
Noname manuscript No.
(will be inserted by the editor)

Rui Fan · Nancy Lynch

Gradient Clock Synchronization

the date of receipt and acceptance should be inserted later

Abstract We introduce the distributed gradient clock synchronization problem. As in traditional dis-
tributed clock synchronization, we consider a network of nodes equipped with hardware clocks with
bounded drift. Nodes compute logical clock values based on their hardware clocks and message ex-
changes, and the goal is to synchronize the nodes’ logical clocks as closely as possible, while satisfying
certain validity conditions. The new feature of gradient clock synchronization (GCS for short) is to
require that the skew between any two nodes’ logical clocks be bounded by a nondecreasing function
of the uncertainty in message delay (call this the distance) between the two nodes, and other network
parameters. That is, we require nearby nodes to be closely synchronized, and allow faraway nodes to be
more loosely synchronized. We contrast GCS with traditional clock synchronization, and discuss several
practical motivations for GCS, mostly arising in sensor and ad-hoc networks. Our main result is that the
worst case clock skew between two nodes at distance d or less from each other is Ω(d + log D

log log D
), where

D is the diameter1 of the network. This means that clock synchronization is not a local property, in the
sense that the clock skew between two nodes depends not only on the distance between the nodes, but
also on the size of the network. Our lower bound implies, for example, that the TDMA protocol with
a fixed slot granularity will fail as the network grows, even if the maximum degree of each node stays
constant.

Keywords clock synchronization, lower bounds, indistinguishability, ad-hoc networks

1 Introduction

Consider the classical distributed clock synchronization problem. A set of nodes communicate over a
reliable network with bounded message delay. Each node is equipped with a hardware clock with bounded
drift, that is, a timer running at roughly, but possibly not exactly, the rate of real time. Each node
continuously computes logical clock values based on its hardware clock, and on messages exchanged with
other nodes. The goal is to synchronize the nodes’ logical clocks as closely as possible. To rule out trivial
algorithms, the logical clocks must satisfy some validity conditions, for example, that they remain close
to real time. This problem has been the subject of extensive research. Previous work in the area has
focused on minimizing the clock skew between nodes and minimizing the amount of communication used
by the synchronization algorithm [12,2], on tolerating various types of failures of the nodes and the
network [5,12], and on proving lower bound results about clock skew and communication costs [7,3,10,
9]. In this paper, we introduce a new property for clock synchronization algorithms (CSA for short), the
gradient property. Define the distance between two nodes to be the uncertainty in message delay between
the nodes. Informally, the gradient property requires that the skew between two nodes forms a gradient

R. Fan
MIT CSAIL, 32 Vassar St., Cambridge, MA 02139 E-mail: rfan@theory.csail.mit.edu

N. Lynch
MIT CSAIL, 32 Vassar St., Cambridge, MA 02139 E-mail: lynch@theory.csail.mit.edu

1 That is, the maximum message delay uncertainty between any pair of nodes.

with respect to the distance between the nodes. That is, nearby nodes should be closely synchronized,
while faraway nodes may be more loosely synchronized.

We first contrast gradient clock synchronization with traditional clock synchronization. Let D be the
diameter of the network. Then there exists a well-known lower bound result [7] saying that, for any CSA,
the worst case clock skew between some pair of nodes in the network is Ω(D)2. Most CSAs (e.g., [12])
achieve a worst case skew of O(D). However, these CSAs allow O(D) skew between any two nodes. In
particular, to our knowledge, in all existing CSAs, there exist executions in which a pair of nodes at
O(1) distance from each other have O(D) skew. Thus, current CSAs do not satisfy the gradient property,
because nearby nodes are not always well synchronized.

We now discuss some motivation for studying the gradient property. In many highly decentralized
networks, such as sensor and ad-hoc networks, applications are local in nature. That is, only nearby
nodes in the network need to cooperate to perform some task, and nodes that are far away interact much
less frequently. Hence, only nearby nodes need to have highly synchronized clocks. As nodes get farther
apart, they can tolerate greater clock skew. Thus, for these applications, the maximum acceptable clock
skew between two nodes forms a gradient in their distance.

As an example, consider first the data fusion [11] problem in a sensor network. A group of distributed
sensors collect data, then try to aggregate their data at one node to perform some signal processing on
it. In order to conserve energy, the sensors form a communication tree. Starting from the leaves, each
sensor sends its data to its parent sensor. When a parent sensor has received data from all its children,
it “fuses” the data, that is, constructs a summary representation of the data, and sends the summary
to its own parent. Since sensors typically measure real-world phenomena, times are associated with the
sensor measurements. When fusing data, the children of a parent node must synchronize their clocks, so
that the times of their readings are consistent and a fused reading will make sense. Hence, nearby nodes,
which may be children of the same parent, need to have well synchronized clocks. But faraway nodes,
which are not children of the same parent, can tolerate more poorly synchronized clocks.

Next, consider the target tracking problem in a sensor network. Suppose two sensor nodes want to
measure the speed of an object. Each node records the time when the object crosses within its vicinity.
Then the nodes exchange their time readings, and compute t, the difference in their readings. The amount
of error in t is related to the clock skew between the nodes. The object’s velocity is computed as v = d

t
,

where d is the known Euclidean distance between the nodes. Suppose the nodes do not need to compute
v exactly, but only to an accuracy of 1%. Since v = d

t
, then the larger the Euclidean distance is between

the nodes, the more error is acceptable in t, while still computing v to 1% accuracy. Thus, the acceptable
clock skew of the nodes forms a gradient3.

What kind of gradient can be achieved by a clock synchronization algorithm? When the network con-
sists of two nodes at distance d from each other, the tightest possible worst-case synchronization between
the nodes is O(d). If there are more nodes, arranged in an arbitrary topology, is there a synchronization
algorithm that ensures that the clock skew between all pairs of nodes is linear in their distance at all
times? We show that no such algorithm exists. Our main result, stated in Theorem 1 of Section 5, is
that if hardware clocks can drift, then given any clock synchronization algorithm and any D ≥ 1, there
exists a network of diameter D, such that for any d ∈ [1, D], there exists some execution of the CSA in

which two nodes at most distance d apart in the network have Ω(d+ log D
log log D

) clock skew. An implication

of this result is that an application, such as TDMA [6], that requires a fixed maximum skew between
nearby nodes, cannot scale beyond networks of a certain diameter. We conjecture that the lower bound
is nearly tight for small d, and that there exist CSAs which ensure that O(1) distance nodes always have
O(log D) clock skew.

The rest of this paper is organized as follows. Section 2 describes previous work on clock synchro-
nization and its relation to our work. Section 3 defines our model for clock synchronization, and Section
4 formally defines the gradient clock synchronization problem. We state our main lower bound and give
an overview of its proof in Section 5. We prove two lemmas in Sections 6 and 7, then prove the GCS
lower bound in Section 8. Finally, we conclude in Section 9 with some remarks and open problems.

2 The result in [7] assumes that hardware clocks do not drift, and nodes start with arbitrary logical clock
values. In this paper, we assume that hardware clocks can drift, and nodes start with the same logical clock
value. However, it is possible to adapt the techniques of [7] to show an Ω(D) lower bound on clock skew in our
model.

