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Abstract 

A commitment protocol orchestrates the execution of 
a distributed transaction, allowing each participant to 
"vote" on the transaction and then applying a pre- 
specified rule to decide the outcome (commit or 
abort). A nonblocking commitment protocol is able to 
correctly terminate a transaction at all operational 
participants in the presence of any number of benign 
processor failures. Herein, we derive strong lower 
bounds for both nonblocking protocols and their less 
fault-tolerant blocking counterparts. Results on mes- 
sage complexity are both surprising and encouraging: 
the message complexities of the two classes of proto- 
cols are identical. Results on time complexity were 
less encouraging: nonblocking protocols are approxi- 
mately 50% more expensive. However, we show how 
to overlap nonblocking executions of interfering tran- 
sactions and thereby reduce their extra cost. 
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1. Introduction 

A distributed transaction is an atomic action span- 
ning multiple processors; either all or none of its 
effects persist. The transaction notion is fundamental 
in fault-tolerant systems - useful both in the concep- 
tualization and the realization of such systems. His- 
torically transactions have been associated with data- 
base systems; however, the notion has broad applica- 
bility. 

In execution, a distributed transaction (henceforth, 
a "transaction") is decomposed into subtransactions, 
each of which is executed by a single processor. A 
commitment protocol orchestrates the execution of the 
subtransactions among the participating processors, 
establishing the all or nothing appearance of the tran- 
saction. A transaction is only as fault-tolerant as the 
commit protocol coordinating its execution. 

An extremely important class of fault-tolerant 
commitment protocols is the nonblocking protocols. A 
nonblocking protocol can correctly terminate a transac- 
tion as long as processor failures are not malicious and 
one of the participating processors remains opera- 
tional. Hence, such protocols never "block" (suspend 
execution) because of processor failures, and in this 
sense, they are maximally tolerant of benign processor 
failures. 

In spite of their increased fault-tolerance, non- 
blocking protocols are often not used because of their 
expense: all known nonblocking protocols are approxi- 
mately 50~ more costly than their blocking counter- 
parts. The same overhead is found whether the cost 
metric is message counts or tandem message delays. 
Message counts are a rough measure of the network 
bandwidth required to support the protocols; whereas 
tandem message delays are often a large component in 
the execution time. 



Our goal is to study the inherent cost difference 
between blocking and nonblocking protocols, with 
messages and time as metrics. Specifically, we study 
the cost of a "best-case" instance of a protocol; the 
"best-case" occurring when none of the possible 
failures materialize. Failure-free performance issues 
are important in practice; when failures are infre- 
quent, which is the case for most environments, 
failure-free performance is a good indicator of 
expected performance. 

Our results on message complexity are positive. 
While blocking protocols with best-case message com- 
plexity 2(n-l)  were known, nonblocking protocols 
were generally thought to require about 3(n-l)  mes- 
sages. We were at first frustrated by our attempts to 
prove this disparity inherent in the differences 
between the two classes of protocols. Our continued 
inability to close the gap induced us to reexamine 
extant protocols. This led to a surprising discovery: a 
new nonblocking protocol with best-case message com- 
plexity 2(n-1). Then, having convinced ourselves that 
the 2(n-l)  conjectured lower bound for either class of 
protocols was no longer obvious, we proceeded to 
prove it for both. 

The results for time are less encouraging: in the 
absence of +failures the fastest nonblocking protocol 
requires roughly twice as much time as the fastest 
blocking protocol. However, this negative result is 
partially compensated by an interesting observation 
on the implementation of nonblocking protocols: non- 
blocking protocols exhibiting a certain property can 
allow more concurrency among conflicting transactions 
than previously thought. This increased concurrency 
attenuates the performance degradation expected in 
transaction systems using nonblocking protocols. 

2 .  B a c k g r o u n d  

2 .1  T h e  E n v i r o n m e n t  

We make the following assumptions concerning the 
network: 

(1) the network is fully connected, 

(2) messages between operational processors are 
correctly delivered, 

(3) spurious messages are not generated, 

(4) the maximum time required for a processor p 
to send a message and receive a reply is 2Ap, 

for some Ap measured on the processor's local 
clock. 

