Approximate Agreement
Alar D. Fekete
Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract: This paper studies the problem of Approximate Agreement. This is a gener-
alization of Byzantine Agreement, where processors are only required to obtain values that
are close together, rather than identical. We offer new multi-round algorithms in several
different models of computation, distinguished by the degree of synchrony in the system and
the malevolence allowed to faulty processors. For each model we also examine the theoretical
limits on attainable performance (measured by the reduction in the range of values), and
show that our algorithm is asymptotically optimal with increasing ratio of non-faulty pro-
cessors to faulty ones. There are two main conclusions we can draw from these algorithms
and lower bounds. First, if process failures are restricted to faults of omission only (that is, a
faulty processor is not allowed to send a wrong message, although it is allowed to crash, and
therefore not send any message) then twice as much reduction can be achieved in each round
of the algorithm as in a model where faults of commission are possible. This relationship
holds in both synchronous and asynchronous systems. Second, we show that in synchronous
systems algorithms that combine information from different rounds of message exchange can
perform better than algorithms that treat each round separately. This extra performance is
obtained by detecting which processors are faulty, and removing them from the system. In
contrast, in asynchronous systems with faults of omission only there is no way to improve
performance by using multiple rounds together rather than independently.

Keywords: Approximate Agreement, failure models, consensus protocols.

September 1987
(©1987 Massachusetts Institute of Tecnology

Approximate Agreement’

1 Introduction

A fundamental problem in designing fault-tolerant distributed systems is how to eliminate or
reduce differences between the information held by different processors. A classical abstract
version of this is known as the Byzantine Agreement Problem [PSL|. This problem has
been studied extensively using many models of computation, reflecting differing amounts of
synchrony in the system, different degrees of maliciousness on the part of faulty processors,
different power of computation of processors, and different requirements on the solution (see
[Fi] for a survey of these results). In synchronous systems (where processors operate in a
sequence of rounds) it has been found that ¢ + 1 rounds of communication are needed in
the worst case for algorithms that are resilient to ¢ faulty processors ([FL]). Even worse is
the distressing fact that in a system with asynchronous communication (i.e. where messages
can take arbitrarily long to arrive) there is no agreement protocol that can tolerate even one
fault, as was first proved in [FLP], and extended to more general system models in [DDS].
Since reaching agreement is difficult even in synchronous systems, and impossible in
asynchronous ones, several researchers have been led to study problems of reducing (rather
than completely eliminating) differences between values held by processors. Obvious exam-
ples of such problems are clock synchronization ([LaM], [LL], [HSSD]) and approximating a
true value (e.g. a sensor) [MS]. An abstract formulation of the problem, which permits the
use of techniques developed in studying Byzantine Agreement, is Approximate Agreement,

introduced in [DLPSW]. In that paper algorithms were given for both synchronous and

!This paper forms part of the author’s Ph.D. thesis “Topics in Distributed Algorithms”, Department of
Mathematics, Harvard University, August 1987. A preliminary version of the material in §§2-8 of this paper
has appeared as “Asymptotically Optimal Algorithms for Approximate Agreement” in the Proceedings of the
5th ACM Symposium on Principles of Distributed Computing (August 1988). A preliminary version of §§9-12
has appeared as “Asynchronous Approximate Agreement” in the Proceedings of the 6th ACM Symposium on
Principles of Distributed Computing (August 1987). The work was supported in part by the Office of Naval
Research under Contract N00014-85-K-0168, by the Office of Army Research under contract DAAG29-84-K-
0058, by the National Science Foundation under Grants MCS-8306854, DCR-83-02391, and CCR-8611442,
and by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125.

asynchronous systems assuming Byzantine (i.e. arbitrarily malicious) behaviour of faulty
processors. Those algorithms proceed in rounds, where in each round each processor re-
ceives the current value held by other processors and “averages” these values to obtain a
new value for itself. (The function used is not the mean, but a fault-tolerant measure of
central tendency.) In [DLPSW] the algorithms given are shown to be optimal (for Byzantine
faults) among algorithms having the same form, that is, where the value chosen in each
round depends only on values held by processors at the start of that round.

The question is raised in [DLPSW]| whether using information from other rounds per-
mits better algorithms. We provide algorithms that combine information from all rounds,
and by this means have faster rates of convergence, in three different synchronous systems
(Byzantine failure, failure-by-omission and crash-failure). We also prove lower bounds on the
achievable rate of convergence, to show that each of the algorithms we give has performance
that is asymptotically (as the number of processors increases) optimal. In contrast, we give
an algorithm using independent rounds, and show that it is optimal, for asynchronous sys-
tems in which processor failures are relatively benign (failure-by-omission and crash-failure).

The Approximate Agreement Problem is studied in the following form: there are n
processors labelled 1,2,...,n that are linked by a completely connected, fault-free, point-
to-point network that is the only means of interprocess communication. In synchronous
models processors all take a step at once, and any message sent in such a step will arrive
at the destination by the next step. In asynchronous models, a message submitted to the
network will eventually reach its destination (where it will be delivered if the addressee asks
to receive it), but no upper bound exists on the time from source to destination. In each
execution there is some subset Corr of processors (the correct ones), so that if p € Corr then
p executes the given algorithm. Independent of the degree of synchrony, we can consider
three models of computation distinguished by the flexibility of behavior of the other (faulty)
processors. In the crash-failure model a faulty processor executes the given protocol up to
some point and then halts (without loss of generality we assume the crash doesn’t occur
in the middle of sending a message). In the faslure-by-omission model a faulty processor
may neglect to send a message that the protocol calls for it to send, and it may halt, but

it does not send any message that is different from what the protocol requires. The most

general model is the Byzantine model, in which a faulty processor may change state or send
a message arbitrarily. We denote the set of faulty processors by Fault = {1,2,...,n}\Corr
and set f = |Fault|. We also denote the subset of Fault, consisting of those processors which
halt (“crash”) during the execution, by Crash. Each processor p has an initial value v (p)
which is a real number. In the crash-failure and failure-by-omission models, we require that
after any execution of the algorithm for which f < t, each processor p that has not crashed
must arrive at a new value w (p) satisfying a validity condition: that w (p) must lie within
the range of the initial values. In the Byzantine model we do not trust the initial values of
faulty processors and we do not make demands of faulty processors’ final state, so we insist
that after any execution for which f < t each correct p must arrive at a final value w (p)
that must lie within the range of the initial values of the correct processors. In none of the
models do we put any requirement on the behavior of correct processors when more than ¢
processors are faulty.

We denote the smallest interval containing a collection of values V' by p (V) and its
length, the diameter of V, by & (V) so that p (V) is the interval [min (V) ,max (V)] and
8 (V) = max (V)—min (V). Let us denote by U the collection of initial values of all processors
and by U the collection of initial values of correct processors, so U = {v(p)} and U =
{v(p) : p € Corr}. We can express the validity condition in the failure-by-omission and
crash-failure models by “if |Fault| < ¢ and p ¢ Crash then w (p) € p (U)”. Similarly in the
Byzantine model the validity condition is “if |Fault| < t and p € Corr then w (p) € p (f;')”

We will measure the performance of such an algorithm by the change in the range spanned
by the values of the processors. Thus we measure performance in the crash-failure and failure-
by-omission models by K = sup 2.0 (p) - 0. Orash})

&(U)
é :pe C
(i@ (p?s (; ore}) , in each case the supremum being taken over all executions

with |Feult] < t (so a good algorithm is one with a low value for K). Notice that the

and in the Byzantine model by

K = sup

identification of processors as faulty or correct is not known to the processors during the
algorithm.

The results of [DLPSW] indicate that in both synchronous and asynchronous Byzantine
systems, with n large enough, any value for K can be achieved if enough communication is

used, so we will restrict our discussion to algorithms using at most S rounds of communica-

tion.

For the synchronous, Byzantine failure model, the paper [DLPSW]| gives an algorithm us-
ing only one round of communication, valid when n > 3t, with performance K = [(n — 2t)/¢] *.
In [DLPSW] it is shown that this is optimal if only one round of communication is allowed.
We can clearly iterate this algorithm (that is, use the final values produced by one execution
as initial values in.another and-then use the final values of that as initial values in a third ex-
ecution, and so on for S -rounds). This gives an S-round solution with K = ([(n —2¢)/t])~%.
We introduce for this model an S-round algorithm valid when n > 4¢, with performance

Au -11 “lg :dy 4 ---+1g < t, each I; a nonnegative mteger
&z o
= (n—2t)(n 4t)5-1

By elementary calculus this supremum is at most t5/S5 so we see
45

=35 (n— 2t) (n — 4¢)51

which for large n is asymptotic to S times better than the performance of the iterated

algorithm of [DLPSW]. In fact as n/t — co so the number of processors increases relative
to the number faulty, this performance is asymptotic to the best possible for a synchronous

S-round algorithm resilient to ¢ Byzantine failures by the lower bound

K > S9P (1.1 dg:lij+--++1ls <t eachl; a nonnegatwe mt.eger)
T (n+1)°

whose asymptotic form (and proof sketch) were first given in [DLPSW]. An interesting
feature of our algorithm is that each processor tries to identify which of the other processors
is faulty, and then ignores any information received from a known faulty processor to reduce
the possibilities for disagreement. The technique of detection of faulty processors was first
used in the similar problem of inexact agreement (where there is an a priori bound on the
spread of initial values of correct processors) in [MS].

We give a new lower bound for K in the synchronous crash-failure model, namely

K> Sup (lyee-lg: 1y —1- c+1lg <t eachl; a nonnegatwe mteger)
= (2n + 3¢)°
for any algorithm using S rounds of communication. We also give an algorithm for the
crash-failure model, valid when n > ¢, with performance

K < 9P (Iy--+lg:li+-+-+1g<t, each ; a nonnegative mteger)
S (2n — 2t)°

which is asymptotic to the optimum as n/t increases.

We offer an algorithm in the synchronous failure-by-omission model, valid when n >
2¢, by combining parts of the algorithms from the other synchronous models. This has
performance

K < SUP (li---lsg:l1++--+1g < t, each I; a nonnegative integer)
B (2n — 4¢)°~1 (2n — 2t)

which is again asymptotic to optimal.

It is worth noting that if § = ¢ + 1 the expression sup(ly-«+lg : Iy + -+ + Ig < ¢,
each /; a nonnegative integer) is zero, as one of the /; must be zero, and so our synchronous
algorithms give solutions to the exact agreement problem when run for ¢ + 1 rounds. In the
Byzantine model this solution satisfies the strong validity condition that the value agreed
on lies in the range of initial values of correct processors. (This is not achieved by using a
normal Byzantine agreement algorithm on each bit of the initial values, unless some removal
of extreme values is done.) In each model our algorithm for S rounds starts by doing all the
communication of the S — 1 round algorithm, so it is possible to do approximate agreement
without knowing at the start how many rounds will be used. In fact, after each round the
new values can be calculated as if that round were the last — this permits the values held by
the correct processors to approach one another rapidly, finally agreeing if ¢ + 1 rounds are
used.

For the asynchronous Byzantine failure model, [DLPSW)| gives an iterated algorithm

n—3t]"%
< i
x<[*27]

with performance

For the asynchronous crash-failure model we give an iterated algorithm, valid when n > ¢,
which is very similar to that of [DLPSW], but is able to exploit the fact that failed processes

do not exhibit malicious behaviour to obtain performance

K< [“‘t]-s.

This accords nicely with the results in the synchronous case, where we found that the failure-

by-omission model permits twice the rate of convergence per round allowed by the Byzantine

failure model. We also prove the matching lower bound

n—t'l"s

s
t

for any deterministic S-round t-resilient Approximate Agreement algorithm in an asyn-
chronous system with failure-by-omission faults, and then extend this to apply also to an
asynchronous crash-failure system. This result is surprising at first, considering that in
synchronous systems we saw above that an S-round algorithm could do substantially bet-
ter than an iterated round-by-round algorithm. The intuitive reason for this result is that
the synchronous S-round algorithms exploit the fact that the same set of ¢ processes have
to account for the faulty behaviour in all the rounds. Thus the algorithms try to detect
which processors are faulty, and then alter the information received from them to reduce the
damage they can do. However in an asynchronous system with failure-by-omission faults,
the worst damage a processors’ failure can cause is also produced by delaying its messages
sufficiently. Since delays do not have to involve the same processors in each round, there is
no extra information to be obtained by carrying values over several rounds.

In §2, we intoduce the notation we will use, and prove the preliminary lemmas concerning
the operators for removing extreme values. In §3, we discuss a simple algorithm that serves to
introduce the main ideas for all the algorithms in the synchronous models. In §4 we give the
asymptotically optimal algorithm for the synchronous Byzantine failure model, and in §5 we
prove the lower bound for this model. Next, in §6 and §7, we discuss the synchronous crash-
failure model, and then in §8, we combine ideas from the previous algorithms to produce an
algorithm for the synchronous failure-by-omission system. In §9 we begin our discussion of
asynchronous systems, with a careful formal model of an asynchronous failure-by-omission
system. We use this model to prove a lemma that captures the intuition about the damage
caused by processor failures being achievable with only message delays. Then in §10 we
give the algorithm for the asynchronous failure-by-omission system, and in §11 we prove the
matching lower bound. In §12 we extend the discussion to an asynchronous crash-failure

model. Finally in §13 we summarize the results of this paper.

2 Notation and Lemmas

In order to give the algorithms precisely, we introduce the language of multisets. A formal
account appears in [DLPSW| but for our purposes it is enough to think of a multiset as an
unordered collection of values that need not be distinct. For each value v and multiset V'
we denote the number of occurrences of v in V' (the multiplicity of v) by mult(v,V). The
values may be either real numbers or the special symbols L, denoting a value not received
in round r because (for example) a processor failed to send it. We define union, intersection,
cardinality, max, min, and mean for multisets in the obvious ways, eg for any v, mult(v,V' N
W) = min(mult(v,V), mult(v,W)), mult(v,V UW) = mult(v,V) + mult(v,W), and |[V| =
Y, mult(v,V). Also let double(V) be defined by mult(v, double(V)) = 2 - mult(v,V).

As in [DLPSW] we will try to reduce the range of values held by processors by using
operators that act on multisets by removing extreme values. Let V' be a multiset with
[V| = N. We put redi(V) to be the multiset with N — 2k entries formed from V' by removing
the k highest entries and also the k lowest entries. We order the values by treating L, as
greater than any real number and also as greater than Lg if r > R. For the crash-failure
or failure-by-omission models we will use similar operators chop} that prefer to remove as
many occurrences as possible of L,, rather than removing other values. If [V| = N and
mult(L,,V) = j then chop}(V) is a multiset of 2N — 2k entries formed from double(V)
either by removing 2k copies of L, (in the case j > k) or else by removing all 2 copies of
1, and then removing the k — 7 highest and k — j lowest of the remaining entries.

We similarly have operators to find a single number to be an “average” for a multiset.
Suppose |V| = N and at least N — k entries in V' are real numbers. Then we put mid(V) =
mean(redy(V')). Similarly if V| = N, at least N — k entries of V' are real numbers and
mult(L,,V) = 0 for r > 1 we define centerk(V) = mean(chopi(V)). The facts below and
the conditions given in each case will ensure that, in our algorithms, a mean is only taken for
multisets of real values. In asynchronous systems, we will use another averaging function,

defined when all the elements of V' are real by

V1 + Vg1 + o Ya—1)k41

ave(V) = 3

where A = [Z] and the elements of the multiset V, in order from lowest to highest, are

vi, v2,...,UN. Thus this function selects every k-th entry of the multiset and then takes the

mean of these. In [DLPSW] the function avj is called fio. As examples:
e {-1,—-1,0}u{0,1} = {-1,-1,0,0,1}
o {—1,-1,1,}u{0, Ly, Lo} ={-1,-1,0, Ly, 14, 15}
e {-1,-1,0,0}n {-1,0,0,1} = {-1,0,0}
e |{-1,-1,0}| =3

|{_1! —1,0,J.1}| =4

o reds ({—1,-1,-1,0,0,1}) = {-1,0}

e redy({-1,-1,0, 1, 15}) = {~1,0, L}

e chop?({-1,0,0,.L2, 13}) = {~1,-1,0,0,0,0, Ly, 15}
e chop3({~1,0,0, L3, 12}) = {~1,0,0,0}

o midy({-1,-1,-1,0,1, 1;}) = 0.5

o centers({—1,-1,0,1,14}) = —0.5

o centera({—1,-1,0,1,1,}) = ~1/3

e avy({-1,-1,0,2,5})=4/3

In our discussion we will need to know how the operators introduced affect the range
of values in a multiset and the differences between two multisets. We have the following

results:

Lemma 1 [DLPSW] If V is a multiset with V| = N, and at least N — k elements of V lie

in the range [a,b], then every element of redy (V) lies in the range [a,b].

Proof: At most k elements of V are greater than b and all of these must be removed
among the k highest elements of V when forming redy (V'). Thus every element of redj (V)
is less than or equal to b, and a symmetric argument shows that every element of redy (V)

is greater than or equal to a. Q.E.D.

Lemma 2 [DLPSW] IfV and W are multisets then |redy (V) N redy (W)| > [V N W| — 2k.

Proof: Since VNW C V, redy (V N W) C red (V) and similarly redi (V N W) C redy (w),
so redr (V NW) C redy (V) N redy, (W), but |red; (VNW)| = |V N W| — 2k. Q.E.D.

