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Abstract. This pape r  introduces some a lgor i thms 
to solve crash-failure, fa i lure-by-omiss ion and  By- 
zantine failure versions of  the Byzant ine Genera ls  
or consensus problem,  where non-faul ty  processors  
need only arr ive at values tha t  are close together  
ra ther  than  identical. F o r  each failure model  and  
each value of S, we give a t-resilient a lgor i thm using 
S rounds  of communica t ion .  I f  S = t +  1, exact  
agreement  is obtained.  In  the a lgor i thms for the 
fa i lure-by-omiss ion and  Byzant ine failure models ,  
each processor  a t t empts  to identify the faulty pro-  
cessors and  corrects  values t ransmi t ted  by them 
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to reduce the a m o u n t  of  disagreement .  We also 
p rove  lower bounds  for each model ,  to show tha t  
each of our  a lgor i thms has a convergence rate tha t  
is a sympto t i c  to the best possible in tha t  model  
as the n u m b e r  of  processors  increases. 

Key words: Dis t r ibuted  a lgor i thms - Fau l t - to le ran t  
consensus p rob lems  - Byzant ine agreement  p rob-  
lem A p p r o x i m a t e  agreement  

I The problem and statement of results 

An i m p o r t a n t  quest ion in the design of fault- toler-  
ant  d is t r ibuted systems is how to enable  non-faul ty  
communica t i ng  processors  to agree even when 
faulty processors  in the system are interfering by 
provid ing  different correct  processors  with different 
informat ion.  Examples  of appl ica t ions  include 
agreeing on whether  to c o m m i t  a da t abase  t ransac-  
t ion and  agreeing on which copy  of a file is the 
p r ima ry  copy. Classical fo rmula t ions  of  this p rob-  
lem are k n o w n  as the interact ive consis tency p rob-  
lem and  the Byzant ine  Genera l s  p rob l em [6]. 
These p rob lems  have  been studied in several m o d -  
els of  computa t ion .  In  the m o s t  general  synchro-  
nous  mode l  it has  been found  [-14, 11, 7] tha t  any  
solut ion resilient to t faulty processors  requires at 
least 3 t + 1 processors  and  at least t + 1 rounds  of 
c o m m u n i c a t i o n  in the wors t  case. The  b o u n d  on  
rounds  of c o m m u n i c a t i o n  also holds in more  re- 
strictive failure models .  In  some pract ical  s i tuat ions 
comple te  agreement  is not  required - e.g. in syn- 
chronizing clocks [-8, 10, 9] or  reading a sensor,  
it is often good  enough  if all the values held by 
different processors  are close together.  We m a y  
hope  for p ro toco ls  using fewer rounds  of c o m m u n i -  
ca t ion  for this p r o b l e m  called the a p p r o x i m a t e  
agreement  p rob lem,  which was first s tudied in [4]. 

In  this pape r  we s tudy a t-resilient a p p r o x i m a t e  
agreement  p rob l em in this form:  there are n proces-  
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sors labeled 1, 2 . . . .  , n. These processors are linked 
by a complete, synchronous, fault-free, point-to- 
point network which is the only means of interpro- 
cess communication. In each execution there is 
some subset Corr of processors (the correct ones), 
so that if pc Corr then p executes the given algo- 
rithm. We consider three models of computation 
distinguished by the flexibility of behavior of the 
other (faulty) processors. In the crash-failure model 
a faulty processor executes the given protocol up 
to some point and then halts (without loss of gener- 
ality we assume the crash doesn't occur in the mid- 
dle of sending a message). In the failure-by-omission 
model a faulty processor may neglect to send a 
message that the protocol calls for it to send, and 
it may halt, but it does not send any message that 
is different from what the protocol requires. The 
most general model is the Byzantine model, in 
which a faulty processor may change state or send 
a message arbitrarily. We denote the set of faulty 
processors by Fault={1,2, ..., n}\Corr and set 
f =  [Fault[. We also let Crash denote the subset of 
Fault consisting of processors that halted during 
the execution. Each processor p has an initial value 
v(p) which is a real number and at the end of any 
execution of the algorithm for which f_< t each cor- 
rect processor p must arrive at a new value w(p) 
satisfying a validity cndition: in the crash-failure 
and failure-by-omission models this is that for cor- 
rect p, w(p) must lie within the range of the initial 
values. In the Byzantine model we do not trust 
the initial values of faulty processors, so we insist 
that for correct p, w(p) must lie within the range 
of the initial values of the correct processors. Natu- 
rally we put no requirement on the final state of 
the faulty processors, nor on the behavior of cor- 
rect processors when more than t processors are 
faulty. 

We denote the smallest interval containing a 
collection of values V by p(V) and its length, the 
diameter of V, by 6(V) so that p(V) is the interval 
[min (V), max (V)] and 8(V)=max ( V ) - m i n  (V). 
Let us denote by U the collection of initial values 
of all processors and by ~ the collection of initial 
values of correct processors, so U={v(p)} and 
U={v(p):pcCorr}. We can express the validity 
condition in the failure-by-omission and crash-fail- 
ure models by "if [Faultl<t and pcCorr then 
w(p)cp(U) ". Similarly in the Byzantine model the 
validity condition is "if [Fault[ <_ t and pc Corr then 
w(p)cp(O) ". 

We will measure the performance of such an 
algorithm by the change in the range spanned by 
the values of the processors. Thus we measure per- 
formance in the crash-failure and failure-by-om- 

ission models by 

({w(p):pcCorr}) 
K = sup 3 (U) 

and in the Byzantine model by 

K = sup 8({w(p)" pc Corr}) 
8 ( 0 )  ' 

in each case the supremum being taken over all 
executions with ]Fault[ < t (so a good algorithm is 
one with a low value for K). Notice that the identi- 
fication of processors as faulty or correct is avail- 
able to us when analyzing the execution, but is 
not necessarily known to the processors during the 
running of the algorithm. 

Since the failure-by-omission model allows any 
faulty behavior that is allowed in the crash-failure 
model (as well as other forms of faulty behavior), 
we see that any alogirthm that solves the approxi- 
mate agreement problem in the failure-by-omission 
model also solves it in the crash-failure model, and 
the performance K of the algorithm in the crash- 
failure model is less than or equal to the perfor- 
mance in the failure-by-omission model. Similarly 
any algorithm that solves the approximate agree- 
ment problem in the Byzantine failure model also 
solves it (with a performance at least as good) in 
the failure-by-omission and crash-failure models. 

For the Byzantine model, [4] gives an algo- 
rithm using only one round of communication, val- 
id when n > 3 t ,  with performance K = [ ( n  
--2t)/t]-x. This is optimal if only one round of 
communication is allowed. We can clearly iterate 
this algorithm (that is, use the final values produced 
by one execution as initial values in another and 
then use the final values of that as initial values 
in a third execution, and so on for S rounds). This 
gives an S-round solution with K = ( [ ( n - 2  t)/t])-s. 
The paper [4] raises the question of whether it 
is possible to design an S-round algorithm that 
combines the information from different rounds to 
obtain better performance. This paper addresses 
this issue and also considers the impact of changing 
the failure model. 

First we give a new one round algorithm valid 
in the crash-failure model whenever n > t. This al- 
gorithm is very similar to the algorithm of [4], 
but uses a different method of removing extreme 
values and averaging, specially tailored to the more 
restricted failure model. Our algorithm attains a 
performance K=t/ (2n-2t ) ,  which is asymptoti- 
cally (as nit ,09) twice as good as the algorithm 

t/(2 n - 2 t) 1 
of [4], since lim,/,_~ o~ [ ( n - - 2 t ) / t ] - l = 2 "  This im- 



proved performance may be understood through 
the following intuitive reasoning: a Byzantine fault 
gives different processors two different ideas, say 
v and w, of the initial value of a processor. Two 
crash failures can produce a similar effect, by giving 
one processor the impression that a pair of initial 
values are v and no value, while another processor 
receives the impression that the same initial values 
are no value and w. Thus one can expect an algo- 
rithm tolerating t crash failures to have similar per- 
formance to one that tolerates t /2  Byzantine faults. 

If we iterate this one-round algorithm for S 
rounds, we might expect to obtain a performance 
of ( t / ( 2 n - 2  t)) s. In fact we show that we actually 
do much better the iterated algorithm has perfor- 
mance 

K _< sup ( l l . . .  ls : l~ + . . .  + ls <_ t, each l~ a nonnegt ive  integer) 
(2 n - 2 t) s 

By elementary calculus this supremum is at most 
t s / s  s so we see 

t S 

K <_ S S ( 2 n _  2 t ) s .  

The reason the iterated algorithm does so well is 
that differences between processors' values at the 
end of a round are entirely due to failures that 
occur during that round - a processor that fails 
earlier provides the same lack of information to 
all others, and one that fails later provides the same 
good information to all the processors in the round 
in question. Thus if lr processors crash during 
round r, then the span of values is multiplied by 
a factor l r / ( 2 n - 2 t )  during that round. Since each 
faulty processor can crash during at most one 
round, we see that ll  + 12 + ... + ls < t. 

We give a new lower bound for K in the crash- 
failure model, namely 

K _> sup (11. . .  ls: 11 + . . .  + ls < t, each Ii a nonnega t ive  integer) 
( 2 n +  3 t )  s 

for any algorithm using S rounds of communica- 
tion, whenever n > t + 1. Thus for fixed S our iterat- 
ed algorithm for the crash-failure model is asymp- 
totic to the optimum (that is, the ratio of our algo- 
rithm's performance to the lower bound tends to 
the limit 1) as ni t  increases, that is, as the number 
of processors increases relative to the number 
faulty. 

In the failure-by-omission and Byzantine failure 
models we cannot say that a processor sends differ- 
ent information to different processors during only 
one round. Thus we introduce algorithms which 
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use f a i l u r e  de tec t ion .  We provide a way for one 
processor to detect that another processor has 
failed. Each processor ignores any values sent to 
it by a processor known to have failed, so that 
after a processor is universally detected as faulty 
it will be unable to provide different information 
to different processors. We also use operators that 
remove extreme values from collections of values 
in such a way that they eliminate any differences 
introduced between processors' information by a 
faulty processor that escapes universal detection. 
Thus each faulty processor can cause differences 
between other processors' information only once, 
namely in the round in which it becomes universal- 
ly detected as faulty. A technique of detection of 
faulty processors was used earlier in the similar 
problem of inexact agreement (where there is an 
a priori bound on the diameter of initial values 
of correct processors) in [12]. 

We give an algorithm using failure detection 
in the failure-by-omission model. This algorithm 
is valid when n > 2 t, and has performance 

K _< sup (ll  . . .  ls : 11 + . . .  + ls <- t, each Ii a nonnega t ive  integer) 
( 2 n - - 4 t ) s -  l ( 2 n -  2 t )  

which is asymptotic to optimal (in the sense that 
for fixed S the ratio of the algorithm's performance 
to the lower bound tends to the limit 1 as n/ t  tends 
to infinity), since the lower bound for the crash- 
failure model applies also to the more general fail- 
ure-by-omission model. 

For the Byzantine failure model, we offer an 
S-round algorithm valid when n > 4t, with perfor- 
mance 

K <_ sup (11... ls: ll + ... + ls <- t, each l~ a nonnegative integer) 
( n -  2 t ) ( n - 4 t )  s -  a 

For large n this is asymptotic to S s times better 
than the performance of the iterated algorithm 
from [4]. We prove the lower bound for an S- 
round algorithm resilient to t Byzantine failures: 

K > sup ( l l . . .  ls : 11 + . . .  + ls <_ t, each l~ a nonnegt ive  integer) 
(n + t) s 

whose asymptotic form is due to [4]. Therefore 
our algorithm is asymptotic to the best possible 
(in the sense that for fixed S the ratio of the algo- 
rithm's performance to the lower bound tends to 
the limit 1 as ni t  tends to infinity). 

It is worth noting that if S = t + 1 the expression 
sup (11... ls : 11 + .. .  + ls <- t, each li a nonnegative 
integer) is zero, as one of the li must be zero, and 
so each of our algorithms (when run for t + l  
rounds) produces exact agreement. Even in the By- 
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zantine failure and failure-by-omission models 
(where our algorithms are not iterated applications 
of a one round algorithm) our algorithm for S 
rounds starts by doing all the communication of 
the S - 1  round algorithm, so our algorithm can 
be modified to output tentative values (after each 
round the new values can be calculated as if that 
round were the last) this permits the values held 
by the correct processors to approach one another 
rapidly, finally agreeing once t +  1 rounds have 
passed. 

The multi-round algorithms introduced here 
for the failure-by-omission and Byzantine failure 
models require exponential amounts (O(n s+ 1)bits) 
of message traffic 1, like many other consensus or 
Byzantine Agreement algorithms. In the failure-by- 
omission model we can modify our algorithm to 
use only O(n4S 2) bits of message traffic, since a 
processor's view of the system (and thus its mes- 
sage) is determined by (and so can be encoded by) 
what it knows of the n initial values and the list 
of which of the n 2 messages in each prior round 
it knows were sent. A detailed analysis of the com- 
plexity of determining a processor's history in the 
crash-failure and failure-by-omission models can 
be found in [13]. In the Byzantine model Coan 
[-1] has introduced a transformation which can en- 
code algorithms of our type so as to require only 
polynomial communication. However Coan's 
transformation costs a few rounds of communica- 
tion, and so the transformed algorithm will not 
have performance that is asymptotic to optimal. 
The decision in practice between Coan's transfor- 
mation of our algorithm, and the iteration of the 
one round algorithm of [4] (which involves only 
O(n2S) message traffic, but produces values that 
are farther apart) will depend on the details of the 
system. 

The reader should note that our algorithms are 
optimal only asymptotically, as the number of pro- 
cessors n increases relative to the number of faults 
tolerated t. For systems in which n is not very large 
relative to t (say, n ~  50t) the performance of our 
algorithms is far from optimal, although our algo- 
rithms still give closer final values than merely iter- 
ating the algorithm of [4]. Finding algorithms that 
are precisely optimal in each failure model remains 
an open question. 

In w 2 we give the notation and technical lem- 
mas we will use later. w 3 describes the iterated al- 
gorithm for the crash-failure model, and analyses 
it. Next w 4 describes the multi-round algorithms 
for the failure-by-omission and Byzantine failure 

1 Here we assume a fixed precision for real numbers 

models. In w 5 and w 6 these algorithms' correctness 
and performance are analyzed. In w 7 and w 8 we 
prove the lower bound for the Byzantine failure 
model and the crash-failure model, respectively. Fi- 
nally in w 9 we summarize our results. 

