
Specifying and Using a PartitionableGroup Communication ServiceAlan Fekete� Nancy Lynchy Alex ShvartsmanzJanuary 29, 1998AbstractGroup communication services are becoming widely accepted as useful building blocks for the con-struction of fault-tolerant distributed applications. Many system designers and researchers have proposedformal speci�cations for group communication services. However, there is still no agreement about whatthese speci�cations should say, especially in cases where the services are partitionable, that is, wheredisjoint sets of members may simultaneously believe they constitute the whole group.In this paper, we present a new, simple speci�cation for a partitionable group communication ser-vice. We use the speci�cation to construct an ordered-broadcast application, using an algorithm (basedon algorithms of Amir, Dolev, Keidar and others) that reconciles information derived from di�erentinstantiations of the group. We prove the correctness and analyze the performance and fault-toleranceof the resulting application. Our speci�cation has a simple implementation, based on the membershipalgorithm of Cristian and Schmuck.The service we specify associates each message with a particular view of the group membership. Allsend and receive events for a message occur at processors when they have the associated view. Theservice provides a total order on the messages within each view, and each processor receives a pre�x ofthis total order.The style of our speci�cation is di�erent from those of previous speci�cations for group communicationservices, in that we separate safety requirements from performance and fault-tolerance requirements.The safety requirements are expressed by an abstract, global state machine. To present the performanceand fault-tolerance requirements, we include failure-status input actions in the speci�cation; we thengive properties saying that consensus on the view and timely message delivery are guaranteed in anexecution provided that the execution stabilizes to a situation in which the failure status stops changingand corresponds to a consistently partitioned system. (This stabilization hypothesis can be seen as anabstract version of the \timed asynchronous model" of Cristian.)Our speci�cation is simple; for example, it does not mention any \hidden" or \transitional" viewsas do some others. It is also signi�cantly weaker than most others, for example, we do not requireconsensus on either knowledge of group membership or on message delivery, except in those cases wherethe execution stabilizes. Because consensus is not required in every execution, the speci�cation is notsubject to the existing impossibility results for partitionable systems.Despite its weakness, the speci�cation is su�cient to allow important applications to run on top of thegroup communication service. In this paper, we present one such application, the ordered-broadcast ap-plication mentioned above. The application manages the view-change activity to build a shared sequenceof messages, that is, the per-view total orders of the group service are combined to give a universal totalorder. The ordered-broadcast application can itself be used to implement sequentially consistent memory,using simple replicated data management. Our state-based speci�cation is used in an assertional proofof the safety properties of the ordered-broadcast application; this proof requires reasoning only about�Basser Department of Computer Science, Madsen Building F09, University of Sydney, NSW 2006, Australia. Email:fekete@cs.usyd.edu.auyMassachusetts Institute of Technology, Laboratory for Computer Science, 545 Technology Square, NE43-365, Cam-bridge, MA 02139, USA. Email: lynch@theory.lcs.mit.edu.zMassachusetts Institute of Technology, Laboratory for Computer Science, 545 Technology Square, NE43-371, Cam-bridge, MA 02139, USA. Email: alex@theory.lcs.mit.edu.1



individual state transitions. The performance and fault-tolerance properties of the speci�cation are usedin an operational proof of the performance and fault-tolerance properties of the application.1 IntroductionBackgroundIn the development of practical distributed systems, considerable e�ort is devoted to making distributedapplications robust in the face of typical processor and communication failures. Constructing suchsystems is di�cult, however, because of the complexities of the applications and of the fault-pronedistributed settings in which they run. To aid in this construction, some computing environmentsinclude general-purpose building blocks that provide powerful distributed computation services.Among the most important examples of building blocks are group communication services. Groupcommunication services enable processes located at di�erent nodes of a distributed network to operatecollectively as a group; the processes do this by using a group communication service to multicastmessages to all members of the group. Di�erent group communication services o�er di�erent guaranteesabout the order and reliability of message delivery. Examples are found in Isis [6], Transis [11], Totem [25],Newtop [13], Relacs [3] and Horus [27].The basis of a group communication service is a group membership service. Each process, at eachtime, has a unique view of the membership of the group. The view includes a list of the processesthat are members of the group. Views can change from time to time, and may become di�erent atdi�erent processes. Isis introduced the important concept of virtual synchrony [6]. This concept hasbeen interpreted in various ways, but an essential requirement is that if a particular message is deliveredto several processes, then all have the same view of the membership when the message is delivered. Thisallows the recipients to take coordinated action based on the message, the membership set and the rulesprescribed by the application.The Isis system was designed for an environment where processors might fail and messages mightbe lost, but where the network does not partition. That is, it assumes that there are never two disjointsets of processors, each set communicating successfully among its members. This assumption mightbe reasonable for some local area networks, but it is not valid in wide area networks. Therefore, themore recent systems mentioned above allow the possibility that concurrent views of the group might bedisjoint.To be most useful to application programmers, system building blocks should come equipped withsimple and precise speci�cations of their guaranteed behavior. These speci�cations should include notonly safety properties, but also performance and fault-tolerance properties. Such speci�cations wouldallow application programmers to think carefully about the behavior of systems that use the primitives,without having to understand how the primitives themselves are implemented. Unfortunately, providingappropriate speci�cations for group communication services is not an easy task. Some of these servicesare rather complicated, and there is still no agreement about exactly what the guarantees should be.Di�erent speci�cations arise from di�erent implementations of the same service, because of di�erencesin the safety, performance, or fault-tolerance that is provided. Moreover, the speci�cations that mostaccurately describe particular implementations may not be the ones that are easiest for applicationprogrammers to use.The �rst major work on the development of speci�cations for fault-tolerant group-oriented member-ship and communication services appears to be that of Ricciardi [28], and the research area is still active(see, e.g., [26, 7]). In particular, there has been a large amount of work on developing speci�cations forpartitionable group services. Some speci�cations deal just with membership and views [17, 29] whileothers also cover message services (ordering and reliability properties) [24, 4, 5, 9, 12, 15, 16]. Thesespeci�cations are all complicated, many are di�cult to understand, and some seem to be ambiguous.It is not clear how to tell whether a speci�cation is su�cient for a given application. It is not evenclear how to tell whether a speci�cation is implementable at all; impossibility results such as those in[7] demonstrate that this is a signi�cant issue. 2



Our contributionsWe present a new, simple formal speci�cation for a partitionable view-oriented group communicationservice. To demonstrate the value of our speci�cation, we use it to construct an ordered-broadcast appli-cation, using an algorithm, based on algorithms of Amir, Dolev, Keidar, Melliar-Smith and Moser [18, 1],that reconciles information derived from di�erent views. We prove the correctness and analyze the per-formance and fault-tolerance of this algorithm. Our speci�cation has a simple implementation, basedon the membership algorithm of Cristian and Schmuck [10]. We call our speci�cation VS , which standsfor view-synchrony.1In VS , the views are presented to each processor2 according to a consistent total order, thoughnot every processor need see every view. Each message is associated with a particular view, and allsend and receive events for a message occur at processors when they have the associated view. Theservice provides a total order on the messages associated with each view, and each processor receives apre�x of this total order. There are also some guarantees about stabilization of view information andabout successful message delivery, under certain assumptions about the number of failures and aboutthe stabilization of failure behavior.Our speci�cation VS does not describe all the potentially-useful properties of any particular imple-mentation. Rather, it includes only the properties that are needed for the ordered-broadcast application.However, preliminary results suggest that the same speci�cation is also useful for other applications.The style of our speci�cation is di�erent from those of previous speci�cations for group communicationservices, in that we separate safety requirements from performance and fault-tolerance requirements. Thesafety requirements are formulated in terms of an abstract, global input/output state machine, usingprecondition-e�ect notation. This enables assertional reasoning about systems that use this service. Theperformance and fault-tolerance requirements are expressed as a collection of properties that must holdin executions of the service. Speci�cally, we include failure-status input actions in the speci�cation;we then give properties saying that consensus on the view and timely message delivery are guaranteedin an execution provided that it stabilizes to a situation in which the failure status stops changingand corresponds to a consistently partitioned system. This stabilization hypothesis can be seen asan abstract version of the \timed asynchronous model" of Cristian [8]. These performance and fault-tolerance properties are expressed in precise natural language and require operational reasoning.We consider how our view-synchronous group communication service can be used in the distributedimplementation of a sequentially consistent memory. It turns out that the problem can be subdivided intotwo: the implementation of a totally ordered broadcast communication service using a view-synchronousgroup communication service, and the implementation of sequentially consistent memory using a totallyordered broadcast service. The second of these is easy using known techniques,3 so we focus in thispaper on the �rst problem. A totally ordered broadcast service delivers messages submitted by itsclients, according to a single total ordering of all the messages; this total order must be consistent withthe order in which the messages are sent by any particular sender. Each client receives a pre�x of theordering, and there are also some guarantees of successful delivery, under certain assumptions about thestabilization of failure behavior. This service is di�erent from a view-synchronous group communicationservice in that there is no notion of \view"; the ordering guarantees apply to all the messages, not justthose within individual views.We begin in Section 3 by giving a simple formal speci�cation for a totally ordered broadcast service,which we call TO . This speci�cation will be used later as the correctness de�nition for an algorithm1This is not the same as the notion of view-synchrony de�ned in [5].2We consider \processor groups" in the formal material of this paper rather than \process groups". The distinction isunimportant here.3Each processor maintains a replica of the underlying memory. A read operation is performed immediately on the localcopy. A requested update is sent to all processors via the totally ordered broadcast service. Each processor (even the onewhere the request was submitted) applies the update when it is delivered by the totally ordered broadcast service; thesubmitting processor also determines the return value and returns it to the client. The fact that this provides a sequentiallyconsistent shared memory is at the heart of the \Replicated State Machine" approach to distributed system design. It was�rst described by Lamport [19], a survey of this approach is given by Schneider in [30] (see also the references therein).An alternative approach is to send all operations (not just updates) through the totally ordered broadcast service; thisapproach constructs an atomic shared memory. 3



