
Approximate Agreement
Alan D. Fekete

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract: This paper studies the problem of Approximate Agreement. This is a gener

aJization of Byzantine Agreement, where processors are oniy required to obtain values that

are close together, rather than identical. We offer new multi-round algorithms in several

different models of computation, distinguished by the degree of synchrony in the system and

the malevolence allowed to faulty processors. For each model we also examine the theoretical

limits on attainable performance (measured by the reduction in the range of values), and

show that our algorithm is asymptotically optimal with increasing ratio of non-faulty pro

cessors to faulty ones. There are two main conclusions we can draw from these algorithms

and lower bounds. First, if process failures are restricted to fau’ts of omission only (that is, a

faulty processor is not allowed to send a wrong message, although it is allowed to crash, and

therefore not send any message) then twice as much reduction can be achieved in each round

of the algorithm as in a model where faults of commission are possible. This relationship

holds in both synchronous and asynchronous systems. Second, we show that in syxchronous

systems algorithms that combine information from different rounds of message exchange can

perform bettor than algorithms that treat each round separately. This extra performance is

obtained by detecting which processors are faulty, and removing them from the system. h

contrast, in asynchronous systems with faults of omission only there is no way to improve

performance by using multiple rounds together rather than independently.

Keywords: Approximate Agreement, failure models, consensus protocols.

September 1987

© 1987 Massachusetts Institute of Tecnology

Approximate Agreement1

1 Introduction

A fundamental problem in designing fault-tolerant distributed systems is how to eliminate or

reduce differences between the information held by different processors. A classical abstract

version of this is known as the Byzantine Agreement Problem [PSL]. This problem has

been studied extensively using many models of computation, reflecting differing amounts of

synchrony in the system, different degrees of maliciousness on the part of faulty proceors,

different power of computation of processors, and different requirements on the solution (see

Fi for a survey of these results). In synchronous systems (where processors operate in a

sequence of rounds) it has been found that t t I rounds of communication are needed in

the worst case for algorithms that are resilient tot faulty processors ([FL]). Even worse is

the distressing fact that in a system with asynchronous communication (i.e. where messages

can take arbitrarily long to arrive) there is no agreement protocol that can tolerate even one

fault, as was first proved in [FLP], and extended to more general system models in [DDS].

Since reaching agreement is difficult even in synchronous systems, and impossible in

asynchronous ones, several researchers have been led to study problems of reducing (rather

than completely eliminating) differences between values held by processors. Obvious exam-

pies of such problems are clock synchronization ([LaM’, LU, [HSSD]) and approximating a

true value (e.g. a sensor) [MS]. An abstract formulation of the problem, which permits the

use of techniques developed in studying Byzantine Agreement, is Approximate Agreement,

introduced in [DLPSW]. In that paper algorithms were given for both synchronous and

‘This paper forms part of the authors PhD. thesis “Topics in Distributed Algorithms’, Department of

Mathematics, Harvard University August 1987. A preliminary version of the material in §2—8 of this paper

has appeared as “Asymptotically Optimal Algorithms for Approximate Agreement’ in the Proceedings of the

5th ACM Symposium on Principles of Distributed Computing (August 1986). A preliminary version of §9—12

ha appeared as Mynchronous Approximate Agreement” in the PrDceedings cf the 6th ACM Symposium an

Princip)eo cf Distributed Cocputinz (August tosi). The work was supported in past by the Office of Naval

Research under Contract NOc14-85-K-OI68, by the Office of Army Hsearch under contract DAAG29-34-K-

0058, by the National Science Foundation under Grants MCS-8306854, DCR-83-02391, and CCR-8611442,

and by the Defe,.ee Advanced Research Projects Agency (DARPA) ,,nder Contract N00014-B3-K-0125.

1

asynchronous systems assuming Byzantine (i.e. arbitrarily malicious) behaviour of faulty

processors. Those algorithms proceed in rounds, where in each round each processor re

ceives the current value held by other processors and “averages” these values to obtain a

new value for itself. (The function used is not the mean, but a fault-tolerant measure of

central tendency.) In [DLPSW] the algorithms given are shown to be optimal (for Byzantine

faults) among algorithms having the same form, that is, where the value chosen in each

round depends only on values held by processors at the start of that round.

The question is raised in DLPSW1 whether uBing information from other rounds per

mits better algorithms. We provide algorithms that combine information from all rounds,

and by this means have faster rates of convergence, in three different synchronous systems

(Byzantine failure, failure-by-omission and crash-failure). We also prove lower hounds on the

achievable rate of convergence, to show that each of the algorithms we give has performance

that is asymptotically (as the number of processors increases) optimal. In contrast, we give

an algorithm using independent rounds, and show that it is optimal, for asynchronous sys

tems in which processor failures are relatively benign (failure-by-omission and crash-failure)

The Approximate Agreement Problem is studied in the following form: there are

processors labelLed 1,2,.. .,n that are linked by a completely connected, fault-free, point-

to-point network that is the only means of interprocess communication. In synchronous

models processors all take a step at once, and any message sent in such a step will arrive

at the destination by the next step. In asynchronous models, a message submitted to the

network will eventually reach its destination (where it will be delivered if the addressee asks

to receive it), hot no upper bound exists on the time from source to destination. In each

execution there is some subset Car, of processors (the correct ones), so that if p C Con then

p executes the given algorithm. Independent of the degree of synchrony, we can consider

three models of computation distinguished by the flexibility of behavior of the other (faulty)

processors. In the crash-failure model a faulty processor executes the given protocol up to

some point and then halts (without loss of generality we assume the crash doesn’t occur

in the middle of sending a message). In the failure-by-omission model a faulty procor

may neglect to send a message that the protocol calls for it to send, and it may halt, but

it does not send any message that is different from what the protocol requires. The most

2

general model is the Byzantine model, in which a faulty processor may change state or send

a message arbitrarily. We denote the set of faulty processors by Fault = {1,2,. ,n} \Corr

and set f = Fault . We also denote the subset of Fuutt, consisting of those processors which

halt (“crash”) during the execution, by Cra8h. Each processor p has an initial value v (p)

which is a real number. In the crash-failure and failure-by-omission models, we require that

after any execution of the algorithm for which f t, each processor p that has not crashed

must arrive at a new value w (p) satisfying a validity condition: that w (p) must lie within

the range of the initial values. In the Byzantine model we do not trust the initial values of

faulty processors and we do not make demands of faulty processors’ final state, so we insist

that after any execution for which I t each correct p must arrive at a final value w (p)

that must lie within the range of the initial values of the correct processors. In none of the

models do we put any requirement on the behavior of correct processors when more than

processors are faulty.

We denote the smallest interval containing a collection of values V by p (V) and its

length, the diameter of V, by 5(V) so that p (1’) is the interval [miii (V) max (V)] and

6 (V) = max (V) —mm (V). Let us denote by U the collection of initial values of all processors

and by U the collection of initial values of correct processors, so U = {v(p)} and U =

{v (p) p e Corr}. We can express the validity condition in the failure-by-omission and

crash-failure models by “if Fault. <Land p0 Crash then w(p) c p(U)”. Similarly in the

Byzantine model the validity condition is “if ‘FaultI I and pE Corr then w (p) e p (U)”.
We will measure the performance of such an algorithm by the change in the range spanned

by the values of the processors. Thus we measure performance in the crash-failure and failure-

by-omission models by K =
w (p): p Crash})

and in the Byzantine model by

S({w(p) :pe Corr}) -

K = sup in each case the supremum being taken over all executions

with Fault] t (so a good algorithm is one with a low value for K). Notice that the

identification of processors as faulty or correct is not known to the processors during the

algorithm.

The resu]ts of DLPSW indicate that in both synchronous and asynchronous Byzantine

systems, with n large enough, any value for K can be achieved if enough communication is

used, so we will restrict our discussion to a!gorithms using at most S rounds of cnmmunica

3

tion.

For the synchronous,Byza$inefailure model, the paper fDLPSW] gives an algorithm us

ing only one round of communication, valid when n> 3t, with performance K = Rn — 2t)/t] —‘

In [OLPSWI it is shown that this is optimal if only one round of communication is allowed.
We can clearly iterate this algorithm (that is, use the final values produced by one execution

as initial vajuesin another andthen use the final values of that as initial values in a third ex

ecution, and soon forS rounds). This gives an S-round solution with K = ([(n — 2t)/t])8.

We introduce for this model an S-round algorithm valid when n> 4t, with performance

K <
Sup (i- L + + i < t each i a nonnegative integer)

(it — 2t)(n —4t)81

By elementary calculus this supremum is at moot t8/Ss so we see

ts

— S (ii — 2t) (n — 4)c_I

which for large n is asymptotic to 8 times better than the performance of the iterated

algorithm of [DLPSW]. In fact as n/t —‘ Co so the number of processors increases relative

to the number faulty, this performance is asymptotic to the best possible for a synchronous

S-round algorithm resilient to t Byzantine failures by the lower bound

K>
SU]) (Li il + . ts c t, each i a nonnegaiJve integer)

—

whose asymptotic form (and proof sketch) were first given in [DLPSWJ. Au interesting
feature of our algorithm is that each processor tries to identify which of the other processors
is faulty, and then ignores any information received from a known faulty processor -to reduce
the possibilities for disagreement. The technique of detection of faulty processors wss first
used in the similar problem of inexact agreement (where there is an a priori bound on the
spread of initial values of correct processors) in fMSI.

We give a new lower bound for K in the synchronous crash-failure model, namely

K >
sup (L L + -i- ts t, each I, a nonnegative integer)

—
(2n + 3t)8

for any algorithm using S rounds of communication. We also give an algorithm for the
crash-failure model, valid when n> t, with performance

K
sup (l.•

. i Li + + ts t, each L a nonnegative integer)
— (2n — 2t)8

4

which is asymptotic to the optimum as rift increases.

We offer an algorithm in the synchronous failure-by-omission model, valid when n >

2t, by combining parts of the algorithms from the other synchronous models. This has

performance

K
sup (l . ti + . + s . each l a nonnegative integer)

— (2n — 4t)5’ (2i — 2t)

which is again asymptotic to optimal.

It is worth noting that If S = t + 1 the expression sup(li 11 + •.. + Is t,

each I a nonnegative integer) is zero, as one of the Ij must be zero, and so our synchronous

algorithms give solutions to the exact agreement problem when run for t + 1 rounds. In the

Byzantine model this solution satisfies the strong validity condition that the va]ue agreed

on lies in the range of initial values of correct processors. (This is not achieved by using a

normal Byzantine agreement algorithm on each bit of the initial values, unless some removal

of extreme values is done.) In each model our a]gorithm for S rounds starts by doing all the

communication of the S — 1 round algorithm, so it is possible to do approximate agreement

without knowing at the start how many rounds will be used. In fact, after each round the

new values can be calculated as if that round were the last — this permits the values held by

the corrt processors to approach one another rapidly, finally agreeing lit ± 1 rounds are

used.

For the asynchronous Byzantine failure model. DLPSW] gives an iterated algorithm

with performance
n—3t

2t 1
For the asynchronous crash-failure model we give an iterated algorithm, valid when n > t,

which is very similar to that of [DLPSWJ, but is able to exploit the fact that failed processes

do not exhibit malicious behaviour to obtain performance

K<

This accords nice’y with the results in the synchronous case, where we found that the failure-

by-omission model permits twice the rate of convergence per round allowed by the Byzantine

S

failure model. We also prove the matching lower bound

K

for any deterministic S-round t-resilient Approximate Agreement algorithm in an asyn
chronous system with failure-by-omission faults, and then extend this to apply also to an
asynchronous crash-failure system. This result is surprising at first, considering that in

synchronous systems we saw above that an S-round algorithm could do substantially bet

ter than an iterated round-by-round algorithm. The intuitive reason for this result is that

the synchronous S-round algorithms exploit the fact that the same set of t processes have

to account for the faulty behaviour in all the rounds. Thus the algorithms try to detect

which processors are faulty, and then alter the information received from them to reduce the

damage they can do. However in an asynchronous system with failure-by-omission faults,
the worst damage a processors’ failure can cause is also produced by delaying its messages
sufficiently. Since delays do not have to involve the same processors in each round, there is
no extra information to be obtained by carrying values over several rounds.

In §2, we inroduce the notation we will use, and prove the preliminary lemmas concerning

the operators for removing extreme values. In §3, we discuss a simple algorithm that serves to
introduce the main ideas for all the algorithms in the synchronous models. In §4 we give the
asymptotically optimal algorithm for the synchronous Byzantine failure model, and in §5 we

prove the lower bound for this model. Next, in §6 and §7, we discuss the synchronous crash-
failure model, and then in §8, we combine ideas from the previous algorithms to produce an
algorithm for the synchronous failure-by-omission system. In §9 we begin our discussion of
asynchronous systems, with a careful formal model of an asynchronous failure-by-omission

system. We use this model to prove a lemma that captures the intuition about the damage
caused by processor failures being achievable with only message delays. Then in §10 we
give the algoñthm for the asynchronous failure-by-omission sysrani, and in §11 we prove the
matching lower bound. In §12 we extend the discussion to an asynchronous crash-failure
mode). Finally in §13 we summarize the results of this paper.

C

2 Notation and Lemmas

In order to give the algorithms precisely, we introduce the language of multisets. A formal

account appears in [DLPSW] but for our purposes it is enough to think of a multiset as an

unordered collection of values that need not be distinct. For each value v and multiset V

we denote the number of occurrences of v in V (the multiplicity of v) by mult(v,V). The

values may be either real numbers or the special symbols Ly denoting a value not received

in round r because (for example) a processor failed to send it. We define union, intersection,

cardinality, max, mm, and mean for multisets in the obvious ways, eg for any v, mult(v,Vfl

W) = min(mult(v,V),mult(v,W)), mult(v,VUW) = mutt(u,V)± mu(t(v,W), and W =

E mult(v,V). Also let dnuble(V) be defined by muit(v, double(V)) = 2 muit(v,V).

As in [DLPSW! we will try to reduce the range of values held by processors by using

operators that act on multisets by removing extreme values. Let V be a moltiset with

WI = N. We put red1(V) to be the multiset with N—2k entries formed from V by removing

the k highest entries and also the k lowest entries. We order the values by treating 1.. as

greater than any real number and also as greater than Ij if r > R. For the crash-failure

or failure-by-omission models we will use similar operators choy% that prefer to remove as

many occurrences as possible of ‘r, rather than removing other values. If WI = N and

rnult(ir,V) = j then choy4(V) is a multiset of 2N — 2k entries formed from double(V)

either by removing 2k copies of 1, (in the case j > k) or else by removing all 2j copies of

I. asd then removing the k
— .j highest and k

— j lowest of the remaining entries.

We similarly have operators to find a sing]e number to be an average” for a multiset.

Suppose Vj = N and at least N — k entries in V are real numbers. Then we put midk (V) =

mean(redk(V)). Similarly if IVI = N, at least N — k entries of V are real numbers and

mult(17,V) = 0 for r > 1 we define centerk(V) = mean(ckop(V)). The facts below and

the conditions given in each case will ensure that, in our algorithms, a mean is only taken for

multisets of real values. In asynchronous systems, we will use another averaging function,

defined when all the elements of V are real by

VI + Vk4I + ÷
av1(V)

= A

where A = ri and the elements of the multiset V, in order from Lowest to highest, are

7

v1, V2,.. ,VN. Thus this function selects every k—th entry of the moltiset and then takes the

mean of these. In [DLPSW] the function av1 is called 11,0- As examples:

• {—1, —1,o} U {O, 1) = {—1, —1,0,0, 1}

• {—1, —1, -.-i} u {o, , = {—1, —1,O,±j,_i, ±3}

• (—1, —1,o,0}1 {—1,O,O,1} = {—1O,0}

• I{—’, —1,0}[= 3

• {—1, —1,0,I,}] = 4

• red2 ({—1, —1, —1,0,0,1}) = {—1,0}

• redj({—l, —1,0, Lj, ±}) = {—1,O, ±i}

• chop({—1,O,C,L,,I2})= {—1, -1,O,0,0,0,±2,±2}

• chop({—1,0,0,±,,Li}) = {—1,0,0,0}

• mid;((—1,—1,—1,O,1,1i}) = 0.5

• centers({—1, —1,0, i±,}) = —0.5

• center2—1, —1,0, 1,li}) = —1/3

•av2({—1,---1,0,2,5})=4/3

In our discussion we will need to know how the operators introduced affect the rasgv

of values in a multiset and the differences between two multisets. We have the foLlowing

results:

Lemma 1 [DLPSW] I/V is a multiset with 1’ = N, and at least N — k element8 of V lie

in the range [a, F,], then every ekment of red1 (V) 11e8 in the range [a, b].