2 Notation and lemmas 

In order to give the algorithms precisely, we intro- 
duce the language of multisets. A formal account 
appears in [4] but for our purposes it is enough 
to think of a multiset as an unordered collection 
of entries, with values that need not be distinct. 
For each value v and multiset V we denote the 
number of entries in V with value v (the multiplicity 
of v) by mult (v, V). The values may be either real 
numbers or the special symbols • (which we will 
use to denote a value not received in round r be- 
cause, for example, a processor failed to send it). 
We define union, intersection, cardinality, sum and 
mean for multisets in the obvious ways, so for any 
v, mult(v, V~ W)=min(mult(v, V), mult(v, W)) and 
mult(v, Vu W)=mult(v, V)+mult(v, W), and also 
IVl--~mult(v, V), ~V-~v .mul t (v ,  V) and 

mean(V) = I VI- 1 ~ V. Also let double(V) be defined 
by mult(v, double(V)) = 2. mult(v, V). 

As in [4] we will try to reduce the range of 
values held by processors by using operators that 
act on multisets by removing extreme values. Let 
V be a multiset with IVI--N. We put redk(V) to 
be the multiset with N - 2 k  entries formed from 
V by removing the k highest entries and also the 
k lowest entries. We order the values by treating 
• as greater than any real number and also as 
greater than • if r>R. For the failure-by-omis- 
sion model we will use similar operators chop~ that 
prefer to remove as many occurrences as possible 
of • rather than removing other values. If I VI = N 
and mult(l~, V)=j then chop~(V) is a multiset of 
2 N - 2 k  entries formed from double(V) either by 
removing 2 k copies of • (in the case j > k) or else 
by removing all 2j copies of • and then removing 
the k - j  highest and k - j  lowest of the remaining 
entries. 

We similarly have operators to find a single 
number to be an "average" for a multiset. Suppose 
I VI--N and at least N - k  entries in V are real 
numbers. Then we put midk(V)=mean(redk(V)). 
Similarly if ] VI = N, at least N -  k entries of V are 
real numbers and mult(• V)=0 for r >  1 we define 
centerk(V)=mean(chop~(V)). The facts below and 
the conditions given in each case will ensure that, 
in our algorithms, a mean is only taken for multi- 
sets of real values. 



As examples: 

�9 { - 1 ,  - 1 , 0 )  u { 0 , 1 } = { - 1 ,  - 1,0,0, 1) 

�9 { -  1, - 1, A_l} w {0, •  3-2} 
= { - - 1 , -  1, 0, 3-1, -[_ 1, -[-2} 

�9 { - -  1, -- 1 ,0 ,0}  ~ { - -  1 ,0 ,0 ,  1 } =  { - -  1 ,0 ,0}  

�9 I { - 1 , - 1 , 0 } 1 = 3  

�9 I { -  1, - 1,0, _1_1}1=4 

�9 r ed2 ( { - I ,  - 1 ,  - 1 , 0 , 0 ,  1} )={-1 ,0}  

�9 red1({-1 , - 1 , 0 ,  3 , 1 , 3 , 2 ) ) : { - 1 , 0  , 3,1} 

�9 chop2({-1,  O,O, 3-2, 3-2}) 

= { - - I , -  1, 0, 0, 0, 0, 22,  3-2} 

�9 chop2({-1,  O,O, 3_2, 3 ,2})={-1 ,0 ,0 ,0}  

�9 mid2({-1,  - 1 ,  - I , 0 ,  1, 3,t})= -0 .5  

�9 center3({-1, - 1 , 0 ,  1, 3"1})= -0 .5  

�9 center2({-1, - 1 , 0 ,  l, 2-1})= - 1 / 3  

In our discussion we will need to know how the 
operators introduced affect the range of values in 
a multiset and the differences between two multi- 
sets. We have the following results: 

Lemma 1 [4]. I f  g is a multiset with I r l  = N ,  and 
at least N - k  elements of V lie in the range [a, b], 
then every element of redk(V ) lies in the range [a, b]. 

Proof. At most k elements of V are greater than 
b and all of these must be removed among the 
k highest elements of Vwhen forming redk(V). Thus 
every element of redk(V ) is less than or equal to 
b, and a symmetric argument shows that every ele- 
ment of redk(V ) is greater than or equal to 
a. Q.E.D. 

L e m m a  2 [4].  If  V and W are multisets then 
I redk (V) n red k (W)I > I Vc~ W] - 2 k. 

Proof. Since Vc~ W~_ V, redk(Vm W)~_redk(V) and 
similarly redk(VC~ W) ~ redk(W), so redk(V~ W) ~_ 
redk(V) ~ redk(W), but ]redk(Vm W)] = ]V~ W [ -  2 k. 

Q.E.D. 

Lemma 3. I f  V is a multiset with IV] = N such that 
at least N - k  entries of V are different from • 
and lie in the interval [a, b], and if l> 2k, then every 
entry of chop~(V) lies in [a, b]. 

Proof. Let mul t ( •  V)=j  (soj <_ k) and let Z denote 
the multiset of 2N- -2 j  entries formed from dou- 
ble(V) by removing all 2j copies of _l_r. Now 
chop~(V)=redl_s(Z), and at least 2 N - 2 k  entries 
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of Z lie in [a, b] so (since l - j >  2 k - 2 j )  Lemma 
1 completes the proof. Q.E.D. 

Lemma 4. Let V and W be multisets with 
[VI = [W[ =N.  Suppose that every entry in Vw W 
is one of v, w or • and that mult(A_~, V)<_ k and 
muM_k, W)<k.  Let [mult(v, V)--mult(v, W)]+ 
I mult (w, V) - mult (w, W)[ = m. Then]mult(v, chop~ (V)) 
-mult(v ,  chop~(W))L<_ m and Imult(w, chop~(V)) 
-- mult ( w, cho p~ ( W) )] <_ m. 

Proof. Without loss of generality we may assume 
v ~ w .  

If k =0, then every entry of each of V and W 
is one of v or w, so (mul t (v ,V)-mul t (v ,W))= 
- (mul t (w ,V) -mul t (w ,W)) .  In this case how- 
ever chop~ is just the operator double, so 
Lmult (v, chop~ ( V)) - mult (v, chop~ ( W))[ = 2 Imult (v, V) 
- mult(v, W)I = Imult(v, V ) -  mult(v, W)I + [mult(w, V) 
-mult(w,  W)I = m, and similarly Imult(w, chop~(V)) 
- mult(w, chop~(W))l = m. 

So suppose k>_ 1. We use induction on m. If 
m = 0  then V= W and there is nothing to prove. 
If m = l  then ]mult(• V)-mult(2_ r, W)[=I,  and 
we can assume without loss of generality that 
muM• V ) - m u l t ( 3 - ,  W)= 1, so that V is formed 
from W by by removing a single entry with value 
z (which is either v or w) and replacing it with 
an entry with value Lr. Let us put j =  mult(_k~, W) 
(so j < k - - 1 )  and let Z denote the multiset of 
2 N - 2j entries formed by removing all occurrences 
of • from double(W). Now chOffk(W) is formed 
from Z by removing the k - j  highest entries and 
the k - j  lowest entries. On the other hand, chOffk(V) 
is formed from Z by removing two entries with 
value z and then removing the k - j -  1 highest and 
k - j  - 1 lowest of the remaining entries. If z = v this 
is equivalent to removing the k - j - 1  highest and 
k - j +  1 lowest entries from Z as v is the lowest 
entry in Z, while if z = w the net effect is to remove 
the k - j  + 1 highest and k - j -  1 lowest entries from 
Z. Thus we can obtain chOffk(V) from chOffk(W) 
either by removing the ( k - j +  1)-st lowest entry 
of Z and replacing it with the (k - j ) - th  highest entry 
of Z, or else by replacing the ( k - j +  1)-st highest 
entry of Z by the (k- j ) - th  lowest entry of Z. In 
either case we see that the multiplicities of v in 
chop~(V) and chop~(W) can differ by at most 1 (and 
similarly for the multiplicities of w). 

So suppose m> 1. Without loss of generality 
we may assume mul t (L ,  W)>_ mu l t (Z ,  V). We will 
construct a multiset W' so that I W'I--N, every 
entry of W' is one of v,w or _l_~,mult(• W')<_k, 
[ mult ( v, V) - mult ( v, W')I + ]mult ( w , V) - mult ( w, W')]} 
= m - 1  and [mult(v, W')-mult(v,  W)h+lmult(w, W') 
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-mul t (w,  W)I = 1. The construction of W' will be 
different in two cases, depending on mult(• W). 
If mult(• W ) > 0  then there is a value z (either 
v or w) so that  mult(z, W)<mult(z,  V). In this case 
we let W' be formed from W by removing one 
entry with value _k~ and replacing it with z. If 
mult(_l_~, W)=mul t ( •  V ) = 0  then there is a value 
z (either v or w) so that  mult(z, W)>mult(z,  V). In 
this case we let W' be formed from W by removing 
one entry with value z and replacing it with _kr 
(this does not  violate the requirement on the multi- 
plicity of I ,  in W' since k >  1). In either case, we 
can apply the induction hypothesis to the multisets 
V and W', and also to the multisets W' and W. We 
deduce that  ]mult(v, chop~k(V))--mult(v, chop~k(W'))] 
_< m - 1 and ]mult(v, chop'~(W')) - mult(v, chop~k(W))] 
< 1. Therefore ]mutt(v, chop~k(V)) - mult(v, chop~k(W))] 
<m,  as required. Similarly ]mult(w, chop~k(V)) 
-- mult(w, chop~k(W))] < m. Q.E.D. 

Lemma 5. Suppose V and W are multisets with 
J V] = I W] = N, ] Vc~ WI >_ N - m and at least N -  k ele- 
ments of each of V and W lie in the interval [a, b]. 
Then midk(V) and midk(W) lie in [a, b] and ]midk(V ) 
-- midk (W)I <- m (b - a)/(N - 2 k). 

Proof. By Lemma 1 we see that all the entries of 
redk(V) lie in the interval I-a, b] and so their average 
midk(V) also lies in [a, b]. Similarly every entry of 
redk(W) and also midk(W) lie in [a, b]. By Lemma 
2, the multisets redk(V) and redk(W) agree in at least 
N - 2 k - m  of their entries, and for each of the re- 
maining m entries, the values can differ by at most 
b -  a as each lies in I-a, b]. Thus 

1 
]midk(V)- midk(W)] - N -  2 k ]~ redk(V) 

- - ~  redk(W)l <_m(b-a) / (N-2k) .  Q.E.D. 

Lemma 6. Suppose V and W are multisets with 
]VI=]WI=N,  such that mult(_L 1 , V)<_k, 
mul t ( •  W)<k,  mult(• V)=mult(Zr,  W ) = 0  for  
r > 1, and all real entries of  V u  W lie in the interval 
[a,b]. Let m= ~ ]mutt(v, V)-mul t (v ,  W)]. Then 

v 4 : •  

centerk(V ) and centerk(W ) lie in [a,b] and 
]centerk (V) -- centerk (W)I _< m (b - a)/(2 N - 2 k). 

Proof. The hypotheses show that  in double(V) there 
will be at most  2k entries that  are not  real, and 
all of them will be • 1 and so will be removed 
in forming chop~(V). Thus the resulting multiset 
has all its entries in [a,b] and so its mean 
centerk(V ) also lies in [a, b]. Similarly centerk(W ) 
also lies in [a, b]. 

If k = 0, then every entry of each of V and W 
is real. Therefore if we let X denote the set of real 
numbers v such that  mult(v, V)>mult(v, W) and Y 
denote the set of real numbers v such that  mult(v, V) 
<mult(v, W), then we see that  ~' (mult(v, V ) -  

v E X  

mult (v, V)-- mult (v, W)) = ~ (mult (v, W ) -  mult (v, V)) 
v ~ Y  

1 
= ~  ~ ]mult(v, V)-mul t (v ,  W)] since IV]=IWI. 

u 

Now in this case centerk is just the operator  mean 
o double = mean. Thus 

center o ( V) - center o ( W) 

_ 1 (~  v.mult(v, V ) -~"  v.mult(v, W)) 
N 

v 

1 
= ~ ~ v (mult (v, V) - mult (v, W)) 

_ 1 ((~, v(mult(v, V)-mul t (v ,  W))) 
N 

v e X  

- ~. v(mult(v, W)-mul t (v ,  V)))) 
V~Y 

1 
< ~  (( ~ b(mult(v, V)-mult (v ,  W))) 

v E X  

-- ( ~  a(mult(v, W ) -  mult(v, V)))) 
v ~ Y  

1 ( b - a )  1 
= N  5 ~ ]mult(v, V)-mul t (v ,  W)[ 

(b - a) m 
2 N  

and by symmetry 

centero (W) - centero (V) <_ (b - a) m/2 N, 

S O  

] center o ( V ) - center o (W)I <- ( b - a) m/ 2 N, 

as required. 
So suppose k _  1. We use induction on m. If 

m = 0  then V= W and there is nothing to prove. 
If m =  1 then ]mult(• V ) - m u l t ( •  W)] = 1, and 
we can assume without  loss of generality that  
mult(_l_l, V)-mult (3_l ,  W)= 1, so that  Vis formed 
from W by removing a single entry with value z 
and replacing it with an entry with value • 1. Let 
us p u t j = m u l t ( •  W) (so j<_k -1 )  and let Z de- 
note the multiset of 2 N - 2 j  entries formed by re- 
moving all occurrences of • from double(W). Let 
a' denote the value of the ( k - j ) - t h  lowest entry 
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of Z and let b' denote the value of the (k- j ) - th  
highest entry of Z. Now chop~ (W) is formed from 
Z by removing the k - j  highest entries and the 
k - j  lowest entries. On the other hand, chop~(V) 
is formed from Z by removing two occurrences 
of z and then removing the k - j - 1  highest and 
k - j - 1  lowest of the remaining entries. If z<_a', 
this is equivalent to removing the k - j - 1  highest 
and k - j  + 1 lowest entries from Z, while if z_> b' 
the net effect is to remove the k - j  + 1 highest and 
k - j -  1 lowest entries from Z. Thus in these cases, 
we can obtain chop~(V) from chop~ (W) either by 
removing the ( k - j +  1)-th lowest entry of Z and 
adding b', or else by replacing the k - j  + 1 highest 
entry of Z by a'. Clearly in these cases, the sum 
of the entries of chop~ (v) differs from the sum of 
the entries of chop~(W) by the difference of two 
elements of the interval [a, b] which has absolute 
value at most b -  a. In the remaining case we have 
a' < z < b', but chop~ (V) is obtained from chop~ (W) 
by removing two entries with value z and replacing 
them with a' and b', which will alter the sum of 
the entries by b ' + a ' - 2 z .  However b ' + a ' - 2 z <  
b' + a ' - 2 a ' = ( b ' - a ' ) < ( b - a ) ,  and also b' + a ' - 2 z  
> b' + a ' - 2 b ' =  -(b'-a ')>_ - ( b - a ) ,  so [b' + a ' - 2 z t  
_< b -  a. Thus in every case 