Lemma 3 IfV is a multiset with [V| = N, mult(L,,V) < k such that at least N — k entries
of V' are different from L, and lie in the interval [a,b], then every entry of chop} (V) lies

in [a,b].

Proof: Let mult(L,,V) = j and let Z denote the multiset of 2N — 27 entries formed
from double(V') by removing all 25 copies of L,. Now chop},(V) = redsx—;(Z), and at least
2N — 2k entries of Z lie in [a,] so Lemma 1 completes the proof. Q.E.D.

Lemma 4 Let V and W be multisets with |V| = |[W| = N. Suppose that every entry
k and mult(L,, W) < k. If
m then |mult(v, chopi(V)) —

in VUW 48 one of v, w or 1., and that mult(L,,V
|mult(v,V) — mult(v,W)| + |mult(w,V) — mult(w, W)
mult(v, chopi(W))| < m and |mult(w, chop}(V)) — mult(w, chopi(W))| < m.

) =
| <

Proof: Without loss of generality we may assume v < w. We first observe that W can be
formed from V' by a sequence of at most m operations, each being the replacement of a single
entry by L, or the replacement of a single occurrence of L, by either v or w. Thus it is enough
to prove that [mult(v, chop} (V1)) — mult(v, chop}(V2))| < 1 when mult(L,,V;) < k-1 and
V3 is formed from V; by removing a single occurrence of z (which is either v or w) and
replacing it with L,. So we put j = mult(L,,V;) and let Z denote the multiset of 2N — 29
entries formed by removing all occurrences of L, from double(V;). Now chop} (V1) is formed
from Z by removing the k — j highest entries and the k — J lowest entries. On the other
hand, chop}(V3) is formed from Z by removing two occurrences of z and then removing the
k — 7 — 1 highest and k — 5 — 1 lowest of the remaining entries. If z = v this is equivalent to
removing the k — 5 — 1 highest and k — j + 1 lowest entries from Z as v is the lowest entry in
Z, while if z = w the net effect is to remove the k— j +1 highest and k — j — 1 lowest entries
from Z. Thus we can obtain chop}(V3) from chop}(V;) either by removing an occurrence of
the k — 7 + 1 lowest entry of Z and adding an occurrence of the k — 7 highest entry of Z, or
else by replacing an occurrence of the k — j + 1 highest entry of Z by the k — 5 lowest entry

9

of Z. In either case we see that the multiplicities of v and w can each change by at most 1.
Q.E.D.

Lemma 5 Suppose V' and W are multisets with |V| = |W| = N, |V ﬂW[> N —m and
at least N — k elements of each of V and W lie in the interval [a,b]. Then midy(V) and
midy(W) lie in [a,b] and |midy(V') — midy(W)| < m(b — a)/(N — 2k).

Proof: By Lemma 1 we see that all the entries of redj (V') lie in the interval [a,b] and so
their average midi(V') also lies in [a,8]. Similarly every entry of redz(W) and also midy (W)
lie in [a,b]. By Lemma 2, the multisets redx(V) and red;(W) agree in at least N — 2k — m
of their entries, and in each of the remaining m places, the entries can differ by at most
b~ a as each lies in [a,b]. Thus |mide(V) — midy(W)| = glz| T redp(V) — X redp(W)]| <
m(b— a)/(N — 2k). . Q.E.D.

Lemma 8 SupposeV and W are multisets with |V| = |W|= N, such that mult(L;,V) <k,
mult(Ly,W) < k, mult(L,,V) = mult(L,,W) = 0 for r > 1, all real entries of VU W
lie in the interval [a,b] and 3, |mult(v,V) — mult(v,W)| < m. Then centery(V) and
centery(W) lie in [a,b] and |centery(V) — centery(W)| < m(b — a)/(2N — 2k).

Proof: The hypotheses show that in double(V) there will be at most 2k entries that are
not real, and all of them will be L; and so will be removed in forming chop} (V). Thus the
resulting multiset has all its entries in [a, 8] and so its mean center; (V) also lies in [a, b].
Similarly centery(W) also lies in [a,b]. Now as in the proof of Lemma 4 we observe that W
is formed from V' by at most m operations each replacing a value by L; or vice versa. So
we need only prove that if V; and V; are multisets with Vi = N, mult(Ly, Vi) < k-1,
mult(L,,V1) = 0 for r > 0, and every real entry of V; lies in the interval [a,] and such
that V3 is formed from V; by removing one occurrence of a value 2 and replacing it with
L1, then |centery(Vi) — centery(V3)| < (b — a)/(2N — 2k). So we put j = mult(L;,V;) and
let Z denote the multiset of 2N — 24 entries formed by removing all occurrences of 1 ; from
double(Vy). Now chop}(V3) is formed from Z by removing the k — j highest entries and
the k — j lowest entries. On the other hand, chopi(Vg) is formed from Z by removing two

occurrences of z and then removing the k— 7 —1 highest and k — J —1 lowest of the remaining

10

entries. If z is among the k — j — 1 lowest entries of Z, this is equivalent to removing the
k — 7 — 1 highest and k — 7 + 1 lowest entries from Z. If z is among the k — 7 — 1 highest
entries of Z the net effect is to remove the k — j + 1 highest and k — j — 1 lowest entries
from Z. Thus in these cases, we can obtain chop}(Vz) from chop (V1) either by removing an
occurrence of the k — j + 1 lowest entry of Z and adding an occurrence of the k — 7 highest
entry of Z, or else by replacing an occurrence of the k— j +1 highest entry of Z by the k—j
lowest entry of Z. Clearly in these cases, the sum of the entries of chop} (V1) differs from the
sum of the entries of chop}(Vz) by the difference of two elements of the interval [a, 8] which
is at most b— a. In the remaining case z lies between the k — j lowest entry of Z (call it a')
and the k — 7 highest entry of Z (call it b'), but chopi(V2) is obtained from chopi (V1) by
removing two occurrences of z and replacing them with o' and ' which will alter the sum
of the entries by b’ + a' — 2z which is at most b’ — z (as z > a') but this is bounded by b — a.

Thus in every case

1 b — a

as required. Q.E.D.

Lemma 7 [DLPSW)| Suppose U and V' are nonempty multisets with V C U. Then avi(V) €
p(U).

Proof: Since every element of V lies within p(U), so must the mean of a collection of such

values. Q.E.D.

Lemma 8 [DLPSW)] Suppose V, W, and U are nonempty multisets with V| = |W| =m,
VCUWCU and |W —V|=|V -W| < k. Then
5(U)
lave(V) — avg(W)| < —=-
/K] |
Proof: Let the elements of V, arranged in increasing order, be v1,v2,. . .,m. Similarly let
the elements of W in increasing order be wi,...,wp. Since |W — V| < k, we can deduce

v; < wiyk, for any 7 such that 1 < m — k. Similarly w; < vi4i. Now,

1
avg(V) — ang(W) = x (v 4 vks1 + -+ vp-1)k1) — (W1 + wpgr + ...+ W(r-1)k+1))

11

1
< X " ((le_I + wop4+1 + . o + W(a—-1)k+1 3= V(A—-I)k+1)

— (w1 +wegr+...+ Wr—1)k+1))
V(a-1)k+1 — V1

)
§(U)
[m/k]’
Similarly we have that avg(W) — ave(V) < Tfﬂ{% Q.E.D.

3 Introduction to the Algorithms for Synchronous Systems

The algorithms given for synchronous systems are all variants on a single plan. To help
the reader understand them we give here an account of a basic algorithm for the crash-
failure model. This algorithm is not optimal, but it is simpler than the others while still
capturing the essential features, and it will isolate the main issues involved in solving the
approximate agreement problem. For ease of exposition in tl:us and the later algorithms, we
will suppose that when a processor broadcasts information it sends to itself as well as to
the other processors, though in practice this will usually be implemented by remembering,
rather than sending a message.

In the basic algorithm, processor p, until it crashes, must perform the following —

e In round 1: Broadcast v (p), and denote by v (g, p) the value received by p from ¢,

which was v (g;). If the message from g¢; is missing set v (91,p) to be 1.

® In round r, for r = 2,...,8, processor p will start with an array of n"~! values
(v(91,925-..,gr-1,p) : each ¢; = 1,...,n). Now p should broadcast the array
(v (91,492, .-.,9r-1,p)). Denote by v(g1,...,9r-1,9r,p) the value received by p from
gr which was held by ¢, as v(q1,...,¢,—1,¢,). If the message from ¢, is missing set

v(gs,...,qr-1, gr,p) to be L,.

¢ At the end of round S, processor p (unless it has previously crashed) has an array

of values v{g1,...,¢s,p). Now p should form W (gy,...,qs, p) as the multiset with a

single entry v (q1;...,9s,p).

e For each r decreasing from S — 1 to 1

12

— for each choice of ¢,.. .,q,, processor p should form a multiset
W (g1, - rQrs*,...,%,p) = red(n_zt}s-,-;tu?r“:lw (g1 --»Qrs Gre1s %, %, ..., %,P)

where in every case the asterisks fill places so that there are S + 1 entries, either

asterisks or indices, to name each multiset.
e Now let p compute W (p) = U7, ;W (q1,%,...,%,p).

e Finally processor p (unless it has crashed) must choose its final value to be w(p) =

mid (n—2t)s"lt (W (p)) .

The algorithm has two phases. First there are S rounds of communication, in each
of which each active processor broadcasts all the information it holds and collects the in-
formation sent to it. After round r, processor p has an array of values (v(qi,...,gr,p)
: each ¢ = 1,...,n) where v(q1,...,q,,p) is the value p received from g, representing the
initial value v(q;) as transmitted by g; to g in round 1, then relayed by ¢z to ¢s in round
2, and so on. In the second phase, after all communication has occurred, processor p builds
for each choice of ¢y,...,¢- a multiset W(qy,...,¢r,*,...,%,p) out of the collection of values
{v(g1,-+»9r,9r41,.-.,9s,p) : g5 € {1,...,n} for j > r}. Now if gr,gr41,...,gs are all non-
faulty then v(q1,...,¢r,¢r+1,.-.,9s,P) = v(q1,.--,9r). In fact the method of constructing
W(q1,...,¢r,*,...,%,p) by successively combining multisets and removing extreme values
is designed to ensure that W(gy,...,qr,%,...,*,p) is a multiset of size (n — 2t)°~" that is a
good representative for v(qy, ..., ¢,) in that, so long as p does not crash and thus all multisets
mentioned are defined,

(i) if g has not failed before the start of round r+1 then every entry of W (g1, ..., gr, *, ..., *,p)
has value v(gy,...,q,), and

(ii) the multisets W(q1,...,qr,*,...,% po) and W(qi1,...,qr, *,...,*,p1) are not very differ-
ent — in fact they are the same unless ¢, failed precisely during round r, in which case they
differ in at most I, 41 - - -5 entries, where l; denotes the number of processors failing precisely
in round j.

These properties are easily proved by descending induction using the recursive construction

of W(q1,...,4qr,%,...,%,p) and using the lemmas about the red; opcrators. Finally using

13

these facts about the multisets W (qy,*, . ooy, p) and the property of the operator mid; we
establish that w(p) lies in the range p(U)-and that

o (pe) ~w (e S 27255 -5 @)

which shows that

K < 5P {ljlg---lg : 1y + ---lg < t,each [; a non-negative integer}
- (n — 2t)°

as the processors that fail precisely in round ¢ are different from those that fail precisely in
round j if ¢ # 7.

The above argument hinges on the fact that a faulty processor can cause different correct
processors to receive different information only during one round (the round when ‘the faulty
processor crashes) since before the crash the faulty processor sends the same correct message
to everyone, and after the crash it sends nothing to everyone. The difficulty we face in the
failure-by-omission and Byzantine models is that a faulty processor may cause differences
between the views held by correct processors in more than one round. To overcome this, in
the algorithms of §4 and §8 each processor performs fault detection, examining the messages
relayed to it by other processors that they received from ¢ to try to deduce if ¢ is faulty.
Once a processor p has deduced that ¢ is faulty, it refuses to listen to messages from g,
using ., in place of the values in them. If a processor g, has not been detected as faulty
by everyone by the end of round r + 1, its performance in round r must have been quite
close to correct, and our algorithms remove enough extreme values in forming the multisets
W(g1,---sqrs*, ..., %, p) that these multisets are the same for different p. On the other hand
if g» was detected as faulty by everyone before round r then everyone was ignoring values
transmitted by g, in round r, and the multiset W{qy, ..., 4, %, ..., %, p) will contain only L,
and so be the same for different p. Thus the fault detection ensures that a faulty processor
can cause significant differences in the views of correct processors only in one round, namely
the round before the one in which the last of the other processors detects the failure.

The algorithms of §6 and §8 also obtain better performance than the basic algorithm
above by using the operators chop}, and center), which are more complicated than red; and

mid but are specially adapted to the situations where the only differences between multisets

14

W(q1y---»qr, *5-.-,% po) and W(q1,...,9r,%,...,%,p1) are due to replacing a value by L,

(unlike the Byzantine case where one value can be replaced by another).

4 The Synchronous Byzantine Failure Model: The Algo-

rithm

Throughout this section of the paper, we require n > 4t.

An overview — During each round of communication a correct processor p broadcasts
information it holds in the array #(py,...,pr-1,p), collects the information sent to it in an
array v(pi,. . .,.Pr,p), tries to deduce which processors are faulty, and then modifies the infor-
mation it received from processors known to be faulty to form the new array ¥(pi,. ..,pr,p).
The only method a correct processor p uses to detect that process ¢ is faulty is to examine
the n values which reach p representing some information that was broadcast by g and then
relayed to p by each recipient. If ¢ were correct then every processor would have received the
same value in the broadcast and then the correct processors (at least n — ¢ of them) would
all have sent the same value to p. Thus if p finds fewer than n — ¢ values the same among
the n it received, it can deduce that g was faulty. After the S rounds of communication, a
correct processor will have an array of n® values to operate on. In S steps this array is used
to form a collection of (n — 2t) (n — 4t)° ! values by repeatedly removing extreme values
from subcollections and then combining subcollections. Finally this collection of values is
averaged to give the processor’s new value.

In detail, processor p, if correct, must perform the following —
e Set ¥ (p) = v (p).
e In round 1:

— Broadcast ¢ (p), and denote by v (g1, p) the value received by p from g¢; purporting

to be ¥ (g;). If the mesage from ¢; is missing or malformed set v(gq;, p) to be L;.

— Set Fault (p,1) to be the empty set.

— Set ¥ (q1,p) = v (q1,p)-

15

o In round r, for r = 2,...,8, processor p will start with an array of n"! values
(9(q1,92,--.,9r—1,p) : each ¢; = 1,...,n) and a set Fault(p,r — 1) of processors al-
ready detected as faulty by p. Now p should

— Broadcast the array (¥ (g1,92,-..,9-—1,p)).

— Denote by v(q1,...,9,-1, ¢, p) the value received by p from ¢, purporting to be
#(g1,- - -»9r-1,9-). If the message from g, is missing or malformed set v(g1,...,qr,p)
to be L,.

— For every choice of indices ¢y, . . ., g1, consider the multiset {v (g1, ..., ¢—1,1, P);
v(g1, - 39-1,2,P), .0 (q1,. .., @r—1,1,p)}. If the most frequently occurring el-
ement has multiplicity less than n — t, say that “g,_; has been detected as faulty
by p in round r.” (Note that when r > 2, several choices of q1,. - ,gr—2 may lead
to the same g,_; being detected.)

— Set Fault (p,r) = Fault (p,r — 1)U{q : ¢ has been detected as faulty by p in round
r}.

| v(a1,-- 5 9r-1,0r,p) if gr & Fault (p,r)

— Set ﬁ(qis---:Qr—»I,QnP)= . -
1. if ¢, € Fault (p,r)

e At the end of round S, processor p has an array of values ¥ (qgy,...,q5,p). Now let

W (g1, ..,9s,p) denote the multiset with a single entry & (q1,...,4s,p)
e For each r decreasing from § — 1 to 1

— for each choice of ¢y,. . .,¢,, processor p should form a multiset

WgL,. s *..., *,p) = red(n_.u}s—'-‘zg U;:.+1=1 W (g1, s 0 Gre1s %, . -, *,)

where in every case the asterisks fill places so that there are S + 1 entries, either

asterisks or indices, to name each multiset.
e Now put W (p) = UJ, ;W (q1,%,...,%,p).
e Finally processor p should decide on its final value w (p) = mid,,_,pns-1, (W (p)). (Note

that the amount of reduction in this case is different from that in previous steps.)

16

In the algorithm above as a convention we set Fault(p,0) = @, Fault(p,S+1) =
{1,...,n}\Corr. We put Ezposed (r) = NpecorrFault (p,r) and I, = |Ezposed (r +1)| —
| Ezposed (r)| = |Ezposed (r + 1) \ Ezposed (r)|. Thus I, is the number of processors whose
behavior in round r led to them being detected as faulty by every correct processor for
the first time at the end of round r + 1. These are the processors that will cause differ-
ences between other processors’ views in this algorithm, just as in the basic algorithm of §3
differences were caused by processors that crashed during round r.