3 Note that here we are assuming the Euclidean distance between two nodes corresponds to the uncertainty in
their message delay. This is the case if, for example, there are multiple network hops between the nodes, with
the number of hops proportional to the Euclidean distance between the nodes.

2

2 Relation to Previous Work

To our knowledge, this work is the first theoretical study of gradient clock synchronization and lower
bounds for the problem. Many other lower bounds have been proven for clock synchronization. The two
most important parameters in these lower bounds are the uncertainty in message delay, and the rate of
clock drift4.

Lundelius and Lynch [7] proved that in a complete network of n nodes where the distance between
each pair of nodes is d, nodes cannot synchronize their clocks to closer than d(1 − 1

n
). Halpern et al [3]

and Biaz and Welch [1] extended the previous result to more general graphs, and gave algorithms which
match or nearly match the lower bounds. These papers all assume nodes have perfect (non-drifting)
clocks. Patt-Shamir and Rajsbaum [10] proved lower bounds on clock skew in terms of a synchronization
graph, which is a graph over the events of an execution, with edge weights related to the times of the
events. While their results are somewhat similar in spirit to our distance-based lower bound, the problem
they considered is one in which several nodes try to output a signal as closely together in real time as
possible. The clock skew in this context is the real time difference between when different nodes output
the signal. In contrast, clock skew in our context is defined as the difference in the nodes’ logical clock
values at any real time. Thus, our work is not directly comparable to [10]. Ostrovsky and Patt-Shamir
[9] also proved lower bounds using synchronization graphs. However, their work deals with external
synchronization, in which nodes try to synchronize to a common source of time. Our works deals with
gradient synchronization. Accurate external synchronization does not in general imply accurate gradient
synchronization. This is because even an algorithm which ensures all nodes are synchronized to within
O(D) of real time (this is the tightest synchronization achievable) may not provide good gradient clock
synchronization, because two O(1)-distance nodes may have O(D) clock skew.

Srikanth and Toueg [12] gave an optimal clock synchronization algorithm, where optimal means that
the skew of a node’s logical clock from real time is as small as possible, given the hardware clock drift of
the node. Their algorithm ensures that any pair of nodes have O(D) clock skew, where D is the diameter
of the network. However, it does not guarantee a gradient in the clock skew, because even nodes that are
O(1) distance apart can have O(D) skew. We now explain how this can happen. Because Srikanth and
Toueg’s algorithm is complicated, we consider a much simpler algorithm, which nevertheless illustrates
the main reason why [12] violates the gradient property. Intuitively, the reason is that a node’s logical
clock value is allowed to suddenly “jump” to a much higher value, without coordinating with neighboring
nodes. The simple algorithm works as follows. Nodes periodically broadcast their logical clock values,
and any node receiving a value sets its logical clock value to be the larger of its own clock value and
the received value. Now, consider an execution consisting of three nodes x, y and z, arranged in a line
topology. Let the distance between x and y be X , for some constant X � 1, let the distance between y
and z be 1, and let the distance between x and z be X + 1. By making the message delay X between x
and y and 1 between y and z, and by making x’s hardware clock rate higher than y’s, which is in turn
higher than z’s, we can create an execution in which x’s clock is X higher than y’s clock, which in turn
is 1 higher than z’s clock. Now, we extend this execution by changing all future message delays between
x and y to be 0, but keeping the delay between y and z at 1. Then, when y receives a message from x,
y will realize its clock is X lower than x’s clock, and so y will increase its clock by X . However, because
the message delay between y and z is still 1, z receives x’s message one second later than y does. Thus,
there is a one second interval during which y has increased its clock by X , but z has not increased its
clock. During this one second interval, y’s clock is X +1 higher than z’s clock, even though y and z have
distance 1. Thus, this execution violates the gradient property.

Elson et al. [2] studied time synchronization in a sensor network. Their algorithm, RBS, relies on
physical properties of the radio broadcast medium to reduce message delay uncertainty to almost 0. RBS
works as follows: A beacon node initially broadcasts a signal to its neighboring nodes. Each neighbor
records its logical clock value when it receives the signal. Then, in a second phase, each neighbor broad-
casts its recorded clock value, and computes its clock skew with respect to another node as the difference
between that node’s recorded value and its own recorded value. Since the initial signal is broadcast by
radio, it takes about the same amount of time to reach all the neighboring nodes, and so the uncertainty
in message delay of the signal is close to 0. Our lower bound result still applies in the RBS setting, but
it gives a rather small bound because the diameter of the network is small. However, in principle, as the
network expands, our lower bound becomes more relevant.

4 The clock drift rate is defined as a constant 0 ≤ ρ < 1, such that at all times, the rate of increase of each
node’s hardware clock lies within the interval [1−ρ, 1+ρ]. Our lower bound only holds when clock drift is positive.
Thus, for the remainder of this paper, we will assume that ρ > 0.

3

Recently, Meier and Thiele [8] extended our work and showed a lower bound on gradient clock
synchronization in a different communication model. While our communication model has nonzero un-
certainty for message delays and allows nodes to communicate arbitrarily, Meier and Thiele’s model has
zero message delay uncertainty, but, roughly speaking, only allows nodes to communicate once every R
time, where R > 0 is some parameter5. This model is intended to capture certain characteristics of radio
networks. Using techniques based on ours, [8] shows that for any CSA, there exist neighboring nodes

that have Ω(R log n
log log n

) skew, where n is the number of nodes in the network. The number of nodes n in

[8] is analogous to the diameter D in this paper, so the lower bound in [8]’s model and our model are
similar.

3 Model

In this section, we describe our system model, and formally define clock synchronization algorithms
(CSAs). CSAs are algorithms run by a network of nodes equipped with hardware clocks with bounded
drift. We first define these two terms.

We model nodes as timed automata [4]. Given a node i, a hardware clock for i is a read-only variable
which can only be read by i. We define the value of i’s hardware clock in terms of its rate of change.
Specifically, we denote i’s hardware clock rate at real time t of an execution α by hα

i (t). We define i’s

hardware clock value at time t in α to be Hα
i (t) =

∫ t

0 hα
i (r)dr. We assume that the hardware clock of

any node has bounded drift. That is, we assume that there exists a constant ρ called the drift rate, with
0 ≤ ρ < 1, such that for any execution α, and for any node i, the following holds.

Assumption 1 ∀t : 1 − ρ ≤ hα
i (t) ≤ 1 + ρ.

For our lower bound result to hold, we need the drift rate to be positive. Thus, for the remainder of
this paper, we assume that 0 < ρ < 1.

A network consists of a set of nodes, some pairs of which are connected by reliable message channels
with bounded delay. Formally, a network N = (N, E, δ), where N is a set of nodes, E ⊆ N × N is a set
of ordered pairs representing nodes which are connected by a communication channel, and δ : E → R

≥0

is a mapping representing the uncertainty in message delay on each channel in E (R≥0 is the set of
nonnegative reals). Specifically, if (i, j) ∈ E, then every message sent from i to j takes at least 0 time,
and at most δ(i, j) time, to arrive at j. The time taken by each message from i to j may vary during an
execution. For convenience, we abbreviate δ(i, j) by di,j , and call this the distance from i to j. We denote
the diameter of N by D(N) = max(i,j)∈E di,j . We do not require that distances be symmetric. That is,
we do not require di,j = dj,i. Since our results are stated in terms of the diameter of the network, we
need to define a unit distance. Thus, for any network, we assume that min(i,j)∈E di,j = 1.

