, if only finitely many operations in the chain
are global, then we can start far enough along the chain and get an infinite chain of local operations. But then all these local operations must occur at the same site, say i. Then Lemma 5.6 yields an infinite chain of predecessors in crucial-order_i, which is impossible because α contains only a finite number of events prior to any given event. It follows that P is well-founded.

The construction immediately guarantees that, for any client c, P contains $\text{totally-precedes}(\beta|c)$.

Now we show that P relates all the “conflicting” operations (that is, a read and an update, or two updates) on a single object x. Suppose that ξ and ξ' are distinct operations of object x and that at least one is an update. Then Lemmas 5.4 and 5.5 together imply that there is some site i at which there are crucial events for x on behalf of both ξ and ξ'. This implies that ξ and ξ' are related by crucial-order_i, and therefore are related by P.

Finally, we argue that each read operation returns the right value. Suppose ζ is a read operation of object x. Then by Lemma 5.4, there is a site i at which a lookup event is performed on behalf of ζ. The algorithm ensures that the return value of ζ is exactly the cumulative effect of all the modifications performed on the copy of x at i before the lookup event. By Lemma 5.5, these modifications are exactly those that arise from the collection of update operations to x that are ordered before ξ by crucial-order_i, applied in the order given by crucial-order_i. Since crucial-order_i orders all update operations to x with respect to ξ and with respect to each other, and crucial-order_i is included in P, it follows that ζ receives the specified return value.

Proof: (of Theorem 5.1)

Lemmas 5.2, 5.11, 5.12, and 3.2 combine to imply that A is a sequentially consistent shared object system.

6 Lower Layer

Now we present the algorithm that constructs a context multicast channel based on a combination of totally ordered broadcast and point-to-point communication (see Figure 9).

6.1 The Algorithm

We fix an arbitrary message alphabet M, set I of sites, and collection \mathcal{I} of destination sets; we implement a context multicast channel for M, I and \mathcal{I}. The implementation is constructed as the composition of the following automata: BC, a reliable, totally-ordered broadcast channel,7 PP, a reliable, point-to-point channel, and a collection D_i, one for each $i \in I$, of daemon automata that multiplex between the two lower-level services.

Figure 9: The architecture of the lower layer.
Both BC and PP have multicast channel interfaces, as described in Section 4, and both have \(I \) as their set of sites. The broadcast channel BC has only one possible destination set, namely, \(I \) itself, while the point-to-point channel PP has exactly the singleton sets \(\{ i \} \), \(i \in I \), as destination sets. Both satisfy the basic reliability requirements for multicast channels. In addition, we assume that BC is itself a context multicast channel – each of its fair traces has a well-founded total ordering that is receive consistent and context safe. We do not assume anything additional about PP, beyond the basic reliability requirements. (In particular, it does not need to be FIFO.) In order to distinguish the mcast and receive events for BC, PP, and the channel being implemented, we superscript each action of BC and PP by the channel name.

Each automaton \(D_i \) processes the messages that are submitted by the environment via \(mcast_{i,j} \) events. To process a message that is destined for more than one site, \(D_i \) broadcasts the message and its intended destination set, using the broadcast channel BC. When this message reaches a site \(j \), automaton \(D_j \) delivers it to the environment if \(j \) is among the intended destinations; otherwise, \(D_j \) discards it. To process a message intended for one site only, \(D_i \) piggybacks on it the sequence number of the broadcast most recently received at site \(i \), and then sends the embellished message directly to its destination using the point-to-point channel PP. After this message reaches its destination, it is delivered to the environment, but only after all multicas ts with the same and lower sequence numbers have been delivered.

The code for \(D_i \) appears in Figure 10. In this code, we assume that \(m \in M, j \in I, J \in I \), and \(k \) is a nonnegative integer.

The actions of \(D_i \) are the mcast input actions and receive output actions by which it communicates with its environment, plus the mcast output actions and receive input actions by which it communicates with BC and PP.

