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Abstract

Replication is an important technique for improving the reliability and scalability of
data services. The primary problem encountered in replication is the trade-off between
amount of replication, performance, and consistency. A rule of thumb states that any
replication algorithm must sacrifice at least one of these criteria. In this thesis, we
investigate replicating large data objects, such as files, whose size is large compared
to metadata used by the replication algorithm. With this assumption, we present
a distributed replication algorithm which simultaneously achieves a high replication
factor, nearly optimal performance, and strong data consistency. Furthermore, our
algorithm makes only basic assumptions about its environment. Our algorithm works
in any asynchronous, reliable message-passing network, without relying on higher
level functions such as distributed locking or group communication. Our algorithm
is suitable for implementation in both LAN and WAN settings.

This thesis is divided into two parts. In the first part, we formally state
the assumptions and guarantees of our replication algorithm in terms of its trace
properties. We then formally implement our algorithm in the IOA modeling language.
We also give rigorous proofs of the algorithm’s correctness and its performance
analysis. The main idea of our algorithm is to separately maintain copies of the data,
and information about the locations of the up-to-date copies. Our algorithm then
mostly performs cheap operations on the location information, and avoids expensive
operations on the actual data.

The second part of this thesis presents two lower bounds on the costs of data
replication. The first lower bound gives the minimum number of writes that must
occur during a read operation. The second lower bound states that for a certain
class of efficient replication algorithms, the replicas must use storage proportional to
the maximum number of concurrent writers. The motivation for these lower bounds
was certain algorithmic techniques we used in our replication algorithm. The lower
bounds suggest that these techniques are necessary. The lower bounds are also of
independent interest.

Thesis Supervisor: Professor Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering
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Chapter 1

Introduction

Replication is a widely used technique for improving the performance and reliability
of data services. In replication, multiple copies of a data item are created, and clients
access the data by accessing the copies according to some protocol. Replication
can reduce the latency of the data service by load-balancing client accesses across the
copies. It also increases the fault tolerance of the service by making the data available
even if some of the copies fail.

To be most useful, replication should be transparent to the user. Thus, a
correctness requirement for many replication algorithms is atomicity, which allows the
replicated service to exhibit the same behavior as an unreplicated service. However,
atomicity imposes a trade-off between the performance and fault tolerance of the
algorithm: the more faults the algorithm tolerates, the more copies of the data
must be created, and the more work must be done for each operation on the
data to make it atomic. Often, this trade-off makes it prohibitively expensive to
implement a service with a high degree of replication. In the first part of this thesis,
we present a new algorithm called Layered Data Replication (LDR) for replicating
read/write data, which mitigates the performance/fault tolerance trade-off. In
particular, LDR performs a nearly constant amount of communication for each read
operation, independent of how many faults it must tolerate. For a write operation,
the communication is proportional to the number of faults LDR tolerates. Because of
the low cost of read and write operations, we can increase the fault tolerance of our
algorithm and still achieve high performance. Thus, we can simultaneously realize
both benefits of replication. In the second part of the thesis, we will prove two lower
bounds on the communication and memory cost of any replication algorithm, which
suggest that some of the constructions used in our algorithm are necessary.

1.1 Background

There is a wide body of literature on replicated data algorithms, for example,
[3, 6, 12, 5, 7, 4]. These algorithms make different trade-offs between the consistency
of the data and the performance of the algorithm. A replicated data algorithm
is typically divided into two parts, replica control and concurrency control [15].
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Replica control deals with which replicas are queried or updated during an operation.
Concurrency control deals with how operations are serialized, and which operations
are allowed to proceed in parallel. We will first discuss some relevant replica control
algorithms, then discuss concurrency control algorithms. Lastly, we discuss an
algorithm whose ideas we use in our algorithm, which combines replica control with
concurrency control.

The simplest replica control algorithm is the primary copy method [1]. Here, a
single replica is designated as a primary. A user write is directed at the primary,
which processes the operation, then propagates the result to other replicas in the
background. To read, a user first gets a timestamp for the latest value from the
primary, then reads from any replica which has an equal timestamp. The advantage
of the primary copy method is that the primary has knowledge of all the writes that
occur, and thus can help “direct” the user to an up-to-date replica. The problem
with this method is that the primary is a performance bottleneck and a single point
of failure. However, we will make use of the primary-as-director idea, and solve the
performance and fault-tolerance problem of the primary by, in effect, replicating the
primary.

Another popular replica control algorithm is the weighted voting method [5]. Here,
a user must read or write to a set of replicas during a read or write operation. The
requirement on the sets is that the size of any read set plus the size of any write
set must be greater than the total number of replicas. This ensures that any read
and write operation intersect in at least one replica, and when combined with the
appropriate concurrency control algorithm, ensures that a read will see the value of
the last write. The advantage to weighted voting is that it tolerates the failures
of some replicas. The disadvantage is that both read and write operations become
slower, since they have to access multiple replicas. A natural adaptation of weighted
voting is quorum-based replication [10]. Here, the quorums can be tuned to give
improved read and write performance. But the inherent need to access multiple
replicas still remains. Our algorithm will make use of quorum consensus. But the
data we access using quorum consensus will be small, and so this does not hurt the
performance of the algorithm too much.

Two interesting algorithms designed to mitigate the costs of quorum consensus are
voting with witnesses [12], and voting with ghosts [14]. Both algorithms use the idea
of creating some replicas that only store information about what the latest timestamp
for the data is. Since the size of the timestamps is small, it is cheap to read them
from a quorum of processors to determine the latest timestamp. This improves the
latency of a write operation in quorum based replication algorithms, because the first
phase of such algorithms typically consists of determining a timestamp for the write.
It also helps a read operation determine the timestamp of a value it should return.
However, the timestamp replicas don’t directly give a way to directly find an up-
to-date replica, so a read operation is still slow because it might have to read from
multiple replicas to find one with an up-to-date copy of the data. Our algorithm uses
a similar technique of separating the storage of the timestamp of the latest write,
from storage of values of the write itself. However, our timestamp replicas also know
the location of some replicas with the latest data. The main accomplishment of our
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algorithm consists in synchronizing the updates of the latest timestamp, the set of
most up-to-date replicas, and the data itself, to achieve much better performance.

A number of algorithms use lazy replication [7] with gossiping [13, 4] to improve
performance. The idea is to let the user return from a write operation after writing to
only a few replicas. Then, more replicas are updated with the new write by random
exchanges of information between replicas. A read operation can read from any
replica. If enough time elapses between the read and the last write for the value of
the write to propagate to many replicas, then the read sees the value of the last write.
However, in general, lazy replication using gossiping does not guarantee atomicity.
We make use of gossiping in our algorithm, but only as an optimization. That is,
our algorithm always maintains atomicity, but uses gossiping to increase the number
of up-to-date replicas, to increase the speed of reads by allowing a user to access a
nearby replica.

We now discuss the concurrency control part of a replicated data algorithm. The
most prevalent concurrency control algorithm is locking [3]. For example, in quorum
based replication, each replica has a read and write lock. To access the data, a user
must acquire locks from a quorum of replicas. The requirement is that only one user
at a time can hold the write lock at a replica. Performing locking in a distributed
system is a complicated problem, and requires expensive solutions [11]. In addition,
to make locking fault-tolerant against users who fail while holding locks, we must
make some assumptions about reliable fault detection. For this reason, we would like
to avoid the use of locking for concurrency control.

One algorithm which circumvents the need for locking is the ABD algorithm [2] of
Attiya, Bar-Noy and Dolev. ABD was originally designed to simulate shared memory
in a message passing network. However, since atomic read /write shared memory and
atomic read/write replicated data have the same semantics, ABD can be used as a
simple, effective replicated data algorithm as well. The major disadvantage of ABD in
this regard is that its read operation is slow. In fact, a read operation has embedded in
it a write of the data to a quorum of replicas, so that reads are slower than writes. In
a typical replicated data system, the number of reads is much larger than the number
of writes. Thus, we would particularly like to optimize a replication algorithm to have
fast reads. LDR does this by avoiding writing the data to any replicas during a read,
and reading the data from only one replica. To do so, we make use of ABD to store
the locations of the replicas with the most up-to-date value of the data. Since the size
of this (meta)data on which we apply ABD is small, it does not hurt the performance
of our algorithm much. On the other hand, this technique allows us to perform much
less work on actual data, which we imagine is much larger than the metadata. The
following sections describe in more detail what our algorithm accomplishes.

1.2 The Problem and Motivation

In this thesis, we consider the problem of fault-tolerant replication of read /write data
with atomic semantics in a message passing network. Some examples where our
algorithm can be applied are in implementing a fault-tolerant shared data-structure,
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or a replicated file system.

Our goal is to design a fault-tolerant, efficient and self-contained replication
algorithm. We are especially interested in obtaining fast read response, since in a
typical replicated data system, the number of reads is greater than the number of
writes. The minimum amount of work any replication algorithm must perform for
a read operation is to read one copy of the data. If the algorithm must tolerate f
replica faults, the minimum amount of work for a write operation is to write f + 1
copies of the data. We would like to get as close as possible to these lower bounds. In
order to achieve this, our algorithm might need to perform some more operations on
metadata. But if the size of the metadata is small compared to the size of the data,
the algorithm is still efficient.

We are also interested in designing a self-contained algorithm which does not
rely on external communication, fault-detection, or concurrency control schemes.
For example, we are not interested in algorithms which are built on top of group
communication services, or which depend on distributed locking protocols. In fact,
both group communication and distributed locking are strictly more difficult problems
than the atomic replicated data problem we are trying to solve. Our algorithm will
be both simpler and more efficient if it is self-contained.

Lastly, we would like to know that our algorithm is memory-efficient. To this end,
we are interested in knowing some lower bounds on the memory costs of replication,
and comparing these lower bounds to the costs of our algorithm. Though it is difficult
for our algorithm to meet such lower bounds exactly, we would like to achieve them
up to some constant factors.

1.3 Owur Contributions

In this thesis, we introduce the Layered Data Replication (LDR) algorithm. LDR
provides atomic semantics on the replicated data, high fault-tolerance, and efficient
read and write operations. To tolerate f faults, we only need to replicate the data at
f + 1 replicas. We never write the data during a read operation, and read only one
copy of the data in each read operation.

Our algorithm exploits the fact that the size of the data being replicated is often
much larger than the size of metadata used to keep different copies of the data
consistent. In particular, we replicate the data at arbitrary locations, and use a shared
data-structure to atomically store the set of locations with the most up-to-date copy
of the data. This allows us to resolve inconsistent views of the data by operations
on the shared data-structure, instead of the data itself. Since the data-structure is
small compared to the data, this approach decreases the communication and latency
of the algorithm. We show in our analysis that in the limiting case where the data
is much larger than the shared data, our algorithm achieves asymptotically optimal
communication and latency. In addition, our algorithm is particularly optimized for
fast read response. This improves the overall performance of the replicated system.

We also prove two results containing time and memory lower bounds on the cost
of replication. We first prove that for any atomic replication algorithm that tolerates

14



the failure of f replicas, clients must sometimes write to at least f replicas during a
read operation. We then prove that for any selfish consistent replication algorithm,
in which clients don’t “help” each other complete their operations, the replicas must
use storage which is proportional to the maximum number of concurrently writing
clients. In our algorithm, clients write metadata but not data during a read, and the
storage used by each replica is linear in the number of concurrent writers. The lower
bounds show that these properties are in some sense necessary.

1.4 Organization

Chapter 2 defines I/O automata, which we use to model our algorithm, and atomicity,
the correctness condition of our algorithm. It also describes the ABD algorithm [2],
which we adapt for use in our algorithm. Chapter 3 formally defines the replication
problem, and chapter 4 defines our model of computation. Chapter 5 describes
our replication algorithm LDR (layered data replication), and chapter 6 proves its
correctness and analyzes its performance. Chapter 8 presents our lower bounds.
Chapter 9 gives the conclusions of this thesis.

15
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Chapter 2

Preliminaries

2.1 I/0O Automata

The I/O automaton (IOA) model is a formal model for describing distributed
algorithms. We provide a brief description of IOA, following Chapter 8 of [8].

An TOA is a simple state machine in which the transitions are associated with
atomic, named actions. The actions are classified as either input, output or internal.
The inputs and outputs are used for communication with the automaton’s environ-
ment, while the internal actions are visible only to the automaton itself. The input
actions are assumed not to be under the automaton’s control-—they just arrive from
the outside—while the automaton itself specifies what output and internal actions
should be performed.

Let A be an IOA. Denote by in(A) (resp., out(A), int(A)) the input actions (resp.,
output actions, internal actions) of A. Let acts(A) = in(A) Uout(A) Uint(A) be the
actions of A. Let ext(A) = in(A) U out(A) be the external actions of A, and let
local(A) = out(A) Uint(A) be the internal actions of A. Formally, A consists of the
five following components.

e sig(A), the signature of A, where sig(A) = (in(A), out(A),int(A)).
e states(A), the states of A, which is an arbitrary set.
e start(A), the start states of A, which is a nonempty subset of states(A).

e trans(A), the state transition relation, or transitions of A, where trans(A) C
states(A) x acts(A) x states(A).

e tasks(A), the task partition of A, which is an equivalence relation on local(A).

2.1.1 Executions and Traces

An execution fragment of an IOA A is either a finite sequence, sg, 71, $1, T2, ..., Ty, Sy,
or an infinite sequence, sy, 1, S1, 7o, ..., of alternating states and actions of A such
that (Sg, Tgr1, Spr1) € trans(A) for every £ > 0. An execution fragment beginning
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with a start state is called an execution. The trace of some execution « of A, denoted
by trace(a), is the subsequence of a consisting of all the external actions. Denote
by ezecs(A) the set of all executions of A. Denote by finexecs(A) the set of all
finite executions of A. Denote by ex frags(A) the set of all execution fragments of A.
Denote by traces(A) the set of all traces of A.

Let ay, ap € execs(A), where o is finite, and where the last state of «; equals the
first state of ap. We write oy - as for the execution consisting of «; followed by «s.
We sometimes omit the -. We write a;; C i if oy is a consecutive subsequence of as.

Let v = som181 ... T8y € execs(A). We say 7 occurs in aif 3,1 < i <n:7m=m.
We write (i) = som81...7;8;,1 < i < n, for the length 2i 4+ 1 prefix of a. We let
a(0) = so. We also let |a| = n, the number of actions in «. Finally, if n > 1, that
is, a contains at least one action, then we write a.lact = 7, for the final action of «,
and «.lstate = s,, for the final state of a.

Let 8 € traces(A), and P C ext(A). We write §|P for the subsequence of
consisting of all actions that belong to P.

2.1.2 Operations on Automata
Composition

The composition operation allows an automaton representing a complex system to be
constructed by composing automata representing individual system components. The
composition identifies actions with the same name in different component automata.
A finite collection of automata can be composed if the set of internal actions of each
automaton is disjoint from the sets of actions of all the other automata, and the
sets of output actions of all the automata are disjoint. Under this condition, the
composition of the collection of automata is, roughly, an automaton whose states is
the cross product of the states of the component automata, and whose transition
relation is the union of the transition relations of the component automata. See [8]
for a more detailed exposition.

Let A be a composition of automata, B be an automaton in the composition, and
s be a state of A. We write s|B for the state of B in s.