A clock synchronization algorithm (CSA) is any algorithm run by a network of nodes equipped with
hardware clocks with bounded drift, in which each node continuously computes a real value called its
logical clock value. More precisely, an algorithm A is a CSA if for all networks N , for all executions α in
which the nodes of N run algorithm A, and at any time t during α, each node i of N uses its hardware
clock values up to time t, and the set of messages it received from other nodes of N up to time t, to
compute its logical clock value at time t of α, denoted by Lα

i (t). When the nodes of N run algorithm A,
we call this an execution of A in N .

We now describe several assumptions we make about any CSA A. Let N be an arbitrary network.
First, we assume that the logical clock values of all nodes start at 0. That is, we assume that for all
nodes i of N and for all executions α of A in N , we have Lα

i (0) = 0. Next, we assume that all nodes i
know the an upper bound for ρ, which is strictly less than 1 (recall that ρ < 1). Lastly, we assume that
all the nodes know N . That is, we assume that in any execution of A in N , every node of N knows
the topology and message delay uncertainties of the network it is executing in. The reason for making
these assumptions is to simplify our presentation, and also to satisfy certain properties we will define
in Section 4. Notice that making these assumptions about A does not weaken our lower bound, since a
CSA that knows an upper bound for ρ, knows N , and has logical clock values starting at 0, can easily
simulate another CSA without such knowledge, and in which logical clock values do not start at 0.

Lastly, we define some notation, and describe an indistinguishability principle that will be used in
proving our lower bounds. Given a finite execution α of an algorithm, we say the duration of α, written
as `(α), is the real time duration of α. Let α(t) denote the state of α at real time t, before any events
occur at t. If π is an event in α, we let Tα(π) denote the real time when π occurs.

5 [8] uses the variable d instead of R. We use R since d has a different meaning in our paper.

4

Because a node computes its logical clock values based only on readings from its hardware clock and
on messages it has received, it cannot distinguish between two executions in which the same actions
occur at the same readings of its hardware clock, in the same order. More precisely, let α and β be two
executions, and suppose that the same set of actions occur in α and β, in the same order. For each
action π at node i in α, let π′ denote the corresponding action in β. Then, if for every such π we have

Hα
i (Tα(π)) = Hβ

i (Tβ(π′)), i behaves the same in α and β.

4 Gradient Clock Synchronization

In this section, we formally define the gradient clock synchronization problem. We first define two prop-
erties which a clock synchronization algorithm may satisfy. For the remainder of this section, fix A to be
an arbitrary CSA.

Property 1 (Validity) Let N = (N, E, δ) be any network. Then for all executions α of A in N , we
have ∀i ∈ N∀t∀r > 0 : r

2 ≤ Lα
i (t + r) − Lα

i (t).

This property says that in any execution of A in any network, the rate of increase of each node’s
logical clock is at least 1

2 , at all times. Note that the value 1
2 was chosen for simplicity, and can be

replaced by an arbitrary positive constant. Many existing CSAs satisfy this validity property (e.g., [12,
2]). A primary motivation for defining this property is that many applications that use synchronized
clocks require the clocks to never increase too slowly. For example, if a sensor node is using its logical
clock to timestamp readings of physical events, then the clock should increase at roughly the rate of real
time. We note, however, that not all CSAs satisfy Property 1, e.g., [13] and [5] do not. Our lower bound
does not apply to such algorithms. Also note that because we assume that A knows an upper bound for
ρ, it is possible for A to satisfy Property 1 by, for example, always increasing its logical clock at a rate
of at least 1

2(1−ρ̂) times its hardware clock, where ρ̂ is the upper bound on ρ.

We now define the gradient property. Let N represent the class of all networks, and let f : R
≥0×N →

R
≥0 be any function. We say A satisfies the f -gradient property if for any network N and any execution

of A in N , the difference in logical clock values between any two nodes i and j is at most f(d,N) at all
times, for any d greater than or equal to di,j , the distance between i and j in N . That is, given any two
nodes which are at most distance d apart, their clock skew can always be bounded by a function f of d
and some properties of the network the nodes reside in. Formally, we have

Property 2 (f-Gradient) Let N = (N, E, δ) be any network. Then for all executions α of A in N ,
we have

∀i, j ∈ N ∀t ∀d ≥ di,j : |Lα
i (t) − Lα

j (t)| ≤ f(d,N)

Finally, we define an f -gradient clock synchronization (f -GCS) algorithm.

Definition 1 Let f : R
≥0×N → R

≥0 be an arbitrary function. We say a clock synchronization algorithm
A is an f -gradient clock synchronization algorithm if A satisfies the Validity and f -Gradient properties.

5 Overview of Lower Bound on GCS

In this section, we state our main theorem, and give an overview of its proof.

Theorem 1 Let A be an arbitrary f -GCS. Then we have f(d,N) = Ω(d + log D(N)
log log D(N)). In particular,

for any D, there exists a network N of diameter D, such that for any d ∈ [1, D], there exists an execution

α of A in N , such that some two nodes at most distance d apart in N have Ω(d + log D
log log D

) clock skew
at some time in α.

To prove Theorem 1, it suffices to show that for any f -GCS algorithm A and any D ≥ 2, there exists
a particular network of diameter D − 1 such that Theorem 1 holds. Such a network is the line network.
For the remainder of this paper, fix A to be an arbitrary f -GCS, let D ≥ 2 be an arbitrary integer, and
let N be a network with nodes 1, . . . , D, such that di,j = |i− j|, for 1 ≤ i, j ≤ D. Note that the diameter
of N is D − 1. All executions we describe in the remainder of this paper will be executions of A in N .
Thus, for the remainder of this paper, we will usually refrain from explicitly mentioning A or N . All
executions, distances, etc., will implicitly be with respect to A and N . Furthermore, instead of writing

5

f(·,N), we will typically simply write f(·). These definitions allow us to state Theorem 1’, which implies
Theorem 1, but which is somewhat simpler.

Theorem 1’ For any d ∈ [1, D − 1], there exists an execution α of A, such that some two nodes i, j,

with di,j ≤ d, have Ω(d + log D
log log D

) clock skew at some time in α.

To prove Theorem 1’, we show that the following hold:

1. For any d ∈ [1, D− 1], there exist two nodes that are distance d apart, such that the two nodes have
Ω(d) clock skew in some execution of A. This implies that f(d) = Ω(d) for algorithm A.

2. There exist two nodes i and j that are distance 1 apart, such that the two nodes have Ω(log D
log log D

)

clock skew in some execution of A. This implies that f(1) = Ω(log D
log log D

), for algorithm A. Also,

since Property 2 requires that the skew between i and j be at most f(d), for all d ≥ di,j = 1, then

f(d) = Ω(log D
log log D

), for all d ∈ [1, D − 1], for algorithm A.

