
J. LOGIC PROGRAMMING 1984:1:35-50 35

ON THE SEQUENTIAL NATURE OF UNIFICATION

CYNTHIA DWORK,* PARIS C. KANELLAKIS,** AND
JOHN C. MITCHELL***

D The problem of unification of terms is log-space complete for P. In deriving
this lower bound no use is made of the potentially concise representation of
terms by directed acyclic graphs. In addition, the problem remains complete
even if infinite substitutions are allowed. A consequence of this result is that
parallelism cannot significantly improve on the best sequential solutions for
unification. However, we show that for the problem of term matching, an
important subcase of unification, there is a good parallel algorithm using
O(log*n) time and n’(l) processors on a PRAM. For the O(log*n) parallel
time upper bound we assume that the terms are represented by directed
acyclic graphs; if the longer string representation is used we obtain an
O(logn) parallel time bound.

1. INTRODUCTION

Unification is an important step in resolution theorem proving [16] with applications
to a variety of symbolic computation problems. In particular, unification is used in
PROLOG interpreters [3], type inference algorithms [12], and term rewriting systems
[8]. Many symbol manipulation problems are inherently difficult and thus do not
have efficient solutions. Theorem provers and PROLOG interpreters do not always
give us the answers we want fast enough. One way to combat the difficulty of these
problems is by coordinating many processors to solve a single problem instance by
working on several subproblems in parallel. Although there are a number of ways to
introduce parallelism into interpreters [17] and theorem provers, unification is a
prime target since it is the most commonly repeated operation in these tasks.
However, our analysis suggests that parallel unif%zation algorithms will not perform

*Supported by a Bantrell Fellowship.
**Supported partly by NSF grant MCS-8210830 and partly by ONR-DARPA grant NOOO14-83-K-

0146, ARPA Order No. 4786.
***Supported by an IBM Fellowship.
Address correspondence IO Paris C. Kanellakis, Brown University, Box 1910, Providence, RI 02912.

Wlsevier Science Publishing Co., Inc., 1984
52 Vanderbilt Ave., New York, NY 10017 0743-1066/84/$03.00

36 C. DWORK ET AL.

significantly faster than the best sequential algorithms known [l], (e.g., [15] runs in
linear time). We show that, unless P c NC, an unlikely twist of complexity theory,
no parallel algorithm for unification will run in time bounded by a polynomial in the
logarithm of the input size, and using a number of processors bounded by a
polynomial in the size of the input. We use the PRAM of [5] as our model of parallel
computation, although we could, just as well, have used any other “reasonable
parallel model” [111.

Informally, two symbolic terms s and t are unifiable if there is some way of
substituting additional terms for variables in s and t so that both become the same
term. All occurences of a variable x in both s and t must be replaced by the same
term. For example, the terms f(x,x) and f(g(y),g(g(z))) may be unified by substitut-
ing g(z) for y and g(g(z)) for x. A unification problem like “unify f(ti, t 2) and
f(t s, t 4)” may be decomposed into two subproblems “ unify t, and t 3” and “ unify t 2
and t4”. However, these two problems cannot be solved entirely separately in
parallel. If some variable x occurs in both t, and t,, for example, then the solutions
to the subproblems must be coordinated so that both substitute the same term for x.

There are several variations of the unification problem. For example, a type
inference algorithm may construct labeled graphs which represent terms that must
be unified. An acceptable result of unification, in this case, may be a labeled graph
with a cycle. Labeled graphs with cycles represent types defined by recursion [14], or,
if interpreted as terms, represent “infinite terms”. Thus one natural, unrestricted
version of unification is to allow “infinite terms” to be substituted for variables.
Using the “infinite term” f(f(f . . .)), we can unify x with f(x), something we could not
do otherwise. Unrestricted unification also appears in many PROLOG interpreters;
those omitting the occur test [3]. Another variation on unification is the special case
in which the labeled graphs are from a class of treelike directed acyclic graphs
(which we call simple dugs). The complexity of unification on simple dags is
precisely the complexity of unification on symbolic (string) representations of terms,
as opposed to the complexity as a function of the size of more concise graph
representations. For this case it was known that unification, without “infinite
terms”, is co-NLOGSPACE-hard [ll]. This did not exclude the possibility of parallel
algorithms; moreover, no lower bound was known for unrestricted unification.

