
Lower Bounds in Distributed Computing

by

Rui Fan

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 1, 2008

Certified by. .
Nancy A. Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students

Lower Bounds in Distributed Computing

by

Rui Fan

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Distributed computing is the study of achieving cooperative behavior between independent comput-
ing processes with possibly conflicting goals. Distributed computing is ubiquitous in the Internet,
wireless networks, multi-core and multi-processor computers, teams of mobile robots, etc. In this
thesis, we study two fundamental distributed computing problems, clock synchronization and mutual
exclusion. Our contributions are as follows.

1. We introduce the gradient clock synchronization (GCS) problem. As in traditional clock syn-
chronization, a group of nodes in a bounded delay communication network try to synchronize
their logical clocks, by reading their hardware clocks and exchanging messges. We say the
distance between two nodes is the uncertainty in message delay between the nodes, and we
say the clock skew between the nodes is their difference in logical clock values. GCS studies
clock skew as a function of distance. We show that surprisingly, every clock synchronization
algorithm exhibits some execution in which two nodes at distance one apart have Ω(log D

log log D)
clock skew, where D is the maximum distance between any pair of nodes.

2. We present an energy efficent and fault tolerant clock synchronization algorithm suitable for
wireless networks. The algorithm synchronizes nodes to each other, as well as to real time.
It satisfies a relaxed gradient property. That is, it guarantees that, using certain reasonable
operating parameters, nearby nodes are well synchronized most of the time.

3. We study the mutual exclusion (mutex) problem, in which a set of processes in a shared memory
system compete for exclusive access to a shared resource. We prove a tight Ω(n log n) lower
bound on the time for n processes to each access the resource once. Our novel proof technique
is based on separately lower bounding the amount of information needed for solving mutex,
and upper bounding the amount of information any mutex algorithm can acquire in each step.

We hope that our results offer fresh ways of looking at classical problems, and point to interesting
new open problems.

Thesis Supervisor: Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering

2

Acknowledgments

My time as a graduate student has been an entirely transformative experience. For this, there are

many people I need to thank.

I first thank Prof. Nancy Lynch, my advisor. Nancy welcomed me into her group, and introduced

me to the richness and depth of distributed computing. Nancy also showed me that creativity and

discipline are mutually reinforcing. Her interest in the limits of distributed computing became my

own, and her ideas have been crucial in my research. I am very grateful to Nancy for her guidance,

for sharing her wisdom and breadth of knowledge, and for her patience in allowing me to explore.

I also want to thank the many other people I have worked and discussed research ideas with,

including James Aspnes, Indraneel Chakraborty, Gregory Chockler, Murat Demirbas, Shlomi Dolev,

Ted Herman, Rachid Guerraoui, Idit Keidar, Achour Mostefaoui, Elad Schiller, Alex Shvartsman,

and many of the people mentioned later. I thank my committee members, Prof. Faith Ellen and

Prof. Piotr Indyk for their help on my thesis, and for their insightful comments and advice.

I thank Joanne Hanley, Be Blackburn and Marilyn Pierce for helping me stay organized and on

track.

I am fortunate to have met some especially interesting and talented fellow students. I give

a big thanks to Sayan Mitra, Tina Nolte, Calvin Newport and Dah-Yoh Lim for broadening my

mind to new ideas, and also for their terrific company. I thank Seth Gilbert, Roger Khazan, Carl

Livadas, Victor Luchangco, Shinya Umeno, David Huynh and Vineet Sinha for many stimulating

conversations and fun experiences.

Finally, I thank my parents, Shu Zhang and Tailin Fan. Whatever difficulties I have encountered

as a student makes me appreciate all the more their extraordinary perseverance against fate in

obtaining their own doctorates, and the tremendous sacrifices they have made for me throughout

my life. The values they have given me lie at my core. Without their love, support and belief, today

would not be possible.

3

To my mother and father.

4

Contents

1 Introduction 9

1.1 Lower Bound for Clock Synchronization . 11

1.2 Lower Bound for Mutual Exclusion . 12

1.3 A Clock Synchronization Algorithm . 13

1.4 Outline of the Thesis . 13

2 Gradient Clock Synchronization 14

2.1 Introduction . 14

2.2 Relation to Previous Work . 16

2.3 Model of Computation . 18

2.3.1 Timed Input/Output Automata . 18

2.3.2 Model of the Algorithm . 19

2.3.3 Model of the Adversary . 20

2.3.4 Properties of Executions . 21

2.4 Gradient Clock Synchronization . 23

2.5 A Lower Bound on Gradient Clock Synchronization 24

2.6 Add Skew Lemma . 25

2.7 Bounded Increase Lemma . 38

2.8 The Main Theorem . 43

3 A Clock Synchronization Algorithm 52

3.1 Introduction . 52

3.2 Comparison to Chapter 2 . 53

3.3 Related Work . 54

3.4 System Model . 55

3.4.1 Nodes . 55

3.4.2 Communication Network . 56

3.4.3 GPS Service . 57

5

3.4.4 Stability . 57

3.5 Problem Specification . 58

3.5.1 External Accuracy of Synch . 58

3.5.2 Gradient Accuracy of Synch . 59

3.6 The Algorithm . 61

3.6.1 Preliminaries . 61

3.6.2 Algorithm Description . 63

3.7 Basic Properties of Synch . 65

3.8 Proof of External Accuracy of Synch . 67

3.9 Proof of Gradient Accuracy of Synch . 71

4 Mutual Exclusion 78

4.1 Introduction . 78

4.2 Related Work . 80

4.3 Model . 81

4.3.1 The Shared Memory Framework . 81

4.3.2 The Mutual Exclusion Problem . 85

4.3.3 The State Change Cost Model . 88

4.4 Overview of the Lower Bound . 89

4.5 The Construction Step . 94

4.5.1 Preliminary Definitions . 94

4.5.2 The Construct Algorithm . 96

4.6 Correctness Properties of the Construction . 100

4.6.1 Notation . 100

4.6.2 Outline of Properties . 103

4.6.3 Basic Properties of Construct . 104

4.6.4 Main Properties of Construct . 112

4.6.5 Main Theorems for Construct . 127

4.7 Additional Properties of Construct . 128

4.7.1 Notation . 128

4.7.2 Properties for the Encoding . 130

4.7.3 Properties for the Decoding . 133

4.8 The Encoding Step . 152

4.9 Correctness Properties of the Encoding . 153

4.10 The Decoding Step . 156

4.11 Correctness Properties of the Decoding . 159

4.12 A Lower Bound on the Cost of Canonical Runs . 162

6

5 Conclusions 164

5.1 Future Work . 164

5.1.1 Clock Synchronization . 164

5.1.2 Mutual Exclusion . 166

7

List of Figures

2-1 The hardware clock rates of nodes 1, . . . , D in execution β. Thick lines represents the

time interval during which a node has hardware clock rate γ. Node k +1 runs at rate

γ for µ
γ time longer than node k, for k = i, . . . , j − 1. 29

2-2 Node k1 sends a message to node k2 > k1. The delay of the message is k2−k1

2 in

execution α, and is within [k2−k1

4 , 3(k2−k1)
4] in execution β. Note that the hardware

clocks of nodes k1 and k2 are running at rate γ during the time interval represented

by the thick lines. 35

3-1 The constants, signature and states of clock synchronization automaton Ci. 59

3-2 States and transitions of clock synchronization node Ci of Synch. 62

4-1 Summary of the notation in this chapter and the location of their definitions. 90

4-2 The types and meanings of variables used in Construct and Generate. 96

4-3 Input and output types of procedures in Figure 4-4. We write “p.o.” for partial order. 96

4-4 Stage i of the construction step. 97

4-5 Encoding M and � as a string Eπ . 154

4-6 The types and meanings of variables used in Decode. 156

4-7 Decoding E = Eπ to produce a linearization of (M,�). 157

8

Chapter 1

Introduction

As Alice walked down the street one day, she saw Bob coming from the other way. To avoid Bob,

Alice stepped to her left. At the same time, Bob stepped to his right. Again to avoid Bob, Alice

stepped to her right, but Bob stepped to his left at the same time. Alice then decided to pause, to

let Bob pass. But this time, Bob stood still as well. In the real world, Alice and Bob eventually pass

each other. In the mathematical world, Alice and Bob may block each other forever. The latter is

an example of an impossibility result in distributed computing. Distributed computing is the study

of making independent computing processes cooperate. In this thesis, we study limitations to this

cooperation for two fundamental problems, clock synchronization and mutual exclusion.

In clock synchronization, a set of processes are each equipped with a clock, running perhaps

faster or slower than the rate of real time. By reading its own clock and by communicating with the

others, each process computes a virtual logical clock. The goal of clock synchronization is to ensure

that the logical clocks of different processes match as closely as possible.

In mutual exclusion, a set of processes try to access a shared resource. The processes may be

threads of an operating system, and the resource may be a lock on a data structure. The requirements

are that no two processes access the resource at the same time, and that some process can access the

resource when the resource is free. The goal is to minimize the amount of time for all the processes

that want to access the resource to do so.

To solve either of these problems, processes need to communicate with each other. The usual

models of communication for the two problems are different. In clock synchronization, processes

pass messages to each other along communication channels. A channel might be a physical link

connecting some processes, or a virtual medium such as radio broadcast. We assume that any

message sent through a channel eventually reaches the recipient. However, we can place different

bounds on the amount of time it takes a message to travel through a channel. As we will see later,

it is not the absolute magnitude of this message delay that is important, but rather, the amount of

9

possible variation in the delay. That is, it is possible to achieve tighter clock synchronization over a

channel that always takes one minute to deliver a message, than it is over a channel that sometimes

take one second to deliver a message, and sometimes delivers a message instantaneously. In mutual

exclusion, processes communicate with each other using shared memory, which is a set of objects

that all the processes can access. Shared memory objects may have different types. For example,

registers allow a process to write a value, and other processes to later read that value. If several

processes write to a register at the same time, the register nondeterministically retains one of the

values. A fetch-and-increment (F&I) object allows one operation, F&I, which returns the current

value of the object, then increments it. Many other types of shared memory objects are possible,

and the types of the objects have a strong effect on the kinds of problems that processes can solve,

and the efficiency of the solutions.

A distributed algorithm consists of the independent algorithms of all the processes. An execution

of a distributed algorithm takes place under the control of an adversary. We will assume an asyn-

chronous model of computation. In this model, the powers of the adversary are related to control

over the speed of execution of the processes, and control over the communication medium. In the

clock synchronization problem, an adversary can control the rate of increase of the clock of each

process, within some bounds. For example, the adversary can make process p’s clock run fast and

process q’s clock run slow for now, then later make q’s clock fast and p’s clock slow. The adversary

can also control the delay of each message, within the bounds on its variation. For example, if the

message delay from p to q is at most one minute, then the adversary can make the first message from

p to q take one minute, the second message be instantaneous, and the third message take 30 seconds.

In the mutual exclusion problem, the adversary can control the order in which processes take steps.

For example, the adversary can let p take two steps for every step q takes for now, then later let

q take four steps for every step by p. The only constraint is that no process can take an infinite

number of steps, while another process does not take any. The way in which an adversary chooses

how it wants to control the speed and communication of the processes is based on the knowledge

that the adversary has about the processes. In this thesis, we assume an omniscient adversary. This

adversary knows the state of each process at any time, and knows the next step that the process

will take from this state.

Given the capabilities of the processes, the communication medium and the adversary, many dis-

tributed computing problems are not possible, or are costly, to solve. For example, the confrontation

between Alice and Bob described at the beginning of the chapter can be modeled by the consensus

problem, which was shown to have no fault tolerant solution in the groundbreaking paper by Fischer,

Lynch and Paterson [17]. Intuitively, this can be seen by the circularity in reasoning that Alice and

Bob must engage in. Alice will step aside, unless Bob will too, and Bob will step aside unless Alice

will too.

10

1.1 Lower Bound for Clock Synchronization

For the clock synchronization and mutual exclusion problems, lower bounds arise for other reasons.

Our clock synchronization lower bound, described in Chapter 2, can be seen as a (considerable)

elaboration of the following situation. Suppose processes p and q are trying to synchronize their

logical clocks, and p and q communicate over a message channel with a delay of at most one minute.

At 12:01 on p’s clock, p receives a message m from q saying it is 12:00 on q’s clock. What time should

p set its logical clock to? Suppose first that p sets its clock to the time indicated in q’s message,

12:00. Then, if the delay on m was one minute, it would be presently 12:01 on q’s clock, so that

p and q’s logical clocks would differ by one minute. If p keeps its clock at 12:01, then, if m was

delivered instantaneously, q’s clock would presently be 12:00, and so again p and q’s clocks differ by

one minute. Finally, if p set its clock to 12:00:30, then no matter what the delay on m was, p and

q’s clocks differ by at most 30 seconds. From this, we can see that the worst case difference in the

logical clock values of p and q, for any synchronization algorithm used by p and q, is at least half of

the variation in their message delay. This example is an illustration of the shifting technique used

in the seminal lower bound on clock synchronization by Lundelius and Lynch [27].

In Chapter 2, we introduce the gradient clock synchronization problem. Here, an entire network

of nodes simultaneously try to synchronize their logical clocks to each other. Call the variation in

message delay between any pair of nodes the distance between the nodes, and call the difference

between the logical clock values of two nodes the clock skew between the nodes. Then the “gradient”

in the problem’s name refers to the fact that each node tries to bound its clock skew with the other

nodes as a function of its distance to those nodes. Let the diameter D of the network be the maximum

distance between any pair of nodes in the network. Unlike the case with two nodes that are distance

d apart, where it is possible to ensure the skew between the nodes is always O(d), we show that

in a network of diameter D, in which there exist pairs of nodes at all distances 1, 2, . . . , D, there

exists for any d ∈ 1..D an execution in which a pair of nodes distance d apart have Ω(d log(D/d)
log log(D/d))

clock skew in some execution. Our lower bound is based on a variation of the shifting technique

called scaling [10]. We use scaling to show that we can increase the clock skew between nodes in a

region of the network. Then, we use the gradient requirement to show that the skew in this region

cannot decrease too quickly. Essentially, this is because the skew in the region is conserved for some

amount of time. For example, if we have three nodes p, q and r, with q lying between p and r, then

no matter how q changes its logical clock value, the sum of its clock skews to p and r remains the

same. Since the skew in the region does not decrease quickly, we can again use scaling to increase

the skew, in a subregion of the original region. By repeating this multiple times, we obtain our lower

bound.

11

1.2 Lower Bound for Mutual Exclusion

In Chapter 4, we prove a lower bound on the time required to solve mutual exclusion. We show

that if a set of n processes all want to access a shared resource, then the processes need to perform

Ω(n log n) register operations in some execution, no matter what algorithm the processes use. The

basic idea behind this lower bound is to compare the need and the cost for the processes to acquire

information. We will say that a process is trying if it wants to access the resource. One of the

requirements of mutual exclusion is that any trying process will access the resource if there are no

other trying processes. A process p may erroneously believe that it is the only trying process. This

may happen, for example, if the adversary let p take all its steps ahead of the other processes; in this

case, all the values in the registers that p reads were written by p, and so p has no evidence that any

other trying processes exist. When p erroneously believes it is alone, all the other trying processes

must allow p to access the resource first, because otherwise p and another process can access the

resource at the same time. We say that the other processes wait for p. A process q that waits for p

may also erroneously believe that it is the only trying process besides p. In this case, after p finishes

accessing the resource, q will. Thus, any other trying process must wait for both p and q to finish

their accesses first. Yet another process r may see p and q as the only waiting processes, in which

cases all other trying processes must wait for p, q and r, etc. From this, we see that in order to

ensure processes access the resource one at a time, it is necessary for the “waits for” ordering to

contain a directed chain over all the trying processes.

Given a set of n trying processes, a directed n-chain on the processes takes Ω(n log n) bits

to specify. To prove our lower bound on the number of operations needed for n processes to solve

mutual exclusion, we construct an adversarial execution in which it takes any algorithm k operations

to obtain O(k) bits of information about the chain. Underlying this construction is the idea of the

“bandwidth” supported by a register. We call the next step that a process is about to perform in

an execution its pending step. We think of a set of processes that are pending to write to a register

as trying to communicate with processes who will later read the register. That is, we think of the

register as a communication medium. We say that the bandwidth of a register is one, because if

more than one process is pending to write to the register, then by ordering the writes consecutively

in an execution, the adversary ensures that the final write operation overwrites the values of the

other writes, so that all but one of the values being communicated is lost. Thus, it is futile for an

algorithm to attempt more than one pending write on a register at a time. Notice that other shared

memory objects, such as F&I, may have greater bandwidth, because several pending operations on

the object do not overwrite each other. The idea of scheduling writes on registers to overwrite each

other was used in the covering arguments in the seminal paper on the memory requirements for

mutual exclusion by Burns and Lynch [8].

Suppose now that there is a register with one pending write by a process w, and r pending reads,

12

by a set of processes R. The cost of the operations by w and R is r + 1. We claim that these

operations produce log2(r + 1) bits of information for the algorithm. Indeed, after the reads, every

process in R know about w, or alternatively, w is ordered before every element in R in the waits-for

ordering. Out of all n! possible orderings on n elements, exactly 1
r+1 fraction of these order w ahead

of all the elements in R. Thus, the operations by w and R reveal log2(r + 1) bits of information,

because they reduce the set of orderings between w and the elements in R by a factor of r+1. From

this, we see that it takes an algorithm k operations to obtain O(k) bits of information. Hence, to

gather the Ω(n log n) bits of information specifying the waits-for relation on all n the processes, the

algorithm must perform Ω(n log n) operations.

1.3 A Clock Synchronization Algorithm

In addition to the lower bounds we prove in Chapters 2 and 4, we present in Chapter 3 a clock

synchronization algorithm designed for the important emerging medium of wireless networks. Clock

synchronization is used as a service for a number of higher level wireless applications, such as

TDMA, sensor and security applications. These applications often require a clock synchronization

algorithm to be energy efficient, fault tolerant, and satisfy a gradient property. The algorithm we

present addresses these needs using a “follow the leader” approach, in which nodes periodically set

their clocks to the highest clock value in the network. In addition, nodes can adjust their clocks to

real time using periodic GPS inputs. Our algorithm is naturally fault tolerant, since the failure of

the leader, i.e., the node with the highest clock value, automatically promotes the node with the

next highest clock value to be leader. The algorithm is also energy efficient, because nodes only

synchronize periodically, and suppress duplicate or redundant synchronization messages. Finally,

our algorithm satisfies a relaxed form of the gradient property. In particular, in executions in which

node failures and recoveries eventually stop, we show that when two nodes have, roughly speaking,

received the same synchronization information, then their clock skew is bounded by a linear function

of their distance and the resynchronization period. We argue that in practice, this situation is likely

to occur. This property does not contradict the lower bound we proved in Chapter 2, because there

are several differences in the system models and problem specifications assumed in the two chapters.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the gradient clock

synchronization problem and prove a lower bound on its solvability. In Chapter 3, we present a clock

synchronization algorithm adapted for wireless networks. In Chapter 4, we prove a lower bound on

the cost of mutual exclusion. Finally, in Chapter 5, we take stock of the results in this thesis, and

outline some open questions and directions for future research.

13

Chapter 2

Gradient Clock Synchronization

2.1 Introduction

The distributed clock synchronization problem is defined as follows. A set of nodes communicate

over a reliable network with bounded message delay. Each node is equipped with a hardware clock

with bounded drift, that is, a timer running at roughly, but possibly not exactly, the rate of real

time. Each node continuously computes logical clock values based on its hardware clock, and on

messages exchanged with other nodes. The goal is to synchronize the nodes’ logical clocks as closely

as possible. To rule out trivial algorithms, the logical clocks must satisfy some validity conditions, for

example, that they remain close to real time. This problem has been the subject of extensive research.

Previous work in the area has focused on minimizing the clock skew between nodes and minimizing

the amount of communication used by the synchronization algorithm [35, 11], on tolerating various

types of failures of the nodes and the network [24, 35], and on proving lower bound results about

clock skew and communication costs [27, 20, 32, 31]. Recent work on clock synchronization has

also focused on efficient and fault tolerant clock synchronization algorithms (CSA for short) in new

network domains such as wireless and ad-hoc networks [11, 36]. In this chapter, we introduce a new

aspect in the study of clock synchronization, which we call the gradient property. We define the

distance between two nodes to be the uncertainty in message delay between the nodes. Informally,

the gradient property requires that the skew between two nodes forms a gradient with respect to the

distance between the nodes. That is, nearby nodes should be closely synchronized, while faraway

nodes may be more loosely synchronized.

We first contrast gradient clock synchronization with earlier work on clock synchronization [27,

35]. Let D be the diameter of the network, i.e., the largest message uncertainty between any pair

of nodes in the network. One can show by adapting the scaling techniques of [10] that for any CSA,

the worst case clock skew between some pair of nodes in the network is Ω(D). Many CSAs (e.g.,

14

[35]) achieve a worst case skew of Θ(D). However, these CSAs allow Θ(D) skew between any two

nodes. In particular, there exist executions of these algorithms in which a pair of nodes at O(1)

distance from each other have Θ(D) skew. Thus, these CSAs do not satisfy the gradient property,

because nearby nodes are not always well synchronized.

We now discuss some motivation for studying the gradient property. In many highly decentralized

networks, such as sensor and ad-hoc networks, applications are local in nature. That is, only nearby

nodes in the network need to cooperate to perform some task, and nodes that are far away interact

much less frequently. Hence, only nearby nodes need to have highly synchronized clocks. As nodes

get farther apart, they can tolerate greater clock skew. Thus, for these applications, the maximum

acceptable clock skew between two nodes forms a gradient in their distance.

As an example, consider first the data fusion [33] problem in a sensor network. A group of

distributed sensors collect data, then try to aggregate their data at one node to perform some signal

processing on it. In order to conserve energy, the sensors form a communication tree. Starting from

the leaves, each sensor sends its data to its parent sensor. When a parent sensor has received data

from all its children, it “fuses” the data, that is, constructs a summary representation of the data,

and sends the summary to its own parent. Since sensors typically measure real-world phenomena,

times are associated with the sensor measurements. When fusing data, the children of a parent node

must synchronize their clocks, so that the times of their readings are consistent and a fused reading

will make sense. Hence, nearby nodes, which may be children of the same parent, need to have

well synchronized clocks, while faraway nodes may be allowed to have more poorly synchronized

clocks. Existing clock synchronization algorithms would not suffice for data fusion, since they fail to

guarantee that nearby nodes are always well synchronized, and a distance-dependent gradient clock

synchronization is needed.

Next, consider the target tracking problem in a sensor network. Suppose two sensor nodes want

to measure the speed of an object. Each node records the time when the object crosses within

its vicinity. Then the nodes exchange their time readings, and compute t, the difference in their

readings. The amount of error in t is related to the clock skew between the nodes. The object’s

velocity is computed as v = d
t , where d is the known Euclidean distance between the nodes. Suppose

the nodes do not need to compute v exactly, but only to an accuracy of 1%. Since v = d
t , then

the larger the Euclidean distance is between the nodes, the more error is acceptable in t, while still

computing v to 1% accuracy. Thus, the acceptable clock skew of the nodes forms a gradient1.

What kind of gradient can be achieved by a clock synchronization algorithm? When the network

consists of two nodes at distance d from each other, the smallest possible worst-case clock skew

between the nodes is O(d). If there are more nodes, arranged in an arbitrary topology, is there a

1Note that here we are assuming the Euclidean distance between two nodes corresponds to the uncertainty in their
message delay. This is the case if, for example, there are multiple network hops between the nodes, with the number
of hops proportional to the Euclidean distance between the nodes.

15

synchronization algorithm that ensures that the clock skew between all pairs of nodes is linear in

their distance at all times? We show that no such algorithm exists. Our main result, stated in

Theorem 2.5.2, is that given a sufficiently large D, for any clock synchronization algorithm, there

exists an execution in which two nodes that are distance d ∈ [1, D] apart have Ω(d logz(
D
d)) clock

skew, where z is the number such that zz = D. An implication of this result is that an application

such as TDMA [25] that requires a fixed maximum skew between nearby nodes cannot scale beyond

networks of a certain diameter. We conjecture that our lower bound is nearly tight, and that there

exist CSAs that ensure that distance d nodes always have O(d log(D
d)) clock skew.

The rest of this chapter is organized as follows. Section 2.2 describes previous work on clock

synchronization and its relation to our work. Section 2.3 defines our model for clock synchronization,

and Section 2.4 formally defines the gradient clock synchronization problem. We state our main lower

bound and give an overview of its proof in Section 2.5. We prove two lemmas in Sections 2.6 and

2.7, and then prove the GCS lower bound in Section 2.8.

The results presented in this chapter have appeared earlier in [13] and [14].

2.2 Relation to Previous Work

To our knowledge, this work is the first theoretical study of gradient clock synchronization and lower

bounds for the problem. Many other lower bounds have been proven for clock synchronization. The

two most important parameters in these lower bounds are the uncertainty in message delay, and the

rate of clock drift2.

Lundelius and Lynch [27] proved that in a complete network of n nodes where the distance

between each pair of nodes is d, nodes cannot synchronize their clocks to closer than d(1− 1
n). They

also gave a matching upper bound. Halpern et al [20] and Biaz and Welch [7] extended the previous

result to more general graphs, and gave algorithms that match or nearly match their lower bounds.

These papers all assume nodes have perfect (non-drifting) clocks.

Dolev, Halpern and Strong [10] proved lower bounds on clock synchronization in the presence

of drifting hardware clocks, initially synchronized logical clocks, and Byzantine failures. They in-

troduced a scaling technique, similar in spirit to the shifting technique of [27], that can produce

executions with large clock skew. Our lower bound proof can be seen as an iterated form of the

scaling technique, along with other techniques.

Srikanth and Toueg [35] gave an optimal clock synchronization algorithm, where optimal means

that the skew of a node’s logical clock from real time is as small as possible, given the hardware clock

drift of the node. Their algorithm ensures that any pair of nodes have O(D) clock skew, where D is

2The clock drift rate is defined as a constant 0 ≤ ρ < 1, such that at all times, the rate of increase of each node’s
hardware clock lies within the interval [1 − ρ, 1 + ρ]. Our lower bound only holds when clock drift is positive. Thus,
for the remainder of this chapter, we will assume that ρ > 0.

16

the diameter of the network. However, it does not guarantee a gradient in the clock skew, because

even nodes that are O(1) distance apart can have O(D) skew. We now explain how this can happen,

using a simplified version of the algorithm in [35], which nevertheless illustrates the main reason

why [35] violates the gradient property. Intuitively, the reason is that a node’s logical clock value is

allowed to suddenly “jump” to a much higher value, without coordinating with neighboring nodes.

The simple algorithm works as follows. Nodes periodically broadcast their logical clock values, and

any node receiving a value sets its logical clock value to be the larger of its own clock value and

the received value. Now, consider an execution consisting of three nodes x, y and z, arranged in a

line topology. Let the distance between x and y be X , for some constant X � 1, let the distance

between y and z be 1, and let the distance between x and z be X +1. By making the message delay

X between x and y and 1 between y and z, and by making x’s hardware clock rate higher than y’s,

which is in turn higher than z’s, we can create an execution in which x’s clock is X higher than

y’s clock, which in turn is 1 higher than z’s clock. Now, we extend this execution by changing all

future message delays between x and y to be 0, but keeping the delay between y and z at 1. Then,

when y receives a message from x, y will realize its clock is X lower than x’s clock, and so y will

increase its clock by X . However, because the message delay between y and z is still 1, z receives

x’s message one second later than y does. Thus, there is a one second interval during which y has

increased its clock by X , but z has not increased its clock. During this one second interval, y’s clock

is X + 1 higher than z’s clock, even though y and z have distance 1. Thus, this execution violates

the gradient property.

Recently, Meier and Thiele [28] extended our work and showed a lower bound on gradient clock

synchronization in a different communication model. While our communication model has nonzero

uncertainty for message delays and allows nodes to communicate arbitrarily, Meier and Thiele’s

model has zero message delay uncertainty, but, roughly speaking, only allows nodes to communicate

once every R time, where R > 0 is some parameter3. This model is intended to capture certain

characteristics of radio networks. Using techniques based on ours, [28] shows that for any CSA,

there exist neighboring nodes that have Ω(R log n
log log n) skew, where n is the number of nodes in the

network. The number of nodes n in [28] is analogous to the diameter D in this chapter, so the lower

bound in [28] is similar to ours.

Also recently, Locher and Wattenhofer [26] discovered a clock synchronization algorithm in which

a pair of distance d nodes have O(d +
√

D) clock skew in all executions. Their algorithm is based

on letting clock values catch up to each other in O(
√

D) increments. In addition, their algorithm is

oblivious. It only requires a node to store the last clock value from each of its neighbors, not of the

entire history of messages sent. An interesting open problem is to improve this algorithm so that it

more closely matches our lower bound, or possibly to prove a tighter lower bound.

3[28] uses the variable d instead of R. We use R since d has a different meaning in this chapter.

17

2.3 Model of Computation

A distributed computation can be thought of as a repeated game between an algorithm and an

adversary, in which the two parties take turns moving. Each party has certain “powers” to allow it

to “foil” the other. In this section, we describe the powers of the algorithm and the adversary, and

state some properties of distributed computations. We begin by describing the TIOA framework

[22], which underlies our model of computation.

2.3.1 Timed Input/Output Automata

We give an overview of the TIOA modeling framework; please see [22] for additional details. Each

TIOA is an automaton with internal state variables, and actions (also called events) and trajectories

that change its state. Let C be a TIOA, and let S be the set of all states of C. An action of C

may cause a change to C’s state. A trajectory is a mapping from some interval [0, t] ⊆ R≥0 to S,

representing the continuous evolution of C’s state during the time interval [0, t]. Given a trajectory

with domain [0, t], we define the duration of τ , written `(τ), to be t. In the remainder of this chapter,

we will use σ, σ′, σ1, etc. to denote actions, and τ, τ ′, τ1, etc. to denote trajectories. Several TIOA

may be composed to obtain another TIOA. Roughly speaking, if C is the composition of a set of

automata C, then the state set of C is the cartesian product of the state sets of the automata in C,

the actions and trajectories of C are the union of the actions and trajectories of the automata in C,

and input and output actions of automata in C with the same name are identified. Please see [22]

for additional details on the composition operation.

An execution α of a TIOA C is a sequence of the form α = τ0σ1τ1σ2τ2 This means that

C starts in initial state τ0(0), then evolves according to τ0 during the real time interval [0, `(τ0)],

then follows the transition in σ1 at time `(τ0), then evolves according to τ1 during the time interval

[`(τ0), `(τ0)+ `(τ1)], then follows the transition in σ2 at time `(τ0)+ `(τ1), etc. Note that more than

one state change can occur at the same real time. We say a state occurrence is the occurrence of a

state in an execution. A prefix of α is a sequence β = τ0σ1τ1 . . . σkτ ′k, where τ ′k is a mapping from

[0, t′k] to the state set of C, and where t′k ≤ `(τk).

Let A be a set of actions, and let V be a set of state variables. Then an (A, V)-sequence is any

alternating sequence of actions and trajectories, where each action in the sequence belongs to A, and

the variables in each trajectory belong to V . Note that (A, V)-sequences generalize the notion of

executions. Let A′ be a set of actions, and let V ′ be a set of variables. Then the (A′, V ′)-restriction

of an (A, V)-sequence α, denoted by αd(A′, V ′), is obtained by first projecting all trajectories of α

to the variables in V ′, the removing the actions not in A′, and finally concatenating all adjacent

trajectories. Suppose C is a TIOA with action set A′′ and state variables set V ′′. Then we write

αdC for the (A′′, V ′′)-restriction of α. That is, αdC is a subsequence of α consisting only of the

18

actions of C, and the restriction of each trajectory in α to the variables of C.

The following paragraph contains definitions related to TIOA that we define for this thesis. They

may be undefined or defined using slightly different terminology in the standard TIOA model [22].

Given a trajectory τ , a variable v and a time t ∈ [0, `(τ)], we denote the value of v at time t in τ by

τ(t).v. Given an (A, V)-sequence α = τ0σ1τ1 . . . σnτn, we say the duration of α is `(α) =
∑n

i=0 `(τi).

Given a time t, we say t is contained in τk of α if t ∈ [
∑k−1

i=0 `(τi),
∑k

i=0 `(τi)]. Suppose a variable

v is not modified by any action in α. Then v has a well-defined value at any time instant t in α,

which we denote by vα(t). More precisely, if we define k ∈ N such that t is contained in τk, then

vα(t) = τk(t −∑k−1
i=1 `(τi)). If v is modified by some actions of α, then we define vα(t) similarly,

except that we take the value of v before all actions at time t. For any event σ in α, we say the

time (or sometimes time of occurrence) of σ, written Tα(σ), is the real time at which σ occurs; in

particular, this is equal to the sum of the durations of all the trajectories preceding σ in α. Let

I = [t0, t1] ⊆ R≥0. Then a time interval I of α, written as α(I), is a portion of α including all

trajectories and events whose time of occurrence lie within [t0, t1]. If t1 occurs in the middle of a

trajectory τ , then we include only the part of τ up to time t1.

2.3.2 Model of the Algorithm

A communication network is modeled by a complete weighted, directed graph. For every i, j ∈ V ,

i 6= j, let 0 ≤ di,j <∞ be the weight of edge (i, j). We assume that di,j = dj,i, for all i, j ∈ V . As a

convention, we assume di,i = 0, for all i ∈ V . Each edge (i, j) is associated with a channel automaton

chani,j . LetM be an arbitrary set, representing the set of messages that can be sent in the network.

For every m ∈ M, we assume chani,j has input action sendi,j(m), and output action recvi,j(m).

We assume that in every execution, if sendi,j(m) occurs at real time t, then recvi,j(m) occurs some

time within the time interval [t, t + di,j]. Note that this means that the channels are reliable. We

call di,j the message delay uncertainty between vertices i and j. We define diam(G) = maxi,j∈V di,j

to be the diameter of G. Our lower bound can be expressed in terms of the ratio of the diameter of

G to the minimum nonzero distance in G. For simplicity, we avoid this explicit ratio, and normalize

the network so that mini,j∈V di,j = 1. Lastly, we assume that any channel does not duplicate any

messages, and delivers only messages that are sent. A channel is allowed to reorder messages.

For the remainder of the chapter, fix a constant ρ ∈ (0, 1). Let G = (V, E) be a network.

A clock synchronization algorithm for G (CSA for G) is an algorithm A that associates a clock

synchronization automaton Ci to each i ∈ V . Ci is a timed I/O automaton with the following

properties.

1. Ci has one continuous state variable Hi, which we call its hardware clock value. Hi has initial

value 0, and is strictly increasing in any trajectory. Ci contains a derived variable Li, that is

defined as a function of its state. We call Li the logical clock value of Ci. We write the values

19

of Hi and Li at time t in an execution α as Hα
i (t) and Lα

i (t), respectively. If there are any

events at time t that change the value of Li, then we define Li(t) to be the value of Li before

any such events. Ci can have an arbitrary number of other state variables.

2. For every m ∈ M and every j ∈ V \{i}, Ci has output action sendi,j(m), and input action

recvj,i(m).

3. Actions of Ci do not modify Hi. In any trajectory of Ci, only Hi may change value. We

assume that the Hi component in every trajectory is continuous and piecewise differentiable,

and that the left derivative always exists4. Given a time t in an execution α, we call the left

derivative of Hi at t the hardware clock rate of Ci at t, and write this as hα
i (t). We assume

that hα
i (t) ∈ [1− ρ, 1 + ρ].

In the sequel, we will always associate a clock synchronization algorithm to a network, and also

associate an individual clock synchronization automaton to a node of the network. Thus, we will

often refer to the clock synchronization automata as nodes.

Intuitively, a clock synchronization algorithm works in the following way. At any instant in

time, each node is allowed to read its hardware clock value. The value that it reads, plus the set of

messages the node has previously received, are encapsulated in the state of the node. Then, based

on its state, the node computes its logical clock value. It is the logical clock values that the nodes

are trying to synchronize. One can judge the “quality” of this synchronization in various ways, and

in Section 2.4, we describe a particular way in which to judge this quality. In addition to computing

its logical clock value, the node also uses its state to decide whether to send some messages to other

nodes. A CSA is nonterminating. That is, the nodes run the above procedure forever, always trying

to synchronize their logical clock values.

2.3.3 Model of the Adversary

While a node can compute the value of its logical clock and decide on messages to send based on

the value of its hardware clock and the set of messages it has received, the node has no control over

the rate at which its hardware clock is advancing, nor over the amount of time its messages take to

arrive at recipient nodes. These quantities are only constrained to lie within certain numeric bounds,

as described in Section 2.3.2. In fact, we think of the particular values taken by these quantities

during the course of an execution as being controlled by an adversary. To prove a lower bound,

we play the role of the adversary. Thus, for every message sent from node Ci to node Cj in graph

G = (V, E), we are allowed to choose an arbitrary delay for this message within [0, di,j]. In addition,

4We assume differentiability for expositional simplicity. The assumption does not limit the generality of our lower
bound, since, as described in the next section, the trajectory of Hi is under the control of the adversary.

20

at every instant of real time, we are allowed to choose an arbitrary value within [1− ρ, 1+ ρ] for the

hardware clock rate of each node Ci.

2.3.4 Properties of Executions

Due to the power of the adversary to control hardware clock rates and message delays, a node may

not be able to distinguish between two different executions. In such cases, the node will exhibit

the same behavior in both executions. This in turn allows us to assert that the node cannot satisfy

certain properties in one of the executions. In this section, we formalize these notions.

Definition 2.3.1 (Similar Executions) Let α = τ0σ1τ1σ2τ2 . . . σnτn and β = τ ′0σ
′
1τ
′
1σ
′
2τ
′
2 . . . σnτ ′n

be two alternating sequences of trajectories and actions of a node C. Assume that τn and τ ′n are

right-closed trajectories. Then we say α and β are similar to C, written as α ∼C β, if β satisfies

the following conditions.

1. For every i ∈ 1..n, we have σi = σ′i.

2. For every i ∈ 0..n, we have τi(0) = τ ′i(0) and τi(`(τi)) = τ ′i(`(τ
′
i)).

Thus, two (A, V)-sequences of C are similar if the initial states of both sequences are the same,

the same sequence of events occur in both sequences, and the values of all variables are the same in

the two sequences, before and after each event. Notice that ∼C is an equivalence relation.

Next, we state an important Indistinguishability Principle for clock synchronization algorithms.

Informally, it says that if an (A, V)-sequence is similar to a prefix of an execution of a CSA from the

point of view of every node, and if the (A, V)-sequence also satisfies certain bounds on its trajectories

and message delays, then the (A, V)-sequence is also an execution of the CSA. Furthermore, there

is an explicit relationship between the logical clock values in the two executions.

Theorem 2.3.2 (Indistinguishability Principle) Let A be a CSA for a network G. Let α be

any execution of A, let β be any alternating sequence of trajectories and actions, and suppose the

following conditions are satisfied:

1. For every i ∈ V , there exists some prefix α′i of α, such that α′idCi ∼ βdCi.

2. For every i ∈ V , in every trajectory of Ci in β, only the Hi components of the trajectory can

change value. In addition, the Hi component of the trajectory is continuous and piecewise

differentiable, the left derivative always exists, and the value of the left derivative lies in [1 −
ρ, 1 + ρ].

3. For every i, j ∈ V , βdchani,j is an execution of chani,j.

Then β is also an execution of A. Furthermore, for any i ∈ V and any t ∈ [0, `(α)], if t′ ∈ [0, `(β)]

is such that Hα
i (t) = Hβ

i (t′), then Lα
i (t) = Lβ

i (t′).

21

The Indistinguishability Principle requires that β satisfy three conditions. First, for any node

Ci, there is some prefix of α whose projection to Ci is similar to the projection of β on Ci. Second,

in any trajectory of Ci in β, all components stay constant, except possibly the Hi component. In

addition, the rate of change (computed from the left) of the Hi component is bounded between

1− ρ and 1 + ρ. Lastly, the projection of β to any channel automaton chani,j gives an execution of

chani,j . In particular, this means any message from Ci to Cj has delay within [0, di,j], only messages

that are sent are delivered, and no messages are duplicated. If β satisfies all three conditions, then

the Indistinguishability Principle states that β is an execution of A. In addition, if t and t′ are two

times such that the hardware clock value at a node Ci at t in α is the same as Ci’s hardware clock

value at t′ in β, then Ci’s logical clock value at t in α is also the same as Ci’s logical clock value at

t′ in β.

In the proof of our lower bound, we will often start with an execution of a clock synchronization

algorithm, then transform the execution into an (A, V)-sequence. We will use the Indistinguishability

Principle to infer that the new (A, V)-sequence is also an execution of the CSA, and also use it to

draw conclusions about the logical clock values in the transformed execution. We now prove the

Indistinguishability Principle.

Proof of Theorem 2.3.2. Let i ∈ V . By assumption 1 of the theorem, we have αdCi ∼ βdCi.

Since α ∈ execs(A), then the state transitions in βdCi are equal to the state transitions in some

execution of Ci. By assumption 2 of the theorem, the trajectories of Hi in βdCi are equal to the

trajectories of Hi in some execution of Ci. Thus, we have that βdCi ∈ execs(Ci). For any i, j ∈ V ,

by assumption 3 of the theorem, we have βdchani,j ∈ execs(chani,j). Thus, using Lemma 5.2.1 of

[18], we have that β ∈ execs(A).

Next, let i ∈ V , and let t ∈ [0, `(α)] and t′ ∈ [0, `(β)] be such that Hα
i (t) = Hβ

i (t′) ≡ H .

Write αdCi = τ0σ1τ1σ2τ2 . . . σnτn and βdCi = τ ′0σ
′
1τ
′
1σ
′
2τ
′
2 . . . σnτ ′n. Recall that a time t is contained

in a trajectory τk if t ∈ [
∑k−1

i=0 `(τi),
∑k

i=0 `(τi)]. Choose the minimum k ∈ [0, n] such that t is

contained in τk. Then τk occurs before any events at time t in αdCi. Let t1 ∈ [0, `(τk)] be such that

τk(t1).Hi = H . Since τ ′k(0) = τk(0) and τ ′k(`(τ ′k)) = τk(`(τk)) by condition 2 of Definition 2.3.1,

there exists t′1 ∈ [0, `(τ ′k)] such that τ ′k(t′1).Hi = H . We have the following.

Claim 2.3.3 τ ′k is the first trajectory among τ ′0, τ
′
1, τ
′
2, . . . , τ

′
n to contain t′.

Proof. Suppose for contradiction that there exists k′ < k such that τ ′k′ contains t′. Since Hβ
i

is increasing, we have τ ′k′ (`(τ ′k′)).Hi ≥ H . Then by condition 2 of Definition 2.3.1, we have

τk′ (`(τk′)).Hi ≥ H . Thus, again by condition 2, and the monotonicity of Hα
i , we have t ≤∑k′

j=0 `(τj),

and t is contained in τk′ . But this contradicts the choice of k as the first trajectory among τ1, . . . , τn

to contain t. 2

22

We have Hβ
i (t′) = τ ′k(t′1).Hi = Hα

i (t) = τk(t1).Hi. Also, by condition 1 of Definition 2.3.1,

the same set of events occur before τk in αdCi, as occur before τ ′k in βdCi, and by condition 2 of

Definition 2.3.1, the same state transition occurs after each event. Thus, we have τk(t1) = τ ′k(t′1).

Since Lα
i (t) is defined as the value of Li before any events at t in αdCi, then by the choice of

τk, we have Lα
i (t) = τk(t1).Li. Also, by Claim 2.3.3, we have Lβ

i (t′) = τ ′k(t′1).Li. Thus, we have

Lα
i (t) = Lβ

i (t′).

�

2.4 Gradient Clock Synchronization

In this section, we formally define the gradient clock synchronization problem. Our lower bound

applies only to clock synchronization algorithms that satisfy a certain validity property, as follows.

Definition 2.4.1 (Validity Property) Let A be a CSA for a network G = (V, E). Then we say

A is valid if for every execution α of A, and for any times t1, t2 ∈ `(α) with t1 ≤ t2, we have

∀i ∈ V : Lα
i (t2)− Lα

i (t1) ≥
1

2
(t2 − t1).

This definition says that a CSA is valid if in every execution, the rate of change of the logical

clock value Li of each node Ci is at least 1
2 , at all times. Note that the value 1

2 was chosen for

expositional simplicity, and can be replaced by an arbitrary positive constant; the lower bound is

linear in the particular constant chosen. One reason for requiring the validity property is that many

algorithms that use clock synchronization require the clocks to not increase too slowly. For example,

in a sensor net application, nodes use their logical clocks to timestamp physical events. Thus, the

rate of change of the logical clocks should be at least some fixed constant, and so any CSA for this

application must satisfy a condition similar to Property 2.4.1, where perhaps the value 1
2 has been

replaced by another constant. Many existing CSAs satisfy our validity property; for example, [35]

and [11] satisfy the property. However, there are also useful CSAs that do not satisfy the property,

e.g., [39] and [24]. Also, the clock synchronization algorithm we present in Chapter 3 does not

satisfy this property. Our lower bound does not directly apply to those algorithms. It may be

possible, however, to state a relaxed version of the validity property capturing the behavior of those

algorithms, and for which a lower bound similar to ours also applies. One possible relaxation is to

require that the average rate of increase of the logical clock of any node is large, over a sufficiently

long period of time.

We now define the gradient property. Let G be a graph, let A be a CSA for G, and let f : R≥0 →
R≥0 be any function. Then we say that A satisfies the f -gradient property if in any execution of A,

the difference between the logical clock value of Ci and Cj , i, j ∈ V , is at most f(di,j). Formally,

23

we have the following.

Definition 2.4.2 (f-Gradient CSA) Let G = (V, E) be a network, let A be a CSA for G, and

let f : R≥0 → R≥0 be any function. Then we say A satisfies the f -gradient property if for every

execution α of A, and for every time t ∈ [0, `(α)], we have

∀i, j ∈ V : |Lα
i (t)− Lα

j (t)| ≤ f(di,j).

We refer to the quantity |Lα
i (t) − Lα

j (t)| as the logical clock skew between nodes Ci and Cj at

time t. Given a CSA A for a network G and a function f , we say that A is an f -GCSA for G if A
satisfies the Validity Property and the f -Gradient Property. The goal of an f -GCSA is to minimize

f .

2.5 A Lower Bound on Gradient Clock Synchronization

In this section, we state a lower bound on the size of f for any f -GCSA. We also give an overview

of the proof of the theorem. We first define the following.

Definition 2.5.1 Let x ∈ R≥1. Then let elog(x) be the unique positive number such that elog(x)elog(x) =

x.

Note that elog(x) = Ω(log x
log log x).

The main result of this chapter is the following theorem.

Theorem 2.5.2 There exists a constant c0, such that for any sufficiently large D, there exists a

graph G with diam(G) = D − 1, such that for any f -GCSA A for G, we have f(d) ≥ c0 · d ·
(logelog(D)

D−1
d + 1) for every d ∈ [1, D − 1].

Theorem 2.5.2 places a lower bound on how well nodes in some network G can synchronize with

each other, as a function of their distance and the size of the network. For example, it says that

f(D − 1) = Ω(D). That is, there is a universal constant c0, such that for sufficiently large D, there

is a graph G with diameter D− 1, such that for any CSA A for G, there exists an execution α of A
such that two nodes at distance D−1 from each other in G have at least c0(D−1) amount of logical

clock skew, in some state of α. More surprisingly, Theorem 2.5.2 states that f(1) = Ω(elog(D)).

This means that for any algorithm A, including one in which all the nodes start with the same

initial logical clock value, we can generate an execution of A in which some two nodes that are only

distance 1 apart have Ω(elog(D)) logical clock skew in the execution. This latter lower bound is

considerably stronger than “traditional” lower bounds on clock synchronization. For example, it is

24

stronger than what is implied by a direct application of scaling technique from [10]5, which would

only show that two nodes that are distance 1 apart have a constant amount of logical clock skew in

some execution.

To prove Theorem 2.5.2, we construct explicit executions in which we adversarially control the

hardware clock rates and message delays of the nodes, then use the Indistinguishability Principle to

infer the amount of logical clock skew in the executions. In the remainder of this section, we give

an informal explanation of how this construction works.

Given a positive integer D, let G be a network consisting of nodes C1, . . . , CD. The distance

between nodes Ci and Cj is |i − j|. We can think of C1, . . . , CD as being laid out on a line, where

“neighboring” nodes Ci and Ci+1, for i ∈ 1..D−1, are distance 1 apart. Thus, we refer to G as a line

network. Let A be any CSA for G. To create an execution of A in which nearby nodes have large

logical clock skew, we begin with an execution α of A in which the hardware clock rates and delays

of messages have specially chosen values. Then we gradually transform α into one with high skew,

using two lemmas. The first lemma, called the Add Skew Lemma (ASL), allows us to increase the

logical clock skew between certain pairs of nodes. The second lemma, called the Bounded Increase

Lemma (BIL), allows us to upper bound how quickly the logical clock skew between nodes can

decrease. We show that by selecting proper sets of nodes, we can make the skew between these

nodes increase faster than it decreases. We will apply the ASL and BIL several times (in fact, up to

O(elog(D)) number of times), to produce a sequence of executions, the last of which contains two

nodes that are close together, but have large logical clock skew. In the next three sections of the

paper, we state and prove the Add Skew Lemma and the Bounded Increase Lemma, then show how

they are combined to prove Theorem 2.5.2.

For the remainder of this paper, fix some positive integer D. Let G be the line network on nodes

C1, . . . , CD as described above, and let A be an f -GCSA for G, for some fixed f .

2.6 Add Skew Lemma

In this section, we state and prove the Add Skew Lemma. This lemma states that given an execution

α of A satisfying certain conditions, there exists another execution β of A such that the logical clock

skew between some nodes in β is larger than their skew in α. Furthermore, β satisfies similar

conditions to those satisfied by α.

5The paper [10] focuses on a different problem than we do. In particular, the paper proves lower bounds on clock
synchronization in the presence of Byzantine processes, and does not consider the gradient property. Nevertheless,
the scaling technique it uses, and the related shifting technique from [27], capture the basic reasoning behind all lower
bounds on clock synchronization, including ours, and thus, is an appropriate point of comparison.

25

Lemma 2.6.1 (Add Skew Lemma) Let i, j be two nodes with 1 ≤ i < j ≤ D. Let

µ =
1

ρ
, γ = 1 +

ρ

4 + ρ
, S ≥ 0, T = S + µ(j − i), T ′ = S +

µ

γ
(j − i).

Let α be an execution of A of duration T , and suppose the following hold:

1. Any message sent between any two nodes k1 and k2 that is received during the time interval

(S, T] in α has delay |k1−k2|
2 .

2. Every node has hardware clock rate 1 during the time interval (S, T] in α. That is, ∀i∀t ∈
(S, T] : hα

i (t) = 1.

Then there exists an execution β of A, of duration T ′, such that the following are true:

1. Lβ
j (T ′)− Lβ

i (T ′) ≥ Lα
j (T)− Lα

i (T) + 1
12 (j − i).

2. α and β are identical in time interval [0, S].

3. Any message sent between any two nodes k1 and k2 that is received during time interval (S, T ′]

in β has delay within [|k1−k2|
4 , 3|k1−k2|

4].

4. The hardware clock rate of any node k in time interval (S, T ′] in β is within [1, γ].

Intuitively speaking, α is a “flexible” execution. In particular, during the suffix of α in the time

interval (S, T ′], the message delay for any pair of nodes is always half-way between the minimum

and maximum possible message delay between those nodes. Also, the hardware clock rate of every

node is half-way between the minimum and maximum possible hardware clock rates for that node.

The Add Skew Lemma says that whatever the difference is in the logical clock values between j and

i at the end of α, we can construct another execution β of A in which this difference is increased by

j−i
12 . β’s duration is slightly shorter than that of α, and α and β are identical up to time S. Finally,

β is itself somewhat flexible. In particular, during the suffix of β in the time interval (S, T ′], the

message delays between nodes are between one quarter to three quarters of the maximum possible

message delay, and the hardware clock rate of every node is between 1 and γ < 1 + ρ
4 .

Proof. The basic idea is to make β a nonuniformly “scaled” version of α. To informally describe

this construction, consider a special case of the lemma where D = 2. Thus, i = 1 and j = 2. Nodes

1 and 2 behave identically in α and β up to time S. Starting from time S, we speed up node 2’s

hardware clock rate to γ, but keep node 1’s hardware clock rate at 1. An event σ at node 2 that

occurs at real time t > S in α will occur earlier in β, while another event σ′ at node 1 will occur

at the same real time in α and β. However, we want to make α and β still “look the same” to

nodes 1 and 2. To this end, if σ is a send event and σ′ is the corresponding receive event, then we

increase the delay of the message, so that σ′ occurs at the same hardware clock value at node 1

26

in both α and β. If σ′ is a send and σ is the corresponding receive, then we decrease the delay of

the message, so that σ occurs at the same hardware clock value at node 2 in α and β. With the

appropriate increases and decreases in message delays, neither node 1 nor 2, using its own view of

the execution, namely, the sequence of messages that it received, and its hardware clock values at

the times it received those messages, can tell the difference between executions α and β. Finally,

since events at node 2 occur earlier in β than they do in α, we can compute that using the values

for the variables chosen by the lemma, node 2 will have 1
12 greater logical clock skew with node 1 at

the end of β, than at the end of α.