Proof: At most k elements of V are greater than 6 and all of these must be removed

among the k highest elements of V when forming redk (V) Thus every element of red1 (1’)

is less than or equal to 6, and a symmetrit argument shows that every element of red1 (TI)

is greater than or equal to a. QED.

S

Lemma 2 DLPSW1 If V and W are multüets then Iredk (V) fl redk (W)I V n W 2k.

Proof: Since VCW c v, redk (V n w) ç red (I’) anti similarly rcdk (V nW) c rcd (W),

so redk (V n W) c redk (V) n redk (W), but Iredk (V nW)[rV n W — 2k. QED.

Lemma 3 1/ V ia multiset with vF = N, mult(J..r,V) <lv such that at least N—k entries

of V are different from 17 and tie in the interval a, b, then every entry of chop(V) ties

in a,b1.

Proof: Let mtzlt(±,V) = j and let Z denote the multiset of 2N — 2j entries formed

from double(V) by removing all 2j copies of 1. Now Ct.OP;k(v) = red2k.(Z), and at least

2N — 2k entries of Z lie in a, bj so Lemma 1 completes the proof. Q.ED.

Lemma 4 Let V and W be m,zltisets with IV = JWF N. Suppose that every entry

in V LiFt 28 one of v, w or ±,, and that rnult(lr,V) lv and mult(±r,W) S k If
rmuu(v,v) — mult(v,W)j + mult(w,V) — mult(wW)r 5 in then muit(v, chop(V)) —

rnult(v, chop(W)) m and mult(w, chop(V)) — mult(w, choj4(W)) S in.

Proof: Without loss of generality we may assume v < w. We first observe that W can be

formed from V by a sequence of at most m operations, each being the replacement of a single

entry by I,. or the replacement of a single occurrence of ±r by either p or w. Thus it is enough
to prove that rnult(v, chop(V1))— mult(v, ehop’(V2))5 1 when mutt(±,, 171) S k—I and

V is formed from V1 by removing a single occurrence of z (which is either v or w) and
replacing it with J. So we put j = mult(±r,Vi) and let Z denote the multiset of 2N — 2j

entries formed by removing all occurrences of ±7 from double(Vi). Now nhop(Vt) is formed

from Z by removing the k
— j highest entries and the k

— j lowest entries. On the other

hand, chop(V2)is formed from Z by removing two occurrences of z and then removing the
k

—
j — 1 highest and k

— j — I lowest of the remaining entries. If z = p this is equivalent to

removing the lv
— j — 1 highest and k

— j ± 1 lowest entries from Z as v is the lowest entry in

Z, while if z = w the net effect is to remove the lv
— j 1 highest and lv

— j — 1 lowest entries

from Z. Thus we can obtain chop(V2)from chop(Vi) either by removing an occurrence of

the k
— j + I lowest entry of Z and adding an occurrence of the lv

— j highest entry of Z, or

else by replacing an occurrence of the lv
— j + 1 highest entry of Z by the k

— j lowest entry

9

of Z. In either case we see that the multiplicities of v and to can each change by at most 1.

Q.E.D.

Lemma 5 Suppose V and W aTe multüets with V = = N, IV flW N — in and

at least N — k elements of each of V and W lie in the interval [a,b]. Then midk(V) and

mi4(W) lie in [a, bJ and lmi4W) — midk(W)J m(b — a)/(N — 2k).

Proof: By Lemma I we see that all the entries of redk(V) lie in the interval Ia,b and so

their average midk(V) also lies in [a,b]. Similariy every entry of redk(W) and also midk(W)

lie in [a,b]. By Lemma 2, the multisets redk(V) and redk(W) agree in at least N — 2k — in

of their entries, and in each of the remaining m places, the entries can differ by at most
6— a as each lies in Ia, b). Thus midk(V) — midk(W)I = Z redk(V) — red1(W) S
m(b — — 2k). Q.E.D.

Lemma 6 Suppose V and W are multisets with VI = WI N, suck that mult(wi, V) S
mult[i.i,W) k, mult(±,,V) = mult(±r,W) 0 for r > 1, all real entries of Vu W

lie in the interval [a,b] and E0±1 lmult(v,V) — rnuit(v,W) in. Then centerk(V) and

center&(W) lie in ja,bj and centerk(V) — centere(W)I m(b — a)/(2N — 2k).

Proof: The hypotheses show that in double(V) there will be at most 2k entries that are
not real, and all of them will be ±j and so will be removed in forming chopL(V). Thus the
resulting multiset has all its entries in ja,b1 and so its mean center(V) also li in lab].
Similarly eenteTa(W) also lies in [a, 61. Now as in the proof of Lemma 4 we observe that I-V
is formed from V by at most m operations each replacing a value by ±1 or vice versa. So
we need only prove that if V1 and V2 are multisets with Vir = N, mult(1j,Vj) < k—i,
mult(1,,Vi) = 0 for r > 0, and every real entry of V1 lies in the interval Ia,b’ and such
that V2 is formed from V1 by removing one occurrence of a value z and rep’acing it with
1, then centerk(Vj) — centerk(V2)rS (b — a)/(2N — 2k). So we put j = mtzlt(J.i,Vi) and
let Z denote the multiset of 2N — 2j entries formed by removing all occurrences of ± from
double(Vj). Now chopL(Vj) i formed from Z by removing the k — j highest entries and
the /c

— j lowest entries. On the other hand, chop(V2) is formed from Z by removing two
occurrences of z and then removing the k—f--i highest and k — j—I lowest of the remaining

10

entries. If z is among the k
— j — 1 lowest entries of 2, this is equivalent to removing the

k
— j — 1 highest and k

— j + 1 lowest entries from Z. If z is among the k
— j — 1 highest

entries of Z the net effect is to remove the k
— j + 1 highest and k

—
— 1 lowest entries

from Z. Thus in these cases, we can obtain thop(V7)from chop(Vj) either by removing an

occurrence of the k
— j + 1 lowest entry of Z and adding an occurrence of the k — j highest

entry of S or else by replacing an occurrence of the k—f-t-1 highest entry of S by the k—f

lowest entry of Z. Clearly in these cases, the sum of the entries of chop(Vj) differs from the

sum of the entries of choj4(V2)by the difference of two elements of the interval [a, 6] which

is at most 6— a. In the remaining case 2 lies between the Ac
— f lowest entry of S (call it a’)

and the k
—

j highest entry of S (call it b’), but chop(V2)is obtained from chop (V’) by

removing two occurrences of z and replacing them with a’ and 6’ which Wi)) alter the sum

of the entries by 6’ + a’ — 2z which is at most 6’ — z (as z a’) hut this is bounded by 6 — a.

Thus in every case

centerk(Vl) — centerk(v2)I
= 2N

_

2k’ Zchop(Vi) — EchopL(V,) 2N—2k

as required. QED.

Lemma 7 DLPSW] SuppoBe U andy GTf nonempty multisets with V ç U. Then avk(V) €

pW)•

Proof: Since every element of V lies within p(U), so must the mean of a collection of such

values. Q.E.D.

Lemma 8 [DLPSW] Suppose V, W, and U are nonempty multisets with VI = WI =

V ç U, W C U and[W—V1_[V—W] Ic. Then

lavk(V) - av&(W)l

Proof: Let the elements of V, arranged in increasing order, be vj,v,,. Similarly let

the elements of 4V in increasing order be w1. . .,Wm. Since jW
—

V k, We can deduce

v1 w1. for any i such that i m — k. Similarly w Vj+k. Now,

av(V) — avk(W) = - ((vi + vk+j + . . + vc1)k*I) — (wi ± Wk+j + + W(A_I)k+j))

11

1
• ((w* ÷ W2k+1 + . + w(A_i)k+L ± V(A_flk÷i)

— (wi + Wk+i + + W(A....1)k+1))

— V(_1)k+I 01

A
< 8(U)
— [rn/k’

Similarly we have that avk(W) — aok(V) Q.EIJ.

3 Introduction to the Ajgorithrns for Synchronous Systems

The algorithms given for synchronous systems are all variants on a single plan. To help

the reader understand them we give here an account of a basic algorithm for the crash-
failure model, This algorithm is not optimal, but it is simpler thai, the others while still
capturing the essential features, and it will isolate the main issues involved in solving the
approximate agreement problem. For ease of exposition in this and the later algorithms, we

will suppose that when a processor broadcasts information it sends to itself as well as to

the other processors, though in practice this will usually be implemented by remembering,
rather than sending a message.

In the basic algorithm, processor p, until it crashes, must perform the following —

• In round 1: Broadcast o (p) and denote by v (qi, p) the value received by p from Qi
which was v (qi). If the message from q1 is missing set v (qi,p) to be I.

• ffi round r, for r = 2,. .5, processor p will start with an array of n’ values
(v (q. q, .. q,.1,p) each q = 1,.. n). Now p should broadcast the array

(v (q, q,. . . q_,p)). Denote by v (qi,. qr—1,q,p) the value received by p from

q, which was held by q,. as v (q,. . . Qr4, q7). If the message from qr is missing st

v(qi,. ..,q__i,q7,p) to be.1.

• At the end of round S, processor p (unless it has previously crashed) has an array

of values v (ci,..., qs.p). Now p should form W (qi,. ., qs,p) as the multiset with a
single entry v(qi,...,qs,p).

• For each r decreasing from S — I to 1

12

— for each choice of qi,.. .,qr, processor p should form a rniiltiset

TV (‘ix,... q, *, , *,p) = red(fl_2t)s_._ItU,tL1W (qL, ‘it, ‘ir--i, , , •, *,p)

where in every case the asterisks fill places so that there are S + I entries, either

asterisks or indices, to name each multiset.

• Now let p compute W (p) = u_1W (qj, *,..

• Finally processor p (unless it has crashed) must choose its final value to be to (p) =

mid (n_21)3_Lt (W (p)).

The algorithm has two phases. First there are S rounds of communication, in each

of which each active processor broadcasts all the information it holds and collects the in

formation sent to it. After round r, processor p has an array of values (v(q1,.. .,qp)

each qi = 1, n) where v(qI,. , q,p) is the value p received from q, representing the

initial value v(q1) as transmitted by qj to q in round I, then relayed by 92 to 93 in round

2, and so on. In the second phase, alter all communication has occurred, processor p builds

for each choice of qi,. - -‘it a multiset W(qi, , q, s, - - ., *, p) out of the collection of values

{v(qi,...,q,,qri,..,qg,p) qy € {1,. ..,nJ forj > r}. Now if qr,qr+1,-.,qs are all non-

faulty then v(ql,. qr, qr+i, qs,p) = v(q1, - - , qj. Tn fact the method of constructing

W(qi,. q, *, , *,p) by successively combining multisets and removing extreme values

is designed to ensure that W(qi,. - q,., *, - - ., , p) is a multiset of size (n — 2t)S_t that is a

good representative for v(q1,. q) in that, so long as p does not crash and thus all multisets

mentioned are defined,

(i) ifq,. has not failed before the start of round r+1 then every entry of W(qj, ., ‘ir, ,. -, *,p)

has value v(q1, - .,qr), and

(ii) the multisets W(q1, - ‘it, ,. .1*, pa) and W(qj,. -
j q,, *,. ., .,p) are not very differ

ent — in fact they are the same unless q,. failed precisely daring round r, in which case they

differ in at most l..i... ‘s entries, where I denotes the number of processors failing precisely

in round j.
These properties are easily proved by descending induction using b rursive construction

of W(q1,- - - ,‘ir, , . . , *,p) and using the lemmas about the redk o. rators. Finally using

13

these facts about the multisets W(qi, *, .1*,) and the property of the operator midj. we

establish that w(p) lies in the range p(U) and that

Iw(po)_w(pi) ()S W)

which shows that

sup {Iilz 1s ix + - I < teach i a non-negative integer}
— (n_2t)

as the processors that fall precisely in round i are different from those that fail precisely in

round j if I 1-
The above argument hinges on the fact that a faulty processor can cause different correct

procors to receive different information only during one round (the round when the faulty

procor crashes) since before the crash the faulty proceor sends the same correct message

to everyone, and after the crash it sends nothing to everyone. The difficulty we face in the

failure-by-omission and Byzantine models is that a fauity proceor may cause differences

between the views held by correct processors in more than one round. To overcome this, in

the algorithms of §4 and §8 each processor performs fault detection, examining the messages

relayed to it by other processors that they received from q to try to deduce if q is faulty.

Once a processor p has deduced that q is faulty, it refuses to listen to messages from q,

using I, in place of the values in them. If a processor q has not been detected as faulty

by everyone by the end of round r + 1, its performance in round r must have been quite

close to correct, and our algorithms remove enough extreme values in forming the multisets

q,, *, , *, p) that these multisets are the same for different p. On the other hand

if qr was detected as faulty by everyone before round r then everyone was ignoring values

transmitted by qr in round r, and the multiset W(qi, . . ,q., s,.. *p) will contain only I,

and so be the same for different p. Thus the fault detection ensures that a faulty processor

can cause significant differences in the views of correct processors only in one round, namely

the round before the one in which the last of the other processors detects the failure.

The algorithms of §6 and §8 also obtain better performance than the basic algorithm

above by using the operators chop and center* which are more complicated than redk and

midk but are specially adapted to the situations where the only differences between multisets

14

W(qi, qr, *,. , *,p) and W(qi,.. , qr, *, ., *,p) are due to replacing a value by 17

(unlike the Byzantine case where one value can be replaced by another).

4 The Synchronous Byzantine Failure Model: The Algo

rithm

Throughout this section of the paper, we require it > 4t.

An overview — During each round of communication a correct processor p broadcasts

information it holds in the array
. .,pr—1,p), collects the information sent to it in an

array vQ,i,. .,p,p), tries to deduce which processors are faulty, and then modifies the infor

mation it received from processors known to be faulty to form the new array i(pi,. Pr,P).

The only method a correct processor p uses to detect that process q is faulty is to examine

the vi values which reach p representing some information that was broadcast by q and then

relayed to p by each recipient. If q were correct then every processor would have received the

same value in the broadcast and then the correct processors (at least vi — t of them) would

all have sent the same value to p. Thus if p finds fewer than vi — t values the same among

the vi it received, it can deduce that q was faulty. After the S rounds of communication, a

correct processor will have an array of n values to operate on. In S steps this array is used

to form a collection of (vi — 2t) (vi — 4t) values by repeatedly removing extreme values

from subcollections and then combining subcollections. Finally this collection of values is

averaged to give the processor’s new value.

In detail, processor p, if correct, must perform the following —

• Set 6(p)=v(p).

• In round I:

— Broadcast (p), and denote by v (qi,p) the value received by p from qi purporting

to be (qjj. If the mesage from q is missing or malformed set v(qi,p) to be Ii.

— Set Fault (p, 1) to be the empty set.

— Set (q,p) = v(qi,p).

‘5

• In round r, for r = 2, ., .9, processor p will start with an array of n’t values

((qx, qz, , qr—i,p) each q = 1, ., n) and a set Fault (pr — 1) of processors al

ready detected as faulty by p. Now p should

— Broadcast the array (€ (gi, q, q—i

— Denote by v (91 .. qr—t, qr,p) the value received by p from q, purporting to be

ü (qi,.. . , qj, qr). lithe message from q, ismissingor malformed set v(qi,. - - ‘cr?)
to be *r.

— For every choice of indices qi,. q—i, consider the multiset {v (ci, , q,_-i, 1, p),

v (qi,. , qr—i, 2,p),. v (qi,. , q,i, n,p)}. if the most frequently occurring el

ement has multiplicity less than n — t, say that “q,j has been detected a faailty

by p in round r.” (Note that when r > 2, several choices of ci, . ,9r-2 may lead

to the same qr—1 being detected.)

— Set Fault (p,r) = Fault (p,r — 1)u{q q has been detected as faulty by pin round
r

- I v(qi,...,q,_i,qr,p) ifq,gpatlt(p,r)
— Set v (‘i- •,qr—i,qnp) 3

ifq7c Fault(p,r)

• At the end of round S, processor p has an array of values (q1,. ., q, p). Now let
W (qi,. , qg, p) denote the multiset with a single entry € (q,.. . qs, p).

• For each r decreasing from S — 1 to 1

— for each choice of qi,. .,qr, processor p should form a multiset

TV (ci,.. .,qy, *, .,*,p) = red(_4L)s—.,Lu1_1W (qj, . ., qr,qr--i *, .

where in every case the asterisks fill places so that there are S + I entries, either
asterisks or indices, to name each multiset.

• Nowput W(p)=’41_1W(qj,.,...,t,p).