Icenterk(VO -- centerk(V2)[ 

1 1 b - - a  
- 2 N -- 2 k I~ chop~ (V1) - ~, chopk (V2)1 < 2 ~ } k 

as required. 
So suppose m> 1. Without loss of generality 

we may assume mult(_kx,W)>__mult(3-1,V ). We 
will construct a multiset W' so that ]W'] 
=N,  mult(J_l, W')<_k, mul t ( lr ,  W')=O for r > l ,  
all real entries of W' lie in the interval 

[a,b], ~ ]mul t ( v ,V) -mul t ( v ,W' ) ]=m-1  and 
v ~ l  i 

~', Imult(v, W')-mul t (v ,  W)I = 1. The construction 
v:;a J.1 

of W' will be different in two cases, depending on 
m u l t ( l l ,  W). If m u l t ( l l ,  W)>0 then there is a 
value z (in [a,b]) so that mult(z, W)<mult(z ,  V). 
In this case we let W' be formed from W by remov- 
ing one entry with value 3-1 and replacing it with 
z. If mult ( l r ,  W)=mul t ( l~ ,  V)=0 then there is a 
value z (in [a,b]) so that mult(z, W)>mult(z ,  V). 
In this case we let W' be formed from W by remov- 
ing one entry with value z and replacing it with 
3-1 (this does not violate the requirement on the 
multiplicity of _k 1 in W' since k > 1). In either case, 
we can apply the induction hypothesis to the mult- 
isets V and W', and also to the multisets W' and 

W. We deduce that 

I centerk (V) -- centerk (W')I 
< (m - 1)(b - a)/(2 N - 2 k) 

and 

[center k ( W ' ) -  centerk(W)[ <_ (b - a)/(2 N -- 2 k). 

Therefore 

I cen terk (V)-- center k (W)l < [centerk (V) -- centerk (W')l 

+ [ cen terk (W') -- centerk (W')I <_ m (b - a)/2 N - 2 k, 

as required. Q.E.D~ 

3 The crash-failure model: the algorithm 
Throughout this paper, for ease of exposition we 
will suppose that when a processor broadcasts in- 
formation it sends to itsetf as well as to the other 
processors, though in practice this will usually be 
implemented by remembering, rather than sending 
a message. 

In the crash-failure model, our algorithm will 
require only n > t. The one round algorithm is given 
first. In this all processors exchange their initial 
values. Each processor forms a collection of initial 
values (representing those it has not heard about 
by /1 )  and then applies the operator centert to 
this collection to produce: its new final value. In 
detail, processor p, until it fails, must perform the 
following 
�9 Broadcast v(p), and denote by v(ql, p) the value 
received by p from ql. If the message from ql is 
missing set v(ql ,p) to be _1_ 1 . 
�9 Now p assigns W(p) to be the multiset 

{v(1, p), v(2, p) . . . . .  v(n, p)}. 
�9 Finally processor p (unless it has previously 

crashed) decides on the final value w(p) 
= centert (W (p)). 

In an execution of this algorithm in the crash-fail- 
ure model, let Fail(l) denote the set of processors 
that crashed before sending any message, and let 
Fail(2) denote the set that crashed before deciding 
on their final value. Let ll=]Fail(2)\Fail(1)l 
= IFail(2)l--]Fail(l)]. Also let U 1 denote the multi- 
set {v(p):p~Fail(1)} of initial values of processors 
that are active at the start of the communication, 
and let U2={w(p):p~Fail(2)}, the final values of 
processors that reach a decision. We prove the fol- 
lowing lemma that relates the final values to the 
initial values. 

Lemma 7. Suppose n > t. In an execution of  the one- 
round algorithm above in the crash-failure model, 
such that ]Fault] < t, we have 

p(v~)~_p(V 1) 
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and 

6(UZ)<--2n~ 2 t 6(U1). 

Proof. Let Po and Pl be two processors that reach 
decisions. If q is a processor in Fail(l), then 
v(q, p0)= v(q, pl)=-J-l,  since q crashed before send- 
ing any messages. If qr then v(q, po) 
= v(q, Pl)= v(q), since q sent correctly to all proces- 
sors. (Since at least n - t  processors are non-faulty 
and have real initial values, we see from this that 
the multiplicity of L1 in each of W(po) and W(pl) 
is at most t). Finally, if qe(Fail(2)\Fail(1)), then 
either the two values v(q, Po) and v(q, Pl) are equal 
or else one out of the two values is • Thus the 
quantity ~ [mult(v, W(po))-mult(v, W(P0)I is at 

v~  / 1 

most IFail(2)\Fail(1)l=ll. If we apply Lemma 6, 
with V=W(po) , W=W(pO, N=n,  k=t,  and 
[a ,b]=p(U1),  we obtain the claimed re- 
suits. Q.E.D. 

Thus the algorithm above satisfies the validity con- 
dition, and since 11 < t we see that it has perfor- 

t 
mance K < Asymptotically this is twice as 

- 2 n - 2 t "  
good as the performance of the synchronous algo- 
rithm of [4]. (The intuitive reason behind this im- 
proved performance is that one Byzantine fault or 
two crashes produce similar differences between 
processors' views.) 

When S rounds of communication are avail- 
able, we can iterate the algorithm given above, by 
using the final values from each round (except the 
last) as initial values in the next round, and then 
deciding on the final values from the last round. 
Thus we have the following algorithm, where we 
give different names to the variables in different 
rounds to make the analysis clearer. Processor p, 
until it fails, must perform the following - 

�9 Set vl(p)=v(p). 
�9 For r = 1 . . . . .  S successively: 

- Broadcast V(p), and denote by vr(ql,p) the 
value received by p from ql in this round. If 
the message from ql is missing set v*(ql,p) to 
be • 

- N o w  p assigns Wr(p) to be the multiset 
{v~(1, p), v~(2, p) . . . .  , v"(n, p)}. 

- Then processor p assigns v ~ + l(p) 
= centert ( Wr (p) ). 

�9 Finally processor p (unless it has previously 
crashed) decides on the final value w(p)= v s + 1 (p). 

Theorem 8. Suppose n > t. Then the iterated algo- 
rithm given above is valid in the crash-failure model 
with performance 

K <_ sup  (11... ls : l~ + ...  + ls < t, e a c h  Ii a n o n n e g a t i v e  in t ege r )  

(2 n --  2 t) s 

Proof. Consider any execution of the iterated algo- 
rithm, in which ]FaultJ <_ t < n. To analyze this exe- 
cution, we will denote by Fail(r) the set of proces- 
sors that crashed before sending any message in 
round r, for r =  1 . . . .  , S, and by Fail(S+ 1) the set 
of processors that crashed before reaching a de- 
cision. Notice that Fail(r)cc_Fail(r+l). We let 
I r = JFail(r + 1)\Fail(r)l = JFail(r + 1)}- ]Fail(r)l. 
Thus I, is the number of processors that crashed 
during the r-th round of the algorithm. We let U' 
denote the multiset {V(q):qr Since each 
round is merely an application of the one-round 
algorithm, the previous lemma shows that 

p(Ur+l)~p(U r) and 6(Ur+l)<-2n~2tb(U~ ) for 

each r. Thus we deduce p(US+l)~_p(U 1) and 
11' 1 2 . . .  ls 

6(uS+ 1) <_ ( 2n~  ~ 6(U1). However ll + 12 +. . .  + ls 

= [Fail(S+ 1)[-[Fail(1)[, which is at most t. Since 
U 1 is a subset of the multiset of initial values, and 
the multiset of final values of correct processors 
is a subset of U s+ 1, this proves that the iterated 
algorithm is valid with the claimed performance. 

Q.E.D. 

In w 8 we prove a lower bound on any S-round 
algorithm for solving approximate agreement in 
the crash-failure model. This will show that as 
nit ~oo the iterated algorithm given in this sec- 
tion is asymptotically optimal. 

4 The failure-by-omission and byzantine 
failure models: The algorithms 
We now describe, for both remaining failure mod- 
els, an algorithm that provides t-resilient approxi- 
mate agreement for n processors using S rounds 
of communication (the values of t, n and S are 
"hard-wired" into the algorithms). The algorithms 
given are variants on a single plan. Thus we first 
describe this plan, using unspecified functions 
Detr, Fr and G for detecting faults and computing 
results. The specific algorithm for each failure mod- 
el is then given by explaining which function is 
to be used for each of these. Recall that for ease 
of exposition we suppose that when a processor 
broadcasts information it sends to itself as well as 
to the other processors. 
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The algori thm has two phases. First  there are 
S rounds  of communicat ion.  During the r-th round  
of communica t ion ,  the algori thm requires proces- 
sor p to broadcas t  informat ion it holds in the array 
g(Pl . . . ,  P~ - 1, P) and to collect the informat ion  sent 
to it in an array v ( p l , . . . , p ~ , p ) .  It then tries to 
deduce which processors are faulty, and next  modi-  
fies the informat ion  it received f rom processors 
known  to be faulty to form the new array 
g(Pl, . . . ,  P~, P). The me thod  processor  p uses to de- 
tect that  process q is faulty is to examine (with 
a predicate Detr) the n values which reach p repre- 
senting some informat ion that  was broadcas t  by 
q and then relayed to p by each recipient. 

After the S rounds  of communicat ion ,  a proces- 
sor will have an array of n s values to operate  on. 
The second phase now begins. The values are con- 
sidered as forming n s multisets, where 
W ( q l  . . . . .  qs,  P) contains the single value 
v (q l ,  . . . ,  qs,P).  In successive steps, several multi- 
sets are combined  into one, with el imination of 
extreme values. Thus  in the ( S - r ) - t h  combina t ion  
step processor  p builds for each choice of q , ,  . . . ,  q~ 
a multiset W ( q l ,  . . . ,  q~, * . . . . .  . , p )  by applying a 
function Fr to the union of the n multisets 
W ( q l ,  . . . ,  q , ,q~+l ,  *, . . . ,  *,P), which were con- 
structed at the previous step. At last a single large 
multiset W ( p )  is obta ined as the union  of the multi- 
sets W ( q l ,  *, . . . ,  *,p), and then this is " ave rag ed "  
using a function G to give the processor 's  new 
value w(p). 

Formally,  the algori thm requires processor  p 
to perform the following - 

�9 Set g(p)=v(p) .  
�9 I n r o u n d l :  

- B r o a d c a s t  g(p), and denote  by v ( q l , p )  the 
value received by p from q l purpor t ing  to be 
v(ql). If the message f rom qt is missing or mal- 
formed set v ( q l , p )  to be _1_ 1 . 

- Set Fault(p,  1) to be the empty  set. 
- Set ~ ( q l , p ) = v ( q l , p ) .  

�9 In round  r, for r = 2 . . . . .  S, processor  p will start  
with an array of n ~- 1 values 
( /~(ql ,q2,  " " ,  q r - l , P ) :  each q i = l ,  . . . ,  n} and a 
set Fault(p,  r - 1 )  of processors already detected 
as faulty by p. N o w  p should 

Broadcast  the array (v (q l ,  q2, . . . ,  q~- 1, P)}. 
- Denote  by v(ql  . . . . .  q r - l , q ~ , P )  the value re- 

ceived by p from q, purpor t ing  to be 
~7(ql . . . . .  q~-l,q~). If the message f rom q~ is 
missing or malformed set v (q l ,  . . . ,  qr, p) to be 

- '[-r  �9 

For  every choice of indices q l ,  . . . ,  qr -1 ,  con- 
sider the multiset of n values 

{v(ql  . . . .  , q , -  l , 1,p), 
v(ql  , . . . ,  q~- l ,  2, p), . . . ,  v(ql  , . . . ,  q~- l , n, p)}. If 
this multiset satisfies the predicate Det ,  say 
that  "q r_ l  has been detected as faulty by p 
in round  r." (Note that  when r > 2 ,  several 
choices of q l ,  . . . ,  q~-2 may lead to the same 
q , -  1 being detected.) 

- Set Fault (p ,  r ) = F a u l t ( p ,  r -  1)w {q: q has been 
detected as faulty by p in round  r}. 

- Set v(ql . . . . .  qr-  1, q~, P) 

=~'v(q l ,  . . . ,  q , - 1 , q ~ , P )  if qr~Faul t (p , r )  
) _1_~ if q~eFault (p ,  r) 

�9 At  the end of round  S, processor  p has an array 
of values v(ql  , . . . ,  qs, P). N o w  let 
W ( q l  . . . . .  qs,  P) denote  the multiset with a single 
entry g(ql,  . . . ,  qs, P). 

�9 F o r  each r decreasing from S -  1 to 1 
for each choice of q l , . . . , q r ,  processor  p 
should form a multiset  

W ( q l ,  . . . ,  qr, * , . . . ,  *, P) 

= l ,  . . . ,  qr, q r + l ,  *, . . . ,  * ,  

~ q r  + 1 = i 

where in every case the asterisks fill places so that  
there are S +  1 entries, either asterisks or indices, 
to name each multiset. 

�9 N o w  p u t W ( p ) =  U W ( q l , * , . . . , * , p ) .  
q t - - 1  

�9 Finally processor  p should decide on its final 
value w(p) = G(W(p)). 

In the Byzantine failure model,  our  a lgor i thm 
will require n > 4 t .  We say that  a multiset  of n 
values satisfies Detr if no value has multiplicity at 
least n - t .  We let Fr=red(,_4t)s-r-121 and G 
= m i d ( n - 4 t ) s  - l t .  