The behavior of the algorithm is explained by the following lemma, which shows that the
multiset W(g1,...,¢r,%,...,%,p) is a good representative for ¥(qy,...,q,), in that it often
consists entirely of copies of that value, and that only processors in Ezposed(r+1)\ Ezposed(r)
will cause differences between the multisets computed by different correct processors to

represent the same round r value.

Lemma 9 In an ezecution of the algorithm of this section, for which f < t, we can conclude:

(1): If p € Corr and g, € Corr, then all the (n — 4t)5~" entries of W (q1,...,qr,%,...,%,D)
are ¥ (q1,...,qs)-

(1i): If g & Ezposed (r + 1), po € Corr, and py € Corr, then W (q1,..., 0 %,..., % po) =
WA e <05, oo 03 001

(iii): If g- € Ezposed (r), po € Corr, and p1 € Corr, then W (q1,...,qr, %, ..., %,p0) =
W(fj'1,...,q,.,*,...,*,p1).

(iv): If po € Corr and p; € Corr, then
[W (QII RETL TR -,*,PO) nw (QI’ ceay ey ¥y, =(‘(:'pl)l > (ﬂ = 4t)S—r 2 If-l-l - "!‘+2 s -!S'

Proof: First we observe that if p € Corr and ¢ € Corr, then ¢ & Fault(p,r) This is
proved by induction on r. If r = 1, and p € Corr , ¢ € Corr then ¢ & Fault(p,1) as
Fault (p,1) = 0. Now for arbitrary r suppose p € Caﬂ; and ¢ € Corr. If ¢, € Corr
then by the induction hypothesis ¢ ¢ Fault (g,,r — 1) and so for any choice of ¢1,...,¢,—2
we see ¥ (q1,-..,9r-2,4,9) = v(q1,---,9r-2,9,9r) = (q1,-..,9r-2,9) as ¢ is broadcast-
ing correctly. Also ¢, broadcasts correctly so v(q1,...,9r-2,4¢,9rP) = ¥ (q1,...,9r—2,4,9r)
. Thus the multiset {v(gr,- - 4r-2,0,L,P)v(q1, - - ¢r-2,9,2,P),- - 50 (q1, . . ., @r—2, 9,1, 0)}

17

contains at least (n — t) etitries each of which is #(qy,..., g2, ¢) - So ¢ is not detected
as faulty by p in round r, but by the induction hypothesis ¢ & Fault (p,r — 1) so we see
q & Fault (p, r) as required.
Now we use descending induction on r. First, suppose r = §.
(i): If g € Corr and p € Corr, then W(q1s...,95,0) = {¥(q1,.-.,95,p)}; but gs &
Fault (p, S) s0 ¥ (q1,...,95,0) = v(gi,-..,95,9) = ¥(q1,--.,q5) since gs correctly
broadcast in round S. Thus W (qi,..., g3, p) contains (n — 4t)0 = 1 entry with value

¥ (q1;...,95).

(ii): If g5 & FEzposed (S + 1), then by definition of the sets Fault (g;8 + 1), we must
have gg € Corr and so, by (i) proved above, if py € Corr and p; € Corr, both
W (q1,...,9s,p0) and W (g1, ..., qs, p1) contain a single entry with value ¥ (qy,...,qs)
and so are equal.

(iii): If g5 € Ezposed (S) and ps € Corr, then qs € Fault (po, S) so that ¥ (q1,.. ., ¢s,po) =Ls
and so W (q1,...,99,p0) is & multiset with a single entry whose value is Lg. Sim-
ilarly W (¢1,...,9s,p1) has a single entry with value Lls, so W (q1,...,95,p0) =
W (g1, 5¢s;p1).

(iv): The expression (n — 4t)"§_"' =lppy---lg evaluates to 1 — 1 = 0 if » = § (recall that
a product of no numbers has value 1 by convention). Thus it is trivially true that
W (415 .18,06) VW (g15.. - q5,91)] 2 (1 = 48)°~" = 1,41 -+ -1g in this case.

We now prove the lemma for some value of r assurning its truth for r + 1.

(i): If ¢ € Corr and p € Oorr then for ¢r+1 € Corr, by (i) for r 4+ 1, the multi-
set W (qi;... 85 Grs1s%. .5 %;p) consists of (n— 4t)s*"_1 entries every one having
value ¥ (qi;..:5Grsqr41): However, since g € Corr (and so ¢, & Fault(gr41,7)),
O(d1s- s itrs1) = v (@000, Grp1) = ¥(q1,...,¢). Thus the combined multi-

886 UR W (@15 o5 Qry @iy ®y. 00y %, p) contains at least (n — 4t)° "1 (n — t) entries

e 1=
each of which is ¥ (¢1,...,¢), namely (n — 4¢)5"""1 for each of at least (n—1) grs1
that are in Corr. By Lemma 1, applied with a = b = ¥ (q1,...,9-), we have that
W (qi5...,8r5 %,. .., %, p) consists of exactly (n — 4t)S"' entries all of which have value

(g5 .41 8)

18

(ii): If ¢, & Ezposed (r+ 1) then the multiset {¥ (g1,...,4r,q) : ¢ € Corr} has its most
frequent entry (say v) with multiplicity at least n — 2¢. This is proved by contradic-
tion: suppose that there is a choice of ¢1,...,g, so that the multiset {7(q1,---,9r,9)
: ¢ € Corr} has its most frequent entry with multiplicity less than n—2¢. Let p € Corr.
For ¢ € Corr, v(q1,...,4r,9,P) = (q1,...,9r,9) so the multiset {v(qy,...,qr, 1,p),
v(g1,.--,9r,2,p),. 50 (q1,...,9r,n,p)} has its most frequent entry with multiplicity
less than n — ¢, and so ¢, € Fault (p,r + 1), but this holds for all correct p which
would contradict ¢, & Ezposed(r + 1). Now if g,4; € Corr and py € Corr, by (i)
for r + 1 as above, W (g1,...,¢r, ¢r+1,%, ..., *,po) consists of (n— fht)s""*1 copies of
¥(g1,--+,9r,¢r+1). Thus in this situation Vg a=1W (91,-- ., @rs @r41, %, . . ., %, pg) con-
tains at least (n — 4t)° "~ (n — 2t) entries each of which is v (namely (n — 4t)5 "1
for each of (n — 2t) different choices of g,4;). By Lemma 1, all (n — 4t)5" entries of
W(g1,.--,8r,%,...,%,po) are v. If p; € Corr then similarly W (q1,...,¢r,%,...,%,p1)

consists of (n — 4t)°~" copies of v. So these multisets are equal.

(iii): If ¢, € Ezposed (r) then for any g,,; € Corr, gr € Fault (gr41,7),s0 that ¥ (g1, ..., ¢, gr+1)
=Lr. lf po € Corr we can apply (i) for r+1 to deduce that W (qs, ..., gy, Gr41,%, ... 5%, Po)

S—r—1

consists of (n — 4t) entries all of which are L,, and therefore we see that the mul-

tiset U7 |1 W (41, - »Gr,@r+1,%,. . .,*,p0) contains at least (n — 42)5—1 (n — t) copies
of 1,. Thus by Lemma 1, the multiset W (q1,- - ,qr, *,- . ,*, po) consists of exactly
(n — 4t)5~" copies of L,. Similarly, if py € Corr, W(qy,...,¢r, %, . .,*, p1) consists of

(n —4t)°™" copies of L,, so these multisets are equal.

(iv): Suppose py € Corr and p; € Corr. Using (1), (i) and (iii) applied for r + 1,
we see that W (g1,..., ¢, qr41,% -, %,00) = W (q1,- .-, 0, Gri1,s %, - - -, %, p1) unless
9r+1 € Ezposed (r + 2) \ Ezposed (r + 1). By (iv) for r + 1 we have in the case gr+1 €
Ezposed (r + 2) \ Ezposed (r + 1) that W (g1, 8, @r41,%, .-, %, p0) N

1 1 TSR R N — *p1)| > (n- cit)“”_"_1 —lp49+-+lg. We have therefore

IU:;,.+1=1W (91’ e ey Qr 41, %, ..., *’PO) n U?,+1=1W (QI: cea @y Qr41,%, .. 0, *,Pl),
> (n—lppy)(n—-4)° " 41, ((n) R AN -ts)

= (n' - 4t)3—r—1 ‘n-— !r+l : !r+2‘ s 'IS-

19

Thus by Lemma 2
IW (QI: sy @ry ¥y .0, *;Pﬁ)'ﬂ w (91: ceaa@ry ¥y ...y *spl)l > (" = 4;)S—r — 1 Ir+2 R
QE.D.

Theorem 10 The algorithm of this section has performance

sup {lylg-++lg :ly+---+lg < t,each l; a non-negative integer}
(n—4t)°~1 (n — 2t)

K <
Proof: When we apply Lemma 9 with r = 1 to any execution such that f <'t, we obtain

(i): If p € Corr and g1 € Corr, then W (g1, %,:..,*,p) consists of (n — '.4t)‘s—1 entries all of

which are v (q1).

(ii): If gy & PEzposed(2), po € Corr, and p1 € Corr then W (g1,%,...,%,po)
=W(_Q1,*,---;*:p1)'

(iv): If pp € Corr and p; € Corr, then

|W (91:*:' ":*_3?_0) nW(Ql:'*a“ "*:pl)l 2 (ﬂ-— _4‘)8-1 —l3 ‘IB"'!S-

Notice that (iii) tells us nothing as Fzposed (1) = 0. 'Now if p € Corr we see that
U _iW (g1,%,...,%,p) contains at least (n — t) (n — 4¢)° " entries in the range p (ﬁ) spanned
by initial values of correct processors, namely the (n — 4t)°~! copies of v (g1) for each correct
g1- Then by Lemma 1, w(p) lies in the range p(U). Suppose that po € Corr and p; € Corr.
Then

W (o) W (p1)] 2 (n—40)°" (n—1y) + 1y ((n — 4t)°~" — 1y 1)
= n(n- 4_t)3_1 = lyly-++lg
as there are l; values of ¢; with ¢1 € Fzposed (2) and n—!; values of g; with ¢; & Ezposed (2).

We can apply Lemma 5 to prove

o pe) = w ()] < s 8 (0).

— 4t)°7 (n - 2t)
We finally note that as | = |Ezposed(2)|, Iz = |Ezposed (3)| — |Ezposed (2)|,..., ls =
| Ezposed (S + 1)| — | Bzposed (S)|, we have each /; a non-negative integer and also I3 + Iy +

20

...+ lg = |Ezposed (S + 1)| = |Fault| < t. This proves that our algorithm has, as claimed,
performance

sup {lylz---Is : I + ---+ g < t,each [; a non-negative integer}
(n — 4t)°~ (n — 2t) '

K<

Q.E.D.

It is interesting to note that for S = 2 our algorithm therefore gives an implementation

of Crusader’s Agreement [D] on each value v (¢) — each processor p gets either a value (the
common value of W (g, *,p)) or else the knowledge that g is faulty, and all the processors
that get a value get the same value, which is the right one if ¢ is correct. In fact our
implementation has a stronger property, that if any po fails to detect that ¢ is faulty, all

those p that do detect it know what value pp has chosen.

5 The Synchronous Byzantine Failure Model: A Lower Bound

This section gives a formal account of a lower bound, whose asymptotic form was given in
[DLPSW], on achievable performance for any S-round, t-resilient approximate agreement

algorithm in the synchronous, Byzantine failure model.

Theorem 11 An algorithm that performs t-resilient approzimale agreement in the syn-
chronous Byzantine failure model using at most S rounds of communication, has perfor-

mance
sup{lilg---lg:li+---+1g < t}
(n+t)° '

Proof: Any algorithm for solving the S-round approximate agreement problem can be

K >

given in the following standard form, called a full information protocol, where all information

is exchanged for S rounds and then a computation is performed :
e Set u(p) = v (p).
e In round 1, a processor p € Corr

— broadcasts u (p),

— denotes by u (g, p) the value received by p from g¢; purporting to be u(g1). (If

no such value is received, p should put u(g;,p) =1;.)

21

e Inround r, for r = 2,8,...,S5 a processor p € Corr starts with an array of n"~! values

(u(g1,-..,9r—1,p) :each g; =1,...,n). It then

— broadcasts the array (u(q1,.-.,¢r—-1,P)),

— denotes by v (g1, .- -,9r—1,9r,p) the value received by p from ¢, purporting to be
4 (q1,..-,9r). (If no such value is received, p should put u(qs,...,¢r,p) =L,.)

e Finally a processor p € Corr applies a function f toits view, the array (u (q1,...,95,p))

of n® values, to produce its new value w (p).

Different algorithms are given by different choices of the function f. Notice that the
algorithm of §4, which involves computing and modifying values between rounds of com-
munication, .is- equivalent to one in the standard form because all the computation and
modification can be simulated by each processor after all the information is.exchanged. So
suppose we are given a function f for which the algorithm satisfies the wvalidity condition.
Let l1,l,. . ,ls be any positive integers so that I; +---+Ig < ¢t. We introduce the collection
of multi-indices I = (43,...,1g) where i} ranges over the integers from 1 to my = [n/l;]. We
order the multi-indices lexicographically, that is (i3, ...,i5) < (41,-..,Js) if there is some
r so that (i) 4 < ji for k < r, and (ii) 4, < j,. The multi-indices are totally ordered in
this way (which is described as “last index varies fastest” or “row-by-row”) and we denote
the successor to I by I++. As examples, when S = 3, m; = my = 3, mg = 4 we have
(1,2,3)++=(1,2,4), (1,2,4)++ = (1,3,1) and (1,3,4)++ = (2,1, 1).

To each multi-index I we assign an array My of n° entries defined by

MI(QIJQ?; . °19'S) =
1 if there is some r so that (i) [gi/li] < 4% for k < r, and (ii) [g./1,] < 4,

0 otherwise

Thus M is formed by partitioning the positions in the array into subblocks of size {; x I3 x
++X{g. Every entry in a subblock has the same value, which is either 0 or 1. The subblocks
filled with 1’s all precede those filled with 0’s.

If we arrange the arrays M in the order of the multi-indices I we get a chain, which we

will show has the property that given any two consecutive arrays My and My, ., there is some

22

execution of the broadcasting algorithm with § (U) < 1 and |Fault| < ¢ leading to one correct
processor po receiving My as view while another correct processor py receives My as view.
For this execution |w (po) — w (p1)| = |f (M1) — f (Mr44)|, so K > |f (Mr) — f (M1++)|-
However if we consider an execution where every processor is correct with initial value O,
we find that every processor will get M(; 1, 1) as view. In an execution where all correct
processors have initial value the same, the validity condition requires them to agree on
that same value, so f (M(l,...,l}) = 0. Also we consider an execution where the processors
1,2,..., (my — 1)1 are correct with initial value 1, while processors (m; — 1)l + 1,...,n
follow the algorithm with initial value O during the rounds of broadcasting and then stop
without computing anything; notice that the arbitrary behavior allowed to a faulty processor
includes the possibility of following the algorithm. In this execution the correct processors
will receive Mim, 1,1,..,1) as their view, and the validity condition requires them to agree
on 1 as their new value, so f (M(ml.l....,l)) = 1. Since the chain of arrays M reaches
from I = (1,...,1) to I = (my,1,...,1) in (m; — 1) m3---mg steps, we get a chain of real
numbers f (M) reaching from 0 to 1 in (my — 1) mg - --mg steps. Thus there is some pair
1 1
—1)mg-:-mg 2 mymsy -+ +mg

of consecutive values where |f (M) — f (Mr14+4)| 2 (, 80
my

1 :
K> s Since my = [n/lg] < (n+ 1) [l < (n+1t) /Ui,

Ly --lg
T (n+0)°
As this is true for any choice of ly,...,ls with [y +---+ lg < t we have the lower bound
sup{lily---lg:lij+--+1s < t}
(n+1t)°

to which our algorithm is asymptotic as n increases.

K >

The reader can verify that the following construction gives an execution as required with
M("l ¥

are those p such that there is an r with [p/l,] = ¢,. Since for each r at most [, values of

i,..is) as the view for po, and M;, _i.)++ as the view for p; : The faulty processors

p satisfy this condition, the total number of faulty processors is at most I; +...+1lg < t.

Choose po and p; from among the correct processors. Let v (p) be 1 if [p/l;] <1y, and 0 if
[p/l1] > 11

e Every processor p, correct or faulty, sets u (p) = v (p).

23

e In round 1,

— all processors p, except those where [p/l;] = 4, broadcast u (p). The remaining
p each send the value u(p) to those ¢ where [g/l3] < 43, but they send the value
0 to those g where [g/lz] > iz.

= All processors p denote by u (g1, p) the value received by p from g purporting to
be u (ql)

e In round rforr =2,...,8 - 1

= all processors p, except those such that [p/l,] = i,, correctly broadcast the array

(u(g1,...,9--1,p)). The remaining p form another array with

‘ 0 if [gi/lg] =tx foreach k=1,...,r -1
v (g1,...,9r-1,p) = 4)
_ u (_9'_13 sy Gr—1, P) elﬂe
These p send the array (u(g1,...,4--1,p)) to those g where [g/l,41] < 4,41, but
they send the array (u'(q1,...,¢-—1,p)) to those ¢ where [¢/lr11] > frya.
= All processors p denote by u (g1, ..-,4--1,¢-,p) the value received by p from g,

purporting to be u (g1,...,¢r-1,¢r).

e In the final round S

= all processors p, except those where [p/ls] = is correctly broadcast the array
(u(91...,95-1,p)). The remaining p form another array with

; 0 if [qp/ly] =iy foreach k=1,...,8 - 1
u (93.__’ SRS QSTI_:P) = !
u(g1,:..,95-1,p) else
These p send the array (u (g1, . ..,4s-1,p)) to those g where g # po, but they send
the array (u'(g1,...,95-1,p)) to po.
= All processors p denote by u(g1,...,95-1,9s,p) the value received by p from gg

purporting to be u(g1,...,9s-1,¢s).