We show that all of the above variants of unification are log-space complete for P
[l, 6,7, lo], and hence unlikely to have nice parallel solutions. The nondeterministic
log-space test for ununitiability in [ll], which could have led to a 0(log2n) parallel
time solution, is sufficient, but unfortunately not necessary [see Figure 3(b) for a
counterexample to this test].

One important special case of unification can be solved quickly in parallel. This
problem, called term matching, arises in term rewriting. A term s matches a term t if
t is a substitution instance of s. The rewrite rule I --, r may be used to rewrite a term
t whenever I matches t [S]. We show that matching can be accomplished in log’-time
on a PRAM, using a polynomial number of processors. Our algorithm combines
parallel transitive closure of a directed acyclic graph, with parallel computation of
connected components of an undirected graph [9,2]. Also, matching is in NLOG
SPACE, and for simple dags it is in DLOGSPACE.

Following the definitions presented in Section 2, we will discuss labeled graph
unification in Section 3, unitication for simple dags in Section 4, and term matching
in Section 5.

ON THE SEQUENTIAL NATURE OF UNIFICATION 37

2. DEFINITIONS

2.1 Terms and Dags

Let V be an infinite set of variables x,y,z,xl,. . . and F an infinite set of function
symbols f, g, h, f,, . . . We assume that Y and F are disjoint. Each function symbol f
has a tixed arity, a nonnegative integer a(f). A function symbol g E F with a(g) = 0 is
called a constant. The set T of terms is defined inductively by:

a variable x E V or constant g E F is a term, and

if f E F and t,, . . . , ttin are terms, then f(ti,. . . , taco) is a term.

Terms may be represented using directed acyclic graphs with labeled nodes and,
possibly, multiple labeled arcs. A labeled directed graph is a finite directed graph G,
such

1.
2.

3.

that:

every node v of G has a unique label, denoted label(v), with label(v) E VU F,
for each x E V, there is at most one node v with label(v) = x, and it has
outdegree 0,
if a node v has label f E F, with arity a(f) 2 0, then it has outdegree a(f), and
the arcs leaving it are labeled 1,2,. . . , a(f), respectively.

If there is an arc labeled i from node u to node v, then we say that v is the ith son
of u. A labeled dug G is a labeled directed acyclic graph. The leaves of G are the
nodes of outdegree 0; note that a node v is a leaf iff label(v) is either a variable or a
constant. The height of a node v of a dag G is the length of the longest path from v
to a leaf. A root of a dag is a node of indegree 0.

If G is a labeled dag, we can associate a term t v with any node v of G. We say
that v represents t,. The term t v is defined by induction on the height of v:

if v is a leaf, then t, = label(v),

if v has sons v i,.. .,vk, and label(v)= f, then t, = f(t “,,..., tq).

The definition of labeled dags above ensures that t, is always a well-formed term.
If G is a labeled directed graph, then we can associate an injinite term t v with each
node v of G by a similar definition. Since we only consider finite graphs, all terms
represented by nodes of a labeled graph G are finite iff G is acyclic. If G is a labeled
dag with only one root r, then we say that G represents the term t,.

The representation of terms by labeled dags is illustrated in Figure 1. The terms
g(x) and x are represented by the two nodes of the labeled dag in Figure l(a). Both
roots in Figures l(b), l(c) represent f(f(x,x), f(x,x)). The terms h(x, x, y, z) and

h(g(y), g(g(z)), g(g(gi)), g(g ,)) are represented by the roots of Figure l(d). In Figure
1, we assume that a(f) = 2, a(h) = 4, a(g) = 1, and a(gi) = a(g,) = 0.