In the fai lure-by-omission model,  our  a lgor i thm 
will require n > 2 t. We say that  a multiset of n 
values satisfies Detr  if some entry is -l-r 1. We let 

- -  r + l  
F r  - c h o p (  2 n - 4 t ) s - ' -  , 2 t and G = c e n t e r ( 2  n - 4 t) s - 1 t" 

The r igorous analysis of the algori thms will be 
given in the following sections of the paper. Here,  
we try to indicate the essential reasons why the 
algori thms work  well. The  value ~(ql ,  . . . ,  qs ,P)  
ought  to be the initial value of processor  ql as 
passed from ql to q2 in round  1, then f rom q2 
to q3 in round  2, and so on, till qs passed it to 
p in round  S. Thus  it ought  to be equal  to the 
value ~(ql,  . . . ,  qr) that  processor  qr ought  tO have 
sent in round  r. It  m ay  not  be that  value only 
if one of the processors qi with r < i < S (along the 
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way from qr to p) omitted to send the value, or 
(in the Byzantine failure model) lied about  it, or 
if the next processor qi + ~ detected qi as faulty and 
therefore replaced the value received by _1_ i. Thus 
v(qa, . . . ,  q . . . . . .  qs, P) is ~(q~ . . . .  , qr) if every pro- 
cessor q~ for r_< i <  S is correct. Now the multiset 
W ( q l , . . . ,  qr, *, . . . ,  *,P) is formed (by repeatedly 
combining, duplicating or removing extreme 
values) out of the collection of values 
(v(qa, . . . ,  qs, P): qie{1, . . . ,  n} for all i > r ) .  Thus 
W(q~, . . . ,qr ,* ,  . . . , * , P )  ought  to contain many  
copies of the value g(q~ . . . . .  qr). In each of our algo- 
rithms we choose Fr to remove enough extreme 
values to ensure that, unless qr behaved very badly 
before or during round r, W(q l  . . . .  , qr, * . . . .  , *, p) 
will contain no entries except copies of the value 
g(qa, .-.,qr). As a consequence the multiset 
W(ql  . . . .  , q~, *, . . . ,  *, Po), computed by P0, and the 
multiset W ( q l ,  . . . ,  q ,  *, . . . ,  * ,pO, computed by 
Pa, are identical unless q, behaved very badly be- 
fore or during round r. On the other hand, if q, 
behaved very badly before round r, we ensure that  
the multiset W(qa . . . .  , qr, * . . . . .  *, p) will contain 
no entries except copies of -l-r, and so again the 
multisets computed by different processors will be 
identical. To do this, we ensure that  either q~ has 
crashed before the start  of round r (so the intended 
recipients will receive nothing and set the corre- 
sponding values to be -l-r) or else many  processors 
have detected q~ as faulty before or during round 
r (so that  any value sent by qr during round r will 
be replaced by -kr by the recipient). Thus the multi- 
set W ( q l ,  . . . ,  q,, * . . . .  , *, Po) computed by Po, and 
the multiset W(q~ . . . .  , q,, * . . . .  , * ,PO computed 
by Pl are identical except when qr behaved very 
badly for the first time during round r. Further-  
more, we ensure that  even in this case the two 
computed multisets have many  entries in common.  
This in turn ensures that  the multisets W(po) and 
W(pO have many  entries in common,  and that  
therefore the chosen final values w(po) and w(pl)  
are close together. 

5 The failure-by-omission model: analysis 

When discussing the algori thm for the failure-by- 
omission model, we will need to assume that  n > 2 t, 
since otherwise the algori thm given is meaningless, 
involving as it does operators such as G 
= c e n t e r ( 2  n - 4 t ) s -  1 t �9 

For  any execution of the algori thm in the fail- 
ure-by-omission model, for each r = 1 . . . .  , S we let 
Fail(r) denote the set of processors that  have 
crashed before sending any of the messages in 

round r. Let 

Exposed(r) = Fail(r) w (-] Fault(p, r). 
p ( ~ F a i l ( r +  1) 

Also as a convention we set 

Exposed(S + 1)= { 1 . . . .  , n}\Corr .  

Note that  Exposed(r)~_Exposed (r+ 1). We put l~ 
= ]Exposed(r + 1)\Exposed(r)l = ]Exposed(r + 1)]- 
]Exposed(r)l. We will see that  lr is the number  of 
processors whose messages in round r cause differ- 
ences between other processors' views. 

First we observe from the algori thm that  
g(ql . . . .  , qr, P) can never have the value _l_j fo r j  > r. 

Next we show that  the fault detection proce- 
dure never makes a mistake. 

Lemma 9. Suppose n> 2t. In an execution of  the 
algorithm in the failure-by-omission model, for  
which f < t ,  if  p r  and q6Corr,  then 
qr  r). 

Proof. We use induct ion on r. The case r =  1 is 
trivial as Fault(p, 1) is empty. Now for arbitrary 
r, suppose p 6 F a i l ( r + l )  and qeCorr.  Fix 
q~, .-., q~-2. If qr does not  send properly to p in 
round r (in particular if qrEFail(r)) then 
v(q~ . . . .  , q r _ ; , q ,  q r , p ) = l r .  On the other hand if 
qr does send to p in round r then 
v(qa . . . .  , q r - 2 , q ,  qr,P)=g(qm, " . , q r - 2 , q , q , ) .  But 
v(qa . . . . .  q~- z, q, qr)=v(q~ . . . . .  qr- 2, q, q~) since by 
the induction hypothesis q 6 F a u l t ( q ,  r -  1), and be- 
cause q must  send correctly v(q~ . . . . .  qr-2,q,q~) 
= / 7 ( q l  . . . . .  qr-2, q) which as we noted above is not  
equal to 2-r_ ~. Thus no entry of 
{V(ql  . . . .  , q~-2 ,q ,  qr,P): q r = l , . . . ,  n} is -J-r-a, 
proving that  qCFault(p,r).  Q.E.D. 

The behavior of the algori thm is explained by the 
following lemma, which shows that  when p does 
not  crash during execution of the algorithm, the 
multiset W(q~ . . . . .  qr, * . . . . .  . ,  p) is a good repre- 
sentative for 17(q~, . . . ,  qr), in that it often consists 
only of copies of that  value, and that  only proces- 
sors in Exposed(r+ 1)\Exposed(r)  can cause differ- 
ent processors to choose different representatives 
for a round r value. 

Lemma 10. Suppose n > 2 t. In any execution of  the 
algorithm in the failure-by-omission model, such that 
f <  t, we can conclude: 

(i): I f  p~Crash then the value of  each of  the (2n 
- 4 t )  s - r  entries o f  W(q~ . . . .  , qr, �9 . . . .  , , ,  p) is 
either g(ql . . . . .  qr) or • 

(ii): I f  qr 6 Exposed (r + 1) and p q~ Crash, then 
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(iii): 

(iv): 

mul t (g(q l  . . . .  , q,), W ( q t  . . . .  , qr, * , . . . ,  *, p)) 
= ( 2 n - - 4 t )  s - ' .  

I f  q, e E x p o s e d  (r) and p q~ Crash, then 

m u l t ( •  W ( q l  . . . . .  q,, * . . . . .  *, p)) 
= ( 2 n - - 4 t )  s -r .  

I f  Po q~ Crash and p i q~ Crash, then 

]mult(g(ql . . . .  , q~), W ( q l  . . . .  , q,, *, . . . ,  *, Po)) 

- m u l t f f ( q l  . . . . .  q~), W ( q l , . . . ,  q~, *, . . . ,  *, P0)] 

< / r + l ' / r + 2  "--Is" 

Proof. We use descending induction on r to prove 
the lemma. First, suppose r = S. 

(i): The multiset W ( q t ,  . . . ,  qs ,P)  consists of (2n 
- - 4 t ) ~  entry with value g(ql ,  . - . , q s , P ) .  
Now if q s e F a u l t ( p , S )  then g(ql, . . . , q s , P )  
= •  while otherwise v(ql, .-., qs,  P) 
=v(q i ,  . . . ,  qs ,P)  which is either equal to •  
(if qs did not  send its round S message to 
p) or to v(ql . . . .  , qs), since in the failure-by- 
omission model any value that  is sent is cor- 
rect. 

(ii)" If q s C E x p o s e d ( S +  1) then qsECorr .  We de- 
duce that  qs did send its round S message 
to p and also that  qsCFaul t (p ,S ) .  As noted 
in the discussion in part  (i) above this means 
that  v(ql . . . . .  q s , p ) = v ( q l  . . . .  , qs )  and so 
W ( q l  . . . . .  qs, P) consists of a single entry with 
value v (q l ,  . . . ,  qs). 

(iii): If q s e E x p o s e d ( S )  then either q s e F a i l ( S )  (so 
qs did not  send its round S message to p), 
or else q s e F a u l t ( p ,  S). In either case as noted 
in part  (i) above, v(ql . . . . .  qs, P) = Ls  and so 
W ( q l ,  . . . ,  qs, P) consists of a single entry with 
value •  

(iv): Since l,+ 1 . . . l s  evaluates to 1 when r = S (as 
an empty product), and each of W ( q l ,  . . . ,  qs, Po) 
and W ( q l ,  . . . ,  qs, Pi) have only one entry, the 
statement 

]mul t (v(ql ,  . . . ,  qr), W ( q  1, . . . ,  q~, �9 . . . . .  *, P0)) 
- m u l t ( v ( q x  . . . . .  qr), W ( q l  . . . .  , q~, *, . . . ,  *, Pl))I 

< l~+ i" I~+2... Is 

is trivially true when r = S. 

We now prove the lemma for some value of r as- 
suming its t ruth for r + 1. 

(i)" For  each q,+l  that  has not  crashed before 
the start of round r + l ,  we know that  
v (q i ,  . . . ,  q~,q~+l) is either Lr  (if q~ failed to 
send its round r message to q,+l  or if 
q,~Fault (q~+ 1, r)) or v(qi . . . . .  q~) (otherwise). 

(ii): 

(iii): 

By (i) for r + 1 we know that  
W ( q l  . . . .  ,qr ,  qr+l ,  * , . . . ,  * ,P)  consists of 
( 2 n - 4 t )  s - r - i  entries each of which is one 
of v(ql . . . . .  qr), _k~ or L , + i -  If q,+l crashed 
before the start  of round r + l  (so that  
v (q l ,  . . . ,q~+l)  may  be meaningless) then 
q , + x ~ E x p o s e d ( r + l ) ,  so by (iii) for r + l  we 
know that  W ( q l  . . . . .  q~, q~+ x, *, . . . ,  *, P) 
consists of ( 2 n - - 4 t )  s - r - 1  entries all being 

•  0 W(qx . . . . .  q~,qr+l,* . . . .  ,* ,P)  
q r +  1 = 1 

consists of n ( 2 n - - 4 t )  s - ~ - I  entries each of 
which is v(ql . . . .  , q,), _1_~ or •  Also there 
are at least ( n - t ) ( 2 n - 4 t )  s - ' - I  entries that  
are not  •  namely all those coming from 
the at least n - t  values of q,+ 1 that  are not  
in E x p o s e d ( r  + 2) (by (ii) for r + 1). Thus when 
we apply chop~k + 1, where k = 2 t (2 n 
- 4 t )  s - ~ - l ,  to 

W ( q l ,  . . . ,  q~+l, *, -.., *,P) 
qr+l=l 

we will remove every occurrence of 2~+ 1 and 
be left with ( 2 n - 4 t )  s -~ entries all either 
g(qa, . . . ,  qr) or 2~. 
If  q , ( s E x p o s e d ( r +  1) then for every q e C o r r ,  
v(q l , - . . ,  qr, q ) = g ( q l  . . . .  , q,). This is proved 
by contradiction:  suppose there is q, + 1 �9 Corr  
with v(qi . . . . .  q~, q , + i ) =  A_r and therefore for 
any p q~ Fail  (r + 2) we will have 
v (q l ,  . . . ,  q~, q,+ 1, P) = "• as q,+ 1 broadcasts 
correctly, and hence p will detect q~ as faulty 
in round r + l .  This holding for all 
pq~Fai l ( r+2)  contradicts the assumption 
q~q~Exposed(r+l) .  Now by (ii) for r + l ,  if 
qrq~Exposed(r + 1), q~+ i e C o r r  and p r  
then W(qa ,  . . . ,  q~,qr+l ,  * . . . .  , , , p )  consists 
of ( 2 n - 4 t )  s - ~ - i  entries all with value 
g(ql, .-., q,, q,+ l) = g(ql . . . . .  q,). Hence if 
q, q~ E x p o s e d  (r + 1) and p r Crash, then 

W ( q t ,  . . . , q r ,  q~+t ,* ,  . . . , * , P )  contains 
qr+l=l 

at least ( n - t ) ( 2 n - 4 t )  s - ~ - I  entries with 
value v (q l , - . . ,  q,), namely ( 2 n - 4 t )  s - ' - I  for 
each of at least n -  t choices of q, + 1- By Lem- 
ma 3, every entry of W ( q l  . . . . .  q,,  * . . . . .  *, p) 
is g(ql, . . . ,  qr)- 
If qr e E x p o s e d  (r) then for every 
q e C o r r ,  v (q l  . . . . .  q~, q)= _l_r (if q~eFaul t (q ,  r) 
this is explicit in the algorithm, and if 
q~eFail(r)  then q~ sent no message to q in 
round r so v(qa . . . . .  q~, q)= 2 ,  By (ii) for r 
+ 1, if q, e E x p o s e d ( r ) ,  q~+ 1 e C o r r  and 
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pr  then W ( q l  . . . . .  qr, qr+l,  *, . . . ,  * ,P)  
consists of (2 n - 4 t) s -  r-  1 entries with value 
I r. Hence if q, eExposed( r )  and pr  

then 0 W ( q l  . . . .  ,qr ,  qr+l,  * , . . . ,  * ,P) 
q r + l = l  

contains at least (n - t) (2 n - 4 t) s - ' -  1 entries 
with value -l-r, namely (2 n - 4 t) s - r -  1 for each 
of at least n - t  choices of q ,+l .  By Lemma 
3, every entry of W ( q l ,  . . . ,  q,, , . . . . .  , ,  p) is 
I r . 