Hiding

Hiding is an operation which reclassifies output actions of an IOA as internal actions.
This prevents them from being used for further communication and means that they
are no longer included in traces. We first define the hiding operation for signatures:
if S is a signature and ® C out(S), then hideq(S) is defined to be the new signature
S', where in(S') = in(S), out(S’) = out(S) — @, and int(S") = int(S) UP. Now, if A
is an automaton, hideg(A) is defined as the same automaton as A, but with signature
hideg(sig(A)).

18



2.2 Quorum Systems

We will define a variant of the standard quorum system, consisting of two collections
of sets, where every set from the first collection intersects with every set from the
second collection.

Definition 2.2.1 Let S be a set. (Q1, Qs) is a quorum system pair over S if
1. Q1,Q, C 25,
2. ¥Q1 € Q1 VQ2 € Qo : Q1N Q2 # 0.

For a quorum system pair Q@ = (Q;, Qs), we refer to Q; as the read quorum of Q,
and Q5 as the write quorum of Q.

Fix a set S. One example of a quorum system pair (Q1,Qs) is Q1 = Qy =
{T|(T CS)A(|T]| > |S|/2)}. That is, Q; and Qy consist of sets which have more
than half the elements of S.

2.3 Variable Type

Following [8], we define a variable type as consisting of the following:
e V. a set of values.
e vy € V, an initial value.
e A set of invocations.

A set of responses.

A function f : invocations X V — responses x V.

Let T be a variable type. A trace of an object with type T is a sequence
voa1byvyasbavy . . ., where Vi : v; € V. and Vi : (b1, vi41) = f(ai1,v;). Thus, a trace
is a sequence of value, invocation, and response triples, where the initial value is vy,
and where later values and responses are calculated by applying f to the preceding
invocation and value.

2.4 Atomicity

Again following [8], we define what it means for a trace to satisfy the atomicity
property for some variable type.

Let A be an IOA. Call a subset of in(A) the invocations of A, and for each
invocation, select an action in out(A) to be the corresponding response to the
invocation. Informally, an operation is a pair consisting of the occurrence of an
invocation in a trace and the next occurrence of the corresponding response in
the trace. Formally, we define two types of operations. A complete operation in
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[ € traces(A) is a pair (i, p), where ¢ and p are events in 3, and where ¢ is an
invocation, and p is the first occurrence of i’s corresponding response in [ after ¢.
An incomplete operation in [ is an event ¢ of [, such that ¢ is an invocation, and
the corresponding response to ¢ does not occur in 3 after .. We say the interval of a
complete operation (i, p) in trace (3 is the consecutive subsequence of § starting with
¢ and ending with p. The interval of an incomplete operation ¢ in 3 is the consecutive
subsequence of 3 starting at ¢, and including all actions of § after .. We extend the
definition of complete and incomplete operations in the obvious way when dealing
with execution fragments of A. The interval of a complete operation (i, p) in an
execution fragment « of A is defined as s,¢. .. ps,, where s, is the state immediately
preceding ¢ in «, and s, is the state immediately following p in . We define the
interval of an incomplete operation ¢+ in a similarly.

Let T be a variable type, and consider § € traces(A). Let a linearization of 3 be
a sequence of actions obtained as follows:

1. For each completed operation ¢, insert a linearization point *, somewhere
within ¢’s interval.

2. Select a subset ® of the incomplete operations.
3. For each operation ¢ € @, select a corresponding response.

4. For each operation ¢ € @, insert a linearization point *s somewhere after ¢’s
invocation.

5. For each completed operation ¢, move the invocation and response actions of ¢
(in that order) to the linearization point ¢.. (That is, “shrink” the interval of
the operation ¢ to its linearization point.) Also, for each operation ¢ € ®, put
the invocation of ¢, followed by the selected response, at ¢,.. Finally, remove
all invocations of incomplete operations ¢ ¢ ®.

We say [ satisfies the atomicity property for T if there exists a linearization of
such that the sequence produced by the above procedure is a trace of the underlying
variable type T'.

2.5 ABD Algorithm

Attiya, Bar-Noy and Dolev present an algorithm in [2] for simulating a single-writer/
multi-reader shared register in a message passing network. In [9], this algorithm is
extended to simulate a multi-writer /multi-reader shared register, and handle dynamic
sets of users. Since the main ideas relevant to our work from these algorithms is the
way reads are performed, we shall refer to the extended MWMR, algorithm as ABD
in the rest of this thesis.

A MWMR register has the same semantics as atomic replicated data. Therefore,
ABD can be used as a data replication algorithm. ABD performs quorum based
replication. However, unlike other quorum based replication algorithms such as
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weighted voting [5], ABD does not need any separate concurrency control mechanism.
This reduces the complexity of ABD compared to other replication algorithms, and
improves its fault tolerance and performance.

We now briefly describe the ABD algorithm. Assume that there is a group of
replica processes, and a quorum system pair defined over the replicas. Users of ABD
read and write values of the data being replicated at the replicas. Each write to the
data is marked with a tag, consisting of a natural number and the ID of the user who
originates the write. Tags are ordered lexicographically. Each replica stores a value
of the data, and the tag of the write that wrote the value.

To do a write operation on the data, a user first reads the tags from a read quorum
of replicas. Then the user picks a tag higher than any tag it read, and writes its value
and that tag to a write quorum of replicas.

To read the data, a user first reads the tags and values from a read quorum of
replicas. We call this the query phase of the read. Next, the user picks the value
marked by the highest tag, and writes this value and tag to a write quorum of
replicas. When the write finishes, the user returns the value it picked. We call the
writes performed by the user the propagation phase of the read.
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Chapter 3

Problem Statement

In this chapter, we define the notion of a fault-tolerant algorithm for maintaining
strongly consistent (i.e., atomic) replicated data.

3.1 Read/Write Variable Type

A replicated data algorithm may be accessed concurrently by multiple users, and
the algorithm may keep many copies of the data internally. Yet externally the
algorithm should look like a single multi-writer/multi-reader atomic register. We
begin by defining the variable type of an atomic register. Let REG(V,wvy) be the
variable type of an atomic register with values in V' and initial value vy. The
invocations to REG(V,vy) are read and write(v),v € V. The responses are
read-ok(v),v € V and write-ok. The transition function f of REG(V,vy) is defined
by: f(read,v) = (read-ok(v),v),v € V, and f(write(w),v) = (write-ok,w),v,w € V.

3.2 Client/Server Read/Write Object

We now describe an object whose external interface is that of a MWMR atomic
register. The object is accessed through a set C of client proxies. Clients accept
external invocations to read and write the data, and output the appropriate response.
Clients coordinate with a finite set S of servers to return consistent values of the data.
Servers are internal to the algorithm, and their input actions should not be directly
invoked by external users.

More formally, let C, S, and V be sets, where S is finite. We say an I/O automaton
Aisa (C,8,V)-read/write object if its external signature is of the following form. For
every i € C, A has input actions read; and write(v);,v € V, and output actions
read-ok(v);,v € V and write-ok;. We refer to read; (write(x);) as an invocation at i,
and read-ok(x); (write-ok;) as the corresponding response at i. For every i € CU S,
A has an input action fail;. A may have other input and output actions in addition

to invocations, responses, and fail actions. Figure 3-1 shows the external signature of
A.
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Signature

Input Output
read;,: € C read-ok(v),,is €C,v €V
write(v),,i€C,v €V write-ok;,i € C
fail;,s € CUS (other output actions)

(other input actions)

Figure 3-1: External signature of a (C,S,V)-read/write object.

Let C, S and V be some sets, and let A be a (C,S,V)-read/write object. Define

UA(A) = U ({readi, write-ok; } U U {read-ok(v);, write(v)ﬁ)

1eC veV

We say UA(A) is the set of user actions of A. UA(A) is the subset of the clients’
actions by which other objects (users) interact with A.

For the remainder of this section, fix some sets C, S and V, and fix A to be a
(C,S,V)-read/write object.

A is guaranteed to behave correctly only if users access it in the “right” way. The
only conditions we impose on a user of A are that its interface matches the interface
of A, and that when a user invokes an action on A, it waits for the action’s response
to occur before invoking another action.

Formally, we say an automaton U is a user for A if the following are true of U.
First, the outputs of U are all the invocations of A, and the inputs of U are all the
corresponding responses of A. Second, U must preserve well-formedness for A, in the
sense that Vj3 € traces(A x U), and for all i € C, U does not make an invocation at
¢ until it has received the corresponding response to any previous invocation U made
at ¢ in [.

We say that § € traces(A x U) is well-formed if for all i € C, /5 alternates between
invocations and responses at ¢, starting with an invocation.

Lastly, we define the type of failures A can tolerate and still behave correctly. This
will be a collection F of sets, where each set in F represents a set of fail, actions
that A can tolerate. Formally, we say that F is a failure pattern for A if F C 269,
For example, if F = 2¢, then A will behave correctly when any set of fail;,i € C
occur, but no fail;,7 € S occurs.

3.3 Fault-tolerant Replicated Data Algorithm

The previous section defined the interface of a (C,S,V')-read/write object. We can
imagine that the set of traces exhibited by an object is generated by some underlying
algorithm. In fact, we can identify the object with an algorithm generating its traces.
In this section, we define the kind of traces a (C, S, V')-read/write object must exhibit
to qualify it as a fault-tolerant replicated data algorithm. For clarity, we divide the
definition into two parts. The first part defines consistency properties of the traces,
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and the second part defines fault-tolerance properties of the traces.

Definition 3.3.1 Let A be a (C,S,V)-read/write object for some sets C, S and V,
and let vy € V. A is a strongly consistent replica control algorithm (srca) for (V, vy)
if, for any user U of A, the following hold:

e Well-formedness: V3 € traces(A x U), [ is well-formed.

e Atomicity: V3 € traces(A x U), BIUA(A) satisfies the atomicity property for
REG(V, ).

The first part of this definition says that A correctly alternates between receiving an
invocation from a user and sending a response. The second part of the definition says
that the sequence of user actions in a trace of A x U is the behavior of an atomic
register with range V' and initial value vy.

We now define what it means for a strongly consistent replica control algorithm
to be fault tolerant.

Definition 3.3.2 Let V be a set, and let vg € V. Let A be a srca for (V,vy), and let
F be a failure pattern for A. A is an F-fault-tolerant srca (F-srca) for (V,vg) if for
any user U of A, we have

e Liveness: V3 € fairtraces(A x U), if there exists an F € F such that all
fail events in B occur at endpoints in F', then every invocation at a non-failing
endpoint from C in B has a response in [3.

This definition says that A is an F-srca for (V, vy) if it satisfies the well-formedness and
atomicity requirements of a srca for (V) vy), and is also guaranteed to be responsive
if faults occur only at a set of endpoints in F' € F.

Sometimes we wish to consider replica control algorithms which are only guar-
anteed to be correct when composed with certain users. In this case, we make the
following definition.

Definition 3.3.3 Let V be a set, and let vg € V. Let A be a srca for (V,vy), and let
F be a failure pattern for A. Let U be a user for A. We say A is an F-srca for user
U if A satisfies the well-formedness, atomicity and liveness conditions of Definitions
3.3.1 and 3.3.2, when composed with the user U.

In the remainder of this thesis, we fix a V' and fix a vy € V. For technical reasons,
assume that |V| = co. We refer to an F-srca for (V,vy) as simply an F-srca in the
remainder of the thesis.
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Chapter 4

Computational Model

In this chapter, we discuss two computational models in which to implement an F-
srca. We first discuss an architecture for an F-srca. Then we describe two models
for communication in this architecture. The first models an asynchronous message-
passing network, while the second models a shared memory system. In Chapter 5,
we will describe our algorithm in terms of an asynchronous network, because it more
closely resembles the environment we intend to run the algorithm in. In Chapter 8§,
we will prove some lower bound results in the shared memory model, because it is
simpler to work with.

4.1 General Architecture

Fix sets C, S and V for the remainder of this chapter, and fix A to be a (C,S,V)-
read/write object. We consider an architecture where there is an I/O automaton
corresponding to each i € C US. Formally, for each, for each i € C (resp. i € S),
there is an automaton Cj, called a client (resp. Sj, called a server). Let C' =[], Ci,
S =]licsSi»and let A =C x S.

We now describe two models for communication between components in this
architecture.

4.2 Network Model

4.2.1 Model Definition

In the asynchronous network model, components of A communicate through reliable,
FIFO channels. We allow communication only between a client and a server, or
between two servers (for uniformity, we allow a server to communicate with itself).
We do not allow two clients to communicate. The reason for this restriction is that
we do not want clients to rely on other clients in order for A to work correctly. That
is, we want A to work correctly even when there is only a single client running.
Formally, we say an automaton N is a reliable network for A if N can be described
in the following way. Let N = (C x §) U (8 x Z), and let (,5) € N. The channel
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Ni,ja(iaj) EN

Signature
Input Output
send(m); ;,m € M recv(m); j,m € M

Figure 4-1: NV, ; signature.

between ¢ and j is Nij. N =[] epr Nij-

Let M be an arbitrary message alphabet. The messages that can be sent through
a channel come from M. Figure 4-1 gives the signature of channel Nj;;. i sends
message m € M to j by invoking send(m); ;. j receives m from ¢ when recv(m); ;
occurs.

The network is asynchronous, so we assume no bound on the delay of a channel.
However, we require that all channels make the standard guarantees of message
integrity, FIFO ordering, no duplication, and eventual (reliable) delivery. See [8],
Chapter 14, for formal definitions of these properties. One example of a network with
these properties is a network running TCP.

4.2.2 F-srca in the Network Model

Definition 4.2.1 Let N be a reliable network for A. A is an F-srca in the network
model if

1. A x N is an F-srca.

2.V(i,j) € C xS IM,;; CMVm e M,; : send(m);; € out(C;) A recv(m);; €
n(S;).
)

~.

8. V(i,j) € S XTI IM;; C M Vm € Mj; : send(m);; € out(S;) A (recv(m);; €
in(C;) V recv(m);; € m(S))

4. out(C) Nin(S) = out(S) Nin(C) = 0.

Thus, A is an F-srca in the network model if A x N is an F-srca, the only means
of communication between components is using the network N, and the messages
they send to each other come from M.

4.2.3 Cost Measures

The cost of an F-srca is measured in terms of its time and communication complexity.
For an F-srca in the networks model, the time complexity of the algorithm is the
time between an invocation by a user and the response, for either a user read or write
action. We will assume an upper bound on the delay of the message channels, and
we will assume local processing by clients and servers takes no time. We will also
assume that the time to transfer a message is proportional to the size of the message.
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The message complexity of an operation is the total amount of messages sent in the
operation, defined as the sum of the sizes of the messages sent. These assumptions
are more carefully defined in Chapter 7.1, when we analyze the cost of a particular
F-srca in the networks model.

4.3 Atomic Servers Model

In this model, each server automaton is an atomic object. Clients communicate with
the servers by invoking actions and receiving responses from the servers. We still
assume that clients don’t communicate with each other. In addition, we now assume
that servers don’t communicate with each other. The atomic servers model is similar
to the shared memory model, where the servers play the role of the shared memory.
However, because the servers are atomic objects, they can be accessed by concurrent
clients.