Although each node of a labeled dag determines a single term, the converse is not
true. A term t can be represented by several different dags. In particular, if t is a
term with several occurrences of a subterm t,, then we may use a separate subdag for
each occurrence of t, in t, or use one subdag for all occurrences, cf. Figures l(b) and
l(c). Since a repeated subterm need be represented only once, it is possible to
represent some very long terms with relatively small labeled dags. For example, the
dag in Figure l(e) with n nodes represents a term with 0(2n) symbols. We define a
class of labeled dags which are no more concise than terms.

38 C. DWORK ET AL.

2

(4

fs&++ l ** +
O-9

FIGURE 1. Labeled dags.

lgg,

/i/i

1 2

X Y 1

(f)

A simple dug is a labeled dag G such that the only nodes of G with indegree
greater than 1 are leaves. Thus every node of a simple dag that is not a leaf or a root
must have indegree 1. Given a term t (in the form of a string of symbols), we can
construct a simple dag representing t in linear time, using only logarithmic space.
Similarly, given a simple dag G with a single root, we can write out the term
represented by G in linear time and logarithmic space. Moreover, the size of a simple
dag, measured in number of nodes and arcs, is within a constant multiplicative
factor of the length of the term it represents.

2.2 Unification and Term Matching

Unification and term matching are both problems that are solved by computing
substitutions. A substitution u is a mapping from variables to terms such that
a(x) = x for all but finitely many x E K The action of a substitution u on a term t,

ON THE SEQUENTIAL NATURE OF UNIFICATION 39

written u(t), is the result of replacing each variable x in t by a(x). Thus

e(f(t1,. . ., tk)) = f(dh>, . * * 9 u(t k)). In particular, any substitution u maps every
function symbol to itself. We use = to denote syntactic equality of strings.

Two terms s and t are unifiable if there exists a substitution u such that
u(s) = u(t). A term s matches term t if there exists a substitution u with u(s) = t.

In some instances we may wish to allow substitutions to map variables to infinite
terms. If we allow these more general substitutions, then we have the unrestricted
unification and unrestricted matching problems. Unrestricted unification differs from
unification [e.g., in Figure l(a) x and g(x) are ununifiable but unrestricted unifiable
with u(x) = g(g(. . .)), an infinite term]. Unrestricted matching and matching are the
same; note that we only consider substitutions that involve infinite terms, not
unification of infinite terms s and t.

If u(s) = u(t), then u is called a unifier for s and t. A substitution u is more
general than a substitution r if there exists a substitution p with r = p 0 u. In [16], it
is shown that whenever terms s and t are unifiable, there is a unifier u for s and t,
which is more general than any other unifier. This is called the most general unifier
(mgu) for s and t. The mgu is unique up to renaming of variables. For example,
consider the terms s = f(x, y) and t = f(g(y),g(z)) re p resented in Figure l(f). These
terms are unifiable, with mgu u(x) = g(g(z)), u(y) = g(z), and u(z) = z; then u(s) =

e(t) = f(g(g(z)), g(z))*
Two terms s and t are unifiable if a certain kind of relation, can be constructed on

the nodes of a labeled dag representing s and t. If u and v are two nodes of a labeled
dag and if ui is the ith son of u and vi the ith son of v, for some i, then ui,vi are
corresponding sons of u,v. A relation R on the nodes of a labeled dag is a
correspondence relation if, for all U, V, u i, Vi:

if URV then u iRvi whenever u i, vi are corresponding sons of u, v.

A correspondence relation that is also an equivalence relation will be called a c-e
relation. A relation R is homogeneous if label(u) and label(v) whenever uRv are not
different function symbols. An equivalence relation R on nodes of a labeled directed
graph G is acyclic if the R-equivalence classes are partially ordered by the arcs of G.
In [15], acyclic, homogeneous c-e relations are called valid equivalence relations.
These relations characterize unifiability.