(iv)" We have that  W ( q l  . . . . .  q , , q , + l ,  * . . . .  , *,Po) 
= W ( q l  . . . . .  qr, qr+l,  *, "" ,  *, Pl) if q,+lq~ 
E x p o s e d ( r + 2 ) \ E x p o s e d ( r +  1), by (ii) and (iii) 
for r +  1. For  the other 1,+1 values of q,+l 
we have by (iv) for r + 1 that  

Imult(~(qx . . . . .  q~, qr+ 1), 

W ( q l ,  " " ,  q r ,  q r + x ,  * . . . .  , * ,  P0)) 

- mul t (g(ql  . . . . .  q,, q,+ l), 
W ( q l ,  . . . ,  q , , q r+ l ,  * . . . .  , *, Pa))] 

_<l,+2"l,+3 . . . l s .  

For  each of these qr+l,  g (q l , - . . ,  q,, q,+l) is either 
v(ql, .-., qr) or •  so we see (using the triangle 
inequality) that  

mult @(ql, ---, qr), 

0 W ( q l ,  . . . ,  Or,O,+1,* . . . .  ,* ,Po))  
q r + l = l  / 

- mult (v(ql  . . . . .  q,), 
I 

+ ..... , *   1tl 
q r + l = l  / 

+ mult(• U W ( q  1 . . . .  , q , , q , + l , *  . . . . .  *, Po)) 
q r + l = l  

- - m u i r ( L , ,  ~ W ( q l , . . . , q r ,  q , + l , ,  . . . . .  * ,PO)  
q r + l = l  

-<l,+1 "l,+ a ... ls. 

With this bound  and the facts in (i) we can apply 
Lemma 4 to complete the proof. Q.E.D. 

Theorem 11. I f  n > 2 t, then the algorithm in the fai l -  
ure-by-omission model is valid and has performance 

K ~ sup {/112..- Is : I1 -I- . . .  -I- l s <_ t, each Ii a non-negative integer} 
(2n-4t) s l(2n-2t) 

Proof.  We have by (ii) and (iii) of Lemma 10 for 
r=l  that  W ( q l , *  . . . . .  * , P o ) = W ( q l , *  . . . .  ,* ,PO 
unless q l e E x p o s e d ( 2 ) \ E x p o s e d ( 1 ) .  For  these 11 

values of ql we have by (iv) for r = 1 that  

[mult(V(ql), W ( q l ,  * . . . .  , *,Po)) 

-- mult(V(ql),  W ( q l ,  * . . . . .  *, P0)I < 12" 13-.. + ls 

since f ( q l ) =  v(qO. We can apply Lemma 6 with 

V =  0 W ( q l , *  . . . . .  *,Po), 
q l = l  

W :  0 W(ql,  * . . . . .  *,Pl), 
q l = l  

N = n ( 2 n _ 4 t ) s - 1 ,  k = t ( 2 n _ 4 t ) s  1 and I-a, b] =p(U)  

to prove that  each of w(po)=cen terk (V)  and 
W(pa) = centerk(W) lie in p (U) and that  

l l . . .  ls 
] w ( p o ) -  w(pl)l  <_ ( 2 n _ 4 t ) s _  l ( 2 n _  2t)  .O(U). 

We finally note that  as I t =[Exposed(2) l -  
I Exposed  (1)1, 12 ---- ]Exposed (3)1 - I Exposed  (2)1, . . . ,  ls 
= I E x p o s e d ( S +  1)l--]Exposed(S)l, we have each l i 
a non-negative integer and also 11 + 12 + ... + ls 
= IExposed(S + 1)1--[Exposed(1)l <_ t. This proves 
that  our algori thm has, as claimed, performance 

K < sup {ll 12... ls : l, + ... + l s <_ t, each I i a non-negative integer} 
(2n-4t) s 1(2n-2t) 

Q.E.D. 

6 The byzantine failure model: analysis 
When discussing the algori thm for the byzantine 
failure model, we will need to assume that  n > 4t, 
since otherwise the algori thm given is meaningless, 
involving as it does operators such as G 
= mid(n-4t)s- it. 

In discussing an execution of the algorithm for 
the Byzantine failure model, we will extend the defi- 
nition of Faul t (p , r )  to include r = 0  and r = S + l ,  
by setting Faul t (p ,O)=O,  and F a u l t ( p , S + l ) =  
{1 . . . .  , n } \ C o r r  as a convention. We put 
Exposed( r )=  0 Faul t (p , r )  and I r= lE xposed ( r  

p~Corr  

+ 1) \Exposed(r) l  = IExposed( r+  1)]-  [Exposed(r)l. 
Thus Ir is the number  of processors whose behavior 
in round r led to them being detected as faulty 
by every correct processor for the first time at the 
end of round r + 1. These are the processors whose 
messages in round r that  will cause differences be- 
tween other processors' views. 

First we observe that the fault detection proce- 
dure never makes a mistake. 

Lemma 12. Suppose n > 4 t .  In  an execut ion o f  the 
algorithm fo r  the Byzant ine  fai lure model, f o r  which 
f <  t, i f  p e Corr and q e Corr, then q q~ Faul t  (p, r). 



Proof .  This is immediate  for the special cases r = 0 
and r =  S + 1 defined above. Fo r  the other  values 
of r, we use p roof  by induct ion on r. If r = 1, and 
p e C o r r ,  q e C o r r  then q~Fau l t (p ,  1) as 
Fault(p,  1)=0.  

Now for arbi t rary  r suppose p e C o r r  and 
q e Corr. If qre Corr  then by the induct ion hypothe-  
sis q q ~ F a u l t ( q , , r - 1 )  and so for any choice of 
ql . . . . .  q~- 2 we see v(ql ,  . . . ,  q , -  2, q, qr) 
= v ( q l , . . . , q ~ - 2 , q , q ~ ) = v ( q x  . . . .  , q ~ - 2 , q )  as q is 
broadcast ing correctly. Also q~ broadcasts  correct-  
ly so v(q~ . . . . .  q~_2 ,q ,q~ ,p )=g(q~  . . . . .  q~ -2 ,q ,  qr). 
Thus the multiset {v(q~ , . . . ,  qr-  2, q, l ,  p), v(qa , . . . ,  
q r -2 ,  q, 2, p), . . . ,  v(q 1 . . . . .  q r -2 ,  q, n, p)} contains at 
least (n - - t )  entries each of which has value 
~7(q~ . . . . .  q~-2, q), and so the multiset does not  sat- 
isfy the predicate Detr.  

Therefore  q is not  detected as faulty by p in 
round  r, but  by the induct ion hypothesis  
q~Fau l t (p ,  r - 1 ) .  Thus we see q4~Fault(p,r)  as re- 
quired. Q.E.D. 

The behavior  of the algori thm is explained by the 
following lemma, which shows that  the multiset 
W ( q l  . . . . .  q~ , .  . . . . .  . , p )  is a good  representat ive 
for ~7(qx . . . . .  q~), in that  it often consists entirely 
of copies of that  value, and that  only processors 
in E x p o s e d ( r  + 1 ) \ E x p o s e d ( r )  will cause differences 
between the multisets computed  by different cor- 
rect processors to represent the same round  r value. 

L e m m a  13. Suppose n > 4 t .  In  an execut ion  o f  the 
algori thm f o r  the Byzan t ine  fa i lure  model, f o r  which 
f <  t, we can conclude: 

(i): I f  p e Corr  and q~ e Corr, then all the ( n -  4 t) s - "  
entries o f  W ( q l  . . . . .  qr, �9 . . . .  , . ,  p) have value 
v(q l  . . . . .  q~). 

(ii): I f  q~q~Exposed(r + 1), p o e C o r r ,  and p l e C o r r ,  
then W ( q l  . . . . .  q~, * . . . .  , *, Po) = W ( q l ,  . . . ,  

q,, *, . . . ,  *, PO. 
(iii) : I f  q~ �9 E x p o s e d  (r), Po �9 Corr, and pl  �9 Corr, then 

W ( q l ,  . . . ,  qr, *, ... , *,Po) 
= W ( q x ,  . . . ,  q~, *, . . . ,  *, PO. 

(iv): I f  p o e C o r r  and p l e C o r r ,  then 

I W ( q l  . . . . .  qr, *, " ' ,  *, Po) 
c~ W ( q l ,  . . . ,  qr, *, . . . ,  *, Pa)l 
> _ ( n - 4 t ) s - ~ - l ~ +  l.l~+ 2 . . . l s  . 

Proof.  We use descending induct ion on r. First, 
suppose r = S. 

(i): If q s e C o r r  and p e C o r r ,  then W ( q l ,  . . . ,  qs, P) 
={~7(q~ . . . . .  qs,P)},  but  q s ~ F a u l t ( p , S )  so 
17(ql, .-., qs,  P ) = v ( q l ,  . . . ,  qs,  P)= v(ql . . . . .  qs) 
since qs correct ly broadcas t  in round  S. Thus  
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W ( q l , . . . , q s ,  p) contains ( n - 4 t ) ~  entry 
with value/~(ql . . . . .  qs). 

(ii): If qs ~ Exposed  (S + 1), then by definition of the 
sets F a u l t ( q , S + l ) ,  we must  have q s e C o r r  
and so, by (i) proved above,  if p o e C o r r  and 
p~ e Corr, both  W ( q l  . . . . .  qs, Po) and 
W(q~ ,  . . . ,  qs, P~) contain a single entry with 
value v(ql  . . . . .  qs) and so are equal. 

(iii): If q s e E x p o s e d ( S )  and p o e C o r r ,  then 
q s e F a u l t ( p o ,  S) so that  g(q~, . . . ,  qs, Po) = I s  
and so W ( q l ,  . . . ,  qs,  Po) is a multiset with a 
single entry whose value is I s . Similarly 
W(q~ . . . . .  qs,  Pl) has a single entry with value 
I s ,  so W(q~ ,  . . . ,  qs, Po) = W ( q t ,  . . . ,  qs, Pl). 

(iv): The expression ( n - 4 t ) s - r - l r + x . . . l s  evalu- 
ates to 1 - 1 = 0 if r = S (recall that  a p roduc t  
of no  numbers  has value 1 by convention).  
Thus it is trivially true that  I W(q~ ,  . . . ,  qs, 
Po) ~ W(q~,  . . . ,  qs, Pl)[ -> ( n -  4 t) s - r -  l, + a.. .  ls 
in this case. 

We now prove the lemma for some value of r as- 
suming its t ru th  for r + 1. 

(i): If q r e C o r r  and p e C o r r ,  then for q , + l e C o r r ,  
by (i) for r + l ,  the multiset W ( q l ,  . . . , q , ,  
q,+~, . ,  . . . ,  . , p )  consists of ( n - 4 t )  s -  ~-1 
entries every one having value g ( q l , - . . ,  qr, 
qr+l). However ,  since q r e C o r r  (and so qrr 
f a u l t ( q , + l ,  r)), v (q l ,  . . . ,  q,,  q , + l ) = v ( q l ,  . . . ,  
q~,q ,+ l )=g(qa ,  . . . ,  q,). Thus the combined 

multiset 6 W ( q l  . . . . .  q , , q , + l ,  * . . . . .  * ,P)  
qr+ l - -1  

contains at least ( n -  4 t) s - ~ - 1 (n - -  t) entries 
each of which has value v(qi ,  . . . ,  q~), namely 
( n - 4 t )  s - r - 1  for each of at least ( n - t ) q ~ + l  
that  are in Corr. By L e m m a  1, applied with 
a = b = g(qa . . . .  , q,), we have that  
W ( q l ,  . . . ,  q ~ , . ,  . . . , . ,  p) consists of exactly 
( n - 4 t )  s - ,  entries all of which have value 
v(ql . . . . .  q~). 

(ii): If q ~ E x p o s e d ( r + l )  then the multiset  
{v(ql, . . . ,q~,q) :  q e C o r r }  has some value 2 
(say v) occurr ing with multiplicity at least 
n - 2  t. This is p roved  by contradic t ion:  sup- 
pose that  there is a choice of q t ,  . . . ,  qr so 
that  the multiset  {17(qx, . . . , q , q ) :  q e C o r r }  
has every value with multiplicity less than  
n - 2 t .  F o r  p e C o r r  and q e C o r r ,  v ( q l , . . . ,  
qr, q, p ) = v ( q ~  . . . . .  qr, q) so the multiset  {v(q~ , 
. . . .  q~, 1, p), v(qa . . . . .  q,,  2, p) . . . .  , v ( q l ,  . . . ,  q~, 
n, p)} has every value with multiplicity less 

2 Since n>4t, there is at most one value with multiplicity at 
least n - 2 t 



22 

(iii): 

(iv): 

than  n - t ,  and so q r e F a u l t ( p ,  r +  1), but this 
holds for all correct p which would contradict  
q r r  + 1). 
Now if q , + i e C o r r  and p o e C o r r ,  by (i) for r 
+ 1 as above, W ( q i  . . . . .  qr, qr+ t ,  *,  " " ,  *,  PO) 
consists of ( n - - 4 t )  s - r - 1  copies of v(ql . . . .  , 
q~, q, + 1). Thus in this situation 

~J W ( q a  . . . . .  qr, qr+ 1, *,  . . . ,  *,  Po) contains 
q r + l = l  

at least (n-- 4 t) s - ~  1 ( n - -  2 t) entries each of 
which has value v (namely ( n - 4 t )  s - ~ - I  for 
each of at least ( n - 2 0  different choices of 
q~+ a satisfying v ( q i  , . . . ,  qr, qr+ l) = V). By Lem- 
ma 1, all ( n - 4 t )  s - ~  entries of W ( q i  . . . . .  
qr, * . . . .  , *,  PO) have value v. If p l e C o r r  then 
similarly W ( q l ,  . . . ,  q~, * . . . . .  *,  Pl )  consists of 
( n - 4 t )  s - r  copies of v. So these multisets are 
equal. 
If q ~ e E x p o s e d ( r )  then, for any q~+ l e C o r r ,  we 
have q ~ e F a u l t ( q ~ + l , r ) ,  so that  g(qx,-", 
qr, q r + 0 = / , .  I f p o e C o r r  we can apply (i) for 
r +  1 to deduce that  W ( q l ,  . . . ,  q , , q r + l ,  * . . . .  , 
�9 ,P0) consists of ( n - 4 t )  s - r - 1  entries all of 
which are _L~. Since there are at least n - t  
indices q r + l e C o r r ,  we see that  the multiset 

W ( q i ,  . . . ,  q~, qr + 1, *,  . . . ,  *,  PO) contains 
q r + l = l  

at least (n - 4 t) s -  ~- i (n - t) copies of i~ .  Thus 
by Lemma 1, all the ( n - 4  t) s -~  entries of the 
multiset W ( q l ,  . . . ,  q~, *,  . . . ,  *,  Po) have value 
_1_~. Similarly, if Pl  �9 Corr ,  W ( q  I . . . . .  qr, �9 . . . .  , 
�9 , P 0  consists of ( n - 4 t )  s - r  copies of l~ ,  so 
these multisets are equal. 