By adding the two lower bounds, we obtain that f(d) = Ω(d+ log D
log log D

) for A. A formal proof of Theorem

1’ is given at the end of Section 8.
The executions demonstrating the lower bounds are created by adversarially controlling the hardware

clock rates and message delays of the nodes, and by using indistinguishability type arguments.
We first show that f(d) = Ω(d), for any d ∈ [1, D− 1]. This result is folklore, and it follows from the

type of indistinguishability argument used, for example, by Lundelius and Lynch in [7]. We only sketch
the proof. Let i and j be two nodes which are distance d apart, for some d ≥ 1. Then i and j cannot
distinguish between the following two executions:

1. Nodes i and j have equal clock values. Message delay from i to j is 0, and message delay from j to i
is d.

2. Node i’s clock value is d less than node j’s clock value. Message delay from i to j is d, and message
delay from j to i is 0.

Using this idea, we can show that, by choosing message delays and hardware clock rates appropriately,
we can create two indistinguishable executions in which a pair of nodes that are distance d apart have d
greater skew in one execution than in the other. Thus, in at least one of the executions, the nodes must
have at least d

2 skew.

Next, we describe how to show that f(1) = Ω(log D
log log D

). The basic idea is that we can create a lot

of skew in the network without the algorithm “knowing” about it. Later in the execution, we let the
algorithm find out about the skew, but show that the algorithm cannot remove the skew fast enough. We
need two lemmas to prove the lower bound. The first lemma, which we call the Add Skew lemma, states
that given two arbitrary nodes, and given an execution α of A such that a suffix of α satisfies certain
bounds on the hardware clock rates and message delays of the nodes, we can find another execution β
such that the two given nodes have greater skew at the end of β than at the end of α. The second lemma,
which we call the Bounded Increase lemma, states that in any execution of A satisfying some bounds
on the hardware clock rates and message delays, no node can increase its logical clock too quickly. The
Bounded Increase lemma implies that in any execution of A, the clock skew between two nodes cannot
decrease too quickly. Using these lemmas, we prove the lower bound on f(1) by creating an execution
in which we repeatedly apply the Add Skew lemma to increase clock skew between some nodes, while
limiting the rate at which the skew decreases between those nodes via the Bounded Increase lemma. We
show that we can increase the skew faster than the skew decreases for long enough time so that some
pair of nodes i and i + 1 have Ω(log D

log log D
) skew between them by the end of the execution.

In the following two sections, we prove the Add Skew and Bounded Increase lemmas. We prove the
lower bound on f(1) and formally prove Theorem 1 in Section 8.

6 Add Skew Lemma

In this section, we formally state and prove the Add Skew lemma. We will sometimes talk about the
message delay between a pair of nodes during a time interval of an execution. By this, we mean the delay
of a message sent between the nodes, in either direction, that is received during that time interval of the
execution. This statement does not talk about the delay of messages that are sent, but not received in
the interval.

6

Lemma 1 (Add Skew lemma) Let i, j be two nodes with 1 ≤ i < j ≤ D. Let τ = 1
ρ
, γ = 1 + ρ

4+ρ
,

S ≥ 0, T = S + τ(j − i), and T ′ = S + τ
γ
(j − i). Let α be an execution of A of duration T , and suppose

the following hold:

1. The message delay between any two nodes k1 and k2 during the time interval [S, T] in α is
|k1−k2|

2 .
2. Every node has hardware clock rate 1 during the time interval [S, T] in α. That is, ∀i∀t ∈ [S, T] :

hα
i (t) = 1.

Then there exists an execution β of A such that the following are true:

1. Lβ
i (T ′) − Lβ

j (T ′) ≥ Lα
i (T) − Lα

j (T) + j−i
12 .

2. The message delay between any two nodes k1 and k2 during the time interval [0, S] is the same in

α and β. The message delay between k1 and k2 is within [|k1−k2|
4 , 3|k1−k2|

4] during the time interval
(S, T ′] in β.

This lemma says that given two arbitrary nodes i < j, and given any execution α of A satisfying
certain bounds on message delays and hardware clock rates during the time interval [S, T], we can find

an execution β such that nodes i and j have j−i
12 greater clock skew at real time T ′ in β than they do

at real time T in α. That is, β “adds skew” between nodes i and j, as compared to α. Furthermore,
all message delays during the time interval [0, S] are the same in α and β, and they fall within certain
bounds during the interval (S, T ′] in β.

Proof. The basic idea is as follows. We create an execution β in which we speed up the hardware clocks
of some nodes. We adjust the message delays to and from these nodes appropriately, so that execution β
looks indistinguishable from α to all the nodes. In β, the nodes with sped up hardware clocks will also
have sped up logical clocks, which allows β to add skew between nodes i and j.

We now define β. The actions of β are a (not necessarily proper) subset of the actions of α. That is,
an action π occurs in β only if π occurs in α. Some actions occur at different real times in β than they
do in α. Some nodes have faster hardware clocks in β than in α. The duration of β is T ′, whereas the
duration of α is T . First, we define Tk, for 1 ≤ k ≤ D, as follows

Tk =







S if 1 ≤ k ≤ i
S + τ

γ
(k − i) if i < k < j

T ′ if j ≤ k ≤ D

Now, for 1 ≤ k ≤ D, define the hardware clock rate of node k in β by

hβ
k (t) =

{

1 if t ∈ [0, Tk]
γ if t ∈ (Tk, T ′]

The hardware clock rates of the nodes in β are shown in Figure 1.
For each action π which occurs in α, let κ(π) be the node at which π occurs. Recall that Tα(π) is the

time at which π occurs in α. Let R(π) = 1
γ
(Tα(π) − Tκ(π)). Define the time when π occurs in β by

Tβ(π) =

{

Tα(π) if Tα(π) ∈ [0, Tκ(π)]
Tκ(π) + R(π) if Tα(π) ∈ (Tκ(π), T

′]

Intuitively, in execution β, we have simply sped up the hardware clock rate of node k to γ, starting
at time Tk, for k = 1, . . . , D. Then, we changed the real time at which events in β (which are a subset
of the events in α) occur, to ensure that β is still a proper execution of A. Formally, we claim that β
satisfies the conclusions of the lemma. This is proven by the following four claims.

Claim 1 Executions α and β are indistinguishable to all the nodes.

Proof. Clearly, all actions occur in the same order in α and β.
We now show that each node has the same hardware clock value in α and β when any action occurs.

If this holds, then α and β are indistinguishable to all the nodes. Consider any action π occurring at an
arbitrary node k in α. For brevity, let t0 = Tα(π). Suppose first that t0 ∈ [0, Tk]. Then by definition, we

have Tβ(π) = t0. Now, we have hα
k (t) = hβ

k (t) = 1 for all t ∈ [0, t0], so Hα
k (t0) = Hβ

k (t0).

Next, suppose that t0 ∈ (Tk, T]. Then by definition, Tβ(π) = Tk + 1
γ
(t0−Tk). Now, we have hβ

k (t) = 1

for t ∈ [0, Tk], and hβ
k(t) = γ for t ∈ (Tk, t0]. Thus, Hβ

k (Tk + 1
γ
(t0 − Tk)) = Hα

k (t0). �

7

T ′

time

1

i

i + 1

D

j

j − 1

i + 2

nodes

τ
γ

τ
γ

τ
γ

τ
γ

Tj

TD

τ
γ
(j − i)

S T

Ti+1

Ti+2

Tj−1

T1

Ti

. . .

. . .

. . .