running over a group communication service. It also serves as a simple example to illustrate the style ofspeci�cation we use throughout the paper: an abstract state machine for safety properties, plus stabilizedproperties for performance and fault-tolerance.Then, in Section 4, we present our new speci�cation for a partitionable group communication service,VS . In VS , there is a crisp notion of a local view, that is, each processor, at any time, has a currentview and knows the membership of the group in its current view; moreover, any messages sent by anyprocessor in a view are received (if they are received at all) in the same view. The VS layer also providesa \safe" indication, once a message has been delivered to all members of the view.Here are the most important di�erences between our speci�cation VS and other group communicationspeci�cations.1. VS does not mention any \transitional views" or \hidden views", such as are found in ExtendedVirtual Synchrony [24] or the speci�cation of Dolev et al [12]. Each processor always has a well-de�ned view of the group membership, and all recipients of a message share the view that the senderhad when the message was sent.2. VS does not require that a processor learn of all the views of which it is a member.3. VS does not require any relationship among the membership of concurrent views held by di�erentprocessors. Stronger speci�cations demand that these views be either disjoint or identical [5], oreither disjoint or subsets [4].4. VS does not require consensus on whether a message is delivered. Many other speci�cations for groupcommunication, including [4, 5, 12, 15, 24], insist on delivery at every processor in the intersectionof the current view and a successor view. We allow each member to receive a di�erent subset of themessages associated with the view; however, each member must receive a pre�x of a common totalorder of the messages of that view.5. The \safe" indication is separate from the message delivery event. In Transis, Totem and Horus[11, 25, 27], delivery can be delayed until the lower layer at each site has the message (though itmight not yet have delivered it). Thus in these systems, safe delivery means that every other memberis guaranteed to also provide safe delivery or crash. A simple \coordinated attack" argument (as inChapter 5 of [20]) shows that in a partitionable system, this notion of safe delivery is incompatiblewith having all recipients in exactly the same view as the sender. In contrast, our service deliversa message before it is safe and later provides a noti�cation once delivery has happened at all othergroup members.6. There are no liveness requirements that apply to all executions. Instead, we follow the \timedasynchronous model" of Cristian [8] and make conditional claims for timely delivery only in certainexecutions where the processors and links behave well.7. VS does not require that every view change have a cause; in contrast, some speci�cations requirethat the removal of a member that was in the previous view must be due to a failure of that member,or of a link to it. We allow arbitrary view changes during periods when the underlying networkis unstable, however the conditional performance and fault-tolerance property of VS shows thatonce the communication stabilizes to a consistently partitioned system, process views must quicklyconverge to match that partioning.The di�erences represented by points 2, 4 and 6 mean that our VS service is not subject to the impos-sibility results that a�ict some group communication speci�cations [5, 7].Although VS is weaker in several respects than most considered in the literature, we demonstratethat it is strong enough to be useful, by showing, in Section 5, how an interesting and useful algorithmcan run on top of it. This algorithm is based on data replication algorithms developed by Amir, Dolev,Keidar, Melliar-Smith and Moser [18, 1]. These previous algorithms implement a fault-tolerant sharedmemory by sending modi�cation operations to each replica through a group communication service basedon Extended Virtual Synchrony, and carrying out a state-exchange protocol when partition componentsmerge. Our algorithm, which we call VStoTO , can be seen as a more abstract form of both previous ones,4



TO. . .VSgpsnd(m)p gprcv(m)q;p safe(m)q;psafe(m)q;p newview(v)p@@Rbcast(a)p brcv(a)q;p��� @@Rbcast(a)q brcv(a)p;q����� �� �� ��'
&

$
%�� �@@R ��� ��� ���@@ �� �� �� gpsnd(m)q gprcv(m)p;q safe(m)p;qsafe(m)p;q newview(v)q@@R ��� ��� ���@@ �� �� ��VStoTOp VStoTOq

Figure 1: System components and interfacesseparated from the speci�c use for data replication. We present the algorithm using I/O automata [21,20].Figure 1 depicts the major components of the system we consider, and their interactions.Finally, in Sections 6 and 7, we give a proof that the VStoTO algorithm, running on top of VS ,indeed provides the service expressed by the TO speci�cation. The safety aspect of this claim usesassertional methods. We give invariants on the global state of a system that consists of the VStoTOalgorithm and the VS state machine. We then give a simulation relationship between the global state ofthe system, and the TO state machine. As usual, proving the invariants and the simulation relationshipinvolves reasoning only about individual state transitions; it does not require operational reasoning, inwhich one considers a whole execution. The performance and fault-tolerance aspects of the proof involveoperational reasoning about timed executions.2 Mathematical FoundationIf r is a binary relation, then we de�ne dom(r) to be the set (without repetitions) of �rst elements ofthe ordered pairs comprising relation r, and range(r) to be the set of second elements. If f is a partialfunction from A to B and ha; bi 2 A � B, then f � ha; bi is de�ned to be the partial function that isidentical to f except that f(a) = b.If f and g are partial functions, from A to B and from A to C respectively, then the pair hf; gi isde�ned to be the function from A to B � C such that hf; gi(a) = hf(a); g(a)i.We write � for the empty sequence, and hhaii for the sequence consisting of the single element a. Ifs is a sequence, length(s) denotes the length of s. If s is a sequence and 1 � i � length(s) then s(i)denotes the ith element of s. If s and t are sequences and s is �nite, then the concatenation of s and t isdenoted by s � t. We say that sequence s is a pre�x of sequence t, written as s � t, provided that thereexists s0 such that s � s0 = t. A collection S of sequences is consistent provided that for every s; t 2 S,either s � t or t � s. If S is a consistent collection of sequences, we de�ne lub(S) to be the minimumsequence t such that s � t for all s 2 S.We often regard a sequence s as a partial function from its index set to its elements; thus, for example,we use the function notation range(s) to denote the set of elements appearing in sequence s. If s is asequence of elements of X and f is a partial function from X to Y whose domain includes range(s),then applyall (f; s) denotes the sequence t of elements of Y such that length(t) = length(s) and, fori � length(t), t(i) = f(s(i)).Our services and algorithms are described using untimed and timed state machine models. Untimedmodels are used for the safety properties, while timed models are used for the performance and fault-tolerance properties.The untimed model we use is the I/O automaton model of Lynch and Tuttle [21], also described inChapter 8 of [20]. We do not use the \task" construct of the model { the only components we needare a set of states, a designated subset of start states, a signature specifying input, output and internalactions, and a set of (state,action,state) transitions. The timed model we use is that of Lynch andVaandrager [23], as described in Chapter 23 of [20]. This is similar to the untimed model, but also5



includes time passage actions �(t), which indicate the passage of real time t. Time passage actions alsohave associated state transitions.An execution fragment of an I/O automaton is an alternating sequence of states and actions consistentwith the transition relation. An execution is an execution fragment that begins with a start state. Timedexecution fragments and timed executions of a timed automaton are de�ned in the same way. A timedexecution fragment of a timed automaton has a \limit time" ltime 2 R�0 [ f1g, which is the sum ofall the amounts of time in its time passage actions.Since our treatment is compositional, we need notions of external behavior for both types of automata.For I/O automata, we use traces , which are sequences of actions; for timed automata, we use timedtraces , each of which is a sequence of actions paired with its time of occurrence, together with a valueltime 2 R�0 [ f1g indicating the total duration of time over which the events are observed. Theexternal behavior of an I/O automaton is captured by the set of traces generated by its executions,while that of a timed automaton is captured by the set of timed traces generated by its \admissible"timed executions, i.e., those in which ltime =1.Execution fragments can be concatenated, as can timed execution fragments, traces and timed traces.I/O automata can be composed, as can timed automata; Chapters 8 and 23 of [20] contain theoremsshowing that composition respects the external behavior. Invariant assertion and simulation relationmethods for these two models are also presented in those chapters.3 Totally Ordered BroadcastIn this section, we present TO , our speci�cation for a totally ordered broadcast communication ser-vice. TO is a combination of a state machine TO-machine and a performance/fault-tolerance propertyTO-property , which is a property of timed traces allowed by a timed version of TO-machine .For the rest of the paper, we �x P to be a totally ordered �nite set of processor identi�ers (we willoften refer to these as locations), and A to be a set of data values.3.1 The State Machine TO-machineThe interface between the totally ordered broadcast service and its clients is through input actions ofthe form bcast(a)p, representing the submission of data value a by a client at the location of processorp, and output actions of the form brcv(a)p;q , representing the delivery to a client at q of a data valuepreviously sent by a client at p. We call the messages at this interface \data values", to distinguish themfrom messages at lower-level interfaces.The state of the speci�cation automaton includes a queue queue of data values, each paired with thelocation at which it originated; the order represented by queue is determined by the service implementedby the TO-machine. Also, for each location p, there is a queue pending [p] containing the data valuesoriginating at p that have not yet been added to queue. Finally, for each p there is an integer next [p]giving the index in queue of the next data value to be delivered at p. The formal automaton de�nitionis given in Figure 2.The �nite traces of this automaton are exactly the �nite pre�xes of traces of a totally ordered causalbroadcast layer, as de�ned in [14].Note that, in any trace of TO-machine, there is a natural correspondence between brcv events andthe bcast events that cause them.
6



TO-machine :Signature:Input:bcast(a)p, a 2 A, p 2 POutput:brcv(a)p;q , a 2 A, p; q 2 P Internal:to-order(a; p), a 2 A, p 2 PStates:queue, a �nite sequence of A� P , initially emptyfor each p 2 P :pending [p], a �nite sequence of A, initially emptynext [p] 2 N>0, initially 1Transitions:bcast(a)pE�ect:append a to pending [p]to-order(a; p)Precondition:a is head of pending [p]E�ect:remove head of pending [p]append ha; pi to queue
brcv(a)p;qPrecondition:queue(next[q]) = ha; piE�ect:next[q] next[q] + 1

Figure 2: TO-machine3.2 The Performance and Fault-Tolerance Property TO-propertyConsider a signature TO-fsig that is the same as that of TO-machine , above, with the addition of thefollowing actions:Input:for each p:goodpbadpuglyp for each p, q:goodp;qbadp;quglyp;qIf � is any �nite sequence of actions of TO-fsig , then we de�ne the failure status of any location orpair of locations after � to be either good , bad , or ugly , based on the last action for that location orpair of locations in �. If there is no such action, the default choice is good . We extend this de�nition torelated types, e.g., where � is a sequence of timed actions.The intention (though this has no formal meaning at the level of an abstract speci�cation) is that agood process takes steps with no time delay after they become enabled, a bad process is stopped, and anugly process operates at nondeterministic speed (or may even stop). Similarly, a good channel deliversall messages that are sent while it is good, within a �xed time of sending. A bad channel delivers nomessages. An ugly channel might or might not deliver its messages, and there are no timing restrictionson delivery. But these statements refer to processors, channels and their properties, notions that belongin an implementation model, not in an abstract service speci�cation.To formulate our performance/fault-tolerance claim, we de�ne TO-property(b; d;Q) as a parameter-ized property of a timed sequence pair over external actions of TO-fsig , as de�ned in [23]. This is a pairconsisting of a sequence � of timed actions (with non-decreasing times) together with an ltime . Here, weonly consider cases where ltime =1. The parameters b and d are nonnegative reals, and the parameterQ is a set of processors.TO-property(b; d;Q):Both of the following hold:1. � with the timing information removed is a trace of TO-machine.2. Suppose that (�;1) = (; l)(�;1) and that all the following hold:(a) � contains no failure status events for locations in Q or for pairs including a location in Q.7