To generalize the construction above to an arbitrary D, consider Figure 2-1. The figure indicates

that we make α and β identical up to time S. Starting from S, we speed up the hardware clock rates

of certain nodes to γ, beginning with nodes j through D. Starting from some suitably defined times

Tk, for i < k < j, we also speed up node k’s hardware clock rate to γ. We maintain this speedup

until time T ′. In addition, we change the message delays between nodes so that any message received

at a node k′ when Hk′ is H in α, is also received by k′ when Hk′ is H in β, for all k′ ∈ 1..D. As

a result, no node can tell the difference between α and β, and hence all the nodes behave the same

way in both executions. Because of this, we can use the Indistinguishability Principle to argue that

β increases the logical clock skew between i and j.

The nature of this construction indicates the reason for the assumptions of the lemma. In

particular, α needs enough “flexibility” so that the hardware clock rates and message delays can be

adjusted as required in β. In some sense, the suffix of α in the time interval (S, T] is the most flexible

execution fragment possible. That is, since all message delays and hardware clock rates during this

fragment are halfway between their minimum and maximum possible values, this fragment allows

the greatest amount of distortion.

We now formally define β. The events in β are a (possibly proper) subset of the events of α.

Thus, an event σ occurs in β only if σ occurs in α. β is defined in the following way. First, we

take events from α, and give the real times at which those events occur in β. We also specify the

trajectories in β. Next, we specify what changes occur to the state in β after each event in β. Note

that this latter step is needed to ensure that β resolves nondeterministic choices in changes to the

state in the same way α does. Below, we first give the time mapping from events and trajectories

of α to events and trajectories of β. Then, we describe how the state changes after events in β.

Mapping of Events and Trajectories for β

We first describe the event mapping. Recall that the duration of α is T . We want to make the

duration of β be T ′ = S + µ
γ (j − i). Thus, if some event σ in α maps to a real time greater than

T ′ in β, we do not include σ in β. So, the events in β are precisely the events of α that map to the

time interval [0, T ′].

27

First, for 1 ≤ k ≤ D, we define Tk. Tk will be the time starting from which we speed up node k

in β.

Tk =







T ′ if 1 ≤ k ≤ i,

S + µ
γ (j − k) if i < k < j,

S if j ≤ k ≤ D.

Note that for nodes k1 < k2, we have 0 ≤ Tk1 −Tk2 ≤ µ
γ (k2− k1), and Tk1 −Tk2 = µ

γ (k2− k1) if and

only if i ≤ k1 ≤ k2 ≤ j.

For each event σ that occurs in α, let κ(σ) be the node at which σ occurs. Recall that Tα(σ)

is the time at which σ occurs in α. Let R(σ) = 1
γ (Tα(σ) − Tκ(σ)). That is, R(σ) is 1

γ times the

difference between when σ occurs in α, and the time when node k is sped up in β, where k is the

node at which σ occurs. Define the time when σ occurs in β by

Tβ(σ) =







Tα(σ) if Tα(σ) ∈ [0, Tκ(σ)],

Tκ(σ) + R(σ) if Tα(σ) ∈ (Tκ(σ), T] and Tκ(σ) + R(σ) ≤ T ′,

undefined otherwise.

Note that the above definition does not include an event σ of α in β if σ does not map to a time

within [0, T ′]. If several events occur at the same real time, we order them in the same order as they

occur in α. As we show later, the value of Tβ(σ) ensures that σ occurs at the same hardware clock

value at node κ(σ) in α and β.

Now, we define the trajectory mapping for β. Recall that in any trajectory of α, the only

components of the state that may change values are the Hk components, for k ∈ 1..D. The same is

true for any trajectory in β. The rate of change of the Hk component at time t in β is given by the

function hβ
k (t), defined as follows.

hβ
k(t) =







hα
k (t) if t ∈ [0, S],

1 if t ∈ (S, Tk],

γ if t ∈ (Tk, T ′].

The hardware clock rates of the nodes in β are shown in Figure 2-1. The hardware clock value

Hβ
k (t) equals

∫ t

0 hβ
k (t)dt.

Mapping of State Changes for β

We now describe the state changes that occur in β following each event in β. Let σ be an event that

occurs in α and β. Notice that this event can be associated with at most two automata, namely, a

node and a channel automaton. Indeed, the only types of events in α are those that affect only the

node, or the sending or receiving of a message by a node, which affects the node and the channel

that is sending or delivering the message. Let C be the node associated with σ, and let c be the

28

T ′

time

1

S T

. . .

. . .

. . .

τ
γ
(j − i)

j − 2

j − 1

j

D

i + 1

i

τ
γ

τ
γ

τ
γ

τ
γ

nodes

Tj−2

Tj−1

Tj

TD

Ti+1

Ti

T1

Figure 2-1: The hardware clock rates of nodes 1, . . . , D in execution β. Thick lines represents the
time interval during which a node has hardware clock rate γ. Node k + 1 runs at rate γ for µ

γ time
longer than node k, for k = i, . . . , j − 1.

channel associated with σ, where c is possibly null, if σ is not a send or receive event. Let s be the

state in α after σ, and let s.C and s.c be the components of s at C and c, respectively. Now, we

simply set the state of C and c after σ in β to be s.C and s.c, respectively. The state of every node

and channel besides C and c does not change after σ in β.

Proving β Satisfies the Add Skew Lemma

The β constructed above is defined in terms of the real time occurrences of trajectories and events,

as well as state changes. Clearly one can write β in a “normal form” as an alternating sequence

of trajectories and events. The following claims show that β satisfies the assumptions of the Indis-

tinguishability Principle. Using this, we show that β is an execution of A, and satisfies the four

conditions of Lemma 2.6.1.

Claim 2.6.2 For any k ∈ 1..D, there exists a prefix α′k of α such that α′kdCk ∼ βdCk.

Proof. Fix any k ∈ 1..D. We first define the prefix α′k. We define

tk =







T ′ if 1 ≤ k ≤ i,

T − µ(1− 1
γ)(j − k) if i + 1 ≤ k ≤ j,

T if j + 1 ≤ k ≤ D.

Let α′k be the prefix of α consisting of all events and trajectories up to and including time tk.

To show that α′kdCk ∼ βdCk, we need to show that α′kdCk and βdCk contain the same set of

events, in the same order, and that the state before and after each event is the same in α′kdCk and

29

βdCk.

We first show that α′kdCk and βdCk contain the same set of events. Let σ be an event at node Ck

in α′k. We show that σ also occurs in β, by computing Tβ(σ), the time to which event σ is mapped.

We consider three cases, either j + 1 ≤ k ≤ D, 1 ≤ k ≤ i, or i + 1 ≤ k ≤ j.

1. If j + 1 ≤ k ≤ D, then we have

Tβ(σ) ≤ Tk +
1

γ
(Tα(σ) − Tk)

≤ S +
1

γ
(T − S)

= T ′.

Here, the second inequality follows because Tk = S, and Tα(σ) ≤ tk = T .

2. If 1 ≤ k ≤ i, then we have Tβ(σ) ≤ Tk = T ′.

3. Finally, if i + 1 ≤ k ≤ j, then we have

Tβ(σ) ≤ Tk +
1

γ
(Tα(σ) − Tk)

= S +
µ

γ
(j − k) +

1

γ

(

T − µ(j − k) +
µ

γ
(j − k)− S − µ

γ
(j − k)

)

= S +
µ

γ
(j − k) +

1

γ
(T − µ(j − k)− S)

= S +
µ

γ
(j − k) +

1

γ
(T − S)− µ

γ
(j − k)

= S +
1

γ
(T − S)

= S +
µ

γ
(j − i)

= T ′.

Here, the first equality follows because Tα(σ) ≤ tk = T −µ(1− 1
γ)(j−k) and Tk = S+ µ

γ (j−k),

and the remaining equalities follow by simplification. Thus, in all three cases, we see that σ

occurs at time at most T ′ under the mapping Tβ(σ). Since β includes all the events of α

mapping to time at most T ′, we have that σ occurs in β.

Next, we show that events in α′kdCk and βdCk occur in the same order. Let σ1 and σ2 be

two events at Ck in α′k, such that Tα′
k
(σ1) = Tα(σ1) ≤ Tα′

k
(σ2) = Tα(σ2). By the definition of β, if

Tα(σ1) = Tα(σ2), then σ1 and σ2 are ordered the same way in β as they are in α′k. If Tα(σ1) < Tα(σ2),

then, referring to the definition of Tβ(σ), we see that Tβ(σ1) < Tβ(σ2). Thus, events of Ck occur in

the same order in α′k and β.

30

Lastly, we show that the states before and after each event of Ck is the same in α′k and β. Let

σ be an event at Ck that occurs in α′k and β. Then, σ also occurs in α. Recall that β was defined

so that the state change after σ in β is the same as the state change after σ in α. Hence, the values

of all variables are same after σ in α and β. Since trajectories of α and β do not change the values

of variables, then the values of all variables are also the same before σ in α and β.

Now, the event σ does not change the value of the continuous variable Hk. Thus, we need to

check that the value of Hk before σ is the same in α and β. Note that this also implies that the

value of Hk after σ is the same in α and β, since σ does not change Hk. Suppose σ occurs when Hk

has value H . Then we show Hk is also H when σ occurs in β. For brevity, let t0 = Tα(σ). Consider

three cases, either t0 ∈ [0, S], t0 ∈ (S, Tk], or t0 ∈ (Tk, T].

1. If t0 ∈ [0, S], then σ occurs at time t0 in β. Since hα
k (t) = hβ

k (t) for all t ∈ [0, S], we have

Hα
k (t0) = Hβ

k (t0). Thus, the hardware clock at k when σ occurs is the same in α and β.

2. If t0 ∈ (S, Tk], then again, σ occurs at time t0 in β. Since hα
k (t) = 1 for all t ∈ (S, T], and

hβ
k(t) = 1 for all t ∈ (S, Tk], we have Hα

k (t0) = Hα
k (S) + t0 − S = Hβ

k (S) + t0 − S = Hβ
k (t0).

3. Finally, if t0 ∈ (Tk, T], then σ occurs at time Tβ(σ) = Tk + 1
γ (t0 − Tk) in β. We have

Hβ
k (Tβ(σ)) = Hα

k (S) + Tk − S + γ(T β
k (σ)− Tk)

= Hα
k (S) + Tk − S + γ(Tk +

1

γ
(t0 − Tk)− Tk)

= Hα
k (S) + Tk − S + t0 − Tk

= Hα
k (S) + t0 − S

= Hα
k (t0).

Here, the first equality follows by considering the rate of change of Hα
k (t) for t in the intervals

[0, S], (S, Tk], and (Tk, Tβ(σ)], which are 1, 1, and γ, respectively. Thus, we have that for any

t0 ∈ [0, T], node k has the same hardware clock value when σ occurs in α or β.

By combining the earlier paragraphs, we get that α′kdCk ∼ βdCk. 2

Claim 2.6.3 The hardware clock rate of every node in time interval (S, T ′] in β is within [1, γ].

This claim can be verified by inspection of the construction of β.

Before stating the next claim, we collect several useful calculations, each of which is simple to

verify.

Fact 2.6.4 We have the following.

1. 0 ≤ 1− 1
γ = ρ

4+2ρ ≤ γ − 1 = ρ
4+ρ for all ρ ∈ (0, 1).

31

2. 1− 1
γ ≤ 1

6 for all ρ ∈ (0, 1).

3. µ(1− 1
γ) = 1

4+2ρ ∈ (1
6 , 1

4) for all ρ ∈ (0, 1).

4. µ
γ = 4+ρ

4ρ+2ρ2 ≥ 1
2 for all ρ ∈ (0, 1).

5. 0 ≤ Tk1 − Tk2 ≤ µ
γ (k2 − k1), for 1 ≤ k1 ≤ k2 ≤ D.

Claim 2.6.5 Let σ be a receive event in β. Then there is a send event corresponding to σ that is

also in β.

Proof. Let σ2 be a receive event in β. Then σ2 also occurs in α. Since α is an execution of A,

every receive event in α has a corresponding send event. Let σ1 be the corresponding send event to

σ2 in α. Let k1 be the node performing σ1, and k2 be the node performing σ2.

If σ2 occurred in α in the time interval [0, S], then σ1 also occurs in α in the time interval [0, S].

Since α and β are identical during [0, S], then σ1 occurs in β during [0, S], and the claim is proved.

Suppose now that σ2 occurs in α2 in the time interval (S, T]. Then the delay of the message

corresponding to σ2 is |k1−k2|
2 . Thus,

Tα(σ2)− Tα(σ1) =
|k1 − k2|

2
.

For k ∈ 1..D, define the following.

tk =







T ′ if 1 ≤ k ≤ i,

T − µ(1− 1
γ)(j − k) if i + 1 ≤ k ≤ j,

T if j + 1 ≤ k ≤ D.

The proof of Claim 2.6.2 showed that for any k, β contains all the events at Ck in the prefix of

α up to time tk. Thus, since σ2 occurs in β, we have that Tα(σ2) ≤ tk2 . We want to show that

Tα(σ1) ≤ tk1 , which implies that σ1 also occurs in β. We consider two cases, either k1 > k2, or

k1 < k2

1. If k1 > k2, then we have tk1 > tk2 . Thus, since Tα(σ2) ≤ tk2 , we have

Tα(σ1) < Tα(σ2) ≤ tk2 < tk1 .

2. If k1 < k2, then we can easily check that

tk2 − tk1 ≤ (k2 − k1)µ(1 − 1

γ
)

≤ 1

4
(k2 − k1).

32

The second inequality follows from Fact 2.6.4. Thus, since Tα(σ2) ≤ tk2 , we have

Tα(σ1) ≤ tk2 −
k2 − k1

2

< tk2 −
k2 − k1

4

≤ tk1 .

Thus, in both cases, we have Tα(σ1) ≤ tk1 . So, σ1 occurs in β, and the claim is proved. 2

Claim 2.6.6 Let σ be a send event in β. Then σ has at most one corresponding receive event in β.

Proof. Since σ occurs in β, it also occurs in α. Since α is an execution of A, σ has at most one

corresponding receive event in α. Since the events of β are a subset of the events in α, then σ also

has at most one corresponding receive event in β. 2

Claim 2.6.7 Any message sent between any pair of nodes k1 and k2 that is received during time

interval (S, T ′] in β has delay within [|k1−k2|
4 , 3|k1−k2|

4].

Proof. Consider a receive event σ2 occurring at a time in (S, T ′] of β. Then by Claim 2.6.5, there

is a corresponding send event σ1 occurring in β. Since the events in β are a subset of the events in

α, σ1 and σ2 also occur in α. Also, since α and β are identical up to time S, then σ2 occurs in the

time interval (S, T] in α. Let sα = Tα(σ1), tα = Tα(σ2), sβ = Tβ(σ1), and tβ = Tβ(σ2) be the real

times of the occurrences of σ1 and σ2 in α and β. Since σ2 occurs in (S, T] in α, we have, by the

first assumption of the Add Skew Lemma, that the delay of the message corresponding to σ2 is

tα − sα =
|k2 − k1|

2
.

We want to bound tβ − sβ . We consider two cases: either the message was sent from a higher

indexed node to a lower indexed node, or vice versa.

Messages From Higher to Lower Nodes

In the case when a higher indexed node sends to a lower indexed node, let k2 be the sending node,

and k1 < k2 be the receiving node. We have tα − sα = k2−k1

2 . Define r1 = max(tα − Tk1 , 0), r2 =

max(sα − Tk2 , 0). We claim that sβ = sα − r2(1 − 1
γ). Indeed, if r2 = 0, then sα ≤ Tk2 , so by the

definition of Tβ(·), we have sβ = sα = sα−r2(1− 1
γ). If r2 > 0, then we have sβ = Tk2 + 1

γ (sα−Tk2) =

sα + (Tk2 − sα)− 1
γ (Tk2 − sα) = sα− r2(1− 1

γ). Similarly, we have tβ = tα− r1(1− 1
γ). Subtracting,

we get

tβ − sβ = tα − sα + (r2 − r1)(1−
1

γ
).

33

To bound tβ − sβ, we bound r2 − r1. We first show that r2 − r1 ≤ µ
γ (k2 − k1). If r2 = 0, then

since r1 ≥ 0, the bound holds. Next, suppose r2 > 0. Then

r2 − r1 = sα − Tk2 −max(tα − Tk1 , 0)

≤ sα − Tk2 − (tα − Tk1)

= Tk1 − Tk2 + sα − tα

≤ µ

γ
(k2 − k1)−

k2 − k1

2

≤ µ

γ
(k2 − k1).

Thus, we have

tβ − sβ = tα − sα + (r2 − r1)(1−
1

γ
)

≤ tα − sα + (r2 − r1)(γ − 1)

≤ k2 − k1

2
+

µ

γ
(γ − 1)(k2 − k1)

=
k2 − k1

2
+

1/ρ

1 + ρ
4+ρ

ρ

4 + ρ
(k2 − k1)

= (k2 − k1)

(
1

2
+

1

4 + 2ρ

)

≤ 3(k2 − k1)/4.

Thus, a message from k2 to k1 has delay at most 3(k2−k1)
4 .

Next, we show that r2 − r1 ≥ −k2−k1

2 . Indeed, we have

r2 − r1 = max(sα − Tk2 , 0)−max(tα − Tk1 , 0)

≥ max(sα − Tk2 , 0)−max(tα − Tk2 , 0)

≥ sα − tα

= −k2 − k1

2
.

Here, the first inequality follows because Tk2 ≤ Tk1 , and the second inequality follows because

sα < tα. Thus, we have

tβ − sβ = tα − sα + (r2 − r1)(1 −
1

γ
)

≥ k2 − k1

2
− k2 − k1

2
(1− 1

γ
)

≥ k2 − k1

2
− k2 − k1

2

1

6

≥ k2 − k1

4
.

34

k1

k1

k2

k2

Execution α

Execution β

Tk2 Tk1

r2

σ1

σ2

σ1

σ2

sβ

tβ

tα

sαr1

Figure 2-2: Node k1 sends a message to node k2 > k1. The delay of the message is k2−k1

2 in execution

α, and is within [k2−k1

4 , 3(k2−k1)
4] in execution β. Note that the hardware clocks of nodes k1 and k2

are running at rate γ during the time interval represented by the thick lines.

The second inequality follows because 0 ≤ 1 − 1
γ ≤ 1

6 . Thus, we have shown that all message

delays from node k2 to k1 < k2 are within [k2−k1

4 , 3(k2−k1)
4].

Messages From Lower to Higher Nodes

Next, we consider the case when a node k1 sends to a node k2 > k1. Define r1 = max(sα−Tk1 , 0), r2 =

max(tα − Tk2 , 0). Please see Figure 2-2 illustrating one of the cases we will consider. We have

sβ = sα − r1(1 − 1
γ). Indeed, if r1 = 0, then sα ≤ Tk1 , and so sβ = sα = sα − r1(1 − 1

γ). If r1 > 0,

then sβ = Tk1 + 1
γ (sα − Tk1) = sα − r1(1 − 1

γ). Similarly, we have tβ = tα − r2(1 − 1
γ). Thus,

tβ − sβ = tα − sα + (r1 − r2)(1 − 1
γ). We bound tβ − sβ by bounding r1 − r2.

We first show that r1 − r2 ≥ −(k2 − k1)(
1
2 + µ

γ). If r1 = r2 = 0, this holds. Next, suppose

r2 > 0, r1 = 0. Then by the definition of r1, we have sα ≤ Tk1 . Since tα = sα + k2−k1

2 , we get

tα ≤ Tk1 + k2−k1

2 . Thus, r2 = tα−Tk2 ≤ k2−k1

2 +Tk1 −Tk2 ≤ (k2− k1)(
1
2 + µ

γ), and the bound again

holds.

If r1 > 0, r2 > 0, then we have

r1 − r2 = sα − Tk1 − (tα − Tk2)

= sα − tα − (Tk1 − Tk2)

≥ −k2 − k1

2
− µ

γ
(k2 − k1)

= −(k2 − k1)(
1

2
+

µ

γ
).

Lastly, the case r2 = 0, r1 > 0 cannot occur, since we have Tk2 ≤ Tk1 , so that r1 > 0 implies

that sα > Tk1 , which implies that tα > sα > Tk2 and r2 > 0. Thus, we see that in all cases,

35

r1 − r2 ≥ −(k2 − k1)(
1
2 + µ

γ). Then, we get that

tβ − sβ ≥
k2 − k1

2
− (k2 − k1)(

µ

γ
+

1

2
)(1 − 1

γ
).

We have

(
µ

γ
+

1

2
)(1 − 1

γ
) ≤ µ

γ
(γ − 1) +

1

2
(1− 1

γ
)

=
1/ρ

1 + ρ
4+ρ

ρ

4 + ρ
+

1

2
(1− 4 + ρ

4 + 2ρ
)

=
1

4 + 2ρ
+

ρ/2

4 + 2ρ

=
1

4
.

Here, the first inequality follows from the fact that 1 − 1
γ ≤ γ − 1. Thus, we have tβ − sβ ≥

k2−k1

2 − (k2 − k1)
1
4 ≥ k2−k1

4 .

Next, we show r1 − r2 < 0. We have r1 − r2 = max(sα − Tk1 , 0) − max(tα − Tk2 , 0). Since

sα < tα, and Tk2 ≤ Tk1 , we have sα − Tk1 < tα − Tk2 . Thus, max(sα − Tk1 , 0) ≤ max(tα − Tk2 , 0),

and r1 − r2 ≤ 0. Then, we have, tβ − sβ = tα − sα + (r1 − r2)(1 − 1
γ) ≤ tα − sα = k2−k1

2 .

We have shown that all messages sent from a node k1 to node k2 > k1 have delay within

[k2−k1

4 , k2−k1

2]. Combined with the earlier paragraphs, this shows that all messages received in time

interval (S, T ′] of β have delays within [|k2−k1|
4 , 3|k2−k1|

4]. 2

Claim 2.6.7 bounds the delays of messages received during (S, T ′] of β. If a message between k1

and k2 is received during time interval [0, S] of β, then since α and β are identical up to time S, it

has the same message delay in α and β. In particular, since α is an execution, the message must

have delay within [0, |k1 − k2|]. Thus, we have the following.

Corollary 2.6.8 Any message sent between any nodes k1 and k2 that is received in β has delay

within [0, |k1 − k2|].

Claim 2.6.9 β is an execution of A.

Proof. Let k ∈ 1..D be arbitrary. Claim 2.6.2 shows that βdCk is similar to a prefix of α projected

onto Ci. Claim 2.6.3 shows that the hardware clock rates of all nodes are within [1, 1+ρ] in β. Claim

2.6.5, Claim 2.6.6, and Corollary 2.6.8 together show that βdchank1,k2 is an execution of chank1,k2

for every k1, k2 ∈ 1..D. Thus, since α is an execution of A, by Theorem 2.3.2, so is β. 2

Finally, we show that β increases the skew between nodes j and i by j−i
12 compared to α.

Claim 2.6.10 Lβ
j (T ′)− Lβ

i (T ′) ≥ Lα
j (T)− Lα

i (T) + 1
12 (j − i).

36

Proof. From the definition of hβ
j and hα

j , we have

Hβ
j (T ′) = Hβ

j (S) + γ(T ′ − S)

= Hα
j (S) + γ(T ′ − S)

= Hα
j (S) + µ(j − i)

= Hα
j (S) + T − S

= Hα
j (T).

Thus, by Theorem 2.3.2, we have

Lβ
j (T ′) = Lα

j (T).

Also, we have Hβ
i (T ′) = Hα

i (T ′), and so Lβ
i (T ′) = Lα

i (T ′). By the Validity Property of A, we

have that Lα
i (T)− Lα

i (T ′) ≥ 1
2 (T − T ′). Thus, we get

Lβ
i (T ′) = Lα

i (T ′) ≤ Lα
i (T)− 1

2
(T − T ′).

Thus, subtracting, we get

Lβ
j (T ′)− Lβ

i (T ′) ≥ Lα
j (T)− Lα

i (T) +
1

2
(T − T ′). (2.1)

We compute

T − T ′ = (S + µ(j − i))− (S +
µ

γ
(j − i))

= µ(1− 1

γ
)(j − i)

=
1

ρ
(1− 4 + ρ

4 + 2ρ
)(j − i)

=
1

4 + 2ρ
(j − i)

≥ 1

6
(j − i).

The last inequality follows because ρ < 1. Plugging this into equation (2.1), the claim follows. 2

Combining Claims 2.6.3, 2.6.7 and 2.6.10, we have proven Lemma 2.6.1. �

37

2.7 Bounded Increase Lemma

In this section, we present the Bounded Increase Lemma. Recall that A is an f -CSA for the line

network G, where f is some fixed function. f(1) is an upper bound on the logical clock skew between

two neighboring nodes in G. In Section 2.6, we described a flexible execution as one in which all

message delays and hardware clock rates are bounded away from their minimum and maximum

possible values. The Bounded Increase Lemma states that in a sufficiently flexible execution, no

node can increase its logical clock by more than 16f(1) in any unit of real time.

Lemma 2.7.1 (Bounded Increase Lemma) Let α be an execution of A of duration at least µ =

1
ρ , and let i be any node. Suppose that the following hold:

1. Every node has hardware clock rate within [1, 1 + ρ
2] at all times in α.

2. Any message sent between i and any node j that is received in α has delay within [|i−j|
4 , 3|i−j|

4].

Then, for any t ≥ µ, we have Lα
i (t + 1)− Lα

i (t) ≤ 16f(1).

Proof. The proof is by contradiction. We first describe the proof idea. Assume that in α, some

node i increases its logical clock very quickly, by more than 16f(1) in one unit of real time. Since α

is flexible, we can distort α to another execution β, so such that i’s hardware clock is 1
8 higher in β

than in α. This implies that there is some time in β at which i’s logical clock is 1
8 · 16f(1) = 2f(1)

higher than it is in α. Then, in either α or β (or both), i has more than f(1) logical clock skew

with respect to one of its neighbors. Since this violates the f -Gradient Property of A, we have a

contradiction.

Formally, let j be a neighbor of i. That is, j is a node such that di,j = 1. Suppose for contradiction

that there exists t∗ ≥ µ such that Lα
i (t∗ + 1) − Lα

i (t∗) > 16f(1). Then by an averaging argument,

there exists t0 ∈ [t∗, t∗ + 7
8] such that Lα

i (t0 + 1
8)− Lα

i (t0) > 2f(1). We now define an execution β,

of duration t0.

Trajectories in β

We first define the trajectories in β. Recall that the only variables that can change their values in

any trajectory are the hardware clock values. We define

µ0 = 4µ(Hα
i (t0 +

1

8
)−Hα

i (t0)).

Claim 2.7.2 µ0 ≤ µ.

38

Proof. Since the hardware clock rate of any node is within [1, 1 + ρ
2] during α, we have

µ0 = 4µ(Hα
i (t0 +

1

8
)−Hα

i (t0))

≤ 4µ
1

8
(1 +

ρ

2
)

≤ µ

2

3

2

≤ µ.

The first inequality follows because the rate of change of Hi is at most 1 + ρ
2 in α. 2

Now, define the hardware clock rates in β as follows.

hβ
k (t) =







hα
k (t) if k 6= i,

hα
i (t) if k = i and t ≤ t0 − µ0,

hα
i (t) + ρ

4 if k = i and t ∈ (t0 − µ0, t0].

Thus, the hardware clock rates of all nodes besides i are the same in α and β, at all times. The

hardware clock rate of i at time t is the same in β as in α if t ≤ t0 − µ0, and is ρ
4 more in β than it

is in α if t ∈ (t0 − µ0, t0]. Note that t0 − µ0 ≥ 0, since t0 ≥ t∗ ≥ µ ≥ µ0, where the last inequality

follows by Claim 2.7.2.

Events and State Changes in β

In this section, we describe the events in β, and the real times at which they occur. The goal is to

place the events in β so that β is similar to some prefix of α, from the point of view of any node.

Recall that the duration of β is t0, and the hardware clock rate of any node other than i is the same

in α and β.

Let k 6= i be a node. We define the events that occur at k in β to be the set of events that occur

in α during the time interval [0, t0]. Let σ be an event in α occurring during time [0, t0]. Then we

set Tβ(σ) = Tα(σ). That is, σ occurs at the same real time in α and β. If several events of α occur

at the same real time, we order them them the same way in β as they are ordered in α.

Next, we define the events that occur at node i in β. This consists of the set of events that occur

at i in α during the time interval [0, t0 + 1
8]. Let σ be such an event. Then we (implicitly) define

Tβ(σ) so that it satisfies

Hβ
i (Tβ(σ)) = Hα

i (Tα(σ)).

That is, σ occurs in β at a time when i’s hardware clock value in β is the same as its hardware clock

value in α, when σ occurred in α.

Lastly, we describe the state changes in β. Every event can be associated with at most two

automata, namely, a node and a channel automaton. Let σ be a event in α, and let C and c be the

39

node and channel automaton associated with σ (c may be null). Let s.C and s.c be the states of C

and c after σ in α. Then we set the state of C and c to be s.C and s.c, respectively, after σ in β.

The state of any automaton other than C or c does not change after σ in β.

Properties of β

Claim 2.7.3 For any k ∈ 1..D, there exists a prefix α′k of α such that α′kdCk ∼ βdCk.

Proof. Suppose k 6= i. Then we define α′k to be the prefix of α including all events occurring

during the time interval [0, t0]. We need to check that α′kdCk and βdCk contain the same sequence

of events, and the state of Ck is the same before and after each event. Both of these are obvious

from the definition of β.

For k = i, we define α′i to be the prefix of α consisting of all events that occur during the time

interval [0, t0+ 1
8]. By definition, these events occur in the same order in α′1 and β. Also by definition,

the values of all variables are the same before and after any event in α′1. Lastly, we check that the

values of the continuous variable Hi is the same before (and hence also after) each σ. Indeed, when

σ occurs in β, we have Hβ
i (Tβ(σ)) = Hα

i (Tα(σ)), by the definition of Tβ(σ). Thus, α′idCi ∼ βdCi.

2

Claim 2.7.4 The hardware clock rate of every node is within [1, 1 + ρ] during β.

Proof. Let k 6= i be a node. Then the claim holds for k, because k has the same hardware clock

rate in α and β, and k’s hardware clock rate in α is within [1, 1 + ρ
2]. The claim also holds for node

i, because i’s hardware clock rate in β is at most its hardware clock rate in α plus ρ
4 , and hence, at

most 1 + 3
4ρ. 2

By definition, any event in β at a node other than i occurs at the same real time in α and β.

The next claim shows that any event in β at i occurs at approximately the same time in α and β.

Claim 2.7.5 Let σ be any event in β occurring at node i. Then we have Tβ(σ) ≤ Tα(σ) ≤ Tβ(σ)+ 1
4 .

Proof. For any node k, and for any t ∈ [0, t0], we have hβ
k(t) ≥ hα

k (t), and so Hβ
k (t) ≥ Hα

k (t). Let σ

be any event in β. Since Tβ(σ) is defined so that Hβ
i (Tβ(σ)) = Hα

i (Tα(σ)), we have Tβ(σ) ≤ Tα(σ).

For the second inequality, consider first the case when Tβ(σ) ≤ t0 − µ0. Then Tβ(σ) = Tα(σ) by

definition, and the claim holds.

Next, suppose Tβ(σ) ∈ (t0 − µ0, t0]. Since the hardware clock rate of i is hα
i (t) + ρ

4 for any

t ∈ (t0 − µ0, t0], then we have

Hβ
i (Tβ(σ)) = Hα

i (Tβ(σ)) +
ρ

4
(Tβ(σ)− (t0 − µ0)).

40

Since the hardware clock rate of i is at least 1 during the time interval (t0 − µ0, t0] in α, then we

have

Hα
i

(
Tβ(σ) +

ρ

4
(Tβ(σ)− (t0 − µ0))

)
≥ Hα

i (Tβ(σ)) +
ρ

4
(Tβ(σ) − (t0 − µ0)).

That is, by real time Tβ(σ)+ ρ
4 (Tβ(σ)−(t0−µ0)), node i’s hardware clock in α is at least Hβ

i (Tβ(σ)).

Then, since Tβ(σ) is defined so that Hβ
i (Tβ(σ)) = Hα

i (Tα(σ)), we have Tα(σ) ≤ Tβ(σ) + ρ
4 (Tβ(σ)−

(t0 − µ0)). We have

ρ

4
(Tβ(σ)− (t0 − µ0)) ≤ ρ

4
µ0

=
ρ

4
4µ(Hα

i (t0 +
1

8
)−Hα

i (t0))

≤ 1

8
(1 +

ρ

2
)

≤ 1

4
.

Thus, Tα(σ) ≤ Tβ(σ) + 1
4 , and the claim is proved. 2

Claim 2.7.6 Let σ be a receive event in β. Then there is a send event corresponding to σ that is

also in β.

Proof. Let σ2 be a receive event in β, and let σ1 be the corresponding send event in α. We show

that σ1 is also in β. Let k1 and k2 be the nodes performing σ1 and σ2, respectively. Consider three

cases, either k1 and k2 are both not equal to i, or k1 = i, or k2 = i.

1. In the first case, the proof of Claim 2.7.3 showed that the events at k1 in β is equal to the

events at k1 in α in the time interval [0, t0], and the same is true about k2. Thus, since σ2

occurs in β, we have Tα(σ2) ≤ t0. Then, Tα(σ1) < t0, and so Tβ(σ1) < t0, and so σ2 occurs in

β.

2. In the second case, the proof of Claim 2.7.3 showed that the events at i is equal to the events

at i in α in the time interval [0, t0 + 1
8]. We have Tβ(σ1) ≤ Tα(σ1) ≤ Tα(σ2) ≤ t0, where the

first inequality follows by Claim 2.7.5. Thus, σ1 occurs in β.

3. In the final case, we have Tα(σ2) ≤ t0 + 1
8 . Also, Tα(σ1) ≤ t0 + 1

8 −
|k1−i|

4 ≤ t0, by the

assumption about message delay in α. Thus, since the events at k1 in β are the set of events

in α in the time interval [0, t0], we have that σ1 occurs in β.

2

Claim 2.7.7 Let σ be a send event in β. Then σ has at most one corresponding receive event in β.

Proof. This follows because the events in β are a subset of the events in α, and σ has at most

one corresponding receive event in α. 2

41

Claim 2.7.8 Any message between any nodes k1 and k2 that is received in β has delay within

[0, |k1 − k2|].

Proof. First, suppose that neither k1 nor k2 equals i. Then, since any event occurs at the same

time at k1 and k2 in α and β, the delay of any message between k1 and k2 is the same in α and β,

and in particular, is within [|k1−k2|
4 , 3|k1−k2|

4].

Next, suppose without loss of generality that k1 = i. Consider two cases, either i sends a message

to k2, or k2 sends a message to i. In both cases, let σ1 denote the send event, and σ2 denote the

receive event.

In the first case, by Claim 2.7.5, we have Tβ(σ1) ≥ Tα(σ1)− 1
4 . Also, we have Tβ(σ2) = Tα(σ2).

Thus, the delay of the message from i to k2 is within [|i−k2|
4 + 1

4 , 3|i−k2|
4 + 1

4] ⊆ [0, |i− k2|].
In the second case, we have Tβ(σ1) = Tα(σ1), and Tβ(σ2) ≥ Tα(σ2) − 1

4 , by Claim 2.7.5. Thus,

the delay of the message from k2 to i is within [|i−k2|
4 − 1

4 , 3|i−k2|
4 − 1

4] ⊆ [0, |i− k2|]. 2

Recall that j is a node that is at distance 1 from i. Combining the claims above, we get the

following.

Claim 2.7.9 We have the following.

1. β is an execution of A.

2. Lβ
i (t0) = Lα

i (t0 + 1
8).

3. Lβ
j (t0) = Lα

j (t0).

Proof. For the first part of the claim, we have, by Claims 2.7.3, 2.7.4, 2.7.5, 2.7.6 and 2.7.7, that

β satisfies the three assumptions of Theorem 2.3.2. Thus, β is an execution of α.

For the second part of the claim, we have

Hβ
i (t0) = Hα

i (t0) + µ0
ρ

4

= Hα
i (t0) + 4µ

ρ

4
(Hα

i (t0 +
1

8
)−Hα

i (t0))

= Hα
i (t0 +

1

8
).

Thus, by the second part of Theorem 2.3.2, we have that Lβ
i (t0) = Lα

i (t0 + 1
8).

For the final part of the claim, we have Hβ
j (t0) = Hα

j (t0), since j has the same hardware clock

rates in α and β. Then, by Theorem 2.3.2, we have Lβ
j (t0) = Lα

j (t0). 2

42

Proving the Bounded Increase Lemma

We can now prove the Bounded Increase Lemma. We have the following.

Lβ
i (t0) = Lα

i (t0 +
1

8
)

> Lα
i (t0) + 2f(1)

≥ Lα
j (t0) + f(1)

= Lβ
j (t0) + f(1)

The first equality is because of Claim 2.7.9. The first inequality follows because t0 was chosen

so that Lα
i (t0 + 1

8) − Lα
i (t0) > 2f(1). The second inequality follows because, by the f -Gradient

Property, we have Lα
j (t0)− Lα

i (t0) ≤ f(1). The final equality is again because of Claim 2.7.9.

The above inequality implies that Lβ
i (t0) − Lβ

j (t0) > f(1). But this violates the f -Gradient

Property, and so is a contradiction to the correctness of A. Thus, we conclude that there does not

exist a t∗ ≥ µ such that Lα
i (t∗ + 1)− Lα

i (t∗) > 16f(1), and the lemma is proved. �

2.8 The Main Theorem

In this section, we prove Theorem 2.5.2. In particular, we show that in the line network G with D

nodes, we can construct, for any d ∈ 1..D−1, an execution of A in which two nodes of G at distance

d from each other have Ω(d logelog(D)
D−1

d) logical clock skew at the end of the execution.

Proof of Theorem 2.5.2. We first give an outline of the proof. The basic idea is to try to apply

the Add Skew Lemma repeatedly to increase the skew between certain pairs of nodes. Unfortunately,

we can only apply the ASL to executions that satisfy certain conditions. If an execution β satisfies

these conditions, then after applying the ASL once to β, the resulting execution α will no longer

satisfy the conditions, and so the ASL cannot be directly applied to α. To overcome this, we will

transform α to another execution β′, such that β′ once again satisfies the conditions required by the

ASL. We choose β′ carefully, so that it retains most of the clock skew in α.

This suggests an iterative structure to the proof, where in each iteration k, we start with an

execution βk, to which we apply the ASL to obtain αk. Then we transform αk to βk+1, and start

iteration k + 1. Our formal proof follows this structure, except that for expositional reasons, we

have chosen to swap the order of α and β. That is, in each iteration k, we start with an αk to which

we cannot apply the ASL, then transform αk to βk. Then we apply the ASL to βk to obtain αk+1,

and begin iteration k + 1. In the proof sketch below, we describe in more detail what happens in

one particular iteration.

43

Proof Sketch

Suppose we have an execution α and two nodes i < j, such that Lj − Li = Γ > 0 at the end of α.

Furthermore, suppose that α is flexible enough so that it satisfies the assumptions of the Bounded

Increase Lemma, but is not flexible enough to satisfy the assumptions of the Add Skew Lemma.

Then we cannot directly apply the ASL to α. However, since the ASL only requires some suffix of

an execution to be flexible, we can extend α to a longer execution, such that the extended portion,

call it δ, is flexible enough to satisfy the assumptions of the ASL (and also of the BIL)6. We can

ensure that δ is flexible, because we, as the adversary, have control over the message delays and

hardware clock rates in δ.

We stated earlier that we want to choose β (that is, α ◦ δ) carefully, to retain most of the clock

skew from α. This is manifested in a tension as to how long we should make δ. On the one hand, if

δ has duration η, then the ASL implies we can increase the skew between any pair of nodes that are

ρη distance apart by an amount cρη, for some constant 0 < c < 1. On the other hand, the algorithm

A is also (presumably) decreasing the skew between nodes during δ. Thus, if δ is too long, A may

be able to decrease the skew between nodes more than the ASL can increase the skew. Fortunately,

the Bounded Increase Lemma places an upper bound on how quickly the skew between nodes can

decrease. In particular, since α and δ satisfy the assumptions of the BIL, we know that nodes can

increase their logical clocks by at most c′f(1) per unit of real time during δ, for some constant c′.

Thus, after δ, the skew between i and j can decrease by at most ηc′f(1). So, since i and j have Γ

skew at the end of α, then they have at least Γ− ηc′f(1) skew at the end of δ. But, this means that

there exists two nodes between i and j that are distance ρη apart, say nodes i′ and j′ = i′+ρη, such

that Lj′ −Li′ ≥ (Γ− ηc′f(1)) ρη
j−i after δ. This is because, by an averaging argument, there must be

some pair of nodes distance ρη apart, between i and j, whose skew is at least a ρη
j−i fraction of the

total skew between i and j after δ7.

Now, suppose we apply the ASL to the extended execution β = α ◦ δ, to increase the skew

between i′ and j′ by cρη. This is possible because the δ suffix portion of the extended execution is

flexible by construction. Call this new execution α′. Then we have

Lj′ − Li′ ≥ (Γ− ηc′f(1))
ρη

j − i
+ cρη

after α′. Set η ≡ c
2c′f(1) (j − i). Then we compute that

Lj′ − Li′ ≥ (
Γ

j − i
+

c

2
)ρη. (2.2)

Consider pairs of neighboring nodes among i′, . . . , j′. Then Equation 2.2 shows that the average

6Here, α ◦ δ corresponds to β from the proof outline.
7Assume that ρη evenly divides j − i. We show later how this assumption can be satisfied.

44

skew between neighboring nodes is

Lj′ − Li′

ρη
≥ Γ

j − i
+

c

2
.

Now, notice that the average skew between neighbors among the nodes i, . . . , j after α is Γ
j−i . So,

starting from the interval of nodes i, . . . , j, with average neighbor skew Γ
j−i at the end of α, we have

managed to find an interval i′, . . . , j′ of size ρc
2c′f(1) (j − i) , with average neighbor skew Γ

j−i + c
2 at

the end of α′. Importantly, α′ also satisfies the assumptions of the Bounded Increase Lemma (but

not necessarily the assumptions of the Add Skew Lemma).

We recapitulate the above as follows. By appealing to the BIL and by one application of the

ASL, we can start with an execution in which an interval of nodes of size n have average neighbor

skew ∆, and produce an execution in which an interval of nodes of size c1

f(1)n have average skew at

least ∆ + c2, where c1 < 1, c2 are constants. Furthermore, we can then repeat the same process,

until we are left with an interval of nodes of size one.

Now, if we start with a flexible execution of A on D nodes, and apply the above procedure k

times, we see that we can find an interval of nodes of size Θ(D
f(1)k), that has average neighbor skew

Θ(k). We need the size of the interval to be at least one. So, k can be as large as Θ(logf(1) D).

Therefore, the logical clock skew between two neighboring nodes can also be Θ(logf(1) D). But

by the f -Gradient Property, we must have Θ(logf(1) D) ≤ f(1). Solving for f(1), we get that

f(1) = Θ(elog(D)). From this and some additional calculations, the theorem follows.

The Detailed Proof

We now formalize the preceding proof sketch. The following lemma is essentially an inductive version

of the Add Skew Lemma. Starting from one execution, the lemma allows us to construct another

execution increasing the skew between certain nodes. Furthermore, the lemma can be inductively

applied to the latter execution.

In the following, we assume that the quantity 384f(1)
ρ ≥ 1 is an integer. If this is not the case,

then we choose the maximum ρ′ < ρ such that 384f(1)
ρ′ is an integer. It is easy to see that ρ′ ≥ ρ

2 .

Then, it is possible to reprove all the results in the preceding sections, pretending that [1−ρ′, 1+ρ′]

is the range of the hardware clock rates, and lose at most a factor of 2 in all the results, which does

not affect our lower bound asymptotically. For simplicity, we assume that 384f(1)
ρ itself is an integer.

Lemma 2.8.1 (Inductive Add Skew Lemma) Let α be an arbitrary execution of A, let i and j

be two nodes with i < j, and let Γ > 0 be a number. Suppose that the following conditions hold.

1. α has duration at least 1
ρ .

2. Every node has hardware clock rate within [1, 1 + ρ
2] at all times in α.

45

3. Any message sent between any pair of nodes k1 and k2 that is received in α has delay within

[|k1−k2|
4 , 3|k1−k2|

4].

4. Lα
j (`(α)) − Lα

i (`(α)) = Γ.

Set c = 1
12 , c′ = 16, c2 = 1

24 , and η = c(j−i)
2c′f(1) = j−i

384f(1) . Suppose that ρη is an integer. Then there

exists an execution α′ of A satisfying the following properties.

1. α′ has duration at least 1
ρ .

2. Every node has hardware clock rate within [1, 1 + ρ
2] at all times in α′.

3. Any message sent between any pair of nodes k1 and k2 that is received in α′ has delay within

[|k1−k2|
4 , 3|k1−k2|

4].

4. There exist nodes i′, j′ such that i ≤ i′ < j′ = i′ + ρη ≤ j, and Lα′

j′ (`(α
′)) − Lα′

i′ (`(α′)) ≥
ρη
j−iΓ + c2(j

′ − i′).

Proof. We will define an execution β extending α, to which we can apply the Add Skew Lemma,

and yield an execution satisfying the conclusions of the Inductive Add Skew Lemma.

Construction of β

Let `0 = `(α). β has duration `1 = `0 + η, and contains α as a prefix. To define the part of β

after α, we define the delays and the order of reception of messages that are not received during

the α portion of β, and also define the hardware clock rates of nodes after α in β. We resolve any

remaining nondeterminism arbitrarily.

We first define the message delays. Let k1, k2 ∈ 1..D be any two nodes. Since every message

between k1 and k2 that is received in α has delay at most 3|k1−k2|
4 , then every messages sent during

the time interval [0, `0 − 3|k1−k2|
4) in β is received in the α portion of β.

Next, we consider two types of messages sent between k1 and k2 that are not received in the α

portion of β. The first type are messages sent during the time interval [`0 − 3|k1−k2|
4 , `0 − |k1−k2|

2],

and the second type are messages sent during the time interval (`0 − |k1−k2|
2 , `1].

For any message of the first type, we let the message be received at time `0 in β. In addition, we

order all these receive events after all the events of α occurring at time `0. If a node receives several

messages of the first type at time `0, we order the receive events arbitrarily (though still after the

events in α at time `0). Clearly, any message of the first type has delay within [3|k1−k2|
4 , |k1−k2|

2].

For any message of the second type, we set the delay of the message to be |k1−k2|
2 . If a node

receives several such messages at the same time, order the receive events arbitrarily. Notice that all

messages of the second type are received after time `0 in β.

46

Finally, we set the hardware clock rate of any node to be 1 during the time interval (`0, `1] in β.

That is, we set hβ
k (t) = 1 for all nodes k ∈ 1..D, and ∀t ∈ (`0, `1].

We resolve any remaining nondeterminism in β arbitrarily. Then, the extended execution β is

well defined.

Properties of β

Claim 2.8.2 β satisfies the following properties.

1. Any message between any nodes k1 and k2 that is received in β has delay within [|k1−k2|
4 , 3|k1−k2|

4].

2. The hardware clock rates of all nodes are within [1, 1 + ρ
2] during β.

3. β is an execution of A.

Proof. The first two properties follow by the construction of β. The third property follows from

the first two properties, and from the fact that α is an execution of A. 2

Because of Claim 2.8.2, we see that β satisfies the assumptions of the Bounded Increase Lemma,

and so using the BIL, we have that

Lβ
i (`1)− Lβ

i (`0) ≤ (`1 − `0)c
′f(1)

= ηc′f(1).

Then, we have

Lβ
j (`1)− Lβ

i (`1) ≥ Lβ
j (`0)− Lβ

i (`1)

≥ Lβ
j (`0)− Lβ

i (`0)− ηc′f(1)

= Lα
j (`0)− Lα

i (`0)− ηc′f(1)

= Γ− ηc′f(1).

The first inequality holds because Lβ
j (`1) > Lβ

j (`0), by Definition 2.4.1. To see why the first

equality holds, recall that Lα
i (`0) is defined as the value of Li in α at time `0, before any events at

time `0. In β, several events may have been added at time `0, but such events do not affect the

value of Lα
i (`0). Thus, since β contains α as a prefix, we have Lα

i (`0) = Lβ
i (`0). Similarly, we have

Lα
j (`0) = Lβ

j (`0). Thus, the first equality follows.

From the definition of η, we have j−i
ρη = 384f(1)

ρ . Recall that the latter quantity is assumed to be

an integer. Recall also that ρη is assumed to be an integer. Consider all intervals of nodes of size

ρη, of the form [i + ρηk, i + ρη(k + 1)], where 0 ≤ k ≤ j−i
ρη − 1. Then by an averaging argument, at

47

least one such interval, say i′, . . . , j′ = i′ + ρη, must satisfy

Lβ
j′(`1)− Lβ

i′(`1) ≥ ρη

j − i
(Lβ

j (`1)− Lβ
i (`1)) (2.3)

≥ ρη

j − i
(Γ− ηc′f(1)). (2.4)

Applying the Add Skew Lemma to β

We now want to apply the Add Skew Lemma to β. We first show that β satisfies the assumptions

of the ASL, by describing how to instantiate the parameters in the assumptions.

Instantiate variables “i” and “j” in the ASL by i′ and j′, where i′ and j′ are defined as above.

Instantiate “S” in the ASL by `0, and “T ” by `1. Note that we have

`1 = `0 + η

= S + µρη

= S + µ(j′ − i′).

Thus, β is an execution of duration `1 = T = S + µ(j′ − i′). By construction, any message sent

between any two nodes k1 and k2 that is received in the time interval (S, T] = (`0, `1] in β has delay

|k1−k2|
2 , and the hardware clock rate of any node is 1 during time interval (`0, `1] in β. Thus, β

satisfies the assumptions of the ASL. Define `2 = `0 + 1
γ η, where γ = 1 + ρ

4+ρ is defined as in the

ASL. Then, by applying the ASL to β, we have the following.

Property 1 There exists an execution α′ of duration `2, such that the following hold.

1. Lα′

j′ (`2)− Lα′

i′ (`2) ≥ Lβ
j′(`1)− Lβ

i′(`1) + j′−i′

12 .

2. α′ and β are identical in time interval [0, `0].

3. Every node has hardware clock rate within [1, γ] ⊆ [1, 1 + ρ
2] during the time interval (`0, `2] in

α′.

4. Any message sent between any two nodes k1 and k2 that is received during the time interval

(`0, `2] in α has delay within [|k1−k2|
4 , 3|k1−k2|

4].

Since α and β are identical up to time `0, then by the conclusion 2 of Property 1, α and α′ are

also identical up to time `0. Thus, by combining assumptions 2 and 3 of the Inductive Add Skew

Lemma (which bound the message delays and hardware clock rates in α′ during the time interval

[0, `0]), with conclusions 3 and 4 of Property 1 (which bound the message delays and hardware clock

rates in α′ during (`0, `2]), we have

1. Every node has hardware clock rate within [1, γ] ⊆ [1, 1 + ρ
2] at all times in α′.

48

2. Any message sent between any two nodes k1 and k2 that is received in α has delay within

[|k1−k2|
4 , 3|k1−k2|

4].

So, conclusions 1, 2, and 3 of the Inductive Add Skew Lemma are satisfied. Lastly, by conclusion

1 of Property 1, we have

Lα′

j′ (`2)− Lα′

i′ (`2) ≥ Lβ
j′(`1)− Lβ

i′(`1) +
j′ − i′

12

≥ ρη

j − i
(Γ− ηc′f(1)) +

j′ − i′

12

= Γ
ρη

j − i
− ρη

j − i
ηc′f(1) +

1

12
ρη

= Γ
ρη

j − i
+

ρη

j − i

c(j − i)

2c′f(1)
c′f(1) + cρη

= Γ
ρη

j − i
− c

2
ρη + cρη

= (
Γ

j − i
+ c2)ρη

=
ρη

j − i
Γ + c2(j

′ − i′)

Here, the second inequality follows from Equation 2.4, and the final equality follows because

j′ − i′ = ρη by definition. Recall that we defined c = 1
12 , c′ = 16, c2 = 1

24 , and η = c(j−i)
2c′f(1) . Then,

all the other relations follow by simplification. Thus, we see that conclusion 4 of the Inductive Add

Skew Lemma is also satisfied, and the lemma is proved. �

Let d ∈ 1..D − 1. Let c1 = 384f(1)
ρ , and recall that c2 = 1

24 . Let K = blogc1

D−1
d c, and let

D′ = d · cK
1 . Notice that D′ ∈ [D−1

c1
, D − 1]. By repeatedly applying the Inductive Add Skew

Lemma, we have the following.

Lemma 2.8.3 For any k ∈ 0..K, there exists an execution αk of A such that the following hold.

1. αk has duration at least 1
ρ .

2. Every node has hardware clock rate within [1, 1 + ρ
2] at all times during α.

3. Any message between any pair of nodes k1 and k2 that is received during αk has delay within

[|k1−k2|
4 , |3|k1−k2|

4].

4. There exist nodes ik and jk such that jk = ik + D′ · c−k
1 , and Lαk

jk
(`(αk)) − Lαk

ik
(`(αk)) ≥

c2(k + 1)(jk − ik).

Proof. We use induction on k. For k = 0, let α be any execution of A satisfying the following

properties.

49

1. α has duration µD′.

2. The hardware clock rate of any node is 1 at any time in α.

3. Any message between any pair of nodes k1 and k2 has delay |k1−k2|
2 in α.

Assume that Lα
D′+1(`(α)) ≥ Lα

1 (`(α)). That is, assume that node D′ + 1 has a higher logical clock

than node 1 at the end of α. If this is not the case, we can rename nodes 1, . . . , D as D, . . . , 1, so

that the condition holds. We can check that α satisfies the assumptions of the Add Skew Lemma8,

by setting “i” and “j” in the ASL to 1 and D′ + 1, and setting “S” and “T ” in the ASL to 0 and

µD′. Let α0 be the result of applying the ASL to α. Then, it is easy to check that α0 satisfies the

conclusions of the lemma.