Suppose p o e  C o r r  and Pi  e Corr .  Using (i), (ii) 
and (iii) applied for r + 1, we see that  

W ( q i ,  . . . ,  q ~ , q r + l ,  *,  " " ,  * ,Po)  

= W ( q l  . . . . .  q , ,  q~+i ,  * . . . . .  *, Pl)  

unless qr+ 1 e E x p o s e d ( r  + 2 ) \ E x p o s e d ( r  + 1). 
By (iv) for r + l  we have in the case 
q r + l e E x p o s e d ( r + 2 ) \ E x p o s e d ( r +  1) that  
I W  (qx,  . . . ,  qr, q , + l ,  * . . . .  , *, PO) c ~ W ( q l ,  
. . . .  q~, q~+i ,  * . . . .  , *,  P l ) l > ( n - - 4 t )  s - ~ - I  
- -  l, + 2 . . .  ls. We have therefore 

I1 

+{J= W ( q l ,  . . . , q ~ , q r + l ,  * . . . .  , * ,Po)  
qr 1 

n U W ( q l  . . . .  , q r ,  q ~ + i , *  . . . . .  * , P l )  
q r + l = l  

> _ ( n - l r + O ( n - - 4 t )  s - ~ - I  

+ lr+ l ( ( n - 4 t ) s - r -  ~ - l ~ +  2 . . . l s )  

= ( n - 4 t )  s - ~ -  i . n - l r +  l . l r+  2 . . . I s .  

Thus by Lemma 2 

I W(ql . . . . .  qr, *, . . . ,  *,  Po) 

c~ W ( q l ,  . . . ,  qr, * . . . . .  *,  Pi)l 
>_ ( n - - 4 t )  s - r -  lr+ 1" lr+ 2 . . .  ls .  Q.E.D. 

We can now prove the claimed upper bound  on 
performance of our algori thm for the Byzantine 
failure model. 

Theorem 14. I f  n > 4 t ,  t hen  the  a l g o r i t h m  f o r  the  
B y z a n t i n e  f a i l u r e  mode l  is val id  and has p e r f o r m a n c e  

K _< sup {l112... Is: li + ... + ls < t, each li a non-negative integer} 
(n--4t)s- i(n-- 2t) 

P r o o f .  When we apply Lemma 13 with r = 1 to 
any execution such that  f_< t, we obtain 

(i): If p e C o r r  and ql �9 Corr ,  then 
W ( q l ,  * . . . . .  . , p )  consists of ( n - 4 t )  s - 1  en- 
tries all of which have value v(qO.  

(ii): If q i r  p o e C o r r ,  and p l e C o r r ,  

then W ( q l ,  *, . . . ,  *,  Po) = W ( q l ,  * . . . .  , * ,  Pl)- 
(iv): I f p o e C o r r  and p l e C o r r ,  then 

I W ( q i ,  * . . . .  , *, po) c~ W ( q l ,  *, . . . ,  *,  p01 
> (n - 4 t) s -  1 _ 12" 13.. .  ls.  

Now if p e C o r r  we see that  U W ( q l , * ,  . . . , * , p )  
q l = l  

contains at least ( n - t ) ( n - 4 t )  s - 1  entries in the 
range p (0 )  spanned by initial values of correct pro- 
cessors, namely the ( n - 4 t )  s - 1  copies of v ( q O  for 
each correct ql .  Then by Lemma 1, w(p)  lies in 
the range p (0). 

Suppose that  P o e  C o r r  and Pl  �9 Corr .  Then 

[ W(po) n W(p01 
>_ (n - lO(n  - -  4 t) s -  1 + lx ((n - 4 t) s -  1 _ le . . .  ls) 

= n ( n - - 4 t )  s -  1 - -  li  12.." is 

as there are n--11 values of ql with ql  C E x p o s e d ( 2 )  
and I i values of ql with q l e E x p o s e d ( 2 ) .  We can 
apply Lemma 5 to prove 

11 ...Is .~(t2). 
[ w(po) - w (p 1)[ _< (n - 4 t) s -  1 (n - 2 t) 

We finally note that  as l l = l E x p o s e d ( 2 ) l ,  l z =  
I E x p o s e d ( 3 ) r -  [Exposed(2) l ,  . . . ,  ls = I E x p o s e d ( S  + 1) 
- I E x p o s e d ( S ) l ,  we have each li a non-negative in- 
teger and also l l + 1 2 +  ... + l s = l E x p o s e d ( S + l ) l  
= l F a u l t ]  < t .  This proves that  our algori thm has, 
as claimed, performance 

K <_ sup {ll 12... ls : 11 + ... + ls <_ t, each Ii a non-negative integer} 
(n--4 t)s- l (n-- 2 t) 

Q.E.D. 



It is interesting to note that  for S = 2 our  algori thm 
therefore gives an implementat ion of Crusader 's 
Agreement [3] on each value v(q) - each processor 
p gets either a value (the common  value of 
W(q,  , ,  p)) or else the knowledge that  q is faulty, 
and all the processors that  get a value get the same 
value, which is the right one if q is correct 3. In 
fact our  implementat ion has a stronger property:  
if any Po fails to detect that  q is faulty, then all 
those p that  do detect it know what  value Po has 
chosen. 

7 The Byzantine failure model: A lower 
bound 

This section gives a detailed account  of a lower 
bound  on achievable performance for any S-round, 
t-resilient approximate agreement algori thm in the 
Byzantine failure model 4. 

Theorem 15. Suppose n >  t + 1. A n y  algori thm that 
performs valid t-resilient approximate  agreement  in 
the Byzant ine  fai lure model using at most  S rounds 
o f  communication,  has performance 

sup {l 1 12.. . ls :la + ... +ls<- t}  
K >_ (n + t) s 

Proof .  Any algori thm for solving the S-round ap- 
proximate agreement problem can be given in the 
following s tandard form, called a full information 
protocol, where all information is exchanged for 
S rounds and then a computa t ion  is performed: 

�9 Set u (p) = v (p). 
�9 In round 1, a processor p e C o r r  

- broadcasts u(p), 
- denotes by u ( q l , p )  the value received by p 
from ql purport ing to be u(ql).  (If no such value 
is received, p should put  u(q l ,  p ) =  11  .) 

�9 In round r, for r = 2 ,  3, . . . ,  S a processor p e C o r r  
starts with an array of n ~-1 values 
( u ( q l  , . . . ,  q , - 1 ,  P): each qi = 1 . . . . .  n) .  It then 
- broadcasts the array ( u ( q l  . . . . .  q r -1 ,  P)),  
- denotes by u(q l ,  . . . ,  q ~ - l , q r , P )  the value re- 

ceived by p from q~ purport ing to be 
u(ql  . . . . .  qr). (If no such value is received, p 
should put u(ql  . . . .  , q~, P) = •  

�9 Finally a processor p eCorr  applies a function 
f to its view, the array ( u ( q l  . . . .  , q s , P ) )  of n s 
values, to produce its new value w (p). 

3 A similar use of Inexact Agreement to implement Crusader 
Agreement was given in [12] 
4 The asymptotic form of this lower bound was given in I-4] 
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Different algorithms are given by different 
choices of the function f .  Notice that  any algori thm 
(like those given in this paper) which involves com- 
puting and modifying values between rounds of 
communicat ion,  is equivalent to one in the stan- 
dard form, because all the computa t ion  and modifi- 
cation can be simulated by each processor after 
all the information is exchanged. So suppose we 
are given a function f for which the algori thm sat- 
isfies the validity condition. Let 11,12, . . . ,  ls be any 
positive integers so that  11 + ... + ls<_ t. We intro- 
duce the collection of multi-indices I = ( i l  . . . . .  is) 
where ik ranges over the integers from 1 to mk 
= [n/lk]. We order the multi-indices lexicographi- 
cally, that  is (il . . . . .  i s ) < ( j l ,  ... , is)  if there is some 
r so that  (i) ik <Jk for k < r, and (ii) ir <Jr. The multi- 
indices are totally ordered in this way (which is 
described as " last  index varies fastest" or "row-by-  
row") and we denote the successor to I by I + + .  
As examples, when S = 3 ,  m l = m 2 = 3 ,  m3--4 we 
have (1, 2, 3)+ + =(1, 2, 4), (1, 2, 4)+ + =(1, 3, 1) and 
(1, 3 ,4 )+  + =(2, 1, 1). 

To each multi-index I we assign an array M~ 
of nS-entries defined by 

M I ( q l  , q2,  " . ' ,  qs) 

1 if there is some r so that (i) [q~/Ik] 

= < ik for k < r, and (ii) [qr/Ir] < ir 

0 otherwise. 

Thus Mr is formed by part i t ioning the positions 
in the array into subblocks of size 11 x 12 x ... x I s.  
Every entry in a subblock has the same value, 
which is either 0 or 1. The subblocks filled with 
l 's all precede those filled with 0's. 

If we arrange the arrays Mr in the order of 
the multi-indices I we get a chain, which we will 
show has the property that  given any two consecu- 
tive arrays Mr and Mr + +, there is some execution 
of the broadcast ing algori thm with 6(U)_<l and 
[Fault[<_t leading to one correct processor P0 re- 
ceiving Mr as view while another  correct processor 
Pl receives Mr++ as view. For  this execution 
Iw(p0) - w(POI = I f ( M r ) - - f ( M r +  +)1, so K _> If(Mr)  
- f ( M r +  +)1. However if we consider an execution 
where every processor is correct with initial value 
O, we find that  every processor will get M~1,1 ..... 1) 
as view. In an execution where all correct proces- 
sors have initial value the same, the validity condi- 
t ion requires them to agree on that  same value, 
so f ( M ( 1  ..... 1))=0. Also we consider an execution 
where the processors 1, 2 . . . . .  (ml - 1) 11 are correct 
with initial value 1, while processors (m1-1)11 
+ 1, . . . ,  n follow the algori thm with initial value 
0 during the rounds of broadcast ing and then stop 
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without  comput ing  anything;  notice that  the arbi- 
t rary behavior  allowed to a faulty processor  in- 
cludes the possibility of following the algorithm�9 
In this execut ion the correct  processors will receive 
M(ml, 1 ..... 1) as their view, and the validity condi t ion 
requires them to agree on 1 as their new value, 
s o  f ( M ( m l ,  1 ..... 1 ) ) =  1. Since the chain of arrays M~ 
reaches from I = ( 1  . . . . .  1) to I = ( m l ,  1 . . . .  ,1)  in 
( m x - 1 ) m 2  ... m s  steps, we get a chain of real 
numbers  f ( M i )  reaching from 0 to 1 in (ml 
- 1) m 2 . . .  m s  steps. Thus  there is some pair  of con- 
secutive values where 

I f ( M ~ ) - f ( M i +  +)[ _> 
(m 1 - 1) m2...  m s  

1 
>_ 

m l  m2 .. .  ms  

1 
soK>_ 

m l  . . .  m s  

Since mk= Fn/lk ] < (n + lk)/lk < (n + t)/Ik, 

l l  12. . .  ls 
K >  

(n + t) s " 

This is true for any choice of 11, . . . ,  ls with each 
li a nonnegat ive  integer and 11 + ... +ls<_t. (Our 
argument  above covers the cases when all the li 
are positive, but  the inequali ty is trivially true if 
any li is zero�9 Thus we have the claimed lower 
bound  

K >  s u p  {l 1 l 2 . . .  1 s :11 q- . . .  + l s < t }  
(n + t) s 

All that  remains is to fulfill our  promise to give 
an execution with M, l , i :  ..... is) as the view for some 
correct  processor  P0, and M,1 ..... isl+ + as the view 
for a correct  processor  Pl .  We give the construc- 
tion, and leave the reader  to verify that  the proces- 
sors have the views stated�9 The faulty processors 
are those p such that  there is an r with [p/l~] = it. 
Since for each r at most  l~ values of p satisfy this 
condit ion,  the total  number  of faulty processors 
is at most  11 + ... + ls<_ t. Choose  P0 and Pl f rom 
among  the correct  processors�9 Let v(p) be 1 if 
[ p / l l  ] <_ i l ,  and 0 if [ p / l l  ] > i~ . 

�9 Every processor  p, correct  or faulty, sets u(p) 
= v (p). 

�9 In round  1, 
- all processors p, except those where [ p / l l ]  = i l ,  

broadcas t  u(p). The remaining p each send the 
value u(p)  to those q where [q/12] < i2, but  they 
send the value 0 to those q where [q/12]  > i2. 

- All processors p denote  by u ( q l , p )  the value 
received by p f rom q purpor t ing  to be u(qO.  

�9 In r o u n d r f o r r = 2  . . . .  , S - 1  
- all processors p, except those such that  I-P//r] 

= if, correct ly broadcas t  the ar ray 
( u ( q ,  . . . .  , q r -  1, P)) .  The remaining p form an- 
other  ar ray with 

u ' ( q l ,  . . . ,  q~- 1, P) 

0 if [qk / lk]  = i k 

= for each k = 1, . . . ,  r -  1 

u(q l  , . . . ,  q~-  l , P) else�9 

These p send the array ( u ( q l ,  . . . ,  q r - 1 , P ) )  to 
those q where [ q / l ~ + l ] < _ i , + l ,  but  they send 
the array ( u ' ( q l  . . . . .  q~ -1 ,  P) )  to those q where 
[ q / l ~ + l ] > i r + l .  

-- All processors p denote  by u ( q l ,  . . . ,  
q~- 1, q~, P) the value received by p from q~ pur- 
port ing to be u ( q l  , . . . ,  q~-  l , qr). 