To formally define the atomic servers model, let M’ and W be sets, and let
wy € W. We first define a read/modify variable type RM (W, wq, M"). The domain of
RM (W, wy, M') is W, and the initial value is wy. The invocations to RM (W, wg, M’)
are read and modify(m),m € M’ The responses are read-ok(v),v € W, and
modify-ok. The distinction between the read and modify operations is that a read
cannot change the value of the object, while a modify can change the value arbitrarily.
Formally, let g : W x M’ — W. Then the transition function f of RM (W, wy, M') is
defined by f(read,v) = (read-ok(v),v), and f(modify(m),v) = (modify-ok, g(m, v)).

A read/modify variable is similar to a register. The read operation of the two
variables work the same way. A modify(m) operation on a read/modify variable
differs from a write(v) operation on a register in that modify(m) sets the value
of the RM variable to g(m,v), where v is the previous value of the RM variable,
whereas write(v) simply sets the value of the register to v. Thus, the RM variable is
a generalization of a register.

For each j € &, fix sets M’ and Wj, and let (wp); € Wj. S; has input
actions read; and modify(m);, m € Mj, and output actions read-ok(v);,v € W; and
modify-ok;. We call read; (write(x);) an invocation at j, and read-ok(x); (modify-ok;)
the corresponding response at j. Define

SA(A),; = U {read; j, modify-ok; ;} U U {read-ok(v), ;} U U {modify(m);,}
ieC veWw; meM
SA(A), is the set of actions the clients use to interact with the server j.

Definition 4.3.1 A is an F-srca in the atomic servers model if
1. A is an F-srca.

2. Foralli € C and j € S, we have
(a) out(C;) Nin(S;) = {read; ;} U UmeMg{modify(m)i,j}.
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(b) in(C;) Nout(S;) = {modify-ok; j} U U, e, {read-ok(v)}.

3. VB € traces(A)Vi € S,B|SA(A); satisfies the atomicity property for
RM (Wi, wo, M;).

Thus, A is a F-srca in the atomic servers model if A if a F-srca, the only com-
munication between the clients and servers is invoking read and modify operations,
and the servers behave like read /modify atomic objects.

One example of an F-srca in the atomic servers model is an F-srca in which the
clients are programs, and the servers are hard disks. Overlapping operations at each
hard disk may execute in some arbitrary order, but the operations at each disk are
linearizable, and so each disk behaves like a read/modify atomic object.

4.3.1 Cost Measures

We defined the atomic servers model in order to prove some lower bounds using the
model. The lower bound in Chapter 8.1 shows that an F-srca in the atomic servers
model must perform some minimum number of modify actions. However, it does
not say anything about the parameters those modi fy actions take, nor the size of the
parameters. Thus, the cost measure we consider in Chapter 8.1 is only the number
of modi fy actions an F-srca takes in a read or write operation.

The lower bound in Chapter 8.2 considers the minimum amount of storage a server
in an F-srca must have. Instead of defining a cost measure by concretely specifying
the type of data stored at a server, Chapter 8.2 defines a more abstract notion of
storage based on the fault tolerance of the data, and the number of different values
of the data that can be read at a certain point in an execution. The definitions are
slightly involved, and we refer the reader to Chapter 8.2 for an in depth discussion.

Note that both memory cost measures which we have defined for the atomic
servers model are abstract, in the sense that they don’t refer to the size of specific
data structures. It is possible to define more concrete cost measures. For example, we
can define the communication cost of an operation as the sum of the sizes of the values
read and written during the operation using read and modify actions. However, it
is more difficult to reason about such measures in lower bound proofs, which is why
we only consider the abstract measures.

4.4 Relationship Between the Models

The motivation for considering the two lower bounds in Chapter 8 was to show that
some of the constructions used in the algorithm we describe in Chapter 5 are necessary.
Since we prove the lower bounds in the atomic servers model, while our algorithm
works in the network model, we should show some relationship between the two
models for the lower bounds to carry through to the network model. However, we
don’t consider a formal transformation between algorithms for the atomic servers
model into algorithms for the network model. Instead, we note that the ideas in the
lower bound proofs carry over from the atomic servers model to the network model.
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For example, looking ahead to Chapter 8.1, instead of proving that at least f modify
actions must occur during some read operation of an F-srca in the atomic servers
model, we can use a very similar line of reasoning to show that at least f servers
must change their state during some read operation of an F-srca in the network
model, which in turn implies that a reading client must sometimes send out at least
f write messages during its read. The interested reader can also adapt the statement
and proof of the second lower bound for the network model.
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Chapter 5

LDR Algorithm

5.1 Overview

In this chapter, we describe the Layered Data Replication (LDR) algorithm, an
efficient F-srca in the network model. The idea of LDR is to replicate the data at
arbitrary locations, then use directories to find the up-to-date replicas. The problem
is coordinating the information at the directories with the actual set of up-to-date
replicas, and performing the coordination efficiently. LDR uses ideas from the ABD
algorithm described in section 2.5, but has more efficient read operations, and equally
efficient writes. Chapter 7 analyzes the costs of LDR, and also compares them to the
costs of ABD.

LDR replicates one piece of data, which we will call « for the remainder of this
thesis. To replicate multiple data items, we can run a separate instance of LDR for
each item. LDR uses the network model described in Section 4.2, and is composed of
a set of client automata and a set of server automata communicating over a reliable,
asynchronous network. LDR refines the network model by dividing the set of server
automata into non-empty sets of directory and replica automata. The replicas are
used to store values of x. The directories store which replicas have the newest value
of . That is, each directory stores a set of replica names. The main steps for a
read operation are for a client to read some directories to find the set of up-to-date
replicas, then write this set to some directories, and then return the value read from
one of those replicas. To write a value, a client first gets a tag, then writes the new
value at a sufficiently large set of replicas, and then writes at some directories which
set, of replicas it just updated.

In LDR, a write to x can be done at any set of replicas, and a read can be done
at any up-to-date replica. But reads and writes about the set of up-to-date replicas
can be done only at read and write quorums of directories, from a quorum system
pair defined over the directories. This is so that the client reads and writes (of the set
of up-to-date replicas) to the directories will be atomic, which in turn allows client
reads and writes to x to be atomic. The precise way in which this occurs is explained
in Chapter 6, when we prove the correctness of LDR.

Below, we first describe the architecture and definitions used in LDR. Then we
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Figure 5-1: LDR architecture.

describe the algorithms for the clients, replicas and directories.

5.2 Architecture

LDR is an F-srca in the network model. For the rest of this thesis, we fix a set C to
be the set of clients in LDR, and fix a finite set S to be the set of servers. We also fix
R and D to be nonempty subsets of S such that S = R UD. For each i € R (resp.,
i € D), there is an automaton R;, called a replica (resp., D;, called a directory). Let
R = [Licr Ri» D = [l,cp Di» and S = R x D. The LDR architecture is shown in
Figure 5.2. Figure 5-2 (resp., 5-3, 5-4) gives the signature of client C; (resp., replica
R;, directory D;).

Now, we specify the failure pattern F that LDR tolerates. For the rest of this
thesis, we fix a quorum system pair (Qg, Qw) over D. We also fix a natural number
f, such that 2f + 1 < |R|. The fault-tolerance properties of LDR are stated with
respect to the quorum system pair and f. Let F be the collection of all sets F' such
that:

1. There are at most f different ¢ € R such that fail, € F.
2. There exist sets Q1 € Qr, Q2 € Qw, such that Vi € Q1 U Qs : fail; € F.

F consists of all sets of failures in which at most f replicas fail, some read and write
quorum of directories never fail, and any set of clients may fail. LDR is an F-srca
for this failure pattern.

5.3 Definitions

We use tags to order the writes performed by clients. Let 7" = N x C, where N is
the set of natural numbers. We assume that there is a total order on C, and order
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T lexicographically. Let ¢ty be an arbitrary value which we define to be less than all
tefT.

Next, we describe the messages sent by components of LDR. Recall that we fixed
V' as the set of values of x. Define

Mep = U {(rread, i), (rwrite, S, t, i), (wread, i), (wwrite, S, t,i) }
iEN,SCRtET
Mpc = U {(rread-ok, S, t,1), (rwrite-ok, i), (wread-ok, t, i), (wwrite-ok, i) }
iEN,SCRET
Mcer = U {(read, t, i), (write, v, t,i)(secure, t,i)}
vEV,ET,ieN

Mpe = U {(read-ok,v,t, i), (write-ok, i)}

veV,teT,ieN

Megp = U (write,r,t)
reR,teT

Mpr = U (gossip,v,t)
veViteT

Meec = Mpp=Mpr=10

These represent the set of messages that one group of automata sends to another.
For example, M¢p is the set of messages that clients send to directories, and M p¢
is the set of messages that directories send to clients. Note that clients don’t send
messages to other clients, and directories don’t send messages to other directories,
nor to replicas.

To explain the nomenclature of the messages, the read(-ok) and write(-ok)
messages do what their names imply. The secure and gossip messages are explained
in Section 5.5. The rread(-ok) and rwrite(-ok) are used by clients and directories
during reads by clients, while wread(-ok) and wwrite(-ok) are used during client
writes.

Lastly, we define a latest value of x after a finite execution fragment o of LDR.

Definition 5.3.1 Let «a be a finite execution fragment of LDR. A latest value of
x after « is either the value of the last completed write in o, or the value of an
incomplete write in «. If there are no completed writes in «, then it is the value of
any incomplete write, or vy. If there are no completed or uncompleted writes in «,
then it is vg.

Note that in general, there may be several latest value of x after «, if there are
several incomplete (i.e., ongoing) writes in a.
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Ci,ieC
Signature

Input
read;
write(v);,v € V
recv(m);i,(m € MpcAj € D)V(m € MpcAj €
R)
fail;

State

acc C Z, initially 0

phase € {idle,rdr,rdw,rrr,rok, wdr,wdw,wrs,wok},
initially ¢dle

tag € T U {to}, initially to

Output
read-ok(v);,v € V
write-ok;
send(m); ;j,(m € McpAj € D)V(m € McrAj €

R)

val € V, initially vg
msg[j] € Mcp,Vj € D, initially all L
msg[j] € Mcr,Vj € R, initially all L
mid € N, initially 0

Figure 5-2: C; signature and state.

R,,ieR
Signature

Input
recv(m)j,i,(m € McrAj E C)V(m € MRrrNj E
R)
fail;

State

data CV x (T'U{to}) x {0,1}, initially {(vo,to,1)}
msg[j] € Mpc,Vj € C, initially all L
msglj] € Mgp,Vj € D, initially all L
msglj] € Mgr,Vj € R, initially all L

Sl

Output
send(m)i,j,(m € MpcoNj € C)\/(m € MgrpAj E
D)V (me MprANjER)
Internal
gossip;
8¢;

Figure 5-3: R; signature and state.

D;,ieD
Signature

Input
recv(m);i,(m € McpAj€C)V(m e MppAj €
R)
fail;

State
utd C R, initially R

tag € T U {to}, initially to
msglj] € Mpc,Vj € C, initially all 1

Output
send(m); j,m € MpcAjeC

Figure 5-4: D; signature and state.
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Figure 5-5: Client read operation. Figure 5-6: Client write operation.

5.4 Client Algorithm

The clients receive user invocations to read and write to x. The transitions of a client
C; are given in Figure 5-7. In this code, C; marks each message it sends with an
integer mid in the last coordinate of the message. This number is echoed by the
recipient in its reply, in the last coordinate id of the reply. This lets C; determine
the recency of a response it receives. The id in a response that C; receives is always
less than or equal to ¢’s current mid. If id < mid for a response, then that response
is out of date, and C; ignores it.

5.4.1 Reads

A read by C; follows four phases: rdr, rdw, rrr and rok. Each of the first three
phases corresponds to a round of communication. During the last phase, the client
returns a value to the user, but does no communication. That is, there is no cost
associated with the last phase.

The first phase, rdr, stands for read-directories-read; rdw stands for read-
directories-write; rrr stands for read-replicas-read; rok stands for read-ok. We now
describe what happens in each phase. The sequence of interactions between clients,
replicas and directories is shown in Figure 5-5.

When C; first receives a read; invocation, it sends a message (rread, mid) to every
directory, then enters phase rdr. Here, C; is trying to find a set of replicas with a latest
value of z. During phase rdr, directories acknowledge C;’s read request with messages
of the form (rread-ok, S,t, mid), where S is a set of replicas, and ¢ is a tag. i waits
for a read quorum of directories to acknowledge the read, then chooses the (S,t) pair
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with the largest £ among the acks. The S that C; chooses will be a set of replicas with
a latest value of z, where latest value is defined as in Def. 5.3.1; the corresponding
t will be the tag for that value of x. C; sets (utd,tag) equal to (S,t), sends every
directory a message (rwrite, utd, tag, mid) to write (utd, tag), and enters phase rdw.
utd stands for up-to-date, and represents the set of replicas that C; will read the value
of x from. The reason that C; writes (utd,tag) to the directories is to ensure that
reads starting after C;’s current read will read a value with a tag at least as high as
t. During phase rdw, C; waits for a write quorum of directories to acknowledge its
write with messages of the form (rwrite-ok, mid). After this occurs, C; tries to read
the value of x by sending a read message (read,tag, mid) to the replicas in utd, and
enters phase rrr. Note that in C;’s message (read, tag, mid), C; tells the replicas that
it wants to read a value of x with tag tag. This is because, in general, each replica
will store multiple values of x with different tags. The reason a replica does this is
explained in Section 5.5. When one of the replicas acknowledges C;’s read with a
message (read-ok, v, t,id), C; takes the value v returned by the replica, and responds
to the user with read-ok(v);.!

It is possible to combine phases rdw and rrr. That is, the client can write to the
directories and read from a replica in parallel. The combined phase finishes when the
client receives acknowledgments from a write quorum of directories, and receives a
value from a replica. Then, the replica enters phase rok. Combining the rdw and rrr
phases can decrease the latency of a read. However, for clarity of exposition, we have
decided to separate the phases. Chapter 6 proves the correctness of LDR assuming
the phases are separate. It is easy to adapt the proof to account for combining the
phases.

5.4.2 Writes

A write by C; also follows four phases: wdr, wrw, wdw and wok. There is a round of
communication corresponding to each of the first three phases. The final phase, wok,
corresponds to a one-way communication from the clients to the replicas. Thus, there
are three and a half rounds of communication for a write. At the end of this section,
we will describe a way to reduce the communication during the write operation to
three rounds, leaving some communication to be performed lazily after the write
completes. While this optimization doesn’t affect the communication complexity of
the write, it does reduce its latency.

The first phase, wdr, stands for write-directories-read; wrw stands for write-
replicas-write; wdw stands for write-directories-write; wok stands for write-ok. Figure
5-6 shows the interaction between clients, replicas and directories in these phases.