The buffer component of the state is used like buffer in \(P_i \) in the higher layer algorithm: it contains messages scheduled to be sent via the underlying communication services. The msgs component keeps track of messages that are scheduled for delivery to the environment, each with an indication of its site of origin. The ppwait component keeps track of point-to-point messages that are destined for site \(i \), but that are waiting for the receipt of the broadcast with the appropriate sequence number. Finally, component seqno records the number of broadcasts received so far.

The code fragments follow the informal description we gave above. For example, when a receive\(^\text{BC} \)\((m, J)_{j;i}\) occurs, the local sequence number is incremented to obtain the new sequence number to be assigned to the newly-received broadcast. Then, if the message is intended for the recipient site \(i \), it is placed in the outgoing msgs queue, and otherwise it is discarded. Also, any point-to-point messages waiting in ppwait that have the same sequence number as the new broadcast are also moved to the outgoing msgs queue. For another example, when a receive\(^\text{PP} \)\((m, k)_{j;i}\) occurs, the new message is placed in the msgs queue if its sequence number \(k \) is less than or equal to the recipient node’s current sequence number; otherwise, it waits in ppwait.

\(D_i \) has one task devoted to sending out the messages in the buffer, and another task devoted to delivering messages from msgs to the user of the system.

6.2 Correctness

Let \(C \) denote the composition of the site automata \(D_i \) together with BC and PP, with the actions of BC and PP hidden. We prove the following theorem:

Theorem 6.1 \(C \) is a context multicast channel.

Figure 11 shows that the communication algorithm does not implement a causal multicast channel. The diagram depicts a system of 3 sites, \(P_1, P_2 \) and \(P_3 \). \(P_1 \) sends point-to-point messages to \(P_2 \) and \(P_3 \) in that order, with sequence number 0 piggybacked on both. Neither point-to-point message is delayed by its recipient in ppwait, since the seqno

8In fact, since each message is received by every site including the sender itself, and each receive event occurs after the corresponding mcast event, any total order in a broadcast system that is receive consistent must also be well-founded and context safe.
D_i:

Signature:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{mcast}(m)_{i,J}$</td>
<td>$\text{receive}(m)_{i,j}$</td>
</tr>
<tr>
<td>$\text{receive}^{BC}(m, J)_{i,j}$</td>
<td>$\text{mcast}^{BC}(m, J)_{i,j}$</td>
</tr>
<tr>
<td>$\text{receive}^{PP}(m, k)_{i,j}$</td>
<td>$\text{mcast}^{PP}(m, k)_{i,j}$</td>
</tr>
</tbody>
</table>

States:

- buffer, a FIFO queue of (message, destination set) pairs, initially empty
- msg, a FIFO queue of (message, site) pairs, initially empty
- ppwait, a multiset of (message, site, nonnegative integer) triples, initially empty
- seqno, a nonnegative integer, initially 0.

Steps:

- $\text{mcast}(m)_{i,J}$
 - Effect: add (m, J) to buffer
 - Precondition: (m, J) is first on buffer $|J| > 1$
 - Effect: remove first element of buffer

- $\text{mcast}^{BC}(m, J)_{i,J}$
 - Effect: $\text{seqno} := \text{seqno} + 1$
 - Precondition: (m, J) is first on buffer $|J| > 1$
 - Effect: remove first element of buffer

- $\text{receive}(m)_{i,j}$
 - Effect: if $i \in J$ then add (m, j) to msg
 - Precondition: (m, J) is first on buffer $|J| > 1$
 - Effect: remove first element of buffer

- $\text{mcast}^{PP}(m, k)_{i,j}$
 - Effect: if $k \leq \text{seqno}$ then add (m, j, k) to ppwait
 - Precondition: (m, j, k) is first on buffer $k = \text{seqno}$
 - Effect: remove first element of buffer

Tasks:

- All mcast^{BC} and mcast^{PP} actions together comprise a single task.
- All receive output actions comprise a single task.