¢ Only the correct processors now calculate their new value from their view. The others
halt.

QED.

6 The Synchronous Crash-Failure Model: The Algorithm

In this section, we require that n > t.

An overview — During each round of communication each processor p broadcasts infor-
mation it holds in the array v(p1,-. . ,Pr—1,p) and collects the information sent to it in an array
v(p1,. . .pr,p). After the S rounds of communication, a processor that has not halted will
have an array of n° values to operate on. In S steps this array is used to form a collection
of n(2n — 2t)s =1 yalues by repeatedly doubling, removing excess values from subcollections
and then combining subcollections. Finally the center operator is applied to this collection
of values to give the processor’s new value.

In detail, processor p, until it fails, must perform the following -

e In round 1: Broadcast v (p), and denote by v (g1, p) the value received by p from g; as

v(g1). If the message from ¢y is missing set v (q1,p) to be L;.

e In round r, for r = 2,...,5, processor p will start with an array of n"~1 values
(v(g1,92,---,9r—1,p) :each gi =1,.. .,n). Now p should broadcast the array (v(q1,92,---
gr—1,p)). Denote by v(q1,-..,%-1,9 p) the value received by p from g, which was
sent as v (q1,...,qr-1,9r). If the message from g, is missing set v (g1, .- -, Gr—1,9-,P) to

be L,.

e At the end of round S, processor p has an array of values v (q1,.--,9s,p). Now let

W (q1,---,9s,p) denote the multiset with a single entry v (q1,.--,9s, p).
e For each r decreasing from S —1to 1
— for each choice of g1,...,gr, processor p should form a multiset
w (q1: coiyGry ¥y *:p) = Chong_:_2t)3—r-1tU;‘,+1:1W (Ql, e ey Or1s ¥y ¥ p)

where in every case the asterisks fill places so that there are S + 1 entries, either

asterisks or indices, to name each multiset.

e Now p computes W (p) = U7 W (q1,%, ..+, *,p).

25

e Finally processor p (unless it has previously crashed) must decide on the final value
w(p) = centery,, ,s-1, (W (p)).

In the algorithm above, for each r = 1,. .., S let Fail(r) denote the set of processors that
have failed before sending any of the messages in round r. Also as a convention we define
Fail (S + 1) to be Crash, the set of processors that failed at any time in the execution. We
put I, = |Fail (r + 1)| — | Fasl (r)| = |Fail (r + 1) \ Fail (r)|. The behavior of the algorithm is
explained by the following lemma, which shows that the multiset W(gy, . .., g, %,...,*,p)
is a good representative for v(gy,...,q;), in that it often consists entirely of copies of that
value, and that only processors in Fail(r+ 1)\ Fail(r) can cause different processors to choose

different multisets as representatives for a round r value.

Lemma 12 In any ezecution of the algorithm of this section, such that f < t, we can

conclude:

(1): Ifp & Crash then the value of each of the (2n—2t)5~" entries of W (q1,...,qr, %, ..., %, p)

is either v(qy,...,q) or L,.

(ii): If ¢- & Fail (r+ 1) and p & Crash then
mult(v(gs, -, @), W (g1, -, 8, %, .. ., %,p)) = (2n — 2t)°"
(iii): If ¢ € Fasl (r) and p & Crash then
mult(Ly, W (q1,...,qr, %, ..., %,p)) = (2n — 20)5~"
(iv): If po & Crash and p; & Crash, then

| [mu“("(QIs“ -:Q'f)’w (91: ey Gry ¥y -3*,?0))
""m"'“(v(qls R sQr)) W (91, ces@ry ¥y, *,Pl))!

<lpyylpyg--lg.

Proof: First we observe that if p & Crash, then p ¢ Fail(r) for r = 1,...,5 + 1. Now we

use descending induction on r. First, suppose r = S.

(i): The multiset W(qy,. .., gs, p) consists of (2n—2t)° = 1 entry with value v(qy, . . .,48,DP)-
Now if g5 did not crash before sending its round S message to p then by the basic

26

property of the crash-failure model, the value it sent was actually v(qi, . ..,qs) so that

v(q1,...,9s,p) = v(q1,.-.,9s). On the other hand, if ¢s crashed before it could send

its round S message to p then v(q1,...,¢s,p) =Lls.

(ii): If gs ¢ Fail(S+1), then gg did not crash. Asnoted above this means that v(q1,..-,945,P)

= v(q1,...,9s) and therefore W(q1,...,qs,p) consists of a single entry with value

v(Qla o "QS)-

(1i1): If gg € Fail(S) then g crashed before sending any round S message. As noted above,
in this case v(g1, . ..,¢s,p) =Lg and so W(g,...,qs,p) consists of a single entry with

value lg.

(iv): Since l,4q-+-ls evaluates to 1 when r = S (as an empty product), and each of

W(q1,.--,9s,p) and W(q1,...,4¢s,p1) have only one entry, the statement

|muit(v(q1, .. »:‘Ir),w (Qh ceeyQry ¥y -,*:PO))
_mu“(v(QI!' . 'aqr):W (q1, conyGry ¥, .. '!*:pl))l

< Ir+1 > jlr-|~2 2 "IS

is trivially true when r = S.
We now prove the lemma for some value of r assuming its truth for r + 1.

(i): For each g,+1 that has not crashed before the start of round r + 1, we know that
v(q1,. - -,9r,gr+1) is either v(g1,...,g,) or L, depending on whether g, sent its round
r message to gy4+1. By (i) for r+ 1 we know that W(qa, ..., ¢, @r+1,%, - - ., %, p) consists
of (2n — 2t)5~"~1 entries each being one of v(q1,...,qr), Lr or Lri1. If gr41 crashed
before the start of round r+1 (so that v(gi, . . ., gr+1) may be meaningless) then by (i)
and (iii) for r+1 we know that W(qi,. . ., qr, @r+1, %, . -, *, p) consists of (2n— 24y —+=1
entries all being L,;;. Thus U;"+1=1W(q1, wvvyGryQri1, %, -+ - %, p) consists of n(2n —
2t)5-7-1 entries each of which is v(g1,...,¢s), Lr or Lri1. Also there are at least
(n —t)(2n — 2t)5""1 entries that are not L, ;, namely all those coming from the at
least n — t values of g,4; that are not in Fail(r 4 2) (by (ii) for r + 1). Thus when we
apply chop;"'l, where k = t(2n—2t)5"" 1 to U2 . _ W (g1, -, 9 Gr+1, %, - - -, %, D), We

qr41=

27

will remove every occurrence of 1,3 and be left with (2n — 2¢)°~" entries all either

v(g1,...,qr) OF L,.

(ii): If ¢, & Fail(r + 1) then g, sends all its round r messages and so every g¢r4; that has
not failed before starting round r + 1 has v(gy,- .., ¢r, ¢r+1) = v(4g1,-...,¢-) and so by
(i) for r + 1, W(q1,---s9r,Qr+1,%, - . -, *, p) will consist only of copies of v(gs,...,qr)
and of L,43. If gr41 has failed before starting round r + 1 then by (iii) for r + 1
W(q1,---s9ryGr+1, %, - - -, %, p) contains only copies of L. Thus the combined multiset
Uz pi=1W (91, - -+ 8r, Gr41, %, . . ., %, p) contains only copies of v(g1,...,¢) and of 1,41,
and so the same will be true of W(gy,...,¢,*,...,%,p) which is the result of applying
chop™, where k = t(2n — 2t)5-"~!. Combined with what we proved in (i), this gives

that W(g1,...,4r,*,...,*,p) consists of exactly (2n — 2t)°~" copies of v(q1,...,q,).

(iii): I ¢, € Fail(r) then ¢, sent no messages in round r, so that every g,4; that has not
crashed before starting round r + 1 has v(gy,...,¢r, ¢r+1) =L, and so by (i) for r + 1,
W(q1;s- -, @r41, %, . . ., *, p) will consist only of copies of L, and of L,1. If gp4y has
crashed before starting round r+ 1 then by (iii) for r+1 W(q1,-..,¢r, @r+1,% ..., %,p)
contains only copies of 1,;;. Thus the multiset UG et Wilgrs: - s0ry@rits ...y %, B)
contains only copies of L, and of 1,.;, and so the same will be true of the multiset
W(q1,---,qr,*%,...,%p) which is the result of applying chop}*, where k = t(2n —
2t)5-7=1, Combined with what we proved in (i), this gives that W (g1,..., g, *,...,%p)

consists of exactly (2n — 2t)5~" copies of L,.

(iV): We have that W(QI’ s Qe Qra1s ¥y ey *:pﬂ) o W(qli cen Ory Qr41, %5020y *apl) unless
gr+1 € Fail(r +2)\Fail(r + 1), by (ii) and (iii) for r + 1. For the other I,,; values of
gr+1 We have by (iv) for r + 1 that

!m"“(”(‘h, vevy Gy qf+1):w (911 ceoa Qe Qr41s ¥y 0y *9?0))
_muu(v(’h: ceoy Gy 9r+1))W (Qh ERRTE LTINS PR P *aPl))[

Slyglys g

28 |

For each of these gri1, v(q1,.-.,qr, gr+1) is either v(qi,...,¢r) or Ly, so we see

|mult(v(qy, ..., ¢), Vg, . ,=1W (a1, - > @rs Gr15 %5 - - -5 %, P0))
—mult(v(g1, .-,), Vg =1W (@15, s Gr1, %, - %, 1))
+mult(L,, U7 W (q1,-- -, 9r @r41,%, - - -5 %, P0))
—mult(L,, U7 =W (g1, -, 8r, @r41,%, - - -, %, 1))
A N]
With this bound and the facts in (i) we can apply Lemma 3 to complete the proof.
Q.E.D.

Theorem 13 The algorithm of this section has performance

sup {ll3-+-lg : l; + -+ lg < t,each I; a non-negative integer}
(2n — 2t)° ‘
Proof: = We have by (ii) and (iii) of Lemma 12 for r = 1 that W(q1,*,...,%,p0) =

K <

W(q1,%,...,%,p1) unless ¢ € Fail(2)\Fail(1). For these I; values of g; we have by (iv)
for r = 1 that

|muu(u(QI):W (QI’ *,000, *)FO) - mu}t(”(ql):w (‘11, ¥y5000, *:Pl) | S— “2. “ !3 . 'IS-

We can apply Lemma 6 with V' = U, _;W(q1,%,...,%,p0), W = U ;W (q1,%,...,%,p1),
N=n(2n-2t)°Y, m=1y---lg, k = t(2n — 2t)5~1 and [a,b] = p(U) to prove that each of
w(po) = centery(V) and w(py) = centery(W) lie in p(U) and that

0 0) ~ 0 ()] < 555 (0).
We finally note that as Iy = |Fail(2)| — |Fail(1)|, I = |Fail (3)| — |Fail (2)|,..., Is =
| Fail (S + 1)| — | Fail (S)|, we have each I; a non-negative integer and also Iy + I3 +...+lg =
| Fasl (S + 1)| — |Fail(1)| < t. This proves that our algorithm has, as claimed, performance

K < S9P {lylz++:lg:l; +-+-lg < t,each I; a non-negative integer}-
- (2n — 2t)°

Q.E.D.

It is interesting to note that in any execution where there is a round r such that some

l; = 0 (this means that in round r no new processors crashed) then K = 0 (so exact
agreement is obtained). It is provéd in [DM] that processors can have common knowledge

of exact agreement only if there is such a round.

29

7 The Synchronous Crash-Failure Model: A Lower Bound

This section gives a formal account of a new lower bound on achievable performance for
any S-round approximate agreement algorithm in the crash-failure model. Any algorithm
for solving the S-round approximate agreement problem can be given in the form of a full
information protocol (as in §5) where all information is exchanged for S rounds giving each
processor p a view (v(qi,...,¢s,p)) and then p applies a function f to the view to give
its new value w(p). For the remainder of this section we consider a fixed full information
protocol.

To prove a lower bound on the performance achievable we are going to construct a chain
of views as in §5, but this time we will do so implicitly by giving a recursive recipe for the
execution that lies between successive views. This proof is very closely related to the proofs
in [DM] and [MT] of the impossibility of exact agreement in fewer than ¢+ 1 rounds, and also
to the proof in [CD] of the impossibility of simultaneous firing in fewer than ¢ + 1 rounds.
An execution in the crash-failure model is very easy to describe — we need only specify
the initial value of each processor and say which processors failed in each round and which
messages they sent in that round. We say that two executions p and p' are directly similar
(written p m p') if some processor p is correct in each and obtains the same view in each.
We say similarly that p and p' are k-similar (written p ~* p') if there are k + 1 executions
P0;P1;- - Pk SO that po = p, pp = p', and p; ~ p;y1 for each i. Thus ~! is just ~, and if
p ~% p' and p' ~™ p" then p ~¥*™ p" Note that p ~F p' implies p' ~* p and p ~™ p for
m > k.

Let Iy,l3,...ls be any collection of positive integers such that {; + ...+ Ils < t. Put
m; = [n/l;]. We have

Lemma 14 Let 1 < r < S — 1. Let p = pp be an ezecution of the protocol such that
no failures occur after the end of round r, and the number of failures by the end of round
t 45 at most Iy + ...+ I; for any i. Denote by p the ezecution that is identical to p for

the first r — 1 rounds but has no failures during any later round. Then p ~N) 5 where

N(f) = Ef=r+1 H;:r-{nl 2m; + 1.

Proof: Let the processors that fail in round r in p be denoted i,.. wim. We will use

30,

descending induction on r. So suppose r = S — 1. (Note that the statement is not true if
r = S.) For each k = 1,...,mg let g be the greatest processor index that is not among
the processors that failed in p nor in the range (k — 2)Is + 1,...,kls, and let pp be the
least processor index that is not among the processors that failed in p nor in the range
(k—2)lg+1,...,(k — 1)lg. Then clearly p; < gx—1 and also pr < gi. Let pgg—; denote the
execution that is identical to p during the first S —2 rounds, and then also during round § -1
except that the processors f1,...,i, do send to any processor with index 1,2,...(k — 1)Ig
as well as those processors that they send to in p. In round S, each of the processors
(k — 1)Ig + 1,...,klg that has not failed earlier, fails after sending messages to processors
1,...,9x — 1. The assumptions on failure numbers in p mean that this execution involves
at most ¢ failures. Also let py; denote the execution identical to p during the first S — 2
rounds, and then also during round S — 1 except that the processors i1,.. .4, do send to
any processor with index 1,2,...klg as well as those processors that they send to in p. In
round S, each of the processors (k — 1)lg + 1,...,klg that has not failed earlier, fails after
sending messages to processors 1,...,gx — 1. The assumptions on failure numbers in p mean
that this execution involves at most ¢ failures. Clearly the view of p; is the same in Pa(k-1)
as in pgx_1 80 P2(k-1) & p2k—1. Similarly the view of g is the the same in pz;—1 as in pgp
80 pak—1 ~ pak. Also let p denote the execution identical to p during the first S — 2 rounds
with no failures during round S — 1 and in round S each of the processors i1,i2,...¢m as
well as each of (mg — 1)lg+1,...,mglg that hasn’t failed earlier, fails after sending messages
to processors 1,...,gmgs — 1. The view of g, is the same in p as in pamg—1 50 pamg—1 = 5.
Similarly the view of p,,, is the same in 5 as in § so § ~ 5. Thus examining the whole
argument, p ~2ms+1 5

Now we assume we have the result for r + 1 and prove it for r. For each k = 1,...,m41
we let p3r_s denote the execution identical to p for the first r — 1 rounds and also in round.
r except that the processors 1y,. . .,i,, do send to any processor with index 1,2,...,(k — 1)l,41
as well as those processors that they send to in p. In round r + 1, each of the processors
(k= 1)l,41 + 1,.. ,kl,+1 that has not failed earlier, fails before sending any messages. No
failures occur after round r + 1. The assumptions on the number of failures in p imply that

this execution also satisfies those assumptions. We let psi_; denote the execution identical

31

to p for the first r — 1. rounds and also in round r except that the processors 11,. . .,i,; do'send
to any processor with index 1,2,...kl,+1 as well as those processors that they send to in p.
In round r + 1, each of the processors (k — 1)l,41 + 1,...,kl,;1 that has not failed earlier,
fails before sending any messages. No failures occur after round r + 1. The assumptions on
the number of failures in p imply that this execution also satisfies those assumptions. We
let ps; denote the execution identical to p for the first r — 1 rounds and also in round r
except that the processors iy,. . .,ip, do send to any processor with index 1,2,.. .kl,;1 as well
as those processors that they send to in p. No failures occur after round r. The assumptions
on the number of failures in p imply that this execution also satisfies those assumptions.
Now by the lemma for r + 1 we have pg(x_1) ~" (r+1) pap_p and psp—y ~N(r+1) pgp. Also
every processor gets the same view in psx_2 as in pgix—1 80 psk—2 = psx—1. Further pgp, ., in
which processors 11,. . .,im fail at the very end of round r can also be viewed as an execution
in which they fail at the very start of round r + 1, and so by the lemma for r + 1 we have
P3m,sr ~N L) 5. Putting all these pieces of chain together we see p (2 AN (r41) 4 mega

2, but (2my41 + 1)N(r + 1) + mpyq < (2mpqq + 1)(N(r + 1) +1) = N(r). Q.E.D.