Fig. 1 The hardware clock rates of nodes 1, . . . , D in execution β. Thick lines represents the time interval
during which a node has hardware clock rate γ. Node k runs at rate γ for τ

γ
time longer than node k + 1, for

k = i, . . . , j − 1.

Claim 2 The hardware clock rate of every node in β is within the correct bounds.

Proof. The hardware clock rate of any node during the time interval [0, S] is the same in α and β.
The minimum hardware clock rate of any node during time interval (S, T ′] in β is 1, and the maximum
clock rate is γ = 1 + ρ

4+ρ
< 1 + ρ. Thus, the claim follows. �

Claim 3 The message delay is the same in α and β during the time interval [0, S]. During the interval

(S, T ′] in β, the message delay between any pair of nodes k1 and k2 is within [|k1−k2|
4 , 3|k1−k2|

4].

Proof. Executions α and β are identical up to time S, so the message delay during [0, S] is the same
in α and β.

Next, consider a send action π1 in α, whose corresponding receive action π2 occurred during (S, T]
in α. Let sα = Tα(π1), tα = Tα(π2), sβ = Tβ(π1), and tβ = Tβ(π2). We consider two cases. Either the
message was sent from a lower indexed node to a higher indexed node, or vice versa. We will show that
in the first case, the message delay is not much longer in β than it is in α, while in the second case, the
message delay is not much shorter.

8

k1

k1

k2

k2

sα

π2

sβ

Tk1

Execution α

π2

tβ

tα

π1

π1

Execution β

Tk2

r1

r2

Fig. 2 Node k1 sends a message to node k2 > k1. The delay of the message is k2−k1

2
in execution α, and is

within [k2−k1

2
,

3(k2−k1)
2

] in execution β. Note that the hardware clocks of nodes k1 and k2 are running at rate γ
during the time interval represented by the thick lines.

In the first case, let k1 be the sending node, and k2 > k1 be the receiving node. By the first assumption
of the Add Skew lemma, we have tα − sα = k2−k1

2 . Define r1 = max(sα − Tk1
, 0), r2 = max(tα − Tk2

, 0).

Please see Figure 2 for an illustration. We claim that sβ = sα − r1(1 − 1
γ
). Indeed, if r1 = 0, then

sα ≤ Tk1
, so by the definition of Tβ(·), we have sβ = sα = sα − r1(1 − 1

γ
). If r1 > 0, then we have

sβ = Tk1
+ 1

γ
(sα−Tk1

) = sα+(Tk1
−sα)− 1

γ
(Tk1

−sα) = sα−r1(1−
1
γ
). Similarly, we have tβ = tα−r2(1−

1
γ
).

Subtracting, we get tβ − sβ = tα − sα + (r1 − r2)(1 − 1
γ
).

We now bound r1 − r2. Suppose first that r1 = 0. Then sα ≤ Tk1
. We can check that τ

γ
= 4+ρ

4ρ+2ρ2 ≥ 1
2

for ρ ∈ (0, 1). So, tα = sα + k2−k1

2 ≤ Tk2
= Tk1

+ τ
γ
(k2 − k1). Thus, we have r2 = max(tα − Tk2

, 0) = 0,

and r1 − r2 = 0. Next, suppose r1 > 0. Then

r1 − r2 = sα − Tk1
− max(tα − Tk2

, 0)

≤ sα − Tk1
− (tα − Tk2

)

= Tk2
− Tk1

+ sα − tα

=
τ

γ
(k2 − k1) −

k2 − k1

2

≤
τ

γ
(k2 − k1)

Thus, we have

tβ − sβ = tα − sα + (r1 − r2)(1 −
1

γ
)

≤ tα − sα + (r1 − r2)(γ − 1)

≤
k2 − k1

2
+

τ

γ
(γ − 1)(k2 − k1)

9

= (k2 − k1)

(

1

2
+

1

4τ + 2

)

≤ 3(k2 − k1)/4

where the first inequality follows because 1 − 1
γ

≤ γ − 1 for all γ, the second equality follows by

simplification, and the last inequality follows because τ > 1. Thus, a message from k1 to k2 has de-

lay at most 3(k2−k1)
4 . Next, we show the delay is at least k2−k1

2 . We have tα − sα = k2−k1

2 , and

Tk2
− Tk1

= τ
γ
(k2 − k1) ≥ 1

2 (k2 − k1), and so r1 = max(sα − Tk1
, 0) ≥ r2 = max(tα − Tk2

, 0). Also,

we have 1
γ
≤ 1. Thus, tβ − sβ = tα − sα + (r1 − r2)(1−

1
γ
) ≥ tα − sα = k2−k1

2 . Thus, we have shown that

all message delays from a smaller indexed node to a larger indexed node are within the bounds required
by the lemma.

Next, we consider the case when a node k2 sends to a node k1 < k2. Define r1 = max(tα−Tk1
, 0), r2 =

max(sα − Tk2
, 0). As above, we have sβ = sα − r2(1 − 1

γ
), tβ = tα − r1(1 − 1

γ
), and so tβ − sβ =

tα − sα + (r2 − r1)(1 − 1
γ
). Also as above, we can show that r2 − r1 ≥ −(k2 − k1)(

τ
γ

+ 1
2). Plugging this

into the expression for tβ − sβ and simplifying, we get that tβ − sβ ≥ k2−k1

4 . Also as above, we have
r2 ≤ r1, and so we have tβ − sβ ≤ tα − sα. Thus, all messages sent from a larger indexed node to a

smaller indexed node have delay between k2−k1

4 and k2−k1

2 . Together with the previous paragraph, this
shows that all messages received in β during (S, T ′] have delays within the required bounds. �

Combining Claims 1, 2 and 3, we get that β is an execution of A. Finally, we show that β increases
the skew between nodes i and j.

Claim 4 Lβ
i (T ′) − Lβ

j (T ′) ≥ Lα
i (T) − Lα

j (T) + j−i
12 .

Proof. From the definition of Hβ
i (·), we have that Hβ

i (T ′) = Hα
i (T), and so because α and β are

indistinguishable to i, we have

Lβ
i (T ′) = Lα

i (T) (1)

Also, we have Hβ
j (T ′) = Hα

j (T ′), so that Lβ
j (T ′) = Lα

j (T ′). Now, from the validity requirement in Section

4, we have that Lα
j (T) − Lα

j (T ′) ≥ 1
2 (T − T ′). Thus, we get

Lβ
j (T ′) ≤ Lα

j (T) −
1

2
(T − T ′) (2)

Subtracting equation (2) from equation (1), we get

Lβ
i (T ′) − Lβ

j (T ′) ≥ Lα
i (T) − Lα

j (T) +
1

2
(T − T ′) (3)

We compute

T − T ′ = (S + τ(j − i)) − (S +
τ

γ
(j − i))

= τ(1 −
1

γ
)(j − i)

≥
1

6
(j − i)

where the last inequality follows because ρ < 1. Plugging this into equation (3), the claim follows. �

7 Bounded Increase Lemma

In this section, we formally state and prove the Bounded Increase lemma.

Lemma 2 (Bounded Increase lemma) Let α be an execution of A of duration T ≥ τ , and let i be
any node. Suppose that the following hold:

1. Every node has hardware clock rate within [1, 1 + ρ
2] at all times in α.

2. The message delay between i and any node j is within [|i−j|
4 , 3|i−j|

4] at all times in α.