Figure 10: Automaton D_i. 25
Figure 11: Causality is not preserved by the algorithm.

at the recipient is 0. There is also a broadcast by P_3, which is delivered at P_3 before the point-to-point message arrives there; however, at P_2, the broadcast is delivered after the point-to-point message. The only receive consistent partial order has the \textit{mcast} event for the message from P_1 to P_2, followed by the \textit{mcast} event for the broadcast, followed by the \textit{mcast} event for the message from P_1 to P_3. This violates the FIFO condition for causal multicast. However, this execution is acceptable for context multicast.

The proof of Theorem 6.1 occupies the rest of this section. For the rest of this section, fix β to be an arbitrary fair trace of C, and let α be any fair execution of C that gives rise to β.

Lemma 6.2 β satisfies the basic reliability requirements.

Proof: This is straightforward; the most interesting fact to show is that each message does in fact get delivered everywhere it should. For messages with more than one destination, this follows because such messages are sent using the reliable broadcast channel BC, and are not delayed at the recipient end. For messages with only one destination, this follows because such messages are sent using the reliable point-to-point channel PP, and can only be delayed for a finite amount of time (until the delivery of the broadcast message with the same sequence number).

It remains to define a well-founded partial order T on the \textit{mcast} events in β such that β and T are receive consistent, context safe and total.

First, if π is any (environment) \textit{mcast} event, then we define its epoch, $\text{epoch}(\pi)$. If π is a multi-destination \textit{mcast}, then $\text{epoch}(\pi)$ is the value assigned to the state component seqno when π’s receive^{BC} occurs at any site. Receive consistency of BC, and the fact that all sites receive each broadcast, together imply that this value is uniquely defined. Also, if π is any single-destination \textit{mcast} event, say with destination set $\{i\}$, then $\text{epoch}(\pi)$ is the maximum
of the following two numbers: (a) the sequence number piggybacked on \(\pi\)'s point-to-point message (this is the value of seqno at the sender when the corresponding mcast\(^{PP}\) occurs) and (b) the value of seqno at site \(i\) when the corresponding receive\(^{PP}\) occurs at \(D_i\).

Because the state component seqno is incremented exactly by the receive\(^{BC}\) events, it follows that the epoch numbers of multi-destination messages form a set of consecutive integers beginning with 1 (i.e., there are no gaps), and that no number is the epoch of more than one multi-destination message. There is no multi-destination mcast event with epoch = 0. Any number that is the epoch of a multi-destination mcast event may also be the epoch of any number of single-destination mcast events, and there may also be any number of single-destination mcast events with epoch = 0.

We now define \(T\) as the relation on mcast events in \(\alpha\) that is the transitive closure of the union of several individual relations.

1. The multi-multi order relates any two multi-destination mcast events in \(\alpha\); it orders them according to their epochs.
2. The multi-single relation orders a multi-destination mcast event \(\pi\) in \(\alpha\) before a single-destination mcast event \(\phi\) in \(\alpha\) if epoch(\(\pi\)) \(\leq\) epoch(\(\phi\)).
3. The single-multi relation orders a single-destination mcast event \(\phi\) in \(\alpha\) before a multi-destination mcast event \(\pi\) in \(\alpha\) if epoch(\(\phi\)) < epoch(\(\pi\)).
4. The single-single order relates any two single-destination mcast events in \(\alpha\) that have the same epoch; it orders them in the order of their receive events as they occur in \(\alpha\).

We show that \(T\) is a well-founded total order, and that it guarantees receive consistency and context safety.