Now, assume by induction that the lemma holds up to k− 1. We apply the Inductive Add Skew

Lemma to αk−1, where we instantiate “i” and “j” in the IASL by ik−1 and jk−1, respectively, and

instantiate “Γ” of the IASL by c2k(jk−1 − ik−1). Define ik, jk and αk to be i′, j′ and α′ from the

conclusions of the IASL, respectively, and define η = j−i
384f(1) =

jk−1−ik−1

384f(1) as in the IASL. From

conclusion 4 of the IASL, we have that

jk − ik = ρη

= ρ
jk−1 − ik−1

384f(1)

= D′c
−(k−1)
1

ρ

384f(1)

= D′c−k
1

The third equation follows because jk−1 − ik−1 = D′c
−(k−1)
1 by the inductive hypothesis. Now,

conclusions 1 to 3 of the lemma follow from conclusions 1 to 3 of the IASL. Conclusion 4 of the

IASL shows that

Lαk

jk
(`(αk))− Lαk

ik
(`(αk)) ≥ ρη

jk−1 − ik−1
Γ + c2(jk − ik)

=
ρη

jk−1 − ik−1
c2k(jk−1 − ik−1) + c2(jk − ik)

= ρηc2k + c2(jk − ik)

= c2k(jk − ik) + c2(jk − ik)

= ck(k + 1)(jk − ik)

Thus, conclusion 4 of the lemma holds, and the lemma is proved. 2

Using Lemma 2.8.3, we get the following.

8Note that for the base case, we apply the Add Skew Lemma, not the Inductive Add Skew Lemma.

50

Corollary 2.8.4 f(1) = Θ(elogD).

Proof. Let d = 1, and K = blogc1
(D − 1)c. Then from Lemma 2.8.3, we have that in execution

αK , there are nodes iK and jK = iK + (D − 1)c−K
1 = iK + 1, such that

LαK

jK
(`(αK))− LαK

iK
(`(αK)) ≥ c2(K + 1)(jK − iK)

= c2

(
log 384f(1)

ρ

(D − 1) + 1
)
.

Since diK ,jK
= 1, then by the f -Gradient Property of A, we have f(1) ≥ LαK

jK
(`(αK))−LαK

iK
(`(αK)).

Thus, we have f(1) ≥ c2

(
log 384f(1)

ρ

(D−1)+1
)
. Since elog(D) is defined such that elog(D)elog(D) = D,

then by solving for f(1), we get that f(1) = Θ(elog(D)). 2

We can now complete the proof of Theorem 2.5.2. For any d ∈ 1..D−1, let K = blogc1

D−1
d c, and

D′ = d ·cK
1 . Then Lemma 2.8.3 shows that in αK , there are nodes iK and jK = iK +D′c−K

1 = iK +d

such that

LαK

jK
(`(αK))− LαK

iK
(`(αK)) ≥ c3 · d ·

(
logelog(D)

D − 1

d
+ 1

)

where c3 > 1 is some constant. Thus, the theorem is proved. �

51

Chapter 3

A Clock Synchronization

Algorithm

3.1 Introduction

In this chapter, we present an efficient and fault tolerant clock synchronization algorithm (CSA)

that satisfies a relaxed form of the gradient property. Chapter 2 showed a lower bound on the

gradient achievable by any CSA. The algorithm we present in this chapter is not intended as a

complementary upper bound to this lower bound. Indeed, there are several important differences

between the models and problem specifications in this chapter and the previous, which are discussed

in more detail in Section 3.2.

Our goal in this chapter is to design a CSA that performs well in wireless networks, such as

sensor or ad-hoc networks. As such networks have grown in importance in recent years, clock

synchronization has emerged as a common requirement for many wireless applications. Synchronized

clocks are used in medium access protocols such as TDMA, in sensor applications for timestamping

data, in tagging data for security, and for many other purposes. In order to function well in a

wireless setting, a CSA should be energy efficient, fault tolerant, and satisfy a gradient property.

Energy efficiency is needed because wireless devices typically run on battery power, so their primary

constraint is not in computational speed or memory, but rather in the number of operations they

can perform before their batteries are exhausted. Fault tolerance is necessary because many wireless

devices, such as the (proposed) cubic millimeter sized Smart Dust sensor motes [38], are fragile and

fault-prone. In addition, the devices may experience intermittent communication failures due to

random environmental factors. Finally, as we argued in the previous chapter, the gradient property

is important because many wireless applications are local in nature, and thus require tighter clock

synchronization for nodes that are closer together.

52

The clock synchronization algorithm we present in this chapter meets the requirements of a

wireless network in the following ways. To minimize energy use, nodes only synchronize with each

other at regular intervals, and they avoid sending duplicate or redundant messages. Also, our

algorithm performs two types of clock synchronization. First, nodes can synchronize to real time,

using a common source of real time such as GPS. However, because access to GPS is power-intensive

and not always available, nodes can also synchronize to each other in the absence of GPS. We refer

to these two types of synchronization as external and internal synchronization, respectively. Internal

synchronization is sufficient in many applications; for example, in TDMA, nodes need to know only

the time relative to each other to schedule their broadcasts. Our algorithm is fault tolerant: nodes

can crash and recover, and we guarantee that soon after an execution stabilizes, i.e., soon after new

crashes and recoveries stop, and nodes have had time to exchange information to bring each other

up to date, then nodes become synchronized to real time, and to each other. Finally, our algorithm

satisfies a relaxed form of the gradient property. It ensures that once an execution stabilizes, and,

roughly speaking, two nodes have received the same synchronization information, then the clock

skew between the nodes is linear in their distance after stabilization. This last property does not

contradict the lower bound we proved in Chapter 2, because there are several differences between

the computational model and problem definition in this chapter and that in the preceding. These

differences are discussed in the next section.

The remainder of this chapter is organized as follows. In Section 3.2, we compare and contrast

some of the results in this chapter and Chapter 2. In Section 3.3, we describe some related work on

clock synchronization. In Sections 3.4 and 3.5, we describe our computational model and formally

define our problem. We present our algorithm in Section 3.6, and prove some basic properties about

the algorithm in Section 3.7. We prove the external and gradient synchronization properties that

the algorithm satisfies in Sections 3.8 and 3.9.

The results presented in this chapter appeared in a preliminary form in [12]. We discuss some of

the differences between our current presentation and that in [12] at the end of Section 3.3.

3.2 Comparison to Chapter 2

In this section, we describe the main differences between the models and problem specifications in

Chapters 2 and 3. In terms of the models, the first difference is that Chapter 2 deals with a static set

of nodes, while this chapter assumes that nodes can crash and recover. Secondly, Chapter 2 assumes

the communication network is modeled by a complete weighted graph, while this chapter models

the network by an arbitrary weighted graph. Thus, in this chapter, a message sent from one node

to another may need to go through several intermediate nodes. However, because nodes can crash

and recover, the set of paths between two nodes is not fixed until node crashes and recoveries stop.

53

Thus, unlike in Chapter 2, where the distance between each pair of nodes is fixed from the start of

any execution, in this chapter, we fix the distance between two (non-neighboring) nodes only after

the execution stabilizes. Lastly, unlike in Chapter 2, this chapter assumes that some nodes have

access to a GPS source of real time, in addition to having hardware clocks and being able to send

and receive messages from other nodes.

Having described the modeling differences between Chapters 2 and 3, we now describe the differ-

ences in the problem specifications. Chapter 2 required that the logical clock of every node increase

at a rate of at least 1
2 , at all times. In this chapter, nodes are allowed to stop their logical clocks

for some period of time. However, the average rate of increase of each node’s logical clock, over

a sufficiently long period of time, is at least 1 − ρ > 0, where ρ is the drift rate of the hardware

clocks. This follows from the fact that the logical clock value of any node remains close to real

time. Secondly, while Chapter 2 required that the clock skew between two nodes be bounded by a

function of their distance at all times in any execution, the algorithm in this chapter is only required

to satisfy this property at times when the execution has stabilized, and, roughly speaking, the two

nodes have received the same synchronization information. Lastly, in this chapter, we require that

after an execution has stabilized for sufficiently long, the logical clock value of any (live) node is

close to real time. This property is not required in Chapter 2, since there we do not assume nodes

have access to a source of real time like GPS.

3.3 Related Work

In this section, we describe some related work on clock synchronization. NTP [30] is a widely

deployed clock synchronization service. NTP relies on a hierarchy of clock servers, and assumes

that root servers have access to a correct source of real time. In contrast, our algorithm works in a

network with no infrastructure support. Access to real time via GPS exists, but may be intermittent.

NTP is more energy intensive than our algorithm, because it sends many messages, and then applies

statistical techniques to minimize the effects of message delay uncertainty. Lastly, the fault tolerance

mechanism used in NTP is more complex than ours.

Elson et al. [11] studied time synchronization in a sensor network. Their algorithm, RBS,

relies on physical properties of the radio broadcast medium to reduce message delay uncertainty

to almost 0. RBS is able to achieve very tight synchronization between nodes in a single hop

network. However, RBS is complicated to implement in a multi-hop network. In addition, RBS is

not directly comparable to our algorithm, because it performs post-hoc synchronization, in which

nodes determine the time of an event some time after it has occurred. Our algorithm performs

on-the-fly synchronization, so that we can timestamp an event at the moment it occurs. Lastly,

unlike our algorithm, RBS does not synchronize nodes (or events) to real time, and does not achieve

54

a gradient property.

CesiumSpray [37] is a CSA performing both internal and external synchronization. Like RBS,

CesiumSpray achieves high accuracy by relying on near simultaneous message reception by all nodes

in a satellite (i.e., single hop) wireless network. However, it is not immediately clear how to imple-

ment a similar technique in multi-hop networks like the ones we consider. In addition, CesiumSpray

has lower fault tolerance than our algorithm, and does not achieve a gradient property. Fetzer and

Cristian [16] also integrate internal and external synchronization. However, their algorithm is more

complex than ours because it deals with faulty GPS information. In practice, we think such failures

are unlikely to occur.

The algorithm presented in this chapter is based on our earlier work in [12]. The main idea

for that algorithm and our current algorithm is the same, though the presentation and proof of

correctness have changed significantly. In particular, this chapter provides more precise statements

about the types of executions in which we can bound the clock skew, and gives a more rigorous and

structured analysis of the algorithm.

3.4 System Model

In this section, we describe the formal model for our algorithm. This section is mostly self-contained,

though we refer the reader to Section 2.3 for much of the terminology about Timed I/O Automata,

and for some general concepts related to clock synchronization. Recall that for any execution α of a

TIOA, and for any state occurrence s in α, Tα(s) denotes the real time of occurrence of s. Sometimes

we omit the subscript α when the execution is clear from context.

3.4.1 Nodes

We wish to model a dynamic system in which nodes can crash or recover at arbitrary times. To do

this, we define V to be the set of potential nodes. We model each node Ci, i ∈ V , using a TIOA.

Sometimes we simply write i to denote Ci. Ci can either be crashed or alive (we sometimes say live

instead of alive), and it can change its status at any time. We model a crash by Ci using the input

action crashi, which changes the status of Ci from alive to crashed. We model a recovery by Ci

using the input action recoveri, which changes Ci from crashed to alive. We assume that i starts

out alive, and that the environment ensures that crashi and recoveri occur in alternating order in

every execution. We define the following.

Definition 3.4.1 Let α be an execution, let s be a state occurrence in α, and let i ∈ V . Then we

say node i is alive after s if one of the following holds.

1. crashi does not occur before s in α.

55

2. crashi occurs before s in α, and recoveri occurs between the last occurrence of crashi before

s, and s.

We denote the set of live nodes after s by alive(s).

Each node i ∈ V is equipped with a hardware clock hardwarei. The value of hardwarei is a real

number that is initially 0. It is strictly increasing, and changes as a differentiable function of time.

The value of hardwarei is not changed by any discrete step of i. We assume that the hardware

clock of every node has bounded drift. More precisely, we assume for the remainder of this chapter

that there exists a real number ρ, with 0 ≤ ρ < 1, such that the time derivative of hardwarei at all

times in any execution is bounded within [1− ρ, 1 + ρ].

Each node i ∈ V can send a message m to some other nodes using the local broadcast output

action bcast(m)i. Also, i can receive message m using the receive input action recv(m)i. We letM
represent the set of all messages that any node can send. The properties satisfied by the broadcast

and receive actions are described in the next section. Using its hardware clock and the messages it

receives from other nodes, i computes a logical clock value. Let α be any execution, and let s be

a state occurrence in α. Then we denote i’s logical clock value in s by s.logicali. We also use the

same notational convention to denote the values of other variables. That is, if v is a variable of node

i, then we write s.vi for the value of v at i in s. The goal of a clock synchronization algorithm is to

ensure that the logical clock values of the nodes are close to each other, close to real time, or both.

3.4.2 Communication Network

Nodes in V communicate with each other over a message passing network. Let E ⊆ V × V be the

set of potential communication channels. This represents the set of channels that nodes can use to

communicate when no node has crashed. Given i ∈ V , we say the neighbors of i is the set of nodes

j such that (i, j) ∈ E. We assume that E is symmetric. That is, we assume that for any i, j ∈ V ,

if (i, j) ∈ V , then (j, i) ∈ V . We let the (symmetric) digraph H = (V, E) be the communication

network, and we assume that H is (strongly) connected.

We assume that channels do not duplicate or generate spurious messages. We also assume

channels have bounded message delay. In particular, we assume that for every (i, j) ∈ E, there

exists a di,j with 0 ≤ di,j < ∞, such that if bcast(m)i occurs at time t in an execution, then

recv(m)j occurs sometime within [t, t + di,j]. We call di,j the distance between i and j. Note that

we assume j receives m, even if j has crashed. However, j does not perform any actions in response

to m if it has crashed. Notice also that bcast(m)i is a local broadcast action, because every neighbor

j of i performs recv(m)i after bcast(m)i. For simplicity, we assume that di,j = dj,i, for all (i, j) ∈ E.

56

3.4.3 GPS Service

We assume that a subset of the nodes VG ⊆ V are equipped with GPS receivers. We call each

node in VG a GPS source. At regular intervals, the GPS sources receive GPS messages informing

them of the current real time. These values are then propagated throughout the network using local

broadcasts. We model the receipt of a GPS message at a node i ∈ V by an input action gps(t)i. We

assume the GPS service satisfies the following properties.

Assumption 1 (GPS Assumptions) Let µG > 0 be a constant, and let α be an execution. Then

we have the following.

1. Let t = µGk, for some k ∈ N. Then for any i ∈ VG, the event gps(t)i occurs at time t in α.

2. For any i ∈ V , if gps(t)i occurs at a time t′ in α, then t′ ≥ t.

3. Suppose the event gps(t)i occurs immediately before a state occurrence s of α. Also, suppose

that i ∈ alive(s), and crashi is not the next action by i after s in α. Then for all j such that

(i, j) ∈ E, gps(t)j occurs no later than time Tα(s) + di,j.

The first assumption says that a GPS message occurs at each GPS source at every integral

multiple of µG’s time, and that the time indicated by the message is accurate. The second assumption

says that a GPS message never arrives at a node before the time indicated in the message. The third

assumption says that if a GPS message arrives at a live node, and the node does not immediately

crash afterwards, then the node propagates the message to its neighbors.

3.4.4 Stability

In this section, we define some terminology related to an execution after all crashes and recoveries

have stopped.

Definition 3.4.2 (Stable Execution) Let α be an execution, and let s be a state occurrence in

α. Then we say α is stable after s if for all events σ in α that occur after s, we have σ 6∈
{crashi, recoveri}i∈V .

Thus, an execution is stable after some point if no nodes crash or recover after that point. After

an execution stabilizes, the network graph formed by the communication channels between live nodes

no longer changes. In this graph, we can define the distance between two live nodes as follows.

Definition 3.4.3 (Distance After Stabilization) Let α be an execution, and let s be a state

occurrence in α such that α is stable after s. Let V s = alive(s), Es = E ∩ (V s × V s), and let the

weighted graph Hs = (V s, Es). Given (i, j) ∈ Es, the weight of edge (i, j) is di,j . Given i, j ∈ V s,

define the distance from i to j after s, written ds
i,j , to be the weight of a minimum weight path from

i to j in Hs, if i and j are connected in Hs, or ∞ otherwise.

57

Note that since di,j = dj,i for all (i, j) ∈ E, and E is symmetric, then we have ds
i,j = ds

j,i for

all i, j ∈ V s. Also note that if s′ is a state occurrence after s in α, then we have V s = V s′

, and

ds
i,j = ds′

i,j for all i, j ∈ V s. Next, we define the following.

Definition 3.4.4 (Distance to GPS) Let α be an execution, let s be a state occurrence in α such

that α is stable after s, and let i ∈ V s. Write V s
G = VG∩V s. Then we say i’s distance to GPS after

s is dG,s
i = minj∈V s

G
ds

i,j, if V s
G 6= ∅, or ∞ otherwise.

Thus, i’s distance to GPS after s is the minimum distance from i to any live GPS source in Hs,

or ∞ if there are no live GPS sources after s.

3.5 Problem Specification

In the remainder of this chapter, we call our clock synchronization algorithm Synch. Synch is the

composition of all the clock synchronization nodes i ∈ V , the communication network, and the GPS

service. We now formally define the external and gradient accuracy properties satisfied by Synch.

3.5.1 External Accuracy of Synch

In this section, we separately state lower and upper bound requirements for the logical clock value of

any (live) node compared to real time, after an execution stabilizes. We first state the lower bound.

Requirement 1 (External Accuracy Lower Bound) There exist λ, γ ∈ R+ such that the fol-

lowing holds. Let α be an execution of Synch, let s be a state occurrence in α such that α is stable

after s, and suppose V s
G 6= ∅. Let i ∈ V s, τ1 = (bT (s)

µG c+1)µG + dG,s
i , and let s′ be a state occurrence

in α such that T (s′) > τ1. Then we have s′.logicali ≥ T (s′)− (λµG + γdG,s
i).

The lower bound requirement says that if we are given an execution that stabilizes after a state

occurrence s, and we consider another state occurrence s′ sufficiently long after s, then the difference

between real time at s′ and any node i’s logical clock value in s′ is bounded by a linear function

of µG, and the distance between i to a live GPS source after s. Here, when we say that s′ occurs

sufficiently long after s, we mean that s′ occurs after time τ1, where, informally speaking, τ1 is

defined so that any node that is alive after s receives at least one GPS input between s and τ1.

Next, we state the upper bound requirement.

Requirement 2 (External Accuracy Upper Bound) There exist λ, γ ∈ R+ such that the fol-

lowing holds. Let α be an execution of Synch, let s be a state occurrence in α such that α is stable

after s, and suppose V s
G 6= ∅. Let

i ∈ V s, D = max
j∈V s

dG,s
j , τ2 = (bT (s)

µG
c+ 1)µG + D, τ3 = (1 + ρ)τ2.

58

Let s′ be a state occurrence such that T (s′) > τ3. Then we have s′.logicali ≤ T (s′) + λµG + γD.

The upper bound requirement says that in any state that occurs sufficiently long after an ex-

ecution stabilizes, the difference between a node’s logical clock value and real time is bounded by

a linear function of µG, and the maximum distance between any live node and a live GPS source

after stabilization. There are several differences between the upper and lower bound requirements.

First, the upper bound requirement only applies to states that occur after time τ3 ≥ τ1. Informally

speaking, τ3 is defined so that all the clock skew that may have been created before the stabilization

point s has been eliminated by τ3. Second, in the upper bound, the difference between a node i’s

logical clock value and real time is bounded by a function of D, the maximum distance from any live

node to a GPS source after stabilization, instead of dG,s
i , the distance from i to a live GPS source

after stabilization. Informally speaking, the reason for this is that i may sometimes set its global

clock to the local clock value of a node that is very far from GPS, even though i itself is close to

GPS.

3.5.2 Gradient Accuracy of Synch

We now define the gradient accuracy property that Synch satisfies. This property is defined in

terms of some internal variables of the nodes of Synch. Figure 3-1 shows the actions, variables and

constants used by a generic node i. The constant µS represents the period of resynchronization for

i.

C i, i ∈ V
Constants

0 ≤ ρ < 1 µS ∈ R+

Signature

Input
recoveri

crashi

gps(g)i, g ∈ R
≥0

recv(g, c, p)j,i, j ∈ V, g, c, p ∈ R
≥0

Output
bcast(g, c, p)i, g, c, p ∈ R≥0

Internal
sync(g, c, p)i, g, c, p ∈ R

≥0

State

crashed ∈ Boolean; initially false

hardware ∈ R

max gps ∈ R; initially 0
local, a dictionary of elements of type R, keyed by

R; initially empty
global, a dictionary of elements of type R, keyed by

R; initially empty
mpast ∈ R; initially 0

next sync ∈ R; initially 0
last sync ∈ (R, R); initially (0,0)
send buffer, a queue of elements of type (R, R, R);

initially empty
sent, a set of elements of type (R, R, R); initially

empty

Figure 3-1: The constants, signature and states of clock synchronization automaton Ci.

Though it is typical to specify the behavior of an algorithm in terms of only the traces of its

59

external interface, we define the gradient accuracy between a pair of nodes i and j in terms of

the states of i and j, because this permits a simpler and more concise description of the types of

situations under which the gradient accuracy property holds. Indeed, because we have made no

assumptions about the magnitudes of µS and µG, i.e., the period of resynchronization and GPS

input to the nodes, it appears difficult to give a compact description of the type of executions in

which two nodes can maintain gradient accuracy, simply in terms of the synchronization messages

that are sent or received by the nodes, the arrival of GPS inputs at nodes, and the crashes and

recoveries of nodes before stabilization.

In a “typical” implementation of our algorithm, we expect to have µS � µG, i.e., the period of

resynchronization between nodes should be much smaller than the period of GPS inputs. In addition,

the distance between any pair of nodes after an execution stabilizes should be much smaller than

µS . In such a setting, Synch will operate in approximate “rounds”, where in each round, the node

with the fastest clock will send a synchronization message that floods through the network, causing

the slower nodes to adopt the faster node’s clock value. In this case, we can say that once the

synchronization flood for a round has reached all the nodes, then the clock skew between any pair of

nodes is linear in their distance. However, this characterization of the behavior of Synch becomes

less accurate as the distances between nodes get larger compared to µS , or as µS gets larger compared

to µG. Thus, we choose to express the gradient accuracy requirement of Synch more simply in terms

of the states of the nodes.

Requirement 3 (Gradient Accuracy) There exist λ, γ ∈ R+ such that the following holds. Let

α be an execution of Synch, and let s be a state occurrence in α such that α is stable after s. Let

i, j ∈ V s, let s′ be a state occurrence in α after s, and suppose that the following hold.

1. Let si be the first state occurrence in α such that si.last synci = s′.last synci. Then we have

T (si) ∈ (T (s), T (s′)− ds
i,j).

2. Let sj be the first state occurrence in α such that sj .last syncj = s′.last syncj. Then we have

T (sj) ∈ (T (s), T (s′)− ds
i,j).

3. s′.mpasti = s′.mpastj.

Then we have |s′.logicali − s′.logicalj| ≤ λµS + γds
i,j.

In the above requirement, si (resp., sj) is the state occurrence in which the internal state variable

last synci (resp., last syncj) was first set to the value that it has in s′. Note that si and sj both

occur no later than s′. The gradient accuracy requirement says that if an execution is stable after

s, then given s′ occurring after the time of s, if both si and sj occur after s, and at least ds
i,j time

before s′, and if the values of mpasti and mpastj are equal in s′, then the logical clock skew between

i and j in s′ is bounded by a linear function in µS and ds
i,j . The roles of last sync and mpast

60

will be described in detail in Section 3.6, when we describe our algorithm. Roughly speaking, they

capture the latest synchronization information known to a node. The idea for the assumptions of the

gradient accuracy property is that if i and j both received their latest synchronization information

after the execution stabilized, and at least ds
i,j time before s′, then i and j will have a chance to

exchange their latest synchronization information before s′, so that their skew will be linear in µS

and ds
i,j at s′.

3.6 The Algorithm

In this section, we describe the Synch clock synchronization algorithm. Every node i in Synch

behaves in the same way. The pseudo-code for a generic node i is shown in Figure 3-2. Below, we

describe how i operates.

3.6.1 Preliminaries

The pseudo-code uses stopping conditions to describe the trajectories of i. Please see [22] for a

detailed description of stopping conditions. In brief, a stopping condition is a predicate such that

time cannot advance when the predicate is satisfied; in order for further trajectories to occur, an

event must first occur to falsify the predicate. For example, the stopping condition in Figure 3-2 is

the predicate (local(max gps) ≥ next sync) ∨ (send buffer 6= ∅). If local(max gps) ≥ next sync

holds in a state, then an action, e.g. sync(∗, ∗, ∗)i, must occur to falsify the predicate in order for

further trajectories to occur. If send buffer 6= ∅, then an action, e.g. bcast(∗, ∗, ∗)i, must occur to

falsify the predicate and enable further trajectories.

We define a dictionary as a data structure that supports the operations insert, lookup, modify

and delete. Our definitions are standard, and are included for completeness. All the operations for

a dictionary are based on keys and values. Let D be a dictionary, and suppose we insert a value

v into D with key k. Then the lookup operation D(k) returns v, the modify operation D(k) ← v′

sets the value associated with k to v′, and the delete operation del(D, k) removes the key k and its

associated value from D. We let keys(D) denote the set of keys in D. We adopt the convention that

D(k) = −1 for any k 6∈ keys(D). This does not cause problems in our later usage of dictionaries,

because we will only associate keys in the dictionary with nonnegative values. This convention is

used to simplify some of our notation later on.

Given a k-tuple v, where k ∈ Z+, we use vi to denote the i’th coordinate of v. For example, if

v = (2, 3, 4), then v2 = 3.

61

Ci, i ∈ V
Constants

0 ≤ ρ < 1 µS ∈ R
+

State
crashed ∈ Boolean; initially false
hardware ∈ R

max gps ∈ R; initially 0
local, a dictionary of elements of type R, keyed by R;

initially empty
global, a dictionary of elements of type R, keyed by R;

initially empty
mpast ∈ R; initially 0

next sync ∈ R; initially 0
last sync ∈ (R, R); initially (0,0)
send buffer, a queue of elements of type (R, R, R);

initially empty
sent, a set of elements of type (R, R, R); initially empty

Derived Variables
mlocal← max local
mglobal ← max global

logical ← max(local(max gps), global(max gps), mpast)

Transitions

input recoveri

Effect:
crashed← false

input crashi

Effect:
crashed← true
max gps← 0
empty local
empty global
mpast ← 0
last sync← (0, 0)
next sync← 0
empty send buffer
sent ← ∅

input recv(g, c, p)j,i

Effect:
if ¬crashed then

switch
case g > max gps:

max gps← g
local(g)← g
global(g) ← c
last sync← (g, c)

next sync← c + µS

case g = max gps:
global(g) ← max(global(g), c)
last sync2 ← max(last sync2, c)

next sync← max(next sync, c + µS)
case g < max gps:

global(g) ← max(global(g), c)
mpast ← max(mpast, mlocal, mglobal, p)
if (g, c, mpast) 6∈ sent then

enqueue (g, c, mpast) in send buffer
add (g, c, mpast) to sent

input gps(g)i

Effect:
if ¬crashed then
if g > max gps then

max gps← g
local(g)← g
global(g) ← g
mpast← max(mpast, mlocal, mglobal)
last sync← (g, g)

next sync← (b g

µS c + 1)µS

internal sync(g, c, p)i

Precondition:
¬crashed
c = next sync
g = max gps
c = local(max gps)
p = mpast

Effect:
global(g) ← c
enqueue (g, c, p) in send buffer
add (g, c, p) to sent
last sync← (g, c)

next sync← c + µS

output bcast(g, c, p)i

Precondition:
¬crashed
send buffer is not empty
(g, c, p) = head of send buffer

Effect:
remove head of send buffer

Trajectories
Satisfies

unchanged:
crashed, max gps, mpast, last sync, next sync
sent buffer, sent

1− ρ ≤ d(hardware) ≤ 1 + ρ

∀g ∈ keys(local) :
if ¬crashed ∧ (g = max gps) then

d(local(g)− hardware) = 0

d(global(g) − 1−ρ
1+ρ

hardware) = 0

else
d(local(g)) = 0
d(global(g)) = 0

Stops when
(local(max gps) ≥ next sync) ∨ (send buffer 6= ∅)

Figure 3-2: States and transitions of clock synchronization node Ci of Synch.

62

3.6.2 Algorithm Description

We begin by describing the general idea of the Synch algorithm, and later give a more detailed

description of the variables and actions it uses. Consider the following simple synchronization

algorithm, based on an algorithm from [22], which motivates Synch: Each node estimates the

current real time using a “local” clock. It also estimates the maximum local clock of any node

(including itself) using a “global” clock. The node periodically sends its neighbors its local clock

value, and it updates its global clock when it receives a local clock value from another node. The

local clock increases at the same rate as the node’s hardware clock, while the global clock increases

at a slightly slower rate, to ensure that it does not overestimate the maximum local clock value. The

logical clock value of the node is the maximum of its local and global clock values.

The Synch algorithm is an extension of this idea, with mechanisms to incorporate GPS inputs

and deal with node crashes. In Synch, instead of having a single local clock value, each node i

maintains a dictionary of local clock values, called local. Each key g in local is a GPS value that i

has heard about, either directly through a GPS input, or indirectly via a synchronization message

from some other node. local(g) represents i’s estimate of real time, using GPS value g. Each time

i hears a new GPS value g′, it adds a new value and key, both initialized to g′, to local. i then

increases local(g′) at the same rate as its hardware clock, while it does not increase local(g), for any

g < g′. The idea is that when i gets a newer GPS value, it can obtain a more accurate estimate of

real time using this value.

i also maintains a dictionary of global clock values, called global. Again, each key g in global rep-

resents a GPS value that i has heard about either directly or indirectly, and global(g) represents i’s

estimate of the maximum local(g)j value, for any j ∈ V ; that is, global(g) is i’s estimate of the max-

imum estimate for real time using g by any node (including i). If g′ is the maximum GPS value that

i has heard about, then global(g′) increases at a slightly slower rate than i’s hardware clock, while

global(g) does not increase, for any g < g′. Let max gps be the maximum GPS value that i has heard.

Then i’s logical clock value equals the maximum of the values local(max gps), global(max gps), and

mpast. The role of mpast is described in the following paragraph.

We now describe the variables (and derived variables) used by node i in more detail. hardware

and logical are i’s hardware and logical clock values, respectively. max gps is the largest GPS

value that i has heard about. local and global are dictionaries of real values that are keyed by real

values, and whose roles were previously described. mpast is a variable whose value is modified only

by some actions of i (and not by any trajectory of i). Each time mpast is increased in an action,

its value becomes the maximum local(g)j or global(g)j, for any j ∈ V and any g, that i knows

about up to and including the occurrence of the action. Thus, mpast represents a “snapshot” of

the maximum clock value at any node, at the occurrence of an action of i. next sync is defined so

that when i’s local(max gps) value reaches next sync, i will send a synchronization message to its

63

neighbors. next sync is always an integral multiple of a positive constant µS . last sync is a pair of

real numbers, where the first number equals max gps, and the second number is the largest value of

local(max gps) that i has sent to or received from a neighbor. last sync is used to simplify some

of our proofs later, but does not have a functional role in the Synch algorithm. As a reminder of

this fact, we write last sync in a different font. send buffer is a queue of messages for i to send,

and sent is the set of messages that i has ever sent out. sent is used to ensure i does not send the

same message more than once. i’s derived variables mlocal and mglobal are the maximum values in

local and global, respectively.

We now describe i’s actions in more detail. i crashes and recovers via the input actions crash and

recover, respectively. When i crashes, it resets all the contents of its memory (except hardware,

which the actions of i cannot change), and sets crashed to true. When i recovers, it sets crashed

to false. In all the actions of i that we describe below, assume that crashed = false. Otherwise,

all of the actions do nothing.

The action gps(g) is an input from the GPS service informing i that the current real time is g.

If g ≤ max gps when gps(g) occurs, then i has already received a larger GPS value, and so i does

nothing. If g > max gps, then i sets max gps, local(g) and global(g) to g. i increases local(g) at the

same rate as hardware; we say i runs local(g). i does not increase local(g′), for any g′ ∈ keys(local)

such that g′ < g; we say that i stops local(g′). Intuitively, the idea is that i should be able to obtain

a better estimate of real time from local(g) than from local(g′), for g′ < g. i also runs global(g),

and stops global(g′), for all g′ < g. However, i increases global(g) at a rate of only 1−ρ
1+ρ times its

hardware clock rate. Recall that global(g) represents i’s estimate of maxj∈V local(g)j. The rate of

increase of global(g) is selected so that the value of global(g) does not exceed the actual value of

maxj∈V local(g)j, even if i’s hardware clock runs at the maximum rate of 1 + ρ, while the hardware

clocks of the other nodes run at their minimum rate of 1 − ρ. i sets mpast to the maximum of its

current value, and mlocal and mglobal. Finally, i sets last sync to (g, g), and sets next sync to

the smallest integral multiple of µS larger than g, indicating that it plans to synchronize with its

neighbors at that time.

i synchronizes with its neighbors using the internal action sync(g, c, p). This action is triggered

when i’s local(max gps) value reaches next sync. When synchronizing, i sends a message containing

(g, c, p), where g = max gps, c = local(max gps), and p = mpast, to its neighbors. i sets last sync

to (g, c), to record the largest synchronization values that it has sent. Lastly, i sets the time at

which its next synchronization is triggered to c + µS .

i receives a synchronization message from a neighbor j in the input action recv(g, c, p)j,i. Here,

g is the largest GPS value that a node k has heard, c is the local clock value based on g at k, and p

is the maximum local or global clock value that j has heard in any action. It is possible that j 6= k,

because j may be propagating a synchronization message that originated from k. There are three

64

cases in this action. In the first case, we have g > max gps. Here, i does essentially the same things

as it does in a gps(g) action when g > max gps, though i sets global(g) to c instead of to g. In the

second case, we have g = max gps. Here, i sets global(g) to the maximum of its current value and

c, and sets the second coordinate of last sync to be the maximum of its current value and c, to

record the largest value of local(max gps) that i has sent or received. Also, i sets next sync to be

the maximum of its current value, and c + µS . The idea is that if c ≥ next sync, then i can simply

propagate (g, c, mpast) to its neighbors, instead of initiating its own synchronization message when

local(max gps) reaches (the old value of) next sync. In the last case, we have g < max gps, and

i sets global(g) to the maximum of its current value and c. Finally, in all cases, i sets mpast to

the maximum of its current value, mlocal, mglobal and p. Also, i checks that (g, c, mpast) 6∈ sent,

meaning that i has not sent out this message before. If (g, c, mpast) 6∈ sent, then i broadcasts

(g, c, mpast) to its neighbors, and adds (g, c, mpast) to sent.

As stated earlier, i’s derived variables mlocal and mglobal are the maximum values in local and

global, respectively. i’s logical clock value logical is the maximum value among local(max gps),

global(max gps), and mpast.

3.7 Basic Properties of Synch

Before proving the accuracy properties of Synch in the next two sections, we first prove some basic

properties about Synch. The first lemma says that at any point in an execution, the set of keys in

locali and globali for a node i are the same.

Lemma 3.7.1 Let α be an execution, let s be a state occurrence in α, and let i ∈ V . Then we have

keys(s.locali) = keys(s.globali).

Proof. By inspection of Synch, we see that whenever a key is added to locali, the same key is

added to globali, and vice versa. Thus, the lemma follows. 2

In light of Lemma 3.7.1, we define keysi(s) ≡ keys(s.locali) = keys(s.globali) for the set of keys

in locali or globali, in state occurrence s. The following lemma says that in any state occurrence,

for any node i ∈ V , mpasti is always at least as large as locali(g) and globali(g), for any g except

possibly g = max gpsi.

Lemma 3.7.2 Let α be an execution, let s be a state occurrence in α, and let i ∈ V . Let g ∈
keysi(s), and suppose g 6= s.max gpsi. Then we have the following.

1. s.mpasti ≥ s.(locali(g)).

2. s.mpasti ≥ s.(globali(g)).

65

Proof. By inspection of Synch, we see that each time i adds a key to locali and globali, in either a

gps(∗)i or recv(∗, ∗, ∗)∗,i action, we have mpast ≥ max(mlocali, mglobali) ≥ max(locali(g), globali(g)),

where g 6= max gpsi Thus, the lemma holds. 2

The next lemma says that in any state occurrence s, the value of mpast at any node is not

more than the maximum local or global clock value, at any node, in any state occurrence up to and

including s.

Lemma 3.7.3 Let α be an execution, let s be a state occurrence in α, let S be the set of state

occurrences up to and including s in α, and let i ∈ V . Then we have

s.mpasti ≤ max
s′∈S,j∈V,g∈R+

max(s′.(localj(g)), s′.(globalj(g))).

Proof. By inspection of Synch, we see that whenever i modifies mpasti, it is set to the maximum

of its current value, mlocali, mglobali, and possibly p, where p equals mpastj , for some node j ∈ V .

From this, the lemma follows. 2

The following theorem states that the logical clock value of any node never decreases in any

interval of an execution, unless the node fails during the interval. This property is required for many

applications using clock synchronization.

Theorem 3.7.4 Let α be an execution, let i ∈ V , and let s and s′ be state occurrences in α such

that s′ occurs after s. Suppose crashi does not occur between s and s′. Then we have s′.logicali ≥
s.logicali.

Proof. By definition, we have logicali = max(locali(max gpsi), globali(max gpsi), mpasti). By

inspection of Synch, we see that mpasti never decreases unless i crashes, and so logicali does

not decrease after any discrete step between s and s′ that only modifies mpasti. Also, since the

trajectories of i only increase locali(max gps)i and globali(max gpsi), then logicali does not decrease

after any trajectory of i. Lastly, we show that logicali does not decrease after any discrete step

between s and s′ that modifies locali(max gps)i or globali(max gpsi).

Suppose a step ε of i between s and s′ modifies locali(max gps)i or globali(max gpsi). By

assumption, this step does not occur in crashi. Then, we see by inspection of Synch that either

the value of max gpsi does not change, in which case locali(max gps)i and globali(max gpsi) do

not decrease, or max gpsi increases. In the latter case, we see that i always performs mpasti ←
max(mpasti, mlocali, mglobali, ∗), where ∗ represents possibly some other values. Since mlocali ≥
locali(max gpsi) and mglobali ≥ globali(max gpsi) before ε, then we have mpasti ≥ locali(max gpsi)

and mpasti ≥ globali(max gpsi) after ε, and so logicali does not decrease after ε. From this and

the earlier facts, the theorem follows. 2

66

3.8 Proof of External Accuracy of Synch

In this section, we separately prove lower and upper bounds on the external accuracy of Synch.

Before proving the lower bound, we first state the following lemma. Consider a time τ1 sufficiently

long after an execution stabilizes. Then the lemma says that in any state occurrence after τ1, for

any node i, the value of max gpsi is not much less than the real time, the time at which i receives

max gpsi is not much more than max gpsi, and the amount of time since i received max gpsi is

not too large.

Lemma 3.8.1 Let α be an execution of Synch, let s be a state occurrence in α such that α is

stable after s, and suppose V s
G 6= ∅. Let i ∈ V s, d = dG,s

i , and τ1 = (bT (s)
µG c + 1)µG + d. Let

s′ be a state occurrence such that T (s′) > τ1. Let si be the first state occurrence in α such that

si.max gpsi = s′.max gpsi. Then we have the following.

1. s′.max gpsi ≥ (bT (s′)−d
µG c)µG.

2. T (si)− s′.max gpsi ≤ dG,s
i .

3. T (s′)− T (si) ≤ µG + d.

Proof. We prove each part of the lemma separately. Let ts = T (s), t = T (s′), t = (b t−d
µG c)µG,

ti = T (si), and g = s′.max gps.

1. Since t > τ1, we have

t > (bτ1 − d

µG
c)µG = (b ts

µG
c+ 1)µG ≥ ts.

Also, we have t− d ≥ b t−d
µG cµG = t, and so t− t ≥ d.

By assumption, we have V s
G 6= ∅. Choose an arbitrary j ∈ V s

G. Since t is an integral multiple of

µG, then by part 1 of Assumption 1, gps(t)j occurs at time t. Also, since t > ts, then gps(t)j

occurs after the stabilization point s, and so by part 3 of Assumption 1, gps(t)i occurs no later

than time t + d ≤ t. Thus, we have g ≥ t, and the first part of the lemma follows.

2. By part 1 of the lemma, we have g ≥ t. Since t > ts, then it follows from part 3 of Assumption

1 that gps(g)i occurs at most dG,s
i time after g. Thus, we have T (si)− g ≤ dG,s

i .

3. Since g ≥ t by part 1 of the lemma, and gps(g)∗ does not occur before time g, then we have

ti ≥ t. Now, we have

t + µG + d = (b t− d

µG
c+ 1)µG + d ≥ t− d + d = t.

Thus, we get t− ti ≤ t− t ≤ µG + d.

2

67

We now prove a lower bound on the external accuracy of Synch. The following theorem says

that if we consider any point sufficiently long after an execution stabilizes at a point s, then the

difference between real time and the logical clock value of any node i is at most a linear function of

µG and dG,s
i .

Theorem 3.8.2 (External Accuracy Lower Bound) Let α be an execution of Synch, let s be

a state occurrence in α such that α is stable after s, and suppose V s
G 6= ∅. Let i ∈ V s, τ1 =

(bT (s)
µG c+1)µG+dG,s

i , and let s′ be a state occurrence such that T (s′) > τ1. Then we have s′.logicali ≥
T (s′)− (ρµG + (1 + ρ)dG,s

i).

Proof. The main idea of the proof is that after α has stabilized for sufficiently long, i gets a

GPS input at least once every µG + dG,s
i time, and so i can refresh its value of locali(max gpsi).

In addition, since the execution has stabilized, i receives a GPS input at most dG,s
i time after it

is sent from a source. Thus, since logicali ≥ locali(max gpsi), i’s logical clock is never more than

ρ(µG + dG,s
i) + dG,s

i = ρµG + (1 + ρ)dG,s
i behind real time.

Formally, let g = s′.max gpsi, and let si be the first state occurrence in α such that si.max gpsi =

g. Then for all state occurrences s′′ between si and s′, we have s′′.max gpsi = g. By inspection of

Synch, we have si.(locali(g)) = g. Then, since locali(g) increases at a rate of at least 1− ρ between

si and s′, we get

s′.(locali(g)) ≥ g + (T (s′)− T (si))(1 − ρ)

≥ T (s′)− T (si) + g − (T (s′)− T (si))ρ

≥ T (s′)− dG,s
i − (µG + dG,s

i)ρ

= T (s′)− (ρµG + (1 + ρ)dG,s
i).

The last inequality follows because T (si)− g ≤ dG,s
i and T (s′)−T (si) ≤ µG + dG,s

i by Lemma 3.8.1.

2

Before proving an upper bound on the external accuracy of Synch, we first prove two lemmas.

The first lemma says the following. Suppose an execution is stable after a state occurrence s. Let

s′ be another state occurring sufficiently long after s, let S be the set of all state occurrences up to

and including s′, and let s0 ∈ S. Consider any local or global clock value based on a GPS value

g ≤ T (s). Then in state s0, that clock value is at most T (s′).

Lemma 3.8.3 Let α be an execution of Synch, let s be a state occurrence in α such that α is stable

after s, and suppose V s
G 6= ∅. Let

D = max
i∈V s

dG,s
i , τ2 = (bT (s)

µG
c+ 1)µG + D, τ3 = (1 + ρ)τ2.

68

Let s′ be a state occurrence in α such that T (s′) > τ3, and let S be the set of all state occurrences

in α up to and including s′. Then we have

max
s0∈S,i∈V,g≤T (s)

max(s0.(locali(g)), s0.(globali(g))) ≤ T (s′).

Proof. The basic idea for the proof is the following. τ2 is defined so that any node that is alive

after s will receive at least one GPS input between s and τ2. Such a GPS input causes the node to

stop any local or global clock it has based on a GPS value g < T (s). So, after time τ2, the maximum

value of any local or global clock based on a g < T (s) is τ2(1 + ρ) = τ3 < T (s′), and so the lemma

holds.

Formally, fix s0 ∈ S, i ∈ V , and g ≤ T (s). Consider two cases, either i 6∈ V s, or i ∈ V s.

If i 6∈ V s, then since locali(g) and globali(g) increase at a rate of at most 1 + ρ during the time

interval [0, T (s)], we have

max(s0.locali(g), s0.globali(g) ≤ T (s)(1 + ρ)

< τ2(1 + ρ)

< T (s′).

Thus, if i 6∈ V s, then the lemma holds.

If i ∈ V s, then let τ ′2 = τ2 − D = (bT (s)
µG c + 1)µG. Choose an arbitrary j ∈ V s

G. By part 1 of

Assumption 1, gps(τ ′2)j occurs at time τ ′2. Since τ ′2 > T (s), then by part 3 of Assumption 1, gps(τ ′2)i′

occurs no later than time τ ′2 + D ≤ τ2, for every i′ ∈ V s. So, for any state occurrence s′′ such that

T (s′′) > τ2, we have s′′.max gpsi′ ≥ τ ′2 > T (s) ≥ g. Thus, we see that every i′ ∈ V s stops locali′(g)

and globali′(g) after time τ2. From this, and from the fact that the rate of increase of locali′(g) and

globali′(g) in any trajectory is at most 1 + ρ during the time interval [0, τ2], we get that

s0.locali′(g) ≤ (1 + ρ)τ2 = τ3 < T (s′), s0.globali′(g) ≤ (1 + ρ)τ2 = τ3 < T (s′).

Setting i′ = i, the lemma is proved. 2

The next lemma says the following. Suppose an execution is stable after a state occurrence s.

Let s′ be another state occurring sufficiently long after s, let S be the set of all state occurrences up

to and including s′, and let s0 ∈ S. Consider any local or global clock value based on a GPS value

g > T (s). Then in state s0, that clock value is at most T (s′)+ ρ(µG +D), where D is the maximum

distance from any live node to a GPS source after s.

Lemma 3.8.4 Let α be an execution of Synch, let s be a state occurrence in α such that α is stable

69

after s, and suppose V s
G 6= ∅. Let

D = max
i∈V s

dG,s
i , τ2 = (bT (s)

µG
c+ 1)µG + D, τ3 = (1 + ρ)τ2.

Let s′ be a state occurrence in α such that T (s′) > τ3, and let S be the set of all state occurrences

in α up to and including s′. Then we have

max
s0∈S,i∈V,g>T (s)

max(s0.(locali(g)), s0.(globali(g))) ≤ T (s′) + ρ(µG + D).

Proof. The basic idea for the proof is the following. After s, the live GPS sources will send a

GPS value once every µG time. Any such message takes at most D time to arrive at a live node.

Thus, every node alive after s receives a new GPS value at least once every µG + D time. In the

intervening time, its local or global clock (based on a g > T (s)) can exceed real time by at most

ρ(µG + D). Thus, the lemma follows.

Formally, fix s0 ∈ S, i ∈ V and g > T (s). Consider two cases, either i 6∈ V s, or i ∈ V s. In the first

case, using the same reasoning as in Lemma 3.8.4, we have max(s0.(locali(g)), s0.(globali(g)) ≤ T (s′),

and so the lemma holds.

Next, suppose i ∈ V s. Let s1 be the first state occurrence in α such that there exists j ∈ V s such

that s1.max gpsj = g. It suffices to consider s0 occurring after s1, since otherwise g 6∈ keysi(s0),

and we have locali(g) = −1 and globali(g) = −1. Consider two cases, either g ≥ T (s′)−D− µG, or

g < T (s′)−D − µG.

Suppose first that g ≥ T (s′)−D − µG. Then we have

max(s0.locali(g), s0.globali(g)) ≤ g + (T (s0)− T (s1))(1 + ρ)

≤ g + (T (s′)− T (s1))(1 + ρ)

≤ T (s1) + T (s′)− T (s1) + ρ(T (s′)− T (s1))

≤ T (s′) + ρ(T (s′)− g)

≤ T (s′) + ρ(D + µG).

The second inequality follows because s0 occurs no later than s′. The third and fourth inequalities

both follow because T (s1) ≥ g, by part 2 of Assumption 1. The last inequality follows because we

assumed g ≥ T (s′)−D − µG. Thus, the lemma holds when g ≥ T (s′)−D − µG.

Next, suppose g < T (s′) − D − µG. Let g′ = g + µG < T (s′), and let s2 be the first state

occurrence in α such that for all j ∈ V s, we have s2.max gpsj ≥ g′. Then, for every j ∈ V s, j does

not start to run localj(g) or globalj(g) before s1, and j stops localj(g) and globalj(g) no later than

s2. We claim that T (s2)− T (s1) ≤ µG + D. Indeed, we have that for every j ∈ V s, gps(g′)j occurs

70

no later than time g′ + D = g + µG + D ≤ T (s1) + µG + D. These facts implies that

max(s0.locali(g), s0.globali(g)) ≤ g + (T (s2)− T (s1))(1 + ρ)

≤ g + T (s2)− T (s1) + ρ(T (s2)− T (s1))

≤ g + µG + D + ρ(µG + D)

≤ T (s′) + ρ(µG + D).

The last inequality follows because we assumed g < T (s′)−D−µG. Thus, the lemma is proved. 2

We now prove an upper bound on the external accuracy of Synch. The following theorem says

that if we consider any point sufficiently long after an execution stabilizes at a point s, then the

difference between the logical clock value of any node and real time is at most a linear function of

µG and D, where D is the maximum distance from any live node to a live GPS source after s.

Theorem 3.8.5 (External Accuracy Upper Bound) Let α be an execution of Synch, let s be

a state occurrence in α such that α is stable after s, and suppose V s
G 6= ∅. Let

i ∈ V s, D = max
j∈V s

dG,s
j , τ2 = (bT (s)

µG
c+ 1)µG + D, τ3 = (1 + ρ)τ2.

Let s′ be a state occurrence such that T (s′) > τ3. Then we have s′.logicali ≤ T (s′) + ρ(µG + D).

Proof. By definition, we have s′.logicali = max(s′.locali(s
′.max gpsi), s

′.globali(s
′.max gpsi), s

′.mpasti).

By Lemmas 3.8.3 and 3.8.4, we have s′.locali(s
′.max gpsi) ≤ T (s′)+ρ(µG+D), and s′.globali(s

′.max gpsi) ≤
T (s′) + ρ(µG + D). Let S be the set of all state occurrences in α up to and including s′. Then by

Lemma 3.7.3, we have

s′.mpasti ≤ max
s0∈S,j∈V,g∈R+

max(s0.(localj(g)), s0.(globalj(g))).

In light of Lemmas 3.8.3 and 3.8.4, the latter quantity is at most T (s′) + ρ(µG + D). From these, it

follows that s′.logicali ≤ T (s′) + ρ(µG + D). 2

3.9 Proof of Gradient Accuracy of Synch

In this section, we bound the gradient accuracy of Synch. Let α be an execution that is stable after

a state occurrence s, let state s′ occur after s, and let i and j be two nodes that are alive after s.

Consider the earliest state occurrence si (resp., sj) in which last synci (resp., last syncj) was set

to its value in s′. The following theorem says that if si and sj both occur after s, and at least ds
i,j

time before s′, and if mpasti = mpastj in s′, then the clock skew between i and j in s′ is bounded

by a linear function of µS and ds
i,j .

71

Theorem 3.9.1 (Gradient Accuracy) Let α be an execution of Synch, and let s be a state oc-

currence in α such that α is stable after s. Let i, j ∈ V s, let s′ be a state occurrence in α after s,

and suppose that the following hold.

1. Let si be the first state occurrence in α such that si.last synci = s′.last synci. Then we

have T (si) ∈ (T (s), T (s′)− ds
i,j).

2. Let sj be the first state occurrence in α such that sj .last syncj = s′.last syncj. Then we

have T (sj) ∈ (T (s), T (s′)− ds
i,j).

3. s′.mpasti = s′.mpastj.

Then we have |s′.logicali − s′.logicalj| ≤ µS 4ρ
1−ρ2 + ds

i,j
(1−ρ)2

1+ρ .

Notice that si and sj are well defined, and that si and sj both occur no later than s′.

Before giving the proof of Theorem 3.9.1, we first discuss its significance. Since the theorem

makes assumptions about the times of occurrence of certain events and the values of some variables

in certain states, it is not a priori clear under what conditions, if any, these assumptions are satisfied.

We now argue that in “typical” situations, these assumptions are “usually” satisfied. Let Ds =

maxi,j∈V s ds
i,j be the maximum distance between any pair of live nodes after stabilization. By

typical, we mean a situation in which Ds � µS � µG. We claim that this assumption is satisfied

in most practical situations. Indeed, Ds is likely to be on the order of seconds in practice; µS may

be on the order of hundreds of seconds, and still permit nodes to maintain milliseconds clock skew

relative to each other, assuming typical hardware clocks; lastly, µG can be on the order of hours,

while still permitting nodes to maintain sub-second accuracy with respect to real time, which may

suffice for many purposes.

Assuming Ds � µS � µG, all nodes alive after s will usually have the same max gps value,

because GPS inputs occur infrequently. In this case, we observe that Synch works approximately

like a round based flooding algorithm, where in each round, the node(s) with the highest value of

local(max gps) performs a sync action, which propagates through the entire network in at most

Ds time. Suppose the propagation for a round finishes at a time t. Then we see that in any state

occurring after time t+Ds, and before the start of the next synchronization round, the assumptions

of Theorem 3.9.1 are satisfied, since each live node received its latest synchronization information

at least Ds time ago, and all live nodes have the same value of mpast. Now, the time between two

synchronization rounds is at least µS

1+ρ , assuming a GPS input does not occur within the round.