Ap represents the maximum end-to-end message 
delay l, and includes the physical transmission time 
plus the message processing time incurred by both the 
sender and receiver. 

These are strong assumptions; nonetheless, they 
are frequently assumed for many applications. Relax- 
ing (3) requires solving a variant of the Byzantine 
General's problem at considerably more expense ([D], 
[DFFLS], [DR], [DOS], [LFF], [LSP], [PSL]). Relaxing 
(4) makes the problem unsolvable for even the two- 
processor case [FLP]. Implementable networks can 
approximate (4I to an arbitrarily high degree of cer- 
tainty with an appropriate choice of ~p for each pro- 
cessor p. 

A system satisfying (3) and (4) can be modeled as 
a synchronous system with a clock cycle time of 
A __--max{A~} + 8, where ~ is a function of the 

P 
maximum rate of drift between the processors' clocks. 
This observation follows directly from the results in 
[LM]. For simplicity we will assume a completely 
synchronous system. In one step each processor can: 

• receive an arbitrary number of messages (at most 
I from any processor); 

• change state; 
• send at most k messages; 

We take k to be 1; however, the particular choice of k 
is irrelevant provided the sending of multiple messages 
is not assumed to be atomic. We assume that failed 
processors do not recover during the execution of a 
transaction. 

2 .2  C o m m i t m e n t  P r o t o c o l s  

Transactions are decomposed into subtransactions, 
which are then distributed to participating processors 
for execution. Commitment of a subtransaction is 
rarely automatic, rather, each processor is given the 
opportunity to vote ("accept" or "reject") on its sub- 
transaction. Rejection may occur for a variety of rea- 
sons, for example, the subtransaction may deadlock 
with other tasks, or a requested item may simply not 
be available. Also, a processor may fail before voting, 
and this is normally interpreted as an implicit 
"reject." 

IAn end-to-end message dek3y is the elapsed time between the  
sending of a message by an application on one processor and the re- 
ceipt of that message by the application on another processor. 
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A commit rule governs when a transaction may be 
ommitted, and it is a function of the votes. A fre- 
uently used rule, assumed herein, is unanimity: any 
implicit or explicit) vote to reject causes abortion. 

Subtransaction processing proceeds in well-defined 
teps, which we model as states of a finite state 
aachine. Processing can terminate in one of two final 
tares, abort or commit, which have the obvious 
emantics. Final states are terminal: no transitions 
manate from them. Commitment and abortion then 
re I r revers ible .  

A transaction is in an inconsistent state whenever 
ome subtransactions are committed while others are 
borted. Partial correctness for a commitment proto- 
ol is captured in the following two rules: 

CI. It preserves consistency. 

C2. It commits a transaction only if the commit 
rule is satisfied. 

'otal correctness requires that  transactions satisfying 
he commit rule actually be committed, in the absence 
f failures. 

The concepts of committable and noncommittable 
~ates are crucial to the understanding of nonblocking 
rotocols. The occupancy of a committable state 
nplies the satisfaction of the commit rule. The corn- 
lit state is obviously a committable state; whereas 
~e abort state is not. In addition to partial correct- 
ess, nonbloeking protocols satisfy the rules given 
elow [$82]. p is an arbitrary processor. 

NI. p commits only if every nonfailed processor 
occupies a committable state. 

N2. p aborts only if every nonfailed processor 
occupies a noncommittable state. 

'he committable and noncommittable states of a pro- 
.~ssor are specified a priori in the protocol. 

• M e s s a g e  C o m p l e x i t y  

We begin by proving the lower bound. 

L e m m a  1 ( i n fo rma l  vers ion) :  Let P be a 
(blocking or nonblocking) protocol satisfying 
the consistency condition C1 and the commit 
rule C2, and let p be an arbitrary processor in 
P .  If 1 is a failure-free instance of P resulting 
in commitment of a transaction, then for all 
proccssors q ~ p there must be a path of mes- 
sages from p to q. In other words, a certain 

amount of information must be transmitted 
explicitly from p to each other processor. 