10

Then, for any t ≥ τ = 1
ρ
, we have Lα

i (t + 1) − Lα
i (t) ≤ 16f(1).

This lemma says that in any execution of A satisfying some conditions about the hardware clock rates
and message delays, no node can increase its logical clock too quickly.

Proof. The idea is the following. Assume that i increases its logical clock very quickly. Then we create
another execution β in which we speed up i’s hardware clock. We make β indistinguishable from α to
all the nodes by adjusting message delays appropriately. Because node i has a faster hardware clock in
β, it also has a faster logical clock. But because i increases its logical clock so quickly, we can show that
in β, i has a large clock skew compared to a nearby node, which violates the gradient property. Thus, i
cannot increase its logical clock too quickly.

Let j be a node such that di,j = 1. Suppose for contradiction that there exists a t ≥ τ such that
Lα

i (t + 1) − Lα
i (t) > 16f(1). Then there exists t0 ∈ [t, t + 7

8] such that Lα
i (t0 + 1

8) − Lα
i (t0) > 2f(1).

Define an execution β as follows. β contains the exact same actions as α. Node i’s hardware clock rate
in β is defined by

hβ
i (t) =

{

hα
i (t) + ρ

4 if t ∈ [t0 − τ, t0]
hα

i (t) otherwise

The hardware clock rates of all nodes other than i are the same in α and β.
Now, we define the real times when actions in β occur. If π is an action of α at a node different from

i, then π occurs at the same real time in α and β. If π is an action of α at i, then suppose π occurs when

i’s hardware clock value is H in α. In β, we define π to occur at the real time t such that Hβ
i (t) = H .

Note that with this implicit definition of β, we have a priori that α and β are indistinguishable to all
the nodes, since all the nodes see the same actions at the same values on their hardware clocks in α and
β. Now, we show that β is an execution of A.

First, we show that the hardware clock rates of all nodes in β are within the correct bounds. This is
clearly true, since the minimum hardware clock rate of any node in β is at least the minimum rate in α,
and the maximum rate of any node in β is 1 + ρ

2 + ρ
4 ≤ 1 + ρ.

Next, we show the message delays are within the correct bounds. We first prove

Claim 5 ∀t ≤ T − 1
4 : Hβ

i (t) ≤ Hα
i (t + 1

4).

Proof. Let s0 = t0 − τ . Since hβ
i (t) = hα

i (t) for all t ≤ s0, the claim holds for all t ≤ s0. Now, suppose
t ∈ (s0, t0]. Then

Hβ
i (t) = Hα

i (t) + (t − s0)
ρ

4

≤ Hα
i (t) + τ

ρ

4

= Hα
i (t) +

1

4

Since hα
i (r) ≥ 1 for all r, we have Hα

i (t + 1
4) ≥ Hα

i (t) + 1
4 ≥ Hβ

i (t), and so the claim holds for all

t ∈ (s0, t0]. Lastly, for t ∈ (t0, T − 1
4], we have hβ

i (t) = hα
i (t), so by the same reasoning as above, the

claim also holds. �

The above claim shows that any action π at node i which occurs at real time t in α occurs no earlier

than t − 1
4 in β. Thus, since i’s message delay with any node j is within [|i−j|

4 , 3|i−j|
4] in α, the delay of

the same message is between [|i−j|
4 − 1

4 , 3|i−j|
4 + 1

4] ⊆ [0, |i − j|] in β. Thus, all the hardware clock rates
and message delays in β are within the correct bounds, so β is an execution of A.

We need one more claim.

Claim 6 Hβ
i (t0) ≥ Hα

i (t0 + 1
8).

Proof. From Claim 5, we have Hβ
i (t0) ≤ Hα

i (t0) + 1
4 . Also, Hα

i (t0 + 1
8) ≤ Hα

i (t0) + (1 + ρ
2) 1

8 ≤

Hα
i (t0) + 1

4 , where the first inequality follows because all hardware clock rates in α are at most 1 + ρ
2 .

Thus, Hβ
i (t0) ≥ Hα

i (t0 + 1
8). �

11

Now, we prove the lemma. We have

Lβ
i (t0) ≥ Lα

i (t0 +
1

8
)

> Lα
i (t0) + 2f(1)

≥ Lα
j (t0) + f(1)

= Lβ
j (t0) + f(1)

The first inequality follows because α and β are indistinguishable, and by Claim 6, we have Hβ
i (t0) ≥

Hα
i (t0 + 1

8), so that Lβ
i (t0) ≥ Lα

i (t0 + 1
8). The second inequality follows because of our choice of t0 at the

beginning of the proof of the lemma. The third inequality follows because A satisfies the f -GCS property,
so that it must ensure that nodes i and j have logical clock skew which is at most f(di,j) = f(1) at all
times. That is, we must have Lα

j (t0) − Lα
i (t0) ≤ f(1). The final equality follows because node j has the

same hardware clock rate in α and β, so Lβ
j (r) = Lα

j (r), for all r. However, the above inequalities are a

contradiction, because they imply Lβ
i (t0) − Lβ

j (t0) > f(1), which violates the gradient property. Thus,

there does not exist a t ≥ τ such that Lα
i (t + 1) − Lα

i (t) > 16f(1). �

8 The Main Theorem

In this section, we prove the lower bound on f(1) and formally prove Theorem 1. Recall that `(α) is
the duration of an execution α. The following theorem states that there exists an execution of A, at
the end of which, a pair of nodes that are at distance 1 from each other have logical clock skew that is
Ω(log D

log log D
).

Theorem 2 There exists an execution α of A, and nodes i, j with di,j = 1, such that |Lα
i (`(α)) −

Lα
j (`(α))|

= Ω(log D
log log D

). Therefore, f(1) = Ω(log D
log log D

).

Proof. The idea is to create an execution in which we repeatedly apply the Add Skew lemma to
increase the clock skew between some nodes, while limiting how quickly the skew between those nodes
can decrease via the Bounded Increase lemma. We show the skew increases faster than it decreases for
long enough time so that two nodes which are distance 1 apart end up with Ω(log D

log log D
) clock skew.

We first define some constants we need. Let n0 = D−1, and nk =
nk−1

384τf(1) for k ≥ 1. To avoid dealing

with roundoff errors, we assume that 384τf(1) is an integer, and that D−1 is a power of 384τf(1). Note
that these assumptions are valid because we can easily show that f(1) ≥ 1

2 , as in [7]. These assumptions
do not affect the asymptotics of the theorem, but they simplify the proof.

We will create a series of executions α0, α1, . . ., and also define nodes i0, i1, . . . and j0, j1, Before
describing the construction of αk, ik and jk, we first list some properties which we ensure will hold about
αk, ik and jk, for all k = O(log D

log log D
).

Property 1

1. jk − ik = nk.
2. ∆k ≡ Lαk

ik
(`(αk)) − Lαk

jk
(`(αk)) ≥ k

24nk. That is, the logical clock skew between nodes ik and jk at

the end of αk is at least k
24nk.

3. The message delay between any two nodes i and j is |i−j|
2 during the time interval [`(αk)−τnk , `(αk)]

in αk. The hardware clock rate of every node during this interval in αk is 1.
4. The hardware clock rate of any node at any time in αk is within [1, 1 + ρ

2].