(b) All locations in Q and all pairs of locations in Q are good after .(c) If p 2 Q and q 62 Q then (p; q) is bad after .Then (�;1) can be written as (�0 ; l0)(�00 ;1), where(a) l0 � b.(b) Every data value sent from a location inQ in � at time t is delivered at all members ofQ by time max (t; (l + l0))+d.(c) Every data value delivered in � to any location in Q at time t is delivered at all members of Q by timemax (t; (l + l0)) + d.3.2.1 The Combined Speci�cation TOWe de�ne the speci�cation TO(b; d;Q) to be the pair consisting of TO-machine and TO-property(b; d;Q).We say that a timed automaton A satis�es the speci�cation TO(b; d;Q) provided that every admis-sible timed trace of A is in the set (of timed sequence pairs) de�ned by TO-property(b; d;Q).4 View-Synchronous Group CommunicationIn this section, we give a formal speci�cation for our view-synchronous group communication ser-vice. This speci�cation is again based on a combination of a state machine, VS-machine, and aperformance/fault-tolerance property, VS-property .For the rest of the paper, we �x M to be a message alphabet, and hG;<G; g0i to be a totally orderedset of view identi�ers with an initial view identi�er. We de�ne views = G � P(P ), the set of pairsconsisting of a view identi�er together with a set of locations; an element of the set views is called aview . If v is a view, we write v:id and v:set to denote the view identi�er and set components of v,respectively.4.1 The State Machine VS-machineThe external actions of VS-machine include actions of the form gpsnd(m)p, representing the client at psending a messagem, and actions of the form gprcv(m)p;q , representing the delivery to q of the messagem sent by p. Outputs safe(m)p;q are also provided at q to report that the earlier message m from p hasbeen delivered to all locations in the current view as known by q.VS-machine informs its clients of group status changes through newview(hg; Si)p actions (withp 2 S), which tells p that the view identi�er g is associated with membership set S and that, untilanother newview occurs, the following messages will be in this view. After any �nite execution, wede�ne the current view at p to be the argument v in the last newviewp event, if any, otherwise it is thepair consisting of the distinguished initial view identi�er g0 and the universe P of processor locations.The code is given in Figure 3. The state of the automaton is similar to that of TO-machine , exceptthat there are multiple queues, one per view identi�er, and similarly for each view identi�er there is aseparate indicator for the next index to be delivered to a given location. Also, the service keeps track ofall the views that have ever been de�ned, and of the current view at each location.The actions for creating a view and for informing a processor of a new view are straightforward (recallthat the signature ensures that only members, but not necessarily all members, receive noti�cation of anew view). Within each view, messages are handled as in TO-machine : �rst kept pending, then placedinto a total order in the appropriate queue, and �nally passed to the environment. Thus, VS-machineensures that each gprcvp;q and each safep;q event occurs at q when q's view is the same as p's viewwhen the corresponding gpsnd event occurs. The speci�cation given in Figure 3 (unlike the particularVStoTO algorithm presented later) does not have any notion of \primary" view: it does not treat amessage associated with a majority view di�erently from one in a minority view.Note that VS-machine does not include any restrictions on when a new view might be formed.However, our performance and fault-tolerance property VS-prop, described below, does express suchrestrictions { it implies that \capricious" view changes must stop shortly after the behavior of theunderlying physical system stabilizes. In any trace of VS-machine, there is a natural correspondence8



VS-machine :Signature:Input:gpsnd(m)p, m 2M , p 2 POutput:gprcv(m)p;q hidden g, m 2M , p 2 P , q 2 P , g 2 Gsafe(m)p;q hidden v, m 2M , p 2 P , q 2 P , v 2 viewsnewview(v)p , v 2 views, p 2 P , p 2 v:set Internal:createview(v), v 2 viewsvs-order(m; p; g), m 2M , p 2 P , g 2 GStates:created � views, initially fhg0; P igfor each p 2 P :current-viewid[p] 2 G, initially g0for each g 2 G:queue[g], a �nite sequence of M � P , initially empty for each p 2 P , g 2 G:pending [p; g], a �nite sequence of M , initially emptynext[p; g] 2 N>0, initially 1next-safe[p; g] 2 N>0, initially 1Transitions:createview(v)Precondition:v:id > maxfg : 9S : hg; Si 2 createdgE�ect:created  created [ fvgnewview(v)pPrecondition:v 2 createdv:id > current-viewid [p]E�ect:current-viewid[p] v:idgpsnd(m)pE�ect:append m to pending [p; current-viewid [p]]vs-order(m; p; g)Precondition:m is head of pending[p; g]E�ect:remove head of pending [p; g]append hm; pi to queue[g]

gprcv(m)p;q , hidden gPrecondition:g = current-viewid[q]queue[g](next[q; g]) = hm; piE�ect:next[q; g] next[q; g] + 1safe(m)p;q , hidden g; SPrecondition:g = current-viewid[q]hg; Si 2 createdqueue[g](next-safe[q; g]) = hm; pifor all r 2 S:next[r; g] > next-safe[q; g]E�ect:next-safe[q; g] next-safe[q; g] + 1
Figure 3: VS-machine

9



between gprcv events and the gpsnd events that cause them, and between safe events and the gpsndevents that cause them.For later use we give some facts about VS-machine. These are expressed using a derived variable.Derived variables:created-viewids = fg 2 Gj9S : hg; Si 2 createdgLemma 4.1 The following are true in all reachable states of VS-machine: For any p 2 P , S � P ,m 2M , g 2 G:1. If g 2 created-viewids then there is a unique S such that hg; Si 2 created.2. current-viewid [p] 2 created-viewids.3. If hcurrent-viewid [p]; Si 2 created then p 2 S.4. If pending [p; g] 6= � then g 2 created-viewids.5. If pending [p; g] 6= � then g � current-viewid [p].6. If queue[g] 6= � then g 2 created-viewids.7. If hm; pi is in queue[g] then g � current-viewid [p].8. next [p; g] � length(queue [g]) + 1.9. next-safe[p; g] � length(queue [g]) + 1.10. next-safe[p; q] � next [p; g].11. If hg; Si 2 created and next [p; g] 6= 1 then p 2 S.12. If hg; Si 2 created and next-safe[p; g] 6= 1 then p 2 S.Proof. All are straightforward by induction. 2Lemma 4.2 If � is any trace of VS-machine, then there exists a unique total function cause mappinggprcv and safe events in � to gpsnd events in �, such that:1. (Message integrity) For each �, cause(�) precedes �, has the same value argument, and has a proces-sor subscript equal to the �rst (\source") subscript of �. Moreover, the current view at the locationof � when � occurs is the same as the current view at the location of cause(�) when cause(�) occurs.2. (No duplication) For each q, cause is one-to-one for gprcv events with second (\destination") sub-script q. Similarly, for each q, cause is one-to-one for safe events with second (\destination")subscript q.3. (No reordering) For each p and q, and within each view: cause is monotone increasing for gprcvp;qevents, and cause is monotone increasing for safep;q events.4. (No losses) For each p and q, and within each view: The range of cause for gprcvp;q events is apre�x of the subsequence of gpsndp events, and the range of cause for safep;q events is a pre�x ofthe subsequence of gpsndp events.Proof. Such a cause mapping can be constructed from any execution � that gives rise to trace �, byassigning uids to gpsnd events and carrying them along in the pending and queue components.Uniqueness is immediate, since the properties require that the i-th gprcvp;q event within a particularview g must be mapped to the i-th gpsndp event within the same view g, and similarly for safep;q events.2Lemma 4.2 allows us to implicitly associate a particular gpsnd event with each gprcv event andeach safe event, in any trace of VS-machine.As an alternative possibility for specifying view-synchronous group communication, we might weakenthe createview precondition so that it only enforces unique ids, and does not enforce in-order creation:10



createview(v)Precondition:for all w 2 created ,v:id 6= w:idE�ect:created  created [ fvgWe call this alternative speci�cation WeakVS-machine . We do not prove it here, but in factWeak-VS-machine and VS-machine are equivalent speci�cations: they allow exactly the same �nitetraces. Thus, the safety property for the VStoTO-system remains valid when using WeakVS-machinein place of VS-machine.4.2 The Performance and Fault-Tolerance Property VS-propertyConsider a signature VS-fsig that is the same as that of VS-machine, above, with the addition ofthe failure status actions (as before). We de�ne VS-property as a parameterized property of a timedsequence pair (�;1) over external actions of VS-fsig. The parameterized property is de�ned as follows.Parameters b and d are nonnegative reals, and Q is a set of processors.VS-property(b; d;Q):Both of the following hold:1. � with the timing information removed is a trace of VS-machine.2. Suppose that (�;1) = (; l)(�;1). Suppose that all the following hold:(a) � contains no failure status events for locations in Q or for pairs including a location in Q.(b) All locations in Q and all pairs of locations in Q are good after .(c) If p 2 Q and q 62 Q then (p; q) is bad after .Then (�;1) can be written as (�0 ; l0)(�00 ;1), where(a) l0 � b(b) No newview events occur in �00 at locations in Q.(c) The latest views at all locations in Q after �0 are the same, say hg; Si, where S = Q.(d) Every message sent from a location in Q in � while in view hg; Si at time t has corresponding safe events at allmembers of Q by time max (t; (l + l0)) + d.4.2.1 The Combined Speci�cation VSWe de�ne the speci�cation VS(b; d;Q) to be the pair consisting of VS-machine and VS-property(b; d;Q).We say that a timed automaton A satis�es the speci�cation VS (b; d;Q) provided that every admis-sible timed trace of A is in the set de�ned by VS-property(b; d;Q).5 The algorithm VStoTONow we describe the VStoTO algorithm, which uses VS to implement TO . As depicted in Figure 1, thealgorithm consists of an automaton VStoTOp for each p 2 P . Code for VStoTOp appears in Figure 5,and some auxiliary de�nitions needed in the code appear in Figure 4.For the rest of the paper, we �x a set Q of quorums , each of which is a subset of P . We assume thatevery pair Q, Q0 in Q satisfy Q \Q0 6= ;.The activities of the algorithm consist of normal activity and recovery activity. Normal activityoccurs while group views are stable. Recovery activity begins when a new view is presented by VS , andcontinues while the members exchange and combine information from their previous histories in orderto establish a consistent basis for subsequent normal activity.In the normal case, each value received by VStoTOp from the client is assigned a system-wide uniquelabel consisting of the viewid at p when the value arrives, a sequence number, and the processor id p.The variable current keeps track of the current view, and the variable nextseqno is used to generatethe sequence numbers. Labels are ordered lexicographically. VStoTOp stores the h label,value i pair in11