Let I require time t. We construct the message 
graph G ~- (V,E), corresponding to instance I .  The 
vertex set, V, is a grid of t + 1 columns and n rows. 
A vertex is specified by a pair of grid coordinates. 
Column 0 represents the processors before the vote, 
and in general column i represents the processors at 
time i. We let E -~ Em ~.J E,,  where Era; the set of 
message edges, represents the flow of information 
between pairs of distinct processors, and the row 
edges, Er, represent the (trivial) flow of information 
from processors to themselves. More formally, 

E m ---- {< (p , i ) , ( q , i+  1)> I p writes to q at time i }, 

Er = {<(p,i) , (p, i+ 1)> Vp,Vi: 0 _~ i < t}. 

The edges are directed. 

Defini t ion:  An (n,m)-network is a directed, 
acyclic graph with n inputs (vertices of inde- 
gree 0) and m outputs (vertices of outdegree 0). 

Defini t ion:  An n-distributor is a (1,n)- 
network in which there is a path from the input 
to each of the n outputs. 

Fix a processor p satisfying the conditions of the 
lemma, and let GIp ) be the directed acyclic subgraph 
of G rooted at (p,0). 

C la im  1 (Formal version of lemma 1): G(p ) 
is an n-distributor. 

Proof: We define the coloring function, 
C: V ---, {red, blue} by 

red if (r,i) e G(p) 
C((r,i))-~ blue if ( r , i )  ¢ G(p) 

The coloring is extended to edges by coloring 
each edge according to the color of its source. 
Edges from red vertices are red, edges from 
blue vertices are blue. The red subgraph of G 
is exactly G(p). A message represented by a 
red (blue) edge is called a red (blue) message. If 
(r,i) is in G(p ) then every (r,j), i <_ j ~_ t, is 
also in G(p). Thus, row p is completely red. 
Every other row of the grid is initially blue, 
and remains blue until it is reached by a red 
edge. From that  point on the row is red. 

Let  us assume that  G(p) is not an n- 
distributor. Then there is a nonempty set of 



processors, Q, such that  for every q in Q, 
(q, t )  ¢ G(p). Then for each q E Q, every 
edge incident on row q is blue, so the entire 
row is blue. 

We now construct a run in which p fails 
before voting (an implicit "reject"),  but ~he 
processors in Q receive exactly the messages 
they receive in instance I.  For each processor 
r, let red(r) denote the least i for which ( r , i )  
is red. We say processor r is blue until red(r), 
after which it is red. Consider the run in which 
every processor r fails immediately after it 
sends its last blue message. At any instant, the 
state of a blue processor in the bad run is 
identical to its state at the corresponding 
instant of I,  so it sends exactly the same mes- 
sages in both runs. Whether a processor has 
failed (in the bad run) or turned red (in I),  it 
does not write to processors in Q. Thus, a 
nonfailed processor cannot distinguish the good 
run from the bad on the basis of messages 
received or messages not received due to failure 
of the sender. In particular, the processors in 
Q can never distinguish the good run from the 
bad. By assumption, all processors commit the 
transaction in instance I. The processors in Q 
must therefore commit  in the bad run, even 
though the commit rule is not satisfied, violat- 
ing C2. [] 

Def in i t ion :  An (a ,b )-distributor is an (a,b)- 
network in which each input induces a b- 
distributor. 

C o r o l l a r y  1: Let  P be any,protocol  satisfy- 
ing the conditions of consensus and unilateral 
abort, and let I be a failure-free instance of the 
protocol resulting in commitment.  Then the 
message graph corresponding to I is an (n,n)- 
distributor. 

P r o o f :  Immediate from n applications of 
lemma 1. [] 

N o t a t i o n :  Let  IS[ denote the cardinality of 
S, for any set S. 

Coroffilary 9." l .nC(p)l n - I. 

P r o o f :  By lemma 1, ( r , t )  E C(p),  for all pro- 
cessors r .  If r ~ p then there is at least one 

edge in G(p) incident on row r and originating 
in some row q ~ r .  Em is precisely the set of 
messages between distinct rows, so 
rE .  r l  G(p)I is at least ]{r ] r P}]  = . - 1. 
[] 

L e m m a 2 :  Let  i be in the range 1 ~ i ~ n, 
and let S be a set of i distinguished processors, 
without loss of generality, S --~ {Pl, . . . ,Pi}.  
Let  M be the set 

M---- U (Era ['7 G(pj)). 
pi~s 

Then I M I  _> n + i - 2. 