When C; first receives a write(v); invocation to write value v to z, it sends a
message (wread, mid) to every directory, then enters phase wdr. Here, C; is trying
to find a tag large enough to mark its write as being the latest. During phase wdr,

!Note that the replica’s reply (read-ok,v,t,id) includes a tag t which C; discards. The tag t is
included in the message to simplify LDR’s correctness proof. If actually implementing LDR, the tag
does not need to be included.
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directories acknowledge C;’s read with messages of the form (wread-ok,t,id), where t
is a tag. C; waits for a read quorum of directory acknowledgments, then chooses the
highest tag t = (n, ') from among them. Here, n is a natural number, and i’ € C is a
client ID. Tag t is the tag of a latest value of x, so C; chooses a larger tag for its write,
by setting tag = (n+1,i). Then C; sends messages of the form (wwrite, val, tag, mid)
to all the replicas to write (val,tag), where val = v, and enters phase wrw. C; waits
for at least f 4 1 replicas to acknowledge the write, to ensure that the value it writes
survives even if f replicas fail. When C} receives a set acc of at least f + 1 replica
acknowledgments, C; sends a message to all the directories to write (acc, tag), using
message (wwrite, acc, tag, mid), and enters phase wdw. Here, C; is informing the
directories that the replicas in acc have the most up-to-date value of . When a write
quorum of directories acknowledge i’s write with message (wwrite-ok,id), i sends a
message (secure,tag, mid) to all the replicas in ace, and responds to the user with
write-ok;. The secure message tells the replicas that a write quorum of directories
know about a write with a tag at least as large as tag, and so the replicas will never in
the future need to return a value of x with tag less than tag. This allows the replicas
to garbage-collect all values with tag less than tag.

It is possible to return from the write as soon as the client receives acknowledg-
ments from a write quorum of directories in phase wdw, and before the client sends
secure messages to the replicas. The client still sends the secure messages to replicas
after returning. The proof of correctness in Chapter 6 can be easily adapted to ac-
commodate this change. But again, for clarity of exposition, we do not include this
optimization in the pseudocode in Figure 5-7.

5.4.3 Other Actions

The only other input action C}; can receive is fail;. If C; receives fail;, then it stops
taking any more locally-controlled steps.

5.5 Replica Algorithm

5.5.1 State

The replicas store values of x, to which clients read and write. However, instead
of storing one value of x, each replica stores a set of values of x. Each value of x
has an associated tag, indicating the recency of the value, and an associated security
bit, indicating whether the write of the value succeeded (i.e., whether that write
received a write quorum of directory acknowledgments during phase wdw). Thus,
each replicas stores a set of value-tag-bit triples C V x (T"U {tp}) x {0,1}, called
data. If (x,t,1) € data, we say t is secured. If (x,t,0) € data, we say t is unsecured.
Securing the data and garbage-collection are discussed further in Section 5.5.2.
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input read;
Effect:
mid < mid + 1
for all 5 € D do
msgl[j] < (rread, mid)
phase < rdr

input write(v),
Effect:
val v
mid < mid + 1
for all 5 € D do
msg|[j] < (wread, mid)
phase + wdr

input fail;
Effect:
stop taking locally-controlled steps

output read-ok(v);

Precondition:
(val = v) A (phase = rok)
Effect:

phase + idle

output write-ok;

Precondition:
phase = wok
Effect:

phase < idle

output send(m), ;
Precondition:
msglj] = m
Effect:
msg[j] +L

input recv(m); ; where (m = (rread-ok, S, t, id))
Effect:
if (phase = rdr) A (id = mid) then
ace + acc U {j}
if (t > tag) then
tag <t
utd < S
if (3Q € Qr : Q C acc) then
mid < mid + 1
for all j € D do
msg[j]  (rwrite, utd, tag, mid)
acc + 0
phase + rdw

Figure 5-7:

input recv(m); ; where (m = (rwrite-ok, id))
Effect:
if (phase = rdw) A (id = mid) then
acc < aceU {j}
if (3Q € 9w : Q C acc) then
mid < mid + 1
for all j € utd do
msg[j] « (read,tag, mid)
acc + 0
phase < rrr

input recv(m); ; where (m = (read-ok,v,t,id))
Effect:
if (phase = rrr) A (id = mid) then
val < v
tag <t
phase < rok

input recv(m); ; where (m = (wread-ok, ¢, id))
Effect:
if (phase = wdr) A (id = mid) then
acc + accU {j}
if (t > tag) then
tag <t //tag = (n,i’)
if (3Q € Qr : Q C acc) then
mid < mid + 1
tag < (n+ 1,7)
for all j € R do
msg[j] + (write,val, tag, mid)
acc + 0
phase <+ wrw

input recv(m); ; where (m = (write-ok, id))
Effect:
if (phase = wrw) A (id = mid) then
acc « accU {j}
if (Jacc| > f) then
mid < mid + 1
for all j € D do
msg[j] + (wwrite, acc, tag, mid)
acc + 0
phase < wdw

input recv(m); ; where (m = (wwrite-ok, id))
Effect:
if (phase = wdw) A (id = mid) then
acc < aceU {j}
if (3Q € OQw : Q C acc) then
mid < mid + 1
for all j € R do
msg[j] < (secure,tag, mid)
acc < 0
phase < wok

C; transitions.




Reason for Storing a Set of Values of x

We now give some intuition why a replica stores a set of values of x instead of a single
value. Suppose we want an F-srca that tolerates f replica faults, and suppose each
replica only stored one value of z (and possibly other metadata). To make reads fast,
the client does not write any values of x during a read operation. Then, suppose that
the last complete write to x in some execution of the algorithm wrote the value v to
f + 1 replicas. Consider a client that writes a new value v’. When a replica currently
storing v receives a request by the client to write v, it must overwrite v with v’.
Otherwise, the write for v" will fail, which would violate the liveness requirement of
the algorithm. Now, suppose this overwriting occurs at f — 1 of the replicas storing
v, and then the client writing v’ fails. Then, each of v and v’ is stored at fewer than
f replicas. Since the algorithm tolerates f replica faults, a client who reads must
be able to return a response even if it does not hear from up to f replicas. So, by
delaying the messages from replicas storing either v or v’, we can control whether a
reading client returns v or v’. In particular, we can force three sequential reads to
return v, v', and v, in that order. But this violates the atomicity of the algorithm.
Therefore, the replicas cannot just store one value of z.

In Section 8.2, we formalize and extend the above argument, and prove a theorem
that if clients do not write values of x during a read, and we allow an infinite number
of concurrent client writes, then the amount of storage at each replica must be
unbounded.? Since clients do not write values of x during a read in LDR, and we
place no bound on the number of concurrent writers, this theorem shows that replicas
in LDR need to have unbounded storage, and justifies why each replica stores a set
of values of z.

5.5.2 Transitions

The transitions of replica R; are given in Figure 5-8. In the transitions, we use a
function maxst(data) (maxst stands for maz-secured-tag), which returns the secured
(value, tag) pair with the largest tag in data. More precisely,
 (v,t) ((v,t,1) € data) A ((V',¢,1) € data =t > 1)
maxst(data) = { (vo,t0) Av,t: (v,t,1) € data

We will use the usual subscript notation to extract coordinates from vectors. That
is, if maxst(data) = (v, t), then maxst(data); = v and maxst(data), = t.

Replica R; can read, write, gossip and garbage-collect values. We describe these
actions below.

2In fact, we show a more fine-grained bound, which roughly says that for any F-srca in which
clients don’t write values of x during reads, the number of concurrent writes allowed cannot exceed
the total storage capacity of all the replicas.
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Reads

When R; receives a (read, t, mid) message, it is being asked to return a value of = with
tag t. If either (v,t,0) or (v,t,1) exists in data, then R; returns v and ¢.* Otherwise,
R; must have garbage-collected v (it can be shown that R; must have stored v in
data at some point in the past). In this case, R; returns the largest secured value and
tag in data, i.e., maxst(data). We will show in Chapter 6 that even though R; may
not return the value corresponding to the tag the client is looking for, the value R;
returns can always be linearized within the execution, and does not violate atomicity.
There is also the question why R; does not simply return the value with the largest,
possibly unsecured tag in data. Roughly, the reason why R; returns the value for the
largest secured tag is that it must be sure the value has been written to at least f+1
replicas, and also that a write quorum of directories know this fact. Otherwise, when
a later read reads the directories, it might choose a tag smaller than the tag chosen
by the current read, and return a value earlier than the one the current read returned.
The security of the tag indicates both that f + 1 replicas know the value for the tag,
and a write quorum of directories know this fact. This argument is formalized in
Chapter 6.

Writes

Writing is simple. When R; receives a (write, v, t, mid) message, it appends (v,t,0)
to data and returns an acknowledgment to the client requesting the write. Note that
v is stored as an unsecured value.

Gossip

Gossiping spreads secured values of x to additional replicas. This way, there are more
replicas for clients to read from, which increases the fault tolerance of the data, and
makes reads faster by allowing clients to read from a closer replica, to which it may
have a faster network connection. To gossip, R; chooses a secured (v, t) (if any exists),
and sends a (gossip, v,t) message to the other replicas.

If R; receives a gossip message (gossip,v,t), it adds (v,t,1) to its data. Then it
sends a write message (wwrite,{i},t) to the directories, to tell the directories that
it has become a replica for (v,t). This message may be ignored by the directories if
(v,t) is actually out of date, i.e., a value with tag greater than ¢ has been written.

Garbage Collection

R; can garbage-collect values in data that it knows are obsolete. When a writing
client finishes its write, ¢.e., when it is about to enter its wok phase, it informs all the
replicas of this fact with a (secure, t, mid) message. If R; receives this message, then
it knows that it never needs to return a value with tag less than ¢ in the future, since

3In fact, it would be correct to return any secured value with tag greater than ¢t. But we choose
for the read to return exactly v, as it somewhat simplifies the proof.
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input recv(m); ; where (m = (read, t, mid))
Effect:
if v : (v,t,*) € data then
(v',t') « choose {v|(v,t,*) € data}
msg[j]  (read-ok,v',t', mid)
else
(v',t') + maxst(data)
msg[j] « (read-ok,v',t', mid)

input recv(m); ; where (m = (write, v, t, mid))
Effect:
data < data U {(v,t,0)}

input fail;
Effect:
stop taking locally-controlled steps

output send(m), ;
Precondition:
msglj] = m
Effect:
msglj] L

internal gossip;

. ; g Precondition:
msg[j] < (write-ok, mid) I, t,: (v,t,1) € data
Effect:

input recv(m); ; where (m = (gossip,v,t)) (v',t') + choose {(v,t)]|(v,t,1) € data}
Effect: for all j € R do
data + data U {(v,t,1)}\{(v, t,0)} msglj] < (gossip,v',t')
for all j € D do
msglj] + (wwrite, {i}, t)
internal gc;
input recv(m); ; where (m = (secure, t, mid)) Precondition:
Effect: ' Ju,t: (v,t,1) € data
if Jv : (v,t,0) € data then Effect: , ,
for all v : (v,t,0) € data do b+ choloss {t ‘I(Ua,t ,1) € data} ,
data = data U (v, t,1)\{(v, t,0)} for all v',t" : ((v',t',%) € data) A (t' < t) do
remove (v',t', x) from data

Figure 5-8: R; transitions.

at least f 4+ 1 replicas have a value with tag at least as large as ¢, and the directories
know this fact. Then R; can garbage-collect all values with tag less than ¢.

Specifically, it R; receives a (secure, t, mid) message, then if it has a value v with
tag t in data, it marks that value as secure, by adding (v, t,1) to data, and removing
(v,t,0) from data, if needed. If it doesn’t have a value with tag ¢ in data, then it just
adds (v,t,1) to data.

At any point in its execution, R; can choose to garbage-collect old values. It does
this by finding some secured value (v,t,1) € data, and then removing all values with
tag less than ¢ from data. If a client ever asks to read a value with tag less than ¢,
then R; can instead return a value with tag ¢ or higher.

Other Actions

Lastly, if R; receives a fail; action, it stops taking any more locally-controlled steps.

5.6 Directory Algorithm

A directory stores the set of replicas that it thinks has a latest value of x, and the tag
for that value. Each directory D; has a variable utd C R, where utd stands for up-to-
date. utd represents a set of replicas with a latest value of x. D, also has a variable
tag € T, which is the tag associated with that latest value. That is, all the replicas
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input recv(m); ; where ((m
(m

(rread, mid)) vV
(wread, midy))
Effect:
if (m = (rread, mid)) then
msg(j] « (rread-ok, utd, tag, mid)
else
msg[j] + (wread-ok,tag, mid)

input fail;
Effect:
stop taking locally-controlled steps

(rwrite, S, t, mid)) vV
(wwrite, S, t, mid)))

input recv(m); ; where ((m =
(m =
Effect:
if (t = tag) then
utd < utd U S
else if (t > tag) then
if |S| > f+ 1 then
utd < S
t < tag
if (m = (rwrite, S, t,mid)) then
msg[j] < (rwrite-ok, mid)
else

msg[j] + (wwrite-ok, mid)
output send(m), ;
Precondition:

msg[j] =m
Effect:
msg[j] +L

Figure 5-9: D, transitions.

in utd have a value with tag tag, unless some replicas in utd have garbage-collected
that value. D; allows clients to read and write to utd and tag.

5.6.1 Read

When D; receives a (rread, mid) message, it just returns the current value of wutd
and tag by sending a message (rread-ok, utd, tag, mid). D; does essentially the same
thing when it receives a (rread, mid). The only difference is it responds with message
(wread-ok, utd, tag, mid).

5.6.2 Write

When D; receives a (rwrite, S, t, mid) message, where S is a set of processes and t is
a tag, it first checks if t > tag. If t < tag, then the write is out of date, and D; does
nothing but return a write acknowledgment to the sender (this unblocks the sender,
who is waiting for an ack). Otherwise, if ¢ = tag, then S is a set of replicas which now
have up-to-date values of z, and so D; adds S to utd. If t > tag, then S is a set of
replicas with a newer value of x than the replicas in D;’s current utd. Then D; checks
that |S| > f, and if so, updates its utd and tag to S and ¢, respectively. If |S| < f,
the message is ignored.* In all cases, D; returns an acknowledgment (rwrite-ok, id) to
the sender. D; does essentially the same thing when it receives a (rwrite, S, t, mid)
message. The only difference is D; responds with message (wwrite-ok, id).

Note that D; needs to make sure that |S| > f before setting utd to S because D,
can only tell clients about utd’s which have at least one nonfailed replica, i.e., utd’s
such that |utd| > f. |S| may be less than or equal to f in the following scenario:

4We can also store all the sets with tag ¢ > tag which D; receives, and set utd to be their union
when the union contains more than f replicas. But for simplicity, we just discard sets which are too
small.
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There is a write using a tag greater than D;.tag, which wrote to a write quorum of
directories not containing D;, and which was also secured at some replicas. One of
the secured replicas gossips to another replica r, and then r sends a message to D;
informing D; it is now up-to-date. Note that in this situation, D; does not need to
update utd to S = {r}, since a write quorum of directories already know about the
up-to-date replicas.

The proof of correctness in Chapter 6 avoids the complicated situation described
above. To prove that LDR is correct (specifically, that LDR guarantees liveness), the
proof requires only that |D;.utd| > f at all times. Since this is true in the initial
state of D;, and since D; checks to ensure this condition each time it changes utd, it
is always true.
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Chapter 6

LDR Correctness

In this chapter, we prove that LDR is an F-srca in the network model, where F is
defined as in Section 5.2. We need to verify that LDR satisfies the conditions of
Definition 4.2.1. We recall the four requirements of an F-srca in the network model:

1. LDR x N is an F-srca.

2. V(i,j) € C xS IM;; CMVYm e M,; : send(m);; € out(C;) A recv(m);; €
in(S;).
)

~.

3. V(i,j) € S XTI AIM;; C M Vm € Mj; : send(m);; € out(S;) A (recv(m);,; €
in(C;) V recv(m);; € m(S))

4. out(C)Nin(S) = out(S) Nin(C) = 0.