Types:L = G�N>0 � P , with selectors id , seqno, originsummaries = P(L�A)� (L�)�N>0 �G, with selectors con,ord , next , and highOperations on types:For x 2 summaries ,x:con�rm is the pre�x of x:ord such that length(x:con�rm)= min(x:next � 1; length(x:ord))For Y a partial function from processor ids to summaries,knowncontent (Y ) = [q2dom(Y )Y (q):conmaxprimary(Y ) = maxq2dom(Y )fY (q):highgreps(Y ) = fq 2 dom(Y ) : Y (q):high = maxprimarygchosenrep(Y ) is some element in reps(Y )shortorder (Y ) = Y (chosenrep(Y )):ordfullorder(Y ) is shortorder (Y ) followed by the remainingelements of dom(knowncontent (Y )), in label ordermaxnextcon�rm(Y ) = maxq2dom(Y ) Y (q):nextFigure 4: De�nitions used in VStoTO automatona relation content . It sends the pair to the other members of the current view, using VS , and theseother processors also add the pair to their own content relations. An invariant shows that each contentrelation is actually a partial function from labels to values, and that a given label is associated with thesame data value everywhere.The algorithm distinguishes primary views, whose membership includes a quorum of processors, fromnon-primary views. When VStoTOp receives a h label,value i pair while it is in a primary view, it placesthe label at the end of its sequence order . In combination with content , order describes a total order ofsubmitted data values; this represents a tentative version of the system-wide total ordering of data valuesthat the TO service is supposed to provide. The consistent order of message delivery within each view(guaranteed by VS) ensures that order is consistent among members of a particular view, but it neednot always be consistent among processors in di�erent views. When VStoTOp receives a h label,value ipair while it is in a non-primary view, it does not process the pair (except for recording it in content).VStoTOp remembers which data values have been reported as safely delivered to all members of thecurrent view, using a set safe-labels of labels. When a label is in safe-labels , it is a candidate for becoming\con�rmed" for release to the client. Labels in the order sequence become con�rmed in the same orderin which they appear in order . The variable nextcon�rm is used to keep track of the pre�x of the currentorder sequence that is con�rmed. VStoTOp can release data values associated with con�rmed labels tothe client, in the order described by order . The variable nextreport is used to keep track of which valueshave been released to the client.Recovery activity begins when VS performs a newview event. This activity involves exchanging andcombining information to integrate the knowledge of di�erent members of the new view. The recoveryprocess consists of two, possibly overlapping phases. In the �rst phase of recovery, each member of a newview uses VS to send a state-exchange message containing a summary of that processor's state, includingthe values of its content , order and nextcon�rm variables. In order to use this state information, eachprocessor must determine which member has the most up-to-date information. For this purpose, anothervariable highprimary is used to record the highest view identi�er of a primary view in which an orderwas calculated that has a�ected the processor's own order sequence. (This e�ect can be through theprocessor's own earlier participation in that primary view, or through indirect information in previousstate exchange messages.) The value of the highprimary variable is also included in the summary sentin the state-exchange message.During this �rst phase of recovery, VStoTOp records the summary information received from theother members of the new view, in gotstate, which is a partial function from processor ids to summaries.Once VStoTOp has collected all members' summaries, it processes the information in one atomic step;12



at this point, it is said to establish the new view. The processor processes state information by �rstde�ning its con�rmed labels to be longest pre�x of con�rmed labels known in any of the summaries.Then it determines the representatives, which are the members whose summaries include the greatesthighprimary value. Then the information is processed in di�erent ways, depending on whether or notthe new view is primary.If the new view is not primary, the processor adopts as its new order the order sent by a particular\chosen" representative processor. In this case, highprimary is set equal to the greatest highprimary inany of the summaries, i.e., the highprimary of the chosen representative. On the other hand, if the viewis primary, the processor adopts as its new order the order computed as above for non-primary views,extended with all other known labels appearing in any of the summaries in gotstate, arranged in labelorder. In this case, highprimary is set equal to the new viewid.Extracting the various pieces of information described above from gotstate requires some auxiliaryfunctions, which are de�ned in Figure 4. Namely, let Y be a value of the type recorded in the gotstatecomponent. Then knowncontent(Y ) contains all the (label, value) pairs in the summaries recorded inY . Also, maxprimary(Y ) is the greatest view identi�er of an established primary appearing in any ofthe summaries, reps(Y ) denotes the set of members that know of this view, and chosenrep(Y ) is someconsistently-chosen element of this set. (Any method can be used to select the particular representa-tive, as long as all processors select the same one from identical information; for example, they couldchoose the representative with the highest processor id, or the one with the shortest or longest ordersequence.) Now shortorder is the order of the chosen representative; this is the order adopted in a non-primary view, as described above. And fullorder consists of shortorder (Y ) followed by the remainingelements of knowncontent(Y ), in label order; this is the order adopted in a primary view. We also de�nemaxnextcon�rm(Y ) to be the highest among the reported nextcon�rm values in the exchanged state.At this point, the �rst phase of recovery is completed, and normal processing of new client messagesis allowed to resume. However, for a primary view, there is a second phase of recovery, which involvescollecting the VS safe indications for the state-exchange messages. VStoTOp remembers these indica-tions in a variable safe-exch . This phase may overlap with the summary collection phase. Once thestate exchange is safe, all labels used in the exchange are marked as safe, and all associated messagesare con�rmed just as they would be in normal processing. For a non-primary view, there is no secondphase of recovery, i.e., the safe indications are ignored.The state of VStoTOp also records the status of processing, which may be normal (anywhere otherthan in the �rst phase of recovery), send (in the �rst phase of recovery, after the new view announcementbut before sending the state-exchange message), or collect (in the �rst phase of recovery, waiting forsome state-exchange messages).6 Correctness - Safety ArgumentDe�ne VStoTO-system to be the composition of VS-machine and VStoTOp for all p 2 P , with theactions used for communication between the two layers (that is, the gpsnd, gprcv, safe and newviewactions) hidden. In a state of the composition, we refer to the separate state variables by giving asubscript p indicating a variable that is part of the state of VStoTOp.The proof is based on a forward simulation relation [22] from VStoTO-system to TO-machine ,established with the help of a series of invariant assertions for VStoTO-system. We add some derivedvariables to the state of VStoTO-system, for use in de�ning the simulation relation and in stating andproving the invariants:We write allstate [p; g] to denote a set of summaries, de�ned so that x 2 allstate [p; g] if and only if atleast one of the following hold:1. current :idp = g and x = hcontentp; orderp;nextcon�rmp; highprimarypi.2. x 2 pending [p; g].3. hx; pi 2 queue[g].4. For some q, current:id q = g and x = gotstate(p)q .13



VStoTOp:Signature:Input:bcast(a)p , a 2 Agprcv(m)q;p, q 2 P , m 2 (L� A) [ summariessafe(m)q;p, q 2 P , m 2 (L� A) [ summariesnewview(v)p , v 2 views Output:gpsnd(m)p, m 2 (L� A) [ summariesbrcv(a)q;p, a 2 A, q 2 PInternal:con�rmpStates:current 2 views, initially hg0; P istatus 2 fnormal ; send ; collectg, initially normalcontent � L�A, initially ;nextseqno 2 N>0, initially 1bu�er , a �nite sequence of elements of L, initially �safe-labels � L, initially ;order , a �nite sequence of L, initially �nextcon�rm 2 N>0, initially 1
nextreport 2 N>0, initially 1highprimary 2 G, initially g0gotstate, a partial function from P to summaries , initially;,safe-exch � P , initially ;,Derived variables:primary , a Boolean, de�ned to be the condition thatcurrent :setcontains some quorum.Transitions:bcast(a)pE�ect:content  content [fhhcurrent :id ;nextseqno; pi; aigappend hcurrent :id ;nextseqno; pi to bu�ernextseqno  nextseqno + 1gpsnd(hl; ai)pPrecondition:status = normall is head of bu�erhl; ai 2 contentE�ect:delete head of bu�ergprcv(hl; ai)q;pE�ect:content  content [ fhl; aigif primary thenorder  order � hhliisafe(hl; ai)q;pE�ect:if primary thensafe-labels  safe-labels [ flgcon�rmpPrecondition:primaryorder(nextcon�rm) 2 safe-labelsE�ect:nextcon�rm  nextcon�rm + 1brcv(a)q;pPrecondition:nextreport < nextcon�rmhorder (nextreport); ai 2 contentq = order(nextreport):originE�ect:nextreport  nextreport + 1

newview(v)pE�ect:current  vnextseqno  1bu�er  �gotstate  ;safe-exch  ;safe-labels  ;status  sendgpsnd(x)pPrecondition:status = sendx = hcontent ; order ;nextcon�rm ; highprimaryiE�ect:status  collectgprcv(x)q;pE�ect:content  content [ x:congotstate  gotstate � hq; xiif (dom(gotstate) = current :set) ^ (status = collect)thennextcon�rm  maxnextcon�rm(gotstate)if primary thenorder  fullorder (gotstate)highprimary  current :idelseorder  shortorder (gotstate)highprimary  maxprimary(gotstate)status  normalsafe(x)q;pE�ect:safe-exch  safe-exch [ fqgif safe-exch = current :set and primary thensafe-labels  safe-labels [ range(fullorder (gotstate))Figure 5: VStoTOp14



Thus, allstate [p; g] consists of all the summary information that is in the state of p if p's current view is g,plus all the summary information that has been sent out by p in state exchange messages in view g andis now remembered elsewhere among the state components of VStoTO-system. Notice that allstate [p; g]consists only of summaries: an ordinary message hl; ai is never an element of allstate [p; g]. We writeallstate [g] to denote Sp2P allstate [p; g], and allstate to denote Sg2G allstate [g].We write allcontent for Sx2allstate x:con [ fhl; ai : 9g; p : hhl; ai; pi 2 range(queue[g]) _ hl; ai 2range(pending [p; g])g. This represents all the information available anywhere that links a label with acorresponding data value.The invariants also require the addition of some history variables to the state of VStoTO-system:For every g 2 G, established [g] is de�ned to be a Boolean, initially true if g = g0, otherwise false ;this variable is maintained by placing the statement established [current :id ] true in the e�ects part ofgprcv(x)q;p, just after the assignment status  normal (and within the scope of the outer if statement).For every p 2 P , g 2 G, buildorder [p; g] is de�ned to be a sequence of labels, initially empty; thisvariable is maintained by following every statement of processor p that assigns to order with anotherstatement buildorder [p; current:idp] order . It follows that if p establishes a view with id g, and laterleaves view g for a view with a higher viewid, then forever afterwards, buildorder [p; g] remembers thevalue of orderp at the point where p left view g.6.1 InvariantsWe �rst prove a long series of invariants, establishing simple relationships among the state variables,and other properties of the reachable states. As usual, each invariant is proved using induction on thelength of an execution, assuming previous invariants.The �rst invariant asserts consistency between certain variables of the processes and of VS .Lemma 6.1 The following are true in all reachable states of VStoTO-system.For any p 2 P :1. current :idp = current-viewid [p].2. currentp 2 created.Proof. Easy induction. 2The next invariant characterizes the labels that occur in various state components.Lemma 6.2 The following are true in all reachable states of VStoTO-system.1. If hg0; �; p0i is in bu�erp then p=p0 and g0=current:idp.2. If hhg0; �; p0i; �i is in pending [p; g] then p = p0 and g = g0.3. If hhhg0; �; p0i; �i; pi is in queue[g] then g = g0 and p = p0.Proof. Each part is an immediate induction on the execution, using the previous part. 2The next two invariants justify the way the de�nition of the simulation relation uses allcontent as afunction from labels to data values.Lemma 6.3 The following is true in all reachable states of VStoTO-system.If l 2 domain(allcontent) and l:origin = pthen l < hcurrent :idp;nextseqnop; pi.Proof. The only change is in bcastp and the code shows that the new label is less than the new(current :idp;nextseqnop; p) triple. 2Lemma 6.4 The following is true in all reachable states of VStoTO-system.allcontent is a function. 15