P r o o f :  The proof is by induction on i, the 
cardinality of S. For the basis, i ~ 1, the 
proof is immediate from corollary 2. 

For i ~ 2, assume the lemma holds for 
i - 1 and let S be as in the s ta tement  of the 
lemma. We assume, for the sake of contradic- 
tion, t h a t l M  I ~  n + i - 3 .  

It is not hard to show the existence of a 
processor p E S, and message edge e E 
(G(p)  f7  Era) such that  V f E  S - {p}:  
e ~ G ( f  ). Tha t  is, p sends the message 
corresponding to e before p is reached by any 
of the other processors in S. Fix any such p 
and e, and let S I - ~ S - { p } .  Let  M ~ be 
defined analogously to M: 

M '  ,iUs ' (E,( '~G(pj)) .  

Then e ~ M I. By the induction hypothesis 
M I ~ n +  ] ] _  i - 3 .  Since M I is properly con- 

tained in M, IM'] <_ ]M[- 1. By the assump- 
t i o n o n [ M l , ] M l [ i s a t m o s t n  + i - 4 ,  a c o n -  
tradiction. [] 

T h e o r e m  1: Any commitment  protocol satis- 
fying the consistency condition C1 and the 
commit rule C2 requires at least 2(n-1)  mes- 
sages to commit a transaction in the absence of 
processor failures. 

P r o o f :  Let  i ---- n in the proof of lemma 2. D 

Theorem 1 provides a lower bound for both blocl 
ing and nonblocking protocols. While blocking prot 
cols achieving the lower bound are well-known, it h~ 
been previously conjectured that  this bound was t( 
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weak for nonblocking protocols. This, however, is not 
the case. 

T h e o r e m  2: There exists a nonblocking com- 
mitment  protocol requiring exactly 2n - 2 mes- 
sages in the presence of no processor hilures.  
The time required is 2n + 1, regardless of the 
number of processor failures. 

P r o o f :  

Protocol A, which appears in the appendix, 
achieves the 2n - 2  message bound. It has three 
phases: voting, reporting, and confirmation (it 
assumes that  subtransactions have already been 
distributed to processors). In the voting phase 
(step 0) processors send their vote to a dis- 
tinguished processor, P0, which does nothing 
until step 1. During step 1 the distinguished 
processor receives the votes, casts its own vote, 
computes the result, and begins the reporting 
phase, sending the result to processor p~. If P0 
should remain operational throughout this 
phase, it sends the result of the vote to each Pi 
at step i. Upon receipt of this message (at step 
i+  1}, p~ enters the abort state or a committ-  
able state (not a commit state), according to 
result of the vote. 

If P0 should fail during the reporting phase, 
and Pi (i > 1) is operational at step i +  1, then 
Pi will become aware of the failure because its 
anticipated message will not arrive. If i ~> 1 
then Pi requests help from each p j,  for 
1 <  j ~ i, writing to pj at step j +  i, until it 
receives a response. If, in addition, all these 
processors fail before sending to Pi, then Pi is 
never informed of the result of the vote, and 
consequently enters an abort state. If P0 fails 
before sending to p~, then p~ enters an abort 
state at step 2. 

If pj ever receives a request for help from 
Pi, i ~> j ,  it does so at time j +  i +  1. Whether 
or not PS receives a distress message from Pi, if 
PS has not failed, then at step j +  i +  2 it knows 
that  Pi has either failed or knows the result of 
the vote. If pj is committable, then, since 
i < n - l ,  PS may enter a commit state at the 
end of step j +  n +  1. Further,  in claim 3 we 
prove that  pj receives no requests for help 
before step 2j  + 2; thus, PS is active in the 
confirmation phase of the algorithm during 
steps 8, for 2 j +  2 ~  8 "< n + j +  1. 

C l a i m  2: If p~ has not failed by the end of 
step 2i + 1 then it has decided (abort or com- 
mit }. 

P r o o f :  Immediate from the algorithm. D 

C la im  3: Pi receives no request for help 
before step 2i + 2. 