5. The message delay between any two nodes i and j is within [|i−j|
4 , 3|i−j|

4] at all times in αk.

Intuitively, condition 2 of Property 1 states that nodes ik and jk have clock skew proportional to k
times their distance at the end of execution αk. Condition 3 is used to ensure we can apply the Add
Skew Lemma to αk. Conditions 4 and 5 are to ensure that we can apply the Bounded Increase Lemma
to αk.

12

αk

βk

αk+1

βk−1

βk−1

βk−1

σ

ς

ς σ′

Fig. 3 αk is the concatenated execution βk−1σ, and satisfies the preconditions of the Add Skew lemma. Ap-
plying the Add Skew lemma to αk produces execution βk = βk−1ς. Execution αk+1 is constructed from βk by
concatenating suffix σ′, in which we set the hardware clock rates and message delays so that σ′ satisfies the
preconditions of the Bounded Increase lemma. This implies that the skew between nodes ik+1 and jk+1 is at least
k+1
24

(jk+1 − ik+1) at the end of αk+1. Lastly, αk+1 satisfies the preconditions of the Add Skew lemma, so we can
repeat this procedure.

The plan for the construction of αk, ik and jk is as follows. Assume that we have constructed
executions α0, . . . , αk, for some k, and αk satisfies Property 1. Then we show that αk satisfies the
preconditions of the Add Skew lemma, so that we can apply the lemma to αk to obtain an execution βk

which increases the skew between some pair of nodes ik and jk. We then extend βk to a longer execution
αk+1. During the extension, we carefully control the hardware clock rates and message delays, so that
αk+1 satisfies the preconditions of the Bounded Increase lemma. This allows us to conclude that the skew
between ik and jk did not decrease too much during the extension. In particular, the Add Skew lemma
increased the skew twice as much as the skew decreased during the extension. We then show that αk+1

satisfies Property 1, which allows us to repeat the procedure. The construction is illustrated in Figure 3.
We now describe the construction. Let α0 be any execution of A of duration τ(D − 1), such that

1. The hardware clock rate of any node at any time in α0 is 1.

2. The message delay between any two nodes i and j is |i−j|
2 during all of α0.

Let i0 = 1, j0 = D. Assume without loss of generality that Lα0

i0
(`(α0)) ≥ Lα0

j0
(`(α0)), i.e., that node 1’s

logical clock value is at least as large as node D’s, at the end of α0. If this is not true, we can simply
renumber the nodes in the opposite order. Clearly, α0 satisfies all the conditions in Property 1.

Next, we describe how to construct execution αk+1, given execution αk, for k ≥ 0. We first claim

Claim 7 αk satisfies the preconditions of the Add Skew lemma.

Proof. Instantiate the node “i” in the Add Skew lemma by ik, and instantiate “j” by jk. By induc-
tion, αk satisfies Property 1. By conditions 1 and 3 of the property, during the time interval [`(αk) −
τnk, `(αk)] = [`(αk) − τ(jk − ik), `(αk)] of αk, all hardware clock rates are 1, and the message delay

between any nodes i and j is |i−j|
2 . Thus, αk satisfies the preconditions of the Add Skew lemma. �

By applying the Add Skew lemma to αk, we obtain an execution βk such that the following holds:

Lβk

ik
(`(βk)) − Lβk

jk
(`(βk)) ≥ ∆k +

jk − ik
12

(4)

≥
k

24
nk +

1

12
nk (5)

=
k + 2

24
nk (6)

Now, we extend βk to an execution which is nk+1τ (real time) longer. That is, we take the execution
βk, then let algorithm A run for nk+1τ time, starting from the last state in βk. During this extension,
we set the hardware clock rates of all nodes to be 1, and set the message delay between any two nodes

i and j to be |i−j|
2 . Also, for any message between i and j which was sent but not received during βk,

we set the delay of that message to be |i−j|
2 . We call the extended execution αk+1. Our goal in the next

four claims is to show that αk+1 satisfies the conditions in Property 1, which will allow us to repeat the
procedure in the preceding two paragraphs to produce executions αk+2, αk+3,

13

Claim 8 αk+1 satisfies the preconditions of the
Bounded Increase lemma.

Proof. Execution αk+1 is of the form βkσ, where σ is an execution of length nk+1τ . We first show
that the βk portion of αk+1 satisfies the preconditions of the Bounded Increase lemma.

To prove that the hardware clock rate of any node is within [1, 1+ ρ
2] during βk, note that, by looking

at the construction of βk in the proof of the Add Skew lemma, we have that βk and αk are identical up
to time t0 = `(αk) − τnk. So, since αk satisfies the fourth condition in Property 1, the hardware clock
rate of any node is within [1, 1+ ρ

2] up to time t0 in βk. During the time interval (t0, `(βk)], the hardware
clock rate of any node in βk is within [1, γ] ⊆ [1, 1 + ρ

2], because the Add Skew lemma sets a node’s
hardware clock rate to at most γ. Thus, the hardware clock rate of any node is within [1, 1 + ρ

2] during
the βk portion of αk.

To prove that the message delay between any two nodes i and j is within [|i−j|
4 , 3|i−j|

4] during βk,
we again use the fact that αk and βk are identical up t0. Then, since αk satisfies the fifth condition in

Property 1, we get that the message delay between i and j is within [|i−j|
4 , 3|i−j|

4] in βk up to time t0.
In the interval (t0, `(βk)], we have, by the second conclusion of the Add Skew lemma, that the message

delay is also within [|i−j|
4 , 3|i−j|

4].
Lastly, we show that the extension portion of αk+1 satisfies the preconditions of the Bounded Increase

lemma. But this is clear, because during the extension, we defined the hardware clock rate of all nodes

to be 1, and all the message delays to be |i−j|
2 . Thus, αk+1 satisfies the preconditions of the Bounded

Increase lemma. �

Claim 9 L
αk+1

ik
(`(αk+1)) − L

αk+1

jk
(`(αk+1)) ≥

k+1
24 nk.

Proof. We have `(αk+1) − `(βk) = nk+1τ =
nk

384f(1) . By Claim 8, αk+1 satisfies all the preconditions of the Bounded Increase lemma, so by the

Bounded Increase lemma, we have

L
αk+1

jk
(`(αk+1)) ≤ L

αk+1

jk
(`(βk)) + (`(αk+1) −

`(βk))16f(1)

= L
αk+1

jk
(`(βk)) +

nk

24

Let Γ = L
αk+1

ik
(`(αk+1)) − L

αk+1

jk
(`(αk+1)). Then

Γ ≥ L
αk+1

ik
(`(βk)) − L

αk+1

jk
(`(αk+1))

≥ L
αk+1

ik
(`(βk)) − L

αk+1

jk
(`(βk)) −

nk

24

=
k + 2

24
nk −

1

24
nk

=
k + 1

24
nk

The first inequality follows because `(αk+1) > `(βk), and L
αk+1

ik
(·) is monotonically increasing. The

second inequality follows by the first set of inequalities in the claim. The first equality follows from
equations (4) to (6). �

Claim 10 There exist nodes ik+1 and jk+1 = ik+1 +nk+1 such that L
αk+1

ik+1
(`(αk+1))−L

αk+1

jk+1
(`(αk+1)) =

∆k+1 ≥ k+1
24 nk+1.