Proof. The only change is in bcast and Lemma 6.3 shows the new entry is for a new label. 2Lemma 6.5 The following is true in all reachable states of VStoTO-system.If l is in bu�erp then hl; ai is in contentp for some a.Proof. Immediate induction. The only relevant actions are bcastp (which adds a new label to bu�erand to the domain of content) and newviewp (which empties bu�er). 2The next invariants describe situations when certain information is guaranteed not to appear in thestate.Lemma 6.6 The following are true in all reachable states of VStoTO-system.If current :idp < g then1. pending [p; g] = �.2. There is no message of the form h�; pi in queue[g].3. If current :idq = g then there is no hp; �i in gotstateq.4. allstate [p; g] = ;.5. There is no pair of the form hhg; �; pi; �i in x:con, for any summary x 2 allstate.6. There is no pair of the form hhg; �; pi; �i in contentq, for any q.Proof. Part 1 is a simple induction; part 2 is an induction using part 1 in the gpsnd; part 3 isinduction using part 2 in the gprcv. Part 4 follows from parts 1, 2 and 3. Part 5 is direct from Lemma6.3; part 6 follows directly from part 5. 2Lemma 6.7 The following are true in all reachable states of VStoTO-system.If statusp = send and current :idp = g then1. pending [p; g] = �.2. There is no element of the form h�; pi in queue[g].3. If current :idq = g then there is no hp; �i in gotstateq.4. There is no pair of the form hhg; �; pi; �i in x:con, for any summary x 2 allstate other than thesummary whose components are those from the local state of p.5. There is no pair of the form hhg; �; pi; �i in contentq, for any q 6= p.Proof. Part 1 is induction using lemma 6.6 for the case newviewp; part 2 is an induction using lemma6.6 for the case newviewp, and part 1 in the gpsnd; part 3 is induction using Lemma 6.6 for newviewpand and also part 2 in the gprcv. Part 4 is induction (where the case of gpsndp is ruled out by thehypothesis on statusp); part 5 follows directly from part 4. 2Lemma 6.8 The following are true in all reachable states of VStoTO-system.For any p 2 P , if statusp = collect and current :idp = g then the following holds.If x 2 allstate [p; g] then1. x:con � contentp.2. x:ord = orderp3. x:next = nextcon�rmp4. x:high = highprimaryp.
16



Proof. For parts 1 and 4, when p �rst enters reaches the collect status in view g, the only summaryin allstate [p; g] is that whose components are the state of p (we appeal here to Lemma 6.7, since thestatusp = send immediately before it becomes collect). Thereafter, contentp changes only by union withmore pairs, and no action changes highprimaryp without also changing statusp so it is no longer collect .The other parts need more sophisticated proof, as they depend on the property that no ordinarymessage is received at p until after all members' state exhange messages. As the rest of the paper reliesonly on part 4, we omit the details. 2Now some simple facts about \established".Lemma 6.9 The following are true in all reachable states of VStoTO-system.For any p 2 P , g 2 G:1. If established [g]p then current :idp � g.2. established [current :idp]p if and only if statusp = normal .Proof. Straightforward induction. Depends on views coming in in increasing order. 2Here are some upper bounds on highprimaries.Lemma 6.10 The following are true in all reachable states of VStoTO-system.For any p; q 2 P , x 2 summaries, g 2 G:1. If established [current :idp]p and primaryp then highprimary p = current:idp.2. If established [current :idp]p and not(primaryp) then highprimary p < current :idp.3. If established [current :idp]p = false then highprimaryp < current:idp.4. If hq; xi 2 gotstatep then x:high < current :idp.5. If hx; qi is in queue[g] then x:high < g.6. If x is in pending [q; g] then x:high < g.Proof. Prove all these parts together using induction.1. When state exchange is completed for a primary view (which establishes currentp), the equalityis set explicitly.Supposed established [current :idp] in both pre-state s and poststate s0; the events that could falsifythe RHS are newview and a gprcv that sets highprimary. But a newview (v)p has s0:statusp = send , soLemma 6.9 implies that s0:established [s0:current :idp] = false , a contradiction.A gprcv that sets highprimaryp has s:statusp = collect . Then Lemma 6.9 implies that s:established [s:current :idp] =false , a contradiction.2. Consider a gprcv that completes state exchange, and so establishes a non-primary viewid g. Thecode sets highprimaryp to be the largest high component of the summaries among the prestate's gotstateand the �nal state exchange message. By part 4 and 5, all of these are less than g, hence the largest isalso less than g.3. Consider newview (v)p. LHS becomes true. Claim RHS also true in the state s0 after the step. Parts1, 2 and 3 together in the pre-state s imply that s:highprimary p � s:current:idp. Since s0:current:idp >s:current :idp, this means that s0:highprimaryp < s0:current :idp, as needed.4. Depends on 5. A key fact is that a message only gets delivered if its view is the same as thecurrent view of p.5. Depends on 6.6. Depends on 3. Uses the fact that when a process sends, its status is send . 2Lemma 6.11 The following are true in all reachable states of VStoTO-system.1. If x 2 allstate [p; g] then x:high � g. 17



2. If x 2 allstate [p; g] then x:high � current :idp.Proof. Part 1 is an easy induction. Part 2 follows using part 4 of Lemma 6.6. 2The next two lemmas assert lower bounds on highprimaries.Lemma 6.12 The following is true in all reachable states of VStoTO-system.For any p 2 P , v 2 created, such that established [v:id ]p, v:set contains a quorum, and current :idp > v:idthen highprimaryp � v:id .Proof. Let g = v:id . First consider actions that could make the hypothesis true (we denote the statebefore the action as s, and that afterwards as s0).1. When established [g]p becomes true, current :idp = g, so the hypothesis is false.2. Suppose a newview step converts the hypothesis from false to true. Then s:established [g]p =s0:established [g]p = true, s:current :idp � g and s0:current :idp > g. Lemma 6.9 implies that s:current :idp �g, so it must be that s:current :idp = g. Then Lemma 6.10, part 1 implies that s:highprimaryp = g.Therefore, s0:highprimaryp = g, as needed.Now consider steps for which the hypothesis is true both before and after the step, but that makethe conclusion false.3. gprcv for a summary, if domain(s0:gotstatep) = s:current :setp and s:statusp = collect , setshighprimaryp.There are two cases. If s:primaryp = true then since s0:current :idp > g and s0:current :idp =s0:highprimary p, we have that s0:highprimaryp > g, which su�ces.On the other hand, suppose that s:primaryp = false . Since the hypothesis is true before the step,the inductive hypothesis implies that s:highprimary p � g. It su�ces to show that s0:highprimaryp �s:highprimaryp.The step ensures that s0:highprimaryp = maxprimary(s0:gotstatep). Since p 2 current :setp, s0:gotstatepmust include some (p; x). Then part 4 of Lemma 6.8 implies that x:high = s:highprimaryp. Now,maxprimary(s0:gotstatep) � x:high , so s0:highprimary � s:highprimary . This su�ces. 2Lemma 6.13 The following are true in all reachable states of VStoTO-system.For any p 2 P , for any summary x, and for all v; w 2 created:1. If established [v:id ]p, v:set contains a quorum, w:id > v:id , and x 2 allstate [p; w:id ], then x:high �v:id .Proof. Let g denote v:id , and g0 denote w:id . We need only consider actions that could make thehypothesis true, since the conclusion is unchanged in all transitions.1. When established [g]p becomes true, current :idp = g. Then part 4 of Lemma 6.6 implies thatallstate [p; g0] = ;, which makes the conclusion vacuously true.2. When x �rst gets into allstate [p; g0], this happens by putting it into the state of p when current :idp =g0 > g. Then Lemma 6.11 implies that highprimary p � g. 2Lemma 6.14 The following are true in all reachable states of VStoTO-system.1. If current :idp = g and established [g]p = false, then there is no x 2 allstate [p; g] with x:high = g.Proof. Lemma 6.10 implies that highprimaryp < g.We prove the statement by induction. newviewp is the only action that can convert the hypothesisfrom false to true, and it guarantees the conclusion, by Lemma 6.11 applied to the pre-state.To convert the conclusion from true to false, we would have to end the step with highprimaryp = g(since the other pieces of allstate [p] are derived from p's state). But this doesn't happen, by the claimat the beginning of the proof. 218



Lemma 6.15 The following is true in all reachable states of VStoTO-system.If x 2 allstate [p; g] then there exists v 2 created and q 2 v:set such that1. x:high = v:id2. established [x:high ]q3. x:ord = buildorder [q; x:high ].4. either x:high = g or current :idq > v:idProof. The proof is by induction, so consider a step in which the state changes from s to s0 by theaction �. If x 2 s0:allstate [p; g], then in most cases, there is y 2 s:allstate [p; g] with y:high = x:high andy:ord = x:ord , to which we apply the induction hypothesis. The only cases where this does not happenare as follows:� � is the receipt by p of an ordinary message in a primary view, and x is the summary whosecomponents are taken from the state of p. In this case we take v = g and q = p.� � is the establishment of a new primary view g at p, and x is the summary whose components aretaken from the state of p. In this case we take v = g and q = p.� � is newview(v)p, where v:id = g, and x is the summary whose components are taken from thestate of p. In this case, there is y 2 s:allstate [p; s:currentp] with y:high = x:high and y:ord = x:ord ,to which we apply the induction hypothesis. 2Lemma 6.16 The following is true in all reachable states of VStoTO-system.If v 2 created and established [v:id ]p then for every q 2 v:set, current :id q � v:id .Proof. When established [v:id ]p �rst becomes true, the code for gprcv shows that domain(gotstatep) =v:set , so allstate [q; v:id ] is non-empty for all q 2 v:set . Part 4 of Lemma 6.6 thus implies currentq � v:id .This is maintained inductively in all later states, by the monotonicity of currentq. 2The following is a key invariant; it can be used to show that information from certain processors'tentative orders for a primary view v is also present in all summaries with higher viewids. The hypothesissays that every processor in v:set that has a current :id higher than v:id has succeeded in establishingv, and moreover, has succeeded in including the sequence � in its order for view v. The conclusion saysthat anyplace in the state where information about a higher view than v is present, information about� is also present.Lemma 6.17 The following is true in all reachable states of VStoTO-system.Suppose that v 2 created, v:set contains a quorum, � 2 L?, and for every p 2 v:set, the following istrue:If current :idp > v:id then established [v:id ]p and � � buildorder [p; v:id ].Then for every x 2 allstate with x:high > v:id , � � x:ord.Proof. The statement is vacuously true if v 62 created .Otherwise argue by induction, where s denotes the state before a step and s0 the state afterwards.If v 2 s0; created and v 62 s:created , then the action involved must be createview(v). In this case,we claim that the conclusion is true because no x 2 s0:allstate has x:high > v:id . To see this, �xx 2 s0:allstate , say, x 2 s0:allstate [p]. Then Lemma 6.11 implies that x:high � s0:current:idp. Lemma6.1 implies that s0:currentp 2 s0:created . And the code for createview(v) implies that v:id is the largestid in s0:created , in particular, that v:id � s0:current :idp. So x:high � v:id .So for the rest of the argument, we �x v and assume that v 2 s:created . Also �x �.As usual, the interesting steps are those that convert the hypothesis from false to true, and thosethat keep the hypothesis true while converting the conclusion from true to false.19



