
Distributed Computing (1990) 4:9 29

�9 Springer-Verlag 1990

Asymptotically optimal algorithms for approximate agreement*
A.D. Fekete
Department of Computer Science, University of Sydney, NSW 2006 Australia

Alan Fekete was born in
Sydney Australia in 1959. He
studied Pure Mathematics and
Computer Science at the Uni-
versity of Sydney, obtaining a
B.Sc.(Hons) in 1982. He then
moved to Cambridge, Massa-
chusetts, where he obtained a
distributed Ph.D. degree,
awarded by Harvard Universi-
ty's Mathematics department
for work supervised by Nancy
Lynch in M.I.T.'s Laboratory
for Computer Science. He
spend the year 1987 1988 at
M.I.T. as a postdoctoral Re-

search Associate, and is now Lecturer in Computer Science
at the University of Sydney. His research concentrates on under-
standing the modularity in distributed algorithms, especially
those used for concurrency control in distributed databases.

Abstract. This pape r introduces some a lgor i thms
to solve crash-failure, fa i lure-by-omiss ion and By-
zantine failure versions of the Byzant ine Genera ls
or consensus problem, where non-faul ty processors
need only arr ive at values tha t are close together
ra ther than identical. F o r each failure model and
each value of S, we give a t-resilient a lgor i thm using
S rounds of communica t ion . I f S = t + 1, exact
agreement is obtained. In the a lgor i thms for the
fa i lure-by-omiss ion and Byzant ine failure models ,
each processor a t t empts to identify the faulty pro-
cessors and corrects values t ransmi t ted by them

* A preliminary version of this paper has appeared in the Pro-
ceedings of the 5 th ACM Symposium on Principles of Distrib-
uted Computing (August 1986). This work was begun in the
Department of Mathematics, Harvard University, and complet-
ed at the Laboratory for Computer Science at Massachusetts
Institute of Technology. The work was supported in part
(through Professor N. Lynch) by the Office of Naval Research
under Contract N00014-85-K-0168, by the Office of Army Re-
search under contract DAAG29-84-K-0058, by the National
Science Foundation under Grants MCS-8306854, DCR-83-
02391, and CCR-8611442, and by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract N00014-83-
K-0125

to reduce the a m o u n t of disagreement . We also
p rove lower bounds for each model , to show tha t
each of our a lgor i thms has a convergence rate tha t
is a sympto t i c to the best possible in tha t model
as the n u m b e r of processors increases.

Key words: Dis t r ibuted a lgor i thms - Fau l t - to le ran t
consensus p rob lems - Byzant ine agreement p rob-
lem A p p r o x i m a t e agreement

I The problem and statement of results

An i m p o r t a n t quest ion in the design of fault- toler-
ant d is t r ibuted systems is how to enable non-faul ty
communica t i ng processors to agree even when
faulty processors in the system are interfering by
provid ing different correct processors with different
informat ion. Examples of appl ica t ions include
agreeing on whether to c o m m i t a da t abase t ransac-
t ion and agreeing on which copy of a file is the
p r ima ry copy. Classical fo rmula t ions of this p rob-
lem are k n o w n as the interact ive consis tency p rob-
lem and the Byzant ine Genera l s p rob l em [6].
These p rob lems have been studied in several m o d -
els of computa t ion . In the m o s t general synchro-
nous mode l it has been found [-14, 11, 7] tha t any
solut ion resilient to t faulty processors requires at
least 3 t + 1 processors and at least t + 1 rounds of
c o m m u n i c a t i o n in the wors t case. The b o u n d on
rounds of c o m m u n i c a t i o n also holds in more re-
strictive failure models . In some pract ical s i tuat ions
comple te agreement is not required - e.g. in syn-
chronizing clocks [-8, 10, 9] or reading a sensor,
it is often good enough if all the values held by
different processors are close together. We m a y
hope for p ro toco ls using fewer rounds of c o m m u n i -
ca t ion for this p r o b l e m called the a p p r o x i m a t e
agreement p rob lem, which was first s tudied in [4].

In this pape r we s tudy a t-resilient a p p r o x i m a t e
agreement p rob l em in this form: there are n proces-

10

sors labeled 1, 2 , n. These processors are linked
by a complete, synchronous, fault-free, point-to-
point network which is the only means of interpro-
cess communication. In each execution there is
some subset Corr of processors (the correct ones),
so that if pc Corr then p executes the given algo-
rithm. We consider three models of computation
distinguished by the flexibility of behavior of the
other (faulty) processors. In the crash-failure model
a faulty processor executes the given protocol up
to some point and then halts (without loss of gener-
ality we assume the crash doesn't occur in the mid-
dle of sending a message). In the failure-by-omission
model a faulty processor may neglect to send a
message that the protocol calls for it to send, and
it may halt, but it does not send any message that
is different from what the protocol requires. The
most general model is the Byzantine model, in
which a faulty processor may change state or send
a message arbitrarily. We denote the set of faulty
processors by Fault={1,2, ..., n}\Corr and set
f = [Fault[. We also let Crash denote the subset of
Fault consisting of processors that halted during
the execution. Each processor p has an initial value
v(p) which is a real number and at the end of any
execution of the algorithm for which f_< t each cor-
rect processor p must arrive at a new value w(p)
satisfying a validity cndition: in the crash-failure
and failure-by-omission models this is that for cor-
rect p, w(p) must lie within the range of the initial
values. In the Byzantine model we do not trust
the initial values of faulty processors, so we insist
that for correct p, w(p) must lie within the range
of the initial values of the correct processors. Natu-
rally we put no requirement on the final state of
the faulty processors, nor on the behavior of cor-
rect processors when more than t processors are
faulty.

We denote the smallest interval containing a
collection of values V by p(V) and its length, the
diameter of V, by 6(V) so that p(V) is the interval
[min (V), max (V)] and 8(V)=max (V) - m i n (V).
Let us denote by U the collection of initial values
of all processors and by ~ the collection of initial
values of correct processors, so U={v(p)} and
U={v(p):pcCorr}. We can express the validity
condition in the failure-by-omission and crash-fail-
ure models by "if [Faultl<t and pcCorr then
w(p)cp(U) ". Similarly in the Byzantine model the
validity condition is "if [Fault[<_ t and pc Corr then
w(p)cp(O) ".

We will measure the performance of such an
algorithm by the change in the range spanned by
the values of the processors. Thus we measure per-
formance in the crash-failure and failure-by-om-

ission models by

({w(p):pcCorr})
K = sup 3 (U)

and in the Byzantine model by

K = sup 8({w(p)" pc Corr})
8 (0) '

in each case the supremum being taken over all
executions with]Fault[< t (so a good algorithm is
one with a low value for K). Notice that the identi-
fication of processors as faulty or correct is avail-
able to us when analyzing the execution, but is
not necessarily known to the processors during the
running of the algorithm.

Since the failure-by-omission model allows any
faulty behavior that is allowed in the crash-failure
model (as well as other forms of faulty behavior),
we see that any alogirthm that solves the approxi-
mate agreement problem in the failure-by-omission
model also solves it in the crash-failure model, and
the performance K of the algorithm in the crash-
failure model is less than or equal to the perfor-
mance in the failure-by-omission model. Similarly
any algorithm that solves the approximate agree-
ment problem in the Byzantine failure model also
solves it (with a performance at least as good) in
the failure-by-omission and crash-failure models.

For the Byzantine model, [4] gives an algo-
rithm using only one round of communication, val-
id when n > 3 t , with performance K = [(n
--2t)/t]-x. This is optimal if only one round of
communication is allowed. We can clearly iterate
this algorithm (that is, use the final values produced
by one execution as initial values in another and
then use the final values of that as initial values
in a third execution, and so on for S rounds). This
gives an S-round solution with K = ([(n - 2 t)/t])-s.
The paper [4] raises the question of whether it
is possible to design an S-round algorithm that
combines the information from different rounds to
obtain better performance. This paper addresses
this issue and also considers the impact of changing
the failure model.

First we give a new one round algorithm valid
in the crash-failure model whenever n > t. This al-
gorithm is very similar to the algorithm of [4],
but uses a different method of removing extreme
values and averaging, specially tailored to the more
restricted failure model. Our algorithm attains a
performance K=t/ (2n-2t) , which is asymptoti-
cally (as nit ,09) twice as good as the algorithm

t/(2 n - 2 t) 1
of [4], since lim,/,_~ o~ [(n - - 2 t) / t] - l = 2 " This im-

proved performance may be understood through
the following intuitive reasoning: a Byzantine fault
gives different processors two different ideas, say
v and w, of the initial value of a processor. Two
crash failures can produce a similar effect, by giving
one processor the impression that a pair of initial
values are v and no value, while another processor
receives the impression that the same initial values
are no value and w. Thus one can expect an algo-
rithm tolerating t crash failures to have similar per-
formance to one that tolerates t /2 Byzantine faults.

If we iterate this one-round algorithm for S
rounds, we might expect to obtain a performance
of (t / (2 n - 2 t)) s. In fact we show that we actually
do much better the iterated algorithm has perfor-
mance

K _< sup (l l . . . ls : l~ + . . . + ls <_ t, each l~ a nonnegt ive integer)
(2 n - 2 t) s

By elementary calculus this supremum is at most
t s / s s so we see

t S

K <_ S S (2 n _ 2 t) s .

The reason the iterated algorithm does so well is
that differences between processors' values at the
end of a round are entirely due to failures that
occur during that round - a processor that fails
earlier provides the same lack of information to
all others, and one that fails later provides the same
good information to all the processors in the round
in question. Thus if lr processors crash during
round r, then the span of values is multiplied by
a factor l r / (2 n - 2 t) during that round. Since each
faulty processor can crash during at most one
round, we see that ll + 12 + ... + ls < t.

We give a new lower bound for K in the crash-
failure model, namely

K _> sup (11. . . ls: 11 + . . . + ls < t, each Ii a nonnega t ive integer)
(2 n + 3 t) s

for any algorithm using S rounds of communica-
tion, whenever n > t + 1. Thus for fixed S our iterat-
ed algorithm for the crash-failure model is asymp-
totic to the optimum (that is, the ratio of our algo-
rithm's performance to the lower bound tends to
the limit 1) as ni t increases, that is, as the number
of processors increases relative to the number
faulty.

In the failure-by-omission and Byzantine failure
models we cannot say that a processor sends differ-
ent information to different processors during only
one round. Thus we introduce algorithms which

11

use f a i l u r e de tec t ion . We provide a way for one
processor to detect that another processor has
failed. Each processor ignores any values sent to
it by a processor known to have failed, so that
after a processor is universally detected as faulty
it will be unable to provide different information
to different processors. We also use operators that
remove extreme values from collections of values
in such a way that they eliminate any differences
introduced between processors' information by a
faulty processor that escapes universal detection.
Thus each faulty processor can cause differences
between other processors' information only once,
namely in the round in which it becomes universal-
ly detected as faulty. A technique of detection of
faulty processors was used earlier in the similar
problem of inexact agreement (where there is an
a priori bound on the diameter of initial values
of correct processors) in [12].

We give an algorithm using failure detection
in the failure-by-omission model. This algorithm
is valid when n > 2 t, and has performance

K _< sup (ll . . . ls : 11 + . . . + ls <- t, each Ii a nonnega t ive integer)
(2 n - - 4 t) s - l (2 n - 2 t)

which is asymptotic to optimal (in the sense that
for fixed S the ratio of the algorithm's performance
to the lower bound tends to the limit 1 as n/ t tends
to infinity), since the lower bound for the crash-
failure model applies also to the more general fail-
ure-by-omission model.

For the Byzantine failure model, we offer an
S-round algorithm valid when n > 4t, with perfor-
mance

K <_ sup (11... ls: ll + ... + ls <- t, each l~ a nonnegative integer)
(n - 2 t) (n - 4 t) s - a

For large n this is asymptotic to S s times better
than the performance of the iterated algorithm
from [4]. We prove the lower bound for an S-
round algorithm resilient to t Byzantine failures:

K > sup (l l . . . ls : 11 + . . . + ls <_ t, each l~ a nonnegt ive integer)
(n + t) s

whose asymptotic form is due to [4]. Therefore
our algorithm is asymptotic to the best possible
(in the sense that for fixed S the ratio of the algo-
rithm's performance to the lower bound tends to
the limit 1 as ni t tends to infinity).

It is worth noting that if S = t + 1 the expression
sup (11... ls : 11 + .. . + ls <- t, each li a nonnegative
integer) is zero, as one of the li must be zero, and
so each of our algorithms (when run for t + l
rounds) produces exact agreement. Even in the By-

12

zantine failure and failure-by-omission models
(where our algorithms are not iterated applications
of a one round algorithm) our algorithm for S
rounds starts by doing all the communication of
the S - 1 round algorithm, so our algorithm can
be modified to output tentative values (after each
round the new values can be calculated as if that
round were the last) this permits the values held
by the correct processors to approach one another
rapidly, finally agreeing once t + 1 rounds have
passed.