P r o o f :  A processor pj only requests help from 
processors p~ for k < j .  Let  j and i, j ~> i, 
be fixed. If Pi requests help from Pi it does so 
at step i + j ,  and p; does not receive the mes- 
sage until s t e p i +  j +  1. S i n c e j  ~ i t h i s i s  
at least 2i + 2. ra 

Once decided, processors remain that  way or fail, 
and failed processors do not recover during execution 
of the transaction. This, together with the order in 
which processors are polled and the time at which a 
given processor begins polling, guarantees that  if Pi is 
undecided so are all Pt, k > j ,  for which vote(k) 
---- commit.  This justifies requesting help only from 
processors with smaller indices. 

C l a i m  4: The algorithm runs in 2n + 1 steps. 

P r o o f :  Each p; acts according to decision(i) 
at step n +  i +  1. When i-----n-1 this is 2n. 
Since the algorithm begins with step 0 we have 
a total of 2n + 1 steps. I:1 

C l a im  5: In the absence of processor failures 
the algorithm requires exactly 2(n-1)  messages 
to commit a transaction. 

Proof:  During step 0 each of n-1  processors 
Pi sends its vote to P0- By assumption P0 does 
not fail, hence at step i it reports the result of 
the vote to processor Pi, which receives the 
message at step i +  1, as expected. Thus each 
processor sends exactly one message except P0, 
which sends n - l ,  for a total of 2(n-1) mes- 
sages, ra 

This completes the proof of theorem 2. D 

Our improvement over the conjectured lower 
bound is in the third phase, wherein explicit 
confirmation messages are omitted at no cost in time. 
This technique is used in an identical fashion in [CD], 
and a similar idea appears in [L]. Although the initial 



phase of distributing the subtransactions was not 
counted, this can be achieved in conjunction with the 
voting phase with no eztra messages. 

4 .  T i m e  C o m p l e x i t y  

Information can be transmitted by a "nonmes- 
sage": in the absence of failures, the lack of a distress 
message within a bounded time guarantees the satis- 
faction of the nonblocking rules N1 and N2. There- 
fore, the message bandwidth of nonblocking protocols 
can be reduced to that  of blocking protocols. A com- 
plementary question is whether the execution time of 
nonblocking protocols can be reduced to tha t  of block- 
ing protocols, possibly at the expense of more mes- 
sages? 

The answer is negative. In fact, the fastest non- 
blocking protocol requires roughly twice as much time 
as the fastest blocking protocol. 

L e m m a  3: Any commitment  protocol of size 
n requires time log2n. 

P r o o f :  By lemma 1 each processor must 
explicitly reach each other processor, and the 
number reached at most doubles at each step. 
The result follows by an easy induction on 
time. Q 

T h e o r e m  3: Any nonblocking commitment  
protocol of size n requires time at least 
2log n - 31oglogn - O(1). 

P r o o f :  For simplicity, if the commit  rule is 
satisfied, then a nonfailed processor p is com- 
mittable at step s if and only if for all proces- 
sors q, (p,r) E G(q), i.e., if and only if it has 
been reached by all processors. 

Let  P be a time-optimal nonblocking proto- 
col and 1 an instance of P resulting in commit- 
ment and requiring time t (we can show 
t <~ 21og2n). There exists a step in which at 
least ni t  processors become committable.  Le t  
step r be such a step, M the set of processors 
becoming committable at r ,  and S the proces- 
sors not in M. Let  N---- S ~J M. 

C la im:  If [M] _~ 3, then the elements of M 
are not in commit  states at the end of step r.  

J u l t l f l e a t l o n :  Le t  z, z E M. Since z 
becomes committable at r it must receive at 
least one message sent at r - l .  At step r,  the 
only processors tha t  know the message was sent 
to z at r - I  are the sender and the receiver. 
Thus, z can know at r tha t  the message was 
sent only if z sent it. Since z can send to at 
most one processor during step r - l ,  there is at 
most one processor {other than z} in M known 
by z to be failed or committable at the end of 
step r and before step r +  1. r3 

Let  k steps suffice to move the elements of N to 
commit  states. At most nlk+ 1) messages can be 
received in the k +  1 steps r,r+ 1, . . . , r+ k of 1. Sup- 
pose, for the sake of argument,  that  all these messages 
are received by processors in M. Then there exists 
some processor, p E M, such that  p receives at most 
n(k+ I ) / [M[ messages during these k+  I steps. Let  
c = n/~l] and let d -~ c(k+ 1). Then p receives at 
most d messages in steps r through r + k. 