Thus, the assumptions of Theorem 3.9.1 are satisfied for at least µS

1+ρ − 2Ds time in every round,

where one factor of Ds is for flooding the synchronization messages, and the other factor of Ds is

to ensure each live node receives its latest synchronization information at least Ds time ago. From

this, we get that if Ds � µS � µG, then the assumptions of Theorem 3.9.1 are satisfied at least

72

1 − 2(1+ρ)Ds

µS ≈ 1 fraction of the time, after an execution stabilizes, and between two GPS inputs.

Thus, the skew between a pair of nodes is linear in their distance “most” of the time.

We now prove Theorem 3.9.1. We first give an overview of the proof. Let (gi, ci) = si.last synci =

s′.last synci, and (gj, cj) = sj .last syncj = s′.last syncj . The main idea of the proof is

that (gi, ci) captures i’s latest synchronization information before s′. In particular, we have gi =

s′.max gpsi = si.max gpsi, ci = si.(locali(gi)), and i does not perform another event causing it

to increase max gpsi or locali(max gpsi) between si and s′. This lets us lower and upper bound

s′.logicali in terms of ci, T (s′) − T (si), and also s′.mpasti. Similarly, (gj , cj) captures j’s latest

synchronization information before s′.

Now, since si and sj both occur after s, and at least ds
i,j time before s′, then i and j have time

to exchange their latest synchronization information before s′, and so we have (gi, ci) = (gj , cj).

This then lets us upper bound |s′.logicali − s′.logicalj| in terms of T (s′) − T (si), T (s′) − T (sj),

|T (si) − T (sj)|, and |s′.mpasti − s′.mpastj |. The final quantity is 0, by assumption. T (s′) − T (si)

is the amount of time since i performed its last synchronization event before s, so we can show this

is at most µS

1−ρ . Similarly, T (s′)− T (sj) ≤ µS

1−ρ . Finally, |T (si)− T (sj)| is the amount of time for i

and j to exchange their latest synchronization information, and so |T (si)−T (sj)| ≤ ds
i,j , because si

and sj both occur after s. From these, the bound on the clock skew between i and j at s′ follows.

We now present the formal proof. For the remainder of this section, fix an arbitrary execution

α of Synch, and let nodes i and j, and state occurrences s, s′, si and sj satisfy the assumptions in

Theorem 3.9.1. Then we prove that |s′.logicali − s′.logicalj| ≤ µS 4ρ
1−ρ2 + ds

i,j
(1−ρ)2

1+ρ . From this, the

theorem follows. We begin with the following definitions and lemmas.

Recall that (gi, ci) = s′.last synci, and (gj , cj) = s′.last syncj . Also, let σi (resp., σj) be

the event immediately preceding si (resp., sj). Since si is the first state in which last synci =

(gi, ci), then we see by inspection of Synch that σi must either be gps(gi)i, or an event of the

form recv(gi, ci, ∗)∗,i or sync(gi, ci, ∗)i. Also, σj must either be gps(gj)j , or an event of the form

recv(gj , cj , ∗)∗,j or sync(gj, cj , ∗)j .

The following lemma states that gi equals the value of max gpsi in states si and s′, and ci equals

the value of locali(gi) in state si. The lemma also gives upper and lower bounds for the value of

locali(gi) and globali(gi) in state s′ in terms of ci and T (s′)− T (si).

Lemma 3.9.2 We have the following.

1. gi = si.max gpsi = s′.max gpsi.

2. ci = si.(locali(gi)).

3. s′.(locali(gi)) ≤ ci + (T (s′)− T (si))(1 + ρ).

4. s′.(globali(gi)) ≤ ci + (T (s′)− T (si))(1− ρ).

73

5. s′.(globali(gi)) ≥ ci + (T (s′)− T (si))
(1−ρ)2

1+ρ .

Proof. We prove each part of the lemma separately.

1. By inspection of Synch, we see that the first coordinate of last synci equals the value

of max gpsi, in any state occurrence. Thus, since (gi, ci) = s′.last synci, we have gi =

s′.max gpsi. Also, since si is the first state occurrence in which last synci = (gi, ci), we have

gi = si.max gpsi.

2. Again by inspection, we see that in any state occurrence s0 of α, the second coordinate of

last synci is equal to the value of locali(max gpsi) after the last event before s0 that modified

last synci. Thus, since the last event that modified last synci before s′ is σi, we have

ci = si.(locali(si.max gpsi)) = si.(locali(gi)).

3. By the first two parts of the lemma, we have gi = si.max gpsi and ci = si.(locali(gi)). Also, i

does not receive any synchronization events that increase the value of locali(gi) between si and

s′, and so locali(gi) increases only in the trajectories of i between si and s′. Thus, since the rate

of increase of hardwarei is at most 1 + ρ, we have s′.(locali(gi)) ≤ ci + (T (s′)− T (si))(1 + ρ).

4. Since globali(gi) increases at a rate of 1−ρ
1+ρ times i’s hardware clock rate, then by the same

argument as in part 3, we have s′.(locali(gi)) ≤ ci + (T (s′)− T (si))(1 + ρ)1−ρ
1+ρ = ci + (T (s′)−

T (si))(1 − ρ).

5. Since gi = si.max gpsi = s′.max gpsi and max gpsi never decreases, then the value of

max gpsi is gi in any state occurrence between si and s′. Thus, since si.(locali(gi)) = ci

and hardwarei increases at a rate of at least 1 − ρ, we have s′.(locali(gi)) ≥ ci + (T (s′) −
T (si))(1 − ρ)1−ρ

1+ρ = ci + (T (s′)− T (si))
(1−ρ)2

1+ρ .

2

By using the same arguments as in Lemma 3.9.2, applied to node j, we get the following corollary.

Corollary 3.9.3 We have the following.

1. gj = sj .max gpsj = s′.max gpsj.

2. cj = sj .(localj(gj)).

3. s′.(localj(gj)) ≤ cj + (T (s′)− T (sj))(1 + ρ).

4. s′.(globalj(gj)) ≤ cj + (T (s′)− T (sj))(1 − ρ).

5. s′.(globalj(gj)) ≥ cj + (T (s′)− T (sj))
(1−ρ)2

1+ρ .

74

The next lemma says that last synci and last syncj are equal in s′, that si and sj occur at

most ds
i,j time apart, and that s′ occurs at most µS

1−ρ time after si or sj .

Lemma 3.9.4 We have the following.

1. (gi, ci) = (gj, cj).

2. |T (si)− T (sj)| ≤ ds
i,j.

3. T (s′)− T (si) ≤ µS

1−ρ , and T (s′)− T (sj) ≤ µS

1−ρ .

Proof. We prove each part of the lemma separately.

1. The main idea of the proof is that since i and j both received their latest synchronization

information (in events σi and σj , resp.) after the stabilization point s, and at least ds
i,j time

before s′, then they will propagate their information to each other, and have the same latest

synchronization information in s′. Thus, we have (gi, ci) = (gj , cj).

Formally, consider two cases, either σi = gps(gi)i, or σi is an event of the form recv(gi, ci, ∗)∗,i
or sync(gi, ci, ∗)i.

Suppose first that σi = gps(gi)i. Since T (si) > T (s) by the first assumption of Theorem 3.9.1,

then by part 3 of Assumption 1, gps(gi)j occurs no later than time T (si)+ds
i,j < T (s′). Let s′j

be the state immediately after this occurrence of gps(gi)j , so that s′j occurs before s′. Then by

inspection of Synch, we see that either s′j .max gpsj = gi and s′j .(localj(s
′
j .max gpsj)) ≥ ci,

or s′j .max gpsj > gi. From this, we get that either gj = gi and cj ≥ ci, or gj > gi.

Next, suppose that σi is an event of the form recv(gi, ci, ∗)∗,i or sync(gi, ci, ∗)i. Then since

nodes propagate the synchronization messages they receive, we see that recv(gi, ci, ∗)∗,j oc-

curs no later than time T (si) + ds
i,j < T (s′). Let s′j be the state immediately after this

occurrence of recv(gi, ci, ∗)∗,j . Then again, s′j occurs before s′, and either s′j.max gpsj = gi

and s′j .(localj(s
′
j .max gpsj)) ≥ ci, or s′j.max gpsj > gi. Thus, we again have either gj = gi

and cj ≥ ci, or gj > gi.

The arguments above show that in all cases, we either have gj = gi and cj ≥ ci, or gj > gi.

By reversing the roles of i and j, we also get that either gi = gj and ci ≥ cj , or gi > gj . So,

by combining these two facts, we get that (gi, ci) = (gj , cj).

2. We first prove that T (sj) − T (si) ≤ ds
i,j . Consider two cases, either σi = gps(gi)i, or σi is an

event of the form recv(gi, ci, ∗)∗,i or sync(gi, ci, ∗)i.

Suppose first that σi = gps(gi)i. Then by inspection of Synch, we see that gi = ci. Since gi =

gj and ci = cj by the first part of the lemma, we also have gj = cj. Since T (si) > T (s), then

gps(gi)j occurs no later than time T (si) + ds
i,j , and so because sj is the first state occurrence

75

in which last syncj = (gj , cj) = (gi, gi), sj also occurs no later than time T (si) + ds
i,j . Thus,

we have T (sj)− T (si) ≤ ds
i,j .

Next, suppose that σi is an event of the form recv(gi, ci, ∗)∗,i or sync(gi, ci, ∗)i. Then since

nodes propagate synchronization messages, we get that recv(gi, ci, ∗)∗,j occurs no later than

time T (si) + ds
i,j . Thus, since (gi, ci) = (gj , cj), we have that sj occurs no later than time

T (si) + ds
i,j , and so again T (sj)− T (si) ≤ ds

i,j .

The arguments above show that in all cases, we have T (sj) − T (si) ≤ ds
i,j . By reversing the

roles of i and j, we also get that T (si) − T (sj) ≤ ds
i,j . Thus, the second part of the lemma

follows.

3. We first prove that T (s′) − T (si) ≤ µS

1−ρ . Suppose for contradiction that T (s′) − T (si) >

µS

1−ρ . Then during the last µS

1−ρ time before s′, no event of the form gps(g)i, sync(g, c, ∗)i or

recv(g, c, ∗)∗,i occurred, for any g > gi, or g = gi and c > ci. But since gi = si.max gpsi =

s′.max gpsi and ci = si.(locali(gi)) by Lemma 3.9.2, then by inspection of Synch, we see that

locali(gi) increased by at least (1 − ρ) µS

1−ρ = µS during the last µS

1−ρ time before s′, so that i

performed at least one event of the form sync(gi, c, ∗)i, for some c > ci, in the last µS

1−ρ time

before s′. This is a contradiction. So, we have T (s′)− T (si) ≤ µS

1−ρ .

By applying the same arguments to j, we also get that T (s′)−T (sj) ≤ µS

1−ρ . Thus, the lemma

is proved.

2

We now use the above lemmas to prove Theorem 3.9.1.

Proof of Theorem 3.9.1. We first prove that s′.logicali−s′.logicalj ≤ µS 4ρ
1−ρ2 +ds

i,j
(1−ρ)2

1+ρ . Let

∆i,j = s′.logicali − s′.logicalj. Then we have the following.

∆i,j = max(s′.locali(gi), s
′.globali(gi), s

′.mpasti)−max(s′.localj(gj), s
′.globalj(gj), s

′.mpastj)

= max(s′.locali(gi), s
′.globali(gi))−max(s′.localj(gj), s

′.globalj(gj))

≤ max(s′.locali(gi), s
′.globali(gi))− s′.globalj(gj)

≤ ci + (T (s′)− T (si))(1 + ρ)− (cj + (T (s′)− T (sj))
(1 − ρ)2

1 + ρ
)

≤ ci + (T (s′)− T (si))(1 + ρ)− (ci + (T (s′)− T (sj))
(1− ρ)2

1 + ρ

= (T (s′)− T (si))(1 + ρ− (1− ρ)2

1 + ρ
) + (T (si)− T (sj))

(1 − ρ)2

1 + ρ

≤ µs 4ρ

1− ρ2
+ ds

i,j

(1− ρ)2

1 + ρ
.

The first equality follows by the definition of logicali and logicalj, and because gi = s′.max gpsi

and gj = s′.max gpsj by part 1 of Lemma 3.9.2 and Corollary 3.9.3. The second equality follows

76

because s′.mpasti = s′.mpastj , by the third assumption of the theorem. The second inequality

follows by parts 3 and 4 of Lemma 3.9.2, and part 5 of Corollary 3.9.3. The third inequality

follows because ci = cj , by part 1 of Lemma 3.9.4. The last equality follows by simplification.

Finally, the last inequality follows because T (s′) − T (si) ≤ µS

1−ρ , by part 3 of Lemma 3.9.4, and

T (si)−T (sj) ≤ ds
i,j , by part 2 of Lemma 3.9.4. Thus, we have shown that s′.logicali− s′.logicalj ≤

µS 4ρ
1−ρ2 + ds

i,j
(1−ρ)2

1+ρ . By using the same arguments with the roles of i and j reversed, we also have

s′.logicalj − s′.logicali ≤ µS 4ρ
1−ρ2 + ds

i,j
(1−ρ)2

1+ρ . Thus, the theorem is proved. 2

77

Chapter 4

Mutual Exclusion

4.1 Introduction

In the mutual exclusion (mutex) problem, a set of processes communicating via shared memory

access a shared resource, with the requirement that at most one process can access the resource at

any time. Mutual exclusion is a fundamental primitive in many distributed algorithms, and is also

a foundational problem in the theory of distributed computing. Numerous algorithms for solving

the problem in a variety of cost models and hardware architectures have been proposed over the

past four decades. In addition, a number of recent works have focused on proving lower bounds

for the cost of mutual exclusion. The cost of a mutex algorithm may be measured in terms of the

number of memory accesses the algorithm performs, the number of shared variables it accesses, or

other measures reflective of the performance of the algorithm in a multicomputing environment.

In this chapter, we introduce a new state change cost model, based on a simplification of the

standard cache coherent model [4], in which an algorithm is charged for performing operations that

change the system state. Let a canonical execution be any execution in which n different processes

each enter the critical section (i.e., accesses the shared resource) exactly once. We prove that any

deterministic mutex algorithm using registers must incur a state change cost of Ω(n log n) in some

canonical execution. This lower bound is tight, as the algorithm of Yang and Anderson [40] has

O(n log n) cost in all canonical executions with our cost measure. To prove the result, we introduce

a novel technique which is information theoretic in nature. We first argue that in each canonical

execution, processes need to cumulatively acquire a certain amount of information. We then relate

the amount of information processes can obtain by accessing shared memory to the cost of those

accesses, to obtain a lower bound on the cost of the mutex algorithm.

We conjecture that this informational proof technique can be adapted to prove Ω(n log n) cost

lower bounds for mutual exclusion in the cache coherent and distributed shared memory [4] cost

78

models1, and in shared memory systems in which processes have access to shared objects more

powerful than registers. Furthermore, the informational viewpoint may be useful in studying lower

bounds for other distributed computing problems.

We now give a brief description of our proof technique. Intuitively, in order for n processes to

all enter the critical section without colliding, the “visibility graph” of the processes, consisting of

directed edges going from each process to all the other processes that it “sees”, must contain a

directed chain on all n processes. Indeed, if there exist two processes, neither of which has an edge

to (sees) the other, then both processes could enter the critical section at the same time. To build

up this directed n-chain during an execution, the processes must all together acquire Ω(n log n) bits

of information, enough to specify the permutation on the n process indices corresponding to the

n-chain. We show that in some canonical executions, each time the processes perform some memory

accesses with cost C, they gain only O(C) bits of information. This implies that in some canonical

executions, the processes must incur Ω(n log n) cost. To formalize this intuition, we construct, for

any permutation π ∈ Sn, an equivalence class (i.e., a set) of executions Aπ, such that for any α ∈ Aπ,

a process ordered lower in π does not see any processes ordered higher in π23. In any α ∈ Aπ , we can

show that the processes must enter their critical sections in the order specified by π. This implies

that for permutations π1 6= π2, we have Aπ1 ∩Aπ2 = ∅. We can show that all executions in Aπ have

the same cost, say Cπ. We then show that we can encode Aπ using O(Cπ) bits. Since Aπ1 ∩Aπ2 = ∅
for π1 6= π2, and since it takes Ω(n log n) bits to identify some π ∈ Sn, then there must exist some

π for which Cπ = Ω(n log n).

The remainder of this chapter is organized as follows. In Section 4.2, we describe related work on

mutual exclusion and other lower bounds. In Section 4.3, we formally define the mutual exclusion

problem and the state change cost model. We give a detailed overview of our proof in Section 4.4. In

Section 4.5, we present an adversary that, for every π ∈ Sn, constructs a set of executions Aπ, such

that all executions in the set have cost Cπ . We prove correctness properties about this construction

algorithm in Section 4.6, and show some additional properties about the construction in Section

4.7. We then show in Section 4.8 how to encode Aπ as a string Eπ of length O(Cπ), and prove this

encoding is correct in Section 4.9. In Section 4.10, we show Eπ uniquely identifies some απ ∈ Aπ,

by presenting a decoding algorithm that recovers απ from Eπ. The decoding algorithm is proved

correct in Section 4.11. Our main lower bound result, which follows from this unique decoding, is

presented in Section 4.12.

1At a high level, the cache coherent and distributed shared memory cost models assign costs to executions of a
mutex algorithm based on the locality of the shared objects accessed: it is cheaper for a process to access a nearby
object than a faraway one. The state change cost model can be interpreted as assigning costs in a similar way. All
three cost models are discussed and compared in Section 4.3.3.

2A process is ordered lower in π if it appears earlier in π. For example, if π = (4213), so that 1 maps to 4, 2 maps
to 2, etc., then 4 is ordered lower in π than 1.

3The reason that we construct an equivalence class Aπ, instead of constructing one particular α ∈ Aπ, is explained
in Section 4.5.

79

The results described in this chapter appeared earlier in [15].

4.2 Related Work

Mutual exclusion is a seminal problem in distributed computing. Starting with Dijkstra’s work in

the 1960’s, research in mutual exclusion has progressed in response to, and has sometimes driven,

changes in computer hardware and the theory of distributed computing. For interesting accounts of

the history of this problem, we refer the reader to the excellent book by Raynal [34] and survey by

Anderson, Kim and Herman [4].

The performance of a mutual exclusion algorithm depends on a variety of factors. An especially

relevant factor for modern computer architectures is memory contention. In [1], Alur and Taubenfeld

prove that for any nontrivial mutual exclusion algorithm, some process must perform an unbounded

number of memory accesses to enter its critical section. This comes from the need for some processes

to busywait until the process currently in the critical section exits. Therefore, in order for a mutex

algorithm to scale, it must ensure that its busywaiting steps do not congest the shared memory.

Local-spin algorithms were proposed in [19] and [29], in which processes busywait only on local

or cached variables, thereby relieving the gridlock on main memory. Local-spin mutex algorithms

include [40], [23] and [3], among many others. In particular, the algorithm of Yang and Anderson

[40] performs O(n log n) remote memory accesses in a canonical execution in which n processes

each complete their critical section once. A remote memory access is the unit of cost in local spin

algorithms. The cost of the YA algorithm is computed by “discounting” busywaiting steps on local

variables. That is, several local busywaiting steps may be charged only once.

A number of lower bounds exist on the number of shared memory objects an algorithm needs to

solve mutual exclusion [8]. Recently, considerable research has focused on proving time complexity

(number of remote memory accesses) lower bounds for the problem. Cypher [9] first proved that

any mutual exclusion algorithm must perform Ω(n log log n
log log log n) total remote memory accesses in some

canonical execution. An improved lower bound by Anderson and Kim [2] showed that there exists

an execution in which some process must perform at least Ω(log n
log log n) remote memory accesses.

However, this result does not give a nontrivial lower bound for the total number of remote memory

accesses performed by all the processes in a canonical execution. The techniques in these papers

involve keeping the set of processes contending for the critical section “invisible” from each other, and

eliminating certain processes when they become visible. Our technique is fundamentally different,

because we do not require all processes to be invisible to each other. Instead, in the executions

we construct, there is a permutation of the n processes such that processes indexed higher in the

permutation can see processes indexed lower, but not vice versa. Instead of eliminating visible

processes, we keep track of the amount of information that the processes have acquired. Additionally,

80

in the adversarial execution constructed in [2], processes execute mostly in lock step, where as in our

construction, the execution of processes adapts adversarially to the mutex algorithm against which

we prove our lower bound, reminiscent of diagonalization arguments. Information-based arguments

of a different nature than ours have been used by Jayanti [21] and Attiya and Hendler [6], among

others, to prove lower bounds for other problems.

4.3 Model

In this section, we define the formal model for proving our lower bound. We first describe the general

computational model, then define the mutual exclusion problem, and the state change cost model

for computing the cost of an algorithm.

4.3.1 The Shared Memory Framework

In the remainder of this chapter, fix an integer n ≥ 1. For any positive natural number t, we use

[t] to denote the set {1, . . . , t}. A system consists of a set of processes p1, . . . , pn, and a collection L

of shared variables. Where it is unambiguous, we sometimes write i to denote process pi. A shared

variable consists of a type and an initial value. In this chapter, we restrict the types of all shared

variables to be multi-reader multi-writer registers. Let V be the set of values that the registers can

take, and assume that all registers start with some initial value v0 ∈ V . For each i ∈ [n], we define

a set Si representing the set of states that process pi can be in. We assume that pi is initially in a

state ŝi
0 ∈ Si. A system state is a tuple consisting of the states of all the processes and the values

of all the registers. Let S denote the set of all system states. A system starts out in the initial

system state ŝ0 ∈ S, defined by the initial states of all the processes and the initial values of all

the registers. Given a system state s, let st(s, i) denote the state of process pi in s, and let st(s, `)

denote the value of register ` in s.

Let i ∈ [n], and let Ei denote the set of actions that pi can perform to interact with the shared

memory and the external environment. We call each e ∈ Ei a step by pi. e can be one of two types,

either a shared memory access step, or a critical step. Critical steps are specific to the mutual

exclusion problem, and will be described in Section 4.3.2. Here, we describe the shared memory

access steps. Let ` ∈ L and v ∈ V . Then there exists a step readi(`) ∈ Ei, representing a read

by pi of register `. We write proc(readi(`)) = i, indicating that pi performs this step, and we

write reg(readi(`)) = `, indicating that the step accesses `. There also exists a step writei(`, v) ∈ Ei,

representing a write by pi of value v to register `. We write proc(writei(`, v)) = i, reg(writei(`, v)) = `,

and val(writei(`, v)) = v, to indicate that this step writes value v. Given a step e of the form readi(·),
and a step e′ of the form writei(·, ·), we say that e is a read step by pi, and e′ is a write step by pi.

Let E =
⋃

i∈[n] Ei, and S =
⋃

i∈[n] Si. A state transition function is a (deterministic, partial)

81

function ∆ : S ×E × [n]→ S, describing how any process changes its state after performing a step.

More precisely, let s ∈ S, i ∈ [n] and e ∈ Ei. Then if pi performs e in system state s, its resulting

state is ∆(s, e, i) ∈ Si. For example, if e is a read step by i on register `, then ∆(s, e, i) is pi’s

state after it reads value st(s, `) while in state st(s, i). A step transition function is a (deterministic,

partial) function δ : S × [n]→ E. Let i ∈ [n] and s ∈ Si. Then δ(s, i) ∈ Ei is the next step that pi

will take if it is currently in state s.

An execution of a system consists of a (possibly infinite) alternating sequence of system states

and process steps, beginning with the initial system state. That is, an execution is of the form

ŝ0e1s1e2s2 . . ., where each si is a system state, and each ei is a step by some process. The state

changes and steps taken are consistent with ∆ and δ. That is, for any i ≥ 1, if ei is a step by process

pj , then we have

ei = δ(st(si−1, j), j), st(si, j) = ∆(si−1, ei, j), ∀k 6= j : st(si, k) = st(si−1, k). (4.1)

Here, we define s0 = ŝ0. Also, if ei has the form write·(`, v), for some ` ∈ L and v ∈ V , then we have

st(si, `) = v, ∀`′ 6= ` : st(si, `
′) = st(si−1, `

′). (4.2)

If ei has the form read·(·), then we have

∀` ∈ L : st(si, `) = st(si−1, `). (4.3)

We say an execution β is an extension of α if β contains α as a prefix. If α is finite, we define the

length of α, written len(α), to be the number of steps in α, and we define st(α) to be the final system

state in α. For i ∈ [n], let st(α, i) be the state of process pi in st(α), and for ` ∈ L, let st(α, `) be

the value of register ` in st(α). For i ∈ [n] and a step e by pi, we write ∆(α, e, i) = ∆(st(α), e, i)

for the state of pi after taking step e in the final state of α. Also, we write δ(α, i) = δ(st(α, i), i) for

the step pi takes after the final state in α. Given any algorithm A, we write execs(A) for the set of

executions of A.

So far, we have described an execution as an alternating sequence of system states and process

steps. Since the state and step transition functions that we consider are deterministic, there is an

equivalent and sometimes more convenient representation of an execution as simply its sequence

of process steps. We call an execution represented in this form a run. More precisely, let α =

ŝ0e1s1e2s2 . . . ∈ execs(A). Then we define run(α) = e1e2 We define the set of all runs of

A as runs(A) = {run(α) |α ∈ execs(A)}. Given α′ = e′1e
′
2 . . . ∈ runs(A), we write exec(α′) =

ŝ0e
′
1s
′
1e
′
2s
′
2 . . . for the execution corresponding to α′. Here, the states s′i, i ≥ 1, are defined using

Equations 4.1, 4.2 and 4.3. For any of the terminology we defined earlier that refer to executions,

82

we can define the same terminology with respect to a run α, by first converting α to the execution

exec(α). For example, if α ∈ runs(A) and i ∈ [n], then we define δ(α, i) = δ(exec(α), i) for the step

pi takes after the final state in exec(α). Sometimes we write a run e1e2 . . . as e1 ◦ e2 ◦ . . ., for visual

clarity.

We define a step sequence α = e1e2 . . . to be an arbitrary sequence of steps. We write spseq(A)

for the set of all step sequences, where any step in any step sequence is a step by some process

pi, i ∈ [n]. A step sequence is not necessarily a run, since the steps in the sequence may not appear

in any execution of A. Therefore, a step sequence, unlike a run, is not meant to represent an

execution. For any ` ∈ L, we say that a step sequence α accesses ` if some step in α either reads

or writes to `. We write acc(α) for the set of registers accessed by α. We say that a process i ∈ [n]

takes steps in α if at least one of the steps of α is a step by i. We write procs(α) to be the set of

processes that take steps in α.

Let α = e1e2 . . . be a run, and let t ≥ 0 be a natural number. Then we write α(t) = e1 . . . et

for the length t prefix of α. If t > len(α), then we define α(t) = α. Let α′ = e1e2 . . . et and

β = e′1e
′
2 . . . be two step sequences, where α′ is finite. We write the concatenation of α′ and β as

α ◦ β = e1e2 . . . ete
′
1e
′
2 Note that α′ ◦ β may or may not be a run. Sometimes we write α′β

instead of α′ ◦ β, for conciseness.

In a shared memory system, each process is aware only of its own state, and the values each

register took in all the past times it had read the register. The process may not be aware of the

current states of the other processes or the current values of the registers. This sometimes allows

us to infer the existence of certain runs of a shared memory algorithm, given the existence of some

other runs. In particular, we have the following.

Theorem 4.3.1 (Extension Theorem) Let A be an algorithm in a shared memory system, and

let α1, α2 ∈ runs(A). Let β ∈ spseq(A) be a step sequence such that α1β ∈ runs(A). Suppose that

the following conditions hold:

1. st(α1, i) = st(α2, i), for all i ∈ procs(β).

2. st(α1, `) = st(α2, `), for all ` ∈ acc(β).

Then α2β ∈ runs(A).

The Extension Theorem says that if α1, α2 and α1β are all runs of A, and if the final states in (the

executions corresponding to) α1 and α2 are identical in the states of all the processes that take steps

in β, and in the values of all registers accessed in β, then α2β is also a run of A. Notice that the

states of some processes or the values of some registers may indeed differ after α1 and α2. However,

as long as those processes do not take steps in β and those registers are not accessed in β, then

processes taking steps in β cannot tell the difference between α1 and α2. Based on this idea, we

now prove the theorem.

83

Proof of Theorem 4.3.1. Let β = e1e2 For visual clarity, we write, for k ≥ 0, βk in place of

β(k), as the length k prefix of β. Note that β0 = ε, the empty string. For any k ≥ 0, we prove the

following:

α2βk ∈ runs(A) (4.4)

∀i ∈ procs(β) : st(α1βk, i) = st(α2βk, i), ∀` ∈ acc(β) : st(α1βk, `) = st(α2βk, `). (4.5)

Equations 4.4 and 4.5 hold for k = 0, by the assumption of the theorem. We show that if it holds

up to k, then it holds for k + 1.

Suppose ek+1 is a step by process pi∗ , accessing register `∗. Since α1β ∈ runs(A), we have

δ(α1βk, i∗) = ek+1. Then, since st(α1βk, i∗) = st(α2βk, i∗) by the inductive hypothesis, we have

δ(α2βk, i∗) = ek+1. That is, since pi∗ has the same state after runs α1βk and α2βk, then it performs

the same step after α1βk and α2βk. Thus, we have α2βkek+1 = α2βk+1 ∈ runs(A), and so Equation

4.4 holds for k + 1.

Since α2βk+1 ∈ runs(A), then st(α2βk+1, i) and st(α2βk+1, `) are defined, for any i ∈ [n] and

` ∈ L. Now, since we have st(α1βk, `∗) = st(α2βk, `∗) by induction, we get that

st(α1βk+1, i
∗) = st(α1βkek+1, i

∗) = st(α2βkek+1, i
∗) = st(α2βk+1, i

∗),

st(α1βk+1, `
∗) = st(α1βkek+1, `

∗) = st(α2βkek+1, `
∗) = st(α2βk+1, `

∗).

The state of any process in procs(β) other than pi∗ does not change, and the value of any register in

acc(β) other than `∗ does not change. Thus, we have ∀i ∈ procs(β) : st(α1βk+1, i) = st(α2βk+1, i)

and ∀` ∈ acc(β) : st(α1βk+1, `) = st(α2βk+1, `). So, Equation 4.5 holds for k + 1, and the lemma

holds by induction. 2

We define the following notation for a permutation π ∈ Sn. We will write a permutation π as

(π1, π2, . . . , πn), meaning that 1 maps to π1 under π, 2 maps to π2, etc. We write π−1(i) for the

element that maps to i under π, for i ∈ [n]. We write i ≤π j if π−1(i) ≤ π−1(j); that is, i equals j,

or i comes before j in π. If S ⊆ [n], we write minπ S for the minimum element in S, where elements

are ordered by ≤π.

Let M be a set, and let � be a partial order on the elements of M . We can think of � equivalently

as a relation or a set. That is, if i, j ∈ M , then i � j if and only if (i, j) ∈�. Depending on the

context, one notation may be more convenient than the other. If ≤ is a total order on the elements

of M , then we say that ≤ is consistent with � if, for any i, j ∈ M such that i � j, we have i ≤ j.

Let N ⊆ M . Then we say N is a prefix of (M,�) if whenever we have m1, m2 ∈ M , m2 ∈ N and

m1 � m2, we also have m1 ∈ N . We define min(M,�) = {µ | (µ ∈ M) ∧ (6 ∃µ′ ∈ M : µ′ ≺ µ)} and

max�M = {µ | (µ ∈ M) ∧ (6 ∃µ′ ∈ M : µ ≺ µ′)} to be the set of minimal and maximal elements in

M , with respect to �. Note that we define min(∅,�) = max� ∅ = ∅.

84

For any set M , we define �(M) to be M if |M | 6= 1, and we define it to be m, if M = {m}. That is,

the diamond extracts the unique element in M , if M is a singleton set, and otherwise does nothing.

We define min�M = �(min(M,�)). Thus, min�M is the set of minimal elements in M , if there

is more than one minimal element, or no elements in M . If M contains a minimum element, then

min�M is simply that element. Note that max�M and min�M are defined somewhat differently,

in that max�M always returns a set, while min�M can return a set or an element. We adopt this

convention because it leads to somewhat simpler notation later.

4.3.2 The Mutual Exclusion Problem

Given a shared memory algorithmA, we say that A is a mutual exclusion algorithm if each process pi

can perform, in addition to its read and write steps, the following critical steps : tryi, enteri, exiti, remi.

For any critical step e ∈ {tryi, enteri, exiti, remi}i∈[n], we define type(e) = C. We define reg(e) =⊥.

We will assume that the only steps that pi can perform are its read, write and critical steps. That

is, we assume that

Ei = {tryi, enteri, exiti, remi} ∪
⋃

`∈L,v∈V

{readi(`), writei(`, v)}.

Given a run α ∈ runs(A), we say a process pi is in its trying section after α if its last critical

step in α is tryi. We say it is in its critical section after α if the last critical step is enteri. We say

it is in its exit section after α if the last critical step is exiti. Finally, we say it is in its remainder

section after α if the last critical step is remi, or pi performs no critical steps in α. Intuitively, a tryi

step is an indication by pi that it wants to enter the critical section. An enteri step indicates that

pi has entered the critical section, and exiti indicates that pi has exited the critical section. Finally,

a remi step indicates that pi has finished performing all the cleanup actions needed to ensure that

another process can safely enter the critical section.

We now define a fairness condition on runs of a mutual exclusion algorithm. The condition

roughly says that a run is fair if for every process, either the process ends in a state where it does

not want to enter the critical section, or, if the process wants to enter the critical section infinitely

often in the run, then it is given infinitely many steps to do so. Formally, we have the following.

Definition 4.3.2 Let α = e1e2 . . . ∈ runs(A). Then we say α is fair if for every process i ∈ [n],

we have the following.

1. If α is finite, then pi is in its remainder section at the end of α.

2. If α is infinite, then one of the following holds.

(a) pi takes no steps in α.

85

(b) There exists a j ≥ 1 such that ej = remi, and for all k > j, we have proc(ek) 6= i.

(c) pi takes an infinite number of steps in α.

We define fair(A) to be the set of fair runs of A.

We now define the correctness property for a mutual exclusion algorithm.

Definition 4.3.3 We say that a mutual exclusion algorithm A solves the mutual exclusion problem

if any run α = e1e2 . . . ∈ runs(A) satisfies the following properties.

• Well Formedness: Let pi be any process, and consider the subsequence γ of α consisting

only of pi’s critical steps. Then γ forms a prefix of the sequence tryi ◦ enteri ◦ exiti ◦ remi ◦ tryi ◦
enteri ◦ exiti ◦ remi . . . 4.

• Mutual Exclusion: For any t ≥ 1, and for any two processes pi 6= pj, if the last occurrence

of a critical step by pi in α(t) is enteri, then the last critical step by pj in α(t) is not enterj.

• Progress: Suppose α ∈ fair(A), and suppose there exists j ≥ 1 such that (∀k ≥ j)(∀i ∈ [n]) :

ek 6= tryi. Then α is finite.

The well formedness condition says that every process behaves in a syntactically correct way.

That is, if a process wishes to enter the critical section, it first enters its trying section, then enters

the critical section, exits, and finally enters its remainder section after it has performed all its cleanup

actions. The mutual exclusion property says that no two processes can be in their critical sections

at the same time. The progress property says that in any fair run α, if there is a point in α beyond

which no processes try to enter the critical section, then α is finite. By Definition 4.3.2, this means

that all processes that want to enter the critical section in α do so, and finish in their remainder

sections.

Our definition of progress is slightly different from the typical livelock-freedom or starvation-

freedom progress properties for mutual exclusion. If a set of processes try to enter the critical

section, then livelock-freedom requires that after a sufficiently large number of steps, some process

finishes its critical and remainder sections; starvation-freedom requires that every process finishes

its critical and remainder sections. Note that livelock-freedom is a weaker property than starvation-

freedom. Since we only consider canonical executions in which each process tries to enter the critical

section once, then we can see that any mutual exclusion algorithm satisfying livelock-freedom will

also satisfy our progress property, in canonical executions. Thus, a lower bound for algorithms

4Note that strictly speaking, A cannot guarantee well formedness, but merely preserve it. This is because, typically,
the steps tryi and exiti (for i ∈ [n]) are regarded as inputs from the environment. Thus, A can only ensure well
formedness if the environment executes tryi and exiti in an alternating manner. For our lower bound, we have
adversarial control over the environment, and will guarantee that tryi and exiti occur in alternating order. Thus, we
can now require that A guarantees well formedness. For further discussion about environment-controlled steps, please
see the end of this section.

86

satisfying our progress property in canonical executions implies the same lower bound for lower

bound for algorithms satisfying livelock or starvation freedom. We work with our definition of

progress because it fits more conveniently with our proof.

We now define a set of runs C, which we call the canonical runs. Our lower bound shows that for

any algorithm A solving the mutual exclusion problem, there exists some α ∈ C ∩ fair(A) such that

α has Ω(n log n) cost in the state change model. C consists of runs in which each process p1, . . . , pn

completes the critical section exactly once. In addition, no process lingers in the critical section: a

process that enters the critical section exits in its next step.

Definition 4.3.4 (Canonical Runs) Let A be an algorithm solving the mutual exclusion problem,

and let α = e1e2 . . . ∈ fair(A). Then α is a canonical run if it satisfies the following properties.

1. For every i ∈ [n], tryi occurs exactly once in α, and it is the first step of process pi in α.

2. For any i ∈ [n], if ej = enteri for some j ≥ 1, then ek = exitj, where k is the minimum integer

κ larger than j such that proc(eκ) = i.

We define C to be the set of canonical runs of A.

The reason we study canonical runs is that they focus exclusively on the cost of the synchro-

nization needed between processes to achieve mutual exclusion. Indeed, since all the processes try

to enter the critical section in a canonical run, and since they try to enter in a “balanced” way

(i.e., all processes try to enter the same number of times), then it creates a situation requiring

maximal synchronization and maximal time for completion. Also, since a process immediately exits

the critical section after entering, all the costs in a canonical run can be attributed to the cost of

synchronization.

Finally, we discuss a subtle issue regarding the modeling of critical steps. Consider any process

pi. Then the steps enteri and remi are enabled by pi. That is, pi decides, using the function δ(·, i),
when it wants to enter the critical and remainder sections. On the other hand, the steps tryi and

exiti are typically modeled as inputs from the environment. That is, we imagine that there is an

external “user”, for example, a thread in a multithreaded computation, that “causes” pi to execute

tryi, so that the thread can obtain exclusive access to a resource. If pi manages to enter the critical

section on behalf of the thread (i.e., pi enables enteri), then the thread may later relinquish the

resource by causing pi to execute exiti. Since we are proving a lower bound for canonical runs, we

want to ensure that if enteri occurs, then exiti also occurs, as soon as possible (in pi’s next step).

In addition, for the purposes of our lower bound, it suffices to assume that pi itself can enable its

tryi and exiti steps. We model our requirements is as follows. First, we assume that δ(ŝi
0, i) = tryi.

That is, we assume that the first step that pi wants to execute in any run is tryi. Next, let si ∈ Si,

and suppose that δ(si, i) = enteri. Then we assume that for all s ∈ S such that st(s, i) = si, we

87

have ∆(s, enteri, i) = s′i, such that δ(s′i, i) = exiti. That is, if si is a state of pi in which it wants to

execute enteri, then in any state s′i of pi after pi executes enteri, pi wants to execute exiti.

4.3.3 The State Change Cost Model

In this section, we define the state change cost model for measuring the cost of a shared memory

algorithm. In [1], it was proven that the cost of any shared memory mutual exclusion algorithm

is unbounded if we count every shared memory access. To obtain a meaningful measure for cost,

researchers have focused on models in which some memory accesses are discounted (assigned zero or

unit cost). Two important models that have been studied are the distributed shared memory (DSM)

model and the cache coherent (CC) model [5, 29, 4]. The main feature of both of these models is

that, during the course of a run, a register is sometimes considered local to a process5. Any access

by a process to its local registers is free. This is intended to model a situation in hardware in which

a piece of memory and a processor are physically located close together, making accesses to that

memory very efficient. A generic algorithm in the DSM or CC model works by reading and writing

to registers, and also busywaiting on some registers. The latter operation means that a process

continuously reads some registers, evaluating some predicate on the values of those registers after

each read. The process is stuck in a loop while it is busywaiting, and only breaks out of the loop

when the busywaiting predicate is satisfied. As long as a process busywaits on local registers, all

the reads done during the busywait have a combined constant cost6.

In this chapter, we define a new cost model, called the state change (SC) cost model, which is

related to the DSM and CC models. The state change cost model charges an algorithm only for

steps that change the system state. In particular, we charge the algorithm a unit cost for each write

performed by a process7. If a process performs a read step and changes its state after the read, then

the algorithm is charged a unit cost. If the process does not change its state after the read, the

algorithm is not charged. This charging scheme in effect allows a process to busywait on one register

at unit cost. For example, suppose the value of a register ` is currently 0, and a process pi repeatedly

reads `, until its value becomes 1. As long as `’s value is not 1, pi does not change its state, and

thus, continues to read `. If ` eventually becomes 1, then the algorithm is charged one unit for all

reads up to when pi reads ` as 1. The difference between the state change and the CC or DSM

model is that a process in the CC or DSM model could potentially busywait on several registers

at unit cost. For example, in the CC model, a process can busywait on all its registers, until the

5The DSM and CC models differ in how they define locality. In DSM, each process has a fixed set of local variables.
In CC, a variable can be local to different processes at different times.

6The busywaiting reads do not have zero cost, because typically the registers being busywaited on have to be made
local to the busywaiting process, e.g. by moving some register values from main memory to a processor’s local cache.
The move operation is assigned unit cost.

7We can show that for any algorithm solving the mutual exclusion problem, a process must change its state after
performing a write step. Roughly speaking, this is because if a process does not change its state after a write, then
it may stay in the same writing state forever, violating the progress property of mutual exclusion. We show formally
in Lemma 4.7.8 that a writing process changes its state.

88

first one of them satisfies the process’s busywaiting predicate. It is not clear what additional power

the ability to busywait on multiple registers gives an algorithm. In fact, in almost all algorithms

designed for the DSM and CC models, processes busywait on one variable at a time. The mutual

exclusion algorithm of Yang and Anderson [40] is one such algorithm, and it incurs O(n log n) cost

in all canonical runs in the SC cost model. Formally, the system state change cost model is defined

as follows.

Definition 4.3.5 (System State Change Cost Model) Let A be an algorithm, and let α =

e1e2 . . . et ∈ runs(A) be a finite run.

1. Let j ∈ [t], and define sc(α, j) = 1 if st(α(j − 1)) 6= st(α(j)), and sc(α, j) = 0 otherwise.

2. We define the (system state change) cost of run α to be Cs(α) =
∑

j∈[t] sc(α, j).

While charging an algorithm for steps that change the system state is a natural cost measure,

it turns out to be more convenient in our proofs to charge the algorithm for steps that change the

state of some process. Thus, we define the following.

Definition 4.3.6 (Process State Change Cost Model) Let A be an algorithm, and let α =

e1e2 . . . et ∈ runs(A) be a finite run.

1. Let pi be a process, and let j ∈ [t]. We define sc(α, i, j) = 1 if st(α(j − 1), i) 6= st(α(j), i), and

sc(α, i, j) = 0 otherwise.

2. We define the (process state change) cost of run α to be Cp(α) =
∑

j∈[t]

∑

i∈[n] sc(α, i, j).

Since a system state contains the state of each process, then it is easy to see that Cp(α) ≤ Cs(α),

for all α ∈ runs(A). Thus, a cost lower bound for the process state change model implies the same

lower bound for the system state change model. In the remainder of this paper, we will only work

with the process state change cost model. We write C(α) ≡ Cp(α), for any run α ∈ runs(A).

In Table 4-1, we provide a summary of the notation we have introduced. The table also includes

all the notation introduced in later parts of the chapter.

4.4 Overview of the Lower Bound

In this section, we give a detailed overview of our lower bound proof. For the remainder of this paper,

fix A to be any algorithm solving the mutual exclusion problem. The proof consists of three steps,

which we call the construction step, the encoding step, and the decoding step. The construction step

builds an equivalence class of finite runs Aπ ⊆ runs(A) for each permutation π ∈ Sn, such that for

permutations π1 6= π2, we have Aπ1 ∩Aπ2 = ∅. All runs in Aπ have the same state change cost Cπ.

The encode step produces a string Eπ of length O(Cπ) for each Aπ ,. The decode step reproduces an

89

Notation Location of definition

n, p1, . . . , pn,A Page 48
V, L, v, ` Page 48
S, Si, ŝ0, ŝ

i
0, s, st(s, i), st(s, `) Page 48

E, Ei, read and write steps, readi(`),writei(`, v) Page 48
proc(e), reg(e), val(e), type(e) Page 48
δ(si, i), δ(α, i), ∆(s, ei, i), ∆(α, ei, i) Page 49
α, execution, execs(A), extension, len(α) Page 49
st(α, i), st(α, `), δ(α, i) Page 49
run, run(α), runs(A), step sequence, spseq(A), acc(α), procs(α), α ◦ β Pages 49-50
π, π−1, i ≤π j, minπ S Page 51
i � j, (i, j) ∈�, prefix, consistent total order Page 51
min(S,�),max� S, min� S, �(S) Pages 51-52
critical steps, tryi, enteri, exiti, remi Page 52
trying, critical, exit, remainder sections Page 52
fair run, fair(A), canonical runs, C Definitions 4.3.2, 4.3.4
mutual exclusion algorithm, well formedness, mutual exclusion, progress Definition 4.3.3
Cs(α), Cp(α), C(α) Definitions 4.3.5, 4.3.6, page 56
metastep, M, attributes of metasteps Definition 4.5.1
Construct algorithm, 〈r〉 Figure 4-4, page 63
iteration, ι, I, ι ⊕ 1, ι 	 1, ι+, ι−, ι ⊕ r, ι 	 r, ji, ι

n Page 67
Mι,�ι, m̌ι, eι, αι, Nι, Rι, R

∗
ι , Wι, W

s
ι Definition 4.6.1

version of metastep, mι, N ι Definition 4.6.2
critical/read/write create iteration, read/write modify iteration Page 69
execution γ and output α of Lin, γ order of N , γ order of m, Lin(N ι,�ι) Page 70
Φ(ι, N), Φ(ι, N, k), φ(ι, N), φ(ι, N, k) Definition 4.6.7
Ψ(ι, `),Ψw(ι, `), Υ(ι, `, m),Υ(ι, m), acc(N) Definitions 4.6.15, 4.6.16, page 79
G((Mι)

ι), G,L(ι, N), λ(ι, N, k), λ(ι, N) Definitions 4.7.1, 4.7.2, 4.7.3
next πk step/metastep after (ι, N), v-reads ` after (ι, N) Definition 4.7.4
readers(ι,N, `, v), wwriters(ι,N, `), preads(ι,N, `), unmatched preread Definition 4.7.4, 4.7.5
extended type, T , xtype(e,m) Definition 4.8.1
Encode algorithm Figure 4-5
Decode algorithm Figure 4-7
iteration of Decode, 〈r〉D, ϑ, state of ϑ, σ, σ.x, N-correct Page 126, Definition 4.11.1

Figure 4-1: Summary of the notation in this chapter and the location of their definitions.

απ ∈ Aπ using only input Eπ. Since different Aπ ’s are disjoint, each Eπ uniquely identifies one of n!

different permutations. Thus, there exists some π ∈ Sn such that Eπ has length Ω(n log n). Then,

the run απ corresponding to this Eπ must have cost Ω(n log n).

Fix a permutation π = (π1, . . . , πn) ∈ Sn. We say that a process pi has lower (resp., higher)

index (in π) than process pj if i comes before (resp., after) j in π, i.e. i <π j (resp., j <π i). For

ease of exposition, we will describe the construction step twice, first at a high level, and in a slightly

inaccurate way, to convey the general idea, then subsequently in an accurate and more detailed way.

In the high level description, we will pretend that each equivalence Aπ consists of only one run απ.

Then, in the construction step, we build in n stages n different finite runs, α1, . . . , αn ∈ runs(A),

where αn = απ. In each αi, only the first i processes in the permutation, pπ1 , . . . , pπi
, take steps.

Thus, α1 is a solo run by process pπ1 . Each process runs until it has completed its trying, critical

and exit sections once. We will show that the processes in αi complete their critical sections in the

90

order given by π, that is, pπ1 first, then pπ2 , etc., and finally, pπi
. Next, we construct run αi+1 in

which process pπi+1 also takes steps, until it completes its trying, critical, and exit sections. αi+1 is

constructed by starting with αi, and then inserting steps by pπi+1 , in such a way that pπi+1 is not

seen by any of the lower indexed processes pπ1 , . . . , pπi
. Roughly speaking, this is done by placing

some of pπi+1 ’s writes immediately before writes by lower indexed processes, so that the latter writes

overwrite any trace of pπi+1 ’s presence.

The preceding paragraph described some of the intuition for the construction step. It was

inaccurate because it constructed only one run απ, instead of a class of runs Aπ. We now give a

more detailed and accurate description of the construction step. Instead of directly generating a run

αi in stage i, we actually generate a set of metasteps Mi and a partial order �i on Mi in stage i.

Roughly speaking, a metastep consists of two sets of steps, the read steps and the write steps, and a

distinguished step among the write steps that we call the winning step8. All steps access the same

register, and each process performs at most one step in a metastep. We say a process appears in the

metastep if it takes a step in the metastep, and we say the winner of the metastep is the process

performing the winning step. The purpose of a metastep is to hide, from every process p1, . . . , pn,

the presence of all processes appearing in the metastep, except possibly the winner.

Given a set of metasteps Mi and a partial order �i on Mi, we can generate a run from (Mi,�i)

by first ordering Mi using any total order consistent with �i, to produce a sequence of metasteps.

Then, for each metastep in the sequence, we expand the metastep into a sequence of steps, consisting

of the non-winning write steps of the metastep, ordered arbitrarily, followed by the winning step,

followed by the read steps, ordered arbitrarily. Notice that this sequence hides the presence of all

processes except possibly the winner. That is, if a process pi did not see another process pj before the

metastep sequence, then pi does not see pj after the metastep sequence either, unless pj is the winner

of the metastep sequence. The overall sequence of steps resulting from totally ordering Mi, and then

expanding each metastep, is a run which we call a linearization of (Mi,�i). Of course, there may

be many total orders consistent with �i, and many ways to expand each metastep, leading to many

different linearizations. However, we will show that for the particular Mi and �i we construct, all

linearizations are essentially “the same”. For example, at the end of all linearizations, all processes

have the same state, and all registers have the same values. Also, in all linearizations, the processes

pπ1 , . . . , pπi
each complete their critical sections once, and they do so in that order. It is the set Mn

and partial order �n, generated at the end of stage n in the construction step, that we eventually

encode in the encoding step. The set Aπ is the set of all possible linearizations of (Mn,�n)9. We

show that all linearizations of (Mn,�n) have the same (state change) cost, and we call this cost Cπ.

The reason we construct a partial order of metasteps instead of constructing a run, i.e., a total

8A metastep actually has other properties which are described in detail in Section 4.5. However, the current
simplified description of a metastep will suffice for this proof overview.

9However, as stated, we do not directly encode Aπ, but rather, encode (Mn,�n).

91

ordering of steps, is that the partial order �n on the metasteps of Mn contains fewer orderings

between the steps contained in (all the metasteps of) Mn than a total ordering on the steps contained

in Mn. In fact, the orderings contained in �n can be seen as representing precisely the information

acquired by p1, . . . , pn in the course of a run produced by linearizing (Mn,�n). It is because of this

that we can encode (Mn,�n) using a string with length proportional to Cπ.

We now describe the encoding step. This step produces a string Eπ , from input (Mn,�n). For

any process pi, we show that all the metasteps containing pi in Mn are totally ordered in �n. Thus,

for any metastep containing pi, we can say the metastep is pi’s j’th metastep, for some j. The

encoding algorithm uses a table with n columns and an infinite number of rows. In the j’th row

and i’th column of the table, which we call cell T (i, j), the encoder records what process pi does

in its j’th metastep. However, to make the encoding short, we only record, roughly speaking, the

type, either read, write or critical, of the step that pi performs in its j’th metastep. That is, we

simply record a symbol R, W or C10. In addition, if pi is the winner of the metastep, we also record a

signature of the entire metastep. The signature basically contains a count of how many processes in

the metastep perform read steps, and how many perform write steps (including the winning step).

Note that the signature does not specify which processes read or write in the metastep, nor the

register or value associated with any step. Now, if there are k processes involved in a metastep, the

total number of bits we use to encode the metastep is O(k) + O(log k) = O(k). Indeed, for each

non-winner process in the metastep, we use O(1) bits to record its step type. For the winner process,

we record its step type, and use O(log k) bits to record how many readers and writers are in the

metastep. We can show that the state change cost to the algorithm for performing this metastep is

k. In particular, each read and write step in the metastep causes a state change. Informally, this

shows that the size of the encoding is proportional to the cost incurred by the algorithm. The final

encoding of (Mn,�n) is formed by iterating over all the metasteps in Mn, each time filling the table

as described above. Then, we concatenate together all the nonempty cells in the table into a string

Eπ.

Lastly, we describe how, using Eπ as input, the decoding step constructs a run απ that is

a linearization of (Mn,�n)11. Roughly speaking, at any time during the decoding process, the

decoder algorithm has produced a linearization of a prefix N of (Mn,�n). Recall that N is a prefix

of (Mn,�n) if N ⊆ Mn, and whenever m ∈ N and m′ �n m, then m′ ∈ N as well. We say all

metasteps in N have been executed. The linearization of N is a prefix α (in the normal sense) of run

απ. Using N and Eπ , the decoder tries to find a minimal (with respect to �n) unexecuted metastep

m, i.e., a minimal metastep not contained in N . The decoder executes m, by linearizing m and

appending the steps to α. After doing this, the decoder has executed prefix N ∪ {m}; the decoder

10We sometimes also use a fixed set of other symbols, such as PR or SR, to represent the type of a metastep. This is
described in detail in Section 4.8. For the purposes of this proof overview, our current simplified description suffices.