�9 In the final round  S 
all processors p, except those where [p/ ls]  = is 
correct ly broadcas t  the ar ray  ( u ( q t  . . . .  , 
qs-  1, P)). The remaining p form another  ar ray 
with 

u' (q 1, . . . ,  q s -  1, P) 

0 if [qk/Ik] = ik 

= for each k =  1, . . . ,  S - 1  

u ( q l , . . . , q s  1 ,P)  else 

These p send the array ( ( u ( q l  . . . . .  q s - l , P ) )  
to those q where q r Po, but  they send the array 
( u ' ( q t  . . . .  , q s - l , P ) )  to P0. 
All processors p denote  by u(q l  . . . .  , 
q s - l , q s , P )  the value received by p from qs 
purpor t ing  to be u(qa , . . . ,  q s -  1, qs). 

�9 Only the correct  processors now calculate their 
new value from their view. The others halt. 

Q.E.D. 

We observe here that  if n = t + 1 there is the imme- 
diate lower bound  that  K > 1 for any t-resilient 
a lgori thm for approximate  agreement  in the By- 
zantine failure model.  This follows from the fact 
that  a correct  processor  may  be the only correct  
processor,  and so the validity condi t ion requires 
that  it must  choose its new value equal  to its initial 
value. 

8 T h e  crash - fa i lure  m o d e l :  a l ower  b o u n d  

This section gives a formal account  of a new lower 
bound  on achievable performance for any S-round 
approximate  agreement  a lgori thm in the crash-fail- 
ure model.  Any  algor i thm for solving the S-round 
approximate  ag reement -p rob lem can be given in 
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the form of a full information protocol  (as in w 7) 
where all information is exchanged for S rounds 
giving each processor p a view (v(q~, .. . ,  qs, P)) 
and then p applies a function f to the view to give 
its new value w (p). For  the remainder of this section 
we consider a fixed full information protocol. 

To prove a lower bound on the performance 
achievable we are going to construct a chain of 
views as in w 7, but  this time we will do so implicity 
by giving a recursive recipe for the execution that  
lies between successive views. This proof  is very 
closely related to the proofs in [5] and [13] of 
the impossibility of exact agreement in fewer than  
t +  1 rounds, and also to the proof  in [2] of the 
impossibility of simultaneous firing in fewer than 
t +  1 rounds. An execution in the crash-failure 
model is very easy to describe - we need only speci- 
fy the initial value of each processor and say which 
processors failed in each round and which mes- 
sages they sent in that  round. We say that  two 
executions p and p' are directly similar (written 
p ~p ' )  if some processor p is correct in each and 
obtains the same view in each. We say similarly 
that  p and p' are k-similar (written p k p , )  if there 
are k + l  executions P o , P l , ' . ' , P k  SO that  Po 
=p, pk=p ', and pi~Pi+l  for each i. Thus 1 is 

just  ~ , a n d i f p ~ k p  ' and p ' ~ " p ' '  then p k+mp,,. 
Note  that  p kp, implies p , , k p  and p rap, for 
m>__k. 

We prove two preliminary lemmas that  show 
that  certain executions are k-similar. 

L e m m a  16. Suppose n > t + l  and S > I .  Let 
l~,12, .. . ,  ls be any collection of  positive integers 
such that l~>_12>...>_ls and l ~ + . . . + l  s<_t. Put 
mi = [n/li]. Let  1 <_r <_S-1.  Let p = Po be an execu- 
tion of the protocol such that no failures occur after 
the end of round r, and the number of failures by 
the end of round i is at most 11+ ... + li for  any 
i. Denote by ~ the execution that is identical to p 
for  the first r -  1 rounds but has no failures during 
any later round. Then p ~(r)~ where N(r) 

S 

= [ I  2mj + 2 .  
j = r + l  

Proof. We first remark that  the statement is not  
necessarily true if r = S .  Let J denote the set of 
indices of processors that  fail in execution p during 
the first r - 1  rounds and let J '  denote the set of 
indices of processors that  fail in execution p during 
round r. We denote by j the number  of indices 
in j and by j' the number  in J'. Thus j < l l  + . . .  
+ l,_ 1 a n d j  + j '  < lx + ... + l, ~ + l,. We will use de- 
scending induction on r. 

Suppose r = S - 1. The discussion is divided into 

two cases, depending on whether n > j  + j '  + 2 ls + 1 
or not. 

If n > j  + j '  + 2 ls + 1, then for each k = 1, . . . ,  ms let 
qk be the greatest processor index that  is not  among 
J ~ J '  nor in the range ( k - 2 ) l s +  1, . . . ,  k ls, and 
let Pk be the least processor index that  is not  among 
J ~ J '  nor  in the range ( k - 2 )  ls+ 1, . . . ,  ( k - 1 ) l s .  
Now qk is strictly greater than  the least processor 
index that  is not  among J t3J' nor in the range 
( k - 2 )  ls+ 1 . . . .  , k ls, (as this set contains at least 
two indices) and this in turn is greater than  or 
equal to each of Pk and Pk+ 1 each of which is the 
least index in a set containing all indices not  in 
J w J '  nor  in the range ( k - 2 ) l s  + 1 , . . . ,  k ls. Thus 
PR < qk - 1 and Pk < qk. Let P2k - ~ denote the execu- 
tion that  is identical to p during the first S - 2  
rounds, and then also during round S - 1  except 
that  the processors with indices in J '  do send to 
any processor with index 1, 2 . . . .  , ( k - 1 ) I s  as well 
as those processors that  they send to in p. In round 
S, each of the processors ( k - l ) l s +  1, . . . ,  kls that  
has not  failed earlier, fails after sending messages 
to processors 1, . . . ,  qk-- 1. The assumptions on fail- 
ure numbers in p mean that  this execution involves 
at most  t failures. Also let P2k denote the execution 
identical to p during the first S - 2  rounds, and 
then also during round S - 1  except that  the pro- 
cessors with indices in J '  do send to any processor 
with index 1, 2, . . . ,  kls as well as those processors 
that  they send to in p. In round S, each of the 
processors ( k - 1 ) l s +  1 . . . . .  kl  s that  has not  failed 
earlier, fails after sending message to processors 
1, . . . ,  qk--1. The assumptions on failure numbers 
in p mean that  this execution involves at most  t 
failures. Clearly the view of Pk is the same in P2(k-1) 
as in Pzk-1 (the only difference between the execu- 
tions lies in when processors fail in round S, but 
in each execution these failures occur after sending 
messages to Pk, which is thus unaware  of the time 
of failure) s o  P2(k_l)~P2k_l. Also the view of qk 
is the same in P2k-1 as in P2k (since the only differ- 
ence between the executions lies in which round 
S - 1  messages reached processors ( k - 1 )  ls 
+ 1, . . . ,  kls,  and none of these sent a later message 
to qk) SO P2k_l~P2k . Also let /5 denote the execu- 
t ion identical to p during the first S - 2  rounds 
with no failures during round S - 1  and in round 
S each of the processors with index in J '  as well 
as each o f ( m s -  1) Is+ 1 . . . . .  n that  hasn' t  failed ear- 
lier fails after sending messages to processors 
1, . . . ,  qms-- 1. The view of qms is the same in fi as 
in P2,,s-1 s o  P2ras_l"~. Similarly the view of Pros 
is the same in ~ as in t3 so ~ ~ t3. Thus examining 
the whole argument,  p ~,~ 2ms + 1 f i ,  but  2ms 
+ l < _ N ( S - - 1 ) , s o p  N(s-1)~. 
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If we have n_<j + j '  + 2 Is + 1 then the set of pro- 
cessors that  are not  in J w J '  has size n - j  
- j '  <_21s + 1 < 3 Is, but  it also includes at least 3 
processors,  since n > t + 1 >_ It + ... + Is + 1 > j  +j '  
+ Is + 1 > j  + j '  + 2. Thus we can find indices p~, P2 
and P3 satisfying the following condit ions:  none  
of the indices Pl ,P2 or P3 is in JuJ' ,  the number  
of processor  indices that  are less than or equal to 
pl but  not  in J u J '  is at least one and at most  
ls, the number  of processor  indices that  are greater  
than  p~ and less than or equal to P2 but  not  in 
J u J '  is at least one and at most  ls, the number  
of indices that  are greater than P2 and less than 
or equal  to P3 but  not  in J w J '  is at least one 
and at most  ls, and no processor  index is greater  
than P3 but  not  in J ~ J'. (Thus we divide the pro- 
cessors that  do not  fail in p into three groups lying 
in the intervals 1 . . . .  , pa and p~ + 1 . . . .  , P2 and P2 
+ 1, . . . ,  P3- Each group contains at most  ls proces- 
sors.) Let  P I be the execution which is identical 
to p during the first S -  1 rounds  and during round  
S each of the processors 1 . . . .  , pl (that has not  
failed earlier) fails after sending messages to proces- 
sors 1 .... , P2. Let  P2 be the execution which is 
identical to p during the first S - 2  rounds,  and 
also during round  S - 1  except that  the processors 
with indices in J '  do send to each of the processors 
1 . . . . .  p~ as well as those they send to in p, and 
during round  S each of the processors 1, . . . ,  pt 
(that has not  failed earlier) fails after sending mes- 
sages to processors 1, . . . ,  P2. Let  P3 be the execu- 
t ion which is identical to p during the first S - 2  
rounds,  and also during round  S - 1  except that  
the processors with indices in J '  do send to each 
of the processors 1 . . . .  , p~ as well as those they 
send to in p, and during round  S no failures occur. 
Let  P4 be the execut ion which is identical to p 
during the first S -  2 rounds,  and also during round  
S - 1  except that  the processors with indices in J '  
do send to each of the processors 1 . . . .  , p~ as well 
as those they send to in p, and during round  S 
each of the processors pl + 1, . . . ,  P2 (that has not  
failed earlier) fails after sending messages to proces- 
sors 1 . . . . .  P2. Let  P5 be the execution which is 
identical to p during the first S - 2  rounds,  and 
also during round  S - l  except that  the processors 
with indices in J '  do send to each of the processors 
1 . . . . .  P2 as well as those they send to in p, and 
during round  S each of the processors p~ + 1 . . . . .  P2 
(that has not  failed earlier) fails after sending mes- 
sages to processors 1, . . . ,  P2. Let  P6 be the execu- 
t ion which is identical to p during the first S - 2  
rounds,  and also during round  S - 1  except that  
the processors with indices in J '  do send to each 
of the processors 1, . . . ,  P2 as well as those they 

send to in p, and during round  S each of the proces- 
sors P2 § 1 . . . .  , P3 (that has not  failed earlier) fails 
after sending messages to processors 1, . . . ,  Pl .  Let  
P7 be the execution which is identical to p during 
the first S - 2  rounds,  and also during round  S -  1 
except that  the processors with indices in J '  do 
send to every processor  (and so do not  fail during 
round  S -  1) and during round  S each of the pro- 
cessors P2 § 1, . . . ,  P3 (that has not  failed earlier) 
and also each processor  with index in J '  fails after 
sending messages to processors 1 . . . .  , p l .  The 
reader  may  check that  the view of processor  P2 
is the same in Po as in P l ,  the view of processor 
P3 is the same in p t  as in 1o2, the view of processor 
P2 is the same in Pz as in P3, the view of processor 
p~ is the same in P3 as in P4, the view of processor 
P3 is the same in P4 as in Ps, the view of processor 
Pl is the same in P5 as in/96, the view of processor 
P2 is the same in /96 as in /97, and the view of 
processor p~ is the same in P7 as in t3. Thus Po ~ at3, 
but  (since l~ > ls, 11 + Is < t and n > t) we have n > 2 Is 
so m s > 3  and 8 _ < 2 m s + 2 = N ( S -  1). 

N o w  we assume we have the result for r + l  
and prove  it for r. F o r  each k =  1, . . . ,  mr+l we let 
P3k-2 denote  the execut ion identical to p for the 
first r - 1  rounds and also in round  r except that 
the processors with indices in J '  do send to any 
processor  with index 1, 2 . . . . .  ( k -  1) lr+~ as well as 
those processors that  they send to in p. In round  
r + 1, each of the processors ( k -  l) l~+ 1 
+ 1 . . . . .  k lr + 1 that  has not  failed earlier, fails before 
sending any messages. N o  failures occur  after 
round  r +  1. The assumptions on the number  of 
failures in p by the end of each round  imply that  
this execut ion also satisfies those assumptions.  We 
let P3k-~ denote  the execution identical to p for 
the first r - 1  rounds and also in round  r except 
that  the processors with indices in J '  do send to 
any processor  with index 1, 2 . . . . .  klr+l as well as 
those processors that  they send to in p. In round  
r +  1, each of the processors ( k -  1) 1~+1 
+ 1, . . . ,  kl,+ ~ that  has not  failed earlier, fails before 
sending any messages. N o  failures occur after 
round  r +  1. The assumptions on the number  of 
failures in p imply that  this execution also satisfies 
those assumptions.  We let P3k denote  the execution 
identical to p for the first r - 1  rounds  and also 
in round  r except that  the processors with indices 
in J '  do send to any processor  with index 
1, 2, . . . ,  kl~+~ as well as those processors that they 
send to in p. No  failures occur  after round  r. The 
assumptions on the number  of failures in p imply 
that  this execution also satisfies those assumptions. 
N o w  by the lemma for r + l  we have P3~k-~) 
~'N(r+ l) P3k_ 2 and ,03k_  l ~ N ( r +  l) P 3 k  . Also every 
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correct  processor  gets the same view in P3(k 1) 
~N(r+l)Pak_ 2 SO p 3 k _ l ~ p 3 k - 1 .  Fur the r  P3m,+~, in 
which processors with indices in J '  fail at the very 
end of round  r, can also be viewed as an execution 
in which they fail at the very start  of round  r + 1, 
and so by the lemma for r + l  we have P3m.+, 

N(~+ 1)ft. Put t ing all these pieces of chain together  
we see p,,~(2 . . . .  +1)N(~+1)+,,~+,~. Since l r+ l> l r+2  
we deduce rnr + 1 -< mr + 2 -< N (r + 1), so 

( 2 m r + l +  1) N ( r +  1)+m~+l 
< (2mr+ 1 + 1) U ( r  + 1) + N ( r  + 1) = N(r).  

Thus we see p~U(')r Q.E.D. 

L e m m a  17. Suppose  n > t +  1. L e t  I i ,  12 . . . . .  ls be 
any collection o f  posit ive integers such that 
11 >_ 12 > ... >>_ ls and l 1 + ... + 1 s <_ t. P u t  m s = [n/li]. 
Le t  p = Po be the execu t ion  where all processors  have 
initial value 0 and no fa i lure  occur, and let ~ be 
the execut ion  where  all initial values are 1 and no 
fa i lures  occur. Then p N ~ where  N <_(2m 1 
+ 2)-(2m2 + 2).. .  (2ms + 2). 