Let  G be the message graph corresponding to 
instance I,  as in the proof of lemma 1. For all ver- 
tices v E G let D(v) denote the directed, acyclic sub- 
graph of G rooted at v. We examine the subgraph of 
G induced by columns r - 1  through t.  Let  
G(p)-----D((p,r)). Let  H{p) denote the subgraph 
induced by the processors sending to p a~ or after step 
r - l o f l .  Thus, 

((x,i-1),(p,i))E G A i __- r or 
(z , i )  E H(p) ¢* (z,i) E D(v) for some v E H(p) 

From I we will construct a run J,  in which some 
arbitrary p E M remains operational but  does not 
become committable at r.  Let  F(p) be the subgraph 
of G induced by processors sent to by p in I .  Tha t  
is, 

p sends t o z a t i - l i n  Y A i > r 

(z,i) E F(p) ~ or (z,i) E D(v) for some v E F(p) 

Note that  although d~efined by the behavior of p in J ,  
F(p) is a subgraph of G, which corresponds to 
instance 1. 

Notat ion:  Let  FGH(p) denote the union of 
F(p ), G(p ), and H(p ). Tha t  is, 
FGH(p ) -~- F(p ) 0  G(p )UH(p ). 

Specification o f  J: 
just prior to step 
denoted f aillz ). 

For all x ~ p ,  x fails 
#i  { ( z , i ) E  FGH(p)}, 



C l t d m :  If (z , i )  ¢ FGIt(p) then the s tate  of z 
at i in I is the same as the s tate  of z at  i in d. 

J u s t i f i c a t l o n :  The initial s ta te  of z and the 
messages sent and received by z in steps 0 
through i are identical in the two runs. O 

C o r o l l a r y :  For  all 
(z,/) (7 rGn(p)in run J. 

processors z,  

P r o o f :  Suppose not. Let  q be any processor 
such tha t  (q,t) ~ FGH(p). In run I q com- 
mits its subtransaction by step t .  By the 
claim, if (q,t) ~ FGH(p) then q still cannot  
distinguish the two runs at t. Thus q commits  
in J as well, violating rule N1. r3 

Let  a ----- max {fail(z)} - r and let z fail at  
St 

r + a. Then z cannot distinguish I from J 
before r + a, so z cannot  commit  in I before 
t ime r + a, or it will do so erroneously in Y. 
Therefore, any failure-free run resulting in com- 
mi tment  requires t ime at  least r + a.  Since 
t = r + k w e h a v e  k > a. 

Let  the function f{i) bound the size of 
FGH(p) at t ime r +  i. At the end of step r 
runs I and J differ only in the states of p and 
processors sending to p at  r -1 .  Since at most  
d processors send to p at or after step r - I  of I ,  
at  most  d can possibly write to p at step r -1 .  
Thus, f ( 0 )  ----- d + 1. 

Each of these processors can send at most  
one message during step r of I .  Further ,  p can 
send exactly one explicit message in step r of 
J .  Together  the processors in FGH(p) can 
send a total  of f (0 )  implicit messages and 1 
explicit message in step r of J ,  none of which 
are received until step r +  1. Thus, at  the end 
of step r +  1 the two runs differ in the states of 
at most  2f(0)  + 1 processors, so 
f (1 )  = 2(d+  2) - 1. In general, 

f( i)  = 2f(i-l) + I 
-~- 2(2i- ' (d-I - 2 ) -  1) 

= 2;(d+ 2)-  I. 

The least a such that  N = FGH(p) at the end 
of step r + a in J satisfies: 

2"(d+ 2) -  I > n 

=* 2" (d+  2) > n 

2 ° > n/(c{k+ 1)+ 2) 

2" > (nlc)l(k+ l +  21,) 
=* a > log~MI)- log(k+ 1+ 21c). 

But c > 1 and ]M] > n/i ,  so 
ot > log(nit ) - l o g ~  + O(1)), whence, 

(1) a . . .  l o g ( n i l ) -  loglog n - 0 ( 1 } ,  

since k < t < 21ogn. 
How large is r? Every processor must  expli- 

citly reach every commit table  processor, and 
these number  at  least nit  by the end of step r 
of  I .  T h u s ,  r > log2(n/t), and 

(2) l o g ( n / i ) +  o~ < r + Oe__< r + k ~--- t. 