Theorem 15 Any algorithm that solvest-resilient approzimate agreement for the synchronous

crash-failure model in at most S rounds has performance

sup (I1+++lg : {3+ ++-++1g < t, each l; a nonnegative integer)

K > . =
(2n + 3¢)

Proof: We prove that if p = po is the execution where all processors have initial value 0
and no failures occur, and p is the execution where all initial values are 1 and no failures
occur, then p ~¥ 5 where N < (2my + 2) - (2mg + 2) -+ +(2mgs + 2). We will give separate
proofs if S > 1 and § = 1. First suppose S > 1. For each k = 1,...,my let p3;—2 denote
the execution where processors 1,. . .,(k — 1)I; have initial value 1, and the others have initial
value 0, and where processors (k—1)l;+1,...,kl; fail in round 1 before sending any messages,
but no other failures occur, Let psi—; denote the execution where processors 1,.. .kl; have
initial value 1, and the others have initial value 0, and where processors (k — 1)I; + 1,.. .kly
fail in round 1 before sending any messages, but no other failures occur. Let ps; denote the
execution where processors 1,...kl; have initial value 1, and the others have initial value

0, and where no failures occur. By Lemma 14, pg(;—y) ~N() pai_s and pge—1 ~N (1) pg.

32

Also the view of every processor is the same in pgi_z as in psgk—; since the initial value of
a processor that fails before sending any message is irrelevant, and so p3x—2 &~ psg—1. Since
psm, = P, we have p ~" 5 where N = 2m;(N(1) + 1) < [I7_; 2m; + 2 as we see by writing
2m;+2 as (2m;+1)+1 and expanding the product. In the case S = 1 foreach k =1,...,m;
let g; be the greatest processor index that is not in the range (k — 2)I; + 1,.. . ,kl;. Let
pr be the least processor index that is not in the range (k — 2)l; + 1,...,(k — 1)l;. Thus
Pr < qx and py < qr—1. Let par—1 denote the execution in which the processors with index
1,2,...,(k—1)l; have initial value 1 and the others have initial value 0 and in round 1, each of
the processors (k — 1)l; +1,.. .,kl; fails after sending messages to processors 1,...,gx — 1. Let
p2i denote the execution in which the processors with index 1, 2,...,kl; have initial value 1
and the others have initial value 0 and in round 1, each of the processors (k— 1){; +1,.. ,kly
fails after sending messages to processors 1,...,gx — 1. The view of p is the same in py(;—1)
as in pgr_1 SO P2(k—1) & p2k—1. Similarly the view of g is the same in ppp—1 as in pyx so
p2k—1 ~ pak. As the view of pp,, is the same in pg,,, as in p we have that pg,, ~ §, and so
p~N p, where N =2m; +1< 2mq + 2.

Now we have shown how to construct a sequence pg = p,p1,....on = p Where p; & pit1,
that is there is some processor p; whose view (which we will call M;) is the same in p; and
in p;i4+1. Since My is a view in a failure-free execution where every initial value is 0 we must
have f(Mp) = 0. Similarly My_; is a view in a failure-free execution where all initial values
are 1 so f(Mp-1) = 1. Thus there must be some ¢ so that |f(M;) — f(Mi+1)| = 1/N but
each of M; and M;; are views in the execution p;4+; which from the construction clearly has
all initial values either O or 1. Thus we have proved that any algorithm has K > 1/N. Since
N <IT-12mj +2 < T15-;(2n/1; + 3) we have K > TT5_ I;/(2n+ 31;) > [15=, 1;/(2n + 3t).
As ly,...ls were arbitrary, subject only to l; + ...+ lg < t, we have

sup(ly-++lg:ly+++++1g <t, each [; a nonnegative integer)
(2n + 3t)s

K >

Q.E.D.

8 The Synchronous Failure-By-Omission Model

In this section, we require n > 2¢.

33

An overview — During each round of communication each processor p broadcasts infor-
mation it holds in the array ¥(pi,...,pr-1,p), collects the information sent to it in ah array
v(p1,. . .,Pr,p), tries to deduce which processors are faulty, and then modifies the information
it received from processors known to be faulty to form the new array #(pi,...pr,p). The
only method a processor p uses to detect that process q is faulty, is to examine the n values
which reach p representing some information that was broadcast by ¢ and then relayed to p
by each recipient. If ¢ were correct then no active processor would have failed to receive ¢’s
value in the broadcast and so none of the values reaching p would be L,_;. Thus if p finds
any entry being .L,_; among those it received, it can deduce that ¢ was faulty. After the S
rounds of communication, a processor will have an array of n® values to operate on. In S
steps this array is used to form a collection of (2n — 4t)°~* (2n — 2t) values by repeatedly
removing extreme values from subcollections and then combining subcollections. Finally
this collection of values is averaged to give the processor’s new value.

In detail, the algorithm requires processor p to perform the following (unless it has

previously crashed) -

e Set ¥ (p) = v(p).
e In round 1:
~ Broadcast ¥ (p), and denote by v (g1, p) the value received by p from ¢; as 7 (g;).
If the message from ¢, is missing set v(g1,p) to be L;.
— Set Fault (p,1) to be the empty set.

— Set ¥ (q1,p) = v (q1,p)-

e In round r, for r = 2,...,8, processor p will start with an array of n"~1 values
(U(q15925---59r=1,p) ¢ éach ¢; = 1,...,n) and a set Fault (p,r = 1) of processors al-
ready detected as faulty by p. Now p should

— Broadcast the array (5 (41,4'2, .. -,Qr—1:P)>-

— Denote by v (g1, . . -, ¢r-1, ¢r,) the value received by p from g, as ¥ (g1,. . ., ¢r-1, ;).

If the message from ¢, is missing set v(g1,...,¢r—1,4r,p) to be L,.

34

— For every choice of indices gy, . . ., g,—1, consider the multiset {v (¢1,...,¢,-1,1,p),
v(g1,.-29-1,2,p)5 . v (q1,...,¢r-1,n,p)}. If any entry is L, say that “g,—y
has been detected as faulty by p in round r”. (Note that several choices of

q1,. . »4r—2 may lead to the same ¢,_; being detected.)
— Set Fault (p,r) = Fault (p,r — 1)U{q : ¢ has been detected as faulty by p in round

v}
v (QI$ ceeyr—1, q!‘sp) if qr g Fault (.P, ?')

— Set 6(91,---;%'—1’?”?): . '
1, if ¢, € Fault (p,r)

e At the end of round S, processor p (unless it has previously crashed) has an array of

values ¥ (q1,...,¢s,p). Now p should let W (g1,...,gs,p) denote the multiset with a

single entry o (q1,...,9s,p)-
e For each r decreasing from S — 1 to 1
— for each choice of ¢y,. . .,gr, processor p must form a multiset
W (g1, sQry%y...,%,p) = ‘h"?g:_“)f!—r—12,U:,+1=1W (@i 4505 Grdts %oy B3 0)

where in every case the asterisks fill places so that there are S + 1 entries, either

asterisks or indices, to name each multiset.
e Now put W (p) = Ug, 1 W (g1, %, .., %,p).

e Finally processor p should choose a final value w (p) = center (y,,_gs-1, (W (p)). (Note

that the amount of reduction is different from that in previous steps).

In the algorithm above, for each r = 1, ...,S let Fail(r) denote the set of processors that

have crashed before sending any of the messages in round r. Let Ezposed(r) = Fail(r) U

Npgraa(r+1) Fault(p, 7). Also as a convention we set Ezposed (S +1) = {1,...,n}\Corr.
Note that Ezposed(r) C Ezposed(r + 1). We put I, = |Ezposed (r + 1)| — |Ezposed (r)| =

| Ezposed (r + 1) \ Ezposed (r)|. The behavior of the algorithm is explained by the following

lemma, which shows that when p does not crash during execution of the algorithm, the

multiset W(g1,...,¢r,%,...,%,p) is a good representative for #(qs,...,q,), in that it often

consists only of copies of that value, and that only processors in Ezposed(r + 1)\ Ezposed(r)

can cause different processors to choose different representatives for a round r value.

35

Lemma 16 In any ezecution of the algorithm of this section, such that f < t, we can

conclude:

(1): Ifp & Crash then the value of each of the (2n—4t)5~" entries of W (q1,...,4rs*, ..., %,P)

is either ¥(q1,...,qr) or L,.

(ii): If g» & Ezposed (r + 1) and p & Crash, then
mult(§(q1, - 8), W (Q1, .- -1 Ges %, - . -, %,P)) = (20 — 42)57T.
(iii): If g, € Ezposed (r) and p & Crash, then
mult(Lr, W (g1,...,4r %, ...,%,p)) = (2n — 4t)%~",
(iv): If po & Crash and p; & Crash, then

|mult(9(q1,-..,9:), W (q1,- - -, 8r, %, - - -, %,P0))
—mult(T(q1,...,0r), W (q1,- - @, %, . - ., %, 1))

Sleyrleya-ls.
Proof: First we observe from the algorithm that #(gy, . . ., ¢, p) can never have the value L,
for § > r. Next we observe that if p & Fasl(r + 1) and g € Corr then g € Fault(p,r). This is
proved by induction on r. The case r = 1 is trivial as Fault(p, 1) is empty. Now for arbitrary
r, suppose p & Fail(r + 1) and g € Corr. Fix qi,...,¢,—2. If g does not send properly to
p in round r (in particular if ¢, € Fail(r)) then v(g1,...,¢--2,9,¢,p) =L,. On the other
hand if ¢, does send to p in round r then v(g1,...,8--2,9,8r,P) = B(q1,---,9r—2,4,9r) =
v(q1,--.,9r-2,4,4-) since by the induction hypothesis ¢ & Fault(g,,r — 1), and because g
must send correctly v(q1,...,9--2,4,9-) = ¥(q1,...,9-—2,¢) which as we noted above is not
equal to L,_;. Thus no entry of {v(g1,...,9--2,9,4-,p) : ¢ = 1,...,n} is L,_; proving that
q & Fault(p,r). Now we use descending induction on r to prove the lemma. First, suppose

r=245,

(1): The multiset W (g1, . . ., gs, p) consists of (2n—4t)° = 1 entry with value #(gy, . . ., s, p).
Now if ¢g did not send its round S message to p or if g5 € Fault(p, S) then (g1, . . ., qs,p)
=lg, while otherwise #(g1,...,95,p) = v(q1,...,95,P) = ¥(q1,...,95) since in the

failure-by-omission model any value that is sent is correct.

36

(

(ii): If g5 & Ezposed(S + 1) then gs € Corr and so gs did send its round S message to p

1]

111

and also gs & Fault(p, S). As noted in the discussion in part (i) above this means that
%(q1,-..,95,P) = 9(q1,...,9¢s) and so W(qi,...,qs,p) consists of a single entry with

value 9(q1,...,9s)-

): If gs € Ezposed(S) then either gg € Fail(S) so gs did not send its round S message to

p, or gs € Fault(p,S). In either case as noted in part (i) above, #(g1,...,9s,p) =Ls

and so W(qy,...,qs,p) consists of a single entry with value lg.

(iv): Since ly41+-+ls evaluates to 1 when r = S (as an empty product), and each of

W(q1,-..,9s,p0) and W(qu,...,qs,p1) have only one entry, the statement

|mu'“(v(Qh VLR Qr)) w (Qh sy ey ¥y .., *’pﬁ))
HmuIt(U(QI! v .,q,.),W (QI: ceesGry ¥, -,*,Pl))l

< Ir-l-l ® ‘r+2' 5 ‘IS

is trivially true when r = S,

We now prove the lemma for some value of r assuming its truth for r + 1.

(i): For each g,; that has not crashed before the start of round r + 1, we know that

v(q1,-..,9r, @r+1) is either L, (if g, failed to send its round r message to g,41 or
if ¢ € Fault(q,,r)) or ¥(q1,...,9-) (otherwise). By (i) for r + 1 we know that
W(q1,---rQrs Gr+1, %, - - ., %, p) consists of (2n — 4¢)5~"~1 entries each of which is one of
9(q1,---,9r), Ly or L,41. If gr4+1 crashed before the start of round r + 1 (so that
v(q1,...,9r+1) may be meaningless) then ¢,41 € Ezposed(r + 1), so by (iii) for r + 1
we know that W (g1, ..., qr, r+1, %, - - -, %, p) consists of (2n — 4¢)5~"~1 entries all being

Lyy1. Thus UP . _W(q1,.-.,qr;Qr+1, %, .-, %,p) consists of n(2n — 4t)5~ 7! entries

dr+1
each of which is #(q1,...,¢r), Lr or L,41. Also there are at least (n —t)(2n — 4551
entries that are not l,;;, namely all those coming from the at least n — ¢ values of
gr+1 that are not in Ezposed(r + 2) (by (ii) for r + 1). Thus when we apply chop}'?,

where k = 2¢(2n — 4t)5~""1, to U?

q,.+1.—'..1W(q1! e Qe 41 ¥y 00 %, P) we will remove

every occurrence of 1,..; and be left with (2n — 4¢)5~" entries all either 9(g;,...,q,)

or 1,.

37

(ii):

(iii):

(iv):

If ¢, & Ezposed(r + 1) then for every g € Corr, 9(q1,..-,¢r,9) = 9(g1,...,¢-). Thisis
proved by contradiction: suppose there is ¢,+; € Corr with ¥(q1,. .., ¢r,¢r+1) =L, and
therefore for any p ¢ Fail(r + 2) we will have v(qy, ..., qr,gr+1,p) =L, 88 gr4+; broad-
casts correctly, and hence p will detect g, as faulty in round r + 1. This holding for all
p & Fail(r + 2) contradicts the assumption ¢, & Ezposed(r + 1). Now by (ii) for r 4- 1,
if g, & Ezposed(r + 1), gr+1 € Corr and p & Crash, then W(q1,...,qr, Gr+1,%,.. ., %, D)
consists of (2n—4t)5~"! entries all with value #(q1,...,9r,9r+1) = ¥(q1, . ..,¢,). Hence
if ¢, & Ezposed(r + 1) and p & Crash then Uz . _ W (q1,...,¢,8r+1,%,...,%,p) con-
tains at least (n — t)(2n — 4¢)5~""! entries with value ¥(g1,...,g,), namely (2n —
4t)5-7-1 for each of at least n — ¢ choices of gr4+;. By Lemma 3, every entry of

W(ql!' -~,Qn*’- "’*lp) is 6(q1" "!qr)'

If g, € Ezposed(r) then for every ¢ € Corr, ¥(qy,-..,9r,¢q) =L, (if ¢, € Fault(r) this is
explicit in the algorithm, and if g, € Fasl(r) then g, sent no message to g in round r so
v(q1,-..,9r,q) =L,). By (ii) for r + 1, if g, € Ezposed(r), q,+1 € Corr and p & Crash,
then W(q1,...,Qr,Qr+1,%,...,%,p) consists of (2n — 4t)°~"~1 entries with value L,.
Hence if ¢, € Ezposed(r) and p € Crash then U;‘,H::W(qn veesQry Qr41y %, . . ., %, p) cON-
tains at least (n—t)(2n—4t)5~""1 entries with value L, namely (2n—4t)¥~"-! for each
of at least n — ¢ choices of gr41. By Lemma 3, every entry of W(qy,...,qr,*%,...,%,D)
is 1g.

We have that W(Ql: s QryQr41s ¥y -0y *;PO) - W(Ql: ool Qrels ¥y, *3?1) unless
@r+1 € Ezposed(r + 2)\Ezposed(r + 1), by (ii) and (iii) for r + 1. For the other l,4y
values of g,,1 we have by (iv) for r + 1 that

|muft(ﬁ(q1, <oy lry Qr+1),W (q:l! oy @y Qr1, %5000, *:PO))
-muft(ﬁ(ql, . -:qr!Qrﬂ!-l):W (‘Il: s Qry Qra1y %500 0y *:PI))]

Sleyzlrys--ls.

38

For each of these gy+1, 9(q1,- -, r, @r+1) is either #(g1,...,¢,) or L,, so we see

|mult(¥(q1,- - -, q,.),ua‘r+l:1W (g1s-+-sQrs Gr+1> %, - - -5 %, P0))
—mult(5(q1, .., 9r), U =W (155 @y Gri1, %, -, %, 1))
+|mult(L,, Uz, =W (q1s--+sQrs@ra1,%, .. 5%, P0))
—mult(L,, U;‘r+1=1W (g15- -5 Grs Gr41, %, - - -, %, 21))|
<lpyr-lpya---ls.

With this bound and the facts in (i) we can apply Lemma 4 to complete the proof.
Q.E.D.