• Finally processor p should decide on its final value w (p) = mid(fl_4)s_lf (W (p)) (Note
that the amount of reduction in this case is different from that in previous steps.)

16

In the aigorithm above as a convention we set Fault (p, 0) = , Fault (p, S + 1) =

{1,. , n} \Corr. We put Ezposed (r) = PPEC,,,,Fa,dt (pr) and I,. = IEzposed (r + 1)1 —

Ezposed (r) I = IEzposed (r + 1) \Exposed (r)L Thus I. is the number of processors whose

behavior in round r led to them being detected as faulty by every correct processor for

the first time at the end of round r + 1. These are the processors that will cause differ

ences between other prOcessors’ views in this algorithm, just as in the basic aigorithm of §3

differences were caused by processors that crashed during round r.

The behavior of the algorithm is explained by the following lemma, which shows that the

multiset W(qi, q, •, , •, p) is a good representative for qr), in that it often

consists entirely of copies of that value, and that only processors in Ezposed(r+1)\Ezposed(r)

will cause differences between the multisets computed by different correct processors to

represent the same round r value.

Lemma 9 In an execution of the algorithm of this section, for which f t, we can conclude:

(1): If p€ Car, and q,. E Coy,, then all the (ii — 4t)’ entries of W (q, ., q,, *,. *, p)

are i5(qj,. .

(II): If q. Erpo8ed (r + 1), PD E Coy,, and P1 E Co,,, then W (qi,. , qr, *,. *,p) =

(iii): If qr c Ezposed (r), po € Coy,, and i’i & Cur,, then W (ci,.. - , qr, *, - ,Po) =

(iv): If p e Corr and p’ E Coy,, then

W(qi .,q7,.,. .,*,m)flW (qi,. ,qr,*,. .1,pifl (n 4t)S_
— 1r+i 1r+2 •1S.

Proof: First we observe that if p C Coy, and q C Corr, then q g Fault(p,r) This is

proved by induction on r. If r = 1, and p € Go,, , q C Car’ then q 0 Fault (p, 1) as

Fault (p, 1) = 0. Now for arbitrary r suppose p € Cur, and q € Con. If q,. € Cur,

then by the induction hypothesis q Fault (q,r —1) and so for any choice of qi, .. -,qr—z

we see v(ql,..,q__2,q,qr) = v(qi,...,qr_2,q,qr) = (qi,...,qr—2,q) as q is broadcast

ing correctly. Also qr broadcasts correctly so v (q, . •, q,, q, q,p) = V (ci,..., q7—, q, qr)

Thus the multiset {v (qt,.. qr—, q, 1, p),v (qi,. ., q7— q, 2, p),.. v (qj ,.. q, n, p)}

17

contains at least (it — t) ehtries each of which is i (q,. , qr 2, q) So q is not detected

as faulty by p in round r, but by the induction hypothesis q 0 Fault (p, r — 1) so we see

Fault (p r) as required.

Now we use descending induction on r First, sUppose r = S.

(1): if qs E Con and p E Con, then W(qi,.. .,qs,p) = {(qi,. ..,qs,p)}, but qs 0
Fault (PS) so v(qj,. .,qg,p) = v(qi,.

. .,qs,p) — v(ql,...,qg) since qs correctly

broadcast in round S Thus W (qi, -. , cs p) contains (ii — 4t)° = 1 entry with value
Qi(q,.

(ii): II Exposed (S + 1), then by definition of the sets Fu!t (q, 5 + 1), we must

have qg c Con and so, by (i) proved above, if p0 C Con and P1 E Cot,, both
W(qi,...,q,po) and W(qj,...,q5,pj)containasingleentrywithvalue i(qi,...,qs)

and so are equal.

(iii): if qg e Exposed (S) and € Con’, then q € Fault (p0, S) so that €1 (qi,.. , cs pa) =-L5

and so 14’ (q,... q, prj) is a multiset with a single entry whose value is ±. Sim
ilarly 1-V (ci,..., q,pj) has a single entry with value ±g, so W (q, - .,qs,po) =

(iv); The expression (n — 4t)s_r — 15 evaluates to 1 1 0 if r = S (recall that
a product of no numbers has value I by convention). Thus it is trivially true that

w (q,. , qg,po) h W (ci, - •, qs,pi)I (n — 4t)8’ — ig in thi, case.

We now prove the lemma for some value oft assuming its truth for r + 1.

(fl: If q C Cot,’ and p e Con then for Qrtl c Con, by (i) for r + 1, the multi-
set W (91,., qr q,.., *.. . *,p) consists of (n — entries every one having
value € (vi,.. - q*, q#-s-i); However, since q. c Con (and so g Fault (qr-i r)),

(qi,. . , q,., = v (qi,.. q, 1 (q,. . q). Thus the combined multi.
set u; 1_.1W (q .. qp qr+i, .,

.,p) contains at least (ii — 4t)5’(ii — t) entries
each of which is i (qi,.;.

, q), namely (n —4t)s_r_l for each of at least (n — t) qr+l

that are in Cart. y Lemma 1, applied wkh a = b = (qi, . . ., q) we have that

W q * . . ., *, p) consists of exactly (ti — 4t)5 entries all of which have value

18

(ii): If q,. 0 Exposed (r + 1) then the multiset { (qj, - c,, q) : q C Corr} has its most

frequent entry (say v) with multiplicity at least it — 2t. This is proved by contradic

tion: suppose that there is a choice of q,. .,q so that the multiset {€ (q’,..., qr, q)

q e Corr} has its most frcquent entry with multiplicity less than it— 2t. Let pC Con.

For q E Corr, v(qj,...,q,q,p) = i(qj,...,qr,q) so the multiset {v(q1

v (ci,..., q, 2,p),. .,v (ci, - . . q7, it, p)} has its most frequent entry with multip]icity

less than n — t, and so q E Fault (p,r + 1), but this holds for all correct p which

would contradict q. Ezpo8ed(r + 1). Now if qr÷i C Corr and PD € Con, by (I)

for r + 1. as above, W (ci, ., c,, cr-ti, *,.. *,po) consists of (it — 4t)’1 copies of

(ci,, cr q7+i). Thus in this situation u’÷1_.1W (ci, -cr, q-.-i,.,.. ., s,prj) con

tains at least (it — 4t)5’’ (it — 2t) entries each of which isv (namely (ii
—

for each of (it — 2t) different choices of qr÷i) By Lemma 1, all (n — 41)’ entries of

W (q,. ., q,, *,. , *,po) are v. If pi e Corr then similarly W (ci,..., q, *, . .,

consists of (it — 4t)S_7 copies of v. So these multisets are equal.

(iii): if qr c Exposed (r) then for any 9rti C Con, q, e Fault (q,+i, r), sothat (i,. . .,q,., qr*:)

1r Ifpo C Corr we can apply (i) for r+1 to deduce that W (q,. . , q, cr-i-i, ,. .

consists of (it 4t)S__I entries all of which are ±7 and therefore we see that the mul

tiset u,_1jW(qj,. . .,*,po) contains at least (n — 4t)5’(n — t)

of J_,.. Thus by Lemma 1, the multiset W(qi,. .,q,., .,. .,*,po) consists of exactly

(it
—
4t)3’ copies of I,.. Similasly, if P1 € Corr, W(91,.. .,q,,*,. .,.,p,) consists of

(it — 4t)’ copies of 1r, so these multisets are equal.

(iv): Suppose p C Corr and p, € Con. Using (1), (ii) and (iii) applied for r + 1,

we see that W(qt,...,q_,qr±j,*,...,*,po) = W(qi,...,q7,q,.s.i,*,...,*,pi) unless

q+i C Exposed (r t 2) \Ezposed (r + 1). By (iv) for r + 1 we have in the ease 9r+1 C

Exposed(r + 2) \Exposed (r+ 1) that W (qj,,.. .,q,., en-i, ,. ., *,p) fl

W (qj,.. cr,qr+i, ,. . •,i) r (it
—

— 4s- We have therefore

ju1_11V (ci, - , qr, qr÷i, *, •,po) flu;’1_i4’(ci,.. c, qr-i, , .
,

(it irti) (n — t 6+’ (in — 41)S—r—i
— 4+2”’ z)

(it — 4t)51 . it
— ‘n-ti •4+2•

19

Thus by Lemma 2

Q.E.D.

Theorem 10 The algorithm of this section has performance

IC <
sup {1112” Is 1i + + ts S t, each I a non-negative integer}

(n_4tf1(n_2t)

Proof: When we apply Lemma 9 with r = 1 to any execution such that f t, we obtain

(1): lIp C Cor, and q E Con, then W (qi, , . *,p) consists of (ii — 4t)8 entries all of

which are v(qj.

(ii): If qi 0 Exposed (2), pa C Con, 3nd P1 C Con then W(qj,*,...,*,p0)

=W(qi,*,...,*,pj).

(iv): If c Con and piE Con, then

1W (q, *,. .,*,p) AW (ci ,. ., *,pi)) > (a — —l,is.

Notice that (iii) tells us nothing as Exposed (1) = 0. Now if p € Con we see that

u1_1W (q,.,. ., *,p) contains tleast (n — t) (n — 4t)3’entries in the range p (U) rnea

by initial values of correct processors, namely the (n — 4t)’ ©p1f v (q) for each correct

ci Then by Lemma!, w(p) ties iji the range p(U). Suppose that po€ Con and piE Con.

Then

rw () n W (p) (n — 4t)’ Cr. — l) + I (Cr.
—

4L)’ ‘2 -Is)

= n(n —

4t)S II 15

as there are?1 values of q with q E Exposed (2) and r.—11 values of qi with qi 0 Exposed (2).

We can apply Lemma 5 to prove

Iw(vo) - w(pi)
- - 2t)

6(U)

We finally note that s I = IEzposed (2)1, lz = Exposed ()I — Exposed (2)1,. .., Ig =

Exposed (S + 1) — Exposed ()l, we han each I a non-negative biteger and also l + 13 +

20

• . + ts = IEzposed (S -- 1)1 = IFa.tlt t. This proves that our algorithm has as claimed,

performance

K <
sup {1112 - 11 + • + ts < t, each l a non-negative integer}

— (n — 40S_1 (n— 2t)

QED.

It is interesting to note that for S = 2 our algorithm therefore gives an implementation

of Crusader’s Agreement [D] on each value v (q) each processor p gets either a value (the

common value of W (q, *,p)) or else the knowledge that q is faulty, and all the processors

that get a value get the same value, which is the right one if q is correct. In fact our

implementation has a stronger property, that if any P0 fails to detect that q is faulty, all

those p that do detect it know what value po has chosen.

5 The Synchronous Byzantine Failure Model: A Lower Bound

This section gives a formal account of a lower bound, whce asymptotic form was given in

[J3LPSW], on achievable performance for any S-round, t-resilient approximate agreement

algorithm in the synchronous, Byzantine failure model.

Theorem 11 An algurithm that perform8 t-resilient approximate agreement in the syn

chronous Byzantine failure model using at most S rounds of communication, has perfor

man cc

K>
sup{1l12--.ls:ll+...+ts t}

— (n+t)8

Proof: Any algorithm for solving the S-round approximate agreement problem can be

given in the following standard form, called a full information protocol, where all information

is exchanged for S rounds and then a computation is performed

• Set uQi)=v(p).

• In round 1, a processor pC Con

— broadcasts is (p)

— denotes by is (qi,p) the value received by p from qj purporting to be is (qi). (if

“a such value is received, p shouid put u(qj,p) ..L,.)

21

• In round r, for r = 2,3,..., S a processor p € Cot, starts with an array of n’ values

(qi, . ., q,_i,p) each 1,.. ., n) It then

— broadcasts the array (is (q, . .

— denotes by u (qi, •, qr—i, qr p) the value received by p from q, purporting to be

u (qi,.. , qj. (If no such value is received, p should put u(q,, . , q,,p) 1r.)

• Finally a processor p C Con applies a function f to its view, the array (u (q,.. qs,

of nS values, to produce its new value w (p).

Different algorithms are given by different choices of the function f. Notice that the

algorithm of §4, which involves computing and modifying values between rounds of com

munication, is equivalent to one in the standard form because all the computation and

modification cast be simulated by each processor after all the information i exchanged. So

suppo€e we are given a function J for which the algorithm satisfies the validity condition.

Let 11,12,. .J5 be any positive integers so that i + + ts t. We introduce the collection

of multi-indices I = (ii,... ,is) where i ranges over the integers from ito m = [11/1k]. We

order the multi-indices lexicographically, that is (ia,. ,is) < (i’ - ,js) if there is some

r so that (i) Ii .7k for k < r, and (ii) 1. < j,.. The multi-indices are totally ordered in

this way (which is described as “last index varies fastest” or “row-by-row”) and we denote

the successor to I by I-,--t-. As examples, when S = 3, rn = in2 = 3, m3 = 4 we have

(I,2,3)++ = (1,2,4), (1,2,4)++ = (1,3,1) and (1,34)-i--i- = (2,1,1).

To each multi-index I we assign an array Mj of n5 entries defined by

.Mj(qx,q2,.. .,qs) =

1 if there is some r so that (i) Fqk/ikl S ‘* for k < r, and (ii) [qr/ir] < 1,

0 otherwise

Thus M, is formed by partitioning the positions in the array into subblocks of si2e 4 X

• x15. Every entry in a subblock has the same value, which is either 0 o 1. The subblocks

filled with l’s all precede those filled with 0’s.

if we arrange the arrays Mg in the order of the multi-indices I we get a chain, which we

will show has the property that given any two consecutive arrays Mg and M,, there is some

22

execution of the broadcasting algorithm with S (U) land IFauItI t leading to one correct

processor Po receiving M1 as view while another correct processor pj receives Mi++ as view.

For this execution to (pa) — w (p1)1 = 1(M1)— I (Mjt+)I, so K If (Mi)
— f (M1++)l.

However if we consider an execution where every processor is correct with initial value 0,

we find that every processor will get M(ii 1) as View. In an execution where all correct

processors have initial value the same, the validity condition requires them to agree on

that same value, so f (M(i 1)) = 0. Also we consider an execution where the processors

1,2,. . (m1
— 1)11 are correct with initial value 1, while proceors (mj — 1)11 ÷ 1,.

foUow the algorithm with initial value 0 during the rounds of broadcasting and then stop

without computing anything; notice that the arbitrary behavior allowed to a faulty processor

includes the possibility of following the algorithm, in this execution the correct processors

will receive Af(,,.1ll 1) as their view, and the validity condition requires them to agree

on 1 as their new value, so f (M(mil I)) = 1. Since the chain of arrays Mi reaches

froml=(1,...,1)tol=(rni,l,,,1)in(m1—1)m2...,nssteps,wegetachainofreal

numbers f (Mi) reaching from 0 to 1 in (mi — 1) m2 ms steps. Thus there is some pair

of consecutive values where 11(M1)— / (M1+÷)I
1 1

, so
(ti. — 1) rn2 m m1n12-

K
m1 ‘•‘m.ç

Since m = milk] (n +l) uk (n +t)/lk,

K>
— (n+t)

As this is true for any choice oft1,.. .js with 11 + -r ts we have the lower bound

K> {1113is h+•—l ct}

— (n+t)8

to which our algorithm is asymptotic as n increases.

The reader can verify that the following construction gives an execution as required with

is) as the view for p, and A1(1 is)++ as the view for P1 The faulty processors

are those p such that there is an r with [p/l,.l = 1r’ Since for each r at most I,. values of

p satisfy this condition, the total number of faulty processors is at most i + . . + Is S t.

Choose p0 and p from among the correct processors. Let v(p) be I if [p/it] ii, and U if

Ip/ii] >11

• Every processor p, correct or faulty, sets u (p) = v (p)

23

• In round 1,

— all processors p, except those where [p/lu = 1, broadcast it The remaining

p each send the value it (p) to those q where IqPzl S 2, but they send the value

0 to those q where [q/12] > 2

All procvnors p denote by u (qi, p) the value receive4 by p from q purporting to

be u(qi).

• In round r for r 2,.. .,S —1

— all processors p, except those such that IP/trJ 1r correctly broa4cast the array

Kg (qi,. •, q,_j,p)). The remaining p form another array with

10 if[qk/l =ibfQreachk=1,...,r?-I
U (qi,. ..,qrl,p)

u(qi,. .,q,_i,p) else

These p send the array (t’ (qi,.. ., qr—i,p)) to thpse q where [9/6+11 i,÷i, but

they send the array u’ (qi,. qr—i,p)) to those q whQre Fq/lr+il > r+t

— All processors p denote by u(q,,.. qr—1,qr,p) thc value received by p from Qr

purporting to beg (q, qr—i, cr)

• In tie final round S

all processors p, except those where [p/Isl = is correctly broa4cst the erry
(it (qi,. ., qg_I,p)). The remaining p form another array with

1 o if r/ji = k for each Ac 1, - .,S —1u (qz,-..,qs—i,p) i
1 u(q1,.. ,qs—i,p) else

These p send th azray (u (qi,.. qs._1,p)) to those q where q Pb, but they scnd
the array (u’(qi,. .,qs—t,p)) %apo.