In this case, there are no steps that convert the hypothesis from false to true: If there is somep 2 v:set for which s:current :idp > v:id and either s:established [v:id ]p = false or � is not a pre�x ofbuildorder [p; v:id ], then also s0:current :idp > v:id (the id never decreases) and either s0:established [v:id ]p =false or � is not a pre�x of s0:buildorder [p; v:id ]. (These two cases carry over, since s:current :idp > v:idimplies that established [v:id ]p and buildorder [p; v:id ] cannot change during the step.)So it remains to consider any steps that keep the hypothesis true while converting the conclusionfrom true to false. So suppose that x 2 s0:allstate and x:high > v:id . If also x 2 s:allstate then we canapply the inductive hypothesis, which implies that � � x:ord , as needed. So the only concern is withsteps that produce a new summary.Any step that produces the new summary x by modifying an old summary x0 2 s:allstate , in sucha way that x0:ord � x:ord and x0:high = x:high , is easy to handle: For such a step, x0:high > v:id andso the inductive hypothesis implies that � � x0:ord � x:ord , as needed. So the only concern is withgprcvp steps that deliver the last state-exchange message to some process p.If the gprcvp is not for a primary, then the new summary x that is produced, in p's state, takes itshighprimary and order values directly from some summary x0 which is in the range of s0:gotstatep. Bythe code, such an x0 is either in the range of s:gotstatep, or else it is the summary whose receipt is thestep we are considering. In either of these cases, x0 2 s:allstate , so the inductive hypothesis yields theresult.This leaves the case where gprcvp establishes a primary w, and x is the summary composed of thenew values of the state components of p. Thus x:high = w:id . Let x0 be the summary of q0 = chosenrepin state s.We claim that x0:high � v:id . To see the claim, �x any element q00 in w:set \ v:set ; such a q00must exist, because each contains a quorum. Recall that the condition for establishing a primary showsdomain(s0:gotstatep) = w:set , so by the code, either q00 2 domain(s0:gotstatep), or else q00 is the senderof the message whose receipt is the step we are examining. In the former case, let x00 be the summarys:gotstate(q00)p; in the latter let x00 be the summary whose receipt is the event. In either case we havex00 2 s:allstate [q00; w:id ]. Thus, part 4 of Lemma 6.6 implies that s:current :idq00 � w:id . We havethat x:high > v:id by assumption, and x:high = w:id by the code; therefore, w:id > v:id . So alsos:current :idq00 > v:id .Recall that we are in the case where the hypothesis of this lemma is true. Therefore, by thishypothesis, we obtain that s:established [v:id ]q00 and � � s:buildorder [q00; v:id ]. By Lemma 6.13, (appliedwith q00 replacing p) we obtain x00:high � v:id . By the de�nition of q0 as a member that maximizes thehigh component in the summary recorded in gotstate, we have x0:high � x00:high . Therefore x0:high �v:id , completing our demonstration of the claim.If x0:high > v:id then we can apply the induction hypothesis to x0 and we are done, since x0:ord �x:ord . So suppose x0:high = v:id . Note that x0 2 s:allstate [q0; w:id ]. By Lemma 6.15, there mustexist4 q 2 v:set so that s:established [v:id ]q, x0:ord = s:buildorder [q; v:id ], and (either x0:high = w:idor s:current :idq > v:id ). Since x0:high = v:id < x:high = w:id , the last property can be simpli�ed tos:current :idq > v:id . By monotonicity of current , we have s0:current :id q > v:id . The hypothesis of thislemma says that this forces � � s0:buildorder [q; v:id ]. Since x0:ord � x:ord by the code for this event,and x0:ord = s:buildorder [q; v:id ] as shown above, and s:buildorder [q; v:id ] = s0:buildorder [q; v:id ] sinceq is not currently in view v, this is what we need. 2The invariant given in the corollary implies that once all members if a primary view agree on acommon part of the tentative order, all processors in a higher view will also share that sequence in thatorder.Corollary 6.18 The following is true in all reachable states of VStoTO-system.Suppose that v 2 created, v:set contains a quorum, � 2 L?, and for every p 2 v:set, established [v:id ]pand � � buildorder [p; v:id ].Then for every x 2 allstate with x:high � v:id , � � x:ord.4Direct application of the Lemma actually shows the existence of some v̂ and q 2 v̂:set, but since x0:high = v̂:id andalso x0:high = v:id , uniqueness of viewids shows we may take v̂ to be v itself.20



Proof. If x:high > v:id , then we can apply Lemma 6.17, since the premise of this Corollary deals withevery p 2 v:set , and therefore is stronger than the premise of Lemma 6.17, which only covers those pwhere current :idp > v:id .When x:high = v:id , we apply apply Lemma 6.15 to x, which gives v0 2 created and q0 2 v0:set suchthat x:high = v0:id , established [x:high ]q0 , and x:ord = buildorder [q0; x:high ]. Since v:id = v0:id , Lemma4.1 shows v = v0. Substituting in the facts above we see x:ord = buildorder [q0; v:id ]. Since q0 2 v:set , wecan apply the premise of the corollary to see that � � buildorder [q0; v:id ]; that is, � � x:ord , as required.2The next lemma makes precise the fact that a label is in safe-labelsp only after it (and all prior labelsin orderp) were placed in order q at every member q of current :setpLemma 6.19 If l 2 safe-labelsp and � is a pre�x of orderp that is terminated by l, then primaryp andfor all q 2 current :setp, � � buildorder [q; current :idp]The next lemma shows that in any summary, the ord component is closed under the relation \sent-before-by-one-client".Lemma 6.20 The following is true in all reachable states of VStoTO-system.Suppose l; l0 2 L and i 2 N>0. If l; l0 2 domain(allcontent) and l:origin = l0:origin and l < l0 andx 2 allstate and l0 = x:ord (i0) then there exists i such that i < i0 ^ l = x:ord (i)Next we show that x:con�rm is a pre�x of a known sequence. This leads to consequences that showthe consistency of the con�rmed sequence of labels at di�erent places in the system.Lemma 6.21 The following is true in all reachable states of VStoTO-system. If x 2 allstate then1. There exists v 2 created such that v:id � x:high, v:set contains a quorum, and for every q 2 v:set,established [v:id ]q and x:con�rm � buildorder [q; v].2. x:next � length(x:ord ) + 1Remark: an immediate consequence of part (2) is that length(x:con�rm) + 1 = x:next .Proof. The strategy is to show that (1) and (2) hold in the post-state, by induction, using (1) and(2) from the pre-state.How is the post-state proved: In the step from s to s0, in most cases, there is y in s:allstate so thaty:next = x:next , y:ord = x:ord (and hence y:con�rm = x:con�rm) and also y:high = x:high . If thisholds induction hypothesis gives us what we want, since buildorder [q; v] increases monotonically throughan execution.The places where a problem might happen are the following.� con�rmp. If x is not the summary from the state of p in s0, the inductive argument works. If x is thesummary from the state of p in s0, the precondition of the event is that the newly con�rmed messagehas label in s:safe-setp, so Lemma 6.19 shows that we have (1) with taking v to be s:currentp = x:high .The precondition also gives (x:next � 1) 2 domain(x:ord ), thus showing (2).� gprcv(hl; ai)p For a summary other than that from the state of p, the inductive argument applies.Where x is the summary from the state of p, let y denote the summary in the pre-state taken from thestate of p. The code shows that x:high = y:high , x:next = y:next, and x:ord is an extension of y:ord .By (2) applied to y, we see that y:next � length(y:ord )+1 and therefore x:next � length(x:ord )+1.This is (2) applied to x; also it shows that x:con�rm = y:con�rm, so that the inductive hypothesisof (1) applied to y gives (1) applied to x.� receipt of the �nal state exchange message at p. For a summary other than that from the stateof p, the inductive argument applies. Where x is the summary from the state of p, let w denotethe summary, among those in gotstatep after the action, with the highest value for w:next . Thecode shows that x:next = w:next . Now w is in allstate in the pre-state (it is either in s:gotstate, or21



else it is the summary received in the �nal state-echange message, in which case it is in the queuecomponent of VS-machine). The inductive hypothesis shows that w:con�rm has length w:next �1, and that there is v 2 s:created such that v:id � w:high and 8q 2 v:set : (s:established [v]q ^w:con�rm � buildorder [q; v]). Now let z denote the summary of chosenrep(gotstate), as calculatedin the e�ect of the action. Since z:high � w:high � v:id (recall the de�nition of z as being from arepresentative, that is, having maximal highprimary among summaries in gotstate), Corollary 6.18shows that w:con�rm � z:ord . Since z:ord � x:ord by the code (whether the newly established viewis primary or not), we deduce that w:con�rm is a pre�x of x:ord ; as length(w:con�rm) = w:next�1 =x:next � 1, we have x:con�rm = w:con�rm . Also by the code (for a non-primary view) or Lemma6.11 (for a primary view) we have x:high � w:high . Thus the inductive hypothesis applied to w,along with the monotonicity of the set created and the boolean established [v:id ], gives (1) and (2)for x. 2Corollary 6.22 The following is true in all reachable states of VStoTO-system.If x1; x2 2 allstate and x1:high � x2:high, then x1:con�rm � x2:ord.Proof. This is done by using lemma 6.21 (part (1)) with x = x1, giving v with v:id � x1:high andx1:con�rm � buildorder [q; v]. Now the hypothesis of Corollary 6.18 applies for � = x1:con�rm; sincex2:high � v:id the conclusion of that Lemma holds for x2, that is x1:con�rm � x2:ord . 2Corollary 6.23 The following is true in all reachable states of VStoTO-system.For any x; x0 2 allstate, either x:con�rm � x0:con�rm or x0:con�rm � x:con�rm.Proof. Wlog x:high � x0:high . From lemma 6.22, we have that both x:con�rm and x0:con�rm arepre�xes of x0:order . 2Invariant 6.23 allows us to de�ne another derived variable that represents the collective knowledgeof the con�rmed order, throughout the system. Namely, in any reachable state, we write allcon�rm forlubx2allstate(x:con�rm).6.2 Simulation RelationNext, we de�ne the simulation relation f . We de�ne it as a function from reachable states ofVStoTO-systemto states of TO-machine . (We assume an arbitrary default value for unreachable states.) Namely, if xis a reachable state of VStoTO-system, then f(x) = y where:1. y:queue = applyall (hx:allcontent ; origini; x:allcon�rm),where the selector origin is regarded as a function from labels to processors.2. y:next[p] = x:next-reportp.3. y:pending [p] = applyall (x:allcontent ; s) where s is the sequence of labels such that(a) range(s) is the set of labels l such that l:origin = p, hl; ai 2 x:allcontent for some a, andl 62 range(allcon�rm).(b) s is ordered according to the label order.The �rst clause says that y:queue is the sequence of hvalue , origini pairs corresponding to the sequencex:allcon�rm of labels that are con�rmed anywhere in the system. For each label in x:allcon�rm , the setx:allcontent , which contains all the content information that appears anywhere in the system, is usedto obtain the value, and origin is used to extract the origin. (Note that the set of pairs x:allcontent istreated as a function, and that the two functions are paired together into one for use with the applyalloperator.) The second clause de�nes y:next [p] directly from the corresponding next-pointer in x. Thethird clause de�nes y:pending [p] to be the sequence of values corresponding to all the labels in thesystem with origin p that are not included in x:allcon�rm , arranged in label order. For each such label,x:allcontent is used to obtain the value. Note that the well-de�nedness of this simulation rests on the22