The multi-round algorithms introduced here
for the failure-by-omission and Byzantine failure
models require exponential amounts (O(n s+ 1)bits)
of message traffic 1, like many other consensus or
Byzantine Agreement algorithms. In the failure-by-
omission model we can modify our algorithm to
use only O(n4S 2) bits of message traffic, since a
processor's view of the system (and thus its mes-
sage) is determined by (and so can be encoded by)
what it knows of the n initial values and the list
of which of the n 2 messages in each prior round
it knows were sent. A detailed analysis of the com-
plexity of determining a processor's history in the
crash-failure and failure-by-omission models can
be found in [13]. In the Byzantine model Coan
[-1] has introduced a transformation which can en-
code algorithms of our type so as to require only
polynomial communication. However Coan's
transformation costs a few rounds of communica-
tion, and so the transformed algorithm will not
have performance that is asymptotic to optimal.
The decision in practice between Coan's transfor-
mation of our algorithm, and the iteration of the
one round algorithm of [4] (which involves only
O(n2S) message traffic, but produces values that
are farther apart) will depend on the details of the
system.

The reader should note that our algorithms are
optimal only asymptotically, as the number of pro-
cessors n increases relative to the number of faults
tolerated t. For systems in which n is not very large
relative to t (say, n ~ 50t) the performance of our
algorithms is far from optimal, although our algo-
rithms still give closer final values than merely iter-
ating the algorithm of [4]. Finding algorithms that
are precisely optimal in each failure model remains
an open question.

In w 2 we give the notation and technical lem-
mas we will use later. w 3 describes the iterated al-
gorithm for the crash-failure model, and analyses
it. Next w 4 describes the multi-round algorithms
for the failure-by-omission and Byzantine failure

1 Here we assume a fixed precision for real numbers

models. In w 5 and w 6 these algorithms' correctness
and performance are analyzed. In w 7 and w 8 we
prove the lower bound for the Byzantine failure
model and the crash-failure model, respectively. Fi-
nally in w 9 we summarize our results.

2 Notation and lemmas

In order to give the algorithms precisely, we intro-
duce the language of multisets. A formal account
appears in [4] but for our purposes it is enough
to think of a multiset as an unordered collection
of entries, with values that need not be distinct.
For each value v and multiset V we denote the
number of entries in V with value v (the multiplicity
of v) by mult (v, V). The values may be either real
numbers or the special symbols • (which we will
use to denote a value not received in round r be-
cause, for example, a processor failed to send it).
We define union, intersection, cardinality, sum and
mean for multisets in the obvious ways, so for any
v, mult(v, V~ W)=min(mult(v, V), mult(v, W)) and
mult(v, Vu W)=mult(v, V)+mult(v, W), and also
IVl--~mult(v, V), ~V-~v .mul t (v , V) and

mean(V) = I VI- 1 ~ V. Also let double(V) be defined
by mult(v, double(V)) = 2. mult(v, V).

As in [4] we will try to reduce the range of
values held by processors by using operators that
act on multisets by removing extreme values. Let
V be a multiset with IVI--N. We put redk(V) to
be the multiset with N - 2 k entries formed from
V by removing the k highest entries and also the
k lowest entries. We order the values by treating
• as greater than any real number and also as
greater than • if r>R. For the failure-by-omis-
sion model we will use similar operators chop~ that
prefer to remove as many occurrences as possible
of • rather than removing other values. If I VI = N
and mult(l~, V)=j then chop~(V) is a multiset of
2 N - 2 k entries formed from double(V) either by
removing 2 k copies of • (in the case j > k) or else
by removing all 2j copies of • and then removing
the k - j highest and k - j lowest of the remaining
entries.

We similarly have operators to find a single
number to be an "average" for a multiset. Suppose
I VI--N and at least N - k entries in V are real
numbers. Then we put midk(V)=mean(redk(V)).
Similarly if] VI = N, at least N - k entries of V are
real numbers and mult(• V)=0 for r > 1 we define
centerk(V)=mean(chop~(V)). The facts below and
the conditions given in each case will ensure that,
in our algorithms, a mean is only taken for multi-
sets of real values.

As examples:

�9 { - 1 , - 1 , 0) u { 0 , 1 } = { - 1 , - 1,0,0, 1)

�9 { - 1, - 1, A_l} w {0, • 3-2}
= { - - 1 , - 1, 0, 3-1, -[_ 1, -[-2}

�9 { - - 1, -- 1 ,0 ,0} ~ { - - 1 ,0 ,0 , 1 } = { - - 1 ,0 ,0}

�9 I { - 1 , - 1 , 0 } 1 = 3

�9 I { - 1, - 1,0, _1_1}1=4

�9 r ed2 ({ - I , - 1 , - 1 , 0 , 0 , 1})={-1 ,0}

�9 red1({-1 , - 1 , 0 , 3 , 1 , 3 , 2)) : { - 1 , 0 , 3,1}

�9 chop2({-1, O,O, 3-2, 3-2})

= { - - I , - 1, 0, 0, 0, 0, 22, 3-2}

�9 chop2({-1, O,O, 3_2, 3 ,2})={-1 ,0 ,0 ,0}

�9 mid2({-1, - 1 , - I , 0 , 1, 3,t})= -0 .5

�9 center3({-1, - 1 , 0 , 1, 3"1})= -0 .5

�9 center2({-1, - 1 , 0 , l, 2-1})= - 1 / 3

In our discussion we will need to know how the
operators introduced affect the range of values in
a multiset and the differences between two multi-
sets. We have the following results:

Lemma 1 [4]. I f g is a multiset with I r l = N , and
at least N - k elements of V lie in the range [a, b],
then every element of redk(V) lies in the range [a, b].

Proof. At most k elements of V are greater than
b and all of these must be removed among the
k highest elements of Vwhen forming redk(V). Thus
every element of redk(V) is less than or equal to
b, and a symmetric argument shows that every ele-
ment of redk(V) is greater than or equal to
a. Q.E.D.

L e m m a 2 [4]. If V and W are multisets then
I redk (V) n red k (W)I > I Vc~ W] - 2 k.

Proof. Since Vc~ W~_ V, redk(Vm W)~_redk(V) and
similarly redk(VC~ W) ~ redk(W), so redk(V~ W) ~_
redk(V) ~ redk(W), but]redk(Vm W)] =]V~ W [- 2 k.

Q.E.D.

Lemma 3. I f V is a multiset with IV] = N such that
at least N - k entries of V are different from •
and lie in the interval [a, b], and if l> 2k, then every
entry of chop~(V) lies in [a, b].

Proof. Let mul t (• V)=j (soj <_ k) and let Z denote
the multiset of 2N- -2 j entries formed from dou-
ble(V) by removing all 2j copies of _l_r. Now
chop~(V)=redl_s(Z), and at least 2 N - 2 k entries

13

of Z lie in [a, b] so (since l - j > 2 k - 2 j) Lemma
1 completes the proof. Q.E.D.

Lemma 4. Let V and W be multisets with
[VI = [W[=N. Suppose that every entry in Vw W
is one of v, w or • and that mult(A_~, V)<_ k and
muM_k, W)<k. Let [mult(v, V)--mult(v, W)]+
I mult (w, V) - mult (w, W)[= m. Then]mult(v, chop~ (V))
-mult(v , chop~(W))L<_ m and Imult(w, chop~(V))
-- mult (w, cho p~ (W))] <_ m.

Proof. Without loss of generality we may assume
v ~ w .

If k =0, then every entry of each of V and W
is one of v or w, so (mul t (v ,V)-mul t (v ,W))=
- (mul t (w ,V) -mul t (w ,W)) . In this case how-
ever chop~ is just the operator double, so
Lmult (v, chop~ (V)) - mult (v, chop~ (W))[= 2 Imult (v, V)
- mult(v, W)I = Imult(v, V) - mult(v, W)I + [mult(w, V)
-mult(w, W)I = m, and similarly Imult(w, chop~(V))
- mult(w, chop~(W))l = m.

So suppose k>_ 1. We use induction on m. If
m = 0 then V= W and there is nothing to prove.
If m = l then]mult(• V)-mult(2_ r, W)[=I, and
we can assume without loss of generality that
muM• V) - m u l t (3 - , W)= 1, so that V is formed
from W by by removing a single entry with value
z (which is either v or w) and replacing it with
an entry with value Lr. Let us put j = mult(_k~, W)
(so j < k - - 1) and let Z denote the multiset of
2 N - 2j entries formed by removing all occurrences
of • from double(W). Now chOffk(W) is formed
from Z by removing the k - j highest entries and
the k - j lowest entries. On the other hand, chOffk(V)
is formed from Z by removing two entries with
value z and then removing the k - j - 1 highest and
k - j - 1 lowest of the remaining entries. If z = v this
is equivalent to removing the k - j - 1 highest and
k - j + 1 lowest entries from Z as v is the lowest
entry in Z, while if z = w the net effect is to remove
the k - j + 1 highest and k - j - 1 lowest entries from
Z. Thus we can obtain chOffk(V) from chOffk(W)
either by removing the (k - j + 1)-st lowest entry
of Z and replacing it with the (k - j) - th highest entry
of Z, or else by replacing the (k - j + 1)-st highest
entry of Z by the (k- j) - th lowest entry of Z. In
either case we see that the multiplicities of v in
chop~(V) and chop~(W) can differ by at most 1 (and
similarly for the multiplicities of w).

So suppose m> 1. Without loss of generality
we may assume mul t (L , W)>_ mu l t (Z , V). We will
construct a multiset W' so that I W'I--N, every
entry of W' is one of v,w or _l_~,mult(• W')<_k,
[mult (v, V) - mult (v, W')I +]mult (w , V) - mult (w, W')]}
= m - 1 and [mult(v, W')-mult(v, W)h+lmult(w, W')

14

-mul t (w, W)I = 1. The construction of W' will be
different in two cases, depending on mult(• W).
If mult(• W) > 0 then there is a value z (either
v or w) so that mult(z, W)<mult(z, V). In this case
we let W' be formed from W by removing one
entry with value _k~ and replacing it with z. If
mult(_l_~, W)=mul t (• V) = 0 then there is a value
z (either v or w) so that mult(z, W)>mult(z, V). In
this case we let W' be formed from W by removing
one entry with value z and replacing it with _kr
(this does not violate the requirement on the multi-
plicity of I , in W' since k > 1). In either case, we
can apply the induction hypothesis to the multisets
V and W', and also to the multisets W' and W. We
deduce that]mult(v, chop~k(V))--mult(v, chop~k(W'))]
_< m - 1 and]mult(v, chop'~(W')) - mult(v, chop~k(W))]
< 1. Therefore]mutt(v, chop~k(V)) - mult(v, chop~k(W))]
<m, as required. Similarly]mult(w, chop~k(V))
-- mult(w, chop~k(W))] < m. Q.E.D.

Lemma 5. Suppose V and W are multisets with
J V] = I W] = N,] Vc~ WI >_ N - m and at least N - k ele-
ments of each of V and W lie in the interval [a, b].
Then midk(V) and midk(W) lie in [a, b] and]midk(V)
-- midk (W)I <- m (b - a)/(N - 2 k).

Proof. By Lemma 1 we see that all the entries of
redk(V) lie in the interval I-a, b] and so their average
midk(V) also lies in [a, b]. Similarly every entry of
redk(W) and also midk(W) lie in [a, b]. By Lemma
2, the multisets redk(V) and redk(W) agree in at least
N - 2 k - m of their entries, and for each of the re-
maining m entries, the values can differ by at most
b - a as each lies in I-a, b]. Thus

1
]midk(V)- midk(W)] - N - 2 k]~ redk(V)

- - ~ redk(W)l <_m(b-a) / (N-2k) . Q.E.D.

Lemma 6. Suppose V and W are multisets with
]VI=]WI=N, such that mult(_L 1 , V)<_k,
mul t (• W)<k, mult(• V)=mult(Zr, W) = 0 for
r > 1, and all real entries of V u W lie in the interval
[a,b]. Let m= ~]mutt(v, V)-mul t (v , W)]. Then

v 4 : •

centerk(V) and centerk(W) lie in [a,b] and
]centerk (V) -- centerk (W)I _< m (b - a)/(2 N - 2 k).

Proof. The hypotheses show that in double(V) there
will be at most 2k entries that are not real, and
all of them will be • 1 and so will be removed
in forming chop~(V). Thus the resulting multiset
has all its entries in [a,b] and so its mean
centerk(V) also lies in [a, b]. Similarly centerk(W)
also lies in [a, b].