All processors p denote by u(q1,.. ,qs—i,qs,p) the value rçceivd by p from qs

purporting to bç u (qi . qg_j, qs).

q Only the correct processors now calculate their flew value from their view. The otb9rs

tml4.

QE.D.

24

6 The Synchronous Crash-Failure Model; The Algorithm

In this section, we require that n > t.

An overview — During each round of communication each processor p broadcasts infor

mation it holds in the array v(pl,.. pr—lip) and collects the information sent to it in an array

v(pi,. .,p7,p). After the S rounds of communication, a processor that has not halted will

have an array of n5 values to operate on. In S steps this array is used to form a collection

of n (Zn — 2t)51 values by repeatedly doubling, removing excess values from subcoIlectons

and then combining subcollections. Finally the center operator is applied to this collection

of values to give the processor’s new value.

In detail processor p until it fails, must perform the following —

• In round 1: Broadcast v (p), and denote by v (qi, p) the value received by p from Qi S

v(q1). if the message from q is missing set v(q,,p) to be ±j.

• In round r, for r = 2,. S processor p will start with an array of n’1 values

v(qi,q2,..,q_j,p):eachq1=i,..,n). Nowpshou]dbroadcastthearray(v(qj,q2,....

q—i,p)). Denote by v (qi, , qr—i, qr, p) the value received by p from qr which was

sent as v (qj,..., qr—i, cr) If the message from q is missing set v (ci,..., qr—i, qr,p) to

be Lr.

• At the end of round S processor p has an array of values v (qi, - ., qs,p) Now let

W(qj,...,q3,p)denote the multiset With asingleentry u(qi,..,q5p).

• For each r decreasing from S — 1 to 1

— for each choice of q,. ,Qr processor p should form a multiset
U

w (q, , lr , , •,p) = choP2t)s_t_Lotj_lW (qi, -
q, q,--i, *, •,

*,p)

where in every case the asterisks fill places so that there are S + 1 entries, either

asterisks or indices, to name each multiset.

• Now p computes W (p) = u;,=1W (qi, *, . .,

25

• Finally processor p (unless it has previously crashed) must decide on the final value

w (p) = center(2ft_2)s_I (TV (p)).

In the algorithm above, for each r = 1,. - ,S let Fail(r) denote the set of procsors that

have failed before sending any of the messages in round r. Also as a convention we define

Fail (S + 1) to be Crash, the set of processors that failed at any time in the execution. We

put I,. = Fail (r + 01— Fail (r)I = IFail (r + 1) \Fail(r)I. The behavior of the algorithm is

explained by the following lemma, which shows that the multiset W (qi,. , qr, *,. *, p)

is a good representative for v(qi,. . .,qr), in that it often consists entirely of copies of that

value, and that only processors in Fail(r+ 1)\Fail(r) can cause different processors to choose

different multisets as representatives for a round r value.

Lemma 12 In any ezec,ttion of the algorithm of this section, suck that f < t, we can

conclude:

(1): ij, g Cr.ü then the value of each of the (2n—2t) entrie8 of W (q’, . . , q,., *,.. ., *,p)

iseitkerv(q1,...,q,.) or±.

(ii) Jig, FgU (r + 1) and p Crash then

mult(v(qj, . , qj,W (yl, q,., *, *,p)) = (2n — 2t)—r

(iii): If q E Fail (r) and p 0 Crash then

mult(l,, TV (qi, -

*,. . , —

(iv): If i’o Crash and pi Crash, then

—molt(v(qi, . q7),W (ci - q,.,*, .,

S trti 1r+1’ lS.

Proof: First we observe that if p Cra8h, then p Fail(r) for r = 1,.. 5 + 1. Now we

use dcending induction on r. First, suppose r = S.

(0: The multiset W(qj,. qg, p) conthstsof (2n—2t)° = 1 entry with value o(qi,. . q,p).
Now if qg did not crash before sending its round S message to p then by the basic

26

property of the crash-failure model, the value it sent was actually v(qi, , qs) so that

-. qg,p) = v(qi,.. .,qs). On the other hand, if q crashed before it could send

its rounds message top then v(qi, .. .,q5,p) =Ls.

(ii): If qs 0 Fail(S+1),then q did not crash. As noted above this means that v(qi,. ., cs p)

= v(q1,. .,qg) and therefore W(qi,. ., qg,p) consists of a single entry with value

v(qj,. - .,qs).

(fli): if qg e Fail(S) then q crasbed before sending any round S message. As noted above,

in this case v(qi, , p) =1 and so W(q1,-. , qs, p) consists of a single entry with

value ±5.

(iv): Since tr+1 - 1s evaluates to I when r — S (as an empty product), and each of

W(qj,.. , qS,p) and W(qi, - , qs,pi) have oniy one entry, the statement

Imuit(v(qi,...,qr),W(qi,..,qr,*,..,*,po))

—mtatt(v(q1, .,qr),W(qj, .,q,,*, -.

S ir+1 17+2 1$

is trivially true when r = S.

We now prove the lemma for some value of r assuming its truth for r + 1.

(1): For each q7÷i that has not crashed before the start of round r ÷ I, we know that

- - q,, q,jj) is either v(qi, -- , qr) or _L. depending on whether q sent its round

r message to qr+i- By (i) for r+ 1 we know that W(qi, - - q7, qr+1, ,. . , *,p) consists

of (2n — 21)S—r—I entries each being one of v(qi,.. q,), I or ±r±1 If qr+1 crashed

before the start of round r -- 1 (so that v(q,, -
., q,÷i) may be meaningless) then by (i)

and (iii) for 7+1 we know that W(qi, - - - , q,, qr—i, , - •, *, p) consists of (2n —

entries all being Ir+I. Thug L4, ,=1W(qi, - ,q7q7..i,*,. ., *.p) consists of n(2n —

2t)5——1 entries each of which is v(qr, -- ± or 1÷j. Also there are at least

(n — t)(2n — 2t)5r—l entries that are not namely all those coming from the at

least vi — t values of q7+1 that are not in Fait(r + 2) (by (ii) for r + 1). Thus when we

apply ckep4,where k = t(2n — ,toU_1=jW(q,,. -I en Qr--i, -
, *,p), we

27

will remove every occurrence of ±7+1 and be left with (2n — 2t)9 entries all either

qr) or .Lr.

(II): If q Fail(r + 1) then qr sends all its round r messages and so every qr+i that has

not failed before starting round r + 1 has v(qi,. . , qr+i) ± v(q1,. . q) and so by

(i) for r+ 1, W(q1,...,q7,q71,*,...,*,p) will consist only of copies of v(qi,...,qr)

and of If q7÷1 has failed before starting round r ± 1 then by (iii) for r + 1

W(qi,.. q, *,. *,p) contains only copies of ±r+1. Thus the combined multiset

u1_1W(qi,...,q7,q7±i,*,...,*,p)containsonlycopiesofv(qi,...,q7)and ofIr+i,

and so the same will be true of W(qi,. q, *,.. *,p) which is the result of applying

chop, where k = t(2n — 2t)5t Combined with what we proved in (i), this gives

that W(qi, . .,qr, *, ., *,p) consists of exactly (2n — 2t)5 copies of v(q1, - ., q,j.

(lU): if q. E FaiI(r) then Q,. sent no messages in round r, so that every q7+i that has not

crashed before starting romid r + 1 has v(qi,. q, qr+i) ±r and so by (i) for r + 1,

W(qi,.. . qr, q,+i, ,. *,p) wiLl consist only of copies of ± and of ±7+1. 11 qr+i has

crashed before starting round r-f 1 then by (iii) for r+ 1 W(qi,. ,q,., q,+i, ,. . e,p)

contains only copies of ±7+1. Thus the multisetU11W(qi,.. q,, q+i, *,. . *,p)

contains only copies of ±7 and of ±7+1, and so the same will be true of the multiset

W(qi,.. q, *,.. *,p) which is the result of applying choy4”, where Ic = t(2n —

2t)’. Combined withwhat weproved in (i), this gives that W(qi,. q7, *, . *,p)

consists of exactly (2,, — 2t)s copies of ±_.

(iv): We have that W(qx,. ..,*,po) = W(qi,...,qr,q7i,*,...,*,p1)unless

qr+i € Faiflr + 2)\Fail(r + 1), by (ii) and (iii) for r + 1. For the other ‘7+1 values of

qr+1 we have by (iv) for r + 1 that

I rnult(v(q1, ,q7,qr+i), W (qi, . qr, q7-4_i, *, .,

—mult(v(qi, q7,q7’), Ic (qi, qr, qr+i, ,

‘r+2

28

For each of these q+1, v(qi,. . cr qr-*1) is either v(qi,. qj or 1,., so we see

Imutt(v(qi, qr), u_jW (qj, ., ‘j,, q,+i, •, . ,*,po))

—mult(v(qi, qr),U’1_1T4’ (qi, -
, q,, qri-1, ,

+ mult(_1_r, u +s_11 (ci, c+ ii , ,, pcj)

—mult(_I_r, U f _11V (q, ., cr lrtl, , ,*,

6+i 11+2 “1$

With this bound and the facts in (i) we can apply Lermna 3 to complete the proof.

QE.JJ.

Theorem 13 The algorithm of this section has performance

K <
Sup ((113. ti + + Ig t, each 1 a non-negative integer}

— (2n_2t)S

Proof: We have by (ii) and (iii) of Lomm 12 for r = 1 that W(qj, ., *po) =

W(qi, - ., *,p’) unless ci E Fail(2)\FaU(1). For these l values of q we have by (iv)

for r = 1 that

mult(v(qi),W(qi,*,.. .,*,pg) — mult(v(qi),W (q,*,. •,e,pi) I 1

We can apply LemmaS with V = 4,,W(q1,*,.
- .,•,po), W = u\..1W(qj,*,. .,

N = n(2n —2t)S_l, m = li-. k = t(2n — 2t)5—’ and [ab] = p(U) to prove that each of

tv(yo) = centeri(V) and w(pl) = centerk(W) lie in p(U) and that

l1...Lg

(2n — 2t)

We finally note that as l = Fail (2)
— Fail(1)I, 2 = Fail (3) — Fail (2),..., s =

Fail (S + 1)1 — IFail ()I, we have each I, a non-negative integer and also 114-12 + .+l =

Fail (5— 1)1 — Fail(1)I t. This proves that our algorithm has as claimed, performance

K <
sup {11l2 45 L + (t,each l a non-negative integer}

— (2n—2t)5

Q.E.D.

It is interesting to note that in any execution where there is a round r such that some

4 = 0 (this means that in round r no new processors crashed) then K = 0 (so exact

agreement is obtained). It is proved in [DM1 that processors can have common knowledge

of exact agreement only if there is such a round.

29

7 The Synchronous Crash-Failure Model: A Lower Bound

This section gives a formal account of a new lower bound on achievable performance for

any S-round approximate agreement algorithm in the crash-failure model. Any algorithm

for solving the S-round approximate agreement problem can be given in the form of a full

information protocol (as in §5) where all information is exchanged for S rounds giving each

processor p a view (v(qi, .,qs,p)) and then p applies a function f to the view to give

its new value wIp). For the remainder of this section we consider a fixed full information

protocol.

To prove a lower bound on the performance achievable we are going to construct a chain

of views as in §5, but this time we will do so implicitly by giving a recursive recipe for the

execution that lies between successive views. This proof is very closely related to the proofs

in [DM] and [MT] of the impossibi]ity of exact agreement in fewer than tj- I rounds, and also

to the proof in CD] of the impossibility of simultaneous firing in fewer thaa t ± 1 rounds.

An execution in the crash-failure model is very easy to describe we need only specify

the initial value of each processor and say which processors failed in each round and which

messages they sent in that round. We say that two executions p and p’ are directly similar

(written p p9 if some processor p is correct in each and obtains the same view in each,

We say similarly that p and p’ are k-similar (written p ? p9 if there are k + I executions

Po,Pi, •4k so that p0 = p, Pk = p’, and p P1+1 for each i. Thus is just , and if

, p’ and p’ —“ p° then p _A+m p”. Note that p e? p’ implies p’ - p and p —“i d for

mk.

Let .,ls be any collection of positive integers such that l + .. + Ig t. Put

= We have

Lemma 14 Let 1 r S — 1. Let p = p0 be an execution of the protocol such that

no failures occur after the end of round r, and the number of failures by the end of round

I is at mo8t lj + . + l for any 1. Denote by the execution that :8 identical to p for

the first r — I rounds but has no failures during any later round. Then p fl where

N(r) = L=r+i flr’.-i 2m1 ÷ 1.

Proof: Let the processors that fail in round r in p be denoted ii,. .,i,,. We will use

30

descending induction on r. So suppose r = S — 1. (Note that the statement is not true if

= S.) For each k = 1,. .,m5 let qj, be the greatest processor index that is not among

the processors that failed in p nor in the range (k — 2)I ± 1,. .,kIg, and let Pk be the

least processor index that is not among the processors that failed in nor in the range

(k — 2)lg + 1,.. (k — i)is. Then clearly Pk < q,_ and also Pk < q Let P2k—i denote the

execution that is identical top during the first S —2 rounds, and then also during round S—I

except that the processors ij,. .,4, do send to any processor with index 1,2,. (k — 1)ls

as well as those processors that they send to in p. in round 5, each of the processors

(k — 1)ls -I- 1,. .,k15 that has not failed earlier fails after sending messages to processors

1,. 1k — 1. The assumptions on failure numbers in p mean that this execution involves

at most t failures. Also let P2k denote the execution identical to p during the first S — 2

rounds, and then also during round S — 1 except that the processors ii,.. .,i,, do send to

any processor with index 1,2,.. k?5 as well as those processors that they send to in p. In

round S, each of the processors (k — 1)ls + 1,. - .,klg that has not failed earlier, fails after

sending messages to processors 1,.. .,q — 1. The assumptions on failure numbers in p mean

that this execution involves at most t failures. Clearly the view of P1 is the same in P2(k—1)

as in P2k—i 80 P2k—,- Similarly the view of q is the the same in P2k—I 82 in P2k

50 P2k—i P2k Also let denote the execution identical to p during the first S — 2 rounds

with no failures during round S — 1 and in round S each of the processors -•tm as

well as each of (ms — i)i ± 1,. . .,mgis that hasn’t failed earlier, fails after sending messages

to processors 1,.. .,q,, — 1. The view of q,, is the same in ,5 as in P2nts—1 SO P2,ns—1

Similarly the view of is the same in j as in i so fl. Thus examining the whole

argument, p2ms±i p
Now we assume we have the result for r -- 1 and prove it for r. For each k = 1... .,m7_1

we let P3k2 denote the execution identical to p for the first r — 1 rounds and also in round

except that the processors 1i, .,i,, do send to any processor with index 1,2,.. .,(k 1)17-4-i

as well as those processors that they send to in p. b round r + 1, each of the processors

(k — 1)i ± 1,. .,k4 that has not failed earlier, fails before sending any messages. No

failures occur after round r + 1. The assumptions on the number of failures in p imply that

this execution also satisfies those assumptions. We let psi—i denote the execution identical

31

top for the first r -1 rounds and also in round r except that the processors ii,. •,i,,. do send

to any processor with index 1,2,. . .,k1+i as well as those processors that they send to in p.

In round r + 1, each of the processors (k — 1)l,÷i +1,. .,kl,1 that has not failed earlier,

fails before sending any messages. No failures occur after round r + 1. The assumptions on

the number of failures in p imply that this execution also satisfies those assumptions. We

let P3k denote the execution identical to p for the first r — 1 rounds and also in round r

except that the processors i1,. .,i,, do send to any processor with index 1,2,. .,k17+i as well

as those processors that they send to in p. No failures occur after round r. The assumptions

on the number of failures in p imply that this execution also satisfies those assumptions.

Now by the lemma for r + 1 we have Ps(k—i)
N(r+1)

P3k—2 and P3k—i N(r+i) P3k Also

every processor gets the same View in Psk—3 as in Psk—i so Psk—2 P3k—i Further PSmF+I in

which processors 11,. ,1m fail at the very end of round r can also be viewed as an execution

in which they fail at the very start of round r + 1, and so by the lemma for r + 1 we have

P3m.+i
N(r+i)

• Putting all these pieces of chain together we see J2m.÷i+1)N(r+i)+m,+i

fl, but (2mr+i + 1)N(r + 1) + rn+1 (2mr+i + 1)(N(r + 1) + 1) N(r). Q.E.D.