11Note that even though our discussion involves π, the decoder does not know π. The only input to the decoder is
the string Eπ.

92

then restarts the decoding loop.

To find a minimal unexecuted metastep, the decoder applies the step functions

{δ(α, i)}i∈[n] of A to the prefix α to compute each process pi’s next step after α. This is the

step that pi takes in the minimum unexecuted metastep containing pi. We call this metastep pi’s

next metastep, and denote it by mi. mi may be different for different i. Let λ = {mi}i∈[n] be the

set of next metasteps for all processes p1, . . . , pn. Note that not every metastep in λ is necessarily

a minimal unexecuted metastep (rather, it is only the minimum unexecuted metastep containing a

particular process). However, we show that there exists some m ∈ λ that is a minimal unexecuted

metastep. The decoder does not directly know λ or m. Rather, the decoder only knows the next

step of each process after α. In order to deduce m, the decoder reads Eπ. Suppose the decoder finds

a signature in column i of Eπ , and the signature indicates there are r reads and w writes in the

metastep corresponding to the signature. Suppose also that pi’s next step accesses register `. Then

the decoder will know the following.

• pi’s next metastep mi accesses `.

• pi is the winner of mi.

• There are r readers, and w − 1 other writers besides pi that appear in mi.

The decoder looks at the next step that each process will perform, and checks whether there are

indeed r processes whose next step is a read on `, and w− 1 processes besides pi whose next step is

a write to `12. Suppose this is the case. Then, these next steps on ` are precisely the steps contained

in a minimal unexecuted metastep. That is, mi ∈ λ is a minimal unexecuted metastep, and the

steps contained in mi are the next steps that access `. The decoder executes mi, by appending the

r next read steps and w next write steps on ` to the current run, placing all the writes before all

the reads, and placing the winning write by pi last among the writes. Having done this, the decoder

has completed one iteration of the decoding loop. The decoder proceeds to the next iteration, and

continues until it has read all of Eπ. We can summarize the decoding algorithm as follows.

1. The decoder computes the next step that each process will take, based on the current run the

decoder has generated.

2. The decoder reads Eπ to find signatures of unexecuted metasteps.

3. If the signature for a register ` is filled, i.e., the number of processes whose next step reads or

writes to ` matches the numbers indicated by the signature, then these steps are equal to the

steps in some minimal unexecuted metastep m.

12Actually, the decoder also checks whether the number of prereads matches the number indicated by the signature.
Prereads are discussed in Section 4.5. Section 4.10 describes the decoding algorithm in more detail. For this overview,
our simplified presentation suffices to convey the main ideas for the decoding.

93

4. The decoder linearizes m and appends the steps to the current run. Then the decoder begins

the next iteration of the decoding loop, or terminates, if it has read all of Eπ.

The run απ that the decoder produces after termination is a linearization of (Mn,�n). As stated

earlier, απ can be used to uniquely identify π. Hence, Eπ also identifies π. Thus, there must exist

some π ∈ Sn such that |Eπ| = Ω(n log n). Since |Eπ | = O(C(απ)), then the state change cost of απ

is Ω(n log n).

4.5 The Construction Step

4.5.1 Preliminary Definitions

In this section, we present the algorithm for the construction step. For the remainder of this chapter,

fix A to be any algorithm solving the mutual exclusion problem.

Recall from our discussion in Section 4.4 that a metastep is, roughly speaking, a set of steps, all

performed by different processes and accessing the same register, whose aim is to hide the presence

of all but at most one of the processes taking part in the metastep. More precisely, a metastep has

one of three types: read, critical, or write. A read (resp., critical) metastep contains only one step,

which is a read (resp., critical) step. Notice that since a read or critical step does not change the

value of any registers, it does not reveal the presence of any process (that is not already revealed).

A write metastep may contain read and write steps. It always contains a write step, which we call

the winning step. A write metastep can only reveal the presence of the process, called the winner,

performing the winning step. In addition to containing read and write steps, a write metastep m

may be associated with a set of read metasteps, which we call the preread set of m. The (read steps

in the) metasteps in the preread set of m are not actually contained in m. Rather, the association

of preads(m) to m is based on the fact that in the partial ordering on metasteps that we create, the

preread metasteps of m are always ordered before m. We now formalize the preceding description.

Definition 4.5.1 (Metastep) A metastep is identified by a label m ∈M, where M is an infinite

set of labels. For any metastep m, we define the following attributes.

1. We let type(m) ∈ {R, W, C}. If type(m) = R (resp., W, C), we say m is a read (resp., write,

critical) metastep.

2. If type(m) = C, then crit(m) is a singleton set containing a critical step of some process.

3. If type(m) = R, then reads(m) is a singleton set containing a read step of some process.

4. If type(m) = W, then we define the following attributes for m.

94

(a) reads(m) is a set of read steps, writes(m) and win(m) are sets of write steps, and

|win(m)| = 1. reads(m) is called the read steps contained in m, writes(m) is called the

(non-winning) write steps contained in m, and �(win(m))13 is called the winning step in

m.

(b) reads(m), writes(m) and win(m) are mutually disjoint.

(c) All steps in reads(m) ∪ writes(m) ∪ win(m) access the same register, and any process

performs at most one step in reads(m) ∪ writes(m) ∪win(m).

(d) readers(m) is the set of processes performing the steps in reads(m), and is called the

readers of m. writers(m) is the set of processes performing the steps in writes(m),

and is called the writers of m. winner(m) is the singleton set containing the process

performing the step in win(m). We call �(winner(m)) the winner of m.

(e) We say that any process i ∈ readers(m) ∪ writers(m) ∪ winner(m) appears in m. For

idiomatic reasons, we also sometimes say that such a process is contained in m.

(f) We say the value of m, written val(m), is the value written by the step in win(m).

5. If m is a read (resp., critical) metastep, then we let steps(m) be the singleton set containing

the read (resp., critical) step in m, and we let procs(m) be the singleton set containing the

process performing the step in m.

6. If m is a write metastep, then we let steps(m) = reads(m) ∪ writes(m) ∪ win(m) be the set

of all steps contained in m, and we let procs(m) = readers(m) ∪writers(m) ∪ winner(m) be

the set of all processes appearing in m.

7. If the steps in m access a register (that is, if type(m) ∈ {R, W}), we let reg(m) be the regis-

ter accessed by these steps, and we say m accesses reg(m). For idiomatic reasons, we also

sometimes say m is a metastep on reg(m).

8. For any i ∈ procs(m), we write step(m, i) for the step that process pi takes in m.

9. If type(m) = W, we let preads(m) be a set of read metasteps, and we call this the preread set

of m. If a (read) metastep m is contained in the preread set of some other metastep, then we

say m is a preread metastep (in addition to being a read metastep).

10. Regardless of the type of m, all the attributes listed above (e.g. reads(m), val(m), preads(m),

etc.) are defined for m. Each attribute is initialized to ∅, ⊥, or a string, depending on the

type of the attribute.

13Recall that �(M) = m, for any singleton set M = {m}.

95

Variable Type
π A permutation in Sn.
j A process in [n].
Mi, i ∈ [n], M, R, R∗, W, W s A set of metasteps.
�i, i ∈ [n] A partial order on a set of metasteps.
m, m̌, mw, mws A metastep, or ∅.
α A run of A.
e A step in E.
` A register in `.

Figure 4-2: The types and meanings of variables used in Construct and Generate.

Procedure Input type(s) Output type(s)
Construct(π) A permutation in Sn. A set of metasteps, a p.o. on the set.
Seq(m) A metastep. A step sequence.
Lin(M,�) A set of metasteps, a p.o. on the set. A step sequence.
Plin(M,�, m) A set of metasteps, a p.o. on the set, a metastep. A step sequence.
SC(α, m, i) A run, a metastep, a process. A boolean.

Figure 4-3: Input and output types of procedures in Figure 4-4. We write “p.o.” for partial order.

Given a metastep m, the attributes of m may change during the construction step. For example,

at the beginning of the construction step, m may not contain any read or write steps. As the

construction progresses, read and write steps may be added to m. However, whatever values its

attributes have, the label (i.e., name) of the metastep remains m.

Let M be a set of metasteps, and let � be a partial order on M . Then a linearization α of (M,�)

is any step sequence produced by the procedure Lin(M,�), shown in Figure 4-414. If m ∈M , then

we say m is linearized in α. Lin(M,�) works by first ordering the metasteps of M using any total

order consistent with �. Then it produces a sequence of steps from this sequence of metasteps, by

applying the procedure Seq(·) to each metastep. Given a metastep m, Seq(m) returns a sequence

of steps consisting of the write steps of m, then the winning step of m, then the read steps. It uses

the (nondeterministic) helper function concat, which totally orders a set of steps, in an arbitrary

order. The procedure Plin(M,�, m), where m ∈ M is a metastep, works similarly to Lin(M,�),

except that it only linearizes the metasteps in µ ∈M such that µ � m.

4.5.2 The Construct Algorithm

In this section, we show how to create a set of metasteps Mi and a partial order �i on Mi, for every

i ∈ [n], with the properties described earlier. For the remainder of this section, fix an arbitrary

permutation π ∈ Sn. This is the input to Construct. For every i ∈ [n], the only processes that

take steps in any metastep of Mi are processes pπ1 , . . . , pπi
. In any linearization of (Mi,�i), each

14Note that a priori, we do not know α is necessarily a run, i.e., that α corresponds to an execution of A. We prove
in Section 4.6.4 that α is in fact a run.

96

process pπ1 , . . . , pπi
completes its trying, critical, and exit section once. The construction algorithm

is shown in Figure 4-4. Also, Figures 4-2 and 4-3 show the types of the variables used in Figure 4-4,

and the input and return types of the procedures in Figure 4-4.

1: procedure Construct(π)
2: M0 ← ∅; �0← ∅
3: for i← 1, n do

4: (Mi,�i)← Generate(Mi−1,�i−1, πi)
5: end for

6: return Mn, and the reflexive, transitive closure of �n

7: procedure Generate(M,�, j)
8: m← new metastep; crit(m)← {tryj}; type(m)← C

9: M ←M ∪ {m}; m̌← m
10: repeat

11: α← Plin(M,�, m̌); e← δ(α, j); `← reg(e)
12: switch

13: case type(e) = W:
14: W ← {µ | (µ ∈ M) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6� m̌)}
15: mw ← min� W
16: if mw 6= ∅ then

17: writes(mw)← writes(mw) ∪ {e}
18: �←� ∪{(m̌, mw)}; m̌← mw

19: else

20: m← new metastep; win(m)← {e}
21: reg(m)← `; type(m) ← W
22: M ←M ∪ {m}
23: R← {µ | (µ ∈ M) ∧ (reg(µ) = `) ∧ (type(µ) = R) ∧ (µ 6� m̌)}
24: R∗ ← max� R; preads(m)← R∗

25: for all µ ∈ R∗ do

26: �←� ∪{(µ, m)} end for

27: �←� ∪{(m̌, m)}; m̌← m
28: case type(e) = R:
29: W s ← {µ | (µ ∈ M) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6� m̌) ∧ SC(α, µ, j)}
30: mws ← min� W s

31: if mws 6= ∅ then

32: reads(mws)← reads(mws) ∪ {e}
33: �←� ∪{(m̌, mws)}; m̌← mws

34: else

35: m← new metastep; reads(m)← {e}
36: reg(m)← `; type(m) ← R; M ←M ∪ {m}
37: �←� ∪{(m̌, m)}; m̌← m
38: end if

39: case type(e) = C:
40: m← new metastep; crit(m)← {e}; type(m) ← C
41: M ←M ∪ {m}; �←� ∪{(m̌, m)}; m̌← m
42: end switch

43: until e = remj

44: return M and �
45: end procedure

46: procedure Seq(m)
47: if type(m) ∈ {W, R} then

48: return concat(writes(m)) ◦ win(m) ◦ concat(reads(m))
49: else return crit(m)
50: end procedure

51: procedure Lin(M,�)

52: let ≤M be a total order on M consistent with �
53: order M using ≤M as m1, m2, . . . , mu

54: return Seq(m1) ◦ . . . ◦ Seq(mu)
55: end procedure

56: procedure Plin(M,�, m)
57: N ← {µ | (µ ∈ M) ∧ (µ � m)}
58: return Lin(N,� |N)
59: end procedure

60: procedure SC(α, m, i)
61: `← reg(m); v ← val(m)
62: choose s ∈ S s.t. (st(s, i) = st(α, i)) ∧ (st(s, `) = v)
63: return ∆(s, readi(`), i) 6= st(α, i)
64: end procedure

Figure 4-4: Stage i of the construction step.

97

The procedure Construct operates in n stages. In stage i, Construct builds Mi and �i by

calling the procedure Generate with inputs Mi−1 and �i−1 (constructed in stage i−1) and πi, the

image of i under π. We define M0 =�0= ∅. We now describe Generate(Mi,�i, πi). For simplicity,

we write M for Mi, � for �i, and j for πi in the remainder of this section. We will refer to line

numbers in Figure 4-4 in angle brackets. For example, 〈8〉 refers to line 8, and 〈9−12〉 refers to lines

9 through 12. We sometimes write line numbers within a sentence, to indicate the line in Figure 4-4

that the sentence refers to.

The main body of Generate proceeds in a loop. The loop ends when process pj performs its

remj action, that is, enters its remainder section. Before entering the main loop within 〈10 − 43〉,
Generate first creates a new critical metastep m containing tryj , indicating that pj starts in its

trying section 〈8〉. We add m to M , and set m̌ to m 〈9〉. m̌ keeps track of the metastep created or

modified during the previous or current iteration of the main loop, depending on where we are in

the loop15. We call 〈8− 9〉 the zeroth iteration of Generate.

Next, we begin the main loop between 〈10〉 and 〈43〉. We will call each pass through 〈10 − 43〉
an iteration of Generate16. The k’th pass through 〈10− 43〉 is the k’th iteration. Each iteration

updates M and �, by adding or modifying metasteps in M , and adding (but never modifying)

relations to �. Let ι ≥ 1 denote an iteration of Generate, and let ι− denote the iteration of

Generate preceding ι (if ι = 1, then ι− is the zeroth iteration).

In order for the operations performed in iteration ι to be well defined, we require that certain

properties hold about the values of M , � and m̌ at the end of ι−. In particular, we make the

following assumptions.

Assumption 2 (Correctness of Iteration ι− of Generate) Let Mι− ,�ι− and m̌ι− denote the

values of M,� and m̌ at the end of iteration ι−.

1. Any output of Plin(Mι− ,�ι− , m̌ι−) is a run of A.

2. For any ` ∈ L, the set of write metasteps in Mι− accessing ` are totally ordered by �ι−.

Technically, we should first prove that these properties hold after ι−, before describing iteration ι.

That is, we should present the proof of correctness for earlier iterations of Generate, before describ-

ing the current iteration of Generate. However, such a presentation would be both complicated

and confusing. Therefore, in the interest of expositional clarity, we defer the proofs of properties 1

and 2 of Assumption 2 to parts 1 and 6 of Lemma 4.6.17, respectively, in Section 4.6.4. Both proofs

proceed by induction on the iterations of Generate. That is, to show that Assumption 2 holds

for iteration ι−, parts 1 and 6 of 4.6.17 assume that Generate is well defined for ι−. This in turn

15In the first iteration of the main loop, m̌ is simply the metastep created in 〈8〉.
16We will give a slightly expanded definition of an iteration, taking into account the multiple calls to Generate

made by Construct, in Section 4.6.1. For our present discussion, it suffices to consider only the passes through
〈10 − 43〉 in the current call to Generate by Construct.

98

requires showing that Assumption 2 holds for iteration ι− 2, for which we need Generate be well

defined for iteration ι− 2, etc. Eventually, in the base case, we prove parts 1 and 6 of Lemma 4.6.17

hold for the zeroth iteration (i.e., after 〈9〉), which does not require any assumptions. Thus, while

the validity of Generate and the validity of Assumption 2 are mutually dependent, the dependence

is inductive, not circular. We will now proceed to describe what happens in the current iteration of

Generate, supposing Assumption 2 for the previous iteration.

In 〈11〉, we first set α to be a linearization of all metasteps in µ ∈ M such that µ � m̌. This is

computed by the function Plin(M,�, m̌). We have α ∈ runs(A), by part 1 of Assumption 2. Using

α, we can compute pj ’s next step e as δ(α, j)17. Let ` be the register that e accesses, if e is a read

or write step18.

We split into three cases, depending on e’s type. If e is a write step 〈13〉, then we set mw to be

the minimum write metastep in M that accesses `, and that 6� m̌ 〈15〉. By part 2 of Assumption

2, the set of write metasteps on ` is totally ordered, and so either mw is a metastep, or mw = ∅19.
When mw 6= ∅, we insert e into mw, by adding e to writes(mw) 〈17〉. The idea is that this hides pi’s

presence, because e will be overwritten by the winning step in mw before it is read by any process,

when we linearize any set of metasteps including mw. Next, we add the relation (m̌, mw) to �,

indicating that m̌ � mw. Finally, we set m̌ to be mw.

In the case where mw = ∅ 〈19〉, we create a new write metastep m containing only e, with e as

the winning step. Then, we compute the set R∗ of the maximal read metasteps in M accessing `

that 6� m̌. The read metasteps on ` are not necessarily totally ordered, so R∗ may contain several

metasteps. We order m after every metastep in R∗ 〈26〉. If we did not do this, the processes

performing the read metasteps may be able to see pj in some linearizations. We record having

ordered m after all the metasteps in R∗, by setting preads(m) to R∗ 〈24〉. Lastly, in 〈27〉, we order

m after m̌, then set m̌ to m.

The case when e is a read step is similar. Here, we begin by computing mws, the minimum write

metastep in M accessing ` that 6� m̌, and that would cause pj to change its state if pj read the

value of the metastep 〈30〉. Since we assumed the set of write metasteps on ` is totally ordered,

then either mws is a metastep, or mws = ∅. We use the helper function SC(α, m, j), which returns

a Boolean value indicating whether process pj would change its state if it read the value of metastep

m when it is in state st(α, j). If mws 6= ∅, then we add e to reads(mws). Otherwise, we create a

new read metastep m containing only e, and set reads(m) = {e}.
Lastly, if e is a critical step 〈39〉, then we simply make a new metastep for e and order it after

m̌.

After n stages of the Construct procedure, we output Mn and �n.

17Recall that δ(α, j) computes the next step of pj , using the final state of pj in α.
18Recall that by definition, reg(e) =⊥ for a critical step e.
19Recall that by definition, min� S can either returns the set of minimal elements in S, if there is more than one

or no minimal element, or it can return the unique minimum element in S.

99

4.6 Correctness Properties of the Construction

In this section, we prove a series of properties about Construct. The main goal of this section is

to prove Theorem 4.6.20, which states that in any linearization of an output of Construct(π), all

the processes p1, . . . , pn enter the critical section, in the order given by π. We first introduce the

notation we will use in our proof, and in the remainder of this chapter, and also give an outline of

the structure of the proof.

4.6.1 Notation

In the remainder of this section, fix an arbitrary execution θ of Construct. Many of the proofs

in this section use induction on θ. We first define terminology to refer to the portions of θ that

we induct over. Notice that the Construct algorithm has a two level iterative structure. That

is, 〈3 − 5〉 of Construct consists of a loop, calling the function Generate n times. Each call

to Generate itself loops through 〈10 − 43〉. We will show in Lemma 4.6.19 that every call to

Generate in θ terminates. Assuming this, we define ji, for any i ∈ [n], to be the number of times

Generate loops through 〈10− 43〉, during the i’th call to Generate from Construct in θ.

Let i ≥ 1, j ∈ [ji], and consider the i’th time that Construct calls Generate in θ. Then we

call 〈8− 9〉 of Generate iteration (i, 0), and we call the j’th execution of 〈10− 43〉 of Generate

iteration (i, j). We often use the symbol ι (or ι′, ι1, etc.) to denote an iteration when the actual

values of i and j do not matter. Let ι = (i, j) be an iteration, for some i ∈ [n]. If j < ji, then

we say the next iteration after ι is (i, j + 1). If j = ji, then we say the next iteration after ι is

(i + 1, 0) (unless i = n, in which case there is no next iteration after (n, jn)). For any i ∈ [n], we

define ιi = (i, ji) for the last iteration in the i’th call to Generate by Construct. We denote the

set of all iterations in θ by I =
⋃

i∈[n],0≤j≤ji
{(i, j)}. In the remainder of this chapter, when we say

that ι is an iteration, we mean that ι ∈ I.
Using the definition of “next” iteration above, we can order I in increasing order as

(1, 0), (1, 1), . . . , (1, j1), (2, 0), (2, 1), . . . , (n− 1, jn−1), (n, 0), . . . , (n, jn).

When we say that we induct over the execution θ of Construct, we mean that we induct over

the iterations in I, ordered as above. Notice that this ordering is lexicographic. That is, given two

iterations ι1 = (i1, j1) and ι2 = (i2, j2), we have ι1 < ι2 in the above ordering if either i1 < i2, or

i1 = i2 and j1 < j2.

Given an iteration ι, if ι 6= ιn, we define ι ⊕ 1 as the next iteration in the above ordering. If

ι = ιn, then we define ιn ⊕ 1 = ιn. If ι 6= (1, 0), then we define ι	 1 to be the iteration before ι. If

ι = (1, 0), then we define ι 	 1 = ι. We sometimes write ι+ for ι ⊕ 1, and ι− for ι 	 1. Let ι1 and

ι2 be two iterations, such that ι1 < ι2. Then we defined ι2 − ι1 = ς to be the number of iterations

100

between ι1 and ι2 (in θ). That is, ς is such that ι2 = ι1⊕1 . . .⊕ 1
︸ ︷︷ ︸

ς times

. Also, if ι is an iteration, and

ς ∈ N, then we define ι	 ς = ι	1 . . .	 1
︸ ︷︷ ︸

ς times

, and ι⊕ ς = ι⊕1 . . .⊕ 1
︸ ︷︷ ︸

ς times

.

We now define notation for the values of the variables of Construct during an iteration ι.

Definition 4.6.1 Let ι = (i, j) be any iteration. Then we define the following.

1. If ι = (i, 0), then we let Mι, �ι and m̌ι be the values of M , � and m̌, respectively, at the end

of 〈9〉 in ι. Also, we let αι = ε (the empty run), and eι = tryπi
.

2. If ι 6= (i, 0), then we let Mι, �ι, m̌ι, eι and αι be the values of M , �, m̌, e and α, respectively,

at the end of 〈42〉 in ι.

3. We define Nι = {µ | (µ ∈Mι−) ∧ (µ �ι− m̌ι−)}.

4. (a) If j > 0, then we define

Rι = {µ | (µ ∈Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = R) ∧ (µ 6�ι− m̌ι−)}

to be value of R in 〈23〉 of ι, and we define R∗ι to be the value of R∗ in 〈24〉 of ι.

(b) If j = 0, then we define Rι = R∗ι = ∅.

5. (a) If j > 0, then we define

Wι = {µ | (µ ∈Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6�ι− m̌ι−)}

to be value of W in 〈14〉 of iteration ι. We also define

W s
ι = {µ | (µ ∈Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6�ι− m̌ι−) ∧ SC(αι− , µ, πi)}

to be the value of W s 〈29〉 of iteration ι.

(b) If j = 0, then we define Wι = W s
ι = ∅.

Notice that in Definition 4.6.1, Mι,�ι and m̌ι always represent the values of M,� and m̌ at the

end of some iteration, be it an iteration of the form (i, 0) for i ∈ [n], or (i, j) for i, j ≥ 1. Also, m̌ι

is the metastep that was either created or modified in 〈8〉, 〈15〉, 〈20〉, 〈30〉, 〈35〉 or 〈40〉 of iteration

ι, depending on the behavior of Generate in ι. Lastly, for any i ∈ [n], we define Mi = Mιi and

�i=�ιi. Mi contains all the metasteps created in iteration ιi or earlier. Also, it contains all the

metasteps that contain process πi.

Let ι1 and ι2 be two different iterations, and let m be a metastep, such that m ∈ Mι1 and

m ∈ Mι2. Then this means that there is a metastep with label m in both Mι1 and Mι2 . However,

101

the values of the attributes of m may be different in iterations ι1 and ι2. For example, the set of

processes appearing in m, procs(m), may be different in ι1 and ι2. We now define notation to refer

to the values of the attributes of m in an iteration ι.

Definition 4.6.2 Let ι be any iteration. Then we define the following.

1. If ι = (i, 0), for some i ∈ [n], then we define the version of m, written vers(m, ι), as a record

consisting of the values of all the attributes of m, at the end of 〈9〉.

2. If ι 6= (i, 0), for some i ∈ [n], then we define the version of m, written vers(m, ι), as a record

consisting of the values of all the attributes of m, at the end of 〈42〉.

3. Given the name of any attribute of m, such as procs, we write vers(m, ι).procs to refer to the

value of procs(m) in ι (either at the end of 〈9〉 or 〈42〉, depending on whether ι equals (i, 0)).

Since we talk about the versions of metasteps extensively in the remainder of the chapter, we

will write vers(m, ι) more concisely as mι. Given the name of any attribute of m, such as procs,

we write procs(mι) to mean vers(m, ι).procs. As another example, if ι1 and ι2 are two iterations,

then reads((m̌ι2)
ι1) = vers(m̌ι2 , ι1).reads is the set of read steps contained in m̌ι2 , after iteration

ι1 (i.e., at the end of 〈9〉 or 〈42〉). Recall that m̌ι2 is the value of the variable m̌ after iteration ι2.

The value of m̌ is, in turn, the label of the metastep that was created or modified in iteration ι2.

Thus, m̌ι2 is itself the label of a metastep.

If all the attributes of a metastep m are the same in two iterations ι1 and ι2, then we write

mι1 = mι2 . Certain attributes of a metastep, such as the value val of a write metastep, once set

to a non-initial value in some iteration, do not change in any subsequent iteration. In this case,

we may omit the version of metastep when referring to this attribute. For example, if m is a write

metastep, then we simply write val(m), for the value of m in any iteration. If m 6∈ Mι, then we

define mι =⊥, so that all attributes of m have the value ⊥. Finally, if N is a set of metasteps, then

we write N ι = {µι |µ ∈ N} for the iteration ι versions of all metasteps in N .

By inspection of the Construct algorithm, we see that each iteration ι belongs to one of several

types. If ι = (i, 0), for some i ∈ [n], then a critical metastep is created in ι. Thus, we say that ι is a

critical create iteration. If ι 6= (i, 0), for any i ∈ [n], then we define the type of ι as follows. In 〈11〉
of ι, Construct computes eι. Then, if the tests on 〈13〉 and 〈16〉 are true (so that type(eι) = W,

and mw 6= ∅), we say that ι is a write modify iteration. If the tests on 〈28〉 and 〈31〉 are true (so

that type(eι) = R, and mws 6= ∅), then we say ι is a read modify iteration. If the tests on 〈13〉 and

〈19〉 are true (so that type(eι) = W, and mw = ∅), then we say ι is write create iteration. If the tests

on 〈28〉 and 〈34〉 are true (so that type(eι) = R, and mws = ∅), we say ι is a read create iteration.

Finally, if the test on 〈39〉 is true (so that type(eι) = C), then we say ι is a critical create iteration.

If ι is either a read or write modify iteration, we also say ι is a modify iteration. Otherwise, we also

say ι is a create iteration.

102

Finally, we define notation associated with an execution of the helper function Lin. Let M be

a set of metasteps, let � be a partial order on M , and let γ represent an execution of Lin(M,�).

Recall that γ works by first ordering M using any total order on M consistent with �. We call

this total order the γ order of M . Having ordered M , γ next calls Seq(m), for every m ∈ M .

Notice that Seq works with a particular version of m. That is, if γ occurs at the end of iteration

ι, then Seq(mι) works by ordering the steps in steps(mι), so that all steps in writes(mι) precede

�(win(mι)), which precedes all steps in reads(mι). We call this ordering on steps(mι) the γ order

of mι. Let α be the step sequence that is produced by execution γ of Lin. Then we call α the output

of γ. We also say that α is an output of Lin(M,�), since Lin is nondeterministic, and may return

different outputs on the same input. In the remainder of this chapter, we will write Lin(M ι,�)

(instead of simply Lin(M,�)) to denote the execution of Lin, working with the iteration ι versions

of the metasteps in M . Lastly, given an m ∈ M , we write Plin(M ι,�, m) = Lin(N ι,�), where

N = {µ | (µ ∈M) ∧ (µ � m)}.

4.6.2 Outline of Properties

In this section, we give an outline of the lemmas and theorems appearing in Sections 4.6.3 to

4.6.5. The lemmas are primarily used to prove Theorems 4.6.20 and 4.6.21, though some lemmas,

particularly Lemma 4.6.17, are also used in later sections. We will use M and � to denote the

values of Mι and �ι, in some generic iteration ι. The descriptions in this section are meant to

convey intuition and to highlight the general logical relationship between the lemmas. They may

not correspond exactly with the formal statements of the lemmas. More precise descriptions of the

lemmas will be presented when the lemmas are formally stated.

The main goal of the next three subsections is to prove Theorem 4.6.20, which states that in

any linearization of ((Mn)ιn

,�n), all the processes p1, . . . , pn enter the critical section, and they do

so in the order π. To prove this theorem, we first show some basic properties about Construct

in Section 4.6.3. For example, we show that � is a partial order on M (Lemma 4.6.6), and that

the set of metasteps containing any process is totally ordered by � (Lemma 4.6.8). Section 4.6.4

shows more advanced properties of Construct. Most of the properties in this section are listed in

Lemma 4.6.17. Lemma 4.6.17 is proved inductively; that is, it shows the properties hold in some

iteration ι, assuming they hold in iteration ι 	 1. The reason we list most of the properties in

Section 4.6.4 in one lemma, instead of dividing them into multiple lemmas, is that the properties are

interdependent. For example, proving Part 9 of Lemma 4.6.17 for iteration ι requires first proving

Part 5 of the lemma for ι, which requires proving Part 1 for ι, which in turn requires proving Part

9 of the lemma for iteration ι	 1. We now describe the main parts of Lemma 4.6.17.

Let α be a linearization of ((Mn)ιn

,�n), and let pπi
and pπj

be two processes, such that 1 ≤
i < j ≤ n. Recall that Theorem 4.6.20 asserts that pπi

enters the critical section before pπj
in

103

α. Intuitively, the reason for this is that pπi
does not see pπj

, and so pπi
will not wait for pπj

before pπi
enters the critical section. Formalizing this idea involves the following two strands of

argument. Firstly, we need to show that pπi
and pπj

actually enter the critical section in α. This

is done by appealing to the progress property of mutual exclusion, in Definition 4.3.3. However, in

order to invoke the progress property, we first need to show that α is a run of A. Indeed, since

α is a linearization of ((Mn)ιn

,�n), we only know a priori that α is step sequence. Showing that

α ∈ runs(A) is the content of Part 1 of Lemma 4.6.17.

In addition to showing that pπi
and pπj

enter the critical section, we need to formalize the idea

that pπi
does not see pπj

. This is done in Part 9 of Lemma 4.6.17, which essentially shows that we

can pause processes pπi+1 , . . . , pπj
, . . . , pπn

at any point in a run, while continuing to run processes

pπ1 , . . . , pπi
, and guarantee that pπ1 , . . . , pπi

all still enter the critical section. Thus, processes

pπ1 , . . . , pπi
are oblivious to the presence of processes pπi+1 , . . . , pπn

, and will take steps whether or

not the latter set of processes take steps. Part 9 of Lemma 4.6.17 relies on Part 5 of the lemma,

which shows that the states of pπ1 , . . . , pπi
and the values of the registers accessed by pπ1 , . . . , pπi

depend only on what steps pπ1 , . . . , pπi
took, and not on what steps pπi+1 , . . . , pπn

took. That is,

given two runs, in which processes pπ1 , . . . , pπi
take the same set of steps, but pπi+1 , . . . , pπn

take

different steps, the states of pπ1 , . . . , pπi
and the values of the registers they access are the same

at the end of both runs. Part 5 uses Part 4 of Lemma 4.6.17, which gives a convenient way to

compute the state of a process after a run. There are several other parts of Lemma 4.6.17 that we

will describe when we formally present the lemma in Section 4.6.4.

4.6.3 Basic Properties of Construct

This section presents some basic properties of the Construct algorithm. Recall that θ is a fixed

execution of Construct(π), for some π ∈ Sn, and that an iteration always refers to an iteration of

θ.

The first lemma shows how Mι and �ι change during an iteration ι. That is, it shows what

happens when we move up one iteration in Construct. It says that, except in some boundary

cases (when i = (i, 0)), we have the following: αι is computed by linearizing all the metasteps

m ∈Mι− such that m �ι− m̌ι− ; eι is a step of πi computed from αι; eι is a step in m̌ι; �ι contains

all the relations in �ι− , plus the relation (m̌ι− , m̌ι) (plus possibly some relations of the form (µ, m̌ι),

for µ ∈ Mι− , if ι is a write create iteration); for any m ∈ Mι other than m̌ι, the ι and ι− versions

of m are the same.

Lemma 4.6.3 (Up Lemma) Let ι = (i, j) be any iteration. Then we have the following.

1. If ι 6= (i, 0), then αι is an output of Plin((Mι−)ι− ,�ι− , m̌ι−) ≡ Lin((Nι)
ι− ,�ι−)20. If ι =

20Recall from Definition 4.6.1 that Nι = {µ | (µ ∈ Mι−) ∧ (µ �ι− m̌ι−)}.

104

(i, 0), then αι = ε.

2. eι = δ(αι, πi), eι ∈ steps((m̌ι)
ι), and proc(eι) = πi.

3. Mι = Mι− ∪ {m̌ι}.

4. If ι = (i, 0), then we have the following.

(a) ι is a critical create iteration.

(b) m̌ι 6∈Mι− , eι = tryπi
, and procs((m̌ι)

ι) = {πi}.

(c) For all m ∈Mι− , mι = mι− .

(d) �ι−=�ι .

5. If ι 6= (i, 0) and ι is a create iteration, then we have the following.

(a) m̌ι 6∈Mι− , and procs((m̌ι)
ι) = {πi}.

(b) For all m ∈Mι− , mι = mι− .

(c) If type(m̌ι) ∈ {R, C}, then �ι=�ι− ∪{(m̌ι− , m̌ι)}.

(d) If type(m̌ι) = W, then �ι=�ι− ∪{(m̌ι− , m̌ι)} ∪
⋃

µ∈R∗
ι
{(µ, m̌ι)}.

6. If ι 6= (i, 0) and ι is a modify iteration, then we have the following.

(a) Mι− = Mι, and m̌ι ∈Mι−.

(b) m̌ι 6�ι− m̌ι− .

(c) For all m ∈Mι such that m 6= m̌ι, we have mι = mι−.

(d) procs((m̌ι)
ι) = procs((m̌ι)

ι−) ∪ {πi}.

(e) �ι=�ι− ∪{(m̌ι− , m̌ι)}.

Proof. This lemma essentially lists the different cases that can arise in iteration ι. By inspection

of Figure 4-4, it is easy to check that all the statements are correct. 2

The following lemma states that M and � are “stable”. In particular, the lemma says that once

a metastep is added to M in some iteration, it is never removed in any later iteration. Also, once

two metasteps have been ordered in in some iteration, then their ordering never changes during later

iterations.

Lemma 4.6.4 (Stability Lemma A) Let ι1 and ι2 be two iterations, such that ι1 < ι2. Let

m1, m2 ∈Mι1, and suppose that m1 �ι1 m2, and m2 6�ι1 m1 . Then we have the following.

1. m1, m2 ∈Mι2 .

2. m1 �ι2 m2, and m2 6�ι2 m1.

105

Proof. We first prove that the lemma holds when ι1 and ι2 differ by one iteration.

Claim 4.6.5 Let ι be any iteration, let m1, m2 ∈ Mι, and suppose that m1 �ι m2 and m2 6�ι m1.

Then we have the following.

1. m1, m2 ∈Mι+.

2. m1 �ι+ m2, and m2 6�ι+ m1.

Then, to get Lemma 4.6.4, we simply apply Claim 4.6.5 ι2	 ι1 times, starting from iteration ι1. We

now prove Claim 4.6.5.

Proof of Claim 4.6.5. We prove each part of the claim separately.

• Part 1.

By Lemma 4.6.3, we see that Mι ⊆Mι+ , and so m1, m2 ∈Mι+ .

• Part 2, and ι+ is a create iteration.

By part 5 of Lemma 4.6.3, we have �ι+=�ι ∪
⋃

µ∈N{(µ, m̌ι+)}, for some N ⊆ Mι, and

m̌ι+ 6∈ Mι. By assumption, we have m1 �ι m2, and m2 6�ι m1. Then we have m1 �ι+ m2,

because �ι⊆�ι+ . Also, we have m2 6�ι+ m1. Indeed, if m2 �ι+ m1, then we must have

m2 �ι+ µ, for some µ ∈ N , and m̌ι+ �ι+ m1. But we see that m̌ι+ 6�ι+ m, for any m ∈ Mι+ .

Thus, we have m2 6�ι+ m1.

• Part 2, and ι+ is a modify iteration.

By part 6 of Lemma 4.6.3, we have �ι+=�ι ∪{(m̌ι, m̌ι+)}, where m̌ι+ ∈Mι, and m̌ι+ 6�ι m̌ι.

We have m1 �ι+ m2, because �ι⊆�ι+ . Also, we have m2 6�ι+ m1. Indeed, if m2 �ι+ m1,

then we must have m2 �ι m̌ι and m̌ι+ �ι m1. Then, since m1 �ι m2, we have m̌ι+ �ι m1 �ι

m2 �ι m̌ι, a contradiction. Thus, we have m2 6�ι+ m1.

2

Lemma 4.6.6 (Partial Order Lemma) Let ι be any iteration. Then �ι is a partial order on Mι.

Proof. We use induction on ι. The lemma is true for ι = (1, 0). We show that if the lemma is

true up to ι, then it is true for ι⊕ 1. Construct creates �ι+ based on �ι and the type of iteration

ι+. Thus, we consider the following cases.

If ι+ is a modify iteration, then for any m1, m2 ∈ Mι+ , we have m1, m2 ∈ Mι. Since �ι is a

partial order by the inductive hypothesis, then at most one of m1 �ι m2 and m2 �ι m1 holds. Then,

by applying Lemma 4.6.4, we see that at most one of m1 �ι+ m2 and m2 �ι+ m1 holds as well.

Thus, �ι+ is a partial order on Mι+ .

If ι is a create iteration, then by Lemma 4.6.3, we have �ι+=�ι ∪{(m̌ι, m̌ι+)}, where m̌ι+ 6∈Mι.

So, since �ι is a partial order on Mι, then �ι+ is a partial order on Mι+ . 2

106

We want to show that for any process, the set of metasteps containing that process is totally

ordered. We define the following.

Definition 4.6.7 (Function Φ) Let ι = (i, j) be any iteration, k ∈ [i], and N ⊆ Mι. Define the

following.

1. Φ(ι, k) = {µ | (µ ∈Mι) ∧ (πk ∈ procs(µι))}, and φ(ι, k) = |Φ(ι, k)|.

2. Φ(ι, N, k) = {µ | (µ ∈ N) ∧ (πk ∈ procs(µι))}, and φ(ι, N, k) = |Φ(ι, N, k)|.

Thus, Φ(ι, k) and φ(ι, k) are the set and number of metasteps containing process πk after iteration

ι. Φ(ι, N, k) and φ(ι, N, k) are the set and number of metasteps in N containing πk after ι.

The following lemma essentially states that the set of metasteps containing any process is totally

ordered. More precisely, if ι = (i, j) is an iteration, then there are j+1 metasteps containing πi in Mι.

Also, for any k ∈ [i], the set of metasteps containing πk consists of m̌(k,h), for h = 0, . . . , φ(ι, k)− 1.

Furthermore, these metasteps are ordered in increasing order of h. That is, we have m̌(k,h−1) �ι

m̌(k,h), for any h ∈ [φ(ι, k) − 1].

Lemma 4.6.8 (Order Lemma A) Let ι = (i, j) be any iteration, and let k ∈ [i]. Then we have

the following.

1. φ(ι, i) = j + 1.

2. Φ(ι, k) = {m̌(k,h) | 0 ≤ h < φ(ι, k)}.

3. For any 0 ≤ h1, h2 < φ(ι, k) such that h1 < h2, we have m̌(k,h1) ≺ι m̌(k,h2).

Proof. We use induction on ι. If ι = (1, 0), the lemma is obvious. We show that if the lemma is

true for ι, then it is true for ι⊕ 1. Consider the following cases.

• ι+ = (i + 1, 0).

Consider two cases, either k = i + 1, or k ∈ [i].

In the first case, Lemma 4.6.3 shows that Φ(ι+, i + 1) = {m̌ι+}. Thus, there is only one

metastep containing process πi+1, and the lemma follows immediately.

Next, let k ∈ [i]. Since k < i + 1, we only need to prove parts 2 and 3 of the lemma. Lemma

4.6.3 shows that Φ(ι+, k) = Φ(ι, k). Given m1, m2 ∈ Φ(ι, k), m1 and m2 are ordered in �ι by

the inductive hypothesis. By Lemma 4.6.4, m1 and m2 are ordered the same way in �ι+ as in

�ι. Thus, parts 2 and 3 of the lemma follow.

• ι+ = (i, j + 1).

Consider two cases, either k ∈ [i− 1], or k = i.

107

First, let k ∈ [i− 1]. Then it suffices to prove parts 2 and 3 of the lemma. By Lemma 4.6.3,

we have Φ(ι+, k) = Φ(ι, k). Also, for any m1, m2 ∈ Φ(ι, k), m1 and m2 are ordered in �ι by

induction, and by Lemma 4.6.4, they are ordered the same way in �ι+ . Thus, the lemma holds

for all k ∈ [i− 1].

Next, let k = i. By Lemma 4.6.3, we have Φ(ι+, i) = Φ(ι, i)∪{m̌ι+}. Also, πi ∈ procs((m̌ι+)ι+),

and πi 6∈ procs((m̌ι+)ι). So, there is one more metastep containing πi in Mι+ than in Mι, and

we have φ(ι+, i) = φ(ι, i) + 1 = j + 2, where the second equation follows from the inductive

hypothesis. Thus, part 1 of the lemma holds.

By parts 1 and 2 of the inductive hypothesis, we have Φ(ι, i) = {m̌(i,h) | 0 ≤ h ≤ j}. Thus,

Φ(ι+, i) = {m̌(i,h) | 0 ≤ h ≤ j + 1}, and part 2 of the lemma holds.

By part 3 of the inductive hypothesis, for any 0 ≤ h1, h2 ≤ j such that h1 < h2, we have

m̌(i,h1) ≺ι m̌(i,h2). Then by Lemma 4.6.4, we have m̌(i,h1) ≺ι+ m̌(i,h2). By Lemma 4.6.3, we

have m̌ι ≺ι+ m̌ι+ . Thus, for any 0 ≤ h < j + 1, we have m̌(i,h) ≺ι+ m̌ι+ = m̌(i,j+1). Thus,

part 3 of the lemma holds.

2

Let ι = (i, j) be any iteration. The next lemma compares a prefix N of (Mι,�ι), with Ň =

N ∩Mι− . First, it states that Ň is a prefix of (Mι− ,�ι−). Next, it states that for any k ∈ [i− 1],

N and Ň contain the same set of metasteps containing process πk. Finally, it states that if m̌ι 6∈ N ,

then N and Ň contain the same set of metasteps containing πi. Otherwise, if m̌ι ∈ N , then N

contains one more metastep containing πi than Ň , namely, m̌ι. Thus, the lemma compares a prefix

with the “version” of the prefix moved down one iteration.

Lemma 4.6.9 (Down Lemma A) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let Ň = N ∩Mι− . Then we have the following.

1. Ň is a prefix of (Mι− ,�ι−).

2. If m̌ι 6∈ N , then for all k ∈ [i], we have Φ(ι, N, k) = Φ(ι−, Ň , k).

3. If m̌ι ∈ N , then for all k ∈ [i−1], we have Φ(ι, N, k) = Φ(ι−, Ň , k). Also, we have Φ(ι, N, i) =

Φ(ι−, Ň , i) ∪ {m̌ι}.

Proof. We use induction on ι. The lemma holds for ι = (1, 0). We show that if the lemma holds

up to iteration ι	 1, then it also holds for ι. Let N be a prefix of (Mι,�ι), and Ň = N ∩Mι− . We

prove each part of the lemma separately.

• Part 1

108

Let m1 ∈ Ň , m2 ∈ Mι− , and suppose that m2 �ι− m1. To show that Ň is a prefix of

(Mι− ,�ι−), we need to show m2 ∈ Ň . Since m1, m2 ∈Mι− and m2 �ι− m1, then by Lemma

4.6.4, we have m1, m2 ∈ Mι, and m2 �ι m1. Since m1 ∈ Ň , then m1 ∈ N . Since N is a

prefix and m2 �ι m1, we have m2 ∈ N . Thus, m2 ∈ N ∩Mι− = Ň , and so Ň is a prefix of

(Mι− ,�ι−).

• Part 2

From Lemma 4.6.3, we have that if m ∈Mι and m 6= m̌ι, then m ∈Mι− . Thus, since m̌ι 6∈ N ,

we have N = Ň . Also from Lemma 4.6.3, we get that if m ∈Mι and m 6= m̌ι, then mι− = mι.

Thus, for any k ∈ [i], we have Φ(ι, N, k) = Φ(ι−, Ň , k).

• Part 3, ι is a create iteration.

From parts 4 and 5 of Lemma 4.6.3, we get the following. First, we have Mι = Mι− ∪ {m̌ι},
and m̌ι 6∈ Mι− . Second, we have procs((m̌ι)

ι) = {πi}. Lastly, if m ∈ Mι and m 6= m̌ι, then

mι− = mι. Thus, for all k ∈ [i − 1], we have Φ(ι, N, k) = Φ(ι−, N, k), and we also have

Φ(ι, N, i) = Φ(ι−, Ň , i) ∪ {m̌ι}.

• Part 3, ι is a modify iteration.

From part 6 of Lemma 4.6.3, we have Mι = Mι− . Also, procs((m̌ι)
ι) = procs((m̌ι)

ι−) ∪ {πi},
and mι = mι− for all m 6= m̌ι. Thus again, we have Φ(ι, N, k) = Φ(ι−, Ň , k), and Φ(ι, N, i) =

Φ(ι−, Ň , i) ∪ {m̌ι}.

2

Let ι, N and Ň be defined as in Lemma 4.6.9. Recall that eι is the value of e at the end of 〈42〉
in iteration ι. Thus, eι is computed in 〈11〉 of iteration ι. Let α be a linearization of (N ι,�ι)

21 , and

let α̌ be the same as α, but with step eι removed22. The next lemma states that α̌ is a linearization

of (Ň ι− ,�ι−).

Lemma 4.6.10 (Down Lemma B) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let α be an output of Lin(N ι,�ι). Let Ň = N ∩Mι−, and let α̌ be α with step eι removed.

Then α̌ is an output of of Lin(Ň ι− ,�ι−)

Proof. Let γ be the execution of Lin(N ι,�ι) that produced α. Let <N be the γ order of N , and for

each m ∈ N , let <m be the γ order of mι. Since Ň ⊆ N , then <N is a total order on Ň . We claim <N

is consistent with �ι− . Indeed, suppose m1, m2 ∈ N , and m1 <N m2. Then, since <N is consistent

with �ι, we have m2 6�ι m1. Then by the contrapositive of Lemma 4.6.4, we have m2 6�ι− m1, and

21Recall from the end of Section 4.6.1 that Lin(N ι,�ι) is formed by first ordering N with a total order consistent
with �ι, and then totally ordering steps(mι), the steps contained in m at the end of iteration ι, for all m ∈ N .

22If eι does not occur in α, then α = α̌.

109

so the claim holds. Now, define an execution γ̌ of Lin(Ň ι− ,�ι−) where we order Ň using <N , and

for each m ∈ Ň , order mι− using <m. γ̌ is a valid execution of Lin(Ň ι− ,�ι−), because <N is a

total order on Ň consistent with �ι− , and because for all m ∈ Ň , we have steps(mι−) ⊆ steps(mι),

so that <m is a total order on steps(mι−). We claim that the output of γ̌ is α̌. Consider two cases,

either m̌ι 6∈ N , or m̌ι ∈ N .

Suppose first that m̌ι 6∈ N . Then, since eι is contained in steps((m̌ι)
ι), eι does not occur in α.

Thus, α = α̌. By Lemma 4.6.3, we have N = Ň , and for all m ∈ Ň , we have mι = mι− . Thus, the

output of γ̌ is α̌ = α.

Next, suppose that m̌ι ∈ N . Then α and α̌ differ only in eι. Consider the following cases.

• ι is a create iteration.

By Lemma 4.6.3, we have N = Ň ∪ {m̌ι}, and steps((m̌ι)
ι) = {eι}. Also, if m ∈ N and

m 6= m̌ι, then mι = mι− . Thus, the output of γ̌ equals α with step eι removed, which is α̌.

• ι is a modify iteration.

By Lemma 4.6.3, we have N = Ň , steps((m̌ι)
ι) = steps((m̌ι)

ι−) ∪ {eι}, and for m ∈ N and

m 6= m̌ι, we have mι = mι− . Thus, again the output of γ̌ equals α with step eι removed,

which is α̌.

2

The next lemma essentially states that πi does not affect the views of process pπk
, for k < i.

Recall that for a step sequence α, acc(α) is the set of registers accessed by the steps in α.

Lemma 4.6.11 (Down Lemma C) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and suppose m̌ι ∈ N . Let α be an output of Lin(N ι,�ι), and suppose α ∈ runs(A). Let (m̌ι)
ι be

linearized as β in α23, and write α = α− ◦ β ◦α+. Let β̌ be β with step eι removed, let α1 = α− ◦ β,

and α2 = α− ◦ β̌24. Then we have the following.

1. For any k ∈ [i− 1], st(α1, πk) = st(α2, πk).

2. For any ` ∈ acc(α+), we have st(α1, `) = st(α2, `).

Proof. Consider two cases, either type(eι) = R, or type(eι) = W.

• type(eι) = R.

Since eι is a read step, it does not change the state of any registers. Thus, since β contains at

most one step by any process, both parts of the lemma follow immediately.

23Recall that this means that in the execution of Lin(N ι,�ι) that produced α, the output of Seq((m̌ι)ι) is β.
24Notice that since we assume α ∈ runs(A), and since α− ◦ β = α1 is a prefix of α, then we have α1 ∈ runs(A).

Also, since β is the linearization of m, it contains at most one step by any process. Thus, since β̌ and β differ in at
most one step, and α− ◦ β ∈ runs(A), then we have α− ◦ β̌ = α2 ∈ runs(A).

110

• type(eι) = W.

Consider two cases, either �(winner(m̌ι)) 6= πi, or �(winner(m̌ι)) = πi.

If �(winner(m̌ι)) 6= πi, let e∗ = �(win(m̌ι)) be the winning step in m̌ι. By the definition of

Seq((m̌ι)
ι), the value written by eι is overwritten by the value written by e∗ before it is read

by any process πk, k ∈ [i− 1]. Thus, both parts of the lemma follow.

If �(winner(m̌ι)) = πi, then let ` = reg(m̌ι). By Lemma 4.6.3, ι must be a write create

iteration. Then, we have procs((m̌ι)
ι) = {πi}, and β = eι. So, we have α1 = α− ◦ eι and

α2 = α−, and part 1 of the lemma follows. To show part 2 of the lemma, we prove the

following.

Claim 4.6.12 Let e be any step in α+. Then e does not access `.

Proof. Suppose for contradiction that there is a step e in α+ that accesses `. Then either e

is a write or a read step on `.

Suppose first that e writes to `. Then e is contained in some write metastep m ∈ Mι− . In

addition, since e occurs in α+, then m 6�ι m̌ι. Indeed, if m �ι m̌ι, then since (m̌ι)
ι is linearized

as β in α, the linearization of m, and step e, must occur in α−. Since m 6�ι m̌ι, then we also

have m 6�ι− m̌ι− . But then, at 〈15〉 in iteration ι, we would have mw 6= ∅, because m is a write

metastep on register `, and m 6�ι− m̌ι− . Thus, the test at 〈19〉 in ι must have failed, and so ι

could not have been a write create iteration, a contradiction. Thus, there are no write steps

to ` in α+.

Next, suppose that e reads `. Then e cannot be contained in a write metastep, by the same

argument as above. Suppose e is contained in a read metastep m. Then we have m ∈ Rι
25.

In 〈26〉 in ι, we set m ≺ι m̌ι. But then, e cannot occur in α+, since α+ only contains

(linearizations of) metasteps that 6�ι m̌ι. Again, this is a contradiction. Together with the

previous paragraph, this shows that any e in α+ does not access `. 2

Claim 4.6.12 is equivalent to saying that for all `′ ∈ acc(α+), `′ 6= `. Thus, part 2 of the lemma

follows.

�

Recall that Mk is the output of Generate after iteration ιk. The next lemma is similar to

Lemma 4.6.9, but lets us move N “down” multiple iterations.

Lemma 4.6.13 (Down Lemma D) Let ι = (i, j) be any iteration, and let N be a prefix of

(Mι,�ι). Let k ∈ [i− 1], and let Ň = N ∩Mk. Then we have the following

25Recall from Definition 4.6.1 that Rι = {µ | (µ ∈ Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = R) ∧ (µ 6�ι− m̌ι−)}.