If k = 0, then every entry of each of V and W
is real. Therefore if we let X denote the set of real
numbers v such that mult(v, V)>mult(v, W) and Y
denote the set of real numbers v such that mult(v, V)
<mult(v, W), then we see that ~' (mult(v, V) -

v E X

mult (v, V)-- mult (v, W)) = ~ (mult (v, W) - mult (v, V))
v ~ Y

1
= ~ ~]mult(v, V)-mul t (v , W)] since IV]=IWI.

u

Now in this case centerk is just the operator mean
o double = mean. Thus

center o (V) - center o (W)

_ 1 (~ v.mult(v, V) -~" v.mult(v, W))
N

v

1
= ~ ~ v (mult (v, V) - mult (v, W))

_ 1 ((~, v(mult(v, V)-mul t (v , W)))
N

v e X

- ~. v(mult(v, W)-mul t (v , V))))
V~Y

1
< ~ ((~ b(mult(v, V)-mult (v , W)))

v E X

-- (~ a(mult(v, W) - mult(v, V))))
v ~ Y

1 (b - a) 1
= N 5 ~]mult(v, V)-mul t (v , W)[

(b - a) m
2 N

and by symmetry

centero (W) - centero (V) <_ (b - a) m/2 N,

S O

] center o (V) - center o (W)I <- (b - a) m/ 2 N,

as required.
So suppose k _ 1. We use induction on m. If

m = 0 then V= W and there is nothing to prove.
If m = 1 then]mult(• V) - m u l t (• W)] = 1, and
we can assume without loss of generality that
mult(_l_l, V)-mult (3_l , W)= 1, so that Vis formed
from W by removing a single entry with value z
and replacing it with an entry with value • 1. Let
us p u t j = m u l t (• W) (so j<_k -1) and let Z de-
note the multiset of 2 N - 2 j entries formed by re-
moving all occurrences of • from double(W). Let
a' denote the value of the (k - j) - t h lowest entry

15

of Z and let b' denote the value of the (k- j) - th
highest entry of Z. Now chop~ (W) is formed from
Z by removing the k - j highest entries and the
k - j lowest entries. On the other hand, chop~(V)
is formed from Z by removing two occurrences
of z and then removing the k - j - 1 highest and
k - j - 1 lowest of the remaining entries. If z<_a',
this is equivalent to removing the k - j - 1 highest
and k - j + 1 lowest entries from Z, while if z_> b'
the net effect is to remove the k - j + 1 highest and
k - j - 1 lowest entries from Z. Thus in these cases,
we can obtain chop~(V) from chop~ (W) either by
removing the (k - j + 1)-th lowest entry of Z and
adding b', or else by replacing the k - j + 1 highest
entry of Z by a'. Clearly in these cases, the sum
of the entries of chop~ (v) differs from the sum of
the entries of chop~(W) by the difference of two
elements of the interval [a, b] which has absolute
value at most b - a. In the remaining case we have
a' < z < b', but chop~ (V) is obtained from chop~ (W)
by removing two entries with value z and replacing
them with a' and b', which will alter the sum of
the entries by b ' + a ' - 2 z . However b ' + a ' - 2 z <
b' + a ' - 2 a ' = (b ' - a ') < (b - a) , and also b' + a ' - 2 z
> b' + a ' - 2 b ' = -(b'-a ')>_ - (b - a) , so [b' + a ' - 2 z t
_< b - a. Thus in every case

Icenterk(VO -- centerk(V2)[

1 1 b - - a
- 2 N -- 2 k I~ chop~ (V1) - ~, chopk (V2)1 < 2 ~ } k

as required.
So suppose m> 1. Without loss of generality

we may assume mult(_kx,W)>__mult(3-1,V). We
will construct a multiset W' so that]W']
=N, mult(J_l, W')<_k, mul t (lr , W')=O for r > l ,
all real entries of W' lie in the interval

[a,b], ~]mul t (v ,V) -mul t (v ,W')]=m-1 and
v ~ l i

~', Imult(v, W')-mul t (v , W)I = 1. The construction
v:;a J.1

of W' will be different in two cases, depending on
m u l t (l l , W). If m u l t (l l , W)>0 then there is a
value z (in [a,b]) so that mult(z, W)<mult(z , V).
In this case we let W' be formed from W by remov-
ing one entry with value 3-1 and replacing it with
z. If mult (l r , W)=mul t (l~ , V)=0 then there is a
value z (in [a,b]) so that mult(z, W)>mult(z , V).
In this case we let W' be formed from W by remov-
ing one entry with value z and replacing it with
3-1 (this does not violate the requirement on the
multiplicity of _k 1 in W' since k > 1). In either case,
we can apply the induction hypothesis to the mult-
isets V and W', and also to the multisets W' and

W. We deduce that

I centerk (V) -- centerk (W')I
< (m - 1)(b - a)/(2 N - 2 k)

and

[center k (W ') - centerk(W)[<_ (b - a)/(2 N -- 2 k).

Therefore

I cen terk (V)-- center k (W)l < [centerk (V) -- centerk (W')l

+ [cen terk (W') -- centerk (W')I <_ m (b - a)/2 N - 2 k,

as required. Q.E.D~

3 The crash-failure model: the algorithm
Throughout this paper, for ease of exposition we
will suppose that when a processor broadcasts in-
formation it sends to itsetf as well as to the other
processors, though in practice this will usually be
implemented by remembering, rather than sending
a message.

In the crash-failure model, our algorithm will
require only n > t. The one round algorithm is given
first. In this all processors exchange their initial
values. Each processor forms a collection of initial
values (representing those it has not heard about
by /1) and then applies the operator centert to
this collection to produce: its new final value. In
detail, processor p, until it fails, must perform the
following
�9 Broadcast v(p), and denote by v(ql, p) the value
received by p from ql. If the message from ql is
missing set v(ql ,p) to be _1_ 1 .
�9 Now p assigns W(p) to be the multiset

{v(1, p), v(2, p) v(n, p)}.
�9 Finally processor p (unless it has previously

crashed) decides on the final value w(p)
= centert (W (p)).

In an execution of this algorithm in the crash-fail-
ure model, let Fail(l) denote the set of processors
that crashed before sending any message, and let
Fail(2) denote the set that crashed before deciding
on their final value. Let ll=]Fail(2)\Fail(1)l
= IFail(2)l--]Fail(l)]. Also let U 1 denote the multi-
set {v(p):p~Fail(1)} of initial values of processors
that are active at the start of the communication,
and let U2={w(p):p~Fail(2)}, the final values of
processors that reach a decision. We prove the fol-
lowing lemma that relates the final values to the
initial values.

Lemma 7. Suppose n > t. In an execution of the one-
round algorithm above in the crash-failure model,
such that]Fault] < t, we have

p(v~)~_p(V 1)

16

and

6(UZ)<--2n~ 2 t 6(U1).

Proof. Let Po and Pl be two processors that reach
decisions. If q is a processor in Fail(l), then
v(q, p0)= v(q, pl)=-J-l, since q crashed before send-
ing any messages. If qr then v(q, po)
= v(q, Pl)= v(q), since q sent correctly to all proces-
sors. (Since at least n - t processors are non-faulty
and have real initial values, we see from this that
the multiplicity of L1 in each of W(po) and W(pl)
is at most t). Finally, if qe(Fail(2)\Fail(1)), then
either the two values v(q, Po) and v(q, Pl) are equal
or else one out of the two values is • Thus the
quantity ~ [mult(v, W(po))-mult(v, W(P0)I is at

v~ / 1

most IFail(2)\Fail(1)l=ll. If we apply Lemma 6,
with V=W(po) , W=W(pO, N=n, k=t, and
[a ,b]=p(U1), we obtain the claimed re-
suits. Q.E.D.

Thus the algorithm above satisfies the validity con-
dition, and since 11 < t we see that it has perfor-

t
mance K < Asymptotically this is twice as

- 2 n - 2 t "
good as the performance of the synchronous algo-
rithm of [4]. (The intuitive reason behind this im-
proved performance is that one Byzantine fault or
two crashes produce similar differences between
processors' views.)

When S rounds of communication are avail-
able, we can iterate the algorithm given above, by
using the final values from each round (except the
last) as initial values in the next round, and then
deciding on the final values from the last round.
Thus we have the following algorithm, where we
give different names to the variables in different
rounds to make the analysis clearer. Processor p,
until it fails, must perform the following -

�9 Set vl(p)=v(p).
�9 For r = 1 S successively:

- Broadcast V(p), and denote by vr(ql,p) the
value received by p from ql in this round. If
the message from ql is missing set v*(ql,p) to
be •

- N o w p assigns Wr(p) to be the multiset
{v~(1, p), v~(2, p) , v"(n, p)}.

- Then processor p assigns v ~ + l(p)
= centert (Wr (p)).

�9 Finally processor p (unless it has previously
crashed) decides on the final value w(p)= v s + 1 (p).

Theorem 8. Suppose n > t. Then the iterated algo-
rithm given above is valid in the crash-failure model
with performance

K <_ sup (11... ls : l~ + ... + ls < t, e a c h Ii a n o n n e g a t i v e in t ege r)

(2 n -- 2 t) s

Proof. Consider any execution of the iterated algo-
rithm, in which]FaultJ <_ t < n. To analyze this exe-
cution, we will denote by Fail(r) the set of proces-
sors that crashed before sending any message in
round r, for r = 1 , S, and by Fail(S+ 1) the set
of processors that crashed before reaching a de-
cision. Notice that Fail(r)cc_Fail(r+l). We let
I r = JFail(r + 1)\Fail(r)l = JFail(r + 1)}-]Fail(r)l.
Thus I, is the number of processors that crashed
during the r-th round of the algorithm. We let U'
denote the multiset {V(q):qr Since each
round is merely an application of the one-round
algorithm, the previous lemma shows that

p(Ur+l)~p(U r) and 6(Ur+l)<-2n~2tb(U~) for

each r. Thus we deduce p(US+l)~_p(U 1) and
11' 1 2 . . . ls

6(uS+ 1) <_ (2n~ ~ 6(U1). However ll + 12 +. . . + ls

= [Fail(S+ 1)[-[Fail(1)[, which is at most t. Since
U 1 is a subset of the multiset of initial values, and
the multiset of final values of correct processors
is a subset of U s+ 1, this proves that the iterated
algorithm is valid with the claimed performance.

Q.E.D.

In w 8 we prove a lower bound on any S-round
algorithm for solving approximate agreement in
the crash-failure model. This will show that as
nit ~oo the iterated algorithm given in this sec-
tion is asymptotically optimal.

4 The failure-by-omission and byzantine
failure models: The algorithms
We now describe, for both remaining failure mod-
els, an algorithm that provides t-resilient approxi-
mate agreement for n processors using S rounds
of communication (the values of t, n and S are
"hard-wired" into the algorithms). The algorithms
given are variants on a single plan. Thus we first
describe this plan, using unspecified functions
Detr, Fr and G for detecting faults and computing
results. The specific algorithm for each failure mod-
el is then given by explaining which function is
to be used for each of these. Recall that for ease
of exposition we suppose that when a processor
broadcasts information it sends to itself as well as
to the other processors.

1 7

The algori thm has two phases. First there are
S rounds of communicat ion. During the r-th round
of communica t ion , the algori thm requires proces-
sor p to broadcas t informat ion it holds in the array
g(Pl . . . , P~ - 1, P) and to collect the informat ion sent
to it in an array v (p l , . . . , p ~ , p) . It then tries to
deduce which processors are faulty, and next modi-
fies the informat ion it received f rom processors
known to be faulty to form the new array
g(Pl, . . . , P~, P). The me thod processor p uses to de-
tect that process q is faulty is to examine (with
a predicate Detr) the n values which reach p repre-
senting some informat ion that was broadcas t by
q and then relayed to p by each recipient.

After the S rounds of communicat ion , a proces-
sor will have an array of n s values to operate on.
The second phase now begins. The values are con-
sidered as forming n s multisets, where
W (q l qs, P) contains the single value
v (q l , . . . , qs,P). In successive steps, several multi-
sets are combined into one, with el imination of
extreme values. Thus in the (S - r) - t h combina t ion
step processor p builds for each choice of q , , . . . , q~
a multiset W (q l , . . . , q~, * , p) by applying a
function Fr to the union of the n multisets
W (q l , . . . , q , ,q~+l , *, . . . , *,P), which were con-
structed at the previous step. At last a single large
multiset W (p) is obta ined as the union of the multi-
sets W (q l , *, . . . , *,p), and then this is " ave rag ed "
using a function G to give the processor 's new
value w(p).

Formally, the algori thm requires processor p
to perform the following -

�9 Set g(p)=v(p) .
�9 I n r o u n d l :

- B r o a d c a s t g(p), and denote by v (q l , p) the
value received by p from q l purpor t ing to be
v(ql). If the message f rom qt is missing or mal-
formed set v (q l , p) to be _1_ 1 .