Theorem 15 Any algorithm that aolves t-resilient approximate agreement for the synchronous

crash-failure model in at moat S rounds has performance

K >
sup (ii” I ± ± ts S t, each l a nonnegative integer)

— (2n+3t)S

Proof: We prove that if p = P0 is the execution where all processors have initial value C

and no failures occur, and ft is the execution where all initial values are 1 and no failures

occur, then p ft where N (2m1 + 2) . (2m2 + 2).. (2m5 + 2). We will give separate

proofs ifs > 1 and S = 1. First suppose S > 1. For each k = 1,.. rn1 let psk—2 denote

the execution where processors 1,.. .jk — 1)li have initial value 1, and the others have initial

value 0 and where processors (k — 1)li + 1,. . .jclj fail in round 1 before sending any messages,

but no other failures occur. Let Psi—i denote the execution where processors 1,. . .,kl have

initial value 1, and the others have iDitial value 0, and where processors (k
— l)l + 1,..

fail in round 1 before sending any messages, but no other failures occur. Let P3k denote the

execution where processors 1,. .,k11 have initial value 1, and the others have initial value

0, and where no failures occur. By Lemma 14, P3(k—1) Psk—2 and P3k-i ,N(1) P3k

32

Also the view of every processor is the same in Psk—2 as in P3k—I since the initial value of

a processor that fails before sending any message is irrelevant, and so PSk—2 P3k—i. Since

PSraL = ft we have p where N = 2rnt(N(1) + 1) fl.1 2rn, ± 2 as we see by writing

2rn1+2 as (2m1+l)+1 and expanding thu product. In the caseS = I for each k = 1,.. rn1

let qj be the greatest processor index that is not in the range (k — 2)li + 1,. ,k11. Let

Pk be the least processor index that is not in the range (k — 2)it -I- 1,.. — 1)i. Thus

Pk < q and Pk < qk—1 Let P2k—i denote the execution in which the processors with index

1,2,.. .,(k— l)lj have initial value land the others have initial value 0 and in round leach of

the processors (k — Qt1 ± 1,. .k11 fails after sending messages to processors t.
-

.,qj — t. Let

P2k denote the execution in which the processors with index t, 2,. .,k11 have initial value 1

and the others have initial vaiue 0 and in round 1, each of the processors (k — 1)?, -r 1.

fails alter sending messages to processors 1,.. .,qt. —1. The view of p is the same in P2(k—i)

as in P2k—i so P2(k—1) PZk—I Similarly the view of is the same in P21—I as in P2k SO

P2k—I P2k- As the view of Pin1 S the same in Pain1 as in ft we have that p, ft and so

p fi , where N = 2m1 — 1 S 2rn1 + 2.

Now we have shown how to construct a sequence po = mn, = where p P1+1,

that is there is some processor p whose view (which we will call M1) is the same in P1 and

in P+i Since M is a view in a failure-free execution where every initial value is Owe must

have f(Mü) = 0. Similarly M_4 is a view in a failure-free execution where all initial values

are I so f(Mg..1)= 1. Thus there must be some iso that f(M1) — f(Mii)J 1/N but

each of M1 and M1+i are views in the execution p+i which from the construction clearly has

all initial values either 0 or 1. Thus we have proved that any algorithm has K 1/N. Since

N fl7 2m1 + 2 ll1(2n/l1+ 3) we have K fl_1 l,/(2n+ 3l) FI1i1/(2n-- at).

As I were arbitrary, subject only to ii — . . - ÷ ts t, we have

K>
sup (Ii• •l: l ÷ +l < t, each t a nonnegative integer)

— (2n#at)S

QED.

8 The Synchronous Failure-By-Omission Model

in this section, we require n > 2t.

33

An overview — During each round of communication each processor p broadcasts infor

mation it holds in the array £(pi,. pr—i ,p), collects the information sent to it in an array

v(pi,.. .,Pr,P), tries to deduce which processors are faulty, and then modifies the information

it received from processors known to be faulty to form the new array pj,. .,p,,p). The

only method a processor p uses to detect that process q is faulty, is to examine the ii values

which reach p representing some information that was broadcast by q and then relayed to p

by each recipient. if q were correct then no active processor would have failed to receive q’s

value in the broadcast and so none of the values reaching p would be L.1. Thus if p finds

any entry being ‘r1 among those it received, it can deduce that q was faulty. After the S

rounds of communicatio,i, a processor will have an array of ns values to operate on. In S

steps this array is used to form a collection of (2n — 4t)S (2n 2t) values by repeatedly

removing extreme values from subcollections and then combining subcollections. Finally

this collection of values is averaged to give the processor’s new value.

In detail, the algorithm requires processor p to perform the following (unless it has

previously crashed) —

• Set i5(p)=v(p).

• In round I:

—. Broadcast (p), and denote by v (qi,p) the value received by p from qi as (qi).

Tithe message from q1 is missing set v(qi,p) to be ±j.

— Set Fault (p, 1) to be the empty set.

— Set3(qj,p)=v(qi,p).

• In round r, for r = 2,..., S, processor p will start with an array of values

(1 (ci, q2,-. , qr—x,p) each q = 1,..., n) and a set Fault (p, r —1) of processors al

ready detected as faulty by p. Now p should

— Broadcast the array (i4qi,q2,...,q,...4,p)).

— Denote by v (q,. ., cr—i, qr,p) the value received by p from q as € (qj,. . , q,.1,q)

lithe message from q,. is missing set v(q1,. .
. ,cr—i, qr,p) to be .Lr.

34

— For every choice of indices qj,. q1, consider the multiset {v (qi,. ,cr—i, 1, p),

v(qi,...,qr,,2,p),.. .,v(qi,...,qr_i,n,p)}. If any entry is —r—1 say that “qr—i

has been detected as faulty by p in round r”. (Note that several choices of

qi,. .,q,—z may lead to the same q,i being detected.)

— Set Fault (p, r) = Fa,dt (p, r — 1) j {q q has been detected as faulty by p in round

r

- I v(qi,...,qr_i,qr,p) ifq FauItQ,,r)
— Set v(qj,. .,qr_.i,qr,p) = S

if q,E Fauit(p,r)

• At the end of round S processor p (unless it has previously crashed) has an array of

values (q,. qs p). Now p should let W (ci,. -, qs, p) denote the multiset with a

single entry (qi,. ..,qs,3,).

• For each r decreasing from S — I to 1

— for each choice of ci,. •,qr, processor p must form a multiset

W (c. c,- -

., *,p) = (IL,..., qr,qr+1, •,
- .., •,p)

where in every case the asterisks fill places so that there are S + I entries, either

asterisks or indices, to name each multiset.

• NowputW(p)=u’1_1W(q1,*,...,*,p).

• Finally processor p should choose a final value w (p) = CCflt€r(2_4)s_1 (W (p)). (Note

that the amount of reduction is different from that in previous steps).

In the algorithm above, for each r = 1,.. S let Fail(r) denote the set of processors that

have crashed before sending any of the messages in round r. Let Exposed(r) = Fail(r) U

flpvFw3(r*l)ft’0t(P, r). Also as a convention we set Ezposed (S + 1) {1, ., n} \Corr.

Note that Ezposed(r) C Ezposed(r + 1). We put Ir = Exposed (r + 1)
— Ezposed (r)I =

Expand (r + 1) \Exposed (r)I. The behavior of the algorithm is explained by the following

lemma, which shows that when p does not crash during execution of the algorithm, the

multiset W(qi,. , q, , ., *,p) is a good representative for V(93,. - , q), in that it often

consists only of copies of that value, and that only processors in Exposed(r + 1)\Exposed(r)

can cause different processors to choose different representatives for a round r value.

35

Lemma 16 In any execution of the algorithm of this section, such that f t, we can

conclude:

(0: Ifp g Crash then the value of each of the (2n_4t)s_r entries of W (q, -
,q, *,.. ., *,p)

is euheri3(qj,...,qr) Or 1,

(ii): If q, Exposed (r+ 1) andpg Crash, then

mult(€ftqi,. qr), W (qi,. q *,. = (2,. —4t)s_r.

(iii): If q, C Exposed (r) and pg Crash, then

mult(±r,W (qi, .., qr, *,,.., *,p)) = (2n —

(iv): If po g Crash and p Crash, then

tr+i 1r+2

Proof: First we observe from the a1orithm that (qj,. , q,p) can never have the value ±

for j > r. Next we observe that if p FaiRy + 1) and q € Corr then q 0 Feult(p, r). This is

proved by induction on r. The case r = 1 is trivial as Fault(p, 1) is empty. Now for arbitrary

7, suppose p0 Fail(r + 1) and q E Corr. Fix q, . . .,q,_. If qr does not send properly to

p in round r (in particular if qr E Fail(r)) then v(qi, - - q, qr,p) ±r. On the other

hand if q. does send to p in round r then v(qi,. . . q,—, q,q,,p) = 1(qi, . . ., q—,q,q,) =

v(qj,.. q, q7) since by the induction hypothesis q 0 FauIt(q, r — 1), and because q

must send correctly tqj, - - - Qr—2, q q,) = (qi, . q—z, q) which pa we noted above is not

equal to ±r_1. Thus no entry of {v(q1,.. q-_, q, qr,p) = 1,.., n} is ±r_1 proving that

q 0 Fault(p, r). Now we use descending induction on r to prove the lemma. First, suppose

r=S.

(0: The multjset W(q1,. qs,p) consists of (2n—4t)° = 1 entry with value f(qj,. . , qg,p).

Now if qg did not send its round S message top or if q c Fault(p, S) then
. qs,p)

=±g, while otherwise i(q,. ..,q,p) = v(qj,. . .,q,p) (qj,. - .,qs) since in the

failure-by-omission modeL any value that is sent is correct.

36

(ii): if qg Erposed(S + I) then qs C Corr and so q did send its round S message top

and also q g Fault(p,S). As noted in the discussion in part (I) above this means that

= and so W(qi,.,qp) consists ala single entry with

value

(iifl: if qs C Ezposed(S) then either q e Fail(S) so qs did not send its round S message to

or qs € Fautt(p,S). In either case as noted in part (i) above, V(qj,
- ,qs,p) =13

and so W (q,.. , qs, p) consists of a single entry with value -I-s

(iv): Since ‘r+l 1s evaluates to 1 when r = S (as an empty product), and each of

W(qi,.. , qs,po) and W(qj,. qs,pi) have only one entry, the statement

lr+i ‘S

is trIvially true when r = S.

We now prove the lemma for some value of r assuming its truth for r + 1.

(i): For each qj that has not crashed before the start of round r + 1, we know that

v(qj,. -
- ,Qr, qr÷j) is either _,. (if qr failed to send its round r message to qrl or

if q C Fault(q,, r)) or - , qr) (otherwise). By (i) for ,- + 1 we know that

- - q,, q,4-i, s,.. , *,p) consists of (2n — 4t)81 entries each of which is one of

•
-, cr) Lr or _Lr+I If qrti crashed before the start of round r + 1 (so that

•
-

may be meaningless) then qr÷i C Ezpo8ed(r + I), so by (iii) for r ± I

we know that W(qi. ,q, qr—i, ,. *,p) consists of (2n — 4t)1 entries all being

_Lr-_i. Thus L4’,41=1W(qi,. .,qr,qr+i, .. .,*,p) consists of n(2n —
4t)S—r—l entries

each of which is €(qi,
, q,j, _L. or —r_-1 Also there are at least (ii — t)(2n —

entries that are not Ir+1, nasnely all those coming from the at least vi — t values of

q,+i that arc not in Exposed(r + 2) (by (ii) for r + 1). Thus when we apply chop7t,

where k = 2t(2n — 4t)S_t_l, to u,÷1=iW(q1, ,q7, Qr-s-i, , ., *,p) we will remove

every occurrence of 1,41 and be left with (2n
—

4t)5—r entries all either

or _Lr

37

(ii): If q g .Exposedfr + 1) then for every q c Con (qi,. qr, q) = €(q,.. , qr). This is

proved by contradiction: suppose there is 9r+1 € Con with (qi, q, qr+i) =-1-r and

therefore for any pg Fail(r+2) we will have v(qi, .,qr,qr+1,p) r±r a qr+i broad

casts correctly, and hence p will detect q as faulty in round r + 1. This holding for all

pg Fail(r + 2) contradicts the assumption qr g Ezposed(r + 1). Now by (ii) for r ± 1,

if qr g Exposed(r + 1), qr÷1 c Co,, and p Cra8h, then W(qi, •,qr,q7+i, *,

consists of (2n4t)’ entries all with value €(qi, qr, qr+i) = €(q, , q,). Hence

if q g Ezposed(r + 1) and p0 Crash then qr,qr+i, ,. ., *,p) con

tains at least (n — t)(2n — 4t)8’ entries with value €ftqi,. ,qr), namely (2n —

4t)S_-r-_1 for each of at least n — t choices of qr+i• By Lemma 8, every entry of

W(qi,...,qr,*,..,*,p) is€(qi,...,qr).

(lii): If q. E Ezposed(r) then for every q € Con, €(qi,. qr, q) -j-r (if q C Fault(r) this is

explicit in the algorithm, and if q7 E Fail(r) then qr sent no message to q in round r so

v(qi,.. q, q) =1,.). By (ii) for, + 1, if q, C Exposed(r), qr+i C Cot, and p Crash,

then W(qj, qr, q,+i, *, *,p) consists of (2n — 4t)5’—1 entries with value Ir.

Henceifq, C Ezposed(r)andpØ Crashthenu÷3_iW(qi,...,qr,qr÷i,*,...,*,p)con

tains at least (n—t)(2n—4t)’’ entries with value Lr, namely (2n—4t)5’1for each

ofat1eastn—tchoicesofq,1.By Lemma3,everyentryofW(qi,...,q7,*,...,*,p)

is 1,..

(iv): We have that W(qi,.. q, q-j, *, ., = W(qi,.. , qr, q÷i, *, *,p) unless

qr+i C Expo8ed(r + 2)\Ezposedfr + 1), by (ii) and (iii) for r + 1. For the other ‘r+1

values of qr+j we have by (iv) for r + 1 that

Imult((qi, q7, qr-i-1), TV (il , qr, q+i -
*, po))

—mu1t((qi, , qr, qr--i), TV (ci, q, qr÷i, ,

lr+2 1r+s “1g.

38

For each of these 9r+i, (qi, . , q,, q,+i) is either (qj, q) or _,,so we see

rnuit((q1,. q,), (qi, - . qr, q,+i, , -,

—mtitt(1(q1,. q),u’1_11V (ci, q, qr-’-i, * pzflI

-rImutt(±,, u’,_1W (q - , q,, qr—i, *, , *, pa))

—mu1t(_r,u,,=iIV (ci - -,9r,9r+i, ,

With this bound and the facts in (i) we can apply Lemma 4 to complete the proof.

Q.E.D.

Theorem 17 The algorithm of this section has performance

K <
sup {‘l :11 + •- + ‘s t,each l a non-negative integer}

(2n — 4j)Si (2n — 2t) -

Proof: We have by (ii) and (iii) of Lemma 16 for r = I that W(qj, *,. , *,pa) =

W(q*,. ..,*,pl) unless q c Ezposed(2)\Ezposcd(1). For these l values of qi we have

by (iv) for r = 1 that

Imult(v(qi), TV (qj,*,. , c,p)) — mult(v(qj), 14’ (qi, , , pi))I tz

since €(qi) = v(q1). We can apply Lemma 6 with V = *,.. •,pq), W =

*,pj), N = n(2n_4t)S, rn = l 4s, k = t(2n4t)Si and [a, 6] = p(U)

to prove that each of w(po) = centerk(V) and w(pj) = center1(W) lie in p(U) and that

w (p0) - w (pi)I
(2n - (2n - 2t)

We finally note that asl = Ezpo8ed (2)]—IEzposed(1)I, ‘2 = Ezposcd(3)I—IEzposed(2)l,.