111

1. Ň is a prefix of (Mk,�k).

2. For all h ∈ [k], we have Φ(ι, N, h) = Φ(ιk, Ň , h).

Proof. Let ς = ι− ιk be the number of iterations between ι and ιk. Let N0 = N , and for r ∈ [ς],

inductively define Nr = Nr−1 ∩Mι	r. We prove the each part of the lemma separately.

• Part 1.

We first prove the following.

Claim 4.6.14 For all r ∈ [ς], Nr is a prefix of (Mι	r,�ι	r).

Proof. This follows from induction on r. Indeed, by Lemma 4.6.9, it holds for r = 1. Also,

if it holds for r, then by Lemma 4.6.9, it holds for r + 1. 2

By Lemma 4.6.4, we have Mι	r ⊆ Mι	(r−1), for all r ∈ [ς]. Thus, since Nr = Nr−1 ∩Mι	r,

we have Nr = N ∩Mι	r. Thus, using Claim 4.6.14, where we let r = ς, we get that Nς = Ň

is a prefix of (Mι	ς ,�ι	ς) = (Mk,�k).

• Part 2.

Let r ∈ [ς]. Then since h ∈ [k] and k < i, by Lemma 4.6.9, we have that Φ(ι 	 r, Nr, h) =

Φ(ι	 (r − 1), Nr−1, h). From this, we get

Φ(ι, N, h) = Φ(ι, N0, h) = Φ(ι	 1, N1, h) = . . . = Φ(ι	 ς, Nς , h) = Φ(ιk, Ň , h).

�

4.6.4 Main Properties of Construct

In this section, we formally state and prove the main properties that Construct satisfies. We first

define the following.

For any iteration ι and any register `, define Ψ(ι, `) to be the set of metasteps in Mι that access `,

and define Ψw(ι, `) to be the set of write metasteps in Mι that access `. If m ∈Mι, define Υ(ι, `, m)

to be the set of metasteps in Mι that access `, and that also �ι m. Also, define Υ(ι, m) to be the

set of all metasteps µ such that µ �ι m. Formally, we have the following.

Definition 4.6.15 (Function Ψ) Let ι be any iteration, let N ⊆ Mι, and let ` ∈ L. Define the

following.

1. Ψ(ι, `) = {µ | (µ ∈Mι) ∧ (reg(µ) = `)}.

2. Ψw(ι, `) = {µ | (µ ∈Mι) ∧ (reg(µ) = `) ∧ (type(µ) = W)}.

112

Definition 4.6.16 (Function Υ) Let ι be any iteration, let ` ∈ L, and let m ∈ Mι. Define the

following.

1. Υ(ι, `, m) = {µ | (µ ∈ Ψ(ι, `) ∧ (µ �ι m)}.

2. Υ(ι, m) = {µ | (µ ∈Mι) ∧ (µ �ι m)}.

Given a set of metasteps N , we write acc(N) = {reg(µ) |µ ∈ N} for the set of all registers

accessed by the metasteps in N . We now state the main properties that Construct satisfies in

iteration ι.

Lemma 4.6.17 (Properties of Iteration ι of Construct)

Let ι = (i, j) be any iteration, let k ∈ [i], and let N be a prefix of (Mι,�ι). Let α be an output of

Lin(N ι,�ι). Then we have the following.

1. (Run A) α ∈ runs(A).

2. (Run B) Suppose k ∈ [i− 1]. Let h ∈ [k], and let αk be an output of Lin((Mk)ιk

,�k). Then

the steps tryπh
, enterπh

, exitπh
and remπh

occur in αk.

3. (Read Step) Suppose that type(eι) = R and Wι 6= ∅26 . Then we have type(m̌ι) = W, and ι

is a write modify iteration.

4. (Down E) Let α̌ be α with step eι removed. Then we have the following.

(a) α̌ ∈ runs(A).

(b) If k ∈ [i− 1], then st(α, πk) = st(α̌, πk).

(c) If m̌ι 6∈ N , then st(α, πi) = st(α̌, πi).

(d) If m̌ι ∈ N , type(m̌ι) = W, and type(eι) = W, then we have st(α, πi) = ∆(α̌, eι, πi).

(e) If m̌ι ∈ N , type(m̌ι) = W, and type(eι) = R, then let ` = reg(m̌ι), and let v = val(m̌ι).

Choose any s ∈ S such that st(s, πi) = st(α̌, πi) and st(s, `) = v. Then we have st(α, πi) =

∆(s, eι, πi).

(f) If m̌ι ∈ N and type(m̌ι) = R, then we have st(α, πi) = ∆(α̌, eι, πi).

5. (Consistency A) Let ι1 = (i1, j1) ≤ ι be an iteration, let N1 be a prefix of (Mι1 ,�ι1), and

let α1 be an output of Lin((N1)
ι1 ,�ι1). Suppose k ∈ [i1]. Then if Φ(ι, N, k) = Φ(ι1, N1, k), we

have st(α, πk) = st(α1, πk).

6. (Order B) Let ` ∈ L, m1 ∈ Ψ(ι, `), and let m2 ∈ Ψw(ι, `). Then either m1 �ι m2 or

m2 �ι m1.

26Recall from Definition 4.6.1 that Wι = {{µ | (µ ∈ Mι−) ∧ (reg(µ) = `) ∧ (type(µ) = W) ∧ (µ 6�ι− m̌ι−)}.

113

7. (Order C) Let ι1 ≤ ι be any iteration. Let ` ∈ L, and let m ∈ Ψw(ι1, `). Then Υ(ι1, `, m) =

Υ(ι, `, m).

8. (Consistency B) Suppose k ∈ [i − 1]. Let N1 = N ∩ Mk, and let α1 be an output of

Lin((N1)
ιk

,�k). Then we have the following.

(a) For all h ∈ [k], we have st(α, πh) = st(α1, πh).

(b) For all ` ∈ acc(Mk\N1), we have st(α, `) = st(α1, `).

9. (Extension) Suppose k ∈ [i− 1]. Then there exist step sequences α̌ and β, and an output αk

of Lin((Mk)ιk

,�k), such that αk = α̌ ◦ β and α ◦ β ∈ runs(A). Furthermore, if m ∈ Mk\N ,

then the linearization of mιk

occurs in β.

We first describe Lemma 4.6.17. Let ι = (i, j) be any iteration, and let k ∈ [i]. Let N be a prefix

of (Mι,�ι), and let α be an output of Lin(N ι,�ι). Part 1 of the lemma says that α, in addition to

being a step sequence, is actually a run of A.

Part 2 of the lemma says that if k ∈ [i − 1] and h ∈ [k], then any linearization ((Mk)ιk

,�k)

contains the critical steps of process πh, namely tryπh
, enterπh

, exitπh
and remπh

.

Part 3 says that if the step computed for πi in iteration ι, eι, is a read step on some register

`, and if there exist any write metasteps on ` that 6�ι− m̌ι− , then eι must be added to some such

metastep. Thus, in particular, ι is a write modify iteration. Note that this does not immediately

follow from the assumptions of part 3, because Wι 6= ∅ does not immediately imply that W s
ι 6= ∅,

or mws 6= ∅ in 〈31〉 of ι.

Part 4 says that if α̌ is equal to α with step eι removed, then α̌ is a run of A. The states of all

processes other than πi are the same after α and α̌. Also, if m̌ι 6∈ N , then the state of πi is the

same after α and α̌, and if m̌ι ∈ N , then the state of πi after α can be computed from its state

after α̌, eι, and (possibly) the value of m̌ι. Note that eι does not necessarily occur at the end of α.

Nevertheless, part 4 essentially allows us to move eι to the end of α, when we want to compute the

state of πi after α.

Part 5 essentially says that the state of a process after a linearization of a prefix from any iteration

depends only on the set of metasteps in the prefix that contain the process. More precisely, if ι1 ≤ ι

is any iteration, N1 is any prefix of (Mι1 ,�ι1), and α1 is any linearization of ((N1)
ι1 ,�ι1), then as

long as πk is contained in the same set of metasteps in N and N1, the state of πk is the same after

α and α1.

Part 6 says that for any register `, a write metastep on ` is ordered by �ι with respect to any

other (read or write) metastep on `.

Part 7 say that for a write metastep on register `, the set of metasteps on ` that precede m in

any two iterations is the same, as long as m ∈M during the smaller of the two iterations..

114

Part 8 says that if k ∈ [i − 1], h ∈ [k] and N1 = N ∩Mk, then the state of process πh is the

same after α as after a linearization α1 of ((N1)
ιk

,�k). Also, the value of any register accessed by

a metastep in Mk\N is the same after α and α1.

Part 9 of the lemma says that if we start with the run α, in which processes pπ1 , . . . , pπi
take

steps, then for any k ∈ [i− 1], we can extend α to a run α ◦ β, such that only processes pπ1 , . . . , pπk

take steps in β. Furthermore, pπ1 , . . . , pπk
all perform their rem steps in α ◦ β.

Proof. We use induction on ι. All parts of the lemma are easy to verify for ι = (1, 0). Indeed,

when ι = (1, 0), then Mι contains one metastep, containing the critical step tryπ1
, and �ι= ∅. Thus,

we have α = ε or α = tryπ1
. Then, parts 1, 4 and 5 of the lemma clearly hold, while the other parts

are vacuously satisfied. Next, suppose for induction that the lemma holds up to iteration ι	1; then

we show that it also holds for ι. We will call each part of the lemma a sublemma. Let γ be the

execution of Lin(N ι,�ι) that produced α.

1. Part 1, Run A.

Let Ň = N ∩Mι− , and let α̌ be α with step eι removed. Then by Lemma 4.6.9, Ň is a prefix

of (Mι− ,�ι−), and by Lemma 4.6.10, α̌ is an output of Lin(N ι− ,�ι−). Then by the inductive

hypothesis, we have α̌ ∈ runs(A). If m̌ι 6∈ N , then since eι ∈ steps((m̌ι)
ι), we have α = α̌,

and so α ∈ runs(A). Thus, assume that m̌ι ∈ N .

If ι = (i, 0), then eι = tryπi
. eι does not affect the state of any other process or register.

Conversely, the states of the other processes and registers do not affect the fact that eι is the

first step by process πi. Thus, since α̌ ∈ runs(A) by induction, we also have α ∈ runs(A).

Next, assume that ι 6= (i, 0). Then, by Lemma 4.6.3, we have m̌ι− �ι m̌ι. Thus, since m̌ι ∈ N

and N is a prefix, we have m̌ι− ∈ N .

Now, to show that α ∈ runs(A), the main idea is the following. Let α− and α+ denote the parts

of α before and after eι, respectively. Thus, we have α = α− ◦ eι ◦ α+. We first want to show

that πi indeed performs the step eι after α−. That is, we want to show that δ(α−, πi) = eι. To

do this, let N1 ⊆ Mι denote the set of all metasteps that are linearized before m̌ι in α. From

Lemma 4.6.8, we can see that N1 and Nι
27 contain the same set of metasteps that contain

process πi. Then, using Part 5 of the inductive hypothesis, it follows that πi is in the same

state following α− and αι. Thus, since eι is by definition the step that πi performs after αι,

eι is also the step that πi performs after α−, and so we have α− ◦ eι ∈ runs(A). Now, to

complete the proof that α ∈ runs(A), we use Lemma 4.6.11, which shows that inserting eι

after α− does not change the states of processes π1, . . . , πi−1, nor the values of any registers

accessed in α+. Thus, since α− ◦α+ = α̌ ∈ runs(A) by the inductive hypothesis, we also have

α− ◦ eι ◦ α+ ∈ runs(A), by Theorem 4.3.1.

27Recall from Section 4.6.1 that Nι = {µ | (µ ∈ Mι−) ∧ (µ �ι− m̌ι−)}.

115

We now present the formal proof of the lemma. Recall that m̌ι ∈ N , and ι 6= (i, 0). Let m̌ι−

and m̌ι be linearized as β1 and β2 in α, respectively, and let β̌2 be β2 with step eι removed.

Write α = α−1 ◦ β1 ◦ α−2 ◦ β2 ◦ α+, and α̌ = α−1 ◦ β1 ◦ α−2 ◦ β̌2 ◦ α+. There are no steps by πi

in β̌2, by definition. Also, there are no steps by πi in α−2 , since m̌ι and m̌ι− are the last two

metasteps (with respect to �ι) containing πi.

Let <γ be the γ order of N , and let

N1 = {µ | (µ ∈Mι) ∧ (µ ≤γ m̌ι−)}.

N1 is a prefix of (Mι,�ι). Indeed, if m1 ∈ N1 and m2 �ι m1, then we have m2 ≤γ m1, since

<γ is consistent with �ι. So, we have m2 ∈ N1.

By Lemma 4.6.3, we have that αι is an output of Lin((Nι)
ι− ,�ι−), and eι = δ(αι, πi). Since

ι = (i, j), then using part 3 of Lemma 4.6.8, we have

Φ(ι−, N1, i) = {m̌(i,h) | 0 ≤ h ≤ j − 1} = Φ(ι−, Nι, i).

Let γ1 be an execution of Lin((N1)
ι− ,�ι−) that orders N1 using <γ , and orders every m ∈ N1

using the γ order of m. Since α = α−1 ◦β1◦α−2 ◦β2◦α+ is the output of γ, and m̌ι− is linearized

as β1 in α, and mι = mι− for all m ∈Mι\{m̌ι}, then α−1 ◦ β1 is the output of γ1. Thus, since

Φ(ι−, N1, i) = Φ(ι−, Nι, i), we have by part 5 of the inductive hypothesis that

st(α−1 ◦ β1, πi) = st(αι, πi).

Let α′ = α−1 ◦ β1 ◦ α−2 ◦ β2, and α̌′ = α−1 ◦ β1 ◦ α−2 ◦ β̌2. Since α̌ = α̌′ ◦α+ ∈ runs(A), we have

α̌′ ∈ runs(A). Also, we have

st(αι, πi) = st(α−1 ◦ β1, πi) = st(α̌′, πi).

Here, the second equality follows because there are no steps by πi in α−2 or in β̌2. From this,

we get that

δ(α̌′, πi) = δ(αι, πi) = eι.

Thus, since α̌′ ∈ runs(A), and α̌′ equals α′ with step eι removed, we get that

α′ ∈ runs(A). (4.6)

By Lemma 4.6.11, we have ∀k ∈ [i− 1] : st(α′, πk) = st(α̌′, πk), and ∀` ∈ acc(α+) : st(α′, `) =

st(α̌′, `). Also, there are no steps by process πi in α+. Thus, using the fact that α̌ = α̌′ ◦α+ ∈

116

runs(A) and Theorem 4.3.1, and using Equation 4.6, we have α′ ◦ α+ = α ∈ runs(A).

2. Part 2, Run B.

Since ι = (i, j) is an iteration of θ and k < i, then by inspection of Construct, the h’th

call to Generate by Construct terminated. So, Mk contains a critical metastep containing

remπh
, and so remπh

occurs in αk. By Part 1 of the inductive hypothesis, αk ∈ runs(A), and

so αk satisfies the well formedness property of Definition 4.3.3. Thus, αk also contains the

steps tryπh
, enterπh

and exitπh
.

3. Part 3, Read Step.

The main idea is the following. Suppose for contradiction that type(m̌ι) = R, so that ι is a

read create iteration. Then this means that for every m ∈ Wι, process πi does not change

its state after reading, in step eι, the value written by m. Let the maximum metastep in Wι,

with respect to �ι− , be m∗, and let v∗ = val(m∗). By part 6 of the inductive hypothesis, Wι

is totally ordered by �ι− , and so m∗ is well defined. Using Part 9 of the inductive hypothesis,

we can construct a run α′ in which eι occurs after all metasteps in Mi−1 have occurred. In

particular, eι occurs after all the writes in Wι. The value of ` in any extension of α′, in which

only pπi
take steps, is v∗. But since πi does not change its state after reading value v∗, and

since pπi
, . . . , pπi−1 are all in their remainder sections in any extension of α′, then πi will stay

in the same state forever, contradicting the progress property in Definition 4.3.3.

We now present the formal proof. By Part 6 of the inductive hypothesis, Wι is totally ordered

by �ι− . Let m∗ = max�
ι−

Wι, v∗ = val(m∗), and let πk = �(winner(m∗)). Then k < i.

Indeed, we have m∗ 6�ι− m̌ι− by the definition of Wι. But for any metastep m containing πi,

that is, for any m ∈ Φ(ι−, i), we have m �ι− m̌ι− , by Lemma 4.6.8. Hence, k < i.

By Lemma 4.6.3, we have that αι is an output of Lin((Nι)
ι− ,�ι−). By Part 9 of the inductive

hypothesis, there exists an execution of Lin((Mi−1)
ιi−1

,�i−1) with output αi−1 = α̌ ◦ β, such

that α′ = αι ◦ β ∈ runs(A). We have m∗ ∈ Mi−1, since πk = �(winner(m∗)) and k < i, so

that Mi−1 contains all metasteps that contain pπk
. Also, we have m∗ 6∈ Nι, since m∗ 6�ι− m̌ι− .

Thus, we have m∗ ∈Mi−1\Nι, and the second conclusion of Part 9 of the inductive hypothesis

states that the linearization of m∗ occurs in β. Then, since m∗ is the maximum write metastep

to ` in Mi−1, with respect to �ι− , we have m �ι− m∗, for every m ∈ Mι− that is a write

metastep on `. Thus, we have st(α′, `) = v∗.

Let si = st(αι, πi) be πi’s state at the end of αι. By Lemma 4.6.3, we have eι = δ(si, πi). For

any v ∈ V , let

Sv = {s | (s ∈ S) ∧ (st(s, πi) = si) ∧ (st(s, `) = v)}.

That is, Sv is the set of system states in which πi is in state si, and ` has value v. Now,

117

suppose for contradiction that type(m̌ι) = R. Then the test on 〈31〉 of iteration ι must have

failed. Thus, by inspection of 〈29〉 and 〈31〉, we have

(∀µ ∈Wι)(∀s ∈ Sval(µ)) : ∆(s, eι, πi) = st(αι, πi) = si.

That is, none of the write metasteps in Wι write a value that causes πi to change its state

after αι. In particular, we have

∀s ∈ Sv∗ : ∆(s, eι, πi) = si. (4.7)

Notice that β does not contain any steps by πi, since β comes from a linearization of

((Mi−1)
ιi−1 ,�i−1). Then, since δ(αι, πi) = eι, and α′ = αι ◦ β ∈ runs(A), we have α′ ◦ eι ∈

runs(A). Since st(α′, `) = v∗ and eι is a read step, we have st(α′ ◦ eι, `) = v∗. Then by

Equation 4.7, we have st(α′ ◦ eι, πi) = st(αι ◦ eι, πi) = si. Thus, we have st(α′ ◦ eι) ∈ Sv∗ .

For any r ∈ N, let (eι)
r = eι ◦ . . . ◦ eι

︸ ︷︷ ︸

r times

. Since δ(si, πi) = eι and st(α′ ◦ eι, πi) = si, we have

δ(α′ ◦ eι, πi) = eι. Then, we have α′ ◦ (eι)
2 ∈ runs(A). We also have st(α′ ◦ (eι)

2, `) = v∗, and

st(α′ ◦ (eι)
2, πi) = si, by Equation 4.7. Thus, δ(α′ ◦ (eι)

2, πi) = eι, and so α′ ◦ (eι)
3 ∈ runs(A).

Following this pattern, we see that for any r ∈ N, we have α′ ◦ (eι)
r ∈ runs(A).

By part 2 of the inductive hypothesis, we have that for all h ∈ [i− 1], remπh
appears in α′.

Also, since πh performs tryπh
only once, πh is in its remainder section at the end of α′ ◦ (eι)

r,

for every r ∈ N. Thus, by the progress property in Definition 4.3.3, there exists a sufficiently

large r∗ ∈ N such that remπi
occurs in α′ ◦ (eι)

r∗

. But since eι is a read step by πi, this is a

contradiction. Thus, we conclude that type(m̌ι) = W, and ι is a write modify iteration.

4. Part 4, Down E.

We first describe the main idea of the proof. Parts a through c follow easily from earlier

lemmas or from induction. Part d of the sublemma follows because eι is a write step, and so

πi always transitions to the same state after eι, as long as eι is placed somewhere after eι− in

α̌. Similarly, part e follows because πi always transitions to the same state after eι, as long as

eι is placed after eι′ in α̌, and eι reads value v in `. Lastly, to see part f , note that since m̌ι

is a read metastep, then by part 3 of the lemma, there are no write steps to ` after eι− in α̌.

Thus, eι reads the same value in `, no matter where we place eι after eι− in α̌, and so, part f

follows.

We now present the formal proof of the sublemma. Part a of the sublemma follows from

Lemma 4.6.10, and part 1 of the inductive hypothesis. For the other parts, consider two cases,

either m̌ι 6∈ N , or m̌ι ∈ N .

118

If m̌ι 6∈ N , then since eι is contained in steps((m̌ι)
ι), we have α = α̌. Thus, for any k ∈ [i],

we have st(α, πk) = st(α̌, πk), and so Part 4 of the lemma holds.

If m̌ι ∈ N , then consider two cases, either ι = (i, 0), or ι 6= (i, 0). If ι = (i, 0), then eι = tryπi
.

Since eι does not change the state of any registers, part b of the sublemma holds. Also, parts

c through f of the lemma do not apply. Thus, the sublemma holds.

Next, suppose ι 6= (i, 0). Since ι 6= (i, 0), then eι− contains a step by πi. Suppose m̌ι is

linearized as β in α, and let β̌ be β with step eι removed. Write α = α− ◦ β ◦ α+, and

α̌ = α− ◦ β̌ ◦ α+. Also, write α− = α−1 ◦ eι− ◦ α−2 . Since eι− is the step taken by πi before

eι, there are no steps by πi in α−2 , β̌ or α+. We prove each part of the sublemma separately.

Note that part c has already been proven earlier.

• Part b.

By Lemma 4.6.11, for any k ∈ [i − 1], we have st(α− ◦ β, πk) = st(α− ◦ β̌, πk), and

∀` ∈ acc(α+) : st(α− ◦ β, `) = st(α− ◦ β̌, `). Then, since α+ does not contain any steps

by πi, we have

st(α, πk) = st(α− ◦ β ◦ α+, πk) = st(α− ◦ β̌ ◦ α+, πk) = st(α̌, πk).

• Part d.

We have

st(α, πi) = st(α−1 ◦ eι− ◦ α−2 ◦ β ◦ α+, πi)

= st(α−1 ◦ eι− ◦ α−2 ◦ β̌ ◦ α+ ◦ eι, πi)

= st(α̌ ◦ eι, πi).

The second equality follows because there are no steps by πi in α+, and because eι is a

write step. The third equality follows by the definition of α̌.

• Part e.

Since there are no steps by πi in α−2 , β̌ or α+, we have

st(α̌, πi) = st(α−1 ◦ eι− ◦ α−2 ◦ β̌ ◦ α+, πi)

= st(α−1 ◦ eι− ◦ α−2 ◦ β̌, πi)

= st(α−1 ◦ eι− ◦ α−2 , πi)

= st(α−1 ◦ eι− , πi).

119

Thus, we get

δ(α̌, πi) = δ(α−1 ◦ eι− , πi) = eι.

Here the second equality follows because eι is the next step by πi in α after eι− . Since

type(m̌ι) = W, then eι reads v = val(m̌ι) in α. Thus, if s ∈ S is any system state such

that st(s, πi) = st(α̌, πi) and st(s, `) = v, then we have st(α, πi) = ∆(s, eι, πi).

• Part f .

Since type(m̌ι) = R, then by part 3 of the lemma, we have Wι = ∅. Thus, there are no

write steps to ` in α−2 or in α+, since eι− is contained in steps((m̌ι−)ι), and eι− comes

before α−2 and α+ in α. Also, since type(m̌ι) = R, we have steps((m̌ι)
ι) = {eι}, and so

β = eι, and β̌ = ε. Thus, we have

st(α, πi) = st(α−1 ◦ eι− ◦ α−2 ◦ eι ◦ α+, πi)

= st(α−1 ◦ eι− ◦ α−2 ◦ α+ ◦ eι, πi)

= st(α−1 ◦ eι− ◦ α−2 ◦ β̌ ◦ α+ ◦ eι, πi)

= st(α̌ ◦ eι, πi).

The second equality follows because eι is a read on `, and there are no writes to ` in α+.

The third equality follows because β̌ = ε.

5. Part 5, Consistency A.

We first describe the main idea of the proof. Consider two cases, either ι = ι1, or ι >

ι1. In the first case, let Ň = N ∩ Mι− and Ň1 = N1 ∩ Mι− , and let α̌ and α̌1 be the

(version ι−) linearizations of Ň and Ň1. Since Φ(ι, N, k) = Φ(ι, N1, k), then we also have

Φ(ι−, Ň , k) = Φ(ι−, Ň1, k), and so st(α̌, πk) = st(α̌1, πk) by induction. Then, to conclude that

st(α, πk) = st(α1, πk), we apply part 4 of the lemma. In the case that ι > ι1, we first show

that Φ(ι, N, k) = Φ(ι1, N1, k) implies that Φ(ι1, N, k) = Φ(ι1, N1, k), and then apply part 5 of

the inductive hypothesis for iteration ι1.

We now present the formal proof. Consider two cases, either ι = ι1, or ι > ι1.

• Case ι = ι1.

Let Ň = N ∩Mι− and Ň1 = N1 ∩Mι− . Also, let α̌ be α with step eι removed, and

let α̌1 be α1 with step eι removed. By Lemma 4.6.9, both Ň and Ň1 are prefixes of

(Mι− ,�ι−). By Lemma 4.6.10, α̌ and α̌1 are outputs of Lin((Ň)ι− ,�ι−) and

Lin((Ň1)
ι− ,�ι−), respectively.

We first show that if k ∈ [i − 1] and Φ(ι, N, k) = Φ(ι, N1, k), then we have st(α, πk) =

st(α1, πk). By Lemma 4.6.9, we have Φ(ι, N, k) = Φ(ι−, Ň , k), and Φ(ι, N1, k) = Φ(ι−, Ň1, k).

120

Thus, since Φ(ι, N, k) = Φ(ι, N1, k), we have Φ(ι−, Ň , k) = Φ(ι−, Ň1, k). Then by part 5

of the inductive hypothesis, we have

st(α̌, πk) = st(α̌1, πk).

By part 4.b of the lemma, we have

st(α, πk) = st(α̌, πk), st(α1, πk) = st(α̌1, πk).

Thus, we conclude that st(α, πk) = st(α1, πk), for all k ∈ [i− 1].

Next, suppose k = i, and Φ(ι, N, i) = Φ(ι, N1, i). Consider two cases, either m̌ι 6∈ N , or

m̌ι ∈ N .

– m̌ι 6∈ N .

Since m̌ι 6∈ N and Φ(ι, N, i) = Φ(ι, N1, i), we have m̌ι 6∈ N1. Then, by Lemma 4.6.9,

we have Φ(ι, N, i) = Φ(ι−, Ň , i) and Φ(ι, N1, i) = Φ(ι−, Ň1, i), and so Φ(ι−, Ň , i) =

Φ(ι−, Ň1, i). Then, by part 5 of the inductive hypothesis, we have st(α̌, πi) =

st(α̌1, πi). Since m̌ι 6∈ N , then by part 4.c of the lemma, we have st(α, πi) = st(α̌, πi),

and st(α1, πi) = st(α̌1, πi). Thus, we have st(α, πi) = st(α1, πi).

– m̌ι ∈ N .

Since m̌ι ∈ N and Φ(ι, N, i) = Φ(ι, N1, i), we have m̌ι ∈ N1. Then, by Lemma 4.6.9,

we have Φ(ι, N, i) = Φ(ι−, Ň , i) ∪ {m̌ι} and Φ(ι, N1, i) = Φ(ι−, Ň1, i) ∪ {m̌ι}, and

so Φ(ι−, Ň , i) = Φ(ι−, Ň1, i). Then, by part 5 of the inductive hypothesis, we have

st(α̌, πi) = st(α̌1, πi). To complete the proof, consider the following cases.

Suppose first that type(m̌ι) = W and type(eι) = R. Let ` = reg(m̌ι), v = val(m̌ι). Let

s ∈ S be any system state such that st(s, πi) = st(α̌, πi) = st(α̌1, πi), and st(s, `) = v.

Then by part 4.e of the lemma, we have

st(α, πi) = ∆(s, eι, πi) st(α1, πi) = ∆(s, eι, πi).

Thus, we have st(α, πi) = st(α1, πi).

Next, suppose that either type(m̌ι) = W and type(eι) = W, or type(m̌ι) = R. Then

by parts 4.d and 4.f of the lemma, we have st(α, πi) = ∆(α̌, eι, πi), and st(α1, πi) =

∆(α̌1, eι, πi). Thus, again we have st(α, πi) = st(α1, πi).

• Case ι > ι1

Let ς = ι− ι1 be the number of iterations between ι and ι1. Define N0 = N and α0 = α.

For r ∈ [1, ς], inductively let N r = N r−1 ∩Mι	r, and let αr be αr−1 with step eι	(r−1)

removed. The following lemma states properties about the “versions” of N and α in

121

iteration ι	 r, for any r ∈ [ς].

Claim 4.6.18 For any r ∈ [ς], we have the following.

(a) N r is a prefix of (Mι	r,�ι	r).

(b) Φ(ι 	 r, N r, k) = Φ(ι	 (r − 1), N r−1, k).

(c) αr is an output of Lin((N r)ι	r,�ι	r).

(d) st(αr , πk) = st(αr−1, πk).

Proof. We use induction, and prove the claim for r = 1. The proof for other values of

r uses the inductive hypothesis for r − 1, and is otherwise the same.

– Part a.

Since N0 = N is a prefix of (Mι,�ι), then by Lemma 4.6.9, N1 is a prefix of

(Mι	1,�ι	1).

– Part b.

We claim that if k = i, then m̌ι 6∈ N0. Indeed, if k = i and m̌ι ∈ N0, then

since we have πk ∈ procs((m̌ι)
ι), πk 6∈ procs((m̌ι)

ι	1), and ι1 ≤ ι 	 1, we get that

Φ(ι, N0, k) 6= Φ(ι1, N1, k), a contradiction. Thus, we either have k ∈ [i− 1], or k = i

and m̌ι 6∈ N0. In both cases, by Lemma 4.6.9, we have Φ(ι, N0, k) = Φ(ι	 1, N1, k).

– Part c.

We have N1 = N0∩Mι	1, and α1 equals α0 with step eι removed. Thus, since α is an

output of Lin(N ι,�ι), then by Lemma 4.6.10, α1 is an output of Lin((N1)ι	1,�ι	1).

– Part d.

As in the proof for part 2, we have that if k = i, then m̌ι 6∈ N0. Thus, by parts 4.b

and 4.c of the lemma, we have that st(α1, πk) = st(α0, πk).

2

We now complete the proof of part 5 of the lemma. From part 1 of Claim 4.6.18, we have

that N ς is a prefix of (Mι	ς ,�ι	ς) = (Mι1 ,�ι1). By inductively applying Claim 4.6.18,

starting from r = 1 up to r = ς, we get from part 2 of Claim 4.6.18 that

Φ(ι1, N
ς , k) = Φ(ι, N, k).

By inductively applying part 3 of Claim 4.6.18, we get that there exists an execution of

Lin((N ς)ι1 ,�ι) with output ας .

Since Φ(ι, N, k) = Φ(ι1, N1, k) by assumption, then by part 2 of Claim 4.6.18, we have

Φ(ι1, N
ς , k) = Φ(ι1, N1, k). Thus, by part 5 of the inductive hypothesis, we have

st(ας , πk) = st(α1, πk).

122

Finally, by inductively applying part 4 of Claim 4.6.18, we get that

st(α, πk) = st(ας , πk).

Thus, we have st(α, πk) = st(α1, πk). �

6. Part 6, Order B.

The main idea is the following. If ι is a modify iteration, then Mι = Mι− , and also, all

metasteps are ordered the same way in �ι and �ι− . Thus, the sublemma follows by induction.

If ι is a create iteration, then we can show that Wι = ∅, either using part 3 of the lemma

(if ι is a read create iteration), or by direct inspection of Construct (if ι is a write create

iteration). Thus, for any write metastep m2 ∈ Mι− on `, we have m2 �ι− m̌ι− ≺ι m̌ι. From

this, the lemma follows.

We now present the formal proof. Choose an ` ∈ L, m1 ∈ Ψ(ι, `) and m2 ∈ Ψw(ι, `), and

consider the following cases.

• ι is a critical create iteration.

By Lemma 4.6.3, we either have �ι=�ι− , or �ι=�ι− ∪{(m̌ι− , m̌ι)}. Also, m̌ι 6∈ Mι− ,

and m̌ι contains a critical step that does not access any registers. Thus, since m1 and m2

are ordered in �ι− by part 6 of the inductive hypothesis, they are ordered in the same

way in �ι, by Lemma 4.6.4.

• ι is a read create iteration.

By Lemma 4.6.3, we have �ι=�ι− ∪{(m̌ι− , m̌ι)}. If reg(eι) 6= `, then the sublemma

clearly holds in ι.

If reg(eι) = reg(m̌ι) = `, then since ι is a read create iteration, by part 3 of the lemma,

we have Wι = ∅. Since m1 and m2 are ordered in �ι− by induction, they are ordered

the same way in �ι. Also, since Wι = ∅ and m2 ∈ Ψw(ι, `), then we have m2 �ι− m̌ι− .

Finally, we have m̌ι− ≺ι m̌ι, by 〈37〉 of ι. Thus, the sublemma holds for ι.

• ι is a write create iteration.

If reg(eι) 6= `, then the sublemma holds in ι. If reg(eι) = `, then since ι is a write

create iteration, then the test on 〈19〉 in iteration ι succeeded, and so Wι = ∅. Thus,

m2 �ι− m̌ι− , and so by 〈27〉 of iteration ι, we have m2 ≺ι m̌ι. Also, if m1 ∈ Rι, then it

follows from 〈26〉 of ι that m1 ≺ι m̌ι. Lastly, m1 and m2 are ordered the same way in ι−

and ι. Thus, the sublemma holds for ι.

• ι is a modify iteration.

By Lemma 4.6.3, we have Mι− = Mι. Thus, for any m1, m2 ∈Mι, we have m1, m2 ∈Mι− ,

and so by Lemma 4.6.4, m1 and m2 are ordered the same way in ι as in ι−.

123

7. Part 7, Order C.

We prove the sublemma in the case when ι and ι1 differ by one iteration. The proof for a

general ι1 is simply an inductive version of the following argument. Let ` ∈ L and m ∈ Ψw(ι, `).

Then we show that Υ(ι, `, m) = Υ(ι−, `, m). Let m1 ∈ Ψ(ι, `). Then by part 6 of the inductive

hypothesis, either m �ι− m1 or m1 �ι− m. So by Lemma 4.6.4, either m �ι m1 or m1 �ι m,

and so we have Υ(ι−, `, m) ⊆ Υ(ι, `, m). So, to show Υ(ι, `, m) = Υ(ι−, `, m), it suffices to

show the following:

If reg(m̌ι) = ` and m̌ι 6�ι− m, then m̌ι 6�ι m. (∗)

To show (∗), suppose first that ι is a modify iteration. Then m̌ι ∈ Mι. It suffices to consider

the case when m̌ι accesses `. Then, since m̌ι 6�ι− m by assumption, we have by part 6 of the

inductive hypothesis that m �ι− m̌ι. Thus, by Lemma 4.6.4, we have m �ι m̌ι, and (∗) holds.

Next, suppose ι is a read or write create iteration. Then we claim that Wι = ∅. Indeed, if ι

is a write create iteration, then Wι = ∅, or else the test on 〈19〉 of ι would fail, and ι would

not be a write create iteration. If ι is a read create iteration, then part 3 of the lemma implies

that Wι = ∅. Now, since m is a write metastep on `, then m 6∈ Wι, and so m �ι− m̌ι− ≺ι m̌ι.

So, the assumption of (∗) does not hold. Thus, again we have Υ(ι, `, m) = Υ(ι−, `, m).

8. Part 8, Consistency B.

The main idea is the following. To show part a of the sublemma, we use the fact that h ≤ k < i

and Lemma 4.6.13 to show that Φ(ι, N, h) = Φ(ιk, N1, h), and then apply part 8 of the lemma

to conclude that st(α, πh) = st(α1, πh). For part b, suppose that m̌ι ∈ N ; otherwise, part b

follows easily by induction. If eι is a read step, then part b follows easily. If eι is a write step,

and πi is not the winner of m̌ι, then the value that πi writes is overwritten by the value written

by the winner of m̌ι, and part b again follows. If eι is a write step and πi is also the winner

of m̌ι, then ι is a write create iteration. Let `1 = reg(m̌ι). We claim that `1 is not accessed

by any metastep in Mk\N1. Indeed, if there is a write metastep m ∈ Mk\N1 on `1, then

m ∈Wι 6= ∅, and so ι is a write modify iteration, a contradiction. Otherwise, if there is a read

metastep m ∈Mk\N1 on `, then m ∈ Rι 6= ∅, and we have m ≺ι m̌ι. Then, since m̌ι ∈ N , we

have m ∈ N , and m 6∈ Mk\N1, which is again a contradiction. Thus, `1 6∈ acc(Mk\N1), and

part b of the sublemma follows.

We now present the formal proof. Since k ∈ [i] and h ∈ [k], then by Lemma 4.6.13, Ň is

a prefix of (Mk,�k), and Φ(ι, N, h) = Φ(ιk, N1, h). Thus, by part 8 of the lemma, we have

st(α, πh) = st(α1, πh), and part 1 of the sublemma holds.

For part 2 of the sublemma, we consider two cases, either m̌ι 6∈ N , or m̌ι ∈ N .

124

If m̌ι 6∈ N , then N = N∩Mι− , and so by Lemmas 4.6.9 and 4.6.10, N is a prefix of (Mι− ,�ι−),

and α is the output of an execution of Lin((N)ι− ,�ι−). Then by part 8 of the inductive

hypothesis, we have st(α, `) = st(α1, `), for all ` ∈ acc(Mk\N1).

If m̌ι ∈ N , then suppose m̌ι is linearized as β in α, and let β̌ be β with step eι removed. Write

α = α− ◦ β ◦ α+, and let α̌ = α− ◦ β̌ ◦ α+, and Ň = N ∩Mι− . By Lemmas 4.6.9 and 4.6.10,

Ň is a prefix of (Mι− ,�ι−), and α̌ is the output of some execution of Lin((Ň)ι− ,�ι−). Then

by the inductive hypothesis, we have

∀` ∈ acc(Mk\N1) : st(α̌, `) = st(α1, `). (4.8)

Let ` ∈ acc(Mk\N1). To show that st(α, `) = st(α1, `), consider the following cases.

• type(eι) = R.

eι does not change the state of any register, and so st(α− ◦ β, `) = st(α− ◦ β̌, `). Also, eι

is the last step by process πi in α, and so there are no steps by πi in α+. Thus, we have

st(α, `) = st(α− ◦ β ◦ α+, `)

= st(α− ◦ β̌ ◦ α+, `)

= st(α̌, `)

= st(α1, `).

Here, the third equation follows by the definition of α̌, and the last equation follows by

Equation 4.8.

• type(eι) = W, and �(winner(m̌ι)) 6= πi.

The value written by step eι is overwritten by the value written by step �(win(m̌ι)) before

it is read by any process. Thus, st(α− ◦ β, `) = st(α− ◦ β̌, `). Since there are no steps by

πi in α+, we have st(α, `) = st(α1, `).

• type(eι) = W, and �(winner(m̌ι)) = πi.

Since �(winner(m̌ι)) = πi, then the test on 〈19〉 in iteration ι must have succeeded.

Thus, ι is a write create iteration, and we have β = eι, and β̌ = ε. Also, we have

ι 6= (i, 0). Let `1 = reg(m̌ι). We claim that for any m ∈ Mk\N1, reg(m) 6= `1. Suppose

for contradiction there exists m ∈Mk\N1 such that reg(m) = `1. Since m ∈Mk\N1 and

N1 = N ∩Mk, then m 6∈ N . Thus, since N is a prefix and m̌ι ∈ N , we have m 6�ι m̌ι.

Then, since ι 6= (i, 0), we also have m 6�ι− m̌ι− . Suppose first that type(m) = R. Since

Mk ⊆ Mι, m is a write metastep on `1, and m 6�ι− m̌ι− , then in 〈23〉 of iteration ι, we

have m ∈ Rι. But then in 〈26〉 of iteration ι, we set m ≺ι m̌ι, a contradiction. Next,

125

suppose that type(m) = W. Then in 〈14〉 in iteration ι, we have Wι 6= ∅, m is a write

metastep on `1, and m 6�ι− m̌ι− . So, the test on 〈19〉 of iteration ι fails, which is again a

contradiction.

For any m ∈ Mk\N1, we have shown that reg(m) 6= `1 = reg(eι). Thus, since ` ∈
acc(Mk\N1), we have st(α− ◦ β, `) = st(α− ◦ β̌, `), and so st(α, `) = st(α1, `).

9. Part 9, Extension.

The main idea is to set α̌ to be a linearization of N ∩Mk, then apply part 8 of the lemma.

Formally, let Ň = N ∩Mk, let γ̌ be an execution of Lin(Ň ιk

,�k), and let α̌ be the output of

γ̌. Let <γ̌ be the γ̌ order of Ň , and for m ∈ Ň , let <m be the γ̌ order of mιk

.

By Lemma 4.6.9, Ň is a prefix of (Mk,�k). Thus, there is a total order <k on Mk, that extends

the total order <γ̌ on Ň . That is, <k is a total order on Mk, such that for any m1, m2 ∈ Ň ,

we have m1 <k m2 if and only if m1 <γ̌ m2. Choose any such <k, and create the following

execution γk of Lin((Mk)ιk

,�k). γk orders Mk using <k. For any m ∈ Ň , γk linearizes m

using <m. For m ∈ Mk\Ň , γk linearizes m using any output of Seq(mιk

). Let αk be the

output of γk.

By the definition of γk, α̌ is a prefix of αk. Write αk = α̌◦β. Now, by part 8 of the lemma, for all

h ∈ [k], we have st(α̌, πh) = st(α, πh), and for all ` ∈ acc(Mk\Ň), we have st(α̌, `) = st(α, `).

Also, by part 1 of the inductive hypothesis, we have α, α̌, αk ∈ runs(A). Thus, by Theorem

4.3.1, we have α ◦ β ∈ runs(A).

To show the last part of the lemma, let m ∈Mk\N . Then, since α̌◦β contains the linearization

of every metastep in Mk, the linearization of m appears somewhere in α̌ ◦ β. Since α̌ contains

only linearizations of metasteps in Ň ⊆ N , then the linearization of m must appear in β. �

In the remainder of this chapter, we will refer to different parts of Lemma 4.6.17 using the “dot”

notation. For example, we write Lemma 4.6.17.1 for part 1 of Lemma 4.6.17.

Lemma 4.6.17 shows that each iteration of Construct satisfies certain safety properties. For

example, it shows that a linearization of a prefix from any iteration is a run of A. However, it

does not show that Construct eventually terminates. In particular, it does not show, for any

i ∈ [n], that there exists an iteration ι such that eι = remπi
, so that the i’th call to Generate from

Construct returns. The following lemma shows that each call to Generate does return, from

which it follows immediately that Construct terminates.

Lemma 4.6.19 (Termination Lemma) Let i ∈ [n]. Then there exists ji ≥ 0 such that e(i,ji) =

remπi
.

Proof. We use induction on i. Consider i = 1, and suppose for contradiction that e(1,j) 6= remπ1 ,

126

for every j ≥ 0. Then, since the only process that takes steps in α(1,j) is πi, A violates the progress

property in Definition 4.3.3, a contradiction. Thus, there exist some j1 such that e(1,j1) = remπ1 .

Next, assume that the lemma holds up to i − 1; then we show it also holds for i. Suppose

for contradiction that e(i,j) 6= remπ1 , for every j ≥ 0. For every j ≥ 0, let αj be an output of

Lin((M(i,j))
(i,j),�(i,j)). Since M(i,j) is a prefix of (M(i,j),�(i,j)), then by Lemma 4.6.17.1 , we have

αj ∈ runs(A), for all j ≥ 0. Since Mi−1 ⊆ M(i,j) for all j ≥ 0, then by Lemma 4.6.17.2, we have

that tryπk
, enterπk

, exitπk
and remπk

occur in α, for all k ∈ [i − 1]. Thus, for every j ≥ 0, every

process πk, k ∈ [i− 1], is in its remainder region after αj , except πi. But this violates the progress

property in Definition 4.3.3, a contradiction. Thus, there exist some ji such that e(i,ji) = remπi
. 2

4.6.5 Main Theorems for Construct

Finally, we show the key property of Construct, namely, that in any linearization of (M,�)

produced by Construct(π), all processes p1, p2, . . . , pn enter the critical section, and they enter in

the order pπ1 , pπ2 , . . . , pπn
.

Theorem 4.6.20 (Construction Theorem A) Let α be an output of Lin(Mn,�n). Then for

any i, j ∈ [n] such that i < j, steps enterπi
and enterπj

occur in α, and enterπi
occurs before enterπj

.

Proof. Suppose for contradiction that there exists i < j such that enterπj
occurs before enterπi

in α. Then the basic idea of the proof is to consider the prefix α1 of α up to and including the

occurrence of enterπj
. Since i < j, we can use Lemma 4.6.17.9 to show there exists an extension

α1 ◦ β of α1, such that only processes pπ1 , . . . , pπi
take steps in β. Furthermore, enterπi

occurs in β.

But this means there is a prefix of α1◦β in which enterπi
and enterπj

have both occurred, but neither

exitπi
nor exitπj

has occurred, contradicting the mutual exclusion property in Definition 4.3.3.

We now present the formal proof. First, note that enterπi
and enterπj

both occur in α, by Lemma

4.6.17.2. To show that enterπi
occurs before enterπj

, assume for contradiction otherwise. Let γ be

the execution of Lin(Mn,�n) that produced α, let <γ be the γ order of M , and for each m ∈M , let

<m be the γ order of m. Let α1 be the prefix of α up to and including event enterπj
. Let mj ∈M

be the critical metastep containing enterπj
, and let N = {µ | (µ ∈M)∧ (µ ≤γ mj)}. N is a prefix of

(M,�), since ≤γ is consistent with �n. Let γ1 be an execution of Lin(N ιn

,�) defined as follows.

γ1 orders N using <γ , and for each m ∈ N , γ1 orders m using <m. Then, by construction, α1 is the

output of γ1.

Let Ň = N ∩Mi, and let α̌ be an output of Lin(Ň ιi

,�i). Then by Lemma 4.6.17.9, there exists

a run αi that is an output of Lin((Mi)
ιi

,�i), such that αi = α̌ ◦ β and α1 ◦ β ∈ runs(A). Since

enterπj
occurs before enterπi

in α, and since N consists of all the metasteps that are ≤γ mj , then

for all m ∈ N , m does not contain enterπi
. Thus, since enterπi

occurs in αi by Lemma 4.6.17.2, we

have by Lemma 4.6.17.9 that enterπi
occurs in β.

127

Let α2 be the prefix of α1 ◦ β up to and including enterπi
. Then exitπj

does not occur in α2,

since α1 only contains the events of πj up through enterπj
, and β does not contain any events by

πj . Also, exitπi
does not occur in α2, since α1 ◦ β is well formed, and so exitπi

can only occur after

enterπi
in α1 ◦β. Thus, α2 contains enterπi

and enterπj
, but does not contain exitπi

or exitπj
. Hence,

α2 violates the mutual exclusion property of A, a contradiction. Thus, we must have that enterπi

occurs before enterπj
in α, for all i < j. 2

Finally, since our lower bound deals with the cost of canonical runs, we show that every lin-

earization of (Mn,�n) is canonical.

Theorem 4.6.21 (Construction Theorem B) Let α be the output of an execution of

Lin((Mn)ιn

,�n). Then α ∈ C.

Proof. Let i ∈ [n] be arbitrary. Then by Lemma 4.6.17.2, tryi,enteri, exiti and remi each occur

once in α. Also, from the discussion at the end of Section 4.3.2, δ(·, i) is defined so that after

pi performs enteri, it performs exiti in its next step. Since i was arbitrary, then α is a canonical

execution. 2

4.7 Additional Properties of Construct

In this section, we prove some additional properties of the Construct algorithm. These properties

are used in subsequent sections to prove the correctness of the Encode and Decode algorithms.

We begin by introducing some notation.

4.7.1 Notation

Definition 4.7.1 (Function G) Let ι be any iteration. Define G((Mι)
ι) =

∑

m∈Mι
|steps(mι)|

to be the total number of steps contained in all the metasteps in Mι after iteration ι. Also, let

G = G((Mn)ιn

) be the total number of steps contained in all the metasteps in Mn after iteration ιn.

Let ι be any iteration, and let N be a prefix of (Mι,�ι). Recall that the function Lin(N ι,�ι) is

nondeterministic, and may return any run that is a linearization of (N ι,�ι). The following function

L(ι, N) is the set of all such linearizations.

Definition 4.7.2 (Function L) Let ι be any iteration, and let N be a prefix of (Mι,�ι). Define

L(ι, N) = {α | α is an output of Lin(N ι,�ι)}.

Let ι = (i, j) be any iteration, let k ∈ [i], and let N be a prefix of (Mι,�ι). We define λ(ι, N, k)

to be the minimum metastep in Mι (with respect to �ι) not contained in N , that contains process

pπk
. We define λ(ι, N) to be the set of minimal metasteps in Mι that are not contained in N .

128

Definition 4.7.3 (Function λ) Let ι = (i, j) be any iteration, let k ∈ [i], and let N be a prefix of

(Mι,�ι). Define the following.

1. λ(ι, N, k) = min�ι
{µ | (µ ∈ Mι\N) ∧ (πk ∈ procs(µι))}. We say λ(ι, N, k) is the next pπk

metastep after (ι, N).

2. λ(ι, N) = min�ι
(Mι\N). We say λ(ι, N) is the set of minimal metasteps after (ι, N).

Recall that the set of metasteps containing any process is totally ordered by �ι, by Lemma 4.6.8,

and so λ(ι, N, k) is either a metastep, or ∅.
We define the following. An explanation of the definition follows its formal statement.

Definition 4.7.4 (Next Steps) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι), and let

α ∈ L(ι, N). Let ` ∈ L and v ∈ V be arbitrary. For any k ∈ [i], let mk = λ(ι, N, k), sk = st(α, πk),

and ek = δ(α, πk)28. Also, let Sk,`,v = {s | (s ∈ S) ∧ (st(s, πk) = st(sk, πk)) ∧ (st(s, `) = v). We

define the following.

1. We say ek is the next πk step after (ι, N).

2. If type(ek) = R, then we say πk reads ` after (ι, N). If type(ek) = W, then we say πk writes to

` after (ι, N).

3. Suppose that type(ek) = R, type(mk) = W, and ` = reg(ek). Also, suppose that ∃s ∈ Sk,`,v :

∆(s, ek, πk) 6= s. Then we say that πk v-reads ` after (ι, N).

4. Define readers(ι, N, `, v) to be the set of processes that v-read ` after (ι, N).

5. Let wwriters(ι, N, `) to be the set of processes that write to ` after (ι, N).

In the above definition, ` ∈ L, v ∈ V and k ∈ [i] are arbitrary. ek is the step that πk performs

after α, where α is a linearization of (N ι,�ι). Depending on whether ek is a read or write step, we

say πk reads or writes to ` after (ι, N). Now, if ek is a read step, and if mk, the next πk metastep

after (ι, N), is a write metastep, and if πk changes its state after reading value v in `, then we say that

πk v-reads ` after (ι, N). Note that we do not require that v = val(mk)29. We let readers(ι, N, `, v)

be the set of processes that v-read ` after (ι, N), and we let wwriters(ι, N, `) be the set of processes

that write to ` after (ι, N). Note that the two w’s in the name is intentional30.

Let ι be any iteration, and let N be a prefix of (Mι,�ι). In the following definition, preads(ι, N, `)

is the set of read metasteps m on ` that are contained in N , and such that m is contained in the

28Note that sk and ek are well defined, because by Lemma 4.6.17.5, we have st(α1, πk) = st(α2, πk), for any
α1, α2 ∈ L(ι, N).

29However, we show in Lemma 4.7.13 that πk does val(mk)-read ` after (ι, N). πk could also v-read ` after (ι, N),
for some v 6= val(mk).

30We use two w’s because wwriters(ι,N, `) may contain both the winning and non-winning write steps in some
write metastep on ` not in N .

129

preread set of some (write) metastep that is not contained in N . We say any such m is unmatched31.

Formally, we have the following.

Definition 4.7.5 (Unmatched Prereads) Let ι be an any iteration, ` ∈ L, and let N be a prefix

of (Mι,�ι). We define

preads(ι, N, `) = {µ1 | (µ1 ∈ N)∧(type(µ1) = R)∧(reg(µ1) = `)∧(∃µ2 : (µ2 6∈ N)∧(µ1 ∈ preads((µ2)
ι)))}.

For any m ∈ preads(ι, N, `), we say that m is an unmatched preread metastep on ` after (ι, N).

4.7.2 Properties for the Encoding

In this section, we prove some properties of Construct that are used in Section 4.9 to show the

efficiency of the encoding algorithm. The key lemma in this section is Lemma 4.7.9, which essentially

shows that every step in a linearization of ((Mι)
ι,�ι) causes some process to change its state.

The following lemma states that any (read) metastep is in the preread set of at most one (write)

metastep. This is used later to show that Encode does not expend too many bits encoding preread

metasteps.

Lemma 4.7.6 (Preread Lemma A) Let ι be any iteration, and let m1, m2 ∈ Mι be such that

m1 ∈ preads((m2)
ι). Then for all µ ∈Mι such that µ 6= m2, we have m1 6∈ preads(µι).