- Set Fault(p, 1) to be the empty set.
- Set ~ (q l , p) = v (q l , p) .

�9 In round r, for r = 2 S, processor p will start
with an array of n ~- 1 values
(/~(ql ,q2, " " , q r - l , P) : each q i = l , . . . , n} and a
set Fault(p, r - 1) of processors already detected
as faulty by p. N o w p should

Broadcast the array (v (q l , q2, . . . , q~- 1, P)}.
- Denote by v(ql q r - l , q ~ , P) the value re-

ceived by p from q, purpor t ing to be
~7(ql q~-l,q~). If the message f rom q~ is
missing or malformed set v (q l , . . . , qr, p) to be

- '[-r �9

For every choice of indices q l , . . . , qr -1 , con-
sider the multiset of n values

{v(ql , q , - l , 1,p),
v(ql , . . . , q~- l , 2, p), . . . , v(ql , . . . , q~- l , n, p)}. If
this multiset satisfies the predicate Det , say
that "q r_ l has been detected as faulty by p
in round r." (Note that when r > 2 , several
choices of q l , . . . , q~-2 may lead to the same
q , - 1 being detected.)

- Set Fault (p , r) = F a u l t (p , r - 1)w {q: q has been
detected as faulty by p in round r}.

- Set v(ql qr- 1, q~, P)

=~'v(q l , . . . , q , - 1 , q ~ , P) if qr~Faul t (p , r)
) _1_~ if q~eFault (p , r)

�9 At the end of round S, processor p has an array
of values v(ql , . . . , qs, P). N o w let
W (q l qs, P) denote the multiset with a single
entry g(ql, . . . , qs, P).

�9 F o r each r decreasing from S - 1 to 1
for each choice of q l , . . . , q r , processor p
should form a multiset

W (q l , . . . , qr, * , . . . , *, P)

= l , . . . , qr, q r + l , *, . . . , * ,

~ q r + 1 = i

where in every case the asterisks fill places so that
there are S + 1 entries, either asterisks or indices,
to name each multiset.

�9 N o w p u t W (p) = U W (q l , * , . . . , * , p) .
q t - - 1

�9 Finally processor p should decide on its final
value w(p) = G(W(p)).

In the Byzantine failure model, our a lgor i thm
will require n > 4 t . We say that a multiset of n
values satisfies Detr if no value has multiplicity at
least n - t . We let Fr=red(,_4t)s-r-121 and G
= m i d (n - 4 t) s - l t .

In the fai lure-by-omission model, our a lgor i thm
will require n > 2 t. We say that a multiset of n
values satisfies Detr if some entry is -l-r 1. We let

- - r + l
F r - c h o p (2 n - 4 t) s - ' - , 2 t and G = c e n t e r (2 n - 4 t) s - 1 t"

The r igorous analysis of the algori thms will be
given in the following sections of the paper. Here,
we try to indicate the essential reasons why the
algori thms work well. The value ~(ql , . . . , qs ,P)
ought to be the initial value of processor ql as
passed from ql to q2 in round 1, then f rom q2
to q3 in round 2, and so on, till qs passed it to
p in round S. Thus it ought to be equal to the
value ~(ql, . . . , qr) that processor qr ought tO have
sent in round r. It m ay not be that value only
if one of the processors qi with r < i < S (along the

18

way from qr to p) omitted to send the value, or
(in the Byzantine failure model) lied about it, or
if the next processor qi + ~ detected qi as faulty and
therefore replaced the value received by _1_ i. Thus
v(qa, . . . , q qs, P) is ~(q~ , qr) if every pro-
cessor q~ for r_< i < S is correct. Now the multiset
W (q l , . . . , qr, *, . . . , *,P) is formed (by repeatedly
combining, duplicating or removing extreme
values) out of the collection of values
(v(qa, . . . , qs, P): qie{1, . . . , n} for all i > r) . Thus
W(q~, . . . ,qr ,* , . . . , * , P) ought to contain many
copies of the value g(q~ qr). In each of our algo-
rithms we choose Fr to remove enough extreme
values to ensure that, unless qr behaved very badly
before or during round r, W(q l , qr, * , *, p)
will contain no entries except copies of the value
g(qa, .-.,qr). As a consequence the multiset
W(ql , q~, *, . . . , *, Po), computed by P0, and the
multiset W (q l , . . . , q , *, . . . , * ,pO, computed by
Pa, are identical unless q, behaved very badly be-
fore or during round r. On the other hand, if q,
behaved very badly before round r, we ensure that
the multiset W(qa , qr, * *, p) will contain
no entries except copies of -l-r, and so again the
multisets computed by different processors will be
identical. To do this, we ensure that either q~ has
crashed before the start of round r (so the intended
recipients will receive nothing and set the corre-
sponding values to be -l-r) or else many processors
have detected q~ as faulty before or during round
r (so that any value sent by qr during round r will
be replaced by -kr by the recipient). Thus the multi-
set W (q l , . . . , q,, * , *, Po) computed by Po, and
the multiset W(q~ , q,, * , * ,PO computed
by Pl are identical except when qr behaved very
badly for the first time during round r. Further-
more, we ensure that even in this case the two
computed multisets have many entries in common.
This in turn ensures that the multisets W(po) and
W(pO have many entries in common, and that
therefore the chosen final values w(po) and w(pl)
are close together.

5 The failure-by-omission model: analysis

When discussing the algori thm for the failure-by-
omission model, we will need to assume that n > 2 t,
since otherwise the algori thm given is meaningless,
involving as it does operators such as G
= c e n t e r (2 n - 4 t) s - 1 t �9

For any execution of the algori thm in the fail-
ure-by-omission model, for each r = 1 , S we let
Fail(r) denote the set of processors that have
crashed before sending any of the messages in

round r. Let

Exposed(r) = Fail(r) w (-] Fault(p, r).
p (~ F a i l (r + 1)

Also as a convention we set

Exposed(S + 1)= { 1 , n}\Corr .

Note that Exposed(r)~_Exposed (r+ 1). We put l~
=]Exposed(r + 1)\Exposed(r)l =]Exposed(r + 1)]-
]Exposed(r)l. We will see that lr is the number of
processors whose messages in round r cause differ-
ences between other processors' views.

First we observe from the algori thm that
g(ql , qr, P) can never have the value _l_j fo r j > r.

Next we show that the fault detection proce-
dure never makes a mistake.

Lemma 9. Suppose n> 2t. In an execution of the
algorithm in the failure-by-omission model, for
which f < t , if p r and q6Corr, then
qr r).

Proof. We use induct ion on r. The case r = 1 is
trivial as Fault(p, 1) is empty. Now for arbitrary
r, suppose p 6 F a i l (r + l) and qeCorr. Fix
q~, .-., q~-2. If qr does not send properly to p in
round r (in particular if qrEFail(r)) then
v(q~ , q r _ ; , q , q r , p) = l r . On the other hand if
qr does send to p in round r then
v(qa , q r - 2 , q , qr,P)=g(qm, " . , q r - 2 , q , q ,) . But
v(qa q~- z, q, qr)=v(q~ qr- 2, q, q~) since by
the induction hypothesis q 6 F a u l t (q , r - 1), and be-
cause q must send correctly v(q~ qr-2,q,q~)
= / 7 (q l qr-2, q) which as we noted above is not
equal to 2-r_ ~. Thus no entry of
{V(ql , q~-2 ,q , qr,P): q r = l , . . . , n} is -J-r-a,
proving that qCFault(p,r). Q.E.D.

The behavior of the algori thm is explained by the
following lemma, which shows that when p does
not crash during execution of the algorithm, the
multiset W(q~ qr, * , p) is a good repre-
sentative for 17(q~, . . . , qr), in that it often consists
only of copies of that value, and that only proces-
sors in Exposed(r+ 1)\Exposed(r) can cause differ-
ent processors to choose different representatives
for a round r value.

Lemma 10. Suppose n > 2 t. In any execution of the
algorithm in the failure-by-omission model, such that
f < t, we can conclude:

(i): I f p~Crash then the value of each of the (2n
- 4 t) s - r entries o f W(q~ , qr, �9 , , , p) is
either g(ql qr) or •

(ii): I f qr 6 Exposed (r + 1) and p q~ Crash, then

19

(iii):

(iv):

mul t (g(q l , q,), W (q t , qr, * , . . . , *, p))
= (2 n - - 4 t) s - ' .

I f q, e E x p o s e d (r) and p q~ Crash, then

m u l t (• W (q l q,, * *, p))
= (2 n - - 4 t) s -r .

I f Po q~ Crash and p i q~ Crash, then

]mult(g(ql , q~), W (q l , q,, *, . . . , *, Po))

- m u l t f f (q l q~), W (q l , . . . , q~, *, . . . , *, P0)]

< / r + l ' / r + 2 "--Is"

Proof. We use descending induction on r to prove
the lemma. First, suppose r = S.

(i): The multiset W (q t , . . . , qs ,P) consists of (2n
- - 4 t) ~ entry with value g(ql , . - . , q s , P) .
Now if q s e F a u l t (p , S) then g(ql, . . . , q s , P)
= • while otherwise v(ql, .-., qs, P)
=v(q i , . . . , qs ,P) which is either equal to •
(if qs did not send its round S message to
p) or to v(ql , qs), since in the failure-by-
omission model any value that is sent is cor-
rect.

(ii)" If q s C E x p o s e d (S + 1) then qsECorr . We de-
duce that qs did send its round S message
to p and also that qsCFaul t (p ,S) . As noted
in the discussion in part (i) above this means
that v(ql q s , p) = v (q l , qs) and so
W (q l qs, P) consists of a single entry with
value v (q l , . . . , qs).

(iii): If q s e E x p o s e d (S) then either q s e F a i l (S) (so
qs did not send its round S message to p),
or else q s e F a u l t (p , S). In either case as noted
in part (i) above, v(ql qs, P) = Ls and so
W (q l , . . . , qs, P) consists of a single entry with
value •

(iv): Since l,+ 1 . . . l s evaluates to 1 when r = S (as
an empty product), and each of W (q l , . . . , qs, Po)
and W (q l , . . . , qs, Pi) have only one entry, the
statement

]mul t (v(ql , . . . , qr), W (q 1, . . . , q~, �9 *, P0))
- m u l t (v (q x qr), W (q l , q~, *, . . . , *, Pl))I

< l~+ i" I~+2... Is

is trivially true when r = S.

We now prove the lemma for some value of r as-
suming its t ruth for r + 1.

(i)" For each q,+l that has not crashed before
the start of round r + l , we know that
v (q i , . . . , q~,q~+l) is either Lr (if q~ failed to
send its round r message to q,+l or if
q,~Fault (q~+ 1, r)) or v(qi q~) (otherwise).

(ii):

(iii):

By (i) for r + 1 we know that
W (q l ,qr , qr+l , * , . . . , * ,P) consists of
(2 n - 4 t) s - r - i entries each of which is one
of v(ql qr), _k~ or L , + i - If q,+l crashed
before the start of round r + l (so that
v (q l , . . . ,q~+l) may be meaningless) then
q , + x ~ E x p o s e d (r + l) , so by (iii) for r + l we
know that W (q l q~, q~+ x, *, . . . , *, P)
consists of (2 n - - 4 t) s - r - 1 entries all being

• 0 W(qx q~,qr+l,* ,* ,P)
q r + 1 = 1

consists of n (2 n - - 4 t) s - ~ - I entries each of
which is v(ql , q,), _1_~ or • Also there
are at least (n - t) (2 n - 4 t) s - ' - I entries that
are not • namely all those coming from
the at least n - t values of q,+ 1 that are not
in E x p o s e d (r + 2) (by (ii) for r + 1). Thus when
we apply chop~k + 1, where k = 2 t (2 n
- 4 t) s - ~ - l , to

W (q l , . . . , q~+l, *, -.., *,P)
qr+l=l

we will remove every occurrence of 2~+ 1 and
be left with (2 n - 4 t) s -~ entries all either
g(qa, . . . , qr) or 2~.
If q , (s E x p o s e d (r + 1) then for every q e C o r r ,
v(q l , - . . , qr, q) = g (q l , q,). This is proved
by contradiction: suppose there is q, + 1 �9 Corr
with v(qi q~, q , + i) = A_r and therefore for
any p q~ Fail (r + 2) we will have
v (q l , . . . , q~, q,+ 1, P) = "• as q,+ 1 broadcasts
correctly, and hence p will detect q~ as faulty
in round r + l . This holding for all
pq~Fai l (r+2) contradicts the assumption
q~q~Exposed(r+l) . Now by (ii) for r + l , if
qrq~Exposed(r + 1), q~+ i e C o r r and p r
then W(qa , . . . , q~,qr+l , * , , , p) consists
of (2 n - 4 t) s - ~ - i entries all with value
g(ql, .-., q,, q,+ l) = g(ql q,). Hence if
q, q~ E x p o s e d (r + 1) and p r Crash, then

W (q t , . . . , q r , q~+t ,* , . . . , * , P) contains
qr+l=l

at least (n - t) (2 n - 4 t) s - ~ - I entries with
value v (q l , - . . , q,), namely (2 n - 4 t) s - ' - I for
each of at least n - t choices of q, + 1- By Lem-
ma 3, every entry of W (q l q,, * *, p)
is g(ql, . . . , qr)-
If qr e E x p o s e d (r) then for every
q e C o r r , v (q l q~, q)= _l_r (if q~eFaul t (q , r)
this is explicit in the algorithm, and if
q~eFail(r) then q~ sent no message to q in
round r so v(qa q~, q)= 2 , By (ii) for r
+ 1, if q, e E x p o s e d (r) , q~+ 1 e C o r r and

20

pr then W (q l qr, qr+l, *, . . . , * ,P)
consists of (2 n - 4 t) s - r- 1 entries with value
I r. Hence if q, eExposed(r) and pr

then 0 W (q l ,qr , qr+l, * , . . . , * ,P)
q r + l = l

contains at least (n - t) (2 n - 4 t) s - ' - 1 entries
with value -l-r, namely (2 n - 4 t) s - r - 1 for each
of at least n - t choices of q ,+l . By Lemma
3, every entry of W (q l , . . . , q,, , , , p) is
I r .