= Ezposed (S + 1)1 — Exposed (S), we have each l a non-negative integer and also

i +12-i-... + 1s = Erposed (S + 1)1 — IEzpoaed(1)I t. This proves that our algorithm has,

a claimed, performance

K <
sup {l . •l l ÷ ts t, each l a non-negative integer}

— (2n — 4t)S_1 (2n — 2t)

The lower bound from §7 also applies to a synchronous failure-by-omission system, so that

,e a?grithm of Lhs section is asvrnptot;cally optimaL

39

9 Model of an Asynchronous System

In general, asynchronous systems seem to be harder to reason about than synchronous

systems. The additionai uncertainty in message delay leads to the possibility of race con

ditions, and many more possible sequences of activity need to be considered. In order to

guard against error, we will use more detailed, formal descriptions of the system and the

problem to be solved in the asynchronous case than we did for the synchronous systems

earlier in this paper. These will be used to prove carefully the basic results about the power

of the “adversary” against which the protocol must work. However, the discussion of the

algorithm’s correctness and performance, and the lower bound on any protocol, will be given

using the same higher level modes of reasoning that were used for synchronous systems.

We give a formal model of an asynchronous failure-by-omission system, based closely

on the most asynchronous model of IODS], with asynchronous processors, communication,

and message order, point-to-point transmission, and separate send and receive operations.2

The main change to that model is that we allow multiple channels between each pair of

processors, and allow a processor to try to receive messages from only a subset of channels

during a receive operation. This can be used to model the capacity in languages like CSP for

message receipt to be guarded by the message type’. We also assume that there are initial

and decision states for every real number, not just forD ajid 1 as in [ODSj.

Formally, a protocol of the set P of processors 1,2,. . . ,n is described by the following

data: a universe M of messages a collection C of channels for communication and for

each processor p a set of states Z’ and functions flY (describing message generation),

(describing the guards on message receipt), and 5P (describing he state transitions). The

collection of channels has two associated functions begin C —* P and end C —‘ P. We

put CP = {c € C : begin(c) = p} and Q*,P
= {c c C : end(c) = p}, respectively the sets of

channels starting and ending at p. We define the set E of events at pto be {f, ø}u(Ct xM),

where f is a place holder representing a crashed processor’s step, 0 represents a step where

no message is received at p. and (c, m) represents a step where message m is received by

reaults in IW the processors could be assumed to be synchronous, without altering the results.
‘In many impleaLentations, all messages will actually be received, and those that do not satisfy the guard

will be bt,ffered internally without affecting the computation, rather than being kept externaLly ri the channel.

40

p from channel c. We form the set of events E as the tagged union of the set of events at

each processor, E = u{p} x F?. We say that the event (p,e) involves processor p. The

set 1’ is partitioned into a set of sending states Z and a set of receiving states 4. For

each real number v there are distinguished an initial state with value is, and a set

of decision states with value is, Z’dSC. We require that each state be an initial or decision

state for at most one value is. The message generation function ftP Z” — p(CP’ x M)

gives the set of messages being generated by processor p when it is in each state, together

with the channel on which each meage is to be sent. This function is required to satisfy

the conditions 13’(z) = 0 if z C Z, and flP(z) 1 for all z. Thus no message is generated

during a receiving step, and at most one message is generated in a sending step. The guard

function ‘9 —. p(C) models the et of channels on which p attempts to receive

messages when in each state. It is required to satisfy ‘9(z) = 0 for z c Z, modeling the

fact that no messages may be received during a sending step. The state transition function
ZP x E’ —t Z’ indicates how the state of processor p changes when an event occurs at

p. It is required to satisfy the condition that S(z, e) C for all z € ‘deO and for all e,

to reflect the irrevocable nature of a decision. We also require that 6P(z,’) z for all states

z, since reflects a place-holder for a step not taken because of a crash.

A configuration ,c consists of a state for each processor and a muftiset4 of messages for

each channel. We write st(p, iv) specifying the state of processor p and buff(c, iv) for the

messages in transit on channel c in the configuration iv. We say the event (p,e), where

C E is applicable to the configuration ic, if either e = or e = 0 or e (c,m) where

c € ‘9(st(p,iv)) and in E buff(c,.c).

Suppose (p, e) is an event applicable to iv. If e = (e, m) we define the failure-free re

sult of (p e) in iv to be the unique configuration iv’ with st(q, ic’) = st(q, ic) for q p
st(p, ,c’) = S(st(p, iv) e) buff(d iv) = buff(d iv) u {m’ (d, m’) € /3”(st(p, .c))} ford c, and

buff(c, ic’) = (buff(c,ic) — {rn}) u {rn’ (c, m’) € fi’(st(p, icfl}. lIe G we define the failure—

free result of (p. e) in Sc to be the unique configuration iv’ with st(q, iv’) = st(q, iv) for q p
st(p, iv’) = 6’(st(p, iv), e) and buff(d iv’) = buff(d, iv) u {m’ (d, m’) c fl’(st(p, icfl} ford e C.

if e = (c, in) we also define the failure result of (p, e) in Iv to be the unique configuration iv’

A multiset or bag is used, rather than a set because the same message could be sent several times.

41

with st(q, iv’) = st(q,n) for q p, st(p, it’) = 5”(st(p, it), e), buuf(d, it’) = buff(d, K) for d #
and buff(c, it’) = (buff(c, it) — {m}). lie = or e 0 we define the failure result of (p, e) in it

to be the unique configuration it’ with st(q, it’) = st(q, it) for q p, st(p. it’) = SP(st(p, it), c)

and buff(d, it’) = buff(d, it) for d € C. Thus the failure result of an event (p e) is produced
by p altering its state as required by the transition function 3P, but not adding a message
to a buffer, even if required to do so by the message generation function .

A partial execution of the protocol is a finite, alternating sequence ic1,(p1,ej),tc2, (pz, e2),,cs,
.,(p, ez),Icji of configurations and events, starting and ending with a configuration, satis

fying the conditions:

• for each processor p, st(p, it1)
= for some v;

• for each channel c, bufl’(c, itj) = 0;

• for each i, (pd, e) is applicable to ?c;

• for each 1, ,cj+i is either the failure-free result or the failure result of 1y,e) in icj;

• ifj >1, e1 t, and p =p, then e1 =

An execution is an infinite alternating sequence iti,(pi, ei),ic2,(p2,e2) it3,.. - whose prefixes
of odd length arc partial executions. In an execution or partial execution ivi,(p,ei),ic2,
(ps,e2),Ks,..., processor p is said to have failed if there is some i such that pi = p and icj1

is not the failure-free result of (p., e,) in ,cj. Similarly, we say that processor p crashed in
the execution or partial execution if there is some i such that pi = p and q = t. A partial
execution p ‘ci, (pi, ei), it2, (p2,62), (p,, q), ,cj is called admissible if at most
processors have failed in p. We say that an execution p = it1, (piej), 1t2, (p2, e2), its,... IS

admissible if every prefix of odd length is an admissible partial execution and in addition,
every processor is involved in an infinite number of the events (p€, eJ, and also whenever
m € buff(c,.vj) then either there exists j I such that e1 = (cm), or else there are only a
finite number of indices k such that cC 7Pk(st(pk,n,)) arid ek Thus in an admissible
execution every processor takes steps (or has place-holders for failed steps) infinitely often,
and every message sent is eventually received, if the addressee requests it infinitely often.
We say an execution or partial execution p is failure-free if no processor has failed in p.

42

Given an execution or partial execution p = sj,(pj, ej),,c2, (p2,e2),n3,..., and a processor

p, we say that p’s initial state st(p, Id), together with the subsequence of events (pt, e) that

involvep (i.e. for which p = p), form “the view of pin p” - We note that st(p, ,q..j) is uniquely

determined by the view of p in the partial execution ,cj,(pi, ej),K2, (p2 e2),t3,. .,(pj, ej),iqi.

A protocol in this format model is said to solve the Approximate Agreement problem if in

every admissible execution every processor that has not crashed eventually enters a decision

state, and if the value of each decision state entered is within the range of the values of

the initial states. The performance of such a protocol is the supremum (over all admissible

executions) of the ratio of the diameter of the multiset of values of the decision states to the

diameter of the multiset of values of the initial states.

We have the following useful extension result:

Lennzia 18 Let p = “,,(pi, ex)pcz, (p,,e7),’c,,.
-
.,(p’,e1),ac1...1 be an admissible partial exe

cution of a protocol. Then there is an admissible execution p’ = ,cj,(p1,ei),sc3, (p2, e2),Ics,

of the protocol that has p as a prefix, Buck that the only processors that crash in p’ are those

that crashed in p, and the only proce8surs that fail in p’ are those that failed in p.

Proof: We inductively construct (pe, e1) and nj÷i for i > I. Let p = (i mod it) ± 1. If

p crashed in p, let q = t and nj+l = icj. Otherwise, consider the multiset of messages

{m m c buff(c, ,c), c c7’(st(p1,sqfl}, arranged in order, from the earliest sent to the

latest sent. If the set is empty, let e = 0, otherwise let e = (c0, mu) where mc, is the

member of the multiset that was sent earliest, and where nlc, C buff(co,aq). Now, let ,cj1

be the failure-free result of (p, e1) in tj

By construction, p’ is an execution in which the only processors that crash are those that

crash in p, and in which the only processors that fail are those that fail in p. By the choice

of P1 every processor takes an infinite number of steps in p’ and by the choice of e1 every

message is received if requested often enough. Thus p’ is admissible. Q.E.D.

With this formal model, we prove the result that captures the intuition about the be

haviour of the “adversary” against which our algorithm needs to work.

Lemma 19 Let p 6e an admissible execution of a protocol in an asarnchronous failure-by

omission system, in which every processor that does not crash craters a decision state. Then

43

there is an adminibie, failure-free ezecttion ñ with the same initial values, such tluzt each

processor that did not crash in p has the same view in as in p, up to the point where it

enters a decision state (and thus it chooses the same decision value in both executions).

Proof: Let p = .cijpi,ei),c2(p2,e2),.cs Let 1? denote the set of processors that

have not crashed in p. Choose some index I so that st(p, ‘q) is a decision state for ev

ery processor p E 1?. We will first construct an admissible, failure-free partial execution

p’ = ,c’1,(p’1,4),4,(p, e),. ., ‘ci, si,ch that the view of pin p’ is the same as the view ofp

in p. We put 4 = ,q. Now we define (p,e) and inductively, for i <I. Let p = p.

If q = t let e = 0, and otherwise let e e1. Let ic4 be the failure-free result of (ps, c)

in ,4. We note that (p,, e) is applicable to ,c since st(p, <) = st(p, ,q) as long as p has not

crashed in the first i steps of p. Now we can use Lemma 18 to extend p’ to an admissible,

failure-free execution . For p e 2?, the view of p in p’ is the same as its view in the prefix

of p ending in It;, and (since therefore st(p, ‘D = st(p, .c;) is a decision state) we have thus

completed the proof of the Lemma. Q.E.D.

if we use the terminology of knowledge (as used in [CMI and fHMI for example), we can

explain this result as follows: it can never happen that a collection of processes, none of which

has crashed, has knowledge that any failure has occurred. An immediate consequence is that

no processor can ever know that a particular processor is faulty. Chandy and Misra have

stated and proved a similar result (Theorem 8 of [CM]). Tndeed, when only crash-failures

are allowed (as in §5) the two results are equivalent. However, when omiion failures are

considered, our result is mare powerful, as it shows that no collection of processors can

know that a failure step has occurred, even when later messages have been received from

the faulty processor. In contrast, in the model of CM], a processor that has failed! and then

recovered knows that it failed and thus knows that it is among the faulty processors, and it

can inform other processors of this fact. This awareness by a processor that it did omit to

send a message, seems incompatible with the fundamental assumption of failure-by-omission

systems, which is the assumption that faulty processors follow the normal protocol.

44

10 The Asynchronous Failure-by-Omission Model: The Al

gorithm

Each processor p acts according to the following algorithm, which we give first informally,

as in [DLPSWI or the earlier sections of this paper:

• Initially, assign vat to be v(p), the initial value of processor p.

• Next, for r = 1,2,..., S successively

(1) Send a message (r, vat) to each processor (including p itself).

(ii) Wait, trying to receive messages with r as the first component, and collecting the

second components, until n — t such messages have been received.

(iii) Arrange the n — t values collected during step (ii) in increasing order. Select the

lowest, (t + 1)-st lowest, (2t + 1)-st lowest, etc. Assign Va! to be the mean of the

[!3fl numbers selected.

• Fina]Iy decide on w(p) = pal, and thereafter do not send or try to receive messages.

We refer to steps (i) (ii) and (lii) for r as forming “round r” of the algorithm, and we

describe any message sent in round r as a round r message.

Now we give a formal account of this protocol using the model of §9, to illustrate the

correspondence between that model and the higher-level description above. The universe

M of messages consists of all the real numbers. The channels are for p and q ranging

from 1 to n, and r ranging from 1 to S, with begin(c’)
= p and end(cPc) = q. We

will use P’ to carry the round r message from p to q. The state of each processor has

components val (a reai number), round (an integer), valrec (an array, indexed from 1 to ii,

with each value either a real number or 1, indicating no value received so far), numbersent

(an integer between 0 and n — 1, inclusive), and mode (one of the values: send, receive,

done). The receiving states 4 are those where modereceive or mode=done, and the

sending states are those where mode=send. The initial state has val=v, round=1,

valrec(ijI for aB 1, nu,nbersent=O, and mode=send. The decision states are those

with val=v and mode=done. The message generation function P is given by 3”(z) =

45

{ (ePt *OFSefl*+1LtdUfld, z.val)} if z.rnodo=send, and fl(z) = 0 otherwise. The message

guard function is given by ‘9(z) = r = z.round} if z.modereceive, and 7’(z) = 0
otherwise. Tle function 8’ s givsn by the following procedure, which takes as arguments a

state z and an event e, and returns the value S(z, c) The local variable w is initially set to

z, and ita components are then modified till its value is 6(z,e).

ComputeNextstatt(zstate,e:event)state

Local variable w:state

begin

w — z

if e=

then return(w)

if zmode=send

then if z.nmnbersent< n — 1

then begin

wrnmibersent .— w.numbersent+1

roturn(w)

end

else begin

w.numbersent — 0

w.mode=receive

return(w)

end

if zmode=receive and e=O

then return(w)

if zmode=receive and e=(cQP, in)

then begin

w.valrecq]=m

if {i w.vairec[i] ±} < n — t

then return(w)

else be8in

46

w.va.l — avt({wvalrec[i] wvalrecfi]

if wround=S

then begin

w.mode —done

return(w)

end

else begin

wround — w.round+1

fori= 1,...ndow.valrec[i].—i

w.nmnbersent — 0

wmode .—send

return(w)

end

end

end

if z .mode=done

then return(w)

end

The main propetties of this algorithm all depend on the following lemma, which relates

the values of the variables during successive rounds.

Lemma 20 In an admissible ezecution of the protocol above, in which the initial value of

processor p is v(p), let val = v(p) - Let vat’’ denote the value of vat that is chosen in step

(iii) of round r. (Thvs if p has not crushed, it sends messages (r, va1) in step (ii) of round r).

Let U’ denote the multiset {val p has not halted before ezecuting step (iii) ofround r}.

Then

p(U’’) c p(r)

and

S(U’t1)
t]

47

Proof: It is clearly enough to prove that if p and q have not crashed before executing step

(iii) of round r, then

val’ C p(U9

and

•vat÷1
— va1’i

fl 1
3(U7)

Let denote the multiset of it — t round r values collected by p in step (ii) ofround r. We

note that V c ur, since processors cannot exhibit Byzantine behaviour, and so if a message

(r, v) is received bypfrom p’ then v vai,. Now VflI[+jVUVtj =

conclusions now follow by Lemmas 7 and 8, since val = avtW). Q.E.D.

Theorem 21 The oigoritiim above solves the t-resilient Approximate Agreement Problem

using S rounds of communication, with performance

r-r
Proof: The result follows immediately by app]ying the previous lemma S times. Q.E.D.

11 The Asynchronous Failure-by-Omission Model: The Lower

Bound

The results of the previous section show that any performance car’ be obtained if enough
communication is used. To prove a lower bound, we will consider only protocols that involve
S rounds of message exchange. That is) we will assume that the protocols under discussion
have the following form:

For 1, 2,.. .,S successiveLy

(I) Send some messages with r as first component to some processors.

(ii) Wait, trying to receive some subset of the messages with 1,2,. .,r as the first
component, until some condition on p’s history is satisfied.

48

• Then decide on a value w(p) that is some function of p’s history. Afterwards, any

pattern of sending and receiving messages is allowed, so long as no messages are sent

that have a value less than or equal to S as their first component.

Thus each processor alternates between collections of sending states and collections of receiv

ing states, with a collection of sending states and the following receiving states making up

one round of the algorithm. Furthermore during the receiving states of round r, for r

the processor tries to receive only messages sent during the first r rounds. Each processor

decides at the end of round S. Notice that the algorithm of the previous section has this

form.