Proof. We use induction on ι. The lemma holds for ι = (1, 0). We show that if the lemma holds

up to ι 	 1, then it also holds for ι. Fix m1, m2 ∈ Mι, and assume that m1 ∈ preads((m2)
ι). We

show that for all µ ∈ M\{m2} : m1 6∈ preads(µι). Consider two cases, either @µ ∈ Mι− : m1 ∈
preads(µι−), or ∃µ ∈Mι− : m1 ∈ preads(µι−).

1. Case @µ ∈Mι− : m1 ∈ preads(µι−).

By Lemma 4.6.3, or by direct inspection of Construct, we can see that only metastep whose

pread attribute can change during iteration ι is m̌ι. Thus, since @µ ∈Mι− : m1 ∈ preads(µι−),

we have @µ ∈Mι\{m̌ι} : m1 ∈ preads(µι). Then, since m1 ∈ preads((m2)
ι), we have m2 = m̌ι.

Thus, the lemma holds.

2. Case ∃µ ∈Mι− : m1 ∈ preads(µι−).

Let m3 ∈Mι− be such that m1 ∈ preads((m3)
ι−). By the inductive hypothesis, we have that

∀µ ∈ Mι−\{m3} : m1 6∈ preads(µι−). We now show that ∀µ ∈ Mι\{m3} : m1 6∈ preads(µι).

Let m ∈Mι\{m3}. If m ∈Mι− , then we see by inspection that the pread attribute of m does

not change during iteration ι, and so m1 6∈ preads(mι).

31The reason that we focus on unmatched read metasteps is that one of the necessary conditions for a write metastep
m to be a minimal metastep after (ι, N) is that m 6∈ N , and for every read metastep µ ∈ preads(mι), we have µ ∈ N .
Thus, a necessary condition for m to be minimal is that all its prereads are unmatched. Please see Lemma 4.7.31.

130

Next, if m 6∈ Mι− , then by Lemma 4.6.3, we have m = m̌ι, and ι is a create iteration. If

m̌ι is not a write metastep on `, where ` = reg(m1), then we see from Lemma 4.6.3 that

m1 6∈ preads((m̌ι)
ι). So, suppose that m̌ι is a write metastep on `, so that ι is a write create

iteration.

We claim that m3 �ι− m̌ι− . Indeed, suppose that m3 6�ι− m̌ι− . Since m1 ∈ preads((m3)
ι−),

then we have reg(m3) = `, and type(m3) = W. Thus, in 〈15〉 of iteration ι, we have mw 6= ∅,
and so ι is a modify iteration, which is a contradiction. Thus, we have m3 �ι− m̌ι− . Now,

since m1 ∈ preads((m3)
ι−), we have m1 ≺ι− m3, and so m1 ≺ι− m̌ι− . Thus, from 〈23〉 of

ι, we see that m1 6∈ Rι, since for all µ ∈ Rι, we have µ 6�ι− m̌ι− . So, by 〈24〉 of ι, we have

m1 6∈ preads((m̌ι)
ι). Thus, we have shown that ∀µ ∈ Mι\{m3} : m1 6∈ preads(µι). Finally,

since m1 ∈ preads((m3)
ι−), then m1 ∈ preads((m3)

ι). Since we also have m1 ∈ preads((m2)
ι),

then m3 = m2, and so the lemma holds.

2

Lemma 4.7.7 (Cost Lemma A) Let ι be any iteration, and let α be an output of Lin((Mι)
ι,�ι).

Then we have |α| = G((Mι)
ι).

Proof. This follows by inspection of Lin((Mι)
ι,�ι). Indeed, α consists of exactly the set of steps

contained in the metasteps contained in Mι after ι, and so |α| = G((Mι)
ι).

2

The next lemma says that in any linearization of ((Mι)
ι,�ι), process πi changes its state after

performing its last step eι. This lemma is used in Lemma 4.7.9 to show that every step in a run α

produced by linearizing ((Mn)ιn

,�n) incurs unit cost, in the state change model. This fact in turn

is used in Section 4.9 to show that the number of bits used to encode ((Mn)ιn

,�n) is proportional

to the cost of α.

Lemma 4.7.8 (State Change Lemma) Let ι = (i, j) be any iteration, let α be an output of

Lin((Mι)
ι,�ι), and write α = α− ◦ eι ◦ α+, for some step sequences α− and α+. Then we have

st(α− ◦ eι, πi) 6= st(α−, πi).

Proof. The basic idea is the following. Since processes π1, . . . , πi−1 do not “see” process πi, then

we have α− ◦α+ ∈ runs(A). At the end of α− ◦α+, all processes π1, . . . , πi−1 are in their remainder

sections, and πi is about to perform step eι. Then, if πi does not change its state after performing

eι, it will stay in the same state, even after performing an arbitrarily large number of steps, violating

the progress property in Definition 4.3.3.

We now present the formal proof. The lemma holds for ι = (1, 0). Indeed, let e = tryπ1
.

Then e = e(1,0) = α. We must have st(ε, π1) 6= st(α, π1), because otherwise, we would have

131

e(1,1) = δ(α, π1) = δ(ε, π1) = tryπ1
, which violates the well formedness property in Definition 4.3.3.

Suppose for induction that the lemma holds up to iteration ι	 1. Then we show it also holds for ι.

Consider the following cases, based on the type of eι.

1. type(eι) = C.

If st(α− ◦ eι, πi) = st(α−, πi), then by the same argument as for iteration (1, 0), we have

δ(α− ◦ eι, πi) = eι, which is a contradiction.

2. type(eι) = W.

Suppose for contradiction that st(α− ◦ eι, πi) = st(α−, πi). By Lemma 4.6.10 and 4.6.17.1, we

have α− ◦α+ ∈ runs(A). Also, since Mi−1 ⊆Mι, then it follows from 4.6.17.2 that that remπk

occurs in α− ◦ α+, for all k ∈ [i− 1].

Since there are no steps by πi in α+, then we have st(α−, πi) = st(α− ◦ α+, πi), and so

δ(α− ◦ α+, πi) = eι. Then, we have α− ◦ α+ ◦ eι ∈ runs(A). Since st(α− ◦ eι, πi) = st(α−, πi)

and eι is a write step, then we have st(α− ◦ α+ ◦ eι, πi) = st(α− ◦ eι, πi) = st(α−, πi), and so

δ(α− ◦ α+ ◦ eι, πi) = eι. Thus, we have α− ◦ α+ ◦ (eι)
2 ∈ runs(A)32, st(α− ◦ α+ ◦ (eι)

2, πi) =

st(α−, eι), and δ(α− ◦ α+ ◦ (eι)
2, πi) = eι, etc. From this, we see that πi stays in the same

state in all extensions of α− ◦ α+. All these extensions are fair, since π1, . . . , πi−1 are in their

remainder regions following α− ◦ α+. Thus, this violates the progress property in Definition

4.3.3, a contradiction. So, we must have st(α− ◦ eι, πi) 6= st(α−, πi).

3. type(eι) = R.

Consider two cases, either type(m̌ι) = W, or type(m̌ι) = R. Let ` = reg(eι).

If type(m̌ι) = W, then let v = val(m̌ι). In α, eι reads the value v in `. Let s ∈ S be any system

state such that st(s, πi) = st(αι, πi), and st(s, `) = v. From 〈29〉 of Construct, we have that

∆(s, eι, πi) 6= st(s, πi). Let N ⊆Mι be the set of metasteps that are linearized before m̌ι in α.

We can see that Φ(ι−, N, i) = Φ(ι−, Nι, i). So, since αι ∈ L(ι−, Nι), then by Lemma 4.6.17.5,

we have st(α−, πi) = st(s, πi). Thus, we have st(α− ◦ eι, πi) 6= st(α−, πi).

Next, consider the case when type(m̌ι) = R, and suppose for contradiction that st(α−◦eι, πi) =

st(α−, πi). We have α− ◦α+ ∈ runs(A), and remπk
occurs in α− ◦α+, for all k ∈ [i−1]. Since

there are no steps by πi in α+, we have st(α−, πi) = st(α− ◦α+, πi), and so δ(α− ◦α+, πi) = eι,

and α− ◦ α+ ◦ eι ∈ runs(A).

Since type(m̌ι) = R, then by Lemma 4.6.17.3, we have Wι = ∅. Thus, there are no write steps

on ` in α+. Thus, since st(α−◦eι, πi) = st(α−, πi), we have st(α−◦α+◦eι, πi) = st(α−◦eι, πi) =

st(α−, πi), and so δ(α− ◦ α+ ◦ eι, πi) = eι. Then, we have α− ◦ α+ ◦ (eι)
2 ∈ runs(A),

32For any r ∈ N, we let (eι)r denote eι ◦ . . . ◦ eι, where there are r occurrences of eι.

132

st(α− ◦ α+ ◦ (eι)
2, πi) = st(α−, eι), and δ(α− ◦ α+ ◦ (eι)

2, πi) = eι, etc. Thus, πi stays in the

same state in all extensions of α− ◦ α+. All extensions of α− ◦ α+ are fair, since π1, . . . , πi−1

are in their remainder regions following α− ◦ α+. But this contradicts the progress property

in Definition 4.3.3. So, we must have st(α− ◦ eι, πi) 6= st(α−, πi).

2

The next lemma says that the state change cost of any execution α is equal to the length of α.

It uses Lemma 4.7.8, which showed that every step in α causes some process to change its state.

Lemma 4.7.9 (Cost Lemma B) Let ι = (i, j) be any iteration, and let α be an output of

Lin((Mι)
ι,�ι). Then we have C(α) = |α|.

Proof. We use induction on ι. The lemma holds for ι = (1, 0), by Lemma 4.7.8. Suppose for

induction that the lemma holds up to iteration ι 	 1. Then we show that it also holds for ι. Write

α = α− ◦ eι ◦ α+, and let α̌ = α− ◦ α+. By Lemma 4.6.10, α̌ is an output of Lin((Mι−)ι− ,�ι−),and

so by the inductive hypothesis, we have C(α̌) = |α̌|. Also, we have |α| = |α̌|+ 1. By Lemma 4.7.8,

we have st(α− ◦ eι, πi) 6= st(α−, πi). Thus, from Definition 4.3.6, we have C(α− ◦ eι) = C(α−) + 1.

By Lemma 4.6.11, we have ∀k ∈ [i− 1] : st(α−, πk) = st(α− ◦ eι, πk) and ∀` ∈ acc(α+) : st(α−, `) =

st(α− ◦ eι, `). Also, there are no steps by πi in α+. Thus, we have

C(α) = C(α− ◦ eι ◦ α+)

= C(α− ◦ α+) + 1

= C(α̌) + 1

= |α̌|+ 1

= |α|.

2

Lemma 4.7.10 (Cost Lemma C) Let α be an output of Lin((Mn)ιn

,�n). Then we have C(α) =

G.

Proof. We have G = |α| = C(α), where the first equality follows by Lemma 4.7.7, and the second

equality follows by Lemma 4.7.9. 2

4.7.3 Properties for the Decoding

In this section, we prove some properties of Construct that are used in Section 4.11 to show

the correctness of the Decode algorithm. At the end of this section, we recap the properties, and

describe how they suggest the decoding strategy used by Decode in Section 4.10.

133

In the exposition in the remainder of this section, let ι = (i, j) be an arbitrary iteration, let

k ∈ [i], and let N be a prefix of (Mι,�ι). Also, let α ∈ L(ι, N), and let Ň = N ∩Mι− .

The following lemma says that unless k = i and m̌ι− ∈ N , then the next πk metastep after (ι, N)

and after (ι−, Ň) are the same.

Lemma 4.7.11 (λ Lemma A) Let ι = (i, j) be any iteration, let k ∈ [i], let N be a prefix of

(Mι,�ι), and let Ň = N ∩Mι−. Suppose that k 6= i, or m̌ι− 6∈ N . Then we have λ(ι, N, k) =

λ(ι−, Ň , k).

Proof. By assumption, we either have k ∈ [i − 1], or m̌ι− 6∈ N . Since N is a prefix of (Mι,�ι)

and m̌ι− �ι m̌ι, we get that either k ∈ [i − 1], or m̌ι 6∈ N . Then, by Lemma 4.6.9, we have

Φ(ι, N, k) = Φ(ι−, Ň , k). From this, and from Lemma 4.6.8, we get that λ(ι, N, k) = λ(ι−, Ň , k). 2

The next lemma states a type of consistency condition. It says that the next πk step after (ι, N)

equals the step that πk takes in the next πk metastep after (ι, N).

Lemma 4.7.12 (Step Lemma A) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let α ∈ L(ι, N). Let k ∈ [i], and let e = δ(α, πk). Let m = λ(ι, N, k), and let ε = step(mι, πk).

Then e = ε.

Proof. We use induction on ι. The lemma is true for ι = (1, 0). We show that if it true up to

iteration ι 	 1, then it is true for ι. Let Ň = N ∩Mι− , let α̌ ∈ L(ι−, Ň), and consider three cases,

either k 6= i or m̌ι− 6∈ N , or k = i and m̌ι− ∈ N and m̌ι 6∈ N , or k = i and m̌ι ∈ N .

1. Case k 6= i or m̌ι− 6∈ N .

Let m0 = λ(ι−, Ň , k), e′ = δ(α̌, πk), and ε′ = step((m0)
ι− , πk). By Lemma 4.6.9, we have

Φ(ι, N, k) = Φ(ι−, Ň , k), and so by Lemma 4.6.17.5, we have st(α, πk) = st(α̌, πk). Thus, we

have e = e′. Since k 6= i or m̌ι− 6∈ N , then by Lemma 4.7.11, we have m = m0. Then, since

mι = (m0)
ι = (m0)

ι− by Lemma 4.6.3, we have ε = ε′. By the inductive hypothesis, we have

e′ = ε′. Thus, we have e = ε.

2. Case k = i and m̌ι− ∈ N and m̌ι 6∈ N .

By Lemma 4.6.3, we have eι = δ(αι, πi). By definition, eι is the step of πi contained in (m̌ι)
ι,

and so eι = ε.

Since m̌ι− ∈ N and m̌ι 6∈ N , then we have Φ(ι, N, i) = Φ(ι−, Nι, i). So, by Lemma 4.6.17.5,

we have st(α, πi) = st(αι, πi). Thus, we have

e = δ(α, πi) = δ(αι, πi) = eι = ε.

134

3. Case k = i and m̌ι ∈ N .

Since m̌ι is the maximum metastep containing πi, with respect to �ι, by Lemma 4.6.8, then

we have m = λ(ι, N, i) = ∅. Thus, there is nothing to prove.

2

The following lemma states another consistency condition. It says that if the next πk metastep

after (ι, N) is a write metastep writing value v to a register `, and if the next πk step after (ι, N) is

a read, then πk v-reads ` after (ι, N).

Lemma 4.7.13 (Step Lemma B) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let α ∈ L(ι, N). Let e = δ(α, πk), and let m = λ(ι, N, k). Suppose type(e) = R and type(m) = W.

Let ` = reg(m), v = val(m), and let s ∈ S be such that st(s, πk) = st(α, πk) and st(s, `) = v. Then

we have ∆(s, e, πk) 6= st(α, πk).

Proof. We use induction on ι. The lemma is true for ι = (1, 0). We show that if it true up to

iteration ι 	 1, then it is true for ι. Let Ň = N ∩Mι− , let α̌ ∈ L(ι−, Ň), and consider three cases,

either k 6= i or m̌ι− 6∈ N , or k = i and m̌ι− ∈ N and m̌ι 6∈ N , or k = i and m̌ι ∈ N .

1. Case k 6= i or m̌ι− 6∈ N .

Let m0 = λ(ι−, Ň , k), `′ = val(m0), v′ = val(m0), and e′ = δ(α̌, πk). By Lemma 4.7.11, we

have m = m0, and so ` = `′, and v = v′. Let s′ ∈ S be such that st(s′, πk) = st(α̌, πk) and

st(`, πk) = v. Then by the inductive hypothesis, we have ∆(s′, e′, πk) 6= st(α̌, πk). We have

Φ(ι, N, i) = Φ(ι, Ň , i), and so by Lemma 4.6.17.5, we have st(α, πi) = st(α̌, πi). Thus, we have

∆(s, e, πk) 6= st(α, πk).

2. Case k = i and m̌ι− ∈ N and m̌ι 6∈ N .

By Lemma 4.6.3, we have eι = δ(αι, πi), and eι = step((m̌ι)
ι, πk). Since m̌ι− ∈ N and m̌ι 6∈ N ,

we have m = λ(ι, N, i) = m̌ι, and so by Lemma 4.7.12, we have e = eι. Since type(m) = W

and type(e) = R, we have that ι is a read modify iteration, and so m̌ι ∈ Mι− . Then, we have

` = reg((m̌ι)
ι) = reg((m̌ι)

ι−), and v = val((m̌ι)
ι) = val((m̌ι)

ι−). From 〈30〉 of iteration ι, we

see that m̌ι was chosen so that

∃s : (s ∈ S) ∧ (st(s, πk) = st(αι, πk)) ∧ (st(s, `) = v) ∧ (∆(s, eι, πk) 6= st(s, πk)).

We have Φ(ι, N, i) = Φ(ι−, Nι, i), and so st(α, πi) = st(αι, πi), by Lemma 4.6.17.5. Thus, since

e = eι, we have ∆(s, e, πk) 6= st(α, πk).

3. Case k = i and m̌ι ∈ N .

We have m = λ(ι, N, i) = ∅, and so there is nothing to prove.

135

2

The next lemma says that, roughly speaking, if the next steps after a prefix for two processes

access the same register, then the next metasteps for the processes after the prefix is the same.

More precisely, let h ∈ [i]. Let mk and mh be the next πk and πh metastep after (ι, N), respectively

(assume that both mk and mh exist). Suppose that both mh and mk are write metasteps, and that

mk writes a value v to a register `. Also, suppose that next πk step after (ι, N) is a write step.

Then, the lemma says that if πh either writes to `, or v-reads ` after (ι, N), then we have mh = mk.

Also, in both cases, we have πh ∈ procs((mk)ι).

Lemma 4.7.14 (λ Lemma B) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι), and

let α ∈ L(ι, N). Let k ∈ [i], mk = λ(ι, N, k), ` = reg(mk), v = val(mk), and ek = δ(α, πk). Let

h ∈ [i], mh = λ(ι, N, h), and eh = δ(α, πh). Suppose that the following hold.

1. mk, mh 6= ∅.

2. type(ek) = type(mk) = W.

3. reg(mh) = `.

Then we have the following.

1. If type(eh) = W, then mh = mk, and πh ∈ writers((mk)ι) ∪ winner((mk)ι).

2. If type(eh) = R and type(mh) = W, then let s ∈ S be such that st(s, πh) = st(α, πh) and

st(s, `) = v. If ∆(s, eh, πh) 6= st(α, πh), then mh = mk, and πh ∈ readers((mk)ι).

Proof. The proof is by induction on ι. The main idea is the following. Let Ň = N ∩Mι− , and let

m′h = λ(ι−, Ň , h) and m′k = λ(ι−, Ň , k) be the next πh and πk metasteps after (ι−, Ň), respectively.

We can show using Lemma 4.7.11 that either m′h = mh, or h = i and m̌ι− ∈ N and m̌ι 6∈ N .

Similarly, we can show that either m′k = mk, or k = i and m̌ι− ∈ N and m̌ι 6∈ N .

If we have m′h = mh and m′k = mk, then we can prove the lemma using the inductive hypothesis.

This is case 1a in the formal proof below. Case 1b considers when m′h = mh and m′k 6= mk. Here,

as stated earlier, we have k = i, and so mk = m̌ι. If eh is a write step, then we will switch the

names of k and h, to get m′k = mk, h = i and m′h 6= mh. We describe how to deal with this case

in the following paragraph. If instead, eh is a read step, then we show that there exists a g 6= k = i

such that πg is the winner of m̌ι. We will create a prefix N2 of (Mι,�ι) such that m̌ι is the next πg

metastep after (ι, N2). In addition, mh is the next πh metastep after (ι, N2). Now, since g, h < i,

we can apply case 1a of the lemma to conclude that mk = mh.

Finally, we describe the case when m′k = mk, h = i and m′h 6= mh. This is case 2 in the formal

proof. We show in Claim 4.7.20 that mk is the minumum write metastep on ` not in N . Since h = i

136

and m′h 6= mh, we have mh = m̌ι. Now, if eh is a write step, we show in Claim 4.7.21 that eh is

added to the write steps of mk in iteration ι. Basically, the reason for this is that, since mk is the

minimum write metastep on ` not in N , and since m̌ι− ∈ N and m̌ι 6∈ N , then mk is in fact the

minimum write metastep on ` not in Nι. Then, it follows from 〈15〉 of Construct that eh is added

to the writes of mk. Thus, we have mh = m̌ι = mk, and πh ∈ writers((mk)ι) ∪ winner((mk)ι). If

eh is a read step, and πh changes its state after reading the value of mk, then using similar reasoning

as above, we show in Claim 4.7.22 that eh is added to the read steps of mk. So again, we have

mh = m̌ι = mk, and πh ∈ readers((mk)ι).

We now present the formal proof. We use induction on ι. The lemma is true for ι = (1, 0). We

show that if the lemma true up to iteration ι	 1, then it is also true for ι. Let Ň = N ∩Mι− , and

let α̌ ∈ L(ι−, Ň). It suffices to assume that k 6= h. Also, we claim that it suffices to consider two

cases, either (h 6= i)∨ (m̌ι− 6∈ N), or (h = i)∧ (m̌ι− ∈ N)∧ (m̌ι 6∈ N). In particular, we do not need

to consider the case (h = i) ∧ (m̌ι− ∈ N) ∧ (m̌ι ∈ N), because here, we have mh = λ(ι, N, h) = ∅,
since by Lemma 4.6.8, m̌ι is the maximum (with respect to �) metastep containing πh = πi.

1. Case h 6= i or m̌ι− 6∈ N .

Let m′k = λ(ι−, Ň , k), and m′h = λ(ι−, Ň , h). Since (h 6= i)∨(m̌ι− 6∈ N), we have mh = m′h, by

Lemma 4.7.11. By Lemma 4.6.9, we have Φ(ι, N, h) = Φ(ι−, Ň , h), and so by Lemma 4.6.17.5,

we have st(α̌, πh) = st(α, πh), and e′h = δ(α̌, πh) = δ(α, πh) = eh. Consider the two following

cases.

(a) Case k 6= i or m̌ι− 6∈ N .

In this case, we have mk = m′k, by Lemma 4.7.11. Consider the following cases.

Suppose first that type(eh) = W. Then type(e′h) = W, and so by the inductive hypothesis,

we have m′h = m′k, and πh ∈ writers((m′k)ι−) ∪ winner((m′k)ι−). Thus, we have mh =

m′h = m′k = mk, and πh ∈ writers((mk)ι) ∪ winner((mk)ι).

Suppose next that type(eh) = R, type(mh) = W, and ∆(s, eh, πh) 6= st(α, πh). Let s′ ∈ S

be such that st(s′, πh) = st(α̌, πh), and st(s′, `) = v. Then we have type(e′h) = R,

type(m′h) = W, and ∆(s′, e′h, πh) 6= st(α̌, πh), and so by the inductive hypothesis we have

m′h = m′k, and πh ∈ readers((m′k)ι−). Thus, we have mh = m′h = m′k = mk, and

πh ∈ readers((mk)ι).

(b) Case k = i, m̌ι− ∈ N and m̌ι 6∈ N .

In this case, we have mk = m̌ι. Also, since m̌ι is a write metastep, then ι 6= (i, 0).

Consider the following.

Suppose first that type(eh) = W. Then we have k = i and h < i. We will switch the

names of k and h, so that h = i and k < i. This then becomes case 2 of the proof, which

is presented later.

137

Next, suppose that type(eh) = R. We have already shown that the lemma holds in case

1a, after iteration ι. Our goal is to apply this fact to show that the lemma also holds

after iteration ι in case 1b, and when type(eh) = R. We have the following.

Claim 4.7.15 mh 6�ι− m̌ι− .

Proof. Suppose instead that mh �ι− m̌ι− . Then mh �ι m̌ι− , by Lemma 4.6.4. Since

λ(ι, N, k) = m̌ι and ι 6= (i, 0), we have m̌ι− ∈ N . Thus, since N is a prefix of (Mι,�ι),

we have mh ∈ N , which is a contradiction. 2

Claim 4.7.16 ι is a write modify iteration.

Proof. Since mh is a write metastep on `, and mh 6�ι− m̌ι− by Claim 4.7.15, we have

mh ∈ Wι, and so Wι 6= ∅. Then, from 〈15〉 of iteration ι, we see that mw 6= ∅. So, the

test on 〈16〉 of ι succeeds, and ι is a write modify iteration. 2

Claim 4.7.17 mh 6�ι m̌ι.

Proof. From 〈15〉 of iteration ι, we have m̌ι = min�
ι−

Wι. Then, it follows from Lemma

4.6.3 that m̌ι = min�ι
Wι. By Claim 4.7.15, we have mh 6�ι− m̌ι− , and so since mh is a

write metastep on `, we have mh ∈ Wι. Thus, since m̌ι = min�ι
Wι, we have mh 6�ι m̌ι.

2

Finally, we show that m̌ι = mh, and mh ∈ readers((m̌ι)
ι). Let πg = �(winner(m̌ι)).

Then g < k = i, since ι is a write modify iteration by Claim 4.7.16. Now, let

N1 = {µ | (µ ∈Mι) ∧ (µ ≺ι m̌ι)}, N2 = N1 ∪N.

N1 is a prefix of (Mι,�ι), and N2 is also a prefix of (Mι,�ι), since the union of two

prefixes is a prefix. We have m̌ι 6∈ N and m̌ι 6∈ N1, and so m̌ι 6∈ N2. Thus, since the set

of πg metasteps is totally ordered by �ι, by Lemma 4.6.8, and since N1 contains all the

metasteps in µ ∈ Mι that µ ≺ι m̌ι, we have m̌ι = λ(ι, N2, g). Let α2 ∈ L(ι, N2), and let

eg = δ(α2, πg). Then since πg = �(winner(m̌ι)), we have type(eg) = W.

Next, we have mh 6∈ N , and mh 6�ι m̌ι by Claim 4.7.17, and so mh 6∈ N2. Thus, since

mh = λ(ι, N, h) and N ⊆ N2, we have mh = λ(ι, N2, h). Then, we have Φ(ι, N, h) =

Φ(ι, N2, h), and so by Lemma 4.6.17.5, we have st(α2, πh) = st(α, πh). Let e′′h = δ(α2, πh).

Then, we have e′′h = eh. Let s2 ∈ S be such that st(s2, πh) = st(α2, πh) and st(s2, `) = v.

Together with the earlier statements and assumptions, we get the following.

g, h < i, m̌ι = λ(ι, N2, g), mh = λ(ι, N2, h), ` = reg(m̌ι), v = val(m̌ι),

138

type(m̌ι) = type(eg) = W, type(mh) = W, type(e′′h) = R,

∆(s2, e
′′
h, πh) 6= st(α2, πh).

Now, since we have already proved case 1a of the lemma for iteration ι, then we see that

by setting “k” in the assumptions of the lemma to “g”, we get that mh = m̌ι = mk, and

πh ∈ readers((m̌ι)
ι). Thus, the lemma is proved.

2. Case h = i, m̌ι− ∈ N and m̌ι 6∈ N .

In this case, we have k < i, and

mh = λ(ι, N, i) = m̌ι. (4.9)

Since m̌ι is a write metastep, then ι 6= (i, 0). Let

W = {µ | (µ ∈Mι−\N) ∧ (type(µ) = W) ∧ (reg(µ) = `)}.

We have mk ∈W , and so W 6= ∅. By Lemma 4.6.17.6, all metasteps in W are totally ordered.

Let m1 = min�ι
W.

We denote the two cases in the conclusions of the lemma as follows. Let (C1) denote the event

that type(eh) = W, and let (C2) denote the event that type(eh) = R and type(mh) = W and

∆(s, eh, πh) 6= st(α, πh). We have the following.

Claim 4.7.18 mk 6�ι− m̌ι− .

Proof. Suppose instead that mk �ι− m̌ι− . Since mk = λ(ι, N, k), we have mk 6∈ N . But

since m̌ι− ∈ N and N is a prefix, we also have mk ∈ N , a contradiction. Thus, mk 6�ι− m̌ι− .

2

Claim 4.7.19 Suppose (C1) or (C2) hold. Then ι is a modify iteration.

Proof. Suppose first that (C1) holds. Then since mk 6�ι− m̌ι− by Claim 4.7.18, and mk is

a write metastep on `, we have Wι 6= ∅. Then, from 〈15〉 of iteration ι, we have mw 6= ∅, and

so ι is a write modify iteration. If (C2) holds, then since mk 6�ι− m̌ι− , mk is a write metastep

on `, and ∆(s, eh, πh) 6= st(α, πh), we have W s
ι 6= ∅. Then in 〈30〉 of ι, we have mws 6= ∅, and

ι is a read modify iteration. 2

Claim 4.7.20 Suppose (C1) or (C2) hold. Then mk = m1.

139

Proof. Let πg = �(winner((m1)
ι)). Since m1 is a write metastep, then πg exists.

N1 = {µ | (µ ∈Mι) ∧ (µ ≺ι m1)}, N2 = N1 ∪N.

Then N1 and N2 are both prefixes of (Mι,�ι). We have m1 = λ(ι, N2, g). Let α2 ∈ L(ι, N2), let

eg = δ(α2, πg), and let εg = step((m1)
ι, πg). Since πg = �(winner((m1)

ι)), then type(εg) = W.

Also, we have εg = eg, by Lemma 4.7.12. Thus, we have type(eg) = W.

To show mk = m1, we first claim that g 6= i. Indeed, if g = i, then πi = �(winner((m1)
ι)),

and so from 〈20〉 of ι, we have that ι is a write create iteration, contradicting Claim 4.7.19.

Next, we claim that mk = λ(ι, N2, k). This follows because mk is a write metastep not in N ,

and so mk 6≺ι m1 = min�ι
W . Let e′′k = δ(α2, πk). We have Φ(ι, N, k) = Φ(ι, N2, k), and so

e′′k = ek using 4.6.17.5.

Now, we have g, k 6= i, eg = δ(α2, πg), e′′k = δ(α2, πk), type(eg) = type(e′′k) = W, and m1 =

λ(ι, N2, g) and mk = λ(ι, N2, k). Then, from the case 1a in the proof of the lemma, we have

m1 = mk. 2

Claim 4.7.21 Suppose (C1) holds. Then mh = mk, and πh ∈ writers((mk)ι)∪winner((mk)ι).

Proof. Since (C1) holds, then from 〈15〉 of iteration ι, we get that

m̌ι = min
�

ι−

Wι = min
�ι

Wι.

The second equality follows because ι is a modify iteration, by Claim 4.7.19. We have mk ∈ Wι,

since mk is a write metastep on `, and mk 6�ι− m̌ι− by Claim 4.7.18. Thus, we have m̌ι �ι mk.

Also, since m̌ι 6∈ N , and since m̌ι is a write metastep on `, we have m̌ι ∈ W . So, min�ι
W =

m1 �ι m̌ι. Then, since m1 = mk by Claim 4.7.20, and since mh = m̌ι, we have mh = m̌ι = mk.

Finally, we have πh ∈ writers((m̌ι)
ι) ∪ winner((m̌ι)

ι) = writers((mk)ι) ∪ winner((mk)ι),

where the inclusion follows from 〈17〉 of iteration ι. 2

Claim 4.7.22 Suppose (C2) holds. Then mh = mk, and πh ∈ readers((mk)ι).

Proof. Since m̌ι− ∈ N and m̌ι 6∈ N , then we have Φ(ι−, Nι, h) = Φ(ι, N, h). Thus, it follows

from Lemma 4.6.17.5 that

∀µ ∈Mι− : SC(αι, µ, πh)⇔ SC(α, µ, πh) (4.10)

Here, the function SC (state change) is defined as in 〈60〉 of Construct. Since (C2) holds,

140

then from 〈30〉 of iteration ι and from Equation 4.10, we get that

m̌ι = min
�

ι−

W s
ι = min

�ι

W s
ι .

The second equality follows because by Claim 4.7.19, ι is a modify iteration. Since mk 6�ι− m̌ι−

by Claim 4.7.18, and since ∆(s, eh, πh) 6= st(α, πh) by (C2), then mk ∈ W s
ι . Thus, we

have m̌ι �ι mk. Also, since m̌ι 6∈ N , then m̌ι ∈ W . So, since mk = m1 = min�ι
W

by Claim 4.7.20, we have mk �ι m̌ι. Thus, we have mk = m̌ι = mh. Finally, we have

πh ∈ readers((m̌ι)
ι) = readers((mk)ι), where the inclusion follows from 〈32〉 of iteration ι.

2

Combining Claims 4.7.21 and 4.7.22, the lemma is proved.

�

Let ek and mk be the next πk step and metastep after (ι, N), and suppose that ek and mk are

both writes to a register `. Let h ∈ [i], and suppose mh is a read metastep containing πh. The next

lemma says that if mh is an unmatched preread metastep on ` after (ι, N), that is, if mh ∈ N and

mh is contained in the preread set of some m 6∈ N , then mh is contained in the preread set of (mk)ι.

Thus, the lemma basically says that we can find the write metastep to which an unmatched preread

metastep is associated, by matching the registers of the write and preread metasteps.

Lemma 4.7.23 (Preread Lemma B) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι),

and let α ∈ L(ι, N). Let k, h ∈ [i], mk = λ(ι, N, k), ` = reg(mk), and ek = δ(α, πk). Suppose the

following hold.

1. mk 6= ∅.

2. type(ek) = type(mk) = W.

3. mh ∈ N , πh ∈ procs((mh)ι), type(mh) = R, and reg(mh) = `.

4. There exists m 6∈ N such that mh ∈ preads(mι).

Then we have m = mk.

Proof. The main idea is the following. If mk 6= m̌ι (case 1 of the formal proof), then we can

show using Lemma 4.7.12 that mk = λ(ι−, Ň , k). We then prove a series of claims to show that the

assumptions of the inductive hypothesis for iteration ι− are satisfied, for a particular instantiation

of the parameters of the lemma, and then prove the lemma using the inductive hypothesis.

If mk = m̌ι, then consider two cases. If ι is a write create iteration (case 2a of the formal proof),

then mk is the only write metastep on ` not in N , and so it follows that m = mk. Otherwise, if ι is

141

a modify iteration (case 2b of the formal proof), then if k 6= i, we can again prove the lemma using

the inductive hypothesis. If k = i, then since ι is a modify iteration, there exist a g < k such that

πg is the winner of m̌ι. We show that there exist a prefix N2 ⊇ N of (Mι,�ι), such that mh ∈ N2,

m 6∈ N2
33, and m̌ι, a write metastep on `, is the next πg metastep after (ι, N2). Finally, we apply

the inductive hypothesis, to conclude that m = m̌ι = mk.

We now present the formal proof. We use induction on ι. The lemma is true for ι = (1, 0). We

show that if it is true up to ι 	 1, then it is true for ι. Let Ň = N ∩Mι− , and let α̌ ∈ L(ι−, Ň).

First, note that by Lemma 4.7.6, there is exactly one m 6∈ N such that mh ∈ preads(mι).

Claim 4.7.24 mh ∈ Ň .

Proof. Suppose mh 6∈ Ň . Then we must have mh = m̌ι. But from Lemma 4.6.3, we see that for

any µ ∈ Mι, we have m̌ι 6∈ preads(µι), contradicting assumption 5 of the lemma. Thus, we have

mh ∈ Ň . 2

Now, consider two cases, either mk 6= m̌ι, or mk = m̌ι.

1. Case mk 6= m̌ι.

In this case, we prove the lemma by applying the inductive hypothesis for iteration ι−. We

prove a series of claims, in order to show that the assumptions of the lemma for iteration ι−

are satisfied.

Claim 4.7.25 mk = λ(ι−, Ň , k).

Proof. Since mk 6= m̌ι, then either k 6= i, or m̌ι− 6∈ N . Thus, the claim follows by Lemma

4.7.11, 2

Claim 4.7.26 Let e′k = δ(α̌, πk). Then e′k = ek.

Proof. Since mk 6= m̌ι by assumption, then by Lemma 4.6.9, we have Φ(ι, N, k) = Φ(ι−, Ň , k).

Then, we have st(α̌, πk) = st(α, πk) by Lemma 4.6.17.5, and so the lemma follows. 2

Claim 4.7.27 ι is not a write create iteration.

Proof. Notice first that mk 6�ι− m̌ι− . Indeed, if mk �ι− m̌ι− , then since m̌ι− ∈ N and N

is a prefix, we have mk ∈ N , a contradiction. Also, by assumption 2 of the lemma, mk is a

write metastep on `. Thus, we have Wι 6= ∅, and so ι is not a write create iteration. 2

Claim 4.7.28 mh ∈ preads(mι−).

33Note that by Lemma 4.7.6, there is a unique m 6∈ N such that mh ∈ preads(mι).

142

Proof. We will show that m ∈ Mι− . Indeed, if m 6∈ Mι− , and from Lemma 4.6.3, we must

have m = m̌ι, and ι is a write create iteration, contradicting Claim 4.7.27. Since m ∈Mι− , then

from Lemma 4.6.3, we see that preads(mι−) = preads(mι). Thus, since mh ∈ preads(mι), we

have mh ∈ preads(mι−). 2

Since m 6∈ N , then m 6∈ Ň ⊆ N . Now, from Claim 4.7.24, we have mh ∈ Ň . From Claim

4.7.28, we have mh ∈ preads(mι−), where m 6∈ Ň . By Claim 4.7.25, we have mk = λ(ι−, Ň , k),

and mk is a write metastep on `. Lastly, by Claim 4.7.25, we have that e′k = ek is a write

step on `. Thus, all the assumptions of the lemma hold, if we instantiate “ι” and “N” in the

assumptions by ι− and Ň , respectively. Then, by the inductive hypothesis, we conclude that

m = mk, and so the lemma holds for ι.

2. Case mk = m̌ι.

Since m̌ι is a write metastep, then ι 6= (i, 0). We consider two subcases, either ι is a create

iteration, or ι is a modify iteration. Notice that since type(ek) = W, then ι is either a write

create or write modify iteration.

(a) ι is a write create iteration.

Since ι is a write create iteration, then from 〈14〉 of ι, we see that Wι = ∅. From this, it

follows that

{µ | (µ ∈Mι−\N) ∧ (type(µ) = W) ∧ (reg(µ) = `)} = ∅.

Thus, since mh ∈ preads(mι), and m 6∈ N is a write metastep on `, we must have

m = m̌ι = mk, and so the lemma holds for ι.

(b) ι is a write modify iteration.

We have two cases, either k 6= i, or k = i. If k 6= i, then by Lemma 4.7.11, we have

mk = λ(ι−, Ň , k). Since ι is a write modify iteration, we can argue as in the proof of

4.7.28 that mh ∈ preads(mι−). Also, we can show e′k = ek, where e′k is defined as in

Claim 4.7.26. Thus, we can apply the inductive hypothesis to conclude that m = mk,

and so the lemma holds for ι.

If k = i, then we have the following.

Claim 4.7.29 m̌ι �ι m.

Proof. From 〈15〉 of iteration ι, we have m̌ι = min�
ι−

Wι. Since ι 6= (i, 0) and m̌ι =

λ(ι, N, k), then m̌ι− ∈ N . Thus, since m 6∈ N , then we have m 6�ι− m̌ι− , and so m ∈ Wι.

Since mk and m are both write metasteps on `, then they are ordered by �ι, by Lemma

4.6.17.6. Thus, we have m̌ι �ι m. 2

143

Claim 4.7.30 m �ι m̌ι.

Proof. Suppose for contradiction that m̌ι ≺ι m. Let πg = �(winner(m̌ι)), and let

N1 = {µ | (µ ∈Mι−) ∧ (µ ≺ι− m̌ι)}, N2 = N1 ∪N.

N1 is a prefix, and N2 is a prefix because the union of two prefixes is a prefix. Let

α2 ∈ L(ι−, N2), and let mg = λ(ι−, N2, g). Then we have the following.

• Since m̌ι 6∈ N , and since N1 contains all metasteps in µ ∈Mι− such that µ ∈≺ι− m̌ι,

then we have mg = m̌ι, and so type(mg) = W.

• Let eg = δ(α2, πg). Then since πg = �(winner(m̌ι)), we have type(eg) = W.

• We have mh ∈ N2, since mh ∈ N .

• We have m 6∈ N2, since m 6∈ N by assumption, and since m̌ι ≺ι m and m̌ι 6∈ N1.

Combining the above, we see that all the assumptions of the lemma hold, if we instantiate

“ι”, “N” and “m” in the assumptions by ι−, N2 and mg = m̌ι, respectively. Then, by

the inductive hypothesis, we have that mh ∈ preads((m̌ι)
ι−). But this is a contradiction,

because m̌ι ≺ι m, and mh ∈ preads(mι). Thus, we conclude that m �ι m̌ι. 2

From Claims 4.7.29 and 4.7.30, we get that mk = m̌ι = m, and so the lemma holds for ι.

The next lemma gives a characterization of the minimal metasteps after (ι, N). Namely, a

metastep m is minimal exactly when the preread set of m is contained in N , and for every process

πk contained in m, the next πk metastep after (ι, N) is m. This is not the most convenient charac-

terization for decoding purposes, since the decoder does not have direct knowledge of the preread

set of m, nor the processes contained in m. In subsequent lemmas (Lemmas 4.7.35 and 4.7.36), we

provide other characterizations of the minimal metasteps after a prefix, that are more convenient

for the decoder.

Lemma 4.7.31 (λ Lemma C) Let ι = (i, j) be any iteration, and let N be a prefix of (Mι,�ι).

Let m ∈Mι\N , and suppose type(m) = W. Then m ∈ λ(ι, N) if and only if we have the following.

1. preads(mι) ⊆ N .

2. For all πk ∈ procs(mι), we have λ(ι, N, k) = m.

Proof. The main idea is the following. Consider three cases, m̌ι 6�ι m, m = m̌ι, or m̌ι ≺ι

m. In the first case, we have m ∈ λ(ι, N) precisely when m ∈ λ(ι−, Ň); thus, the lemma can

be shown by applying the inductive hypothesis. If m = m̌ι, then m ∈ λ(ι, N) precisely when

m ∈ λ(ι−, Ň), and λ(ι, N, i) = m; then we again apply the inductive hypothesis, noting that

procs(mι) = procs(mι−)∪ {πi}. Finally, if m̌ι ≺ι m, then ι is a modify iteration, and so m̌ι ≺ι− m.

144

From this, it once more follows that m ∈ λ(ι, N) precisely when m ∈ λ(ι−, Ň), and the lemma

follows from the inductive hypothesis.

We now present the formal proof. We use induction on ι. The lemma is true for ι = (1, 0). We

show that if the lemma is true for ι	 1, then it is also true for ι. Let Ň = N ∩Mι− . Consider three

cases, either m̌ι 6�ι m, m = m̌ι, or m̌ι ≺ι m. Recall from Definition 4.6.16 that Υ(ι, m) is the set of

metasteps in Mι that �ι m.

1. Case m̌ι 6�ι m.

Claim 4.7.32 (m ∈ λ(ι, N))⇔ (m ∈ λ(ι−, Ň)).

Proof. Since m̌ι 6�ι m, then it follows from Lemma 4.6.3 that Υ(ι, m) = Υ(ι−, m). We can

see that m ∈ λ(ι, N)⇔ (Υ(ι, m) ⊆ N) ∧ (m 6∈ N). We claim that

(Υ(ι, m) ⊆ N) ∧ (m 6∈ N)⇔ (Υ(ι−, m) ⊆ Ň) ∧ (m 6∈ Ň).

First, note that (m 6∈ N) ⇔ (m 6∈ Ň), because m 6= m̌ι, and N and Ň are either equal, or

differ by m̌ι.

Next, we show that (Υ(ι, m) ⊆ N) ⇔ (Υ(ι−, m) ⊆ Ň). Indeed, since Υ(ι, m) = Υ(ι−, m),

and Ň ⊆ N , then (Υ(ι−, m) ⊆ Ň) ⇒ (Υ(ι, m) ⊆ N). For the other direction, notice that

m̌ι 6∈ Υ(ι, m), since if m̌ι ∈ Υ(ι, m), then we must have m̌ι �ι m, a contradiction. Thus, since

N and Ň differ at most by m̌ι, we have (Υ(ι, m) ⊆ N)⇒ (Υ(ι−, m) ⊆ Ň).

From the above, we have

(m ∈ λ(ι, N)) ⇔ (Υ(ι, m) ⊆ N) ∧ (m 6∈ N)

⇔ (Υ(ι−, m) ⊆ Ň) ∧ (m 6∈ Ň)

⇔ (m ∈ λ(ι−, Ň)).

2

Claim 4.7.33

(preads(mι−) ⊆ Ň) ∧ (∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m) ⇔

(preads(mι) ⊆ N) ∧ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

Proof. Since m 6�ι m̌ι, then by Lemma 4.6.3, we have mι = mι− . Now, since m̌ι 6∈
preads(mι−), we have (preads(mι−) ⊆ Ň)⇔ (preads(mι) ⊆ N).

145

Next, we show that

(∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m)⇔ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

We first claim that either we have m̌ι− 6∈ Ň , or ∀πk ∈ procs(mι−) : k 6= i. Indeed, suppose

that we have m̌ι− ∈ Ň , and there exists k ∈ procs(mι−) such that k = i. Then this means

λ(ι−, Ň , i) = m̌ι = m, which contradicts the assumption that m̌ι 6�ι m. Now, since we have

m̌ι− 6∈ Ň or ∀πk ∈ procs(mι−) : k 6= i, then by Lemma 4.7.12, we have ∀πk ∈ procs(mι−) :

λ(ι−, Ň , k) = λ(ι, N, k). Finally, since procs(mι) = procs(mι−), we have

(∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m)⇔ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

2

Combining the above, we get the following.

m ∈ λ(ι, N) ⇔ (m ∈ λ(ι−, Ň))

⇔ (preads(mι−) ⊆ Ň) ∧ (∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m)

⇔ (preads(mι) ⊆ N) ∧ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

Here, the first equivalence follows by Claim 4.7.32. The second equivalence follows by the

inductive hypothesis. The final equivalence follows by Claim 4.7.33.

2. Case m = m̌ι.

Let N1 = {µ | (µ ∈Mι) ∧ (µ �ι m̌ι−)}. By Lemma 4.6.3, we can see that

Υ(ι, m) = Υ(ι−, m) ∪N1.

Thus, we have the following.

m ∈ λ(ι, N) ⇔ (Υ(ι, m) ⊆ N) ∧ (m 6∈ N)

⇔ (Υ(ι−, m) ⊆ Ň) ∧ (m̌ι− ∈ N) ∧ (m̌ι 6∈ N)

⇔ (m ∈ λ(ι−, Ň)) ∧ (λ(ι, N, i) = m̌ι)

⇔ (preads(mι−) ⊆ Ň) ∧ (∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m) ∧ ((λ(ι, N, i) = m̌ι)

⇔ (preads(mι) ⊆ N) ∧ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

146

The next to last equivalence follows by the inductive hypothesis, and the last equivalence

follows from the fact that procs((m̌ι)
ι) = procs((m̌ι)

ι−)∪{πi}, and by using similar arguments

as in the proof of Claim 4.7.33.

3. Case m̌ι ≺ι m.

Let N2 = {µ | (µ ∈Mι)∧(µ �ι m̌ι)}. Using Lemma 4.6.3, we get that Υ(ι, m) = Υ(ι−, m)∪N2.

Since m̌ι ≺ι m, then we can see from Lemma 4.6.3 that ι is a modify iteration. Thus, since

m̌ι ≺ι m, we also have m̌ι ≺ι− m, and so (m ∈ λ(ι, N)) ⇔ (m ∈ λ(ι−, Ň)). Also, we have

Mι = Mι− , N = Ň , and mι = mι− . Thus, using the inductive hypothesis, we have the

following.

m ∈ λ(ι, N) ⇔ m ∈ λ(ι−, Ň)

⇔ (preads(mι−) ⊆ Ň) ∧ (∀πk ∈ procs(mι−) : λ(ι, Ň , k) = m)

⇔ (preads(mι) ⊆ N) ∧ (∀πk ∈ procs(mι) : λ(ι, N, k) = m).

�

Let e and m be the next πk step and metastep after (ι, N), respectively. Suppose that e is a write

step, and m is a write metastep writing a value v to a register `. Then the next lemma states that

the unmatched preread metasteps on ` after (ι, N) are a subset of preads(mι). Also, the processes

that v-read ` after (ι, N) are a subset of readers(mι), and the processes that write to ` after (ι, N)

are a subset of writers(mι) ∪ winner(mι). In addition, for each process in readers(ι, N, `, v) ∪
wwriters(ι, N, `), the next metastep for the process after (ι, N) is m. This lemma is used in the

proof of Lemma 4.7.35.

Lemma 4.7.34 (λ Lemma D) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι), and

let α ∈ L(ι, N). Let k ∈ [i], m = λ(ι, N, k), and e = δ(α, πk). Suppose that type(e) = type(m) = W,

and let ` = reg(m) and v = val(m). Then we have the following.

1. preads(ι, N, `) ⊆ preads(mι).

2. readers(ι, N, `, v) ⊆ readers(mι), and ∀πh ∈ readers(ι, N, `, v) : λ(ι, N, h) = m.

3. wwriters(ι, N, `) ⊆ writers(mι) ∪ winner(mι), and ∀πh ∈ wwriters(ι, N, `) : λ(ι, N, h) = m.

Proof. The proof mainly involves unraveling definitions, then applying Lemmas 4.7.14 and 4.7.23.

We show each part of the lemma separately. For the first part, let m1 ∈ preads(ι, N, `). Then by

the definition of preads(ι, N, `), m1 is a read metastep on `, m1 ∈ N , and ∃m2 6∈ N : m1 ∈

147

preads((m2)
ι). Then by Lemma 4.7.23, we have m2 = m. Since m1 was arbitrary, we have

preads(ι, N, `) ⊆ preads(mι).

In the rest of the lemma, for any h ∈ [i], let mh = λ(ι, N, h), sh = st(α, πh), eh = δ(α, πh), and

Sh,`,v = {s | (s ∈ S) ∧ (st(s, πh) = st(sk, πh)) ∧ (st(s, `) = v)}.
For the second part of the lemma, let πh ∈ readers(ι, N, `, v). Then by the definition of

readers(ι, N, `, v), mh is a write metastep on `, eh is a read step on `, and ∃s ∈ Sh,`,v : ∆(s, eh, πh) 6=
sh. Then by Lemma 4.7.14, we have mh = m, and πh ∈ readers(mι). Since h was arbitrary, we

have ∀πh ∈ readers(ι, N, `, v) : λ(ι, N, h) = m, and readers(ι, N, `, v) ⊆ readers(mι).

By the definition of wwriters(ι, N, `), mh is a write metastep on `, and eh is a write step on

`. Then, by Lemma 4.7.14, we have mh = m, and πh ∈ writers(mι) ∪ winner(mι). Since h was

arbitrary, we have ∀πh ∈ wwriters(ι, N, `) : λ(ι, N, h) = m, and wwriters(ι, N, `) ⊆ writers(mι) ∪
winner(mι). 2

The next lemma gives a characterization of the minimal metasteps after (ι, N) that is convenient

for the decoder. Let e and m be the next pπk
step and metastep after (ι, N), respectively. Suppose

that e is a write step, and m is a write metastep writing value v to `. Then the lemma states that m is

a minimal metastep after (ι, N) if and only if |preads(ι, N, `)| = |preads(mι)|, |readers(ι, N, `, v)| =
|readers(mι)|, |wwriters(ι, N, `)| = |writers(mι) ∪ winner(mι)|. To make use of this character-

ization, the decoder only needs to be able to compute the sets preads(ι, N, `), readers(ι, N, `, v),

and wwriters(ι, N, `), and to know the cardinalities of the sets preads(mι), readers(mι), and

writers(mι). The cardinalities are stored by the encoder, and can be retrieved from the encod-

ing by the decoder at the appropriate time. The sets readers(ι, N, `, v) and wwriters(ι, N, `) can

be computed by the decoder simply by knowing N . preads(ι, N, `) can be computed by knowing N ,

and additionally, for each read metastep in N , a flag indicating whether the metastep is a preread.

These flags are also stored in the encoding.

Lemma 4.7.35 (λ Lemma E) Let ι = (i, j) be any iteration, let N be a prefix of (Mι,�ι), and

let α ∈ L(ι, N). Let k ∈ [i], m = λ(ι, N, k), and e = δ(α, πk). Let ` = reg(m) and v = val(m).

Suppose that type(e) = type(m) = W. Then m ∈ λ(ι, N) if and only if we have the following.

1. |preads(ι, N, `)| = |preads(mι)|.

2. |readers(ι, N, `, v)| = |readers(mι)|.

3. |wwriters(ι, N, `)| = |writers(mι) ∪ winner(mι)|.

Proof.

1. (⇒) direction.

148

Since m ∈ λ(ι, N), then by Lemma 4.7.31, we have preads(mι) ⊆ N , and ∀πk ∈ procs(mι) :

λ(ι, N, k) = m. We show each part of the lemma separately.

To show |preads(ι, N, `)| = |preads(mι)|, let m1 ∈ preads(mι). Then we have the following:

m1 ∈ N , m1 is a read metastep on `, m 6∈ N , and m1 ∈ preads(mι). Thus, we have

m1 ∈ preads(ι, N, `), by the definition of preads(ι, N, `). Since m1 was arbitrary, we have

preads(mι) ⊆ preads(ι, N, `). Since we also have preads(ι, N, `) ⊆ preads(mι) by Lemma

4.7.34, then |preads(ι, N, `)| = |preads(mι)|.