(iv)" We have that W (q l q , , q , + l , * , *,Po)
= W (q l qr, qr+l, *, "" , *, Pl) if q,+lq~
E x p o s e d (r + 2) \ E x p o s e d (r + 1), by (ii) and (iii)
for r + 1. For the other 1,+1 values of q,+l
we have by (iv) for r + 1 that

Imult(~(qx q~, qr+ 1),

W (q l , " " , q r , q r + x , * , * , P0))

- mul t (g(ql q,, q,+ l),
W (q l , . . . , q , , q r+ l , * , *, Pa))]

_<l,+2"l,+3 . . . l s .

For each of these qr+l, g (q l , - . . , q,, q,+l) is either
v(ql, .-., qr) or • so we see (using the triangle
inequality) that

mult @(ql, ---, qr),

0 W (q l , . . . , Or,O,+1,* ,* ,Po))
q r + l = l /

- mult (v(ql q,),
I

+ , * 1tl
q r + l = l /

+ mult(• U W (q 1 , q , , q , + l , * *, Po))
q r + l = l

- - m u i r (L , , ~ W (q l , . . . , q r , q , + l , , * ,PO)
q r + l = l

-<l,+1 "l,+ a ... ls.

With this bound and the facts in (i) we can apply
Lemma 4 to complete the proof. Q.E.D.

Theorem 11. I f n > 2 t, then the algorithm in the fai l -
ure-by-omission model is valid and has performance

K ~ sup {/112..- Is : I1 -I- . . . -I- l s <_ t, each Ii a non-negative integer}
(2n-4t) s l(2n-2t)

Proof. We have by (ii) and (iii) of Lemma 10 for
r=l that W (q l , * * , P o) = W (q l , * ,* ,PO
unless q l e E x p o s e d (2) \ E x p o s e d (1) . For these 11

values of ql we have by (iv) for r = 1 that

[mult(V(ql), W (q l , * , *,Po))

-- mult(V(ql), W (q l , * *, P0)I < 12" 13-.. + ls

since f (q l) = v(qO. We can apply Lemma 6 with

V = 0 W (q l , * *,Po),
q l = l

W : 0 W(ql, * *,Pl),
q l = l

N = n (2 n _ 4 t) s - 1 , k = t (2 n _ 4 t) s 1 and I-a, b] =p(U)

to prove that each of w(po)=cen terk (V) and
W(pa) = centerk(W) lie in p (U) and that

l l . . . ls
] w (p o) - w(pl)l <_ (2 n _ 4 t) s _ l (2 n _ 2t) .O(U).

We finally note that as I t =[Exposed(2) l -
I Exposed (1)1, 12 ----]Exposed (3)1 - I Exposed (2)1, . . . , ls
= I E x p o s e d (S + 1)l--]Exposed(S)l, we have each l i
a non-negative integer and also 11 + 12 + ... + ls
= IExposed(S + 1)1--[Exposed(1)l <_ t. This proves
that our algori thm has, as claimed, performance

K < sup {ll 12... ls : l, + ... + l s <_ t, each I i a non-negative integer}
(2n-4t) s 1(2n-2t)

Q.E.D.

6 The byzantine failure model: analysis
When discussing the algori thm for the byzantine
failure model, we will need to assume that n > 4t,
since otherwise the algori thm given is meaningless,
involving as it does operators such as G
= mid(n-4t)s- it.

In discussing an execution of the algorithm for
the Byzantine failure model, we will extend the defi-
nition of Faul t (p , r) to include r = 0 and r = S + l ,
by setting Faul t (p ,O)=O, and F a u l t (p , S + l) =
{1 , n } \ C o r r as a convention. We put
Exposed(r)= 0 Faul t (p , r) and I r= lE xposed (r

p~Corr

+ 1) \Exposed(r) l = IExposed(r+ 1)]- [Exposed(r)l.
Thus Ir is the number of processors whose behavior
in round r led to them being detected as faulty
by every correct processor for the first time at the
end of round r + 1. These are the processors whose
messages in round r that will cause differences be-
tween other processors' views.

First we observe that the fault detection proce-
dure never makes a mistake.

Lemma 12. Suppose n > 4 t . In an execut ion o f the
algorithm fo r the Byzant ine fai lure model, f o r which
f < t, i f p e Corr and q e Corr, then q q~ Faul t (p, r).

Proof . This is immediate for the special cases r = 0
and r = S + 1 defined above. Fo r the other values
of r, we use p roof by induct ion on r. If r = 1, and
p e C o r r , q e C o r r then q~Fau l t (p , 1) as
Fault(p, 1)=0.

Now for arbi t rary r suppose p e C o r r and
q e Corr. If qre Corr then by the induct ion hypothe-
sis q q ~ F a u l t (q , , r - 1) and so for any choice of
ql q~- 2 we see v(ql , . . . , q , - 2, q, qr)
= v (q l , . . . , q ~ - 2 , q , q ~) = v (q x , q ~ - 2 , q) as q is
broadcast ing correctly. Also q~ broadcasts correct-
ly so v(q~ q~_2 ,q ,q~ ,p)=g(q~ q~ -2 ,q , qr).
Thus the multiset {v(q~ , . . . , qr- 2, q, l , p), v(qa , . . . ,
q r -2 , q, 2, p), . . . , v(q 1 q r -2 , q, n, p)} contains at
least (n - - t) entries each of which has value
~7(q~ q~-2, q), and so the multiset does not sat-
isfy the predicate Detr.

Therefore q is not detected as faulty by p in
round r, but by the induct ion hypothesis
q~Fau l t (p , r - 1) . Thus we see q4~Fault(p,r) as re-
quired. Q.E.D.

The behavior of the algori thm is explained by the
following lemma, which shows that the multiset
W (q l q~ , , p) is a good representat ive
for ~7(qx q~), in that it often consists entirely
of copies of that value, and that only processors
in E x p o s e d (r + 1) \ E x p o s e d (r) will cause differences
between the multisets computed by different cor-
rect processors to represent the same round r value.

L e m m a 13. Suppose n > 4 t . In an execut ion o f the
algori thm f o r the Byzan t ine fa i lure model, f o r which
f < t, we can conclude:

(i): I f p e Corr and q~ e Corr, then all the (n - 4 t) s - "
entries o f W (q l qr, �9 , . , p) have value
v(q l q~).

(ii): I f q~q~Exposed(r + 1), p o e C o r r , and p l e C o r r ,
then W (q l q~, * , *, Po) = W (q l , . . . ,

q,, *, . . . , *, PO.
(iii) : I f q~ �9 E x p o s e d (r), Po �9 Corr, and pl �9 Corr, then

W (q l , . . . , qr, *, ... , *,Po)
= W (q x , . . . , q~, *, . . . , *, PO.

(iv): I f p o e C o r r and p l e C o r r , then

I W (q l qr, *, " ' , *, Po)
c~ W (q l , . . . , qr, *, . . . , *, Pa)l
> _ (n - 4 t) s - ~ - l ~ + l.l~+ 2 . . . l s .

Proof. We use descending induct ion on r. First,
suppose r = S.

(i): If q s e C o r r and p e C o r r , then W (q l , . . . , qs, P)
={~7(q~ qs,P)}, but q s ~ F a u l t (p , S) so
17(ql, .-., qs, P) = v (q l , . . . , qs, P)= v(ql qs)
since qs correct ly broadcas t in round S. Thus

21

W (q l , . . . , q s , p) contains (n - 4 t) ~ entry
with value/~(ql qs).

(ii): If qs ~ Exposed (S + 1), then by definition of the
sets F a u l t (q , S + l) , we must have q s e C o r r
and so, by (i) proved above, if p o e C o r r and
p~ e Corr, both W (q l qs, Po) and
W(q~ , . . . , qs, P~) contain a single entry with
value v(ql qs) and so are equal.

(iii): If q s e E x p o s e d (S) and p o e C o r r , then
q s e F a u l t (p o , S) so that g(q~, . . . , qs, Po) = I s
and so W (q l , . . . , qs, Po) is a multiset with a
single entry whose value is I s . Similarly
W(q~ qs, Pl) has a single entry with value
I s , so W(q~ , . . . , qs, Po) = W (q t , . . . , qs, Pl).

(iv): The expression (n - 4 t) s - r - l r + x . . . l s evalu-
ates to 1 - 1 = 0 if r = S (recall that a p roduc t
of no numbers has value 1 by convention).
Thus it is trivially true that I W(q~ , . . . , qs,
Po) ~ W(q~, . . . , qs, Pl)[-> (n - 4 t) s - r - l, + a.. . ls
in this case.

We now prove the lemma for some value of r as-
suming its t ru th for r + 1.

(i): If q r e C o r r and p e C o r r , then for q , + l e C o r r ,
by (i) for r + l , the multiset W (q l , . . . , q , ,
q,+~, . , . . . , . , p) consists of (n - 4 t) s - ~-1
entries every one having value g (q l , - . . , qr,
qr+l). However , since q r e C o r r (and so qrr
f a u l t (q , + l , r)), v (q l , . . . , q,, q , + l) = v (q l , . . . ,
q~,q ,+ l)=g(qa , . . . , q,). Thus the combined

multiset 6 W (q l q , , q , + l , * * ,P)
qr+ l - -1

contains at least (n - 4 t) s - ~ - 1 (n - - t) entries
each of which has value v(qi , . . . , q~), namely
(n - 4 t) s - r - 1 for each of at least (n - t) q ~ + l
that are in Corr. By L e m m a 1, applied with
a = b = g(qa , q,), we have that
W (q l , . . . , q ~ , . , . . . , . , p) consists of exactly
(n - 4 t) s - , entries all of which have value
v(ql q~).

(ii): If q ~ E x p o s e d (r + l) then the multiset
{v(ql, . . . ,q~,q) : q e C o r r } has some value 2
(say v) occurr ing with multiplicity at least
n - 2 t. This is p roved by contradic t ion: sup-
pose that there is a choice of q t , . . . , qr so
that the multiset {17(qx, . . . , q , q) : q e C o r r }
has every value with multiplicity less than
n - 2 t . F o r p e C o r r and q e C o r r , v (q l , . . . ,
qr, q, p) = v (q ~ qr, q) so the multiset {v(q~ ,
. . . . q~, 1, p), v(qa q,, 2, p) , v (q l , . . . , q~,
n, p)} has every value with multiplicity less

2 Since n>4t, there is at most one value with multiplicity at
least n - 2 t

22

(iii):

(iv):

than n - t , and so q r e F a u l t (p , r + 1), but this
holds for all correct p which would contradict
q r r + 1).
Now if q , + i e C o r r and p o e C o r r , by (i) for r
+ 1 as above, W (q i qr, qr+ t , *, " " , *, PO)
consists of (n - - 4 t) s - r - 1 copies of v(ql ,
q~, q, + 1). Thus in this situation

~J W (q a qr, qr+ 1, *, . . . , *, Po) contains
q r + l = l

at least (n-- 4 t) s - ~ 1 (n - - 2 t) entries each of
which has value v (namely (n - 4 t) s - ~ - I for
each of at least (n - 2 0 different choices of
q~+ a satisfying v (q i , . . . , qr, qr+ l) = V). By Lem-
ma 1, all (n - 4 t) s - ~ entries of W (q i
qr, * , *, PO) have value v. If p l e C o r r then
similarly W (q l , . . . , q~, * *, Pl) consists of
(n - 4 t) s - r copies of v. So these multisets are
equal.
If q ~ e E x p o s e d (r) then, for any q~+ l e C o r r , we
have q ~ e F a u l t (q ~ + l , r) , so that g(qx,-",
qr, q r + 0 = / , . I f p o e C o r r we can apply (i) for
r + 1 to deduce that W (q l , . . . , q , , q r + l , * ,
�9 ,P0) consists of (n - 4 t) s - r - 1 entries all of
which are _L~. Since there are at least n - t
indices q r + l e C o r r , we see that the multiset

W (q i , . . . , q~, qr + 1, *, . . . , *, PO) contains
q r + l = l

at least (n - 4 t) s - ~- i (n - t) copies of i~ . Thus
by Lemma 1, all the (n - 4 t) s -~ entries of the
multiset W (q l , . . . , q~, *, . . . , *, Po) have value
1~. Similarly, if Pl �9 Corr , W (q I qr, �9 ,
�9 , P 0 consists of (n - 4 t) s - r copies of l~ , so
these multisets are equal.