It will simplify our lower bound arguments if we consider processors that follow a par

ticularly simple protocol of this sort, in which messages contain merely the history of the

sender, each message is sent to everyone, and processors try to receive as much information

as possible in each round. Thus we say that a full-information protocol5 has the following

form:

• For r = 1,2,. . , S successively

(I) Send a message (r, hist) to each processor (including p itself) where hist is p’s

history (its view in the partial execution so far), that is, its initial value and a

record of the messages that p received at each step.

(ii) Wait, trying to receive any messages with 1,2,. .,r as the first component, until

there is a set of n—t processors such that p has received r messages (one with each

first component from 1 to r) from each of these processors during the execution.

• Finally decide on a value w(p) that is some function of p’s history, and thereafter do

not send or try to receive messages.

Different full-information protocols are given by using different functions of the history to

determine the decision value.

We now give the intuitive reasons why this form of protocol is completely general, in

that any S-round protocol can be implemented by a full-information protocol, The precise

5The full-information protocol we give here is a natural ganeralhation to asynchronous systems of that

described earlier for reasoning about synchronous algorithms.

49

meaning of this statement, and the formal proof, are given later. As we only consider

deterministic algorithms, each message is determined by the history of the sender at the

time the message is sent, so we can assume that it is the history itself that is sent. Since

the receiver need not pay any attention to messages it is not interested in, there is no loss

of generality in sending a round r message to every processor. Similarly there is no harm in

collecting as much information as possible in each round’s receiving phase, and then ignoring

whatever information is unwaxited. To collect as much information as possible means to try

to receive any possible message (from the current or previous rounds) and to continue doing

so as long as the processor knows that more information will come. Thus each processor

shouid wait in its receiving phase until it is possible that it has received everything that it will

ever get, among the messages of rounds 1,. .,r — 1. In the failure-by-omission asynchronous

system, this meass waiting until all messages of preceding rounds have been received from
some set of n — t processors, since the remaining t processors could have omitted to send

all the messages not yet received from them. Any messages sent after a process has decided

cannot be received until the recipient has decided, and so these messages cannot affect any
decision value. Thus there is no need to send them.

Since full-information protocols have not previously been studied in asynchronous sys
tems, we give here the proof that they can implement any t-resiient S-round protocol for
solving a problem. We first observe that all S-round full-information protocols are identi
cal except for the decision values associated to the decisiou states. In particular, all such
protocols have exactly the same admissible executions, so that we can speak of an execu
tion of a full-information protocol without specifying which decision function is to he used.
Next we prove a lemma that relates failure-free executions of the full-information protocol
to executions of a given protocol.

Lemma 22 Let A ôc an S-round protocol such that in every admissible execution of A,
every processor that does not crash enters a deciding state. There is a construction that
associates to any failure-free admissible execution a of a full-information protocol a failure-
free admissible erecution full(o) of A, where the association has the property that the initial
value of each processor is the same in full(u) ag in a and that the decision value of p in
full(a) depends only on the view of p in a.

50

Proof: We will construct full(a) inductively, round by round. Let the initial state of each

proceor in full(e) be that with the same initial value as in a. We thus have a partial

execution where each processor is at the start of round 1, and the history of a processor in

this depends only on the initial value of that processor in . As the induction step of the

construction, assume that we have constructed a partial failure-free execution at the end

of which each processor is at the start of round r, in such a way that the history of each

processor in the partial execution depends only on the history of that processor up to the

end of round r — 1 in a. We will first extend this partial execution to bring each processor to

the end of the sending phase of round r. We do this by considering each processor in turn in

round-robin order (i.e processor 1, then processor 2, ..., then processor n, then processor 1,

etc.). if that processor has not yet reached the end of the sending phase of round r, extend

the partial execution by a failme-free step (p, 0) of that proceor. We show that eventually

every processor will have reached the end of the sending phase of round r, and thus that

the extensions constructed reach a limiting partial execution: if not, then there would be a

prefix of the limiting extended (infinite, not necessarily admissible) execution in which every

processor that is going to reach the end of the sending phase has done so, and there would

be a processor p that will continue to send forever from its state at the end of that prefix.

If we consider an admissible failure-free extension of that prefix, p would also never finish

sending in that, and so p would not decide in that execution, contradicting the nature of A.

Thus we see that we have extended the partial execution and brought every processor to

the end of the sending phase of round r, and that the history of a processor in the extended

failure-free partial execution depends only on its state at the end of round r — 1, and thus

only on the history of that processor up to the end of round r — 1 in a. We will now

extend the partial execution further, to bring each procor to the end of round r. We first

examine all the messages in transit in the configuration at the end of the partial execution

constructed so far- We say that a message that was sent from processor p to processor q

when p was in round r’ of the partial execution (and that is still in transit) is deliverable

dw’ing round r if in a the round 9 message from p to q was received by q during one of

the rounds r’,r’ + 1,. ,r. Once again consider each processor in turn, in round robin order.

If that processor, say processor q, has reached the end of round r, do nothing. Otherwise,

51

consider the set of messages that are both deliverable in round r and currently in transit on

the channels on which processor q is currently trying to receive, If this set is empty, extend

the partial execution with a step (q, 0), and otherwise extend the partial execution with a

step (q, (c, m)), where in is the message among this set that was sent earliest, and c is the

channel on which it was sent.

We show that eventually every processor will have reached the end of round r and thus

that the extensions constructed reach a limiting partial execution: if not, there would be a

prefix of the limiting execution b which every message that is going to be received has been

received (since no messages are being added to the channels during the extensions). There

would also be a processor p that would continue forever from its state in the configuration

at the end of that prefix, trying to receive messages despite receiving nothing at each step.

We see that in this infinite continuation p must never try to receive any of the messag

that are still in transit in that configuration and that are deliverable in round r. We now

consider a modified partial execution that has the same sequence of events as the prefix

of full(c) we constructed, but in which some configurations are the failure results of the
preceding event, rather than the failure-free result. The events that are thus affected are

exactly those in which (in full(a)) a message was sent to p that was in transit at the start

of the receiving phase of round r, but was not marked as being dehverable in round r. The
modified partial execution is admissible, because the messages involved were sent by some

set of at most t processors (as the corresponding messages in a had not arrived at p when

p finished round r of the full-information protocol.) The configuration at the end of the
modified partial execution differs from that at the end of the prefix of fuIl(e) only in that
the channels that end at p do not contain those messages that were sent to p were still in
transit at the start of the receiving phase of round r, and were not marked deliverable in
round r. When the modified partial execution is extended to an execution in which no later
failures occur, p will continue forever trying to receive messages despite receiving nothing

at each step (as p will never try to receive the meages of rounds 1 through r that are in

transit at the end of the modified partial execution, nor can it try to receive any messages
added to the channels in later rounds.) Thus the extension of the modified partial execution
is an admissible execution in which p does not crash, but does not reach a decision state.

52

This contradicts the nature of the protocol A and thus establishes the fact that eventually

the construction of the preftx of full(a) reaches a limit, in which every processor is at the

end of round r.

If we consider the view of a processor p in the partial execution constructed, we see that

it depends on the view of p at the end of round r — I. and on the messag in transit to p at

that time that are deliverable in round r, but on nothing else. Now the processor’s view at

the end of round r — 1 depends only on its view at the end of round r — 1 in a. Also we note

that the view of p at the end of round r in a enables us to determine the history of every

other processor p to the end of the sending phase of the last round in which a message

was sent that was delivered to p during the first r rounds of a, and this in turn allows us

to deduce the views of those processors to the corresponding point in the partial execution

constructed. The latter however is exact]y what is needed to determine the messages that

are deliverable to p in round r. This completes the establishment of the induction step of

the construction.

Thus we can construct a partial execution to be a prefix of fulI(u), so that at the end of

this partial execution each processor has reached the end of round S of A, and therefore has

decided on a value that depends only on the processors view up to the end of round S of

a. This failure-free partia] execution can be extended to a fai]ure-free admissible execution

full(a), which is exactly what is required by the lemma. Q.E.13.

Theorem 23 Let A be an S-round protocol such that in every admissible ezectation of A,
every processor that does not crash enters a deciding state. Then there exists an S-round

full-information protocol P satisfying the following condition: for every admissible ezecution

p of P there is an admissi6le ezcution p’ of .4, where the initial value of uch processor is

the same in p’ as in p, the same processors crash in p’ as in p, and the decision value of
each processor that does not crash is the same in p’ as in p.

Proof: To construct P we need only specify the decision value that a processor p should

choose after the completion of round 5, given the history h of pup to that point. First, we

choose some failure-free admissible execution f of the full-information protocol such that p

has history h in f up to the end of round S. Note that the history of p in is simply h

53

followed by an infinite number of steps in which no message is received, We now consider

the execution full(e) of A, and let the decision value of pin P after h be chosen to be the

decision value of p in A in full(E). That such a value exists follows from the assumption that

processors always decide in A if they do not crash, and the fact that this value is independent

of the choice of C is immediate from the property claimed for the association between and

fuIl(E). Thus we have defined P.

Now, take any admissible execution p of P and let 1? denote the set of processors that do

not crash during p. By Lemma 19, there is an admissible, failure-free execution fl of P with

the same initial values and such that every processor in R has the same view in as it has in

p. New full() is a failure-free admissible execution of A, and thus in it every processor enters

a decision state. We choose a partial execution of A that is a prefix of full(?) and in which

every proceor has decided. We then extend this partial execution by a crash event (q, t)
for eath processor q g R, and then use Lemma 18 to extend the resulting partial execution

of A to an admissible (infinite) execution p’ of A, in which no additional processors crash.

The initial value of a proceor in p’ is the same as the initial value in full(j), which is the

same as its initial value in ,3, which is the same as that in p. We observe that by construction

the processors that crash in p’ are exactly those that are not in R, that is, those that crashed

in p. For each processor p C 1?, D is one of the possible choices of that could have been

used to compute the decision value of p in P and thus we see that the decision value of p

in full() is the same as the decision value of p in p. Since p’ is an extension of a prefix of

fulJ(ñ) and p has already entered a decision state in that prefix, the decision value of p in p’

is the same as in full(?), and thus is the same as the decision value of p in p. Q.E.D.

To say that a protocol P has performance K [1’ is to say that there is some run

(determined by some choice of initial values, processor failures aid message delay times)

in which two processors p and q reach decision states with values w(p) and w(q) such that

w(p) — w(q) ffl-’S3 where 6 = ô(v(1). - - .,v(n)) is the size of the interval of initial

values in the run. We will prove a stronger statement, since the extra condition helps the

induction argument work.

Theorem 24 For any S-round protocol P that solves the t-resilient 4pprozimrite Agriement

Problem in an asynchronous, failure-by-omission system, there is an admzss,ble execution p

54

(in which we denote tk€ initial value of p’ by u(p’)) and processors p andq that enter decision

states with final vdues w(p) and w(q) such that

w(p) w(q)I
[n_ tlo(v(1)v@))

and such that there are at most j-t protessors from which both p and q receive round S

messages.

Proof: For notational convenience we put v = In the following discussion we will

assume that P is a full-information protocol. If P is some other S-round protocol, we can

find a full-information protocol to implement it, use the proof below to find an admissible

execution of that, and then take the corresponding execution of the original protocol. This

will have the desired properties.

We will use induction on S. We first prove the theorem for S = 1.

We denote by pa (a = 0,..., v 1) the proceor (a ÷ 1)t + 1, and by Pu proceor 1.

Now we will describe a chain of admissible executions po n, ,Pw+i such that processor

p has the same view in executions p, and Pa+t, and thus the same decision value in those

executions. We will construct Po with each processor having initial value 1, so the decision

value of pj in that execution must be 1. Similarly the decision value of p,, in PV—1 must be

0. From these facts it follows by a standard argument (as in §5 and 7) that for some a the

processes Pa—i and Pa reach decision states with final values that differ by at least vt in

the admissible execution p which satisfies all the conditions of the theorem.

The execution P0 is one where every processor has initial value 1, no processors crash or

omit to send, and each processor receives round 1 messages from processes t + 1,.. .,n before

entering its decision state. For a = 1,. .,v— 1 the execution Pa has processors 1,2,.. .,at with

initial valueD, and processors at+ 1,.. n with initial value 1. No processor crashes or omits

to send, and Pa—I enters its decision state after receiving round 1 messages from processors

1,. - (a — 1)t and at -4- 1,. - n, while every other processor (in particular pa) receives round

1 messages from processors 1,. . pt and (a + 1)t + 1, .,n before entering its decision state.

The execution p has processors 1,2.. vt with initial value 0, and processors vt + 1,. .

wi: ii in:tia! value I. No processor crashes or omits to send, and p,’ enters its decision state

after receiving round I messages from processors I,. - .,(v — 1)t and .4 + 1,. ,n, while every

55

other processor (in particular pp) receives round 1 messages from processors 1,.. n — t before

entering its decision state. In the execution Pv—I every processor has initial value C and each

processor enters its decision state-after receiving messages from processors 1,.. n — t.

Now we suppose the theorem true for (S 1)-round protocols, and prove it for the

S-round protocol P.

From P we will construct an (S — 1)-round full-information protocol Q. To describe Q we

have to specify the decision value chosen by p at the end of round S — 1 after a given history

h. First, we choose some failure-free admissible execution f of Q, such that p has history h

in up to the end of round S — 1. In the next paragraph we will show the construction of

an execution ext(E) of the S-round full-information protocol P. The construction will have

the property that the history of pin ext”(E) will depend only on the history h, and not on

the choice of e Now let the decision value of p in after history ii be the decision value

of p in the execution ext(e) of P. Because this depends only on h, Q is well-defined. We

can think of processor p as imagining that it is running protocol P, and using the actual

execution of S — I rounds of message exchange to guide it during an imagined execution of

the S-round protocol P that will determine its decision value.

The execution ext”(C) is identical to C during the first S — 2 rounds. Thus we only need

to describe the final two rounds of message exchange.6 During the sending phase of round

S—i every processor sends its history to every processor, as required by the full-information

protocol. Let B, denote the set of n — t processors such that p receives every message from

each processor in R,, during C (such a set exists since p completed round S — 1.) During

the receiving phase of round S — 1 of extP(C), each processor pi receives those messages of

rounds 1,. .,S — 1 that are sent from processors in U.,, and that are not received by p’ in

earlier rounds, and no other messages. This brings each processor to the end of round S —1.

In the sending phase of round 5, each procsor sends its history to every processor. In the
bWe will give the description in the same high-level terminology we have used to descibe the protocols. For

a complete description in the formal model of §9, we would aho need to specify the order in which processors
take steps and the order in which the messages are received during each round. Any consistently applied
choice would be suitable, for example, allowing processors to take steps in round robin order and having
• round G message from processor pi received before a round 2 message from processor n if P1 < Pz or
(ps = P2 and ij < tzJ.

56

receiving phase of round S eath processor receives the round S message from the processors

in 14. and no other messages. This brings every processor to the end of round S as each

has received all the messages from the processors th 14. This completes the description of

ext(f).

The induction hypothesis applied go the S — I round algorithm implies the existence

of an admissible execution p’ of Q and processors p’ and q’ that reach decision states with

ftna[values w(p’) and w(q9 satisfying

n—t -5+1
w(p’) - w(q’)] ö(v(1),. v(n))

and there are at most [9]t processors from which both p’ and q receive round S — 1

messages. Lemma 19 implies that we can assume that no processor is faulty during p’.

Choose processors Popi, .p such that p = p’, p. = q’ andp p+i for a = 0,...,

1. We will describe, in the next paragraph, admissible executions Pa for a = 1,..
.,

v of

protocol P so that p has the same view in p1 and Pa*1• Furthermore, the view of po = p’ in

execution Pi is the same as the view of p’ during the execution ext’(p’), a possible execution

of P imagined by p’ to determine its decision value during execution p’ of protocol Q, and

so during pj, p must decide on value w(p’). Similarly the view of p., = q’ during execution

p., will be the same as the view of q’ during ext(p’), so during p.,, p must enter a decision

state with value w(q’). Just as in the case S = 1, a standard argument shows that for some

a = 1,. . .,v, the execution p. causes processors pi and p to enter decision states with

final vajues W(Pa_1) and w(pa) such that

rn—tIw(pai) - w(Pa):] v(p’) - w(q’) [8(v(1),. v(n))

The construction of Pa aLso ensures that there are at most (u — 1)t processors from which

Pa—i and Pa both receive round S messages during p, so that the admissible execution p

satisfies all the conditions in the theorem.

Each execution Pa will be identical to p’ for each processor during rounds 1,. . S — 2.