From the individual relations defined above we see that \(T\) respects the order determined by epoch numbers, and among events with the same non-zero epoch, \(T\) places the unique multi-destination mcast at the beginning:

Lemma 6.3 If \((\pi, \pi') \in T\), then epoch(\(\pi\)) \(\leq\) epoch(\(\pi'\)). Also, if \((\pi, \pi') \in T\) and \(\pi'\) is a multi-destination mcast, then epoch(\(\pi\)) < epoch(\(\pi'\)).

The following is a partial converse to Lemma 6.3:

Lemma 6.4 If epoch(\(\pi\)) < epoch(\(\pi'\)), then \((\pi, \pi') \in T\).

Proof: Consider any two mcast events, \(\pi\) and \(\pi'\), in \(\alpha\), with epoch(\(\pi\)) < epoch(\(\pi'\)). If either event is multi-destination, then \((\pi, \pi')\) is an element of one of the orders that generate \(T\). The remaining case is where both are single-destination. Then, taking \(\psi\) to be the unique multi-destination mcast event with epoch(\(\psi\)) = epoch(\(\pi'\)), we see that \(\pi\) is ordered before \(\psi\) by single-multi and \(\psi\) is ordered before \(\pi'\) by multi-single. Thus in every case \((\pi, \pi') \in T\).

Now we show, in turn, that \(\beta\) and \(T\) have all the required properties.

Lemma 6.5 \(T\) is a partial order.

Proof: By Lemma 6.3, any cycle of edges, each from one of the constituent relations of \(T\), must involve a collection of events all having the same epoch; furthermore, none can be a multi-destination mcast. But this means that all the edges must be from the relation single-single, which is itself a partial order. This contradiction shows that \(T\) is acyclic. Therefore, since it is by construction transitive and irreflexive, it is a partial order.

Lemma 6.6 \(T\) is a total order.
Proof: Consider any two distinct mcast events, \(\pi \) and \(\pi' \), in \(\alpha \). If \(\text{epoch}(\pi) \neq \text{epoch}(\pi') \) then Lemma 6.4 shows that \(\pi \) and \(\pi' \) are related by \(T \). On the other hand, suppose the events have the same epoch; thus at most one can be multi-destination. If neither is multi-destination then they are related by single-single, while if one is multi-destination and the other is single-destination then they are related by multi-single. Thus in every case \(\pi \) and \(\pi' \) are related by \(T \).

Lemma 6.7 \(T \) is well-founded.

Proof: Consider any fixed mcast event \(\pi \) in \(\alpha \), say with \(\text{epoch} = k \). The predecessors of \(\pi \) in \(T \) consist of three types of mcast events: mcast events with \(\text{epoch} < k \), multi-destination mcast events with \(\text{epoch} = k \), and single-destination mcast events with \(\text{epoch} = k \) whose receive events precede the receive of \(\pi \) in \(\alpha \). We claim that each of these is a finite set.

The second is clearly finite, since there is at most one multi-destination mcast event with \(\text{epoch} = k \). The third is also finite, because there are only finitely many events preceding the receive of \(\pi \) in the sequence \(\alpha \).

We consider the first set of events, the set of mcast events with \(\text{epoch} < k \). Note that there must be a multi-destination mcast event in \(\alpha \), say \(\phi \), with \(\text{epoch} = k \). (Possibly \(\phi = \pi \).) In \(\alpha \), the broadcast for \(\phi \) is eventually received at every site. After this happens, any later mcast or mcastpp will cause its originating mcast event to be assigned an epoch that is at least \(k \). This implies that there are only finitely many mcast events with \(\text{epoch} < k \).

Since all three sets are finite, \(\pi \) has only finitely many predecessors in \(T \). It follows that \(T \) is well-founded.

Lemma 6.8 \(T \) is receive consistent.

Proof: We first note that the order of receive events at a site is the same as the order of entry into the msgs queue at that site. A multi-destination message \(m \) enters the msgs queue during the corresponding receiveBC step, in which seqno is first assigned to be the epoch of the mcast event for \(m \). Also, the ppwait multiset is used so that a single-destination message \(m \) enters the msgs queue during an event after which the value of seqno is equal to the epoch of the mcast event for \(m \).