Suppose p o e C o r r and Pi e Corr . Using (i), (ii)
and (iii) applied for r + 1, we see that

W (q i , . . . , q ~ , q r + l , *, " " , * ,Po)

= W (q l q , , q~+i , * *, Pl)

unless qr+ 1 e E x p o s e d (r + 2) \ E x p o s e d (r + 1).
By (iv) for r + l we have in the case
q r + l e E x p o s e d (r + 2) \ E x p o s e d (r + 1) that
I W (qx, . . . , qr, q , + l , * , *, PO) c ~ W (q l ,
. . . . q~, q~+i , * , *, P l) l > (n - - 4 t) s - ~ - I
- - l, + 2 . . . ls. We have therefore

I1

+{J= W (q l , . . . , q ~ , q r + l , * , * ,Po)
qr 1

n U W (q l , q r , q ~ + i , * * , P l)
q r + l = l

> _ (n - l r + O (n - - 4 t) s - ~ - I

+ lr+ l ((n - 4 t) s - r - ~ - l ~ + 2 . . . l s)

= (n - 4 t) s - ~ - i . n - l r + l . l r+ 2 . . . I s .

Thus by Lemma 2

I W(ql qr, *, . . . , *, Po)

c~ W (q l , . . . , qr, * *, Pi)l
>_ (n - - 4 t) s - r - lr+ 1" lr+ 2 . . . ls . Q.E.D.

We can now prove the claimed upper bound on
performance of our algori thm for the Byzantine
failure model.

Theorem 14. I f n > 4 t , t hen the a l g o r i t h m f o r the
B y z a n t i n e f a i l u r e mode l is val id and has p e r f o r m a n c e

K _< sup {l112... Is: li + ... + ls < t, each li a non-negative integer}
(n--4t)s- i(n-- 2t)

P r o o f . When we apply Lemma 13 with r = 1 to
any execution such that f_< t, we obtain

(i): If p e C o r r and ql �9 Corr , then
W (q l , * , p) consists of (n - 4 t) s - 1 en-
tries all of which have value v(qO.

(ii): If q i r p o e C o r r , and p l e C o r r ,

then W (q l , *, . . . , *, Po) = W (q l , * , * , Pl)-
(iv): I f p o e C o r r and p l e C o r r , then

I W (q i , * , *, po) c~ W (q l , *, . . . , *, p01
> (n - 4 t) s - 1 _ 12" 13.. . ls.

Now if p e C o r r we see that U W (q l , * , . . . , * , p)
q l = l

contains at least (n - t) (n - 4 t) s - 1 entries in the
range p (0) spanned by initial values of correct pro-
cessors, namely the (n - 4 t) s - 1 copies of v (q O for
each correct ql . Then by Lemma 1, w(p) lies in
the range p (0).

Suppose that P o e C o r r and Pl �9 Corr . Then

[W(po) n W(p01
>_ (n - lO(n - - 4 t) s - 1 + lx ((n - 4 t) s - 1 _ le . . . ls)

= n (n - - 4 t) s - 1 - - li 12.." is

as there are n--11 values of ql with ql C E x p o s e d (2)
and I i values of ql with q l e E x p o s e d (2) . We can
apply Lemma 5 to prove

11 ...Is .~(t2).
[w(po) - w (p 1)[_< (n - 4 t) s - 1 (n - 2 t)

We finally note that as l l = l E x p o s e d (2) l , l z =
I E x p o s e d (3) r - [Exposed(2) l , . . . , ls = I E x p o s e d (S + 1)
- I E x p o s e d (S) l , we have each li a non-negative in-
teger and also l l + 1 2 + ... + l s = l E x p o s e d (S + l) l
= l F a u l t] < t . This proves that our algori thm has,
as claimed, performance

K <_ sup {ll 12... ls : 11 + ... + ls <_ t, each Ii a non-negative integer}
(n--4 t)s- l (n-- 2 t)

Q.E.D.

It is interesting to note that for S = 2 our algori thm
therefore gives an implementat ion of Crusader 's
Agreement [3] on each value v(q) - each processor
p gets either a value (the common value of
W(q, , , p)) or else the knowledge that q is faulty,
and all the processors that get a value get the same
value, which is the right one if q is correct 3. In
fact our implementat ion has a stronger property:
if any Po fails to detect that q is faulty, then all
those p that do detect it know what value Po has
chosen.

7 The Byzantine failure model: A lower
bound

This section gives a detailed account of a lower
bound on achievable performance for any S-round,
t-resilient approximate agreement algori thm in the
Byzantine failure model 4.

Theorem 15. Suppose n > t + 1. A n y algori thm that
performs valid t-resilient approximate agreement in
the Byzant ine fai lure model using at most S rounds
o f communication, has performance

sup {l 1 12.. . ls :la + ... +ls<- t}
K >_ (n + t) s

Proof . Any algori thm for solving the S-round ap-
proximate agreement problem can be given in the
following s tandard form, called a full information
protocol, where all information is exchanged for
S rounds and then a computa t ion is performed:

�9 Set u (p) = v (p).
�9 In round 1, a processor p e C o r r

- broadcasts u(p),
- denotes by u (q l , p) the value received by p
from ql purport ing to be u(ql). (If no such value
is received, p should put u(q l , p) = 11 .)

�9 In round r, for r = 2 , 3, . . . , S a processor p e C o r r
starts with an array of n ~-1 values
(u (q l , . . . , q , - 1 , P): each qi = 1 n) . It then
- broadcasts the array (u (q l q r -1 , P)),
- denotes by u(q l , . . . , q ~ - l , q r , P) the value re-

ceived by p from q~ purport ing to be
u(ql qr). (If no such value is received, p
should put u(ql , q~, P) = •

�9 Finally a processor p eCorr applies a function
f to its view, the array (u (q l , q s , P)) of n s
values, to produce its new value w (p).

3 A similar use of Inexact Agreement to implement Crusader
Agreement was given in [12]
4 The asymptotic form of this lower bound was given in I-4]

23

Different algorithms are given by different
choices of the function f . Notice that any algori thm
(like those given in this paper) which involves com-
puting and modifying values between rounds of
communicat ion, is equivalent to one in the stan-
dard form, because all the computa t ion and modifi-
cation can be simulated by each processor after
all the information is exchanged. So suppose we
are given a function f for which the algori thm sat-
isfies the validity condition. Let 11,12, . . . , ls be any
positive integers so that 11 + ... + ls<_ t. We intro-
duce the collection of multi-indices I = (i l is)
where ik ranges over the integers from 1 to mk
= [n/lk]. We order the multi-indices lexicographi-
cally, that is (il i s) < (j l , ... , is) if there is some
r so that (i) ik <Jk for k < r, and (ii) ir <Jr. The multi-
indices are totally ordered in this way (which is
described as " last index varies fastest" or "row-by-
row") and we denote the successor to I by I + + .
As examples, when S = 3 , m l = m 2 = 3 , m3--4 we
have (1, 2, 3)+ + =(1, 2, 4), (1, 2, 4)+ + =(1, 3, 1) and
(1, 3 ,4)+ + =(2, 1, 1).

To each multi-index I we assign an array M~
of nS-entries defined by

M I (q l , q2, " . ' , qs)

1 if there is some r so that (i) [q~/Ik]

= < ik for k < r, and (ii) [qr/Ir] < ir

0 otherwise.

Thus Mr is formed by part i t ioning the positions
in the array into subblocks of size 11 x 12 x ... x I s.
Every entry in a subblock has the same value,
which is either 0 or 1. The subblocks filled with
l 's all precede those filled with 0's.

If we arrange the arrays Mr in the order of
the multi-indices I we get a chain, which we will
show has the property that given any two consecu-
tive arrays Mr and Mr + +, there is some execution
of the broadcast ing algori thm with 6(U)_<l and
[Fault[<_t leading to one correct processor P0 re-
ceiving Mr as view while another correct processor
Pl receives Mr++ as view. For this execution
Iw(p0) - w(POI = I f (M r) - - f (M r + +)1, so K _> If(Mr)
- f (M r + +)1. However if we consider an execution
where every processor is correct with initial value
O, we find that every processor will get M~1,1 1)
as view. In an execution where all correct proces-
sors have initial value the same, the validity condi-
t ion requires them to agree on that same value,
so f (M (1 1))=0. Also we consider an execution
where the processors 1, 2 (ml - 1) 11 are correct
with initial value 1, while processors (m1-1)11
+ 1, . . . , n follow the algori thm with initial value
0 during the rounds of broadcast ing and then stop

24

without comput ing anything; notice that the arbi-
t rary behavior allowed to a faulty processor in-
cludes the possibility of following the algorithm�9
In this execut ion the correct processors will receive
M(ml, 1 1) as their view, and the validity condi t ion
requires them to agree on 1 as their new value,
s o f (M (m l , 1 1)) = 1. Since the chain of arrays M~
reaches from I = (1 1) to I = (m l , 1 ,1) in
(m x - 1) m 2 ... m s steps, we get a chain of real
numbers f (M i) reaching from 0 to 1 in (ml
- 1) m 2 . . . m s steps. Thus there is some pair of con-
secutive values where

I f (M ~) - f (M i + +)[_>
(m 1 - 1) m2... m s

1
>_

m l m2 .. . ms

1
soK>_

m l . . . m s

Since mk= Fn/lk] < (n + lk)/lk < (n + t)/Ik,

l l 12. . . ls
K >

(n + t) s "

This is true for any choice of 11, . . . , ls with each
li a nonnegat ive integer and 11 + ... +ls<_t. (Our
argument above covers the cases when all the li
are positive, but the inequali ty is trivially true if
any li is zero�9 Thus we have the claimed lower
bound

K > s u p {l 1 l 2 . . . 1 s :11 q- . . . + l s < t }
(n + t) s

All that remains is to fulfill our promise to give
an execution with M, l , i : is) as the view for some
correct processor P0, and M,1 isl+ + as the view
for a correct processor Pl . We give the construc-
tion, and leave the reader to verify that the proces-
sors have the views stated�9 The faulty processors
are those p such that there is an r with [p/l~] = it.
Since for each r at most l~ values of p satisfy this
condit ion, the total number of faulty processors
is at most 11 + ... + ls<_ t. Choose P0 and Pl f rom
among the correct processors�9 Let v(p) be 1 if
[p / l l] <_ i l , and 0 if [p / l l] > i~ .

�9 Every processor p, correct or faulty, sets u(p)
= v (p).

�9 In round 1,
- all processors p, except those where [p / l l] = i l ,

broadcas t u(p). The remaining p each send the
value u(p) to those q where [q/12] < i2, but they
send the value 0 to those q where [q/12] > i2.

- All processors p denote by u (q l , p) the value
received by p f rom q purpor t ing to be u(qO.

�9 In r o u n d r f o r r = 2 , S - 1
- all processors p, except those such that I-P//r]

= if, correct ly broadcas t the ar ray
(u (q , , q r - 1, P)) . The remaining p form an-
other ar ray with

u ' (q l , . . . , q~- 1, P)

0 if [qk / lk] = i k

= for each k = 1, . . . , r - 1

u(q l , . . . , q~- l , P) else�9

These p send the array (u (q l , . . . , q r - 1 , P)) to
those q where [q / l ~ + l] < _ i , + l , but they send
the array (u ' (q l q~ -1 , P)) to those q where
[q / l ~ + l] > i r + l .

-- All processors p denote by u (q l , . . . ,
q~- 1, q~, P) the value received by p from q~ pur-
port ing to be u (q l , . . . , q~- l , qr).