Proof .  We will give separate proofs depending on 
the value of S and n. 

First  suppose S >  1. Fo r  each k = 1 . . . . .  ml let 
Pak-2  denote  the execution where processors 
1, . . . ,  ( k -  1) 11 have initial value 1, and the others 
have initial value 0, and where processors (k 
- 1) 11 + 1 . . . . .  k l l  fail in round  1 before sending 
any messages, but  no other  failures occur. Let  
P a k - t  denote  the execution where processors 
1, . . . ,  k l l  have initial value 1, and the others have 
initial value 0, and where processors ( k - l ) / 1  
+ 1, . . . ,  k l l  fail in round  1 before sending any mes- 
sages, but  no other  failures occur. Let  P3k denote  
the execution where processors 1, . . . ,  kl~ have ini- 
tial value 1, and the others have initial value 0, 
and where no failures occur. By L e m m a  16, 
P3(k_l )~N(1)P3k_2 and P 3 k _ l ~ " N ( 1 ) P 3 k  . Also the 
view of every correct  processor  is the same in P3k-2  
as in Pak-~ since the initial value of a processor  
that  fails before sending any message is irrelevant, 
and so P 3 k _ 2 ~ p 3 k _ l .  Since p3 , ,1=~,  we have p 
~Nr where N = 2 m l N ( 1 ) + m l < _ ( 2 m l + l ) N ( 1 )  

s 
(since ml _< m2 _< N(1)) and thus N _< I-[ 2mj + 2. 

j = l  

Suppose S = I  and n > 2 t + l .  Fo r  each k 
= 1, . . . ,  ml let qk be the greatest processor  index 
that  is not  in the range ( k - 2 ) l l  . . . . .  k l  1. Let  Pk 
be the least processor  index that  is not  in the range 
( k - 2 )  11 + 1, . . . ,  ( k -  1) 11. We see that  qk is strictly 
greater  than the least processor index that  is not  
in the range ( k - 2 ) l ~ ,  . . . , k l l  (since at least n 

- 2  t_> 2 indices are not  in the that  range) and  this 
in turn  is greater  than or equal to bo th  Pk and 
Pk+ 1, each of which is the least index of a set con- 
taining all those not  in the range ( k - 2 ) l l  
+1 ,  . . . ,  ( k - 1 ) l l .  Thus we have Pk<qk  and Pk 
< q k - a .  Let  P2k-1  denote  the execution in which 
the processors with index 1, 2, . . . ,  ( k -  1) 11 have 
initial value 1 and the others have initial value 
0 and in round  1, each of the processors ( k -  1) ll 
+ 1 . . . .  , k l l  fails after sending messages to proces- 
sors 1, . . . ,  qk--1 .  Let P2k denote  the execut ion in 
which the processors with index 1, 2 . . . . .  k l l  have 
initial value 1 and the others have initial value 
0 and in round  1, each of the processors (k -1 )11  
+ 1 . . . . .  k l l  fails after sending messages to proces- 
sors 1 . . . . .  q k - 1 .  The view of Pk is the same in 
PZ(k- 1) as in P2k-  1 (as all processors have the same 
initial values in the two executions, and Pk receives 
a message from every processor  in each execution) 
SO P2(k_l)~,~P2k 1" Also the view o f q k  is the same 
in P z k -  1 as in Pzk (as qk does not  receive a message 
in either execut ion from those processors with ini- 
tial values that  are different in the two executions) 
so P 2 k _ l ~ p z k .  As the view of P,,1 is the same in 
P2,,1 as in t3 we have that  Pzma ~ ,  and so p ~Nt~, 
where N = 2 m l  + 1 < 2 m l  +2 .  

Suppose S =  1 and n = 2 t +  1. Let  Pl be the exe- 
cut ion in which all processors have initial value 
0 and during round  1 each of the processors 1 . . . .  , t 
fails after sending messages to processors 1, . . . ,  2 t. 
Let  P2 be the execution in which processors 1 . . . . .  t 
have initial value 1 and the others  have initial value 
0, and dur ing round  1 each of the processors 
1, . . . ,  t fails after sending messages to processors  
1, . . . ,  2t. Let  P3 be the execut ion in which proces- 
sors 1, . . . ,  t have initial value 1 and the others  have 
initial value 0, and no failures occur. Let  P4 be 
the execut ion in which processors 1, . . . ,  t have ini- 
tial value 1 and the others have initial value 0, 
and during round  1 each of the processors 
t + 1, . . . ,  2 t fails after sending messages to proces-  
sors 1 . . . .  , 2 t .  Let  Ps be the execut ion in which 
processors 1 . . . .  , 2  t have initial value 1 and proces- 
sor n has initial value 0, and during round  1 each 
of the processors t +  1 . . . . .  2 t  fails after sending 
messages to processors 1 . . . .  , 2 t .  Let  P6 be the exe- 
cut ion in which processors 1, . . . ,  2 t  have initial 
value 1 and processor  n has initial value 0, and 
during round  1 processor  n fails after sending mes- 
sages to processors 1, . . . ,  t. Let  P7 be the execut ion 
in which all processors have initial value 1 and 
during round  1 processor  n fails after sending mes- 
sages to processors 1, . . . ,  t. The  reader  m ay  check 
that  the view of processor  t +  1 is the same in Po 
as in P l ,  the view of  processor  n is the same in 
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p~ as in P2, the view of processor  t +  1 is the same 
in P2 as in P3, the view of processor  1 is the same 
in P3 as in p~, the view of processor  n is the same 
in P4 as in Ps, the view of processor  1 is the same 
in P5 as in P6, the view of processor  t +  1 is the 
same in P6 as in PT, and the view of processor  
1 is the same in P7 as in t3. Thus  p o ~ S ~ ,  but  (since 
l~<t and n = 2 t + l )  we have n>21~+l  so m~>3,  
implying 8 _< 2m~ + 2. 

Finally, suppose S = 1 and t + 2 < n _< 2 t. Not ice  
that  this requires t > 2 .  Let  P l be the execution 
in which all processors have initial value 0, and 
dur ing round  1 processors 1, . . . ,  t fail after sending 
messages to processors 1 . . . . .  t + l .  Let P2 be the 
execut ion in which processors 1, . . . , t  have initial 
value 1 while the others have initial value 0, and 
during round  1 processors 1, . . . ,  t fail after sending 
messages to processors 1 . . . . .  t + l .  Let  P3 be the 
execut ion in which processors 1, . . . ,  t have initial 
value 1 while the others have initial value 0, and 
no failures occur. Let  Ok be the execution in which 
processors l, . . . ,  t have initial value 1 while the 
others have initial value 0, and during round  1 
processors t +  1 . . . .  , n fail after sending messages 
to processors 1 . . . .  , t - 1 .  Let  P5 be the execution 
in which all processors have initial value 1, and 
during round  1 processors t + l ,  . . . ,  n fail after 
sending messages to processors 1 . . . . .  t - 1 .  The 
reader  may  check that  the view of processor  t + 1 
is the same in P0 as in Pl ,  the view of processor  
t + 2  is the same in pa as in P2, the view of processor  
t +  1 is the same in P2 as in P3, the view of processor 
1 is the same in P3 as in P4, the view of processor  
t is the same in P4 as in Ps, and the view of proces- 
sor 1 is the same in P5 as in r Thus po~6t3,  but  
(since l~_<t and n > t + 2 )  we have n > l ~ + 2  so 
ma_>2, implying 6 < 2 m a  +2 .  Q.E.D. 

Now we can prove the lower bound  for this failure 
model.  

Theorem 18. Suppose n > t+ l. Any algorithm that 
performs valid t-resilient approximate agreement in 
the crash-failure model using at most S rounds of 
communication, has performance 

K -> sup (I1. . .  Is : 11 + ...  + ls < t, each Ii a nonnegat ive integer) 
(2 n + 3 t) s 

Proof.  Let  l~,lz . . . .  , ls be an arbi t rary  collection 
of nonnegat ive  integers such that  l~ + ... +ls<_t. 

/ ,  . . .  I S 
We will show that  K > ,.-t2J q-j~)s. This clearly im- 

plies the theorem. If any li is zero, this inequali ty 
is trivially true. Otherwise we can rename the 
values so that  l~ >_ tz -> ... -> ls, without  affecting the 
sum or p roduc t  of the values. 

Let  p = P0 be the execution where all processors 
have initial value 0 and no failures occur, and let 
/3 be the execution where all initial values are 1 
and no failures occur. Put  mi=[n/li], and N 
=(2m~+2).(2ma+2). . . (2ms+2).  L e m m a  17 
shows the existence of a sequence Po 
=p,p~ . . . .  , p N = ~  where pi~Pi+l,  that  is there is 
some processor  Pi whose view (which we will call 
Mi) is the same in Pi and in Pi+l. Since M0 is 
a view in a failure-free execution where every initial 
value is 0 we must  have f (Mo)= 0. Similarly MN-1 
is a view in a failure-free execution where all initial 
values are 1 so f ( M u _  1)= 1. Thus there must  be 
some i so that If(Mi)--f(Mi+l)[>_ 1/N, but  each 
of Mi and Mi+l  are views in the execution pi+ 1 
which from the const ruct ion clearly has all initial 
values either 0 or 1. Thus we have proved that  
any algori thm has K >__ 1/N. Since 

s s 

N =  I-I 2 m j + 2 <  [ I  (2n/lj+3) 
. /=i  j = l  

we have 
s s 

K _  [ I  lj/(2n+ 3lj)> [I  1j/(2n+ 3t). Q.E.D. 
j = l  j = l  

Since any algori thm for the failure-by-omission 
model  works as well or better  in the more  restric- 
tive crash-failure model,  this lower bound  also ap- 
plies to a fai lure-by-omission system. 

9 Conclusions 

We have presented algori thms to solve S-round 
t-resilient approximate  agreement  in each of the 
crash-failure, failure-by-omission and Byzantine 
failure models. F o r  fixed S and t, each algori thm 
has performance that  is asymptot ic  as n ~oo to 
the best possible in that  model, by lower bounds 
proved in this paper. 

These algori thms have the nice p roper ty  that  
they can be easily modified so that  they can provide 
tentat ive values that  get closer and closer together,  
reaching exact agreement  after t + 1 rounds.  

The results in this paper  are summarized in the 
following Table:  

Model  Algor i thm Lower bound  

Crash-failure K < L(S )  s K >  L(S )  
- ( 2 n - - 2 t )  - ( 2 n +  3t)  s 

L(S) K> L(S) 
Failure-by-omission K <_ ( 2 n _ 2 t ) ( 2 n _ 4 t ) s _  1 - - ( 2 n + 3 t )  

L(S) 
Byzantine failure K <_ ( n _ 2 t ) ( n _ 4 t )  s ~ K >  -- ( n + t )  L (S ) s  
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where L ( S ) - - s u p ( l l  . . .  l s : l l  + ...  + l s < t ,  each l~ a 
nonnegative integer). 

For the crash-failure model, we iterate a one- 
round algorithm. The multi-round algorithms giv- 
en for the failure-by-omission and Byzantine fail- 
ure models involve processors exchanging informa- 
tion and then forming multisets W ( q l ,  . . . ,  q r , * ,  

..., , ,  p) to represent all the information {v(qi, ..., 
qr, q~+l . . . .  , qs ,  P): q j = l ,  2 . . . .  , n for j > r } ,  
using the operations of combining multisets and 
removing extreme values repeatedly to increase the 
amount of unanimity in each multiset. In order 
to achieve good performance each processor tries 
to detect which processors are faulty, and ignores 
messages sent by processors which have been de- 
tected. 

Acknowledgments. I would like to thank Professor Nancy Lynch 
for teaching me about distributed algorithms and suggesting 
this problem, Michael Merritt for finding a major error in an 
early draft of this paper, Brian Coan and William Weihl for 
detailed comments on later drafts, Leslie Lamport for sugges- 
tions about the crash-failure case, Yoram Moses for fruitful 
discussions about the lower bounds, and two very thorough 
anonymous referees for many helpful suggestions. 

References 

1. Coan B (1986) Communication-efficient canonical form for 
fault-tolerant distributed protocols. Proc 5th ACM Symp 
on Principles of Distributed Computing, pp 63 72 

2. Coan B, Dwork C (1986) Simultaneity is harder than agree- 
ment. Proc 5th Symp on Reliability in Distributed Software 
and Database Systems, pp 141-150 

3. Dolev D (1982) The Byzantine generals strike again. J Algo- 
rithms 3:14 30 

4. Dolev D, Lynch N, Pinter S, Stark E, Weihl W (1986) Reach- 
ing approximate agreement in the presence of faults. JACM 
33(3):499-516 

5. Dwork C, Moses Y (1986) Knowledge and common knowl- 
edge in a Byzantine environment I: crash failures. Proc 1986 
Conf on Theoretical Aspects of Reasoning About Knowl- 
edge, pp 149 169 

6. Fischer M (1983) The consensus problem in unreliable dis- 
tributed systems (a brief survey). Yale University Tech Rep 
YALEU/DCS/RR-273 

7. Fischer M, Lynch N (1982) A lower bound for the time 
to assure interactive consistency. Inf Proc Lett 14(4): 183 
186 

8. Halpern J, Simons B, Strong R, Dolev D (1984) Fault-toler- 
ant clock synchronization. Proc 3rd ACM Symp on Princi- 
ples of Distributed Computing, pp 89-102 

9. Lamport L, Melliar-Smith P (1985) Synchronizing clocks 
in the presence of faults. JACM 32(1): 5~78  

10. Lundelius J, Lynch N (1984) A new fault-tolerant algorithm 
for clock synchronization. Inf Control 62(2):190-204 

11. Lamport L, Shostak R, Pease M (1982) The Byzantine gen- 
erals problem. ACM Trans on Programming Languages and 
Systems 4(2): 382-401 

12. Mahaney S, Schneider F (1985) Inexact agreement: accura- 
cy, precision and graceful degradation. Proc 4th ACM Syrup 
on Principles of Distributed Computing, pp 237-249 

13. Moses Y, Tuttle M (1988) Programming simultaneous ac- 
tions using common knowledge. Algorithmica 3:121 169 

14. Pease M, Shostak R, Lamport L (1980) Reaching agreement 
in the presence of faults. JACM 27(2):228-234 