In the rest of the lemma, for any h ∈ [i], let mh = λ(ι, N, h), sh = st(α, πh), eh = δ(α, πh),

and Sh,`,v = {s | (s ∈ S) ∧ (st(s, πh) = st(sk, πh)) ∧ (st(s, `) = v)}.

To show that |readers(ι, N, `, v)| = |readers(mι)|, let πh ∈ readers(mι). Since m ∈ λ(ι, N),

then by Lemma 4.7.31, we have mh = m. Let εh denote the step that πh takes in m. Since

πh ∈ readers(mι), then εh is a read step on `. By Lemma 4.7.12, we have eh = εh, so eh is also

a read step on `. Then, by Lemma 4.7.13, there exists s ∈ Sh,`,v such that ∆(s, eh, πh) 6= sh.

Thus, by the definition of readers(ι, N, `, v), we have πh ∈ readers(ι, N, `, v). Since πh was

arbitrary, we have readers(mι) ⊆ readers(ι, N, `, v). Since we also have readers(ι, N, `, v) ⊆
readers(mι) by Lemma 4.7.34, then |readers(ι, N, `, v)| = |readers(mι)|.

To show that |wwriters(ι, N, `)| = |writers(mι) ∪ winner(mι)|, let πh ∈ writers(mι) ∪
winner(mι). Since m ∈ λ(ι, N), then by Lemma 4.7.31, we have mh = m. Let εh de-

note the step that πh takes in m. Since πh ∈ writers(mι), then εh is a write step on `.

By Lemma 4.7.12, we have eh = εh, so eh is also a write step on `. Thus, by the defini-

tion of wwriters(ι, N, `), we have πh ∈ wwriters(ι, N, `), and so writers(mι)∪winner(mι) ⊆
wwriters(ι, N, `). Since we also have wwriters(ι, N, `) ⊆ writers(mι)∪winner(mι) by Lemma

4.7.34, then |wwriters(ι, N, `)| = |writers(mι) ∪ winner(mι)|.

2. (⇐) direction.

By Lemma 4.7.34, we have preads(ι, N, `) ⊆ preads(mι), readers(ι, N, `, v) ⊆ readers(mι),

and wwriters(ι, N, `) ⊆ writers(mι)∪winner(mι). Thus, since |preads(ι, N, `)| = |preads(mι)|,
|readers(ι, N, `, v)| = |readers(mι)|, and |wwriters(ι, N, `)| = |writers(mι)∪winner(mι)|, we

have preads(ι, N, `) = preads(mι), readers(ι, N, `, v) = readers(mι), and wwriters(ι, N, `) =

writers(mι) ∪winner(mι).

Let m1 ∈ preads(ι, N, `). Then by definition, we have m1 ∈ N . Thus, since preads(ι, N, `) =

preads(mι), we have

preads(mι) ⊆ N. (4.11)

Next, let πh ∈ readers(ι, N, `, v). Then by Lemma 4.7.34, we have λ(ι, N, h) = m. Since

149

readers(ι, N, `, v) = readers(mι), we have

∀πh ∈ readers(mι) : λ(ι, N, h) = m. (4.12)

Next, let πg ∈ wwriters(ι, N, `). Then by Lemma 4.7.34, we have λ(ι, N, g) = m. Since

wwriters(ι, N, `) = writers(mι) ∪ winner(mι), then

∀πg ∈ writers(mι) ∪winner(mι) : λ(ι, N, g) = m. (4.13)

Finally, by combining Equations 4.11, 4.12 and 4.13, and applying Lemma 4.7.31, we have

that m ∈ λ(ι, N).

2

Lemma 4.7.35 gave a convenient characterization of the minimal write metasteps after (ι, N).

The next lemma characterizes the minimal read and critical metasteps after (ι, N). The minimality

condition is simple: a read or critical metastep is minimal after (ι, N) exactly when it is the next

metastep after (ι, N) for some process.

Lemma 4.7.36 (λ Lemma F) Let ι = (i, j) be any iteration, let m ∈Mι, and let N be a prefix of

(Mι,�ι). Suppose that type(m) ∈ {R, C}. Then m ∈ λ(ι, N) if and only if there exists k ∈ [i] such

that m = λ(ι, N, k).

Proof. We use induction on ι. The lemma is true for ι = (1, 0). We show that if the lemma is

true for ι	 1, then it is also true for ι. Let Ň = N ∩Mι− .

1. (⇒) direction.

Consider two cases, either m 6= m̌ι, or m = m̌ι.

(a) Case m 6= m̌ι.

We claim that (m ∈ λ(ι, N)) ⇒ (m ∈ λ(ι−, Ň)). Indeed, suppose that m ∈ λ(ι, N), and

let m1 ∈Mι− be such that m1 �ι− m. We want to show that m1 ∈ Ň . We have m1 �ι m

by Lemma 4.6.4, and so m1 ∈ N , since m ∈ λ(ι, N). Then, since m1 6= m̌ι, we also have

m1 ∈ N ∩Mι− = Ň , and so the claim holds. Now, since m ∈ λ(ι−, Ň), then by the

inductive hypothesis, there exists k ∈ [i] such that m = λ(ι−, Ň , k). Since m 6= m̌ι, then

we have k 6= i or m̌ι− 6∈ N . Thus, by Lemma 4.7.11, we have m = λ(ι−, Ň , k) = λ(ι, N, k),

and so the lemma holds.

(b) Case m = m̌ι.

Since m = m̌ι, then we see from Lemma 4.6.3 that m = λ(ι, N, i).

150

2. (⇐) direction.

Consider two cases, either m 6= m̌ι, or m = m̌ι.

(a) Case m 6= m̌ι.

Since m 6= m̌ι, then we have k 6= i or m̌ι− 6∈ N , and so m = λ(ι, N, k) = λ(ι−, Ň , k),

by Lemma 4.7.11. Then by the inductive hypothesis, we have m ∈ λ(ι−, Ň), and so

Υ(ι−, m) ⊆ Ň . Consider two cases, either m̌ι 6�ι m, or m̌ι ≺ι m.

If m̌ι 6�ι m, then we have Υ(ι, m) = Υ(ι−, m). Thus, we have Υ(ι, m) ⊆ N , and so

m ∈ λ(ι, N).

If m̌ι ≺ι m, then let N1 = {µ | (µ ∈Mι)∧ (µ �ι m̌ι)}. We have Υ(ι, m) = Υ(ι−, m)∪N1,

and ι is a modify iteration. Since m is a read or critical metastep and m = λ(ι, N, k), we

have m̌ι ∈ N , and so N1 ⊆ N = Ň . Thus, since Υ(ι−, m) ⊆ Ň , we have Υ(ι, m) ⊆ N ,

and so m ∈ λ(ι, N).

(b) Case m = m̌ι.

Since m̌ι = λ(ι, N, k) is a read or critical metastep, then we have k = i, m̌ι− ∈ N , and

m̌ι 6∈ N . Thus, we see that m̌ι ∈ λ(ι, N).

2

Summary of Properties for Decoding

In the remainder of this section, we describe how the lemmas in Section 4.7.3 motivate the Decode

algorithm presented in Section 4.10. For any metastep m, we always refer to the iteration ιn version

of m. Thus, we omit the ιn superscript from our notation. For example, we write steps(m) to mean

steps(mιn

).

Our goal for decoding is to output a linearization of (Mn,�n)34. To do this, Decode maintains

an invariant that at any point in its execution, it has output a linearization α of (N,�n), where N

is some prefix of (Mn,�n). To satisfy the invariant, Decode ensures that whenever it appends a

set of steps to α, those steps are precisely the steps in some minimal metastep not contained in N .

That is, if Decode appends a set of steps β to α, then β = steps(m), for some m ∈ λ(N)35. Thus,

the main task of the decoder is to identify the minimal metasteps after N .

If m is a read or critical metastep, then it is easy for Decode to know when m ∈ λ(N). Indeed,

Lemma 4.7.36 shows that m ∈ N precisely when m is the next metastep after N for some process.

Next, suppose that m is a write metastep, and let ` = reg(m) and v = val(m). To determine

when m ∈ λ(N), Decode uses the property from Lemma 4.7.35, namely, that m ∈ λ(N) if and

34Following the notational convention in this section, we write (Mn,�n) to mean ((Mn)ιn
,�n).

35Decode also ensures that it appends all the non-winning write steps in β to α first, then appends the winning
write, then appends the read steps in β. This condition is easy to satisfy, and will not be discussed further.

151

only if |preads(N, `)| = |preads(m)|, |readers(N, `, v)| = |readers(m)|, and |wwriters(N, `)| =

|writers(m) ∪ winner(m)|. To perform these checks, Decode first needs to know the values of

|preads(m)|, |readers(m)| and |writers(m) ∪ winner(m)|. These values are the components of the

signature for m, and are stored in the string Eπ output by Encode operating on input (Mn,�n).

Thus, Decode gets these values by reading Eπ . Next, Decode must be able to compute the sets

preads(N, `), readers(N, `, v) and wwriters(N, `), based on the current linearization α of (N,�n)

that is has produced. To compute preads(N, `), Decode uses Lemma 4.7.23, which shows that if a

read metastep on ` in N is contained in the preread set of any write metastep not in N , then it is

contained in the preread set of m. To compute readers(N, `, v) and wwriters(N, `), Decode keeps

track of the processes whose next step after N v-reads `, or writes to `. The algorithm presented in

Section 4.10 is an implementation of these ideas.

4.8 The Encoding Step

In this section, we present an algorithm that encodes ((Mn)ιn

,�n) as a string of length O(C(α)),

where α is any linearization of ((Mn)ιn

,�n)36. In the remainder of this chapter, we will consider

only the iteration ιn version of any metastep. Thus, we write m to mean mιn

, for any m ∈Mn. We

first define the following.

Definition 4.8.1 (Extended Type) Define

T = {C, R, W, PR, SR, $} ∪
⋃

pr,r,w∈[n]

{PRprRrWw}.

We say that T is the set of extended types. Let m ∈Mn be a metastep, let e ∈ steps(m) be a step

in m, and let i = proc(e) be the process taking step e. Then we define the following.

1. If type(m) = W, then we define the following.

(a) If type(e) = R, then xtype(e, m) = R.

(b) If type(e) = W and i 6= winner(m), then xtype(e, m) = W.

(c) If type(e) = W and i = winner(m), then xtype(e, m) = PRprRrWw, where pr = |preads(m)|, r =

|reads(m)| and w = |writes(m)|+ 1.

2. If type(m) = R, then e is a read step. We define the following.

(a) If ∃µ ∈M such that m ∈ preads(µ), then xtype(e, m) = PR.

(b) Otherwise, xtype(e, m) = SR.

36By Lemma 4.6.17.1, we have α ∈ runs(A). Also, we show in Lemma 4.7.10 that all linearizations of ((Mn)ιn
,�n)

have the same cost in the state change cost model.

152

3. If type(m) = C, then e is a critical step. We define xtype(e, m) = C.

We say xtype(e, m) is the extended type of e in m.

Please see Figure 4-5 for the pseudocode of the encoding algorithm. All text in the pseudocode

in typewriter font represent string literals. For example, W is the string “W”.

The input to Encode is a pair (M,�), where M is a set of metasteps, and � is a partial order

on M . The encoding uses a two dimensional grid of cells, with n columns and an infinite number of

rows. The encoder fills some of the cells with strings. The contents of the cell in column i and row

j is denoted by T (i, j).

The encoder iterates over all the metasteps in M , in an arbitrary order. For each m ∈ M , it

iterates over all the steps in steps(m), again in an arbitrary order. Let e ∈ steps(m), and suppose

e is performed by process p. Then Encode calls PC(p, m, M,�), which returns a number q such

that m is p’s q’th largest metastep in M37. Note that q is well defined, since the set of metasteps

containing p in M is totally ordered by �, by Lemma 4.6.8. The encoder fills cell T (p, q) with (a

string representation of) xtype(e, m), the extended type of e in m. Note that xtype(e, m) contains

information about the types of both e and m. For example, if e is a read step, then xtype(e, m)

can be R, SR or PR; xtype(e, m) = R indicates that e is a read step in a write metastep, while

xtype(e, m) ∈ {SR, PR} indicates that e is a read step in a read metastep; also, xtype(e, m) = PR

indicates that the read metastep containing e is a preread metastep. As another example, if e is the

winning step in a metastep, then xtype(e, m) contains the signature for that metastep, i.e., a count

of the number of reads, writes and prereads in the metastep.

The complete encoding Eπ is produced by concatenating all nonempty cells T (1, ·) (in order),

then appending all nonempty cells T (2, ·), etc., and finally appending all nonempty cells T (n, ·). The

encoder uses the helper function nrows(T, i), which returns how many nonempty cells there are in

column i of T .

4.9 Correctness Properties of the Encoding

In this section, we show that the length of the string Eπ output by Encode is proportional to the

cost of a linearization of (Mn,�n). Recall from Definition 4.7.1 that G is the total number of steps

contained in all the metasteps in Mn after iteration ιn.

Theorem 4.9.1 (Encoding Theorem A) Let α be the output of Lin(Mn,�n). Then we have

|Eπ| = O(C(α)).

Proof. The main idea for the proof is the following. Given a metastep m ∈ Mn, there are two

parts to the cost of encoding m. The first part is the cost to encode the steps of m, and possibly the

37“PC” stands for program counter.

153

1: procedure Encode(M,�)
2: for all m ∈M do

3: for all e ∈ steps(m)
4: p← proc(e); q ← Pc(p, m, M,�)
5: T (p, q) ← xtype(e, m)
6: end for end for

7: for i← 1, n do

8: for j ← 1, nrows(T, i) do

9: Eπ ← Eπ ◦ # ◦ T (i, j)
10: end for

11: Eπ ← Eπ ◦ $
12: end for

13: return Eπ

14: end procedure

15: procedure Pc(p, m, M,�)
16: N ← {µ | (µ ∈ M) ∧ (p ∈ procs(µ))}
17: sort N in increasing order of � as n1, . . . , n|N|

18: return q ∈ 1, . . . , |N | such that nq = m
19: end procedure

Figure 4-5: Encoding M and � as a string Eπ.

signature of m, if m is a write metastep. The other cost to encoding m is for encoding the preread

set of m, if m is a write metastep. If m has t steps, then we show that the cost of the first part of

encoding m is O(t). For the second part, we do not compute the cost directly, but rather, charge

the cost to the encoding costs of all the read metasteps in pread(m). From this, it follows that,

summed over all m ∈Mn, the encoding cost of both parts is bounded by O(G), which is O(|α|) by

Lemma 4.7.10.

We now present the formal proof. Let c ≥ 1 be the smallest constant such that any symbol in

Eπ, such as SR or #, can be encoded using at most c bits, and any natural number d in Eπ can

be encoded using at most c log d bits. Clearly, c is finite. Recall that Encode(Mn,�n) works by

iterating over the metasteps in Mn, and encoding information about each metastep m in several

cells of T . Each cell is associated either with a step contained in m, or a read metastep contained

in pread(m). For any m ∈Mn, define the following.

1. Let s(m) be the number of bits used in Eπ to encode m. More precisely, s(m) is the sum of

the number of bits used in all the cells of T associated with m.

2. Let t(m) = |steps(m)| be number of steps in m.

3. Let r(m) = |reads(m)| be number of read steps in m.

4. Let w(m) = |writes(m) ∪ win(m)| be number of write and winning steps in m.

5. Let p(m) = |preads(m)| be number of preread metasteps of m.

We have

|Eπ| ≤
∑

m∈Mn

s(m) + c
∑

m∈Mn

t(m) + O(n). (4.14)

Here, the c
∑

m∈Mn
t(m) and O(n) terms account for the delimiters, such as #, used in Eπ when

concatenating the cells of T . We have c
∑

m∈Mn
t(m) = cG. Also, we have n ≤ G, since each process

154

pi takes at least one step, say tryi, in Mn. So, we have that |Eπ | ≤
∑

m∈Mn
s(m) + (c + 1)G. Then,

to bound |Eπ |, it suffices to bound
∑

m∈Mn
s(m).

Claim 4.9.2
∑

m∈Mn
s(m) ≤ 6cG.

Proof. We first claim that

s(m) ≤ c(t(m) + log r(m) + log w(m) + log p(m) + 3).

Indeed, if m is a read or critical metastep, then t(m) = 1, and Encode writes at most one symbol

R, C, PR or SR in the cell associated with m, using c bits. If m is a write metastep, then for each

of the t(m)− 1 nonwinning steps, Encode writes either R or W in the cell associated with the step,

using c bits. For the winning step, Encode writes the 3 symbols PR, R and W, and also the numbers

r(m), w(m) and p(m). Hence, it uses at most c(log r(m) + log w(m) + log p(m) + 3) bits.

Now, we have

∑

m∈Mn

s(m) ≤ c
∑

m∈Mn

(t(m) + log r(m) + log w(m) + log p(m) + 3)

≤ c
∑

m∈Mn

(t(m) + r(m) + w(m) + 3) + c
∑

m∈Mn

p(m)

≤ c
∑

m∈Mn

(2t(m) + 3) + c
∑

m∈Mn

p(m)

≤ 5c
∑

m∈Mn

t(m) + c
∑

m∈Mn

p(m)

≤ 5cG + c
∑

m∈Mn

p(m)

Here, the third inequality holds because steps(m) = reads(m) ∪ writes(m) ∪ win(m), so that

t(m) = r(m) + w(m). The fourth inequality holds because t(m) ≥ 1, since m contains at least one

step. The final inequality holds because
∑

m∈Mn
t(m) is the total number of steps contained in all

the metasteps in Mn, which is G. We have the following.

Claim 4.9.3
∑

m∈Mn
p(m) ≤ G.

Proof. Let R = {µ | (µ ∈Mn) ∧ (type(µ) = R)} be the set of all read metasteps contained in Mn.

Let m1, m2 ∈Mn be any two different write metasteps. Then preads(m1) ⊆ R, and preads(m2) ⊆ R.

Also, by Lemma 4.7.6, we have that for any m ∈ R, if m ∈ preads(m1), then m 6∈ preads(m2). So,

preads(m1) ∩ preads(m2) = ∅. Thus, we have

∑

m∈Mn

|preads(m)| =
∑

m∈Mn

p(m) ≤ |R| ≤ G.

2

155

Variable Domain of type Meaning

Eπ An output of Encode The input to Decode.
α runs(A) A linearization of a prefix of (Mn,�n).

done 2[n] Processes that have completed their exit sections.
pci, i ∈ [n] N Number of steps taken by pi in α, plus 1.
ei, i ∈ [n] Ei ∪ {⊥} The next step of pi after α.

waiti, i ∈ [n] 2[n] Processes pi such that ei 6=⊥.
`i, i ∈ [n] L ∪ {⊥} The register accessed by ei.
typei, i ∈ [n] T The extended type of ei in the next pi metastep after α.
sig`, ` ∈ L Record with fields r, w, pr,win ∈ 0..n Signature of min. write metastep on ` not lin. in α.

R`, ` ∈ L 2[n] Processes pi such that ei reads `.
Also, pi changes state after reading val(e(sig`.win)) in `.

W`, ` ∈ L 2[n] Processes pi such that ei writes to `.

PR`, ` ∈ L 2[n] Processes pi that have done final read to `.

Figure 4-6: The types and meanings of variables used in Decode.

Combining Claim 4.9.3 with the expression for
∑

m∈Mn
s(m), we get

∑

m∈Mn
s(m) ≤ 6cG. �

Since C(α) = G by Lemma 4.7.10, then by combining Equation 4.14 and Claim 4.9.2, we have

|Eπ| ≤ 6cG + (c + 1)G = (7c + 1)G = O(C(α)).

�

4.10 The Decoding Step

In this section, we describe the decoding step. The input to Decode is a string Eπ produced by

Encode(Mn,�n) (where (Mn,�n) is the output of Construct(π)). Decode outputs a run that

is a linearization of (Mn,�n). For ease of notation, we denote the input to Decode by E.

At a high level, the decoding algorithm proceeds in a loop, where at any point in the loop, it has

output a run α that is a linearization of some prefix N of (Mn,�n). We say the metasteps in N

have been executed, and we say the metasteps in Mn\N are unexecuted. By reading E, the decoder

finds a minimal unexecuted metastep m, with respect to �n. The decoder executes m, by linearizing

m and appending the result to α. It then begins the next iteration of the decoding loop.

Please see Figure 4-7 for the pseudocode for Decode. We refer to line numbers in Decode using

angle brackets, with a subscript D. For example, 〈6〉D refers to line 6 in Figure 4-7. We first describe

the variables in Decode. Please also see Table 4-6. α is the run that the decoder builds. done ⊆ [n]

is the set of processes that have completed their trying, critical and exit sections. For i ∈ [n], pci is

the number of metasteps the decoder has executed that contain pi, plus one. ei is the step pi takes

after α, `i is the register accessed by ei, and typei is the extended type of ei in the next pi metastep

after α38. We call ei process pi’s next step. At certain points in the decoding, the decoder may not

38Recall that α is supposed to be the linearization of some prefix N of (Mn,�n). Thus, by the next pi metastep

156

1: procedure Decode(E)
2: ∀i ∈ [n] : pci ← 2, typei ← ε, ei ←⊥, `i ←⊥
3: ∀` ∈ L : sig` ←⊥, R`, PR`, W` ← ∅
4: α← try1 ◦ try2 ◦ . . . ◦ tryn; done← ∅; wait← ∅
5: repeat

6: for all (i 6∈ done ∪ wait) do

7: ei ← δ(α, i); `i ← reg(ei); wait← wait ∪ {i}
8: typei ← GetStep(E, i, pci)
9: switch

10: case typei = W:
11: if typei contains a signature sig then

12: sig`i
← MakeSig(sig, i)

13: end if

14: W`i
← W`i

∪ {i}
15: case typei = R:
16: choose s ∈ S s.t. (st(s, i) = st(α, i)) ∧ (st(s, `i) = val(e(sig`i

.win)))

17: if (sig`i
6= ε) ∧ (∆(s, ei, i) 6= st(α, i)) then

18: R`i
← R`i

∪ {i}
19: else

20: wait← wait\{i}
21: end if

22: case typei = PR:
23: PR`i

← PR`i
∪ {i}

24: α← α ◦ ei

25: pci ← pci + 1; typei ← ε; ei ←⊥; wait← wait\{i}
26: case (typei = SR) ∨ (typei = C):
27: α← α ◦ ei

28: pci ← pci + 1; typei ← ε; ei ←⊥; wait← wait\{i}
29: case typei = $:
30: done← done ∪ {i}
31: end switch

32: end for

33: for all ` ∈ L such that sig` 6=⊥ do

34: if (|R`| = sig`.r) ∧ (|PR`| = sig`.pr) ∧ (|W`| = sig`.w)
35: β ← concat(

⋃

i∈W`\{sig`.win} ei)

36: γ ← concat(
⋃

i∈R`
ei)

37: α← α ◦ β ◦ e(sig`.win) ◦ γ
38: for all i ∈ R` ∪W` do

39: pci ← pci + 1; typei ← ε; ei ←⊥
40: end for

41: wait← wait\(R` ∪W`)
42: sig` ←⊥; R`, PR`, W` ← ∅
43: end if

44: end for

45: until done = {1, . . . , n}
46: return α
47: end procedure

48: procedure GetStep(E,i,pc)
49: read E until we have read i− 1 $ symbols
50: read E until we have read pc # symbols
51: return the string up to before the next # symbol
52: end procedure

53: procedure MakeSig(s,i)
54: suppose s = PRprRrWw
55: sig.pr ← pr; sig.r ← r; sig.w ← w
56: sig.win ← i
57: return sig
58: end procedure

Figure 4-7: Decoding E = Eπ to produce a linearization of (M,�).

yet know the next steps of some processes. If the decoder knows the next step of process pi, then it

places i in wait; the idea is that the decoder is waiting to group ei with some other next steps, which

together make up the steps of a minimal unexecuted metastep. For every ` ∈ L, if sig` 6= ε, then

sig` contains the signature of an unexecuted write metastep m on `. sig` is a record with four fields,

r, w, pr and win. r, w and pr represent the sizes of reads(m), writes(m) ∪ win(m), and preads(m),

after α, we mean the next pi metastep after N

157

respectively. sig`.win is the name of the winner of m. We say e(sig`.win) is the winning step on `.

R` is a set of processes such that the next step of each process is a read on `, and the process would

change its state if it read the value of the winning step on `. W` is a set of processes whose next

step is a write to `. PR` is a set of processes that have done their last read step on ` in Mn, and

such that the read step is contained in a preread metastep, that itself is contained in the preread

set of an unexecuted write metastep on `.

Having described the variables of Decode, we now describe the general aim of these variables.

Recall that in Section 4.7.3, we proved several characterizations of the minimal metasteps after a

prefix. Suppose that at some point in the execution of Decode, α is a linearization of some prefix

N of (Mn,�n). Then for any ` ∈ L, the sets PR`, R` and W` in Decode represent preads(N, `),

readers(N, `, v) and wwriters(N, `), respectively3940. Also, if sig` 6=⊥, then sig`.pr, sig`.r and

sig`.w equal |preads(m)|, |reads(m)| and |writes(m)|, respectively, for some write metastep m on

`, such that m is the next πk metastep after N for some k ∈ [n]. In addition, sig`.win equals

�(winner(m)). The general strategy of Decode is to use Lemmas 4.7.35 and 4.7.36, which are

based on comparing the quantities |preads(N, `)|, |readers(N, `, v)| and |wwriters(N, `)| against

|preads(m)|, |reads(m)| and |writes(m)|, to decide when m ∈ λ(N).

We now describe the operation of Decode. Each iteration of the main repeat loop of Decode

consists of two sections, from 〈6− 32〉D, and from 〈33− 44〉D. The purpose of the first section is to

find the next step of each process, and also to execute some minimal unexecuted read and critical

metasteps. The purpose of the second section is to divide the next steps computed in the first

section into groups, such that each group of steps is exactly the steps contained in some minimal

unexecuted write metastep. Then, 〈33− 44〉D also executes these metasteps.

Consider any i 6∈ done∪wait. That is, pi is has not finished its exit section, and the decoder does

not know its next step. In 〈7〉D, the decoder computes ei, using the run α it has already generated

and pi’s transition function δ(·, i). In 〈8〉D, the decoder calls the helper function GetStep(E, i, pci),

which returns the extended type of ei in pi’s next metastep. The decoder then switches based on

the value of typei.

First consider the case typei = W 〈10〉D, and let `i be the register ei writes to 〈7〉D. Then the

decoder adds i to W`i
. In addition, if typei contains a signature sig, the decoder sets sig`i

to

MakeSig(sig, i) 〈12〉D. If sig = PRprRrWw, where pr, r and w are numbers, then MakeSig(sig, i)

sets sig`.win← i (indicating that pi is the winner of the metastep corresponding to this signature),

sig`.r ← r, sig`.w← w, and sig`.pr ← pr.

Next, consider the case typei = R, and let `i be the register ei reads. The decoder first checks

39preads(N, `), readers(N, `, v) and wwriters(N, `) are defined in Definition 4.7.4.
40We say that PR`, R` and W` in Decode represent preads(N, `), readers(N, `, v) and wwriters(N, `), because

they may not equal preads(N, `), readers(N, `, v) and wwriters(N, `) at all points in the execution of Decode. For
example, there may be a point in the execution of Decode when wwriters(N, `) 6= ∅, but W` = ∅, because the
decoder has not yet computed the elements of W` yet.

158

whether sig`i
6=⊥. If sig`i

6=⊥, the decoder then checks whether the (value of the) winning write step

in the metastep corresponding to this signature, namely, step e(sig`.win), would cause pi to change

its state 〈18〉D. If so, the decoder adds i to R`i
. If either of the checks fails, the decoder removes i

from wait, so that on the next iteration of the decoding loop, the decoder will check whether there

exists a possibly different winning step on `i that will cause pi to change its state.

Next, consider the case typei = PR, and let `i be the register ei reads. ei is the lone read step in

a read metastep m, and so the decoder executes m by appending ei to α 〈24〉D. The decoder then

increments pci, and removes i from wait 〈25〉D, indicating that it needs to compute a new next step

for pi in the next iteration of the decoding loop . In addition, because typei = PR, then m is the last

read metastep containing pi on `i in Mn, and so the decoder adds i to PR`i
〈23〉D.

Next, consider the cases typei = SR or typei = C 〈26〉D. Then ei is the lone step in a read or

critical metastep m, and so the decoder executes m by appending ei to α. In addition, it removes i

from wait, and increments pci.

Finally, suppose typei = $. This indicates that pi has finished all its steps in Mn. Thus, the

decoder adds pi to done 〈30〉D.

Now, we describe the second section of the decoding loop, between 〈33 − 44〉D. Recall that the

goal of this section is to divide the next steps into groups, with each group corresponding to the

steps in some minimal unexecuted write metastep. The grouping is based on the register accessed

by the next steps. In particular, the decoder iterates over all the registers ` for which it knows

the signature 〈33〉D. For each `, it checks whether the sizes of R`, W` and PR` match the sizes in

sig` 〈34〉D. If so, it sets β to be the concatenation, in an arbitrary order, of all the write steps ei,

for i ∈ W`\{sig`.win}. It sets γ to be the concatenation of all read steps ei, for i ∈ R`. Then, it

appends β ◦ esig`.win ◦ γ to α. We will show in Lemma 4.11.2 that the steps in β ◦ esig`.win ◦ γ are

precisely the steps of some minimal unexecuted write metastep. The decoder removes R` ∪W` from

wait 〈41〉D, to indicate that it needs to compute next steps for these processes in the next iteration

of the decoding loop. It also increments pci, for all the processes i ∈ R` ∪W`. Finally, it resets

sig`, R`, PR` and W`.

The decoder performs the decoding loop between 〈5 − 45〉D until done = [n], indicating that

all processes have entered their remainder sections. Then it returns the step sequence α it has

constructed. We show in Theorem 4.11.4 that α is a linearization of (Mn,�n).

4.11 Correctness Properties of the Decoding

In this section, we use several lemmas proven in Section 4.7.3 to show Theorem 4.11.4, which states

that Decode(Eπ) outputs a run α that is a linearization (Mn,�n). This section uses some notation

defined in Section 4.7.1.

159

In the remainder of this section, let ϑ denote an arbitrary execution of Decode(Eπ). Consider

any point in ϑ. Then we call a tuple consisting of the values of all the variables of Decode(Eπ)

(such as pci, for all i ∈ [n], and R`, for all ` ∈ L) at that point, a state of ϑ. If σ is a state of ϑ

and x is a variable of Decode, then we use σ.x to denote the value of x in σ. In the following,

when we say that we prove a statement using induction on ϑ, we mean that we prove the statement

by assuming that it holds in a certain state in ϑ, then showing that it also holds in a state that

occurs later in ϑ. Recall that we refer to line x in Decode by the notation 〈x〉D. We say that an

iteration of ϑ is one execution of the loop between 〈5 − 45〉D in Decode. We do not necessarily

induct over the iterations of ϑ. Rather, we often induct on ϑ at a finer granularity, by considering

multiple points within an iteration.

One of the components of a state σ is the step sequence σ.α that Decode(Eπ) has built up. The

following definition says that σ is N -correct if σ.α is a linearization of a prefix N of (Mn,�n).

Definition 4.11.1 Consider any state σ in ϑ, and let N be a prefix of (Mn,�n). Then we say σ

is N -correct if σ.α ∈ L(N).

The following lemma says that given any state σ of ϑ, σ is N -correct, for some prefix N of

(Mn,�n). Thus, Decode(Eπ) always satisfies a safety condition: it never outputs a step sequence

that is not a linearization of a prefix of (Mn,�n).

Lemma 4.11.2 (Safety Lemma) Let σ be any state in ϑ. Then there exists a prefix N of

(Mn,�n) such that σ is N -correct.

Proof. The main idea of the proof is to use Lemmas 4.7.35 and 4.7.36, to show that each time

the decoder appends a set of steps ω to σ.α, where σ.α is a linearization of a prefix N of (Mn,�n),

then ω is exactly the steps in steps(m), for some m ∈ λ(N).

Formally, we use induction on ϑ. Let σ0 be the state in ϑ at the end of 〈4〉D. Then σ0 is N0

correct, for N0 = {try1, . . . , tryn}. For the inductive step, suppose that σ is N -correct, for some prefix

N of (Mn,�n), and suppose that after σ, Decode appends a sequence of steps ω to σ.α. Then

we prove that the set of steps in ω equals the set of steps contained in some minimal unexecuted

metastep m ∈ λ(N). From this, it follows that σ′ is (N ∪ {m})-correct, where σ′ is the state of ϑ

after appending ω. In the remainder of this proof, we often suppress the “σ dot” notation when

referring to the value of a variable at a point in ϑ. Rather, we will simply indicate the location at

which we consider the value of a variable.

There are three places where Decode appends steps to α: in 〈24〉D, 〈27〉D, 〈37〉D. First, suppose

that Decode appends a step ei to α in 〈24〉D or 〈27〉D. Then we have typei ∈ {C, PR, SR}. Let m =

λ(N, π−1(i)) be the next pi metastep after N . Since typei ∈ {C, PR, SR}, we have type(m) ∈ {C, R},
and so by Lemma 4.7.36, we have m ∈ λ(N). Let ε be the step that pi takes in m. Then we have

ei = ε, and so α ◦ ei is N ′-correct, for N ′ = N ∪ {m}.

160

Next, suppose Decode appends a sequence of steps ω to α in 〈37〉D. Then from 〈34〉D, there

exists some ` ∈ L, such that |W`| = sig`.w, |R`| = sig`.r and |PR`| = sig`.pr. For any process

i ∈ [n], let ei = δ(α, i). Also, let k = sig`.win, and let m = λ(N, π−1(k)). Since sig` contains the

signature for m, we see by inspection of the Encode algorithm that the following hold:

1. pk is the winner of m.

2. ek is a write step.

3. sig`.r = |readers(m)|, sig`.pr = |preads(m)| and sig`.w = |writers(m) ∪ winner(m)|.

From 〈10 − 14〉D, we see that W` is the set of processes pi such that ei is a write step to `,

and ei belongs to a metastep not contained in N . Thus, we have W` = writers(N, `). Then, since

|W`| = sig`.w = |writers(m) ∪ winner(m)|, we get that

|wwriters(N, `)| = |writers(m) ∪ winner(m)|.

Next, from 〈15 − 21〉D, we see that R` is the set of processes pi such that ei is a read step on `,

ei belongs to a metastep not contained in N , and reading value val(m) in ` causes pi to change

from its current state st(α, i)41. Thus, we have R` = readers(N, `, val(m)). Since |R`| = sig`.r =

|readers(m)|, then we get that

|readers(N, `, val(m))| = |readers(m)|.

Finally, we see from 〈23 − 25〉D that PR` is the set of processes pi that have performed a read

metastep contained in N , such that the read metastep is contained in the preread set of some write

metastep not contained in N . Thus, PR` = preads(N, `). Since |PR`| = sig`.pr = |preads(m)|, we

get that

|preads(N, `)| = |preads(m)|.

Combining this with the earlier facts that |readers(N, `, val(m))| = |readers(m)| and |wwriters(N, `)| =
|writers(m) ∪ winner(m)|, and applying Lemma 4.7.35, we get that m ∈ λ(N). Thus, letting ω be

β ◦ esig`.win ◦ γ, where β and γ are defined as in 〈35 − 36〉D, we get that α ◦ ω is N ′-correct, for

N ′ = N ∪ {m}.
From the above, we have that if α is N -correct, then after Decode appends a sequence of steps

to α, the resulting run is N ′-correct, for some prefix N ′ ⊃ N of (Mn,�n). Thus, the lemma holds

by induction. 2

Lemma 4.11.2 showed that if Decode(Eπ) ever appends a sequence of steps to α, then those

41Note that val(m) is the value written by step esig`
.win.

161

steps correspond to the steps in some minimal unexecuted metastep. The next lemma shows a

liveness property, that in every iteration of ϑ, Decode(Eπ) does append some steps to α.

Lemma 4.11.3 (Liveness Lemma) Let σ be the state at 〈6〉D in some iteration of ϑ, and let σ be

the state at 〈44〉D in the same iteration. Then either σ′.done = [n], or σ.α is a strict prefix of σ′.α.

Proof. By Lemma 4.11.2, σ is N -correct, for some prefix N of (Mn,�n). Suppose σ′.done 6= [n].

Then there exists i ∈ [n] such that λ(N, i) 6= ∅, and so λ(N) 6= ∅. Let m ∈ λ(N), and suppose

first that type(m) ∈ {C, R}. Let i ∈ procs(m). Then we see that at 〈9〉D after σ, we have typei ∈
{C, PR, SR}, and so in 〈24〉D or 〈27〉D, we have α← α ◦ ei. Thus, the lemma holds.

Next, suppose that type(m) = W, and let ` = reg(m) and v = val(m). Then, following the

arguments in the proof of Lemma 4.11.2, we have at 〈34〉D after σ that R` = readers(N, `, v), W` =

wwriters(N, `), and PR` = preads(N, `). Also, we have at 〈34〉D that sig`.r = |readers(m)|,
sig`.w = |writers(m) ∪ winner(m)| and sig`.pr = |preads(m)|. Since m ∈ λ(N), then by Lemma

4.7.35, we have |readers(N, `, v)| = |readers(m)|, |wwriters(N, `)| = |writers(m)∪winner(m)| and

|preads(N, `)| = |preads(m)|. Thus, we have |W`| = sig`.w, |R`| = sig`.r and |PR`| = sig`.pr at

〈34〉D, and so in 〈37〉D, Decode appends β ◦ esig`
.win ◦ γ to α. Thus, the lemma holds. 2

Theorem 4.11.4 (Decoding Theorem A) Let α be the output of Decode. Then α is a lin-

earization of (Mn,�n).

Proof. By Lemma 4.11.2, σ.α is a linearization of some prefix N of (Mn,�n), for any state σ in

ϑ. By Lemma 4.11.3, Decode continues to append steps to α until done = [n]. We can see that

done = [n] precisely when all the metasteps in Mn have been linearized in α. Thus, the final output

α of Decode is a linearization of (Mn,�n). 2

4.12 A Lower Bound on the Cost of Canonical Runs

In this section, we use the main theorems shown in Sections 4.6.5, 4.9 and 4.11 to prove that there

exists a canonical run α with Ω(n log n) cost in the state change cost model. We begin with the

following definition.

Definition 4.12.1 Let π ∈ Sn be an arbitrary permutation. Then we define the following.

1. Let (Mπ,�π) be any output of Construct(π).

2. Let Eπ be any output of Encode(Mπ,�π).

3. Let απ be any output of Decode(Eπ).

Lemma 4.12.2 (Uniqueness Lemma) Let π1, π2 ∈ Sn, such that π1 6= π2. Then απ1 6= απ2 .

162

Proof. By Theorem 4.11.4, απ1 is a linearization of (Mπ1 ,�π1), and απ2 is a linearization of

(Mπ2 ,�π2). Thus, by Theorem 4.6.20, processes p1, . . . , pn all enter the critical section in απ1 , and

they enter in the order π1. p1, . . . , pn also all enter the critical section in απ2 , and they enter in the

order π2. Thus, since π1 6= π2, then we have απ1 6= απ2 . 2

Finally, we prove our main lower bound. It states that for any mutual exclusion algorithm A,

there is a canonical run α of A, in which each process p1, . . . , pn enters and exits the critical section

once, such that the cost of α in the state change cost model is Ω(n log n). Recall that C is the set of

canonical runs.

Theorem 4.12.3 (Main Lower Bound) Let A be any algorithm solving the mutual exclusion

problem. Then there exists a π ∈ Sn such that απ ∈ C, and C(απ) = Ω(n log n).

Proof. By Theorem 4.6.21, we have απ ∈ C, for all π ∈ Sn. Assume for contradiction that the

theorem is false. Then for all π ∈ Sn, we have C(απ) = o(n log n). Since |Eπ | = O(C(απ)) by

Theorem 4.9.1, then we have |Eπ | = o(n log n), for all π ∈ Sn. Since 2o(n log n) = o(n!) and |Sn| = n!,

we have |{Eπ}π∈Sn
| < |Sn|. Then by the pigeonhole principle, there exists π1, π2 ∈ Sn with π1 6= π2

such that Eπ1 = Eπ2 . Thus, we have

απ1 = Decode(Eπ1) = Decode(Eπ2) = απ2 .

But by Lemma 4.12.2, we have απ1 6= απ2 , which is a contradiction. Thus, there must exist a π ∈ Sn

such that C(απ) = Ω(n log n). 2

163

Chapter 5

Conclusions

In this thesis, we studied two fundamental problems in distributed computing. In Chapter 2, we

introduced the new problem of gradient clock synchronization. We proved that the clock skew

between a pair of nodes depends not only on the distance between the nodes, but also on the size of

the network. We showed that even two nodes that are unit distance apart can have Ω(log D
log log D) clock

skew, where D is the size of the network. The proof consisted of an adversary iteratively adding

skew to a region of the network where skew is highest, while forcing the algorithm not to remove this

skew too quickly. In Chapter 3, we presented an efficient and fault tolerant clock synchronization

algorithm suitable for wireless networks. Our algorithm combines internal synchronization between

the nodes, and external synchronization between the nodes and real time. The algorithm satisfies a

relaxed gradient property, where the skew between a pair of nodes is linear in their distance, after

an execution stabilizes, and when the nodes have the same latest synchronization information. We

argued that this situation is likely to arise in practice. In Chapter 4, we proved a tight Ω(n log n)

lower bound on the cost of mutual exclusion in the state change cost model. Our proof constructs

an execution in which processes “see” each other in an adversarially chosen order. In addition, the

execution ensures that each time the algorithm performs O(1) operations, it gains only O(1) bits of

information about this ordering.

5.1 Future Work

5.1.1 Clock Synchronization

We conjecture that our lower bound for gradient clock synchronization is nearly tight, and that the

correct lower bound is Ω(d log D
d) for the clock skew between two nodes that are distance d apart in

a size D network. If the conjecture is true, how can we go about proving it? Our current proof uses

a round based structure, where the algorithm moves first in each round, and “reveals” the parts of

the network where it intends to remove skew. Then, the adversary responds, by adding skew to the

164

places where the skew remains highest. While this construction simplifies our proofs, does it lead to

a suboptimal lower bound, and can a more versatile adversary do better? Alternatively, perhaps we

can retain the round structure, and modify the adversary’s response in each round. Are round based

adversaries general? That is, can we prove that the best adversaries, for problems like gradient clock

synchronization, always operate in rounds? Such a formalism might reveal connections between clock

synchronization, and more “discrete” distributed computing problems, such as mutual exclusion and

consensus, and foster an exchange of ideas between the two problem domains.

Another interesting research direction is to consider relaxations or extensions to the GCS problem

definition. For example, is there a lower bound for GCS if we only require that each node’s logical

clock increase by a bounded amount, during any sufficiently long period of time? Such a lower

bound would apply to algorithms in which nodes sometimes keep their clocks constant, including

the Synch algorithm we presented in Chapter 3. We can also loosen the GCS property to allow nodes

to occasionally violate the gradient requirement. However, as we saw in Chapter 3, formalizing such

a relaxation can sometimes be difficult. One possibility is to require the skew between any distance

d nodes be bounded by f(d), for at least a g(d) fraction of the time in any execution, for some

functions f and g. Can we find the best tradeoff between f and g? We can also consider, for each

d ∈ [1, D], a family of functions f1, f2, . . . and g1, g2, . . ., so that the skew between distance d nodes

is bounded by fi(d) at least gi(d) part of the time, for every i = 1, 2 These definitions of GCS

may be more useful in practice than our original definition of GCS, though they may also be more

difficult to study.

A natural and important open question is to find good gradient clock synchronization algorithms.

Until recently, all CSAs produced some executions in which O(1) distance nodes have Ω(D) clock

skew. Basically, the problem in these algorithms is that when a node adjusts its clock value, by

up to Ω(D), it does not coordinate the adjustment with its neighbors. So there exist executions in

which one node has adjusted its clock by Ω(D), but a neighboring node has not, leading to Ω(D)

clock skew between the nodes. The recent algorithm by Locher and Wattenhofer [26] ensures that

O(1) distance nodes have O(
√

D) nodes. It basically works by having each node adjust its clock in

O(
√

D) increments. Can other adjustment methods lead to algorithms in which O(1) distance nodes

have only O(log D) skew, which we conjecture to be optimal? How complex is such an algorithm?

For example, if we apply the algorithm in a line network, is it enough for each node to know the clock

values of its neighbors, or does it need a more “global” view including information from faraway

nodes?

Several interesting questions arise from the Synch algorithm we presented in Chapter 3. The

external and gradient accuracy properties we proved assume the network eventually stabilizes. Does

Synch satisfy any interesting properties if there are always some nodes that crash or recover, perhaps

in a random instead of adversarial way? If not, do there exist CSAs with good performance guaran-

165

tees in random dynamic networks? Can the algorithm take a similar “follow the leader” approach as

Synch, or will it be more complicated? Another interesting problem is to state more “concretely”

when Synch satisfies the gradient property. Can we find an expression, or at least a lower bound,

for the fraction of time after an execution stabilizes in which a pair of nodes can maintain linear

clock skew, in terms of the distance between the nodes, the diameter of the network, µS , µG, or

possibly some other parameters?

5.1.2 Mutual Exclusion

We believe that the information based approach we used to prove an Ω(n log n) lower bound for

mutual exclusion in the state change cost model can be extended to show the same lower bound

in other memory models, such as the cache-coherent and distributed shared memory models. The

basic intuition of the proof appears to be the same. The CC and DSM models seem subject to the

same overwrite weakness of registers that we used to limit information flow in our current proof. In

addition, the visibility graph corresponding to a canonical run still needs to contain a directed chain

on all the processes. However, the problem with directly transferring our existing proof to the CC

and DSM models is that processes are allowed to busy-wait on several registers at the same time

in these models. In addition, if some of the registers being waited on are never written to, then

the CC and DSM models may not assign the reads any cost. On the other hand, a straightforward

encoding of such an execution uses some bits to record even the unwritten reads. Thus, the length

of this encoding is no longer proportional to the cost of the execution, and so a lower bound on the

encoding length does not imply a lower bound on the cost of the execution. Addressing this problem

might require a variation in our construction step, or the encoding (and decoding) step, or both.

We would also like to extend our informational approach to deal with memory objects other than

registers. We believe that with relatively simple modifications to our current construction, we can

show tight lower bounds for mutual exclusion in the state change cost model augmented by many of

the standard shared memory datatypes, such as CAS, F&I and queues. It would also be interesting

to study the costs of non-canonical runs. For example, we can consider runs in which some processes

try to enter the critical section multiple times, or runs in which the set of participating processes

is not known a priori. It can be seen from our proof that since the average length of a string to

identify an element from a set of size n! is Ω(n log n), then the average cost of the canonical runs is

Ω(n log n). Can we prove average case lower bounds for non-canonical runs as well? Also, what is

the effect of randomness on mutual exclusion, and can randomness be incorporated into our proof

technique? Finally, we would like to study lower bounds for problems beyond mutual exclusion,

such as snapshot or renaming. Is information also the key currency in these problems, or are there

other forces at work?

166

Bibliography

[1] R. Alur and G. Taubenfeld. Results about fast mutual exclusion. In Proceedings of the 13th

IEEE Real-time Systems Symposium, pages 12–21. IEEE, 1992.

[2] James H. Anderson and Yong-Jik Kim. An improved lower bound for the time complexity

of mutual exclusion. In PODC ’01: Proceedings of the twentieth annual ACM symposium on

Principles of distributed computing, pages 90–99, New York, NY, USA, 2001. ACM Press.

[3] James H. Anderson and Yong-Jik Kim. Nonatomic mutual exclusion with local spinning. In

PODC ’02: Proceedings of the twenty-first annual symposium on Principles of distributed com-

puting, pages 3–12, New York, NY, USA, 2002. ACM Press.

[4] James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory mutual exclusion: major

research trends since 1986. Distributed Computing, 2003.

[5] T. E. Anderson. The performance of spin lock alternatives for shared-money multiprocessors.

IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, 1990.

[6] Hagit Attiya and Danny Hendler. Time and space lower bounds for implementations using -cas.

In DISC, pages 169–183, 2005.

[7] Saâd Biaz and Jennifer L. Welch. Closed form bounds for clock synchronization under simple

uncertainty assumptions. Information Processing Letters, 80(3):151–157, 2001.

[8] James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion. Infor-

mation and Compututation, 107(2):171–184, 1993.

[9] Robert Cypher. The communication requirements of mutual exclusion. In SPAA ’95: Pro-

ceedings of the seventh annual ACM symposium on Parallel algorithms and architectures, pages

147–156, New York, NY, USA, 1995. ACM Press.

[10] Danny Dolev, Joe Halpern, and H. Raymond Strong. On the possibility and impossibility

of achieving clock synchronization. In STOC ’84: Proceedings of the sixteenth annual ACM

symposium on Theory of computing, pages 504–511, New York, NY, USA, 1984. ACM Press.

167

[11] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchronization

using reference broadcasts. SIGOPS Operating Systems Review, 36(SI):147–163, 2002.

[12] Rui Fan, Indraneel Chakraborty, and Nancy Lynch. Clock synchronization for wireless networks.

In OPODIS 2004: 8th conference on principles of distributed systems, pages 400–414. Springer,

2004.

[13] Rui Fan and Nancy Lynch. Gradient clock synchronization. In PODC ’04: Proceedings of the

twenty-third annual ACM symposium on Principles of distributed computing, pages 320–327,

New York, NY, USA, 2004. ACM Press.

[14] Rui Fan and Nancy Lynch. Gradient clock synchronization. Distributed Computing, 18(4):255–

266, 2006.

[15] Rui Fan and Nancy Lynch. An Ω(n log n) lower bound on the cost of mutual exclusion. In

PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed

computing, pages 275–284, New York, NY, USA, 2006. ACM.

[16] C. Fetzer and F. Cristian. Integrating external and internal clock synchronization. Journal of

Real-Time Systems, 12(2):123–172, 1997.

[17] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[18] Seth Gilbert. Virtual Infrastructure for Wireless Ad Hoc Networks. PhD thesis, MIT, 2007.

[19] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multiprocessors.

IEEE Computer, 1990.

[20] Joseph Y. Halpern, Nimrod Megiddo, and Ashfaq A. Munshi. Optimal precision in the presence

of uncertaint. Journal of Complexity, 1(2):170–196, 1985.

[21] Prasad Jayanti. A time complexity lower bound for randomized implementations of some shared

objects. In PODC ’98: Proceedings of the seventeenth annual ACM symposium on Principles

of distributed computing, pages 201–210, New York, NY, USA, 1998. ACM Press.

[22] Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. The Theory of

Timed I/O Automata. Morgan and Claypool, 2005.

[23] Patrick Keane and Mark Moir. A simple local-spin group mutual exclusion algorithm. In

PODC ’99: Proceedings of the eighteenth annual ACM symposium on Principles of distributed

computing, pages 23–32, New York, NY, USA, 1999. ACM Press.

168

[24] Leslie Lamport and P. Michael Melliar-Smith. Synchronizing clocks in the presence of faults.

Journal of the ACM, 32(1):52–78, 1985.

[25] Errol Lloyd. Broadcast scheduling for tdma in wireless multihop networks. Handbook of wireless

networks and mobile computing, pages 347–370, 2002.

[26] Thomas Locher and Roger Wattenhofer. Oblivous gradient clock synchronization. In DISC ’06:

20th International Symposium on Distributed Computing, pages 520–533, 2006.

[27] Jennifer Lundelius and Nancy Lynch. An upper and lower bound for clock synchronization.

Information and Control, 62:190–204, 1984.

[28] Lennart Meier and Lothar Thiele. Gradient clock synchronization in sensor networks. Technical

report, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology

Zurich, 2005.

[29] J. Mellor-Crummey and M. Scott. Algorithms for scalable sychronization on shared-memory

multicomputers. ACM Transations on Computer Systems, 1991.

[30] D. L. Mills. Internet time synchronization: The network time protocol. IEEE Transactions on

Computers, 39(10):1482–1493, 1991.

[31] Rafail Ostrovsky and Boaz Patt-Shamir. Optimal and efficient clock synchronization under

drifting clocks. In Proceedings of the eighteenth annual ACM symposium on Principles of

distributed computing, pages 3–12. ACM Press, 1999.

[32] Boaz Patt-Shamir and Sergio Rajsbaum. A theory of clock synchronization. In Proceedings of

the twenty-sixth annual ACM symposium on Theory of computing, pages 810–819. ACM Press,

1994.

[33] Hairong Qi, Xiaoling Wang, S. Sitharama Iyengar, and Krishnendu Chakrabarty. Multisensor

data fusion in distributed sensor networks using mobile agents. In Proceedings of the Interna-

tional Conference on Information Fusion, pages 11–16, 2001.

[34] Michael Raynal. Algorithms for Mutual Exclusion. The MIT Press, Cambridge, Massachusetts,

1986.

[35] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626–

645, 1987.

[36] An swol Hu and Sergio D. Servetto. Algorithmic aspects of the time synchronization problem

in large-scale sensor networks. Mob. Netw. Appl., 10(4):491–503, 2005.

169

[37] P. Verissimo, L. Rodrigues, and A. Casimiro. Cesiumspray: a precise and accurate global time

service for large-scale systems. Technical Report NAV-TR-97-0001, Universidade de Lisboa,

1997.

[38] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S.J. Pister. Smart dust: Communi-

cating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

[39] Jennifer Lundelius Welch and Nancy Lynch. A new fault-tolerant algorithm for clock synchro-

nization. Information and Computation, 77(1):1–36, 1988.

[40] Y.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed Com-

puting, 1995.

170