We next describe rounds S — 1 and S of the executions pY In the sending phase of round

‘in the formal model of 9, we would also need to specify in which order the processors take steps, and in

which order the various messages in a round are received, in order to completely specify an execution. For

example, we could choose to let processors take steps in round robin order 1,. , n, 1,2,..., and similarly to

let messages arrive in the order used for the formal description of protocol Q.

57

S — 1 during each execution pa, every processor sends its history to every processor. Let

Ms(p) denote the set of messages (of rounds 1,. . .,S — 1) sent from a processor in .14: to p

during the execution p’, except for those of these messages that are received by p in rounds

1,. ., S — 2. (Recall that 14 denotes the set of n — t processors used in Q by processor

p’ to determine its decision value) Thus M,s (p) is the set of messages that p receives in

round S — 1 of the execution ext”(p’) of P that p’ imagines when computing its decision

at the end of execution p’ of Q. Similarly, let M9’(p) denote the se of messages (of rounds

1,.. .,S —1) from a processor in Rq’ top that are not received by p in rounds 1,. —2.

Without loss of generality, we can renumber the processors so that the lowest numbered

processors are those in both 14: and Rq’, and next come those in 14: but not and

then those in neither nor 14, and finally those in R1. but not in 14.. That is since

each of 14’ and contain n — t processors, we can assume that R,t = {1,... n — t} and

1?. = {i I n— 2t+}u{I vi — t + ‘ < i}, for same ‘ 0. The hypothesis of the

induction is that 14:9 R.:I (v — 1)t, which implies that) satisfies vi — 2t — (ii — 1)t.

Now we construct the receiving phase of round S — I of the execution p for a = 1, ...r.’

by requiring that the set of messages received by processor p during round S — 1 be M4p)

if (a — 1)t <p vi —1, and be Mq’(p) otherwise.

In the sending phase of round S duiing each execution p, each processor sends its history

to every processor. The construction of the receiving phase of round S of the executions will

be given separately for the cases v 2 and ii = I. First suppose u 2, In the execution pi,

during round 5, processor po receives all the messages sent by processors 1,. . . vi I during

rounds 1,. S that it had not previously received. In the execution pi every other processor

(in particular p) receives in round S ail the messages sent by processors t ÷ 1,. . . vi during

rounds 1,. ., 5, that it has not previously received. For a = 2, — 1, in the execution

p, the messages received by Pa—i are those from processors 1, - - (a — 2)t and those from

proceors (a — 1)t + 1,. vi (except for those of these messages that have been received

before), while all processors except paj receive the messages from processors 1.
•, (— 1)t

and from at — 1, ., vi that they have not received before. The execution p has round S

where processor pM_i receives all outstanding messages from processors 1 - (ii — 2)t and

from (v— i)t-,-i, . - - vi, while all the processors except p,,_i receive the outstanding messages

58

fromprocessors1,...,n—2t+4’andfromn—t+Ø-f-1,...,n.Inthecaev=1weneedto

construct only the execution P1, with round S in which processor pa receives aLl the as yet

undelivered messages from processors 1,. , ii — i and each other processor receives all the

messages from processors t + I,.. , n that it had not received before.

It snow straightforward to see that the executions construct-ed above have the properties

claimed for them, completing the proof of the induction step of the argument. Q.E.D.

12 The Asynchronous Crash-Failure Model

We now consider the approximate agreement problem in an asynchronous crash-failure sys

tem, which is just like the asynchronous failure-by-omiion system discussed so far, except

that the “adversary” is restricted in the ways it can have processors fail. In a crash-failure

system processors may crash or they may operate correctly, but they can not omit tc send a

message and then continue functioning. In the formal model of §9, we say that an execution

or partial execution is a crash-failure execution or partial execution if every configuration

is the failure-free result of the previous step unless the previous event was (p, f) for some

p. Since crash-failure executions form a subset of the failure-by-omission executions, it is

obvious that any algorithm that solves the S-round Approximate Agreement problem in a

failure-by-omission system will also solve the problem (with at least as good a performance)

in a system where crashes are the only possible failures. However, it is (a priori) conceivable

that there is some protocol that solves the problem in a crash-failure system, and that uses

the special nature of the crash-failure system to obtain better performance than is possible

for any algorithm in the more general failure-by-omission system. We show that this is

not the case by converting any protocol for the crash-failure model into a protocol for the

failure-by-omission model, and then applying Theorem 24. Thus the lower bound of §11 also

applies to the crash-failure model, and so the protocol of §10 remains optimal in the more

restricted crash-faiLure system.

We introduce full-information protocols for crash-failure systems, with the fo))owing form:

• For r = 1,2,..., 5 successive]y

(i) Send a message (r, hist) to each processor (including p itself) where hist is p’s

59

history (its view in the partial execution so far), that is its initial value and a

record of the messes that.p received at each step.

(ii) Wait, trying to receive messages with 1,2,. .,r as the first component, while p

knows that some message remains in transit to p. That is, wait until p has

received a round rj message from q (for every choice of i and q such that there is

a round r message from q with r2 > r1 among the messages p received, or among

the messages whose receipt is reported in the histories that are the messages p

received), and until there is a set of n
— t processors (including p itself) such that

p has receive.d r nwssages (one with each first component from 1 to r) from each

of these processors during the execution.

Finally decide on a value w(p) that is same function of p’s history, and thereafter do

not send or try to receive messages.

Any S-round protocol, such that in every admissible crash-failure execution each processor

that does not crash reaches a decision, can be implemented by a crash-failure full-information

protocol. The proof of this fact is follows exactly the same method as the proof of Theo

rem 23.

We now show that any crash-failure full-information protocol caE be simulated by a

full-information protocol for the failure-by-omission model.

Lemma 25 Let P be an S-round crash-failure full-information protocol. Then then exists

an S-round failure-by-omission full-information protocol Q, such that for every admissible

execution p of , there is an admissible crash-failure execution p of P, where the initial

value of each processor is the same in p’ as in p, the same processors crash in p’ as in p, and

the decision value of each procesaor that does not crash is the same in p’ as in p.

Proof: We note that different S-round crash-failure full-information protocols differ only in

the way decision values are assigned to decision states, and so we can talk about an execution

of the S-round crash-failure full-information protocol without needing to fIrst specify which

such protocol is involved. Thus we will first describe a construction that associates to

any admissible failure-free execution a of an S-round failure-by-omission full-information

protocol an admissible failure-free execution convert(a) of the crash-failure full-information

60

protocol, where the association has the property that the initial value of each processor is

the same in convert(u) as in a, and the view of each processor in convert(c) depends only

on that processor’s view in ci.

We will construct convert(o) inductively, round by round. Let the initial state of each

processor in convert(a) be that with the same initial value as in a. We thus have a partial

execution where each processor is at the start of round I, and the history of a processor in

this depends oniy on the initial value of that processor in a. As the induction step of the

construction, assume that we have constructed a partial execution at the end of which each

processor is at the start of round r, in such a way that the history of each processor in the

parti& execution depends only on the history of that processor up to the end of round r — 1

in a. We will first extend this partial execution to bring each processor to the end of the

sending phase of round r. We do this by considering each processor in turn in order (i.e

processor 1, then processor 2, ..., then processor n), and extending the partial execution by

having that processor send its history to every processor. Thus we see that we have extended

the partial execution and brought every processor to the end of the sending phase of round

r, and that the history of a processor in the extended failure-free partial execution depends

only on its state at the end of round r — 1, and thus only on the history of that processor

up to the end of round r 1 in a.

We will now extend the partial execution further, to bring each processor to the end of

round r. We first examine all the messages in transit in the configuration at the end of the

partial execution constructed so far. We say that a round r’ message that was sent from

processor p to processor q (and that is stiLl in transit) is primary for round r if in ci the round

7’ message from p to q was received by q during round t. Once again consider each processor

in turn. When considering processor p we will describe three successive extensions to the

partial execution constructed so far. First, extend the partial execution by steps in which p

receives all the messages in transit to it that are primary for round r. Next if the round r

message from p to itself was not primary for round r further extend the partial execution

by a step in which p receives the round r message from itself. This ensures that there is

some set of it — t processors including p itself such that p has received r messages from each

of these processes during the partial execution constructed so far. Finally, consider all the

61

messages that were in transit top and primary for round r, together with all the messages

whose whose receipt is recorded in the histories that are the contents of messages in transit

to p that were primary for round r. Foe each such message, say a round 9 message from p’

to q’, extend the partial execution by the receipt of all messages sent by p’ to p in rounds

1,. .,r’ — 1 that have not yet been received. Notice that the contents of these messages can

be deduced from the contents of the messages received by p that are primary for round r.

This brings processor p to the end of round r. If we consider the view of a processor p in the

partial execution constructed, we see that it depends on the view of p at the end of round

r —1, and on the messages in transit to p that are primary for round r, but on nothing else.

Each of these can be deduced from the view of p at the end of round r in a. This completes

the establishment of the induction step of the construction.

Now, to construct Q, we need only specify the decision value that a processor p should

choose after the completion of roundS, given the history h of pup to that point. First, we

choose some admissible failure-free execution e of the full-information protocol such that p

has history 1. in up to the end of round S. Note that the history of p in is simply Pt

followed by an infinite number of steps in which no message is received. We now consider

the execution convertV) of P and let the decision value of p in Q after h he chosen to be the

decision value of p in P in convert(C). The fact that this value is independent of the choice

of is immediate from the property claimed for the association between C and convert(e).

Thus we have defined Q. Now given the admissible execution poi , let a be an admissibLe

failure-free execution of Q in which each processor that does not crash in p has the same

view as in p. Let p’ be defined to be the same as convert(a) except that every processor that

crashes in p crashes in rho’ exactly at the end of round S. That is. each step (p0) for such

a processor after the end of round 5, is replaced by a step (p, f). With this choice of p’ we

see that all the conditions required in the lemma are satisfied. Q.E.D.

Finally we complete our analysis by showing that the lower bound proved in §11 applies

to S-round protocols for solving Approximate Agreement in crash-failure systems.

Theorem 26 For any S-round protocol P that solves the t-resilient Approzimale Agreement

Protilem in an asynchronous, crash-failure system, there is an admissible execution p’ (in

which the initial value of p’ will be denoted v(p’)} and processors p and q that enter decision

62

states with final values w(p) and w(q) stick that

In — ti—s
w(p) — w(q) 8(v(i),. .,v(n))

Proof: In the following discussion we will assume that P is a full-information protocol. If

P is some other S-round protocol we can find a full-information protocol to implement it,

use the proof below to find an admissible execution of that, and then take the corresponding

execution of the original protocol. This will have the desired properties.

By Lemma 25, we can find an S-round failure-by-omission full-information protocol

Qthat implements protocol P. We first show that Q solves the Approximate Agreement

problem. Let p be any admissible execution of the protocol Q. The corresponding crash-

failure execution p’ of P is admissible and since P solves the crash-failure Approximate

Agreement problem, we must have that the decision value of each processor that does not

crash in p’ lies within the range of the initial values. Since the initial values, the set of

processors that do not crash, and their decision values, are all the same in p’ as in p, we

deduce that the decision value of each processor that does not crash in p lies within the

range of the initial values.

Theorem 24 implies the existence of a particular execution p of 2, for which there are

processors p and q whose decision values satisfy

n—f
;w(p)

- w(q)I [] 6(v(1),. .,v(n))

The corresponding execution p of P therefore has the properties required for this theorem.

Q.ED.

13 Summary of Results

For synchronous systems, we have presented new algorithms to solve S-round t-resilient Ap

proximate Agreement in each of the crash-failure, failure-by-omission and Byzantine failure
models. The algorithms have the nice property that they can be easily modified so that they
can be started without knowing how many rounds of communication will be used, and they
give intermediate resu]ts that get closer and closer together, reaching exact agreement once
S t + I.

63

For fixed S, the algorithms’ performance is asymptotic to the best possible as n/t — cc.

Finding exactly matching lower bounds and upper bounds remains an cpen question. The

results in this paper for synchronous systems are summarized in the following table (all

except the lower bound for the Byzantine model are new results)

j Model Aigorithm Lower Bound

L(S)

L(S)k(s) K>Failure-by—Omission r K (2n_2t)(2n_4t)S_I — (Zn+St)s

Crash-Failure K jK (3n+at)S

Byzantine Failure K
—

L(S) K>

where L(S) = sup(li 4s tLl ± Is t eachI a nonnegative integer).

All the algorithms given for synchronous systems are similar in that they involve proces

sors exchanging information and then forming multisets W (q, , q, *, . . , *, p) to represent

all the information {v(qi, . . . q, q÷i, . . , qs,p) 1,2,..., n for j > r}, using the opera

tions of combining multisets and removing extreme values repeatedly to increase the amount

of unanimity in each multiset. In the failure-by-omission and Byzantine failure models we

also try to detect which processors are faulty, and ignore messages sent by processors that

have been detected.

The algorithms introduced here for synchronous systems require exponential amounts
(o(n51) bits) of message traffic5, like most other consensus or Byzantine Agreement algo

rithms. In the crash-failure model it is easy to modify our algorithm to use only O(n3S)

bits of message traffic since a processor’s history (and thus its message) is determined by

(and so can be encoded by) what it knows of the n initial values and the last message known

to have been sent by each other processor. Similady in the omission-failure model we can

modify our algorithm to use only O(n4S’) bits of message traffic, since a processor’s view of

the system is determined by what it knows of the n initial values and the list of which of the

messages in each prior round it knows were sent. A detailed analysis of the complexity

of determining a processor’s history in the crash-failure and failure-by-omission models can

be found in MT]. In the Byzantine model Coan has introduced a transformation that can

encode algorithms of our type so as to require only polynomial communication (IC]). How

ever Coan’s transformation costs a few rounds of communication, and so the transformed

8assuming • fixed precision for real numbers

64

algorithm will not have performance that is asymptotic to optimal. The decision in practice

between transformation of our algorithm, and the iteration of the one round algo

rithm of [DLPSWJ (which involves only O(n2S) message traffic) will depend on the details

of the system.

Jn asynchronous crash-failure or failure-by-omission systems, we have introduced a simple

round-by-round algorithm that so]ves the (-resilient Approximate Agreement prob!em using

S rounds of communication. This algorithm has performance K [!:r S, which is optimal

in either model, by a new lower bound that depends on a lemma expressing the intuition

that the adversary can do no more harm by causing failures than it could merely by delaying

messages.

References

[CM] K. Chandy, J. Misra, ‘How Processes Learn”, Distributed Computing, 1, 40—52

(1986).

[DOS] D. Dolev, C. Dwork, L. Stockmeyer, “On the Minimal Synchronism Needed for

Distributed Consensus”, JACM, 34,1, 77—97 (1987).

IDLPSW] D. Dolev, N. Lynch, S. Pinter, E. Stark, W. Weihl, “Reaching Approximate

Agreement in the Presence of Faults”, JACM, 33, 3,499—515 (1986).

[Fl] M. Fischer, “The Consensus Problem in Unreliable Distributed Systems (A Brief Sur

vey)” Yale University Technical Report YALEU/DCS/RR-273 (1983).

[FL] M. Fischer, N. Lynch, “A Lower Bound for the Time to Assure Interactive Consis

tency”, Information Processing Letters 14,4, 183—186 (1982).

[ELF] M. Fischer, N. Lynch, M. Patterson, “Impoibility of Distributed Consensus with

One Faulty Process” JACM, 32,2,374—382(1985).

.1. HaIprii. 1 Xtse, kricwlcdge and Common Knowledge in a Distributed En

vironment”, Proceedings of the 3rd ACM Symposium on Principles of Distributed

65

Computing, 50—61, August 1984. A revised version will appear as IBM Research Re

port RJ 4421, August 1987.

rHSSD 1 Halpern, B. Simons. R. Strong D. Dolev, “Fault-tolerant Clock Synchroniza

tion”, Proceedings of the 3rd ACM Symposinm on Principles of Distributed Comput

ing, 89—102, August 1984.

fLL] 3. Lundelius, N. Lynch, “A New Fault-Tolerant Algorithm for Clock Synchronization’,

Information and Control, 62, 2, 190—204 (1984).

(LaM] L. Lamport P. Melliar-Smith, “Synchronizing Clocks in the Presence of Faults”,

JACM, 32, 1, 52—78 (1985).

IMS] S. Mahaney, F. Schneider, “Inexact Agreement: Accuracy, Precision and Graceful

Degradation”, Proceedings of the 4th ACM Symposium on Principles of Distributed

Computing, 237—249, August 1985.

[PSLI M. Pease, R. Shostak, L. Lamport, “Rearhing Agreement in the Presence of Faults”,

JACM 27, 2, 228—234 (1980).

66