Proof. By Claim 9, we have L
αk+1

ik
(`(αk+1))−

L
αk+1

jk
(`(αk+1)) ≥ k+1

24 nk. Since the nodes are arranged on a line, then by a pigeon-hole type argument,

there must be two nodes that are distance nk+1 apart whose skew is at least a
nk+1

nk

fraction of the skew

between nodes ik and jk. That is, there exist two nodes ik+1, jk+1 ∈ [ik, jk] with jk+1 = ik+1 + nk+1,
such that L

αk+1

ik+1
(`(αk+1)) − L

αk+1

jk+1
(`(αk+1)) = ∆k+1 ≥ k+1

24 nk+1. �

Claim 11 Execution αk+1 satisfies all the conditions of Property 1.

14

Proof. Claim 10 shows that αk+1 satisfies the first condition of Property 1. Conditions 2 and 3 are
satisfied, because we constructed αk+1 as an extension of βk such that conditions 2 and 3 hold within
the last nk+1τ portion of αk+1. Conditions 4 and 5 hold by Claim 8. �

Claim 12 For any k with nk ≥ 1, there exists a node i such that Lαk

i (`(αk)) − Lαk

i+1(`(αk)) ≥ k
24 .

Proof. By condition 2 of Property 1, we have that Lαk

ik
(`(αk)) −Lαk

jk
(`(αk)) ≥ k

24nk. So, by a pigeon-

hole type argument, there must exist an i with ik ≤ i < jk such that Lαk

i (`(αk)) − Lαk

i+1(`(αk)) ≥ k
24 .
�

Claim 11 shows that we can construct execution αk+1 from αk, as long as nk+1 ≥ 1. By the definition
of nk, we have that nk = D−1

(384τf(1))k . Therefore, we can construct αk for all k up to k = log384τf(1)(D−1) =

Ω(logf(1) D). By Claim 12, for every αk, there exists a node i with Lαk

i (`(αk))−Lαk

i+1(`(αk)) ≥ k
24 . Since

A satisfies the f -GCS property, we must have

f(1) ≥ Lαk

i (`(αk)) − Lαk

i+1(`(αk))

≥
k

24
, ∀k = Ω(logf(1) D)

Thus, solving f(1) = Ω(logf(1) D) for f(1), we get that f(1) = Ω(log D
log log D

), which proves Theorem 2. �

Finally, we use Theorem 2 to prove Theorem 1’, which was stated in Section 5. Recall also that
Theorem 1’ implies the more general Theorem 1.

Proof of Theorem 1’. Let d ∈ [1, D−1] be arbitrary. As shown in Section 5, there exists an execution
of A, call it σ1, in which two nodes which are distance d apart have Ω(d) clock skew. This shows that
f(d) = Ω(d).

By Theorem 2, there exists an execution of A, call it σ2, such that two nodes which are distance 1
apart have Ω(log D

log log D
) clock skew. Since d ≥ 1 = di,j , then by Property 2 of Section 5, we also have

f(d) = Ω(log D
log log D

).

To show that there is one particular execution which achieves Ω(d+ log D
log log D

) between some two nodes

at most distance d apart, we simply choose σ1 as such an execution if d = Ω(log D(N)
log log D(N)), and choose σ2

if d = O(log D(N)
log log D(N)). Thus, the theorem is proved. �

9 Conclusions and Future Work

We have introduced the gradient clock synchronization problem. We have shown the problem’s usefulness
in the context of sensor and ad-hoc networks, and have also noted that many current clock synchronization
algorithms do not solve the problem. We proved that for any f -GCS algorithm, f(d,N) = Ω(d +

log D(N)
log log D(N)). We also discussed some implications of this result.

Though our results show that nearby nodes may have large skew, we did not carefully analyze the
amount of time for which the large skew may persist. However, it may be seen from the construction
given in Section 8 that the Ω(log D

log log D
) clock skew between neighboring nodes only lasts Θ(1) amount of

time. Furthermore, it took Θ(D) amount of time to construct the high skew situation, suggesting that
large skew between neighbors is a relatively rare occurrence. Algorithms which rely on gradient clock
synchronization, such as TDMA, may exploit this fact. For example, a TDMA algorithm may adjust
the granularity of the nodes’ broadcast slots depending on the amount of clock skew between nodes.
Nevertheless, performing such on-the-fly adjustments and disseminating the new broadcast schedule
throughout the network may prove challenging.

The main open problem for GCS is whether there exists any f -GCS algorithm with f(d,N) =
O(d) + o(D(N)). We conjecture the answer is yes, and that there exists a CSA in which nodes at O(1)
distance apart have O(log D(N)) clock skew.

The gradient property emphasizes the local nature of distributed computation, especially in emerging
platforms such as mobile networks. We believe a very interesting research direction is the discovery of
new distributed algorithms which are more local in nature, or discovering impossibility results against
such algorithms.

Acknowledgments. We thank the anonymous referees for their many helpful corrections, comments
and suggestions.

15

References

1. Saâd Biaz and Jennifer L. Welch. Closed form bounds for clock synchronization under simple uncertainty
assumptions. Information Processing Letters, 80(3):151–157, 2001.

2. Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchronization using reference
broadcasts. SIGOPS Operating Systems Review, 36(SI):147–163, 2002.

3. Joseph Y. Halpern, Nimrod Megiddo, and Ashfaq A. Munshi. Optimal precision in the presence of uncertaint.
Journal of Complexity, 1(2):170–196, 1985.

4. Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed I/O automata: A mathemat-
ical framework for modeling and analyzing real-time systems. In Proceedings of the 24th IEEE International
Real-Time Systems Symposium, 2003.

5. Leslie Lamport and P. Michael Melliar-Smith. Synchronizing clocks in the presence of faults. Journal of the
ACM, 32(1):52–78, 1985.

6. Errol Lloyd. Broadcast scheduling for tdma in wireless multihop networks. Handbook of wireless networks
and mobile computing, pages 347–370, 2002.

7. Jennifer Lundelius and Nancy Lynch. An upper and lower bound for clock synchronization. Information and
Control, 62:190–204, 1984.

8. Lennart Meier and Lothar Thiele. Gradient clock synchronization in sensor networks. Technical report,
Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, 2005.

9. Rafail Ostrovsky and Boaz Patt-Shamir. Optimal and efficient clock synchronization under drifting clocks.
In Proceedings of the eighteenth annual ACM symposium on Principles of distributed computing, pages 3–12.
ACM Press, 1999.

10. Boaz Patt-Shamir and Sergio Rajsbaum. A theory of clock synchronization. In Proceedings of the twenty-sixth
annual ACM symposium on Theory of computing, pages 810–819. ACM Press, 1994.

11. Hairong Qi, Xiaoling Wang, S. Sitharama Iyengar, and Krishnendu Chakrabarty. Multisensor data fusion in
distributed sensor networks using mobile agents. In Proceedings of the International Conference on Informa-
tion Fusion, pages 11–16, 2001.

12. T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626–645, 1987.
13. Jennifer Lundelius Welch and Nancy Lynch. A new fault-tolerant algorithm for clock synchronization.

Information and Computation, 77(1):1–36, 1988.

16