Theorem 17 The algorithm of this section has performance

K < 5P {lilg--+lg : 1 +---+ lg < t,each [; a non-negative integer}.
- (2n —4t)°71 (2n - 2t)

Proof: We have by (ii) and (iii) of Lemma 16 for r = 1 that W(qi,*,...,*%,po) =
W(q1,*,...,% p1) unless g1 € Ezposed(2)\Ezposed(1). For these I; values of g we have
by (iv) for r = 1 that

|mult(v(q1), W (g1, *,...,%,p0)) — mult(v(q1), W (q1, %, ..., %,p1))| S 2~ g+ + g

since #(gq1) = v(q1). We can apply Lemma 6 with V' = U}, _;W(q1,%,...,%p0), W =
Uz =W (g1, %, ..., %, p1), N = n(2n—4t)5-1, m=1Iy---lg, k = t(2n—4t)°~! and [a, b] = p(U)
to prove that each of w(py) = centery(V') and w(p;) = centery(W) lie in p(U) and that

Sl 435.:11(5211 —a 00

We finally note that as l; = | Ezposed (2)|—|Ezposed(1)|, Iz = | Ezposed (3)| —| Ezposed (2),. . .,
ls = |Ezposed (S + 1)| — |Ezposed (S)|, we have each l; a non-negative integer and also
li+ls+...+1s = |Ezposed (S + 1)| — | Ezposed(1)| < t. This proves that our algorithm has,

as claimed, performance

& 2P {lilz+--lg : Iy +-++lg < t,each l; a non-negative integer}
- (2n — 4t)°~ (2n — 2t) '

The lower bound from §7 also applies to a synchronous failure-by-omission system, so that

the algorithm of this section is asymptotically optimal.

39

9 Model of an Asynchronous System

In general, asynchronous systems seem to be harder to reason about than synchronous
systems. The additional uncertainty in message delay leads to the possibility of race con-
ditions, and many more possible sequences of activity need to be considered. In order to
guard against error, we will use more detailed, formal descriptions of the system and the
problem to be solved in the asynchronous case than we did for the synchronous systems
‘earlier in this paper. These will be used to prove carefully the basic results about the power
of the “adversary” against which the protocol must work. However, the discussion of the
algorithm’s correctness and performance, and the lower bound on any protocol, will be given
using the same higher level modes of reasoning that were used for synchronous systems.

We give a formal model of an asynchronous failure-by-omission system, based closely
on the most asynchronous model of [DDS], with asynchronous processors, communication,
and message order, point-to-point transmission, and separate send and receive operations.?
The main change to that model is that we allow multiple channels between each pair of
processors, and allow a processor to try to receive messages from only a subset of channels
during a receive operation. This can be used to model the capacity in languages like CSP for
message receipt to be guarded by the message type®. We also assume that there are initial
and decision states for every real number, not just for 0 and 1 as in [DDS].

Formally, a protocol of the set P of processors 1,2,...,n is described by the following
data: a universe M of messages, a collection C of channels for communication, and for
each processor p a set of states Z? and functions $? (describing message generation), 7
(describing the guards on message receipt), and 57 (describing the state transitions). The
collection of channels has two associated functions begin : C — P and end : C — P. We
put CP* = {¢ € C : begin(c) = p} and C*? = {c € C : end(c) = p}, respectively the sets of
channels starting and ending at p. We define the set E? of events at p to be {t,0}U(C*?x M)s
where | is a place holder representing a crashed processor’s step, §) represents a step where

no message is received at p, and (¢, m) represents a step where message m is received by

2By results in [W], the processors could be assumed to be synchronous, without altering the results.
“In many implementations, all messages will actually be received, and those that do not satisfy the guard

will be buffered internally without affecting the computation, rather than being kept externally in the channel.

40

p from channel c. We form the set of events E as the tagged union of the set of events at
each processor, £ = Up{p} x EP. We say that the event (p,e) involves processor p. The
set Z” is partitioned into a set of sending states Zg and a set of receiving states Z}. For
each real number v there are distinguished an initial state with value v, zﬁl‘-m-t, and a set

of decision states with value v, Z* We require that each state be an initial or decision

v,dec
state for at most one value v. The message generation function g7 : Z? — p(CP* x M)
gives the set of messages being generated by processor p when it is in each state, together
with the channel on which each message is to be sent. This function is required to satisfy
the conditions f7(z) = 0 if 2 € Z}, and |#P(z)| < 1 for all z. Thus no message is generated
during a receiving step, and at most one message is generated in a sending step. The guard
function 4P : ZP — p(C*P) models the set of channels on which p attempts to receive
messages when in each state. It is required to satisfy v?(z) = 0 for z € Z%, modeling the
fact that no messages may be received during a sending step. The state transition function
8P : Z? x EP — ZP indicates how the state of processor p changes when an event occurs at
p. It is required to satisfy the condition that 67(z,e) € Zf'd“ for all z € Zf,d“ and for all e,
to reflect the irrevocable nature of a decision. We also require that 67(2,1) = z for all states
2, since { reflects a place-holder for a step not taken because of a crash.

A configuration & consists of a state for each processor and a multiset? of messages for
each channel. We write st(p, k) specifying the state of processor p and buff(e, k) for the
messages in transit on channel ¢ in the configuration x. We say the event (p, €), where
e € EP, is applicable to the configuration «, if either e = t or e = @ or e = (¢, m) where
¢ € 7P(st(p, k)) and m € buff(c,).

Suppose (p,e) is an event applicable to k. If e = (¢,m) we define the failure-free re-
sult of (p,e) in x to be the unique configuration k' with st(g, k') = st(q, &) for ¢ # p,
st(p, x') = 87(st(p, £), €), buff(d, ') = buff(d, £) U {m' : (d,m’) € B?(st(p, k))} for d # ¢, and
buff(c, &) = (buff(c, k) — {m}) U {m' : (¢c,m') € BP(st(p, x))}. If e = B we define the failure-
free result of (p,e) in & to be the unique configuration ' with st(g, &') = st(g, k) for ¢ # p,
st(p, &) = 67 (st(p, k), €) and buff(d, k') = buff(d, k) U {m' : (d, m") € pP(st(p,k))} for d € C.

If e = (c, m) we also define the failure result of (p,e) in & to be the unique configuration &'

*A multiset or bag is used, rather than a set, because the same message could be sent several times.

41

with st(g, £') = st(g, k) for ¢ # p, st(p, &') = 6°(st(p, x),€), buff(d, k') = buff(d, k) for d # e,
and buff(c, k') = (buff(c, k) — {m}). If e = t or e = 0 we define the failure result of (p,e)ink
to be the unique configuration x' with st(g, x") = st(g, k) for ¢ # p, st(p, k') = 67 (st(p, k), €)
and buff(d, k') = buff(d,) for d € C. Thus the failure result of an event (p, €) is produced
by p altering its state as required by the transition function 67, but not adding a message
to a buffer, even if required to do so by the message generation function .
A partial execution of the protocol is a finite, alternating sequence x1,(p1, €1),k3, (p2y€2),k3,

.. (p1, €),k14+1 of configurations and events, starting and ending with a configuration, satis-

fying the conditions:
o for each processor p, st(p, k1) = 2} init for some v;
o for each channel ¢, buff(c, x;) = 0;
o for each 1, (p;,¢;) is applicable to «;;

for each ¢, ;4 is either the failure-free result or the failure result of (p;, ¢;) in «;;

if j > 1, ¢ =1, and p; = p;, then e; =t.

An execution is an infinite alternating sequence k1,(P1, €1),42,(p2, €2) ks, . . . whose prefixes
of odd length are partial executions. In an execution or partial execution xy,(p1,e1),k2,
(pz, €2),xs, . . ., processor p is said to have failed if there is some ¢ such that Pi = p and K;y4q
is not the failure-free result of (pi, &) in ;. Similarly, we say that processor p crashed in
the execution or partial execution if there is some & such that p; = p and ¢; = 4. A partial
execution p = rcl,[pl,ex],ng,(pg,eg),ms,...,(pg,e;),n;ﬂ is called admissible if at most #
processors have failed in p. We say that an execution p = K1, (p1,€1), k2, (P2, €2), ks, . . . is
admissible if every prefix of odd length is an admissible partial execution and in addition,
every processor is involved in an infinite number of the events (p:, €:), and also whenever
m € buff(e, ;) then either there exists J 2 i such that e; = (e, m), or else there are only a
finite number of indices k such that ¢ 9Pk (st(px, xx)) and e; # f. Thus in an admissible
execution every processor takes steps (or has place-holders for failed steps) infinitely often,
and every message sent is eventually received, if the addressee requests it infinitely often.

We say an execution or partial execution p is failure-free if no processor has failed in p.

42

Given an execution or partial execution p = ky,(p1, €1),%2, (p2, €2),ks, . . ., and a processor
p, we say that p’s initial state st(p, £1), together with the subsequence of events (p;, ¢;) that
involve p (i.e. for which p; = p), form “the view of p in p”. We note that st(p, x;+1) is uniquely
determined by the view of p in the partial execution y,(py, €1),52, (P2, €2),%3,- - -,(P1, €1),K1+1-

A protocol in this formal model is said to solve the Approximate Agreement problem if in
every admissible execution every processor that has not crashed eventually enters a decision
state, and if the value of each decision state entered is within the range of the values of
the initial states. The performance of such a protocol is the supremum (over all admissible
executions) of the ratio of the diameter of the multiset of values of the decision states to the
diameter of the multiset of values of the initial states.

We have the following useful extension result:

Lemma 18 Let p = ky,(p1, €1),%2, (P2, €2),%3,- - -,(p1, €1),k1+1 be an admissible partial eze-
cution of a protocol. Then there is an admissible ezecution p' = ky1,(p1,e1),52, (P2, €2),ks, . ..
of the protocol that has p as a prefiz, such that the only processors that crash in p' are those

that crashed in p, and the only processors that fail in p' are those that failed in p.

Proof: We inductively construct (p;,e;) and i4+1 for ¢ > I. Let p; = (fmod n) + 1. I
pi crashed in p, let ¢; = 1 and ki4; = K;. Otherwise, consider the multiset of messages
{m : m € buff(c, xi),c € ¥Pi(st(p:, k:))}, arranged in order, from the earliest sent to the
latest sent. If the set is empty, let e; = 0, otherwise let e; = (co,mg) where mq is the
member of the multiset that was sent earliest, and where mg € buff(co, ;). Now, let r;11
be the failure-free result of (p;, €;) in x;.

By construction, p' is an execution in which the only processors that crash are those that
crash in p, and in which the only processors that fail are those that fail in p. By the choice
of p; every processor takes an infinite number of steps in p’ and by the choice of e; every
message is received if requested often enough. Thus p' is admissible. Q.E.D.

With this formal model, we prove the result that captures the intuition about the be-

haviour of the “adversary” against which our algorithm needs to work.

Lemma 19 Let p be an admissible ezecution of a protocol in an asynchronous failure-by-

omission system, in which every processor that does not crash enters a decision state. Then

43

there is an admaissible, failure-free execution p with the same initial values, such that each .
processor that did'not crash in p has the same view in j as in p, up to-the point where. it

enters a decision state (and thus it chooses the same decision value in both ezecutions).

Proof: Let p = K1,(p1,e€1),%2,(p2,€2)i%3,.... Let R denote the set of processors that
have not crashed in p. Choose some index I so that st(p,x;) is a decision state for. ev-
ery processor p € R. We will first construct an admissible, failure-free partial execution
p' = &h,(ph, €1),x5,(Ph, €3),. - ., Kk}, such that the view of p in p' is the same as the view of p
in p. We put x} = k1. Now we define (p,e!) and «l,, inductively, for i < I. Let p} = p;.
If e; = 1, let ¢! = 0, and otherwise let e} = ¢;. Let xj, ; be the failure-free result of (p}, e!)
in x}. We note that (p}, e}) is applicable to x| since st(p, x}) = st(p, x;) as long as p has not
crashed in the first 1 steps of p. Now we can use Lemma 18 to extend p' to an admissible,
failure-free execution g. For p € R, the view of pin p' is the same as its view in the prefix
of p ending in x;, and (since therefore st(p, x}) = st(p, ;) is a decision state) we have thus
completed the proof of the Lemma. Q.E.D.

If we use the terminology of knowledge (as used in [CM] and [HM] for example), we can
explain this result as follows: it can never happen that a collection of processes, none of which
has crashed, has knowledge that any failure has occurred. An immediate consequence is that
no processor can ever know that a particular processor is faulty. Chandy and Misra have
stated and proved a similar result (Theorem 8 of [CM]). Indeed, when only crash-failures
are allowed (as in §5) the two results are equivalent. However, when omission failures are
considered, our result is more powerful, as it shows that no collection of processors can
know that a failure step has occurred, even when later messages have been received from
the faulty processor. In contrast, in the model of [CM], a processor that has failed and then
recovered knows that it failed and thus knows that it is among the faulty processors, and it
can inform other processors of this fact. This awareness by a processor that it did omit to
send a message, seems incompatible with the fundamental assumption of failure-by-omission

systems, which is the assumption that faulty processors follow the normal protocol.

44

10 The Asynchronous Failure-by-Omission Model: The Al-

gorithm

Each processor p acts according to the following algorithm, which we give first informally,
as in [DLPSW] or the earlier sections of this paper:

e Initially, assign val to be v(p), the initial value of processor p.
e Next, for r = 1,2,...,S successively

(i) Send a message (r,val) to each processor (including p itself).

(ii) Wait, trying to receive messages with r as the first component, and collecting the

second components, until n — ¢ such messages have been received.

(iii) Arrange the n — t values collected during step (ii) in increasing order. Select the
lowest, (t + 1)-st lowest, (2t + 1)-st lowest, etc. Assign val to be the mean of the

[25£] numbers selected.
e Finally decide on w(p) = val, and thereafter do not send or try to receive messages.

We refer to steps (i), (ii) and (iii) for r as forming “round r” of the algorithm, and we
describe any message sent in round r as a round r message.

Now we give a formal account of this protocol using the model of §9, to illustrate the
correspondence between that model and the higher-level description above. The universe
M of messages consists of all the real numbers. The channels are ¢”9" for p and ¢ ranging
from 1 to n, and r ranging from 1 to S, with begin(c??") = p and end(cP?") = ¢q. We
will use c”%" to carry the round r message from p to g. The state of each processor has
components val (a real number), round (an integer), valrec (an array, indexed from 1 to n,
with each value either a real number or L, indicating no value received so far), numbersent
(an integer between 0 and n — 1, inclusive), and mode (one of the values: send, receive,
done). The receiving states Zj are those where mode=receive or mode=done, and the
sending states Z% are those where mode=send. The initial state sz,.-m-f has val=v, round=1,

valrec[sf]=_L for all {, numbersent=0, and mode=send. The decision states th. dec re those

with val=v and mode=done. The message generation function AP is given by p?(z) =

45

{(cPr#numbersent+1,zround 5 val)} if z.mode=send, and B?(z) = 0 otherwise. The message
guard function is given by 97(2) = {¢*?" : r = z.round} if z.mode=receive, and 7?(z) = 0
otherwise. The function &7 is given by the following procedure, which takes as arguments a
state z and an event e, and returns the value 7(2,¢). The local variable w is initially set to

z, and its components are then modified till its value is 67(z,¢).

ComputeNextState(z:state,e:event):state
Local variable w:state
begin
W +— £
if e=t
then return(w)
if z.mode=send
then if z.numbersent< n — 1
then begin
w.numbersent «+ w.numbersent+1
return(w)
end
else begin
w.numbersent + 0
w.mode=receive
return(w)
end
if z.mode=receive and e=0
then return(w)
if z.mode=receive and e=(c®P", m)
then begin
w.valrec[q|=m
if |[{¢ : w.valreci] # L} <n—t
then return(w)

else begin

46

w.val «— avy({w.valrect] : w.valrec[i] # L})
if w.round=S
then begin
w.mode +—done
return(w)
end
else begin
w.round + w.round+1
fori=1,...,n do w.valrec[i] — L
w.numbersent « 0
w.mode +send
return(w)
end
end
end
if z.mode=done
then return(w)

end

The main properties of this algorithm all depend on the following lemma, which relates

the values of the variables during successive rounds.

Lemma 20 In an admissible ezecution of the protocol above, in which the initial value of
processor p is v(p), let vall = v(p). Let valy*! denote the value of val that is chosen in step
(iii) of round r. (Thus if p has not crashed, it sends messages (r, val}) in step (i) of roundr).
Let U™ denote the multiset {val, : p has not halted before ezecuting step (ii1) ofround r}.
Then

o(UTH) C p(U")

and
n—t

SUTH) < [.|~16(U")

47

Proof: It is clearly enough to prove that if p and ¢ have not crashed before executing step

(iil) of round r, then
val;“ € p(UM)

and

lvalstt — val? | < ’-n—_{l = (UM
p g - t

Let V] denote the multiset of n — ¢ round r values collected by p in step (ii) ofround r. We
note that V] C U", since processors cannot exhibit Byzantine behaviour, and so if a message
(r, v) is received by p from p' then v = valf,. Now |V NV;7|+|V WV | = [V |+|V]| = 2(n—t),
but Vy UV] C U”, so [Vy UV/| < n. Thus [Vy NVJ| > n—2t, and so [Vy — V7| < t. The

conclusions now follow by Lemmas 7 and 8, since valj+! = an (V). Q.E.D.