�9 In the final round S
all processors p, except those where [p/ ls] = is
correct ly broadcas t the ar ray (u (q t ,
qs- 1, P)). The remaining p form another ar ray
with

u' (q 1, . . . , q s - 1, P)

0 if [qk/Ik] = ik

= for each k = 1, . . . , S - 1

u (q l , . . . , q s 1 ,P) else

These p send the array ((u (q l q s - l , P))
to those q where q r Po, but they send the array
(u ' (q t , q s - l , P)) to P0.
All processors p denote by u(q l ,
q s - l , q s , P) the value received by p from qs
purpor t ing to be u(qa , . . . , q s - 1, qs).

�9 Only the correct processors now calculate their
new value from their view. The others halt.

Q.E.D.

We observe here that if n = t + 1 there is the imme-
diate lower bound that K > 1 for any t-resilient
a lgori thm for approximate agreement in the By-
zantine failure model. This follows from the fact
that a correct processor may be the only correct
processor, and so the validity condi t ion requires
that it must choose its new value equal to its initial
value.

8 T h e crash - fa i lure m o d e l : a l ower b o u n d

This section gives a formal account of a new lower
bound on achievable performance for any S-round
approximate agreement a lgori thm in the crash-fail-
ure model. Any algor i thm for solving the S-round
approximate ag reement -p rob lem can be given in

25

the form of a full information protocol (as in w 7)
where all information is exchanged for S rounds
giving each processor p a view (v(q~, .. . , qs, P))
and then p applies a function f to the view to give
its new value w (p). For the remainder of this section
we consider a fixed full information protocol.

To prove a lower bound on the performance
achievable we are going to construct a chain of
views as in w 7, but this time we will do so implicity
by giving a recursive recipe for the execution that
lies between successive views. This proof is very
closely related to the proofs in [5] and [13] of
the impossibility of exact agreement in fewer than
t + 1 rounds, and also to the proof in [2] of the
impossibility of simultaneous firing in fewer than
t + 1 rounds. An execution in the crash-failure
model is very easy to describe - we need only speci-
fy the initial value of each processor and say which
processors failed in each round and which mes-
sages they sent in that round. We say that two
executions p and p' are directly similar (written
p ~p ') if some processor p is correct in each and
obtains the same view in each. We say similarly
that p and p' are k-similar (written p k p ,) if there
are k + l executions P o , P l , ' . ' , P k SO that Po
=p, pk=p ', and pi~Pi+l for each i. Thus 1 is

just ~ , a n d i f p ~ k p ' and p ' ~ " p ' ' then p k+mp,,.
Note that p kp, implies p , , k p and p rap, for
m>__k.

We prove two preliminary lemmas that show
that certain executions are k-similar.

L e m m a 16. Suppose n > t + l and S > I . Let
l~,12, .. . , ls be any collection of positive integers
such that l~>_12>...>_ls and l ~ + . . . + l s<_t. Put
mi = [n/li]. Let 1 <_r <_S-1. Let p = Po be an execu-
tion of the protocol such that no failures occur after
the end of round r, and the number of failures by
the end of round i is at most 11+ ... + li for any
i. Denote by ~ the execution that is identical to p
for the first r - 1 rounds but has no failures during
any later round. Then p ~(r)~ where N(r)

S

= [I 2mj + 2 .
j = r + l

Proof. We first remark that the statement is not
necessarily true if r = S . Let J denote the set of
indices of processors that fail in execution p during
the first r - 1 rounds and let J ' denote the set of
indices of processors that fail in execution p during
round r. We denote by j the number of indices
in j and by j' the number in J'. Thus j < l l + . . .
+ l,_ 1 a n d j + j ' < lx + ... + l, ~ + l,. We will use de-
scending induction on r.

Suppose r = S - 1. The discussion is divided into

two cases, depending on whether n > j + j ' + 2 ls + 1
or not.

If n > j + j ' + 2 ls + 1, then for each k = 1, . . . , ms let
qk be the greatest processor index that is not among
J ~ J ' nor in the range (k - 2) l s + 1, . . . , k ls, and
let Pk be the least processor index that is not among
J ~ J ' nor in the range (k - 2) ls+ 1, . . . , (k - 1) l s .
Now qk is strictly greater than the least processor
index that is not among J t3J' nor in the range
(k - 2) ls+ 1 , k ls, (as this set contains at least
two indices) and this in turn is greater than or
equal to each of Pk and Pk+ 1 each of which is the
least index in a set containing all indices not in
J w J ' nor in the range (k - 2) l s + 1 , . . . , k ls. Thus
PR < qk - 1 and Pk < qk. Let P2k - ~ denote the execu-
tion that is identical to p during the first S - 2
rounds, and then also during round S - 1 except
that the processors with indices in J ' do send to
any processor with index 1, 2 , (k - 1) I s as well
as those processors that they send to in p. In round
S, each of the processors (k - l) l s + 1, . . . , kls that
has not failed earlier, fails after sending messages
to processors 1, . . . , qk-- 1. The assumptions on fail-
ure numbers in p mean that this execution involves
at most t failures. Also let P2k denote the execution
identical to p during the first S - 2 rounds, and
then also during round S - 1 except that the pro-
cessors with indices in J ' do send to any processor
with index 1, 2, . . . , kls as well as those processors
that they send to in p. In round S, each of the
processors (k - 1) l s + 1 kl s that has not failed
earlier, fails after sending message to processors
1, . . . , qk--1. The assumptions on failure numbers
in p mean that this execution involves at most t
failures. Clearly the view of Pk is the same in P2(k-1)
as in Pzk-1 (the only difference between the execu-
tions lies in when processors fail in round S, but
in each execution these failures occur after sending
messages to Pk, which is thus unaware of the time
of failure) s o P2(k_l)~P2k_l. Also the view of qk
is the same in P2k-1 as in P2k (since the only differ-
ence between the executions lies in which round
S - 1 messages reached processors (k - 1) ls
+ 1, . . . , kls, and none of these sent a later message
to qk) SO P2k_l~P2k . Also let /5 denote the execu-
t ion identical to p during the first S - 2 rounds
with no failures during round S - 1 and in round
S each of the processors with index in J ' as well
as each o f (m s - 1) Is+ 1 n that hasn' t failed ear-
lier fails after sending messages to processors
1, . . . , qms-- 1. The view of qms is the same in fi as
in P2,,s-1 s o P2ras_l"~. Similarly the view of Pros
is the same in ~ as in t3 so ~ ~ t3. Thus examining
the whole argument, p ~,~ 2ms + 1 f i , but 2ms
+ l < _ N (S - - 1) , s o p N(s-1)~.

26

If we have n_<j + j ' + 2 Is + 1 then the set of pro-
cessors that are not in J w J ' has size n - j
- j ' <_21s + 1 < 3 Is, but it also includes at least 3
processors, since n > t + 1 >_ It + ... + Is + 1 > j +j '
+ Is + 1 > j + j ' + 2. Thus we can find indices p~, P2
and P3 satisfying the following condit ions: none
of the indices Pl ,P2 or P3 is in JuJ' , the number
of processor indices that are less than or equal to
pl but not in J u J ' is at least one and at most
ls, the number of processor indices that are greater
than p~ and less than or equal to P2 but not in
J u J ' is at least one and at most ls, the number
of indices that are greater than P2 and less than
or equal to P3 but not in J w J ' is at least one
and at most ls, and no processor index is greater
than P3 but not in J ~ J'. (Thus we divide the pro-
cessors that do not fail in p into three groups lying
in the intervals 1 , pa and p~ + 1 , P2 and P2
+ 1, . . . , P3- Each group contains at most ls proces-
sors.) Let P I be the execution which is identical
to p during the first S - 1 rounds and during round
S each of the processors 1 , pl (that has not
failed earlier) fails after sending messages to proces-
sors 1 , P2. Let P2 be the execution which is
identical to p during the first S - 2 rounds, and
also during round S - 1 except that the processors
with indices in J ' do send to each of the processors
1 p~ as well as those they send to in p, and
during round S each of the processors 1, . . . , pt
(that has not failed earlier) fails after sending mes-
sages to processors 1, . . . , P2. Let P3 be the execu-
t ion which is identical to p during the first S - 2
rounds, and also during round S - 1 except that
the processors with indices in J ' do send to each
of the processors 1 , p~ as well as those they
send to in p, and during round S no failures occur.
Let P4 be the execut ion which is identical to p
during the first S - 2 rounds, and also during round
S - 1 except that the processors with indices in J '
do send to each of the processors 1 , p~ as well
as those they send to in p, and during round S
each of the processors pl + 1, . . . , P2 (that has not
failed earlier) fails after sending messages to proces-
sors 1 P2. Let P5 be the execution which is
identical to p during the first S - 2 rounds, and
also during round S - l except that the processors
with indices in J ' do send to each of the processors
1 P2 as well as those they send to in p, and
during round S each of the processors p~ + 1 P2
(that has not failed earlier) fails after sending mes-
sages to processors 1, . . . , P2. Let P6 be the execu-
t ion which is identical to p during the first S - 2
rounds, and also during round S - 1 except that
the processors with indices in J ' do send to each
of the processors 1, . . . , P2 as well as those they

send to in p, and during round S each of the proces-
sors P2 § 1 , P3 (that has not failed earlier) fails
after sending messages to processors 1, . . . , Pl . Let
P7 be the execution which is identical to p during
the first S - 2 rounds, and also during round S - 1
except that the processors with indices in J ' do
send to every processor (and so do not fail during
round S - 1) and during round S each of the pro-
cessors P2 § 1, . . . , P3 (that has not failed earlier)
and also each processor with index in J ' fails after
sending messages to processors 1 , p l . The
reader may check that the view of processor P2
is the same in Po as in P l , the view of processor
P3 is the same in p t as in 1o2, the view of processor
P2 is the same in Pz as in P3, the view of processor
p~ is the same in P3 as in P4, the view of processor
P3 is the same in P4 as in Ps, the view of processor
Pl is the same in P5 as in/96, the view of processor
P2 is the same in /96 as in /97, and the view of
processor p~ is the same in P7 as in t3. Thus Po ~ at3,
but (since l~ > ls, 11 + Is < t and n > t) we have n > 2 Is
so m s > 3 and 8 _ < 2 m s + 2 = N (S - 1).

N o w we assume we have the result for r + l
and prove it for r. F o r each k = 1, . . . , mr+l we let
P3k-2 denote the execut ion identical to p for the
first r - 1 rounds and also in round r except that
the processors with indices in J ' do send to any
processor with index 1, 2 (k - 1) lr+~ as well as
those processors that they send to in p. In round
r + 1, each of the processors (k - l) l~+ 1
+ 1 k lr + 1 that has not failed earlier, fails before
sending any messages. N o failures occur after
round r + 1. The assumptions on the number of
failures in p by the end of each round imply that
this execut ion also satisfies those assumptions. We
let P3k-~ denote the execution identical to p for
the first r - 1 rounds and also in round r except
that the processors with indices in J ' do send to
any processor with index 1, 2 klr+l as well as
those processors that they send to in p. In round
r + 1, each of the processors (k - 1) 1~+1
+ 1, . . . , kl,+ ~ that has not failed earlier, fails before
sending any messages. N o failures occur after
round r + 1. The assumptions on the number of
failures in p imply that this execution also satisfies
those assumptions. We let P3k denote the execution
identical to p for the first r - 1 rounds and also
in round r except that the processors with indices
in J ' do send to any processor with index
1, 2, . . . , kl~+~ as well as those processors that they
send to in p. No failures occur after round r. The
assumptions on the number of failures in p imply
that this execution also satisfies those assumptions.
N o w by the lemma for r + l we have P3~k-~)
~'N(r+ l) P3k_ 2 and ,03k_ l ~ N (r + l) P 3 k . Also every

27

correct processor gets the same view in P3(k 1)
~N(r+l)Pak_ 2 SO p 3 k _ l ~ p 3 k - 1 . Fur the r P3m,+~, in
which processors with indices in J ' fail at the very
end of round r, can also be viewed as an execution
in which they fail at the very start of round r + 1,
and so by the lemma for r + l we have P3m.+,

N(~+ 1)ft. Put t ing all these pieces of chain together
we see p,,~(2 +1)N(~+1)+,,~+,~. Since l r+ l> l r+2
we deduce rnr + 1 -< mr + 2 -< N (r + 1), so

(2 m r + l + 1) N (r + 1)+m~+l
< (2mr+ 1 + 1) U (r + 1) + N (r + 1) = N(r).

Thus we see p~U(')r Q.E.D.

L e m m a 17. Suppose n > t + 1. L e t I i , 12 ls be
any collection o f posit ive integers such that
11 >_ 12 > ... >>_ ls and l 1 + ... + 1 s <_ t. P u t m s = [n/li].
Le t p = Po be the execu t ion where all processors have
initial value 0 and no fa i lure occur, and let ~ be
the execut ion where all initial values are 1 and no
fa i lures occur. Then p N ~ where N <_(2m 1
+ 2)-(2m2 + 2).. . (2ms + 2).