Since \(T \) is a partial order, and the occurrence of events at a site is a total order on those events, to show receive consistency it is enough to show the following: whenever receive\((m)_{j;i}\) precedes receive\((m')_{j;i}\) at site \(i \), then \(T \) orders the mcast event for \(m \) before the mcast event for \(m' \). So suppose that receive\((m)_{j;i}\) precedes receive\((m')_{j;i}\) at site \(i \) in \(\alpha \). Let \(\pi \) and \(\pi' \) denote the corresponding events mcast\((m)_{j;1}\) and mcast\((m')_{j;1}\). We consider cases.

1. Both \(\pi \) and \(\pi' \) are multi-destination.

Then each of \(m \) and \(m' \) enters the msgs queue during the corresponding receiveBC event. Therefore, the receiveBC for \(m \) precedes the receiveBC for \(m' \), and since seqno never decreases, the epoch of \(m \) is less than the epoch for \(m' \). Thus, the multi-multi relation orders \(\pi \) before \(\pi' \), so that \(T \) does also.

2. Both \(\pi \) and \(\pi' \) are single-destination.

Since the epoch of each of \(m \) and \(m' \) is the value of seqno at the step when it enters the msgs queue, and since seqno never decreases, the epoch of \(m \) must be less than or equal to the epoch of \(m' \). If the epochs are equal, then it is immediate that single-single orders the corresponding mcast events in the same order as the receive events, and therefore so does \(T \). On the other hand, if the epoch of \(m \) is less than the epoch for \(m' \), then Lemma 6.4 implies that \(T \) orders \(\pi \) before \(\pi' \).

3. \(\pi \) is multi-destination and \(\pi' \) is single-destination.

Since \(m \) enters the msgs queue during the step when seqno is first set to equal the epoch of \(m \), and \(m' \) enters the msgs queue in a later event after which seqno equals the epoch of \(m' \), we have that the epoch of \(m \) is less than or equal to the epoch of \(m' \). It is immediate that multi-single orders \(\pi \) before \(\pi' \), so that \(T \) does also.
4. \(\pi \) is single-destination and \(\pi' \) is multi-destination.

Since \(m \) enters the \(\text{msg} \)s queue during a step after which \(\text{seqno} \) is equal the epoch of \(m \), and \(m' \) enters the \(\text{msg} \)s queue during a later event in which \(\text{seqno} \) is first assigned to be the epoch of \(m' \), we have that the epoch of \(m \) is strictly less than the epoch of \(m' \). It is immediate that single-multi orders \(\pi \) before \(\pi' \).

In every case, we see that \(T \) orders the \(\text{mcast} \) event for \(m \) before the \(\text{mcast} \) event for \(m' \), as needed.

Lemma 6.9 \(T \) is context safe.

Proof: Suppose that at \(i \), \(\text{receive}(m)_{i,j} \) is followed by \(\text{mcast}(m')_{i,j} \). Let \(\pi \) denote the \(\text{mcast}(m) \) event and let \(\pi' \) denote the \(\text{mcast}(m') \) event. We must show that \(T \) orders \(\pi \) before \(\pi' \). We divide the argument into cases.

1. Both \(\pi \) and \(\pi' \) are single-destination.

Then the algorithm ensures that the \(\text{receive}^{BC} \) for \(m \) at \(i \) precedes the event \(\text{receive}(m)_{i,t} \). Similarly, \(\text{mcast}(m')_{i,j} \) precedes the \(\text{mcast}^{BC} \) for \(m' \). Thus, the \(\text{receive}^{BC} \) for \(m \) at \(i \) precedes the \(\text{mcast}^{BC} \) for \(m' \). Context safety and receive consistency of \(BC \) then implies that at every site, the \(\text{receive}^{BC} \) for \(m \) precedes the \(\text{receive}^{BC} \) for \(m' \). Thus the value of \(\text{seqno} \) assigned at any site during the \(\text{receive}^{BC} \) for \(m \) is less than the value of \(\text{seqno} \) assigned during the \(\text{receive}^{BC} \) for \(m' \). That is, the epoch of the \(\text{mcast} \) of \(m \) is less than the epoch of the \(\text{mcast} \) of \(m' \). Therefore, the \(\text{mcast} \) events are ordered appropriately by \(T \).