Conditions 2, 3 and 4 describe the required interface of LDR. We can satisfy
conditions 2 and 3 by the appropriate choice of sets M; ; and M; ;. For example, to
satisfy condition 2 for 7z € C and j € R, we choose M, ; = M¢pg. Clearly, all of the
conditions in 2 and 3 can be satisfied in a similar way. Condition 4 can be verified by
inspection of the client, replica and directory signatures in Figures 5-2, 5-3 and 5-4,
respectively.

For the rest of this chapter, fix N to be a reliable network for LDR, where a
reliable network is as defined in Section 4.2. Also fix U to be a user for LDR, as
defined in Section 3.2. We concentrate on proving condition 1 of Definition 4.2.1,
i.e., that LDR x N is an F-srca. We must show that LDR x N satisfies the well-
formedness and atomicity conditions of Definition 3.3.1, and the liveness condition of
Definition 3.3.2. We start by showing well-formedness. Then we show liveness, and
finally, atomicity.

6.1 Well-formedness

We show that LDR x N satisfies the well-formedness condition of Def. 3.3.1. Let
p € traces(LDR x N x U). We see by inspection of the client transitions in Figure
5-7 that a client outputs at most one response for each user invocation. Thus, since
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U preserves well-formedness for LDR, 3 is well-formed. The details of the argument
are omitted.

6.2 Liveness

Now we show that LDR x N satisfies the liveness condition of Def. 3.3.2. Recall that
LDR tolerates the failure pattern F, consisting of any number of client failures, up
to f replica failures, and any number of directory failures, as long as some read and
write quorum of directories never fail. We will show that LDR is live by showing that
a read or write operation by a non-failing client cannot block forever. This is because
the only time a client read or write blocks is when the client is waiting to receive
acknowledgments from some replicas or directories. Since a sufficient number of
replicas and directories always stay alive, they will send acknowledgments to unblock
the client.

We first prove two lemmas, then prove the liveness theorem.

The first lemma says that the utd at any directory always contains at least f + 1
replicas.

Lemma 6.2.1 Let s be any state of an execution o € execs(LDR x N x U), and let
i € D. Then |(s|D;).utd] > f + 1.

Proof. The lemma holds in the initial state sy of «, since (so|D;).utd = R for all
i € D,and |R| > f+1. Also, whenever D; changes its utd, then either |D;.utd| > f+1
already and D; adds an element to its utd, or D; first checks that a set S has size
at least f + 1, before setting D;.utd to S. Thus, D;.utd always has at least f + 1
elements. OJ

The next lemma says that any wutd of replicas which a client tries to read from
contains at least f + 1 replicas.

Lemma 6.2.2 Let s be any state of o € execs(LDR x N x U), and let i € C. If
(s|Ci).phase = rrr, then |(s|C;).utd] > f + 1.

Proof. By inspection of C;’s transitions in Figure 5-7, we see that C; always reads
utd from some directory in phase rdr. Lemma 6.2.1 shows that the utd at every
directory always has size at least f + 1. Thus, when C} enters phase rrr, we have
|Ciutd| > f + 1. O

We now state the theorem that every fair execution of LDR x N x U is live.

Theorem 6.2.3 Let a € fairevecs(LDR x N x U), and suppose there exists F' € F
such that all fail events in « occur at endpoints in F'. Then every invocation at a
non-failing client has a corresponding response in c.
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Proof. Let i € C be a non-failing client. We first show that if read; occurs in «,
then read-ok(x), occurs later in &. We do this by showing that C;.phase takes on
values rdr, rdw, rrr, and rok in order, and C; eventually outputs read-ok(x), after
C;.tag = rok.

After read; occurs, C; sends (rread, mid) messages to all the directories, and sets
phase to rdr. In phase rdr, C; waits to receive (rread-ok,S,t,id) messages from
a read quorum of directories. Since a read quorum of directories is always alive,
C; eventually receives these messages from some read quorum of directories. Then it
sends (rwrite, utd, tag, mid) messages to all the directories, and sets phase to rdw. In
phase rdw, C; waits to receive (rwrite-ok, id) from a write quorum of directories. Since
a write quorum of directories is always alive, C; eventually receives these messages
from some write quorum of directories. Then C; sends (read,tag, mid) messages to
all the replicas in utd, and sets phase to rrr.

By Lemma 6.2.2, the set of replicas utd that C; sends (read,tag, mid) messages
to in phase rrr has size at least f 4+ 1. Since at most f replicas fail in «, there must
be a non-failing replica, say j € utd, which receives C;’s read message. If R;.data
contains (v, tag,*), for some v, R; sends (read-ok,v,mid) to C;. Otherwise, R;
sends (read-ok, maxst(data),, maxst(data),, mid). Note that maxst(data); is always
defined. Thus, in all cases, R, eventually responds to C;. After receiving some
replica’s response, C; sets val to v and sets phase to rok. After this, read-ok(v),
becomes the only enabled action of C;, and by the fairness of «, this action will
eventually occur. Thus, every read; in o has a corresponding response occurring
later in a.

To show that every write(x); action in « has a response write-ok; in «, we
can use a similar argument as above to show that when write(x); occurs, C; sets
C;.phase to wdr, wrw, wdw, and wok in order, and write-ok; eventually occurs after
C;.phase = wok. The details are omitted. 0

6.3 Atomicity

It remains to show that LDR satisfies the atomicity condition of Def. 3.3.1. Recall
that UA(LDR x N) is the interface between the user U and LDR x N, consisting of
the read(-ok) and write(-ok) invocations and responses:

UA(LDR x N) = U ({Teadi, write-ok; } U U {read-ok(v);, write(v)i}>

ieC veEV

The following theorem says that the traces of LDR, when projected onto the user
actions, satisfy the atomicity property for an atomic register.

Theorem 6.3.1 Let 5 € traces(LDR x N x U)|UA(LDR x N). Then [ satisfies
the atomicity property for REG(V, vg).

For the rest of this chapter, fix an arbitrary a € execs(LDRx N xU), and let /5’ be
the trace corresponding to «, i.e., the subsequence of « consisting only of the actions
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of a. Let f = 'lUA(LDR x N) be the subsequence of ' consisting only of the user
actions. We will prove that  satisfies the atomicity property for REG(V,vy). Then,
since a was arbitrary, any trace in traces(LDR x N x U) |[UA(LDR x N) satisfies
the atomicity property.

To prove that [ satisfies atomicity, we show that [ satisfies the conditions in
Lemma 13.16 of [8], by defining a partial order on the complete operations in 3 that
satisfies some properties. By Lemma 13.10 of [8], it suffices to assume that § contains
only complete operations. In the following, we first make some definitions, then prove
some basic facts about 3, and then prove [ satisfies Lemma 13.16.

6.3.1 Definitions

Let ® be the set of complete operations in trace 5. Recall from Section 2.4 that a
complete operation in 3 is a pair consisting of an invocation event and the following
corresponding response event. The interval of a complete operation in 3 is the
consecutive subsequence of 3 starting with the invocation of the operation and ending
with the response. Also, recall that we make similar definitions for a complete
operation in «, and the interval of the operation in . We now defining some
convenient notation.

Let m be an event in '. Denote the state immediately preceding 7 in « by s,
and the state immediately following 7 in « by s,.. We also use the same notation to
denote the states of a preceding and following an event 7 in f3.

Let ¢ = m...m, be an operation in [, where each m; is an event. Define
ex(¢) = sy, ...5x, TSy, to be the execution fragment of o corresponding to ¢.
Note that we don’t include the state preceding 7 in ex(¢), but do include the state
following .

We now define a complete operation by a client.

Definition 6.3.2 Let ¢ = (1, p) be a complete operation in 5. We say ¢ is a complete
operation by C;, where i € C, if v € in(C;).

Next we define a function that assigns tags to operations. Recall that 7" is the set
of tags.

Definition 6.3.3 Define A : & — T U {ty} by the following:

1. If ¢ € ® is a read, and s is any state in ex(¢p) such that (s|C;).phase = rok,
then \(¢) = (s]|C;).tag.

2. If ¢ € @ is a write, and s is any state in ex(¢) such that (s|C;).phase = wok,
then A(¢) = (s|C;).tag.

Note that, if ¢ is a read, A(¢) equals the tag of the value returned by ¢. If ¢ is a
write, A(¢) equals the tag of the value written by ¢. It is easy to verify that A is
well-defined. Indeed, the value of (s|C;).tag doesn’t change when (s|C;).phase = rok
(wok), for any s in the interval of ¢. Moreover, (s|C;).tag is defined in every state of
Q.

We now define a partial order < on ® as follows:
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Definition 6.3.4 Let ¢, € .
1. If ¢ is a write and ) is a read, define ¢ < 1 if A(¢) < A(¥).
2. Otherwise, define ¢ < 1 if AM(¢) < A(¢).

6.3.2 Lemmas

We now prove some lemmas useful for the proof of atomicity.
The first lemma says that the tag at a directory never decreases. This can be
easily verified by inspection, and we omit the proof.

Lemma 6.3.5 Let i € D, and let s,s' be two states of a, such that s’ occurs after s.
Then (s'|D;).tag > (s|D;).tag.

The next lemma says that for any replica, the maximum secured tag at the replica
does not decrease in any step of a.

Lemma 6.3.6 Let i € R, and let m be an event in «. Then maxst((s;|R;).data)y <
maxst((s.|R;).data)s.

Proof. If m # gc¢;, then, by inspection of the R;’s transitions in Figure 5-8, we see
that R;.data can only have more secured values as a result of 7. In particular, every
action except gc; either does not change R;.data, or adds a secured value to it. Thus,
the lemma holds.

If 7 = ge¢;, then maxst((s,|R;).data) cannot be garbage-collected by m. Thus,
maxst((s;|R;).data) € (s,|R;).data, and so the lemma holds in this case as well. O

A corollary of the above lemma is that the maximum secured tag at a replica
never decreases in a.

Corollary 6.3.7 Let it € R, and let s, s’ be two states of o such that s precedes s'.
Then maxst((s|R;).data)y < maxst((s'|R;).data)s.

The next lemma says that if a replica receives a write or gossip message with tag
t, then later receives a message to read a value with tag ¢, the replica returns a value
with tag at least ¢.

Lemma 6.3.8 Let i € R, and suppose an event T = recv({write, *,t,%)),; or
7' = recv((gossip, *,t)).; occurs before event m = recv((read,t,*)).; in 5. If i

responds to m with ' = send((read-ok, x,t', %)); ., then t' > t.

Proof. If (x,t,x%) € (sx/|R;).data,  then R; will respond with
7' = send((read-ok, x,t, *)); ., and so the lemma holds.

Otherwise, R; responds with send((read-ok, *,t', %)); ., where t' # ¢, and (x,t') =
maxst((s|R;).data). Since (*,t,*) was added to R;.data by 7 or 7', but (x,t,%) ¢
(sqr|R;).data, this implies that (x,t,*) was removed from R;.data by a gc; event p
after 7 and 7', and before 7'. Let ¢ = maxst((s},|R;).data);. Then t < ", since p
removed (x,t,*) from R;.data but kept (x,t",%). Also, t" < ¢/, by Corollary 6.3.7.
Thus t < ¢/, and the lemma holds. O
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The next lemma says that if a replica is in the utd of some directory with tag ¢,
then that replica must have previously either received a write message tagged with ¢
from a client, or received a gossip message tagged with ¢ from a replica. This means
that the utd and tag of directories contain correct information.

Lemma 6.3.9 Let s be any state of o, and let 7 € R, and k € D. Suppose
J € (s|Dg).utd and t = (s|Dy).tag. Then one of the following is true:

1. t= to.
2. 3i € C such that the event recv({write, *,t, %)), ; occurred in « before s.

3. 3i € R such that the event recv({(gossip, x,t));; occurred in o before s.

Proof. 1Ift =ty then we are done. So suppose t # ty. Let Cy be a writing client
which wrote (utd',t) to Dy, i.e., let ' € C be such that recv({(wwrite, utd',t, %))y x
occurred in « before s. Cy must exist, since t # t;, and Dy only changes Dy.tag
when it receives a (wwrite, x, *, x) message from some client. Furthermore, we must
have utd' C (s|Dy).utd. This is because the only way that D;.utd can change without
D;.tag changing is if elements are added to D;.utd with the same tag.

Now, there are two possibilities, either j € utd’, or j € ((s|Dy).utd)\utd'.

Consider the former case first. Since Cj sent (wwrite, utd',t, ) in phase wdw,
it must have previously done send({write, *,t,)). s during phase wrw, and received
acknowledgments (write-ok,*) from a set utd’ of replicas. Since j € utd’, R; must
have acknowledged Cj, and so R; must have received Cj’s (write, x,t, ) message
before s. Thus, recv({write, x,t, %))y ; occurred before s.

In the second case, D, must have added j to Djy.utd with tag t, i.e.,
recv({(wwrite, {j},t));r must have occurred before s. So, R; must have done
send((wwrite,{j},t));x before s.  But R; only does send((wwrite,{j},t));
if a recv((gossip,*,t));; occurred previously, for some i € R.  Thus, if
J € ((s|Dy).utd)\utd', the third case of the lemma holds. O

The next lemma says that if a client reads a certain tag ¢ from the directories
during its rdr phase, then it will return a value with tag at least as large as ¢.

Lemma 6.3.10 Let ¢ be a complete read operation by C;, and let t be the greatest
value of Ci.tag during phase rdr of ¢. That is, t = maxy{t' | Is a state : (s is in the
interval of ¢) A ((s|C;).tag =t') A ((s|C;).phase = rdr)}. Then A(p) > t.

Proof. 1If t = ty, then since any tag ¢ that a replica returns in a (read-ok, *,t, x)
message is at least ¢y, the value of C;.tag during phase rok of ¢ is at least ¢y, and so
the lemma holds.

Suppose that ¢ > ty, and let S be a set of replicas corresponding to ¢ which C; read.
That is, during phase rdr of ¢, the event recv((rread-ok, S,t, *)),, occurred, for some
j € D.! Let m = send((rread-ok, S,t,x));; be the send event corresponding to the

1S may not be unique, as a replica which received a gossip message may have been added to the
utd’s of some directories but not others.
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recv((rread-ok, S,t,*));; event. Then (s|D;).utd = S, and (s, |D;).tag = t. So, by
Lemma 6.3.9, every replica j € S must have received a (write, x,t, x) or (gossip, x,t)
message from a client or replica before state s..

In phase rrr of ¢, C; will try to read from all the replicas in S by doing
send({read,t,x));y, for all k € S. Since |S| > f + 1 by Lemma 6.2.1, one of the
replicas Ry eventually replies with send((read-ok, x,t', %)) ;. As we argued above, R,
must have received a (write, , t, x) or (gossip, *,t) message earlier. Then, by Lemma
6.3.8, we have t' > t. After receiving the reply from Ry, C; sets Cj.tag to t', and sets
C;.phase = rok. Thus, A\(¢) = ¢, and so A(¢) > t. O

Finally, we give a lemma that says that when a read operation ¢ completes, there
is a write quorum of directories all of which have tag at least as high as A(¢).

Lemma 6.3.11 Let ¢ be a complete read operation in «, and let s be any state of «
after ¢ finishes. Then 3Q € Qw Vj € Q : (s|D;).tag > A(¢).