Theorem 21 The algorithm above solves the t-resilient A pprozimate Agreement Problem

using S rounds of communication, with performance

ﬂ—t]_s

<
L

Proof : The result follows immediately by applying the previous lemma S times. Q.E.D.

11 The Asynchronous Failure-by-Omission Model: The Lower
Bound

The results of the previous section show that any performance can be obtained if enough

communication is used. To prove a lower bound, we will consider only protocols that involve

S rounds of message exchange. That is, we will assume that the protocols under discussion

have the following form:
e Forr=1,2,...,5 successively

(i) Send some messages with r as first component to some processors.

(ii) Wait, trying to receive some subset of the messages with 1,2,...r as the first

component, until some condition on p’s history is satisfied.

48

e Then decide on a value w(p) that is some function of p’s history. Afterwards, any
pattern of sending and receiving messages is allowed, so long as no messages are sent

that have a value less than or equal to S as their first component.

Thus each processor alternates between collections of sending states and collections of receiv-
ing states, with a collection of sending states and the following receiving states making up
one round of the algorithm. Furthermore during the receiving states of round r, for r < §,
the processor tries to receive only messages sent during the first r rounds. Each processor
decides at the end of round S. Notice that the algorithm of the previous section has this
form.

It will simplify our lower bound arguments if we consider processors that follow a par-
ticularly simple protocol of this sort, in which messages contain merely the history of the
sender, each message is sent to everyone, and processors try to receive as much information
as possible in each round. Thus we say that a full-information protocol® has the following

form:
e Forr=1,2,...,85 successively

(i) Send a message (r, hist) to each processor (including p itself) where hist is p’s
history (its view in the partial execution so far), that is, its initial value and a
record of the messages that p received at each step.

(ii) Wait, trying to receive any messages with 1,2,...,r as the first component, until
there is a set of n—t processors such that p has received r messages (one with each

first component from 1 to r) from each of these processors during the execution.

e Finally decide on a value w(p) that is some function of p’s history, and thereafter do

not send or try to receive messages.

Different full-information protocols are given by using different functions of the history to
determine the decision value.
We now give the intuitive reasons why this form of protocol is completely general, in

that any S-round protocol can be implemented by a full-information protocol. The precise

3The full-information protocol we give here is a natural generalization to asynchronous systems of that

described earlier for reasoning about synchronous algorithms.

49

meaning of this statement, and the formal proof, are given later. As we only consider
deterministic algorithms, each message is determined by the history of the sender at the
time the message is sent, so we can assume that it is the history itself that is sent. Since
the receiver need'not pay any attention to messages it is not interested in, there is no loss
of generality in'sending a round r-message to every processor. Similarly there is no harm in
collecting as much information as possible in each round’s receiving phase, and then ignoring
whatever information is unwanted. To collect as much information as possible means to try
to receive any possible message (from the current or previous rounds) and to continue doing
so as long as the processor knows that more information will come. Thus each processor
should wait initsreceiving phase until it is possible that it has received everything that it will
ever get, among the messages of rounds 1,...,r — 1. In the failure-by-omission asynchronous
system, this means waiting until all messages of preceding rounds have been received from
some set of n — ¢ processors, since the remaining ¢ processors could have omitted to send
all the messages not yet received from them. Any messages sent after a process has decided
cannot be received until the recipient has decided, and so these messages cannot affect any
decision value. Thus there is no need to send them.

Since full-information protocols have not previously been studied in asynchronous sys-
tems, we give here the proof that they can implement any t-resilient S-round protocol for
solving a problem. We first observe that all S-round full-information protocols are identi-
cal except for the decision values associated to the decision states. In particular, all such
protocols have exactly the same admissible executions, so that we can speak of an execu-
tion of a full-information protocol without specifying which decision function is to be used.
Next we prove a lemma that relates failure-free executions of the full-information protocol

to executions of a given protocol.

Lemma 22 Let A be an S-round protocol such that in every admissible ezecution of A,
every processor that does not crash enters a deciding state. There is a construction that
assoctates to any failure-free admissible ezecution o of a full-information protocol a failure-
free admissible execution full(o) of A, where the association has the property that the initial
value of each processor is the same in full(c) as in o and that the decision value of p in

full(c) depends only on the view of p in 0.

50

Proof: We will construct full(¢) inductively, round by round. Let the initial state of each
processor in full(o) be that with the same initial value as in . We thus have a partial
execution where each processor is at the start of round 1, and the history of a processor in
this depends only on the initial value of that processor in ¢. As the induction step of the
construction, assume that we have constructed a partial failure-free execution at the end
of which each processor is at the start of round r, in such a way that the history of each
processor in the partial execution depends only on the history of that processor up to the
end of round r—1 in 0. We will first extend this partial execution to bring each processor to
the end of the sending phase of round r. We do this by considering each processor in turn in
round-robin order (i.e processor 1, then processor 2, ..., then processor n, then processor 1,
etc.). If that processor has not yet reached the end of the sending phase of round r, extend
the partial execution by a failure-free step (p, @) of that processor. We show that eventually
every processor will have reached the end of the sending phase of round r, and thus that
the extensions constructed reach a limiting partial execution: if not, then there would be a
prefix of the limiting extended (infinite, not necessarily admissible) execution in which every
processor that is going to reach the end of the sending phase has done so, and there would
be a processor p that will continue to send forever from its state at the end of that prefix.
If we consider an admissible failure-free extension of that prefix, p would also never finish
sending in that, and so p would not decide in that execution, contradicting the nature of A.

Thus we see that we have extended the partial execution and brought every processor to
the end of the sending phase of round r, and that the history of a processor in the extended
failure-free partial execution depends only on its state at the end of round r — 1, and thus
only on the history of that processor up to the end of round r — 1 in o. We will now
extend the partial execution further, to bring each processor to the end of round r. We first
examine all the messages in transit in the configuration at the end of the partial execution
constructed so far. We say that a message that was sent from processor p to processor ¢
when p was in round r' of the partial execution (and that is still in transit) is deliverable
during round r if in o the round r' message from p to ¢ was received by ¢ during one of
the rounds r',+' 4+ 1,.. ,r. Once again consider each processor in turn, in round robin order.

If that processor, say processor g, has reached the end of round r, do nothing. Otherwise,

51

consider the set of messages that are both deliverable in round r and currently in transit on
the channels on which processor g is currently trying to receive. If this set is empty, extend
the partial execution with a step (g,0), and otherwise extend the partial execution with a
step (g, (c,m)), where m is the message among this set that was sent earliest, and ¢ is the
channel on which it was sent.

We show that eventually every processor will have reached the end of round r and thus
that the extensions constructed reach a limiting partial execution: if not, there would be a
prefix of the limiting execution in which every message that is going to be received has been
received (since no messages are being added to the channels during the extensions), There
would also be a processor p that would continue forever from its state in the configuration
at the end of that prefix, trying to receive messages despite receiving nothing at each step.
We see that in this infinite continuation p must never try to receive any of the messages
that are still in transit in that configuration and that are deliverable in round ». We now
consider a modified partial execution that has the same sequence of events as the prefix
of full(s) we constructed, but in which some configurations are the failure results of the
preceding event, rather than the failure-free result. The events that are thus affected are
exactly those in which (in full(¢)) a message was sent to p that was in transit at the start
of the receiving phase of round r, but was not marked as being deliverable in round r, The
modified partial execution is admissible, because the messages involved were sent by some
set of at most ¢ processors (as the corresponding messages in o had not arrived at p when
p finished round r of the full-information protocol.) The configuration at the end of the
modified partial execution differs from that at the end of the prefix of full{¢) only in that
the channels that end at p do not contain those messages that were sent to p, were still in
transit at the start of the receiving phase of round r, and were not marked deliverable in
round r. When the modified partial execution is extended to an execution in which no later
failures occur, p will continue forever trying to receive messages despite receiving nothing
at each step (as p will never try to receive the messages of rounds 1 through r that are in
transit at the end of the modified partial execution, nor can it try to receive any messages
added to the channels in later rounds.) Thus the extension of the modified partial execution

is an admissible execution in which p does not crash, but does not reach a decision state.

52

This contradicts the nature of the protocol 4 and thus establishes the fact that eventually
the construction of the prefix of full(o) reaches a limit, in which every processor is at the
end of round r.

If we consider the view of a processor p in the partial execution constructed, we see that
it depends on the view of p at the end of round r — 1, and on the messages in transit to p at
that time that are deliverable in round r, but on nothing else. Now the processor’s view at
the end of round r — 1 depends only on its view at the end of round r — 1 in o. Also we note
that the view of p at the end of round r in o enables us to determine the history of every
other processor up to the end of the sending phase of the last round in which a Inessage
was sent that was delivered to p during the first r rounds of ¢, and this in turn allows us
to deduce the views of those processors to the corresponding point in the partial execution
constructed. The latter however is exactly what is needed to determine the messages that
are deliverable to p in round r. This completes the establishment of the induction step of
the construction.

Thus we can construct a partial execution to be a prefix of full(¢), so that at the end of
this partial execution each processor has reached the end of round S of A, and therefore has
decided on a value that depends only on the processors view up to the end of round § of
0. This failure-free partial execution can be extended to a failure-free admissible execution

full(s), which is exactly what is required by the lemma. Q.E.D.

Theorem 23 Let A be an S-round protocol such that in every admaissible ezecution of A,
everj processor that does not crash enters a deciding state. Then there exists an S-round
full-information protocol P satisfying the following condition: for every admaissible execution
p of P there is an admissible ezecution p' of A, where the initial value of each processor is
the same in p' as in p, the same processors crash in p' as in p, and the decision value of

each processor that does not crash is the same in p' as in p.

Proof: To construct P, we need only specify the decision value that a processor p should
choose after the completion of round S, given the history h of p up to that point. First, we
choose some failure-free admissible execution € of the full-information protocol such that p

has history h in £ up to the end of round S. Note that the history of p in £ is simply h

53

followed by an infinite number of steps in which no message is received. We now consider
the execution full(£) of A, and let the decision value of p in P after h be chosen to be the
decision value of p in 4 in full(¢). That such a value exists follows from the assumption that
processors always decide in 4 if they do not crash, and the fact that this value is independent
of the choice of £ is immediate from the property claimed for the association between £ and
full(£). Thus we have defined P.

Now, take any admissible execution p of P, and let R denote the set of processors that do
not crash during p. By Lemma 19, there is an admissible, failure-free execution g of P with
the same initial values and such that every processor in R has the same view in p as it has in
p. Now full(p) is a failure-free admissible execution of A, and thus in it every processor enters
a decision state. We choose a partial execution of A that is a prefix of full(#) and in which
every processor has decided. We then extend this partial execution by a crash event (g, 1)
for each processor ¢ ¢ R, and then use Lemma 18 to extend the resulting partial execution
of A to an admissible (infinite) execution p' of A, in which no additional processors crash.

The initial value of a processor in p' is the same as the initial value in full(j), which is the
same as its initial value in g, which is the same as that in p. We observe that by construction
the processors that crash in p' are exactly those that are not in R, that is, those that crashed
in p. For each processor p € R, § is one of the possible choices of ¢ that could have been
used to compute the decision value of p in P, and thus we see that the decision value of p
in full(p) is the same as the decision value of p in p. Since p' is an extension of a prefix of
full(5) and p has already entered a decision state in that prefix, the decision value of p in p'
is the same as in full(5), and thus is the same as the decision value of p in p. Q.E.D.

To say that a protocol P has performance K > [2:£]~5 is to say that there is some run
(determined by some choice of initial values, processor failures and message delay times)
in which two processors p and ¢ reach decision states with values w(p) and w(g) such that
|w(p) — w(g)| > [25%]~56 where § = §(v(1),...,v(n)) is the size of the interval of initial
values in the run. We will prove a stronger statement, since the extra condition helps the

induction argument work.

Theorem 24 For any S-round protocol P that solves the t-resilient Approzimate Agreement

Problem in an asynchronous, failure-by-omission system, there is an admissible execution p

54

(in which we denote the initial value of p' by v(p')) and processorsp and q that enter decision
states with final values w(p) and w(q) such that

n—t|"

S
| 8o

w(p) - ()| > |

and such that there are at most ["52]t processors from which both p and q receive round S

messages.

Proof: For notational convenience we put » = [27%]. In the following discussion we will
assume that P is a full-information protocol. If P is some other S-round protocol, we can
find a full-information protocol to implement it, use the proof below to find an admissible
execution of that, and then take the corresponding execution of the original protocol. This
will have the desired properties.

We will use induction on S. We first prove the theorem for S = 1.

We denote by py (o =0,...,» — 1) the processor (a+ 1)t + 1, and by p, processor 1.
Now we will describe a chain of admissible executions pg, p1,...,pv+1 such that processor
Po has the same view in executions p, and pu+1, and thus the same decision value in those
executions. We will construct pp with each processor having initial value 1, so the decision
value of po in that execution must be 1. Similarly the decision value of p, in p,4+;1 must be
0. From these facts it follows by a standard argument (as in §5 and 7) that for some « the
processes py—1 and p, reach decision states with final values that differ by at least vl in
the admissible execution p, which satisfies all the conditions of the theorem.

The execution pg is one where every processor has initial value 1, no processors crash or
omit to send, and each processor receives round 1 messages from processes t+ 1,...,n before
entering its decision state. For a = 1,...,v—1 the execution p, has processors 1,2,. . .,at with
initial value 0, and processors at+1,...,n with initial value 1. No processor crashes or omits
to send, and p,_; enters its decision state after receiving round 1 messages from processors
1,...,(e@— 1)t and at + 1,.. .,n, while every other processor (in particular p,) receives round
1 messages from processors 1,...,at and (a+1)t+ 1, ...,n before entering its decision state.
The execution p, has processors 1,2,. ..t with initial value 0, and processors vt + 1,...,n
with initial value 1. No processor crashes or omits to send, and p,—; enters its decision state

after receiving round 1 messages from processors 1,...,(v — 1)t and vt + 1,...,n, while every

55

other processor (in particular p,) receives round 1 messages from processors 1,...,n—t before
entering its decision state. In the execution p,; every processor has initial value 0 and each
processor enters its decision state after receiving messages from processors 1,...,n —t.

Now we suppose the theorem true for (S — 1)-round protocols, and prove it for the
S-round protocol P.

From P we will construct an (S —1)-round full-information protocol Q. To describe O we
have to specify the decision value chosen by p at the end of round S —1 after a given history
h. First, we choose some failure-free admissible execution £ of Q, such that p has history h
in £ up to the end of round S — 1. In the next paragraph we will show the construction of
an execution ext?(£) of the S-round full-information protocol P. The construction will have
the property that the history of p in ext?(£) will depend only on the history &, and not on
the choice of £&. Now let the decision value of p in Q after history h be the decision value
of p in the execution ext?(£) of P. Because this depends only on h, Q is well-defined. We
can think of processor p as imagining that it is running protocol P, and using the actual
execution of S — 1 rounds of message exchange to guide it during an imagined execution of
the S-round protocol P that will determine its decision value.

The execution ext?(£) is identical to £ during the first S — 2 rounds. Thus we only need
to describe the final two rounds of message exchange.® During the sending phase of round
S — 1 every processor sends its history to every processor, as required by the full-information
protocol. Let R, denote the set of n — ¢ processors such that p receives every message from
each processor in R, during £ (such a set exists since p completed round S — 1.) During
the receiving phase of round S — 1 of ext?(£), each processor p' receives those messages of
rounds 1,...,8 — 1 that are sent from processors in Ry and that are not received by p' in
earlier rounds, and no other messages. This brings each processor to the end of round S — 1.

In the sending phase of round S, each processor sends its history to every processor. In the

SWe will give the description in the same high-level terminology we have used to descibe the protocols. For
a complete description in the formal model of §9, we would alzo need to specify the order in which processors
take steps and the order in which the messages are received during each round. Any consistently applied
choice would be suitable, for example, allowing processors to take steps in round robin order, and having
a round 7, message from processor p; received before a round iz message from processor p; if p1 < ps or

[Pl =p2 and £; < ig].

56

receiving phase of round S, each processor receives the round S message from the processors
in R,, and no other messages. This brings every processor to the end of round S, as each
has received all the messages from the processors in R,. This completes the description of
ext?(§).

The induction hypothesis applied to the S — 1 round algorithm O implies the existence
of an admissible execution p' of Q and processors p' and ¢' that reach decision states with

final values w(p') and w(q') satisfying

n—t

—-8+1
w(e) = w(@)l 2 |27 s(o1), . o(m)

and there are at most [252t]¢ processors from which both p' and ¢' receive round S — 1
messages. Lemma 19 implies that we can assume that no processor is faulty during p'.

Choose processors po,py,. . .,py such that po = p', p, = ¢' and py # pas1fora=0,...,v—
1. We will describe, in the next paragraph, admissible executions p, for o« = 1,...,v of
protocol P so that p, has the same view in p, and ps+1. Furthermore, the view of pg = p' in
execution p; is the same as the view of p' during the execution ext?'(p'), a possible execution
of P imagined by p' to determine its decision value during execution p' of protocol Q, and
so during p1, po must decide on value w(p'). Similarly the view of p, = ¢' during execution
pv will be the same as the view of ¢' during ext?'(p'), so during p,, p, must enter a decision
state with value w(q'). Just as in the case S = 1, a standard argument shows that for some
a = 1,...v, the execution p, causes processors p,_; and p, to enter decision states with

final values w(pa—1) and w(p,) such that

[0at) = w(pa)] 2 [o) - wie)l = [72] 7 6(000) .., w(m)

The construction of p, also ensures that there are at most (v — 1)t processors from which

Pa-1 and p, both receive round S messages during pq, so that the admissible execution pq
satisfies all the conditions in the theorem.
Each execution p, will be identical to p' for each processor during rounds 1,...,5 — 2.