2. Both \(\pi \) and \(\pi' \) are single-destination.

Then the \(\text{receive} \) for \(m \) precedes the \(\text{mcast}^{PP} \) for \(m' \). The epoch of the \(\text{mcast} \) event for \(m' \) is greater than or equal to the tag piggybacked on \(m' \), which is the value of \(\text{seqno} \) at the time of the \(\text{mcast}^{PP} \) event for \(m' \). This value is in turn greater than or equal to the value of \(\text{seqno} \) at the time of the \(\text{receive} \) for \(m \). The use of the \(\text{ppwa} \)it multiset ensures that the value of \(\text{seqno} \) when the \(\text{receive} \) for \(m \) occurs is at least as great as the tag that is piggybacked on \(m \), and (because \(\text{seqno} \) never decreases) it is also at least as great as the value of \(\text{seqno} \) when the \(\text{receive}^{PP} \) for \(m \) occurs. By the definition of epoch, we see that the value of \(\text{seqno} \) at the \(\text{receive} \) for \(m \) is greater than or equal to the epoch of the \(\text{mcast} \) for \(m \).

Combining all these observations, we see that the epoch of the \(\text{mcast} \) event for \(m' \) is greater than or equal to the epoch of the \(\text{mcast} \) for \(m \). If these epochs are not equal, then Lemma 6.4 implies that \(T \) orders the \(\text{mcast} \) events appropriately. On the other hand, if the epochs are equal, then we note that the \(\text{receive} \) for \(m' \) must occur later in \(\alpha \) than the \(\text{mcast} \), and hence later than the \(\text{receive} \) for \(m \). Again, \(T \) orders the events appropriately.

3. \(\pi \) is multi-destination and \(\pi' \) is single-destination.

Then the \(\text{receive}^{BC} \) for \(m \) at \(i \) precedes the \(\text{mcast}^{PP} \) for \(m' \). The epoch of the \(\text{mcast} \) event for \(m' \) is greater than or equal to the tag placed on \(m' \), which is the value of \(\text{seqno} \) at the time of the \(\text{mcast}^{PP} \) event for \(m' \). This value is in turn at least as great as the value of \(\text{seqno} \) assigned during the \(\text{receive}^{BC} \) for \(m \), which is the epoch of \(m \). Thus the multi-single relation orders the \(\text{mcast} \) events appropriately, so \(T \) also orders them appropriately.

4. \(\pi \) is single-destination and \(\pi' \) is multi-destination.

Then the \(\text{receive} \) for \(m \) at \(i \) precedes the \(\text{mcast}^{BC} \) for \(m' \), which itself occurs before the \(\text{receive}^{BC} \) event for \(m' \) at site \(i \) itself. The epoch of the \(\text{mcast} \) event for \(m' \) is the value assigned to \(\text{seqno} \) during the \(\text{receive}^{BC} \) event for \(m' \), which is strictly greater than the value of \(\text{seqno} \) at the time of the \(\text{receive} \) for \(m \). The use of the \(\text{ppwa} \)it multiset ensures that the value of \(\text{seqno} \) when the \(\text{receive} \) for \(m \) occurs is at least as great as the tag that is piggybacked on \(m \), and (because \(\text{seqno} \) never decreases) it is also at least as great as the value of \(\text{seqno} \) when the \(\text{receive}^{PP} \) for \(m \) occurs. By the definition of epoch we see that the value of \(\text{seqno} \) at the \(\text{receive} \) for \(m \) is
at least as great as the epoch of the \textit{mcast} for \(m\). Combining these observations, we see that the epoch of the \textit{mcast} event for \(m'\) is strictly greater than the epoch of the \textit{mcast} for \(m\). Thus the \textit{single-multi} relation (and so also \(T\)) order the events appropriately.