Proof. It suffices to prove this lemma when s is the state after ¢ finishes, since by
Lemma 6.3.5, if the lemma is true for s, it is true for any state later than s.

Let ¢ be the highest value of C;.tag during phase rdr of ¢. By Lemma 6.3.10,
t < M¢). We consider the only two possible cases: either C; asked to read t from
some replicas, and a replica returned a value with tag t. Or, C; asked to read t from
some replicas, but a replica returned a value with tag higher than ¢.

If the first case holds, then the claim is true because C; propagates t = A(¢)
to a write quorum of directories during phase rdw of ¢. Then, a write quorum of
directories have tag at least as high as A\(¢) after ¢ finishes.

Suppose the second case holds, and consider the replica Rj from which C; read
the value tagged by A(¢). Since C; asked to read a value tagged by ¢ from Ry, but
Ry, returned a value tagged by A(¢), then A(¢) = maxst((s'|Rg).data)s for some state
s' before s. Thus, tag A\(¢) was secured at Ry, before s. Let s” be the first state in
« in which there exists some replica R; which has secured A\(¢) in R;.data. Clearly,
s occurs no later than s. By inspection of the pseudo-code in Figures 5-7, 5-8, and
5-9, we see that R; must have received a (secure, A(¢), x) message before s”. Also
by inspection, we see that only clients can send secure messages. Thus, there must
be a client writing a value with tag A(¢) which started securing the value before
state s. This client must have completed its wdw phase before s, since it can only
send out secure messages after it receives a write quorum of acknowledgments for its
(wwrite, *, A\(¢), *) messages in phase wdw. Therefore, there exists a write quorum
of directories with tag A(¢) before s, and they have a tag at least as high as A(¢) in
s. 0

6.3.3 Proof of Atomicity

We now prove Theorem 6.3.1, which states that any trace of LDR x N x U, projected
onto the user actions of LDR x N, satisfies the atomicity property.
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Proof of Theorem 6.3.1. Recall that 5 = §'|UA(LDRx N), where /' is the trace
corresponding to a € execs(LDR x N x U). Also recall the definition of < in Def.
6.3.4. We will prove 8 and < satisfy Lemma 13.16 of [8]. Then, since a was arbitrary,
this implies that any trace in traces(LDR x N x U)[UA(LDR x N) satisfies the
atomicity property.

It suffices to show [ satisfies conditions 2, 3, and 4 of Lemma 13.16, because
condition 1 follows automatically. We show these conditions in the following 3
lemmas. Let ¢ and ¢ be two complete operations in f3.

Lemma 6.3.12 (Condition 2) If the response event for ¢ precedes the invocation

event for 1, then ¢ £ 1.

Proof. We consider four cases.

Case 1: ¢ and ¢ are both writes. Let Q1 € Qw be the quorum ¢ writes to during
its wdw phase, and let ()3 € Qg be the quorum 1 reads from during its wdr phase.
Then, since A(¢) is the tag ¢ uses for its write, and A(¢) is written to every directory
in Q)1 by ¢ before ¢ starts, we have VD € Q) : D.tag > \(¢) before 1 starts. By the
quorum intersection property, 3i € ()1 N Q). By Lemma 6.3.5, the tag at D; never
decreases. Thus, 1 reads a tag at least as large as A(¢) in its wdr phase, and will
choose a tag greater than \(¢) during its wrw phase. Thus, A(¢)) > A(¢), and ¢ £ .

Case 2: ¢ is a write and 1) is a read. By the same argument as in case 1, we have
that ¢ reads a tag at least as high as \(¢) during its rdr phase. By Lemma 6.3.10,
1 returns a value with tag at least as high as the highest tag it reads during its rdr
phase. Thus A(¢)) > A(#), and ¢ £ 1.

Case 3: ¢ is a read and v is a write. By Lemma 6.3.11, we know after ¢ finishes,
there is a write quorum of directories with tag at least as high as A(¢). Since the
tags at these directories never decrease, C; will read a tag at least as high as A(¢)
when it reads a read quorum of directories in phase wdr of 1. Thus, C; will tag its

write with a tag greater than A\(¢), and so A\(¢)) > A(¢), and ¢ 4 9.

Case 4: ¢ and 1 are both reads. By the same argument as in case 3, we know that
C; will read a tag at least as high as A(¢) during the rdr phase of ¢». Then, by
Lemma 6.3.10, ¢ returns a value with at least this tag, and so A(¢)) > A(¢), and ¢ £ .

This proves the lemma for all possible cases of ¢ and v, so the lemma holds. [

Lemma 6.3.13 (Condition 3) A write operation is totally ordered with respect to
any other operation.

Proof. Let ¢ be a write operation, and let ) be any other operation. Suppose
first that ¢ is a write operation. If ¢ and i are operations by different clients, then
A(¢) and A(¢) will differ in their second coordinates, which is the ID of the process
performing the operation. If they are operations by the same client, then ¢ must
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finish before v starts, or vice versa, since any execution of LDR is well-formed, as we
argued in Section 6.1. Then by the same argument as we made in case 1 in the proof
of Lemma 6.3.12, ¢ and ¢ choose different tags. Thus, either ¢ < 1 or vice versa.
Now suppose ¢ is a read. Then either A(¢) < A(¢) or A(¢) > A(¢). By the
definition of <, ¢ < 1 in the first case, and ¢ < ¢ in the second case. Thus, ¢ is
ordered with respect to any other operation. 0

Lemma 6.3.14 (Condition /) The value returned by each read operation is the value
written by the last preceding write operation according to < (or the default value of
x, if there is no such write).

Proof. Let ¢ be a read operation. If there was no write preceding ¢, then no replica
changes the value of its data variable. Since data initially contains only (vg, o, 1) at
all the replicas, then any read ¢ can only return the default value of x, vy.
Otherwise, let 1) be the write preceding ¢ according to <, i.e., ¥y = max_{w | w
is a write A w < ¢}. Let w be the write which wrote the value that ¢ returned, i.e.,
w is a write such that A(¢) = A(w). We claim w = t. Indeed, since A\(¢) = A\(w), we
have w < ¢. And if w < W', where W' is a write, then A(¢) = AM(w) < A(w'), so that
¢ < w'. Thus, w is the largest write preceding ¢, and so w = 1. 0
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Chapter 7

Performance Analysis

In this chapter, we analyze the communication and time complexity of LDR. We
also compare the performance of LDR with that of ABD. The reason we compare
LDR with ABD is that these two algorithms, unlike most other algorithms described
in Chapter 1, do not need mechanisms like distributed locking or atomic broadcast
to function correctly; they rely only on a reliable message passing network. Thus,
it is possible to analyze the performance of LDR and ABD using simple properties
of the network, such as an upper bound on the time it take to transfer a message
of a certain size, without making assumptions on the performance of the locking or
broadcast mechanism.

7.1 Communication Complexity

To measure the communication complexity of LDR, we count the number of messages
that a client sends and receives during an operation, weighted by the size of the
messages. We differentiate between two types of messages, data messages and
metadata messages. Data messages are those in which the value of x is sent. Metadata
messages are all the remaining messages, e.g., tags, mid’s, and utd’s. The main
assumption is that the size of metadata messages is small compared to the size of
data messages. For example, if LDR is used in a replicated file system, then the
size of the data is the size of a typical file, which may be at least several kilobytes.
Meanwhile, the size of the metadata is on the order of bytes. In particular, we assume
the size of each metadata item is 1, the size of a set of metadata items equals the
cardinality of the set, and the size of x is d, where d > 1. For example, if the size of
utd is f + 1, then the size of the message (rread-ok, utd, tag, mid) is f + 4, where we
assume that rread-ok, tag, and mid each have size 1. Similarly, the size of message
(read-ok,val, tag, mid) is d + 3, where val is a value of x. We believe that for many
applications of LDR, these assumptions are reasonable.

Another assumption we make is that a process only sends the minimum number
of messages necessary to perform an operation. For example, if a client needs to
read utd from a read quorum of directories, then it chooses some read quorum, and
sends messages only to the directories in that quorum. Similarly, if a client needs to
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read the newest value of x from a set of replicas, it chooses one replica in the set,
and sends a read message only to that replica. Note that the pseudocode in Figures
5-7, 5-8 and 5-9 indicates that we send the mazimum number of messages needed
to perform an operation, so that, e.g., to read from a read quorum, a client sends
messages to all the directories, and waits to hear back from any read quorum. We
wrote the pseudocode this way in order to ensure liveness, since we cannot be sure
that any particular processes we contact have not failed. In practice, however, the
rate of failure is low, so that for example, a client can use timeouts to contact a
new quorum if the current quorum doesn’t respond. Assuming the network is well-
behaved, the client will eventually succeed in hearing from some quorum, and the
modified algorithm will still exhibit liveness. To further simplify our analysis, we
will assume that whenever one process expects to hear from another process, the
latter process eventually responds. In particular, this means that for our analysis, we
assume that no failures occur. Lastly, we assume that all the read and write quorums
of directories have size f + 1.

Below, we compute the communication complexity of a LDR read and write
operation. Then we compute the costs of the operations using ABD, and compare
the costs.

7.1.1 LDR Read

We refer to the pseudocode for a client C;’s read operation in Figure 5-7. In the read;
action, C; sends a (rread, mid) message of size 2 to f + 1 directories. During phase
rdr, C; receives messages (rread-ok, S,t,id) of size f + 4 from f + 1 directories, and
also sends messages (rwrite, utd, tag, mid) of size f +4 to f + 1 directories. In phase
rdw, C; receives messages (rwrite-ok,id) of size 2 from f + 1 directories, and it sends
out a (read,tag, mid) message of size 3 to one replica. In phase rrr, C; receives a
(read-ok, v, t,id) message of size d + 3 from one replica. Thus in total, C; sends and
receives messages of size d + 2f2 + 14f + 18.

7.1.2 LDR Write

When C; does write(v);, it first sends a (wread, mid) message of size 2 to f + 1
directories. During phase wdr, C; receives messages (wread-ok,t,id) of size 3 from
f + 1 directories, and also sends messages (write, v, tag, mid) of size d + 3 to f + 1
replicas. In phase wrw, C; receives messages (write-ok, id) of size 2 from f+1 replicas,
and sends out (wwrite, acc, tag, mid) messages of size f + 4 to f + 1 directories. In
phase wdw, C; receives messages (wwrite-ok,id) of size 2 from f + 1 directories, and
sends out (secure, tag, mid) messages of size 3 to f + 1 replicas. Thus in total, C;
sends and receives messages of size (f + 1)d + f2 +20f + 19.

7.1.3 ABD Read

Recall the description of the ABD algorithm in Section 2.5. Based on that description,
we can write pseudo-code implementing the ABD algorithm in a similar way to the
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LDR ABD Ratio (asympt.)
Read | d+2f?+14f +18 (2f +2)d+10f +10 | 1/(2f +2)
Write | (f+1)d+2f2+20f+19 | (f+1)d+10f+10 |1

Figure 7-1: LDR and ABD communication complexity.

pseudo-code implementing LDR. We do not present the ABD pseudo-code in this
thesis, and will only discuss which messages are sent by ABD.

Let C; be a client in ABD, where C; plays the same role as it does in LDR.
First, C; sends (rread, mid) messages of size 2 to f + 1 servers (directories), to read
the tag and values stored at the servers. The servers respond with f + 1 messages
(rread-ok,val, tag, mid), where val is the value of the data. Each such message has
size d+ 3. Then C; sends messages (rwrite, val, tag, mid) of size d+ 3 to f + 1 servers
to write back the value. Finally, C; receives f + 1 messages (rwrite-ok, mid) of size
2. Thus, the total communication is (2f + 2)d + 10f + 10.

7.1.4 ABD Write

When C; does write(v); in ABD, it first sends (wread, mid) messages of size 2
to f + 1 servers, to read their tags. The servers respond with f + 1 messages
(wread-ok,tag, mid). Then C; sends out messages (wwrite, v, tag, mid) of size d + 3
to f 4+ 1 servers. Finally, the servers send back f + 1 messages (wwrite-ok, mid), of
size 2. Thus, the total communication is (f + 1)d + 10f + 10.

7.1.5 Comparison of LDR and ABD

Figure 7-1 summarizes the communication cost of LDR and ABD read and write
operations. It also gives the ratio of the cost of a LDR operation and an ABD
operation, in the limit that d — oo, and f is constant. Note that the cost of a LDR
write is the same asymptotically as that of an ABD write. On the other hand, the cost
of a LDR read is ﬁ the cost of a ABD read. Also note that the communication costs
of a LDR read and write are asymptotically optimal. That is, any data replication
algorithm must read at least one copy of the replicated data, as LDR does. And, to
ensure the data survives the failure of f replicas, the algorithm must write the data
to at least f 4 1 replicas, as LDR does.

The reason a LDR read is more efficient than an ABD read is because LDR does
not perform the expensive read-propagation phase of an ABD read, in which the value
of z is read from, then written back, to a quorum of servers. This is because any
value that a client reads from a replica in LDR is guaranteed to be written at at least
f + 1 replicas, so the value does not need to be propagated. The efficiency of LDR’s
read operation is significant because the workload of most data replication services
contains far more reads than writes.
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7.2 Time Complexity

To analyze the time complexity of LDR, we make similar assumptions as in Section
7.1. That is, we assume that the size of the data is d, the size of each metadata item
isl,d>1,and d > f. We assume that the time to transmit a message across the
network is proportional to the size of the object. In particular, we assume that it
takes time d to transmit the data from one process to another, and it takes time 1 to
transmit one item of metadata. We also assume that if a process sends a message to a
group of other processes, it sends those messages in parallel, so that the time to send
all the messages is equal to the size of the largest message in the group. For example,
if a client needs to send (rwrite, utd,tag, mid) messages to a quorum of directories,
where utd has size f + 1, then the client performs all the sends in parallel, so that it
takes time f + 4 to send the messages to all the directories. We again assume that
processes don’t fail, and that they respond instantly to messages they receive which
require acknowledgments.

Below, we compute the time complexity of a LDR read and write operation. Then
we compute the time of an ABD read and write operation, and compare the costs to
that of LDR.

7.2.1 LDR Read

When a client C; performs read;, it first sends a (rread, mid) message of size 2 to
some directories. Then in phase rdr, C; receives some messages (rread-ok, S, t,it) of
size f + 4, and sends out a (rwrite, utd, tag, mid) message of size f + 4. In phase
rdw, C; receives some messages (rwrite-ok,id) of size 2, and sends out a message
(read, tag, mid) of size 3. Finally, in phase rrr, C; receives a message (read-ok, v, t, id)
of size d 4+ 3. Thus, the total time for the read operation is d + 2f + 18.

7.2.2 LDR Write

When C; performs write(v);, it first sends a (wread, mid) message of size 2 to some
directories. Then in phase wdr, C; receives some messages (wread-ok,t,it) of size 3,
and sends out some messages (write,val,tag, mid) of size d + 3. In phase wrw,
C; receives some messages (write-ok,id) of size 2, and sends out some messages
(wwrite, ace, tag, mid) of size f+4. Finally, in phase wdw, C; receives some messages
(wwrite-ok, mid) of size 2, and sends out some messages (secure,tag, mid) of size 3.
Thus, the total time for the write operation is d + f + 19.