We next describe rounds S — 1 and S of the executions p,.” In the sending phase of round

"In the formal model of §9, we would also need to specify in which order the processors take steps, and in
which order the various messages in a round are received, in order to completely specify an execution. For
example, we could choose to let processors take steps in round robin order 1,...,n,1,2,..., and similarly to

let messages arrive in the order used for the formal description of protocol Q.

57

S — 1 during each execution p,, every processor sends its history to every processor. Let
M, (p) denote the set of messages (of rounds 1,...,5 — 1) sent from a processor in R, to p
during the execution p', except for these of these messages that are received by p in rounds
1,...,8 — 2. (Recall that R, denotes the set of n — ¢ processors used in Q by processor
p' to determine its decision value). Thus My (p) is the set of messages that p receives in
round S — 1 of the execution ext?'(p') of P that p' imagines when computing its decision
at the end of execution p' of Q. Similarly, let M,(p) denote the set of messages (of rounds
1,...,8 — 1) from a processor in R, to p that are not received by p in rounds 1, ..._:33 - 2.
Without loss of generality, we can renumber the processors so that the lowest numbered
processors are those in both R, and Ry, and next come those in R, but not Ry, and
then those in neither Ry nor Ry, and finally those in Ry but not in R,. That is, since
each of R, and Ry contain n — ¢ processors, we can assume that Ry = {1,...,n—t} and
Rpy={i:1<n—-2t+9}U{i:n—t+ 1 < i}, for some ¢ > 0. The hypothesis of the
induction is that |Ry N Ry| < (v — 1)t, which implies that 1 satisfies n — 2t + ¢ < (v — 1)t.
Now we construct the receiving phase of round S — 1 of the execution p, for a = 1,...,v
by requiring that the set of messages received by processor p during round S — 1 be M,(p)
if (@ — 1)t < p < n — ¢, and be My (p) otherwise.

In the sending phase of round S during each execution p,, each processor sends its history
to every processor. The construction of the receiving phase of round S of the executions will
be given separately for the cases v > 2 and v = 1. First suppose v > 2. In the execution p;,
during round S, processor pp receives all the messages sent by processors 1,...,n —t during
rounds 1,...,S that it had not previously received. In the execution p; every other processor
(in particular p;) receives in round S all the messages sent by processors ¢+ 1,...,n during
rounds 1,...,S, that it has not previously received. For a« = 2,...,v — 1, in the execution
pa the messages received by p,_; are those from processors 1, ..., (a — 2)t and those from
processors (a — 1)t + 1,...,n (except for those of these messages that have been received
before), while all processors except p,—; receive the messages from processors 1,..., (a—1)t
and from at + 1,...,n that they have not received before. The execution p, has round S
where processor p,_; receives all outstanding messages from processors 1,.. ., (v — 2)t and

from (v—1)t+1,...,n, while all the processors except p,_; receive the outstanding messages

58

from processors 1,...,n—2t+ 1 and fromn—t+¢¥+1,...,n. In the case v = 1 we need to
construct only the execution p;, with round S in which processor pg receives all the as yet
undelivered messages from processors 1,...,n — ¢t and each other processor receives all the
messages from processors ¢ + 1, ...,n that it had not received before.

It is now straightforward to see that the executions constructed above have the properties

claimed for them, completing the proof of the induction step of the argument. Q.E.D.

12 The Asynchronous Crash-Failure Model

We now consider the approximate agreement problem in an asynchronous crash-failure sys-
tem, which is just like the asynchronous failure-by-omission system discussed so far, except
that the “adversary” is restricted in the ways it can have processors fail. In a crash-failure
system processors may crash or they may operate correctly, but they can not omit to send a
message and then continue functioning. In the formal model of §9, we say that an execution
or partial execution is a crash-failure execution or partial execution if every configuration
is the failure-free result of the previous step unless the previous event was (p, 1) for some
p- Since crash-failure executions form a subset of the failure-by-omission executions, it is
obvious that any algorithm that solves the S-round Approximate Agreement problem in a
failure-by-omission system will also solve the problem (with at least as good a performance)
in a system where crashes are the only possible failures. However, it is (a priori) conceivable
that there is some protocol that solves the problem in a crash-failure system, and that uses
the special nature of the crash-failure system to obtain better performance than is possible
for any algorithm in the more general failure-by-omission system. We show that this is
not the case by converting any protocol for the crash-failure model into a protocol for the
failure-by-omission model, and then applying Theorem 24. Thus the lower bound of §11 also
applies to the crash-failure model, and so the protocol of §10 remains optimal in the more
restricted crash-failure system.

We introduce full-information protocols for crash-failure systems, with the following form:
e Forr=1,2,...,5 successively

(i) Send a message (r, hist) to each processor (including p itself) where hist is p’s

59

history (its view in the partial execution so far), that is its initial value and a
record of the messages that p received at each step.

(ii) Wait, trying to receive messages with 1,2,.. .,r as the first component, while p
knows that some message remains in transit to p. That is, wait until p has
received a round r; message from ¢ (for every choiceof r;'and g such that there is
a round r2 message from ¢ with r; > r; among the messages p received, or among
the messages whose receipt is reported in the histories that are the messages p
received), and until there is a set of n —t processors (including p itself) such that
p has received r messages (one with each first component from 1 to r) from each

of these processors during the execution.

e Finally decide on a value w(p) that is some function of p’s history, and thereafter do

not send or try to receive messages.

Any S-round protocol, such that in every admissible crash-failure execution each processor
that does not crash reaches a decision, can be implemented by a crash-failure full-information
protocol. The proof of this fact is follows exactly the same method as the proof of Theo-
rem 23.

We now show that any crash-failure full-information protocol can be simulated by a

full-information protocol for the failure-by-omission model.

Lemma 25 Let P be an S-round crash-failure full-information protocol. Then there exists
an S-round failure-by-omission full-information protocol Q, such that for every admissible
ezecution p of Q, there is an admissible crash-failure ezecution p' of P, where the initial
value of each processor is the same in p' as in p, the same processors crash in p' as in p, and

the decision value of each processor that does not crash is the same in p' as in p.

Proof: We note that different S-round crash-failure full-information protocols differ only in
the way decision values are assigned to decision states, and so we can talk about an execution
of the S-round crash-failure full-information protocol without needing to first specify which
such protocol is involved. Thus we will first describe a construction that associates to
any admissible failure-free execution o of an S-round failure-by-omission full-information

protocol an admissible failure-free exeeution convert(c) of the crash-failure full-information

60

protocol, where the association has the property that the initial value of each processor is
the same in convert(o) as n o, and the view of each processor in convert(o) depends only
on that processor’s view in o.

We will construct convert(o) inductively, round by round. Let the initial state of each
processor in convert(o) be that with the same initial value as in 0. We thus have a partial
execution where each processor is at the start of round 1, and the history of a processor in
this depends only on the initial value of that processor in 0. As the induction step of the
construction, assume that we have constructed a partial execution at the end of which each
processor is at the start of round r, in such a way that the history of each processor in the
partial execution depends only on the history of that processor up to the end of round r -1
in o. We will first extend this partial execution to bring each processor to the end of the
sending phase of round r. We do this by considering each processor in turn in order (i.e
processor 1, then processor 2, ..., then processor n), and extending the partial execution by
having that processor send its history to every processor. Thus we see that we have extended
the partial execution and brought every processor to the end of the sending phase of round
r, and that the history of a processor in the extended failure-free partial execution depends
only on its state at the end of round r — 1, and thus only on the history of that processor
up to the end of round r — 1 in o.

We will now extend the partial execution further, to bring each processor to the end of
round r. We first examine all the messages in transit in the configuration at the end of the
partial execution constructed so far. We say that a round r' message that was sent from
processor p to processor g (and that is still in transit) is primary for round r if in ¢ the round
r' message from p to g was received by ¢ during round r. Once again consider each processor
in turn. When considering processor p, we will describe three successive extensions to the
partial execution constructed so far. First, extend the partial execution by steps in which p
receives all the messages in transit to it that are primary for round r. Next, if the round r
message from p to itself was not primary for round r, further extend the partial execution
by a step in which p receives the round r message from itself. This ensures that there is
some set of n — t processors including p itself such that p has received r messages from each

of these processes during the partial execution constructed so far. Finally, consider all the

61

messages that were in transit to p and primary for round r, together with all the messages
whose whose receipt is recorded .in the histories that are the contents of messages in transit
to p that were primary for round r. Foe each such message, say a round r' message from p'
to ¢', extend the partial execution by the receipt of all messages sent by p' to p in rounds
1,...,r" — 1 that have not yet been received. Notice that the contents of these messages can
be deduced from the contents of the messages received by p that are primary for round r.
This brings processor p to the end of round r. If we consider the view of a processor p in the
partial execution constructed, we see that it depends on the view of p at the end of round
r —1, and on the messages in transit to p that are primary for round r, but on nothing else.
Each of these can be deduced from the view of p at the end of round r in ¢. This completes
the establishment of the induction step of the construction.

Now, to construct Q, we need only specify the decision value that a processor p should
choose after the completion of round S, given the history h of p up to that point. First, we
choose some admissible failure-free execution ¢ of the full-information protocol such that p
has history h in £ up to the end of round S. Note that the history of p in € is simply h
followed by an infinite number of steps in which no message is received. We now consider
the execution convert(£) of P, and let the decision value of p in Q after A be chosen to be the
decision value of p in P in convert(¢§). The fact that this value is independent of the choice
of { is immediate from the property claimed for the association between £ and convert(§).
Thus we have defined Q. Now given the admissible execution p of Q, let o be an admissible
failure-free execution of Q in which each processor that does not crash in p has the same
view asin p. Let p' be defined to be the same as convert(o) except that every processor that
crashes in p crashes in rho' exactly at the end of round S. That is, each step (p.0) for such
a processor after the end of round S, is replaced by a step (p,t). With this choice of p' we
see that all the conditions required in the lemma are satisfied. Q.E.D.

Finally we complete our analysis by showing that the lower bound proved in §11 applies

to S-round protocols for solving Approximate Agreement in crash-failure systems.

Theorem 26 For any S-round protocol P that solves the t-resilient Approzimate Agreement
Problem in an asynchronous, crash-failure system, there is an admissible ezeculion p' (in

which the initial value of p' will be denoted v(p')) and processors p and ¢ that enter decision

62

states with final values w(p) and w(q) such that
n—t]"%
w(e) = w(@)| 2 [22| (), .., v(m)
Proof: In the following discussion we will assume that P is a full-information protocol. If
P is some other S-round protocol, we can find a full-information protocol to implement it,
use the proof below to find an admissible execution of that, and then take the corresponding
execution of the original protocol. This will have the desired properties.

By Lemma 25, we can find an S-round failure-by-omission full-information protocol
Qthat implements protocol P. We first show that Q solves the Approximate Agreement
problem. Let p be any admissible execution of the protocol Q. The corresponding crash-
failure execution p' of P is admissible, and since P solves the crash-failure Approximate
Agreement problem, we must have that the decision value of each processor that does not
crash in p' lies within the range of the initial values. Since the initial values, the set of
processors that do not crash, and their decision values, are all the same in p' as in p, we
deduce that the decision value of each processor that does not crash in p lies within the
range of the initial values.

Theorem 24 implies the existence of a particular execution p of Q, for which there are

processors p and ¢ whose decision values satisfy

n—t

-s
w(p) = w(@)] 2 [861) . 0(m)

The corresponding execution p' of P therefore has the properties required for this theorem.
Q.E.D.

13 Summary of Results

For synchronous systenis, we have presented new algorithms to solve S-round ¢-resilient Ap-
proximate Agreement in each of the crash-failure, failure-by-omission and Byzantine failure
models. The algorithms have the nice property that they can be easily modified so that they
can be started without knowing how many rounds of communication will be used, and they -
give intermediate results that get closer and closer together, reaching exact agreement once

S>t+1.

63

For fixed S, the algorithms’ performance is asymptotic to the best possible as n/t — co.
Finding exactly matching lower bounds and upper bounds remains an open question. The
results in this paper for synchronous systems are summarized in the following table (all

except the lower bound for the Byzantine model are new results)

Model Algorithm Lower Bound

Crash-Failure K < (zf_it K > 22:+§t53
. : L(s L(s
Failure-by-Omission | K < (2,‘_2‘)(5“}_“)3-1 K2 (Zn+3t)°

. - L(S L(S
Byz&ntlne Failure K S (n_—ztn;(‘—_)m_—l K Z)

where L(S) =sup(ly--+lg :l1 +---+1s < ¢, each I; a nonnegative integer).

All the algorithms given for synchronous systems are similar in that they involve proces-
sors exchanging information and then forming multisets W (qy, ..., q,, %, . .., *, p) to represent
all the information {v(g1,-..,¢r,9r+1,..-,95,P) : ¢; = 1,2,...,n for j > r}, using the opera-
tions of combining multisets and removing extreme values repeatedly to increase the amount
of unanimity in each multiset. In the failure-by-omission and Byzantine failure models we
also try to detect which processors are faulty, and ignore messages sent by processors that
have been detected.

The algorithms introduced here for synchronous systems require exponential amounts
(O(n®*!) bits) of message traffic?, like most other consensus or Byzantine Agreement algo-
rithms. In the crash-failure model it is easy to modify our algorithm to use only O(n3S)
bits of message traffic since a processor’s history (and thus its message) is determined by
(and so can be encoded by) what it knows of the n initial values and the last message known
to have been sent by each other processor. Similarly in the omission-failure model we can
modify our algorithm to use only O(n*S?) bits of message traffic, since a processor’s view of
the system is determined by what it knows of the n initial values and the list of which of the
n? messages in each prior round it knows were sent. A detailed analysis of the complexity
of determining a processor’s history in the crash-failure and failure-by-omission models can
be found in [MT]. In the Byzantine model Coan has introduced a transformation that can
encode algorithms of our type so as to require only polynomial communication ([C]). How-

ever Coan’s transformation costs a few rounds of communication, and so the transformed

$assuming a fixed precision for real numbers

64

algorithm will not have performance that is asymptotic to optimal. The decision in practice
between Coan’s transformation of our algorithm, and the iteration of the one round algo-
rithm of [DLPSW]| (which involves only O(n%S) message traffic) will depend on the details
of the system.

In asynchronous crash-failure or failure-by-omission systems, we have introduced a simple
round-by-round algorithm that solves the t-resilient Approximate Agreement problem using
S rounds of communication. This algorithm has performance K < [27%]~%, which is optimal
in either model, by a new lower bound that depends on a lemma expressing the intuition
that the adversary can do no more harm by causing failures than it could merely by delaying

messages.

References

[CM] K. Chandy, J. Misra, “How Processes Learn”, Distributed Computing, 1, 40-52
(1986).

[DDS] D. Dolev, C. Dwork, L. Stockmeyer, “On the Minimal Synchronism Needed for
Distributed Consensus”, JACM, 34,1, 77-97 (1987).

[DLPSW] D. Dolev, N. Lynch, S. Pinter, E. Stark, W. Weihl, “Reaching Approximate
Agreement in the Presence of Faults”, JACM, 33, 3, 499-516 (1986).

[Fi] M. Fischer, “The Consensus Problem in Unreliable Distributed Systems (A Brief Sur-
vey)” Yale University Technical Report YALEU/DCS/RR-273 (1983).

[FL] M. Fischer, N. Lynch, “A Lower Bound for the Time to Assure Interactive Consis-
tency”, Information Processing Letters 14, 4, 183-186 (1982).

[FLP] M. Fischer, N. Lynch, M. Patterson, “Impossibility of Distributed Consensus with
One Faulty Process”, JACM, 32, 2, 374-382 (1985).

[HIM] J. Halpern, Y. Moses, “Knowledge and Common Knowledge in a Distributed En-

vironment”, Proceedings of the 3rd ACM Symposium on Principles of Distributed

65

Computing, 50-61, August 1984. A revised version will-appear as IBM Research Re-
port RJ 4421, August 1987.

[HSSD] J. Halpern, B. Simons, R. Strong, D. Dolev, “Fault-tolerant Clock Synchroniza-
tion” , Proceedings of the 3rd ACM Symposium on Principles of Distributed Comput-
ing, 89-102, August 1984.

[LL] J. Lundelius, N. Lynch, “A New Fault-Tolerant Algorithm for Clock Synchronization”
Information and Control, 62, 2, 190-204 (1984).

[LaM] L. Lampeort, P. Melliar-Smith, “Synchronizing Clocks in the Presence of Faults”,
JACM, 32, 1, 52-78 (1985).

[MS] S. Mahaney, F. Schneider, “Inexact Agreement: Accuracy, Precision and Graceful
Degradation”, Proceedings of the 4th ACM Symposium on Principles of Distributed
Computing, 237-249, August 1985,

[PSL] M. Pease, R. Shostak, L. Lamport, “Reaching Agreement in the Presence of Faults”,
JACM 27, 2, 228-234 (1980).

66