The above cases cover all possibilities, showing that \(T\) is context safe.

\textbf{Proof:} (of Theorem 6.1) The properties of \(T\) have been shown in Lemmas 6.6, 6.7, 6.9, and 6.8.

7 Discussion

We have presented a new algorithm for implementing a sequentially consistent shared object system in a distributed network. The algorithm is based on the one used in the Orca system, but generalizes it to allow objects to be partially replicated. Replicated objects are kept consistent using a context multicast system, which is a new communication service that can be implemented using a combination of totally ordered broadcast and point-to-point communication. We have presented this algorithm in two layers, and have carried out a complete correctness proof using this decomposition. In the course of our work, we found a logical error in the implementation of the Orca system that had not yet manifested itself in execution; as a result, the Orca implementation has been modified to correct this error.

This work opens up many avenues for future research. First, some simple extensions to our results can be made. For example, we could allow concurrent invocations of operations by the same client, as in [20], instead of requiring clients to block. In order to handle this case, we need to adjust our definition of sequential consistency to eliminate the \textit{client-well-formedness} condition, to modify the algorithm to maintain sets of active operations, and to make minor changes in our proofs.

Another extension to our work is to incorporate objects with more general kinds of operations than just \textit{read} and \textit{update}.

A more serious extension is to allow for dynamic changes to the locations of object copies. As we noted in Section 1, Orca allows object locations to change dynamically, in response to changes in access patterns. There are several different schemes possible for managing such changes; most of these maintain the safety properties expressed by our results, but cause violations to the liveness conditions (e.g., an operation might not be able to find the needed copies because they are continuously moving). It remains to describe and verify existing schemes using our framework, and to develop and verify new schemes that preserve the liveness condition.

Another direction for further work is to consider different algorithms that trade off between the latency of different operations, as explored in [8]. For example, in a shared update, our replica management algorithm delays reporting the completion of the update to the client until the multicast message is received by the client’s processor. One could seek algorithms that reduce the latency in this situation; however to maintain sequential consistency, other operations might need longer delays.

Still another extension is to use other communication primitives. For example, we would like to consider how to build a shared object system using group-ordered causal multicast together with point-to-point messages. For all these extensions we expect that much of the machinery developed in this paper can be reused.

8 Conclusions

Implementations for distributed systems such as Orca are complicated, because of the many possible interleavings of events of concurrent threads. It is generally difficult to be sure that such implementations are correct. Formal modelling and verification in the style we have presented here can provide great help in understanding and verifying such systems. Our modelling and verification of Orca has already contributed to the Orca project by identifying and correcting an error and by giving the designers extra confidence in the corrected implementation. In addition, the structures we have provided should provide useful documentation and assistance in future system modification.
More broadly, our work can be seen as one step in the development of a practical theory for distributed shared memory systems. Such a theory should consist of a body of abstract component specifications, abstract algorithms, theorems about how the various abstract notions are related, and application-specific proof methods. Our contributions to this theory include our specifications for a sequentially consistent shared memory system and for various kinds of multicast channels, our higher layer and lower layer algorithms and their correctness theorems, and our lemmas that show how to prove sequential consistency. However, our work is only a first step — we believe that much more work of the same kind, based on formal modelling of real systems and applications, is needed to complete the job.

Acknowledgments

We like to thank Henri Bal, Wilson Hsieh, Victor Luchangco, and Tim Ruhl for their comments on drafts of this paper. Roy Friedman and Robbert van Renesse assisted in the exploration of alternative multicast definitions.

References