invariant that says that x:allcontent is a function, and on Invariant 6.23, which yields the de�nedness ofallcon�rm .Lemma 6.24 Function f is a forward simulation from VStoTO-system to TO-machine.Proof. The correspondence in the initial state is trivial. So consider any step (x; �; x0) ofVStoTO-system,and y = f(x). We argue depending on the action involved in �.� = bcast(a)p Since � is an input to TO-machine , � is enabled in y. Now the e�ect of � showsthat x0:allcon�rm = x:allcon�rm , and x0:allcontent is the union of x:allcontent with hl; ai wherel = hx:currentp; x:nextseqnop; pi; by Lemma 6.3, this new label l is greater than all labels already inthe domain of allcontent , so f(x0):pending [p] is formed by adding a to the end of f(x):pending [p],thus showing that (f(x); �; f(x0)) is a step of TO-machine .� = con�rmp Clearly the e�ect of � shows x:allcontent = x0:allcontent .If x:nextcon�rmp � length(x:allcon�rm) then Lemma 6.23 and the e�ect of � shows that x0:allcon�rm =x:allcon�rm , so that f(x) = f(x0).Otherwise x:nextcon�rmp = length(x:allcon�rm) + 1, so the e�ect of � shows that x0:allcon�rm =x:allcon�rm � hli where l = x:orderp(x:nextorderp). Let q = l:origin and a = x:allcontent(l). Weclaim that (f(x); to-order(a; q); f(x0)) is a step of TO-machine .We �rst show that to-order(a; q) is enabled in f(x). We have l 2 domain(x:allcontent) and l 62setof (x:allcon�rm); this means that a is an element of the sequence f(x):pending [q]. Also by Lemma6.20, any lower label with origin q is in x:con�rmp and so in x:allcon�rm . Since the sequence Sused to de�ne f(x):pending [q] is arranged by label, we see that l is the head of S, and so a isthe head of f(x):pending [q], as required. Further, the equation above for x0:allcon�rm shows thatf(x0):queue = f(x):queue � hhha; piii, and this is what is needed to show that � takes f(x) to f(x0).� = gprcv(s)p;q In some cases this may change the value of nextcon�rmq, but in every situation it leavesallcon�rm unchanged (it only moves nextcon�rmq to a value already somewhere in allstate) Thusf(x0) = f(x).� = brcv(a)pq We need to show that � is enabled in f(x) as an action of TO-machine , but this isimmediate from the fact that � is enabled in x as an action of VStoTO . Similarly, the e�ectcorresponds (only nextreportq is altered).Other actions The other actions leave f(x0) = f(x). 2Theorem 6.25 Every trace of VStoTO-system is a trace of TO-machine.7 Performance and Fault-ToleranceWe argue that the performance and fault-tolerance characteristics of TO (for certain values of theparameters) are implied by the corresponding ones for VS (for certain parameter values), together withperformance and fault-tolerance characteristics of the VStoTO processes. In order to do this, we need aricher model for the system than we have been using so far. This richer model must include timing andfailure information. We de�ne this richer model in two separate pieces, for VStoTO and for VS .For the VStoTO part, we de�ne a timed automaton VStoTO 0p for every p. This timed automaton isobtained by modifying the untimed automaton VStoTOp as follows:� Add new input actions goodp, badp and uglyp.� Add new time-passage actions �(t) for all t 2 R>0.� Add a new state component failure-status, with values in fgood ; bad ; uglyg, initially good .23



� Add new code fragments for the failure status actions, just setting the failure-status variable appro-priately.� Add a new precondition to each output and internal action, that failure-status 6= bad .� Add a code fragment for each �(t):�(t)Precondition:if failure-status = good thenno output or internal action is enabledE�ect:noneThe new precondition on output and internal actions says that the processor takes no steps when itsfailure status is bad . The new time-passage actions are allowed to happen at any point, unless there issome output or internal action that is supposed to happen immediately (because it is enabled and theprocessor is good ).For the VS part, we now �x b and d to be particular constants. We assume that we have any timedautomaton A that satis�es the speci�cation VS(b; d;Q) from Section 4 for every set Q of processors thatcontains a quorum.De�ne VStoTO 0-system to be the composition of A and VStoTO 0p for all p 2 P , with the actionsused for communication between the two layers (that is, the gpsnd, gprcv, safe and newview), hidden.Note that the failure status input actions are not hidden. The composition operator used here is timedautomaton composition.We show that any admissible timed trace of VStoTO 0-system satis�es TO-property , for certain valuesof the parameters:Theorem 7.1 Every admissible timed trace of VStoTO 0-system satis�es TO-property(b + d ; d ;Q) forevery Q that contains a quorum.Proof. Let (�;1) be any admissible timed trace of VStoTO 0-system, and let � be an admissibletimed execution of VStoTO 0-system that gives rise to �. Fix Q to be any set of processors containing aquorum.We �rst show Condition 1 of the de�nition of TO-property , that � with the timing informationremoved is a trace of TO-machine . This follows from general composition results for timed automata(see, e.g., Chapter 23 of [20]), using what we have already proved in the safety part of the paper.In more detail, regard � as a timed execution of the composed system composed of VStoTO 0 and A,without the interface actions being hidden. Then project � on VStoTO 0 and A to give timed executions�1 of VStoTO 0 and �2 of A, respectively { this uses a projection result for timed automata. Removingthe timing information from the timed trace of �1 yields a trace of VStoTO , by de�nition of VStoTO 0.The �rst part of VS-property implies that removing the timing information from the timed trace of�2 yields a trace of VS-machine. Now paste these two timed traces together, using a pasting lemmafor composition of untimed automata, to yield a timed trace �1 of the composition of VStoTO andVS-machine . We claim that �1 restricted to the external actions of TO-machine is equal to the originaltrace �. But then � is a trace of VStoTO-system, and so by Theorem 6.25 is a trace of TO-machine .The more interesting property to show is Condition 2, the performance and fault-tolerance prop-erty. Our strategy for proving the needed property of � is to use an auxiliary \conditional" propertyVStoTO-property of �. VStoTO-property uses the \conclusion" part of VS-property(b; d;Q) for A, to-gether with the performance and fault-tolerance assumptions for the processors VStoTO 0p, to infer theconclusion part of TO-property(b+ d; d;Q).VStoTO-prop:Suppose that � can be written as �0�00, such that:1. �00 contains no newview events at locations in Q.2. The latest views at all locations in Q after �0 are the same, say hg; Si, where S = Q.3. Every message sent from a location in Q in � while in view hg; Si at time t has corresponding safe events at allmembers of Q by time max (t; ltime(�0)) + d.4. �00 contains no failure status events for locations in Q or for pairs including a location in Q.24



----
�  (�0) >physicalstabilization

��0 (�1)� b �00 (�2)�3 �4�0 �00� d det. in d:VS stableFigure 6: Performance argument diagram5. All locations in Q and all pairs of locations in Q are good after �0.6. If p 2 Q and q 62 Q then (p; q) is bad after �0.Then �00 can be written as �000�0000, where1. ltime(�000) � d2. Every data value sent from a location in Q in � at time t is delivered at all members of Q by time max ft; ltime(�0�000)g+d.3. Every data value delivered to any location inQ at time t is delivered at all members of Q by time max ft; ltime(�0�000)g+d.We prove VStoTO-property operationally. In our proof, the execution fragment �000 whose existence isasserted in the conclusion of VStoTO-property extends until every member of Q has received the safeindication for every state-exchange message sent in view hg; Si. Our proof uses the fact that Q containsa quorum, and also the fact that the \good" processors perform enabled actions immediately.Based on VStoTO-property , it is easy to unwind the de�nitions and prove that the complete systemsatis�es TO-property(b + d ; d ;Q). Suppose that (�;1) = (; l)(�;1) is an admissible timed trace ofVStoTO 0-system. Suppose that all the following hold:1. � contains no failure status events for locations in Q or for pairs including a location in Q.2. All locations in Q and all pairs of locations in Q are good after .3. If p 2 Q and q 62 Q then (p; q) is bad after .We show that (�;1) can be written as (�0; l0)(�00;1), where1. l0 � b+ d.2. Every data value sent from a location in Q in �, say at time t, is delivered at all members of Q bytime max (t; l + l0) + d.3. Every data value delivered to any location in Q, say at time t, is delivered at all members of Q bytime max (t; l + l0) + d.By the de�nition of VS-property(b; d ;Q), we have that (�;1) can be written as (�0; t0)(�00; t00), where1. t0 � b.2. No newview events occur in �00 at processors in Q.3. The latest views at all locations in Q after �0 are the same, say hg; Si, where S = Q.4. Every message sent from a location in Q in � while in view hg; Si, say at time t, has correspondingsafe events at all members of Q by time max (t; l + t0) + d.Next, we apply the conditional property to the timed execution � that gives rise to the timed trace(�;1). Let �0, �1 and �2 be the parts of � that give rise to , �0 and �00, respectively.The conditional property implies that �2 can be written as �3�4, where1. ltime(�3) � d 25