From the bound on t, and using (1) as an 
approximation to a,  we rewrite (2) to obtain 

21ogn - 31oglog n - O ( 1 )  < t. 

El 

5. A n  O b s e r v a t i o n  on  Eff le lent  Imple -  
m e n t a t i o n  

Nonblocking protocols inherent incur more end-to- 
end message delays, and these delays are often 
significant when compared to local processing time. 
Since transactions lock the objects they touch (or 
reduce their accessibility by similar means), nonblock- 
ing transactions render objects inaccessible for a 
longer period of time. This, not the increase in mes- 
sage bandwidth or in local processing costs, is the real 
cost of tolerating arbi trary processor failures. On high 
contention items, reduced availability translates to 
reduced throughput.  

It  is the t ime during which accessibility of shared 
objects is restricted tha t  is important ,  not the elapsed 
t ime of transaction execution. Historically, these two 
t ime intervals have been co-extensive, however, this 
may not be necessary. If the interval of restricted 
accessibility is reduced, the execution of conflicting 
transactions can be partially overlapped, thus 
ameliorating some of the most  significant expense of 
fault-tolerance. A closer examination of Protocol A, 
especially a bet ter  understanding of its intermediate 
states, suggests tha t  such a reduction can be achieved. 



Figure 1 depicts the subtransaction states occupied 
for both types of protocols (blocking and nonblock- 
ing). States are shown in chronological order (left to 
right) for a committed transaction. (While not every 
subtransaction need occupy all of the illustrated 
states, at least one must.) The nonblocking subtran- 
suction contains an additional state, the intermediate 
committable state, whose existence is dictated by the 
nonblocking rules N1 and N2. For Protocol A, the 
length of the committable state is exactly n A. 

Protocol A exhibits an important property: once 
the reporting phase begins, a committable transaction 
is committed so long as a single processor in the com- 
mittable state remains operational. This can be res- 
tated as a local condition for each processor: once 
committable, the processor will eventually commit the 
transaction or fail. Hence, for each processor p, the 
predicate committable(p) V failed(p} is montonic. 
Protocols exhibiting this monotonieity are known as 
progressive protocols {$811. The probability of abort- 
ing a transaction when using a progressive protocol 
decreases rapidly as more and more processors are 
made aware of its committability. By studying the 
communication topology of such a protocol, the proba- 
bility function for abortion can be estimated and, 
more importantly, the instant that abortion becomes 
impossible can be determined. This idea was 
exploited in eliminating the final "commit" messages 
in the above protocol. 

Consider now two subtransactions executing on the 
same processor and in competition for a shared data 
object. Normally, the subtransactions would be 

executed serially; the second transaction waits for the 
lirst to commit before starting, as shown in Figure 2a. 
Alternatively, subtransaction processing could be par- 
tially overlapped, by employing the progressive stra- 
tegy. The second subtransaction reads the first's com- 
mittable (but not committed) results and then delays 
voting until commitment of the read results is certain 
(hA in Protocol A). The situation is depicted in Fig- 
ure 2b. 

The ordering of events ensures: 

(1) transition of the first subtransaction into the com- 
mittable state precedes initiation of the second 
transaction. 

(2) commitment of the first precedes voting of the 
second. 

Referring again to Figure 2b, the second subtran- 
suction must be rejected if the first ultimately aborts. 
However, once in a committable state, the first aborts 
only if the host processor fails, and in this case, the 
second subtransaction would independently and impli- 
citly be rejected by the mechanics of transaction pro- 
cessing. Hence subtransaction abortions may be corre- 
lated but never causal: the second transaction is never 
rejected solely because it read uncommitted results. 
Therefore, throughput can only increase by adopting 
this scheme. 

We have discussed only subtransactions on a single 
processor. This technique can sometimes be extended 
to subtransactions executing on different processors. 

l initial 
(distribution) 

voted 
(precommit) 

commit 

a. A blocking subtransaction. 

initial 
(distribution) 

(pr eVcOotmedmit ) I  committable I commit ] 

b. A nonblocking subtransaction. 