7.2.3 ABD Read

We will consider the implementation of an ABD read described in Section
7.1.3.  First, client C; sends some (rread, mid) message of size 2. Then, it
receives some (rread-ok,val,tag, mid) messages of size d + 3, and sends out some
(rwrite, val,tag, mid) messages of size d + 3. Lastly, it receives some messages
(rwrite-ok, mid) of size 2. Thus, the total time for the read operation is 2d + 10.
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LDR ABD | Ratio (asympt.)
Read |d+2f +18 | 2d+10 | 1/2
Write |d+f+10 |d+10 |1

Figure 7-2: LDR and ABD time complexity.

7.2.4 ABD Write

We consider the implementation of an ABD write described in Section 7.1.4.
First, client C; sends some (wread, mid) message of size 2. Then, it receives
some (wread-ok,tag, mid) messages of size 3, and sends out some messages
(wwrite, v, tag, mid) of size d+ 3. Finally, it receives some messages (wwrite-ok, mid)
of size 2. Thus, the total time for the write operation is d + 10.

7.2.5 Comparison of LDR and ABD

Figure 7-2 summarizes the read and write time complexity of LDR and ABD, and
gives the ratio of the costs in the limiting case of d — oo, and f fixed. For both the
LDR read and write, the time of the operation is dominated by the time to read and
write the data. In this sense, the time complexity of LDR is optimal when the size
of the data is large.

As with the communication complexity, the time complexity of a LDR read is less
than that of an ABD read, this time by a factor of 2. Again, this comes from the fact
that LDR doesn’t perform the read-propagation phase of ABD. That is, LDR only
reads the data, but doesn’t write it back.
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Chapter 8

Lower Bounds

In this chapter, we prove two lower bounds on the inherent costs of any F-srca. We
prove these results in the atomic servers model, described in Chapter 4.3, instead of
the network model. Since the atomic servers model is simpler, it allows us to prove
the lower bounds more easily, and also shows more clearly why they arise. It is not
difficult to adapt the lower bounds into corresponding results in the network model.
However, we omit the formal translation in this thesis.

The first lower bound says that for any F-srca in the atomic servers model
tolerating the failure of up to f servers, reading clients must sometimes write to
up to f servers. This means, for example, that there does not exist an F-srca in
which a reading client only reads from one server and returns the result.

The second lower bound says that given any F-srca in the atomic servers model,
if reading clients don’t write copies of x during a read, then servers need to have
storage proportional to the number of concurrently writing clients. Note that the
precondition for the second lower bound is consistent with the conclusion of the first
lower bound. The first lower bound says that a client must write something, e.g., some
metadata, to the servers during some read. It does not say that clients must write
the value of x. The second lower bound says that if the reading client never writes
the value of x, then the servers need potentially large storage. For example, LDR is
an F-srca in which clients write (to directory servers) during a read, but never write
values of z. Then, the second lower bound implies that replicas (servers) need to keep
copies of all the values being concurrently written. In LDR, this is implemented by
having replicas store the values of all concurrent writes in their data variable.

Together, these two lower bounds justify some of the constructions we used in
LDR. They say, for example, that we have not been too profligate in allowing our
clients to write during a read, or in allowing our replicas to store a list of values of x.

Below, we first give the definition, statement and proof of the first lower bound,
then do the same for the second lower bound.
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8.1 Write on Read Necessity

We prove that for any F-srca in the atomic servers model tolerating the failure of
f servers, a client must sometimes write to at least f servers during a read. In the
atomic servers model, it is easy to define the meaning of “a client must write to at
least f servers”. We consider a write to be any operation which may change the state
of a server, and a read as an operation which cannot change a server’s state. Recall
from Chapter 4.3 that the only interface to a server in the atomic servers model are
its read, . and modify(x), . actions. Then, we can say that client C; writes to at least
f servers during a read if it invokes modify(x);;, for at least f different S;, during
the read.

The intuition for this lower bound is that for any F-srca, the value of x at certain
points in an execution of the F-srca is ambiguous, i.e., it is possible for a reading
client to return different values for x. In this situation, a reading client must write
to some servers to record which value of z it returned. Since any server to which it
writes may later fail, the client must write to at least f servers, to ensure that later
readers know which value it returned.!

We will first give some definitions to formalize the lower bound, then state the
lower bound and give its proof.

8.1.1 Definitions

Definition 8.1.1 Let A be an F-srca, where F = {F|(F C2H) A (JF N S| < f)}.
Then we say A is an f-srca.

Thus, an f-srca is a F-srca tolerating the failure of up to f servers. Given a user U
of A, we can similarly define an f-srca for U as an F-srca for U tolerating up to f
server failures.

In the remainder of this section, let A be an f-srca, for some f, and let
a € execs(A).

Definition 8.1.2 Let ¢ = (1, p) be a complete operation by C; in «v. Define the value
of ¢, written x(¢), by the following:

1. If p = read-ok(v),, then x(¢) = v.
2. If L = write(v);, then x(¢) = v.

Thus, the value of ¢ is the value read by ¢ if ¢ is a read, or the value written by ¢ if
¢ is a write.

Definition 8.1.3 Let ¢ be a complete operation by C; in «, and let T be the interval
of ¢ in .

Tt might seem that because up to f servers may fail, the client should write to f + 1 servers.
However, our lower bound does not imply this stronger claim. The ABD algorithm writes to f + 1
servers during a read. Thus, it is an open question whether there exists an f-srca which writes to
only f servers during a read.
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1. The set of servers written by ¢ is A(¢) = {S; | modify(x);; occurs in T}.
2. The set of servers read by ¢ is I'(¢) = {S; | read-ok(x),; occurs in 7}.

Thus, the set of servers written by ¢ is the set of servers at which C; invokes
modify(x);.. The set of servers read by ¢ is the set of servers which respond to
Ci’s read with read-ok (%), ;.

Definition 8.1.4 Let A be an f-srca, let a € finexecs(A), and let i € C. Then
o =a-mSs;... TS, 18 a read extension of a by C; if

1. of € exec(A).
2. T181...TpSy 18 the interval of a complete read operation by C;.
3. Vi,1 <i<n:m € acts(Cy).

If o is a read extension of a by C;, we write a CF o,

Thus, a read extension of o by C; is an execution consisting of « followed by a
complete read by C}, such that no other clients take steps during the duration of C;’s
read. We define a write extension of o by C; similarly, and we write o TV o/ if o/ is
a write extension of a by Cj.

8.1.2 Theorem

Theorem 8.1.5 Let A be an f-srca, and assume |C| > 2. There exists o € execs(A)
and a complete operation ¢ in o such that |A(¢)| > f.

Proof. The proofis by contradiction. We first give an outline of the proof. Assume
that there exists an f-srca A such that no read operation of an execution of A writes
to more than f — 1 replicas. Then we consider an execution « of A consisting of a
write operation ¢ writing value v; # vy. Recall from Chapter 2.1.1 that «(i) denotes
the length 27 + 1 prefix of . Consider the shortest prefix a(i*) of « such that if
we pause ¢ and start a read, the read can return v;. Let a; be the execution «(i*)
appended with the read returning v;. Also, let p be the server that changed its state
from state s;«_; to s;«, if such a server exists. By atomicity, any read starting after
a1 must return v; or a newer value. In particular, a read that doesn’t read from any
server in I'(¢) and doesn’t read p must still return v; or a newer value. But such a
read can’t distinguish between states s; | and «y.lstate, so the read can also occur
following «(:* — 1), when it must return vy. This is a contradiction, and shows that
A doesn’t exist. Figure 8-1 shows the executions considered in the proof. We now
give the details of the proof.

Let A be an f-srca, and let sy be an initial state of A. Let « be an execution of
A consisting of a write of value v; # vy by C\,. That is, a = somy51 ... T,5, is a write
extension of sq by C,,%> and 7, = write(v;),. The following lemma says that there
exists an ¢ > 0 and a read extension of «(i) which returns v;.

230 the only client taking steps is Cy,
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Figure 8-1: Proof of Theorem 8.1.5

Lemma 8.1.6 3i > 0 3j € C 3o’ € execs(A) : (a(i) EF o) A (o' lact =
read-ok(vy);)}.

Proof. By the atomicity of A, we know that any read extension of «(0) = sy must
return vg, so ¢ > 0. Also by atomicity, any read extension of a must return v;. Thus,
we also have i # n. O

Let 7* be the minimum 4 for which there exists a read extension of a(i) by a client
returning v;. Note that by definition, for any ¢ < *, all read extensions of «(i) return
vo. Let ay be a read extension of a(i*) by C,, returning vy, for some client C,, # C,,.
That is, let «; = «(i*)¢1, where ¢y is the interval of a read operation by C, . Also,
let S, be the server, if any, which changed its state from state s;-_; to s;~. That is,
choose S, such that s;-_1]S, # s;+|Sp, if such an S, exists. For convenience, if no
server changed its state from s;-_; to s;«, we set S, to be an arbitrary server. Note
that there can be at most one server which changed its state from s;<_; to s;«, since at
most one server changes its state between any two consecutive states. The following
lemma says that there is read extension a;¢s of aq, by a client other than r; or w,
such that ¢, does not read from any process written to by ¢, nor from S,.

Lemma 8.1.7 There ezists a read extension cyds of ay by C,.,, where ro & {ri,w},

such that T'(¢2) N (A(pr) U{S,}) = 0.

Proof. Let F = A(¢;)U{S,}. Since by the assumption on A, |A(¢y)| < f—1, we
have |F'| < f. Consider any read extension aj¢y of ay by C,,. During ¢, we delay
the responses from all the servers in F' indefinitely, while allowing all other servers to
respond immediately when they receive an invocation. In ¢, it seems to ., that the
processes in F' have failed. However, since A tolerates the failure of up to f processes,
¢2 must eventually return, without ever reading from a process in F'. Thus, we have

[(d2) N (A(p1) U{S,}) = 0. O

Fix a ¢o with the properties described in Lemma 8.1.7. The next lemma says that ¢,
is a read extension of a(i* — 1).
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Lemma 8.1.8 «a(i* — 1)¢y € execs(A).

Proof. We consider the servers which may have changed their state from state s;«_;
to state a.lstate. From state s;«_; to s;-, only S, can change its state. From state
;= to ay.lstate, only the servers in A(¢;) can change their state, by the definition
of A. Thus, the servers which changed state from s;- | to «;.lstate are a subset of
A(p1) U{S,}. Since T'(d2) N (A(p1) U {S,}) = 0, ¢o doesn’t read from any server
which changed its state from s;«_; to ay.lstate. Thus, states s;«_1 to «y.lstate look
identical to ¢,. Therefore, since ¢, is a read extension of «; starting from state
aq.lstate, it is a valid read extension of «a(i* — 1) starting from state s;+ ;. Thus,
a(i* — 1)py € execs(A). O

We can now finish the proof of Theorem 8.1.5. By the definition of i*, all read
extensions of a(i* — 1) must return v,. However, by Lemma 8.1.8, ¢- is a read
extension of a(i* — 1), and ¢ returns v;. This is a contradiction, and shows that A
does not exist. Therefore, for any f-srca A, there exists an execution of A in which
a reading client must write to at least f servers. ([l

8.2 Proportional Storage Necessity

Recall from Chapter 1 that we informally define a selfish replication algorithm as one
in which readers don’t write the value of x, and writers only write their own value,
and no other values. In the second lower bound, we prove that in any selfish f-srca,
with f > 0, the servers need to have storage proportional to the number of concurrent
writers.

We first explain why this lower bound holds only for f > 0. In fact, for a 0-srca,
i.e., an algorithm which doesn’t tolerate any server failures, there is a trivial algorithm
which uses only constant storage, independent of the number of concurrent writers.
Namely, the algorithm always reads and writes to one server. That server needs only
to store one copy of x at all times. A write is completed as soon as it takes a single
atomic step, i.e., write at the server. But, if the algorithm tolerates server failures,
then a writing client must write to more than one server. If the writer fails in the
middle of the write, its value is left in an ambiguous state. It is in this situation that
the lower bound arises.

In the rest of this chapter, we formally define selfish f-srcas. We then discuss the
advantages of selfish f-srcas. Then we state the lower bound on selfish f-srcas, and
present its proof.

8.2.1 Definitions and Lemmas

We first define some helpful notation. Let P C CUS, P = {p1,...,pn}. We let
failp = faily, - fail,, -...- fail,, be an execution fragment in which all the processes
in P fail. Given an f-srca A, a € execs(A), and a value v, we let W (v, «) C C be the
set of clients that start to write v in . That is, W (v, a) = {i € C|write(v); occurs
in a}.
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In order to define selfish f-srcas, we first define the related notions of erasability,
multiplicity, and server-exclusive executions.

Definition 8.2.1 Let A be an f-srca, a € finexecs(A), v be a value, and g a natural
number. We say v is g-erasable after a if

(AGCS:|G|=g) VieC—W(v,a)) (Vo € ezecs(A)) :
(- failg CF o) = (/.lact # read-ok(v);)

Note that « - failg is an extension of « in which a set G' of g servers fail, and
C — W (v, ) is the set of servers that do not write v during .. This definition says
that v is g-erasable after « if there exists a set of g servers such that if we fail these
servers, then no client which has not already started to write v in a can read v. That
is, by failing some g servers, we can “erase” the value v from a.

Definition 8.2.2 Let A be an f-srca, o € finexecs(A), and let v be a value. The
multiplicity of v after a is m(v, ) = min{g |v is g-erasable after a}.

That is, m(v, @) is the minimum number of servers that need to fail to erase v from
«. Intuitively, m(v, ) corresponds to the number of servers that v is “written” at
after a. In fact, if m(v,a) = g, then by failing some g servers, we can erase v from
a. Thus, v is not written at more than g servers. On the other hand, no set of g — 1
server failures is enough to erase v, so v is written at at least g servers. Thus, if
m(v,«) = g, then v is written at exactly g servers after .

Definition 8.2.3 Let A be an f-srca. An execution a € execs(A) is server-exclusive
if, for any server S;, j € S, any event m an invocation at S; in «, and my the
corresponding response to my at S; in «, there is no occurrence of an invocation at S;
between m; and .

This definition says that an execution is server-exclusive if no two clients ever
concurrently access the same server in «, i.e., each client has exclusive access to
a server during o. We can think of a server-exclusive execution as one in which
the servers are replaced by shared objects that return instantaneous responses to
invocations, e.g., shared memory.

In a server-exclusive action, every action is either an action by a client, or an
action “on behalf” of a client by a server. This is because any server is accessed by
one client at a time, so we can attribute the action of that server to a particular client.
Based on this fact, we have the following definition:

Definition 8.2.4 Let a be a server-exclusive execution of an f-srca A, and let w be
an action i «. We say client C;, © € C initiated 7w if either m is an action by C;, or
7 15 an action by a server Sj, j € S, and the last invocation at S; was by C;.

Now, we can formally define a selfish f-srca.
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Definition 8.2.5 Let A be an f-srca. We say that A s selfish if for any server-
exclusive execution o of A, the following holds: Let w be an action in « initiated by
client C;, 1 € C.

1. If the last (user) invocation at C; before m is read;, then Yv € V : m(v,s,) <
m(v, $y).

2. If the last (user) invocation at C; before m is write(v);, then Yv' € V\{v} :
m(v', st) <m(v', s,).

This definition says that an f-srca is selfish, if any action initiated by a reading client
does not increase the multiplicity of any value, and any action initiated by a writing
client does not increase the multiplicity of any value besides the value the client is
writing. This means that clients don’t “help” each other write any value.