2. Every data value sent from a location in Q in �, say at time t, is delivered at all members of Q bytime max (t; ltime(�0�1�3)) + d.3. Every data value delivered to any location in Q, say at time t, is delivered at all members of Q bytime max (t; ltime(�0�1�3)) + d.Then we claim that taking �0 to be the timed trace of �1�3 and �00 to be the timed trace of �4 yieldsthe needed properties. To see that l0 � b + d, note that l0 = ltime(�1) + ltime(�3) � b + d. For thedelivery times, the conclusion of the conditional property provides bounds in terms of ltime(�0�1�3),which is the same as l + l0, which is as needed. 2As a consequence of Theorem 7.1, we have the main result:Theorem 7.2 VStoTO 0-system satis�es the speci�cation TO(b + d ; d ;Q), for every Q that contains aquorum.8 Implementing VSIn this paper we do not o�er a formal proof that VS can be implemented. Instead, we sketch oneimplementation, informally. The implementation is based on the 3-round membership protocol5 givenby Cristian and Schmuck in [10]. In this protocol, once a view is formed, it is \held together" by acirculating token, which is started by a deterministically chosen leader, and travels from member tomember around a logical ring. Each processor knows the size of the ring, and so it sets a timer thatexpires if the token does not return in reasonable time. If a member crashes, or communication failurecauses the token to be lost or delayed, the timer expiration triggers formation of a new view. Similarlya new view is initiated if contact occurs from a processor outside the current membership.Once a processor determines that a new view is needed, it broadcasts a call-for-participation in thenew view (together with a unique viewid chosen to be larger than any the processor has seen). Themembership of the view is all processors that reply to the broadcast. A processor may not reply to onecall after replying to another with higher viewid. Once the membership is determined, this is sent to themembers which then join the view (unless they have already agreed to participate in a view with higherviewid). A leader within the view membership launches the token.To provide ordered message delivery, we use the token to carry the sequence of messages. Eachprocessor bu�ers messages from the client until the token passes; the messages are then appended tothe token. Each processor examines the sequence carried by the token, and passes to its client anymessages that it has not already passed on. The token also carries an indication of how many messageseach member passed to its client, when the token last left that member. This is the basis for the safeindication: a message is safe once the token records that all members have passed it to the correspondingclients.Suppose the following hold of the underlying physical system of processors and links:� While statusp = goodp, processor p takes any enabled step immediately.� While statusp = bad , processor p takes no locally controlled step.� While statuspq = good , every packet sent from p to q arrives within time �� While statuspq = bad , no packet is delivered from p to qAs analyzed in [10] the protocol above implements VS(b; d;Q), where Q is any set of processors, b =9�+maxf�+(n+3)�; �g, and d = 2�+n�. Here, n is the number of processors in Q, � is the spacing oftoken creation by the ring leader (this must satisfy � > n�), and � is the spacing of attempts to contactnewly connected processes.Some remarks about a correctness proof for this implementation: The safety claim involves showingthat any trace of the implementation is a trace of VS-machine . Since traces include only external events5A di�erent implementation could use the one-round protocol of [10]. However, this would stabilize less quickly.26



(and not internal events like createview), the implementation needn't preserve the order of createviewevents (in fact, the implementation needn't even have createview events).To show this trace inclusion, we use WeakVS-machine . We �rst show that WeakVS-machine imple-ments VS-machine , in the sense of trace inclusion, provided that the viewid set G does not contain anin�nite number of elements smaller than any particular element g. This proof is achieved by reorderingcreateview events, pushing any such event earlier than any createview event for a bigger view.Then use a forward simulation to show that the algorithm implements WeakVS-machine . Thisforward simulation should be straightforward, mapping to createview in WeakVS-machine the eventin C-S where a processor de�nes the membership of the view, after waiting 2� units since sending the"newgroup" message (the membership is the set that sent "accept" responses). Uniqueness of viewids isimmediate since in CS they have a procid as low-order part (and a stable seqno as highorder part). Notethat we still have monotonicity on the viewids that p sees, because newview(v)p still has preconditionthat v:id > current :idp.An operational argument should work for performance and fault-tolerance.9 Conclusions and discussionThe construction of distributed applications is substantially aided by the availability of distributedsystem building blocks, such as message passing, multicast or remote procedure call. Some sophisticatedapplication are most e�ectively aided by the availability of building blocks providing higher level functionsand guarantees, such as universally ordered broadcast. In order for a building block to be useful, it mustbe precisely speci�ed, the speci�cation must be as simple as posisble, the correctness and performancequarantees must be explicitly stated, last but not least, the building block must be implementable.We presented a simple speci�cation for a partionable group communication service. We demonstratedthe utility of the service by using it in specifying and proving correct a total order messaging service. Theperformance and fault-tolerance properties of the total order service are derived from the performanceand fault-tolerance properties of the group communication service. We also described one implementationof the service.Future work involves using VS to construct other applications, for example, load-balancing appli-cations. Considering other applications may lead to di�erent variants of the speci�cation; it would beinteresting to identify these variants and understand how they relate to each other. It also remains toapply the approach of this paper to the task of specifying and analyzing other group-communication ser-vices, e.g., services involving multiple groups with possibly-overlapping memberships, services in whichprocessors voluntarily join or leave groups, or services that include combined broadcasts and converge-casts. groups, or services that include combined broadcasts and convergecasts.Acknowledgments We thank Ken Birman, Tom Bressoud, Danny Dolev, Brad Glade, Idit Keidar,Debby Wallach, and especially Dalia Malki for discussions about practical aspects of group communica-tion services. Myla Archer has mechanically checked some of the invariants using PVS, thereby helpingus to debug and polish the proofs. Roger Khazan contributed several improvements to the formal models.Roberto De Prisco and Nicole Lesley made several helpful suggestions.This research was supported by the following contracts: ARPA F19628-95-C-0118, AFOSR-ONRF49620-94-1-0199, U.S. Department of Transportation: DTRS95G-0001- YR. 8, and NSF 9225124-CCR.References[1] Y. Amir, D. Dolev, P. Melliar-Smith and L. Moser, \Robust and E�cient Replication Using Group Com-munication" Technical Report 94-20, Department of Computer Science, Hebrew University., 1994.[2] Y. Amir, L. Moser, P. Melliar-Smith, D. Agrawal and P. Ciarfella, \Fast Message Ordering and MembershipUsing a Logical Token-Passing Ring", in Proc. of IEEE International Conference on Distributed ComputingSystems, 1993, pp 551{560.[3] O. Babaoglu, R. Davoli, L. Giachini and M. Baker, \Relacs: A Communication Infrastructure for Construct-ing Reliable Applications in Large-Scale Distributed Systems", in Proc. of Hawaii International Conferenceon Computer and System Science, 1995, volume II, pp 612{621.27



[4] O. Babaoglu, R. Davoli and A. Montresor, \Failure Detectors, Group Membership and View-SynchronousCommunication in Partitionable Asynchronous Systems", Technical Report UBLCS-95-18, Department ofComputer Science, University of Bologna, Italy.[5] O. Babaoglu, R. Davoli, L. Giachini and P. Sabattini, \The Inherent Cost of Strong-Partial View Syn-chronous Communication", in Proc of Workshop on Distributed Algorithms on Graphs, pp 72{86, 1995.[6] K.P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit, IEEE ComputerSociety Press, Los Alamitos, CA, 1994.[7] T.D. Chandra, V. Hadzilacos, S. Toueg and B. Charron-Bost, \On the Impossibility of Group Membership",in Proc. of 15th Annual ACM Symp. on Princ. of Distr. Comput., pp. 322-330, 1996.[8] F. Cristian, \Synchronous and Asynchronous Group Communication", Comm. of the ACM, vol. 39, no. 4,pp. 88{97, 1996.[9] F. Cristian, \Group, Majority and Strict Agreement in Timed Asynchronous Distributed Systems", in Proc.of 26th Conference on Fault-Tolerant Computer Systems, 1996, pp. 178{187.[10] F. Cristian and F. Schmuck, \Agreeing on Processor Group Membership in Asynchronous DistributedSystems", Technical Report CSE95-428, Department of Computer Science, University of California SanDiego.[11] D. Dolev and D. Malki, \The Transis Approach to High Availability Cluster Communications", Comm. ofthe ACM, vol. 39, no. 4, pp. 64{70, 1996.[12] D. Dolev, D. Malki and R. Strong \A Framework for Partitionable Membership Service", Technical ReportTR94-6, Department of Computer Science, Hebrew University.[13] P. Ezhilchelvan, R. Macedo and S. Shrivastava \Newtop: A Fault-Tolerant Group Communication Protocol"in Proc. of IEEE International Conference on Distributed Computing Systems, 1995, pp 296{306.[14] A. Fekete, F. Kaashoek and N. Lynch \Providing Sequentially-Consistent Shared Objects Using Groupand Point-to-point Communication" in Proc. of IEEE International Conference on Distributed ComputerSystems, 1995, pp 439{449.[15] R. Friedman and R. van Renesse, \Strong and Weak Virtual Synchrony in Horus", Technical Report TR95-1537, Department of Computer Science, Cornell University.[16] M. Hiltunen and R. Schlichting \Properties of Membership Services", in Proc. of 2nd International Sympo-sium on Autonomous Decentralized Systems, pp 200{207, 1995.[17] F. Jahanian, S. Fakhouri and R. Rajkumar, \Processor Group Membership Protocols: Speci�cation, Designand Implementation" in Proc. of 12th IEEE Symposium on Reliable Distributed Systems pp 2{11, 1993.[18] I. Keidar and D. Dolev, \E�cient Message Ordering in Dynamic Networks", in Proc. of 15th Annual ACMSymp. on Princ. of Distr. Comput., pp. 68-76, 1996.[19] L. Lamport, \Time, Clocks. and the Ordering of Events in a Distributed System, Comm. of the ACM, vol.21, no. 7, pp. 558-565, 1978.[20] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1996.[21] N.A. Lynch and M.R. Tuttle, \An Introduction to Input/Output Automata", CWI Quarterly, vol.2, no. 3,pp. 219-246, 1989.[22] N.A. Lynch and F. Vaandrager, \Forward and Backward Simulations | Part I: Untimed Systems", Infor-mation and Computation, vol. 121, no. 2, pp. 214-233, 1995.[23] N.A. Lynch and F. Vaandrager, \Forward and backward simulations { Part II: Timing-based systems",Information and Computation vol. 128, no. 1, pp 1-25, 1996.[24] L. Moser, Y. Amir, P. Melliar-Smith and D. Agrawal, \Extended Virtual Synchrony" in Proc. of IEEEInternational Conference on Distributed Computing Systems, 1994, pp 56{65.[25] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia and C.A. Lingley-Papadopolous, \Totem: AFault-Tolerant Multicast Group Communication System", Comm. of the ACM, vol. 39, no. 4, pp. 54-63,1996.[26] G. Neiger, \A New Look at Membership Services", in Proc. of 15th Annual ACM Symp. on Princ. of Distr.Comput., pp. 331-340, 1996.[27] R. van Renesse, K.P. Birman and S. Ma�eis, \Horus: A Flexible Group Communication System", Comm.of the ACM, vol. 39, no. 4, pp. 76-83, 1996.[28] A. Ricciardi, \The Group Membership Problem in Asynchronous Systems", Technical Report TR92-1313,Department of Computer Science, Cornell University.[29] A. Ricciardi, A. Schiper and K. Birman, \Understanding Partitions and the \No Partitions" Assumption",Technical Report TR93-1355, Department of Computer Science, Cornell University.[30] F. Schneider, \Implementing Fault-Tolerant Services using the State machine Approach: A Tutorial", ACMComputing Surveys, vol. 22, no. 4, 1990. 28