Proof . We will give separate proofs depending on
the value of S and n.

First suppose S > 1. Fo r each k = 1 ml let
Pak-2 denote the execution where processors
1, . . . , (k - 1) 11 have initial value 1, and the others
have initial value 0, and where processors (k
- 1) 11 + 1 k l l fail in round 1 before sending
any messages, but no other failures occur. Let
P a k - t denote the execution where processors
1, . . . , k l l have initial value 1, and the others have
initial value 0, and where processors (k - l) / 1
+ 1, . . . , k l l fail in round 1 before sending any mes-
sages, but no other failures occur. Let P3k denote
the execution where processors 1, . . . , kl~ have ini-
tial value 1, and the others have initial value 0,
and where no failures occur. By L e m m a 16,
P3(k_l)~N(1)P3k_2 and P 3 k _ l ~ " N (1) P 3 k . Also the
view of every correct processor is the same in P3k-2
as in Pak-~ since the initial value of a processor
that fails before sending any message is irrelevant,
and so P 3 k _ 2 ~ p 3 k _ l . Since p3 , ,1=~, we have p
~Nr where N = 2 m l N (1) + m l < _ (2 m l + l) N (1)

s
(since ml _< m2 _< N(1)) and thus N _< I-[2mj + 2.

j = l

Suppose S = I and n > 2 t + l . Fo r each k
= 1, . . . , ml let qk be the greatest processor index
that is not in the range (k - 2) l l k l 1. Let Pk
be the least processor index that is not in the range
(k - 2) 11 + 1, . . . , (k - 1) 11. We see that qk is strictly
greater than the least processor index that is not
in the range (k - 2) l ~ , . . . , k l l (since at least n

- 2 t_> 2 indices are not in the that range) and this
in turn is greater than or equal to bo th Pk and
Pk+ 1, each of which is the least index of a set con-
taining all those not in the range (k - 2) l l
+1 , . . . , (k - 1) l l . Thus we have Pk<qk and Pk
< q k - a . Let P2k-1 denote the execution in which
the processors with index 1, 2, . . . , (k - 1) 11 have
initial value 1 and the others have initial value
0 and in round 1, each of the processors (k - 1) ll
+ 1 , k l l fails after sending messages to proces-
sors 1, . . . , qk--1 . Let P2k denote the execut ion in
which the processors with index 1, 2 k l l have
initial value 1 and the others have initial value
0 and in round 1, each of the processors (k -1)11
+ 1 k l l fails after sending messages to proces-
sors 1 q k - 1 . The view of Pk is the same in
PZ(k- 1) as in P2k- 1 (as all processors have the same
initial values in the two executions, and Pk receives
a message from every processor in each execution)
SO P2(k_l)~,~P2k 1" Also the view o f q k is the same
in P z k - 1 as in Pzk (as qk does not receive a message
in either execut ion from those processors with ini-
tial values that are different in the two executions)
so P 2 k _ l ~ p z k . As the view of P,,1 is the same in
P2,,1 as in t3 we have that Pzma ~ , and so p ~Nt~,
where N = 2 m l + 1 < 2 m l +2 .

Suppose S = 1 and n = 2 t + 1. Let Pl be the exe-
cut ion in which all processors have initial value
0 and during round 1 each of the processors 1 , t
fails after sending messages to processors 1, . . . , 2 t.
Let P2 be the execution in which processors 1 t
have initial value 1 and the others have initial value
0, and dur ing round 1 each of the processors
1, . . . , t fails after sending messages to processors
1, . . . , 2t. Let P3 be the execut ion in which proces-
sors 1, . . . , t have initial value 1 and the others have
initial value 0, and no failures occur. Let P4 be
the execut ion in which processors 1, . . . , t have ini-
tial value 1 and the others have initial value 0,
and during round 1 each of the processors
t + 1, . . . , 2 t fails after sending messages to proces-
sors 1 , 2 t . Let Ps be the execut ion in which
processors 1 , 2 t have initial value 1 and proces-
sor n has initial value 0, and during round 1 each
of the processors t + 1 2 t fails after sending
messages to processors 1 , 2 t . Let P6 be the exe-
cut ion in which processors 1, . . . , 2 t have initial
value 1 and processor n has initial value 0, and
during round 1 processor n fails after sending mes-
sages to processors 1, . . . , t. Let P7 be the execut ion
in which all processors have initial value 1 and
during round 1 processor n fails after sending mes-
sages to processors 1, . . . , t. The reader m ay check
that the view of processor t + 1 is the same in Po
as in P l , the view of processor n is the same in

28

p~ as in P2, the view of processor t + 1 is the same
in P2 as in P3, the view of processor 1 is the same
in P3 as in p~, the view of processor n is the same
in P4 as in Ps, the view of processor 1 is the same
in P5 as in P6, the view of processor t + 1 is the
same in P6 as in PT, and the view of processor
1 is the same in P7 as in t3. Thus p o ~ S ~ , but (since
l~<t and n = 2 t + l) we have n>21~+l so m~>3,
implying 8 _< 2m~ + 2.

Finally, suppose S = 1 and t + 2 < n _< 2 t. Not ice
that this requires t > 2 . Let P l be the execution
in which all processors have initial value 0, and
dur ing round 1 processors 1, . . . , t fail after sending
messages to processors 1 t + l . Let P2 be the
execut ion in which processors 1, . . . , t have initial
value 1 while the others have initial value 0, and
during round 1 processors 1, . . . , t fail after sending
messages to processors 1 t + l . Let P3 be the
execut ion in which processors 1, . . . , t have initial
value 1 while the others have initial value 0, and
no failures occur. Let Ok be the execution in which
processors l, . . . , t have initial value 1 while the
others have initial value 0, and during round 1
processors t + 1 , n fail after sending messages
to processors 1 , t - 1 . Let P5 be the execution
in which all processors have initial value 1, and
during round 1 processors t + l , . . . , n fail after
sending messages to processors 1 t - 1 . The
reader may check that the view of processor t + 1
is the same in P0 as in Pl , the view of processor
t + 2 is the same in pa as in P2, the view of processor
t + 1 is the same in P2 as in P3, the view of processor
1 is the same in P3 as in P4, the view of processor
t is the same in P4 as in Ps, and the view of proces-
sor 1 is the same in P5 as in r Thus po~6t3, but
(since l~_<t and n > t + 2) we have n > l ~ + 2 so
ma_>2, implying 6 < 2 m a +2 . Q.E.D.

Now we can prove the lower bound for this failure
model.

Theorem 18. Suppose n > t+ l. Any algorithm that
performs valid t-resilient approximate agreement in
the crash-failure model using at most S rounds of
communication, has performance

K -> sup (I1. . . Is : 11 + ... + ls < t, each Ii a nonnegat ive integer)
(2 n + 3 t) s

Proof. Let l~,lz , ls be an arbi t rary collection
of nonnegat ive integers such that l~ + ... +ls<_t.

/ , . . . I S
We will show that K > ,.-t2J q-j~)s. This clearly im-

plies the theorem. If any li is zero, this inequali ty
is trivially true. Otherwise we can rename the
values so that l~ >_ tz -> ... -> ls, without affecting the
sum or p roduc t of the values.

Let p = P0 be the execution where all processors
have initial value 0 and no failures occur, and let
/3 be the execution where all initial values are 1
and no failures occur. Put mi=[n/li], and N
=(2m~+2).(2ma+2). . . (2ms+2). L e m m a 17
shows the existence of a sequence Po
=p,p~ , p N = ~ where pi~Pi+l, that is there is
some processor Pi whose view (which we will call
Mi) is the same in Pi and in Pi+l. Since M0 is
a view in a failure-free execution where every initial
value is 0 we must have f (Mo)= 0. Similarly MN-1
is a view in a failure-free execution where all initial
values are 1 so f (M u _ 1)= 1. Thus there must be
some i so that If(Mi)--f(Mi+l)[>_ 1/N, but each
of Mi and Mi+l are views in the execution pi+ 1
which from the const ruct ion clearly has all initial
values either 0 or 1. Thus we have proved that
any algori thm has K >__ 1/N. Since

s s

N = I-I 2 m j + 2 < [I (2n/lj+3)
. /=i j = l

we have
s s

K _ [I lj/(2n+ 3lj)> [I 1j/(2n+ 3t). Q.E.D.
j = l j = l

Since any algori thm for the failure-by-omission
model works as well or better in the more restric-
tive crash-failure model, this lower bound also ap-
plies to a fai lure-by-omission system.

9 Conclusions

We have presented algori thms to solve S-round
t-resilient approximate agreement in each of the
crash-failure, failure-by-omission and Byzantine
failure models. F o r fixed S and t, each algori thm
has performance that is asymptot ic as n ~oo to
the best possible in that model, by lower bounds
proved in this paper.

These algori thms have the nice p roper ty that
they can be easily modified so that they can provide
tentat ive values that get closer and closer together,
reaching exact agreement after t + 1 rounds.

The results in this paper are summarized in the
following Table:

Model Algor i thm Lower bound

Crash-failure K < L(S) s K > L(S)
- (2 n - - 2 t) - (2 n + 3t) s

L(S) K> L(S)
Failure-by-omission K <_ (2 n _ 2 t) (2 n _ 4 t) s _ 1 - - (2 n + 3 t)

L(S)
Byzantine failure K <_ (n _ 2 t) (n _ 4 t) s ~ K > -- (n + t) L (S) s

29

where L (S) - - s u p (l l . . . l s : l l + ... + l s < t , each l~ a
nonnegative integer).

For the crash-failure model, we iterate a one-
round algorithm. The multi-round algorithms giv-
en for the failure-by-omission and Byzantine fail-
ure models involve processors exchanging informa-
tion and then forming multisets W (q l , . . . , q r , * ,

..., , , p) to represent all the information {v(qi, ...,
qr, q~+l , qs , P): q j = l , 2 , n for j > r } ,
using the operations of combining multisets and
removing extreme values repeatedly to increase the
amount of unanimity in each multiset. In order
to achieve good performance each processor tries
to detect which processors are faulty, and ignores
messages sent by processors which have been de-
tected.

Acknowledgments. I would like to thank Professor Nancy Lynch
for teaching me about distributed algorithms and suggesting
this problem, Michael Merritt for finding a major error in an
early draft of this paper, Brian Coan and William Weihl for
detailed comments on later drafts, Leslie Lamport for sugges-
tions about the crash-failure case, Yoram Moses for fruitful
discussions about the lower bounds, and two very thorough
anonymous referees for many helpful suggestions.

References

1. Coan B (1986) Communication-efficient canonical form for
fault-tolerant distributed protocols. Proc 5th ACM Symp
on Principles of Distributed Computing, pp 63 72

2. Coan B, Dwork C (1986) Simultaneity is harder than agree-
ment. Proc 5th Symp on Reliability in Distributed Software
and Database Systems, pp 141-150

3. Dolev D (1982) The Byzantine generals strike again. J Algo-
rithms 3:14 30

4. Dolev D, Lynch N, Pinter S, Stark E, Weihl W (1986) Reach-
ing approximate agreement in the presence of faults. JACM
33(3):499-516

5. Dwork C, Moses Y (1986) Knowledge and common knowl-
edge in a Byzantine environment I: crash failures. Proc 1986
Conf on Theoretical Aspects of Reasoning About Knowl-
edge, pp 149 169

6. Fischer M (1983) The consensus problem in unreliable dis-
tributed systems (a brief survey). Yale University Tech Rep
YALEU/DCS/RR-273

7. Fischer M, Lynch N (1982) A lower bound for the time
to assure interactive consistency. Inf Proc Lett 14(4): 183
186

8. Halpern J, Simons B, Strong R, Dolev D (1984) Fault-toler-
ant clock synchronization. Proc 3rd ACM Symp on Princi-
ples of Distributed Computing, pp 89-102

9. Lamport L, Melliar-Smith P (1985) Synchronizing clocks
in the presence of faults. JACM 32(1): 5~78

10. Lundelius J, Lynch N (1984) A new fault-tolerant algorithm
for clock synchronization. Inf Control 62(2):190-204

11. Lamport L, Shostak R, Pease M (1982) The Byzantine gen-
erals problem. ACM Trans on Programming Languages and
Systems 4(2): 382-401

12. Mahaney S, Schneider F (1985) Inexact agreement: accura-
cy, precision and graceful degradation. Proc 4th ACM Syrup
on Principles of Distributed Computing, pp 237-249

13. Moses Y, Tuttle M (1988) Programming simultaneous ac-
tions using common knowledge. Algorithmica 3:121 169

14. Pease M, Shostak R, Lamport L (1980) Reaching agreement
in the presence of faults. JACM 27(2):228-234