A selfish f-srca might be preferable over an unselfish f-srca in some circumstances.
Recall from in Chapter 7 in many situations, the time and communication needed to
write a value of x is large. Therefore, if we want an f-srca to provide fast reads, we
don’t want the reads to have to write values of x. Similarly, if we want fast writes,
we don’t want writes to have to write any value of z other than their own.

Selfish algorithms represent a trade-off between the time and space cost of an
f-srca. Indeed, we will show in Theorem 8.2.8 that a selfish f-srca must use storage
proportional to the number of concurrent writers. LDR is a selfish f-srca. An LDR
read operation doesn’t increase the multiplicity of any value, since, if a value was
written at g replicas before a read, then it is written at the same g servers after
the write. Similarly, an LDR write doesn’t increase the multiplicity of any value
other than its own. Therefore, by Theorem 8.2.8, the servers (i.e., the directories
and replicas) in LDR must have storage proportional to the maximum number of
concurrent writers. This shows that the fact that replicas store a set of values of x
when there are concurrent writes is not a flaw of LDR, but (modulo design choices)
a necessity.

On the other hand, there exist “unselfish” f-srcas® that use an amount of storage
independent of the number of concurrent writers. An example of such an algorithm is
ABD. Also, if we allow writes to write values of x other than their own, but disallow
reads from writing values of x?, then again there exist f-srcas which use storage
independent of the number of concurrent writers.

Next, we define the amount of storage that the servers of an f-srca use, and also
what it means for the servers to have unbounded storage.

Definition 8.2.6 Let A  be an  f-srca. Define  M(A) =
SUD e finesees(A)1 Dvey TV, @)} We say that the servers in A have storage
sif M(A) = s < co. If M(A) = oo, we say the servers in A have unbounded
storage.

3An f-srca is unselfish if, informally, reads are allowed to write values of =, and writes are allowed
to write values of x other than their own.
4This might be useful to provide fast response, at the expense of a slower write response.
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This defines the storage of the servers as the supremum of the sum of the multiplicities
of all values in V', over all finite executions. M (A) is an implementation-independent
way to measure the storage used by the servers of A. That is, M(A) corresponds
to how much storage is used by servers in A, without explicitly mentioning any
data-structures used by the servers. If M(A) > M(B) for two f-srcas A and B, then
intuitively, the servers of A can store more information than the servers of B. If M(A)
is infinite, then the servers of A must actually have unbounded storage capacity, since
they must store an arbitrarily large number of copies of values of x.

Lastly, we define an environment that outputs at most 7 concurrent writes. This
will help us state the relationship between the amount of storage at the servers of an
f-srca, and the number of concurrent writers the f-srca allows.

Definition 8.2.7 Let n be a positive integer. Define U(A,n) to be a user for A
such that there are at most n write invocations without corresponding responses, in
any state of any execution of A x U(A,n). Define U(A,o0) to be a user for A such
that there may be an arbitrary number of write invocations without corresponding
responses, in any state of any execution of A X U(A, o).

8.2.2 Theorem

We now formally state the second lower bound.

Theorem 8.2.8 Let n and f be two positive integers, and let A be a selfish f-srca
for a user U(A,n). Then M(A) > fn.

Proof. This theorem says that if A is a selfish replication algorithm which tolerates
up to f > 0 server failures, and is guaranteed to be atomic, live and well-formed as
long as there are at most n > 0 concurrent write invocations, then the servers of A
must have storage at least as great as fn.

The proof is by contradiction. Assume that there is an algorithm A that is an
f-srca for U(A,n) in which the servers have storage less than fr. Then we will
construct an execution « that begins with 1 concurrent writes. We will ensure that
all the values being written are f-erasable. At the same time, we ensure that one
of the writes finishes. Then we will extend a with a series of nonoverlapping reads.
Since one of the n writes finished, then by the atomicity of A, no read can return the
initial value of x. For each of the reads, we will select one of the written values v,
and delay all the messages from a set of f servers so as to erase v, from the point of
view of the read. Then, the read must return some value other than v. Using this
procedure, we can make each read return a different value than the previous read.
Thus, if there are n + 1 reads, one of the reads must return an older value than a
preceding read, which violates the atomicity of A. This contradiction shows that A
doesn’t exist. We now give the details of the proof.

Let A be an f-srca for U(A,n), where 7, f > 0, and assume M(A) < fn. Let W
be a set of i writer clients, all writing distinct values different from vy, and let sy be
an initial state of A. Consider the following procedure, call it GG, for generating an
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execution of A.

Procedure ¢
Q< Sp
while no w € W is finished {
if Jw € W with action 7 enabled, and 7 is not an invocation at a server
a4 ams,
else, choose a w € W with invocation 7 at server S; enabled, such that the following
holds: if we extend « to ¢/, by running m and then letting S; run until it outputs
a response to m, then Vo € V\{vo} : m(v,a') < f

a+— o

}

G begins with execution o = s3. Then, as long as no client in W finishes its write,
G either lets a client take a step that isn’t an invocation at a server, or lets a client
invoke an action at a server and then runs that server until it outputs a response
to the invocation, so long as doing so doesn’t increase the multiplicity of any value
beyond f.

Let a be an execution generated by GG. We prove some properties about .. We
first show that « is a server-exclusive execution of A.

Lemma 8.2.9 « € execs(A), and « is server-ezclusive.

Proof. Since « begins in a starting state of A, and G only runs processes with
actions enabled, « is a valid execution of A.

Execution « is server-exclusive because anytime a client invokes an action at a
server, GG runs the server until it responds to the invocation. Thus, only one client
accesses a server at a time. 0

The next lemma says that the multiplicity of every value, except possibly v, is
at most f after a.

Lemma 8.2.10 Vv € V\{vo} : m(v,a) < f

Proof. We show that for all prefixes o/ of o, we have Vv € V\{v} : m(v,a’) < f.
This holds for o' = sy, since all reads starting from sy must return vy, which implies
that Vo € V\{vo} : m(v,a’) = 0. Suppose the lemma holds for o/, and consider any
extension o/ms generated by G. We claim that if 7 is not an invocation at a server,
then the multiplicity of every value stays the same after 7. Indeed, let F' be any set
of servers, and consider the executions a- failp s, 75, and a-m-s - failp- sy,
Since no servers or clients observe failg, then states s in the first execution looks the
same as state s’failF in the second execution to every client and server, which implies
that the multiplicity of every value stays the same after 7. If 7 is not an invocation at
a server, then no server changes its state after 7, and the multiplicity of every value
remains the same. Thus, the lemma holds for o/ws! . If 7 is an invocation at a server,
then by the test in the else statement, the multiplicity of every value except vy is at
most f after o/ms/. O
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Lastly, we prove that some writer finishes its write in .

Lemma 8.2.11 dw € W : w finishes its write after «.

Proof. We first show that as long as no writer finishes in o, G' can extend « to
a longer execution. That is, as long as no writer finishes, either the if or the else
condition of GG is true. Thus, we assume the if condition is false, and show that the
else condition is true. We claim that there exists a w € W writing value v, such
that m(v, a) < f. Indeed, the sum of the multiplicities of all the values being written
by the n clients in W is at most M(A) < fn, so there must exist some value with
multiplicity less than f. We next claim that w must have an action, which is an
invocation at a server, enabled. Indeed, w must have some action m enabled. This
is because, by the liveness guarantee of A, w must eventually complete its write, no
matter what the other writers are doing, as long as at most f servers fail. Since there
are no failures in «, and w is not waiting for a response from a server, it must have
some action enabled.

Now, since the if condition is false, 7 must be an invocation at some server Sj.
Let o/ be an extension of a in which we run 7, then run S; until it outputs a response
to m. We claim that Yo € V\{vo} : m(v,a’) < f. Indeed, the only server whose
state may differ from the end of a to the end of o/ is S;. This is because 7 can only
change the state of S;, and any action taken by S; before outputting a response to w
can only change its own state, by the definition of the atomic servers model. Since
only S; can change its state from « to o/, the multiplicity of any value can increase
by at most 1 between « and «'. Furthermore, since A is selfish and o' is a server-
exclusive execution of A, then only the multiplicity of w’s value v can increase from
a to o'. Since m(v, a) < f, we have m(v,a’) < f, and Vo' € V\{vo} : m(v',a/) < f.
Therefore, if the if condition of G is false, then the else condition of G is true.
Thus, as long as no writer finishes, G can extend « to a longer execution.

By the above argument, as long as no writer finishes, o can grow arbitrarily long.
A’s liveness guarantee states that every write must eventually finish if there are at
most f server failures. Then, since there are no server failures in a, at some point «
will grow long enough for some writer w € W to finish. O

We fix an « generated by GG in which a writer w finishes writing value v. Observe
that any read ¢ starting in any extension of o must return a value different from .5,
since the write of v has finished, and must be linearized before the start of ¢. We
now define a set of read extensions of «, generated by the following procedure:

1. Choose a complete read operation ¢q such that o Ef aggy. Set ap = agy. Go
to step 2.

2. Fori >0, let v; 1 = x(¢;_1). Choose F; ; C S, |F; 1| = f, such that there is
no read extension of o;_; - failp,_, returning v;_;. Go to step 3.

5 Again, unless another writer writes vy after . However, we will only append reads to « from
now on.
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3. Choose a complete read operation ¢; by C; such that a;_; Ef a;_1¢;, and such
that T'(¢;) N F;_1 = 0. Set o; = a;_1¢;. Go back to step 2.

This procedure creates a set of extensions {a;}; of , such that for all i, o; equals
a;_1 extended by a complete read operation ¢;. Note that every «; is server-exclusive,
since every read ¢; runs in isolation and has exclusive access to any server. For any
i, v; is the value returned by ¢;. F; is a set of servers such that if these servers fail,
then no read extension of q; returns v;. We argue why F; exists. Indeed, after «,
the multiplicity of every value except possibly vy is at most f. Since A is selfish and
every «; is server-exclusive, then the multiplicity of any value does not increase after
¢;, for any 7. Therefore, the multiplicity of every value except possibly vg is at most
f after a;, and by the definition of multiplicity, there exists a set of at most f servers
whose failure erases v from ;.

Now, given v; 1, the next read ¢; is chosen so that it does not read from any
server in F;_;.% Read ¢; exists because A must tolerate the failure of any f servers,
so that by delaying all the responses from servers in F;_; indefinitely during ¢;, we
can ensure that ¢; completes without reading from any server in F;_;.

Note that we can execute the above procedure an arbitrary number of times, and
generate an arbitrarily large number of ¢;’s. We now prove some properties about
the reads {¢;};. We first show that any two consecutive reads return different values.

Lemma 8.2.12 Vi : v; # v; 4.

Proof. Consider the execution extending c«; ; in which the servers in F; ; fail
following «;_;. Then by the definition of F;_;, there is no read extension of that
execution returning v;_;. But since ¢; doesn’t communicate with any replica in F;_q,
it seems to ¢; that the replicas in F;_; have failed. Then, since all the values written
by processes in P are different, ¢; must return v; # v; ;. 0

Corollary 8.2.13 3i,7 > 0: (j —i > 1) A (v; = vj).

Proof. FEach ¢; must return one of the at most 1 values written during a. Since
there are an arbitrary number of ¢;’s, there must exist ¢ and j such that ¢; and ¢,
return the same value, i.e., v; = v;. By Lemma 8.2.12, we must have i — j| > 1. O

Now we can finally finish the proof of Theorem 8.2.8. Choose ¢ and j as in Corollary
8.2.13, and choose k such that ¢ < k < j. In any linearization of «;, the write of v;
precedes the write of v, which precedes the write of v;. However, we have v; = v;, so
that the write of v; is the same as the write of v;. This is a contradiction, and shows
that A does not exist. Thus, for any f-srca which works correctly when there are n
concurrent writers, the servers must have storage no less than fn. ([l

6Note that we do not actually fail the servers in F;_;, but only make sure that ¢; doesn’t
communicate with them.
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Chapter 9

Conclusions and Future Work

In this thesis, we studied problems related to efficient data replication. We presented
LDR, a nearly optimal algorithm for replicating large data objects. LDR tolerates an
arbitrary number of replica server failures, up to the total number of replicas. LDR
makes minimal assumptions about its environment. It does not rely on distributed
locking or group communication, and works in any asynchronous, reliable message-
passing network. LDR tolerates high latency, and is suitable for implementation in
both WAN and LAN settings. In addition to describing the LDR algorithm, we
formally specified its assumptions and guarantees. We also formally implemented
LDR in the IOA language, and provided correctness proofs and performance analyses
of our implementation. Lastly, we presented two lower bounds on the costs of
data replication. The motivation for these lower bounds were certain algorithmic
techniques we used in the design of LDR. Our lower bounds suggest that these
techniques were necessary.

Our work can be extended along several directions. For example, we mentioned in
Chapter 5 that it is possible to combine the rdw and rrr phases of a read operation,
and that a write can return as soon as it writes to a quorum of directories in phase
wdw, before it has sent out the secure messages. These optimizations improve the
performance of LDR. Also, the performance of LDR only meets our lower bounds
approximately, and it would be interesting to bridge the gaps. For example, Theorem
8.1.5 states that any read must write to at least f servers, while LDR writes to
f + 1 servers during a read. Also, Theorem 8.2.8 states that servers need at least
nf storage when there are n concurrent writes. LDR uses more storage than this if
it does not perform prompt garbage-collection, or if secure messages are delayed in
the network. It may be possible to modify LDR to meet the storage bound exactly.
Another improvement to LDR is to optimize the placement of replicas, e.g., depending
on data access patterns. Indeed, since LDR stores the data at arbitrary sets of
(> f + 1) replicas, instead of quorums of replicas, we can consider facility-location
type algorithms to distribute data to replicas which can service requests with the
least cost.

LDR is able to efficiently replicate large data objects because it separately main-
tains data from metadata, and performs mostly cheap operations on the metadata in
order to avoid expensive operations on the data. It seems likely that such a separa-
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tion can be applied in other distributed algorithms to yield improved performance.
The separation technique can also be viewed as a procedure to minimize the amount
of synchronization within a distributed algorithm. For example, in the case of data
replication that we considered, it suffices for different clients to synchronize with each
other using the tags on their data. The main work of the algorithm, writing values of
x, can be done on “shadow copies” (i.e., copies local to each client’s operation) at the
replicas, without any synchronization. It is only at the end of each client’s operation
that it synchronizes with the others by performing some cheap writes of tags at the
directories. We may contrast this with an algorithm like ABD, which performs expen-
sive synchronization by having clients help perform the main work (writing values of
x) of each other’s operation. That is, ABD synchronizes clients using the data instead
of tags on the data, and is therefore inefficient for replicating large data objects. In
the case of data replication, it was easy to see that it is cheaper to synchronize on
the tags instead of the data. But for more complex distributed algorithms, it would
be interesting to develop a theory of how to determine the cheapest way for processes
to synchronize with each other. Indeed, every distributed algorithm consists of a
“local” part in which a participating process does not need to synchronize with other
processes, and a “global” part which requires synchronization among the processes.
By minimizing the global part of the algorithm, we can minimize the amount of com-
munication, which is often the most expensive part of a distributed computation, and
thereby enhance the performance of the algorithm.
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