Figure  1. Subtransaction states when blocking and nonblocking protocols are used. Popular alternative names 
for states are given parenthetically. (State occupancy times, as indicated by the length of intervals, are not 
drawn to scale.) 
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8! [ initial [ voted [ 

82 

committable [ commit [ 

[,initial I voted 

a. normal nonoverlapped execution 

[ committable [ commit [ 

81 I initial [ voted committable commit I 

s2 [ initial voted ] committable I commit [ 

b. overlapped execution for progressive protocols 

F igure  2. 
Processing the conflicting subtransactions 81 and 82. 

he major network requirement for the extension is 
Lat processor failures be detected and failure infor- 
ation be propagated in a timely fashion. 
)ecifically, the elapsed time between the failure of 
'ocessor i and the receipt of the failure notification 
, processor j must be bounded. In the above exam- 
e, if the two subtransactions were at different pro- 
ssors, then the second would have to delay voting an 
Iditional F time units, where F is the maximum 
~lay for the second host to learn of the failure of the 
st. For sizable subtransactions, the initial phase is 
mputationally intensive and may well exceed the 
quired delay time. 

. D i s c u s s i o n  

We have proposed, however, a scheme for intro- 
ducing more parallelism into nonbloeking systems; 
thus, reducing the performance penalties inherent in 
these systems. Our scheme was motivated by the 
discovery of a new protocol and a better understand- 
ing of its formal properties. Although it allows tran- 
sactions to read uncommitted data, it does not exhibit 
the undesirable properties normally found in such 
schemes, specificly, (1) it does not require additional 
message traffic between dependent transactions, and 
(2) it does not cascade aborts, in fact, transactions are 
never aborted solely because they read uncommitted 
data. To achieve these properties, properties of pro- 
gressive protocols are exploited. 

We have shown that there is no fundamental 
~'erence in message complexity between blocking 
d nonblocking protocols. This surprising result has 
legated a contrary "folk theorem" to its proper 
~ce in mythology. Moreover, the proof is in the 
rm of interesting new nonblocking protocol. 

On the other hand, there appears to be a funda- 
total difference in the execution times required by 

different protocols. This is disappointing since it 
mifests itself as a decrease in throughput of transac- 
,ns systems using nonblocking protocols. The extent 
the degradation is unknown since no systems using 
.'h protocols have been measured, but it could be 
~stantial. 
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A P P E N D I X  

B. Protoco l  A.  

Let P0 be a distinguished processor and let tl 
other processors be numbered from 1 to n - I. Eax 
Pi, i > 2, behaves as follows: 

i f  (step - -  o) - - .  

If  vote(i) ---- abort -* {unilateral abort] 

decided(i), decision(i):---- true, abort; 

0 v o t e ( i ) ~  commit -* decision(i) := fa 

f l  

Send vote(i) to P0; 

1 < step ~_ i ~ skip; 

i < step < n +  i 

i f  (--,decided(i))--* 

If (decision message received) --* 

decided(i) : =  true; 

decision(i) : =  message; 

0 (no decision message received) --* 

j : ~  s t e p - i ;  

If (j < i ) - - ,  

write "help" to p j; 

II (j  = i)--* skip; 

(yff i  i + 1)--* 

decided(i) :---- true; 

decision(i) :---- abort; 

f l  

f !  

I] (decided(i) A "help" message received) 

{message is from Paep-i-1} 

send decision(i} to Paep-i-I 

n (decided{i) A no "help" message receiv, 

{P~,p-i-i failed or decided} skip; 

f l  

step = n+  i+  1 -* act according to decisiol 

step > n + i + l  --* skip 

f l  

The algorithm for p 1 is similar, but if p ~ does not hq 
from P0 during step 2 it knows the result of the v, 
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has been lost, and can decide to abort at that time. 

The algorithm for P0 is simple: 

i f  step ~ 0 --* skip; 

step ~ 1 

If (n-1 commit votes are received 

A vote(O)----commit) 

decision(O) :---- commit; 

D (fewer than n-1 commit votes received 

V vote(O)= abort) 

decision(O) : =  abort; 

f l  

f l  

If  1 ~ step < n --* write decision(O} to Psttt; 

D step ~_ n ~ skip; 

f l  
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