Proposition I. [14] Let u and v be nodes in a labeled dag G. Then t, and t, are
unrestricted uni$able if there is a homogeneous c-e relation R, with uRv. Similarly,
t u and t, are unifiable i’ there is an acyclic, homogeneous c-e relation R, with
uRv.

If R is an acyclic, homogeneous c-e relation on a labeled dag G, then the reduced
graph formed by treating each equivalence class as a single node is again a labeled
dag. If u and v are the only two roots of G, and uRv, then this reduced graph with a
single root represents a term s that is a substitution instance of both t u and t “. If R
is the minimal c-e relation with uRv, then s = u(t .) = u(t .), where u is the mgu of t u
and t, [15]. We can extract u from R by taking u(x) to be the term in the reduced
graph that is represented by the node formed from the equivalence class of x. We
can therefore consider the reduced labeled dag as a reasonable representation of a
unifier for two terms. This representation of a unifier has the virtue of being

40 C. DWORK ET AL.

\ compact: it is clear that the reduced graph is no larger than the original dag.
However, if we were to write out each unifier explicitly, we might end up writing out
terms that were much longer than the terms represented by the input dag. An
example in [15] shows that the length of the substitution may be an exponential
function of the length of the input terms.

As in [15], we will represent equivalence relations on the nodes of labeled dags by
adding undirected edges to the labeled dag data-structure.

Matching may be viewed as a special case of unification. Let a, be a substitution
such’ that for each distinct variable x, in the terms we are examining, u,(x) is c,, a
distinct constant symbol not appearing in these terms. It is easy to see that a term s
matches a term t iff s and u,(t) are unifiable. Another degenerate case of unification
is to determine whether two terms are syntactically identical. Of course, this is a
trivial operation on strings, but it is not quite so trivial an operation when terms are
represented by labeled dags. Clearly, s and t are syntactically equal iff u,(s) and u,(t)
are unifiable.

In summary, using the labeled dag data structure, we have the following prob-
lems:

UNIFY(G, u, v)

Input: A labeled dag G with distinguished nodes u and v.

Output: Are t u and t v unifiable? If yes, then produce a labeled dag representing
the mgu.

MATCH(G, u, v): This is UNIFY(G,u,v) with u,(t,) instead of t “.

EQUAL(G,u, v): This is UNIFY(G,u,v) with u,(t,), u,(t,) instead of t,, t,.

Of course, there is also unrestricted unification UNIFY”(G,u,v). We have a
special case of each of the above problems when G is a simple dag.

2.3 Parallelism, NC and P

For sequential computation we use the standard definitions for time, space, space-
bounded reductions, and complexity classes such as P, DLOGSPACE, NLOG-
SPACE, T(n)-DSPACE, on a Random Access Machine (RAM) [l]. We denote
log-space reducibility by I r,,s. As usual, P is the class of languages recognizable in
deterministic polynomial time. The problems UNIFY, MATCH, and EQUAL all
belong to P [13,15]. Some may be solved in logo% space, while others, those
log-space complete for P, most probably cannot.

For parallel computation we use the Parallel RAM (PRAM) of [5] as our model,
with parallel time and number of processors as the critical resources. We make use
of the parallel computation thesis, relating parallel time and sequential space, and its
proof for PRAM’s [5]:

Uk ~ ,logk(n)-parallel time-PRAM = Uk t ,logk(n)-DSPACE.

We take NC to be the class of problems solvable on a PRAM using logo%
parallel time, and nq’) processors. We try to determine whether a problem in P is
“parallelizable” (i.e., in NC) or “most probably not parallelizable” (i.e., log-space
complete for P); [l] reviews related results.

ON THE SEQUENTIAL NATURE OF UNIFICATION 41

One problem that is log-space complete for P is the circuit value problem for
monotone circuits. A monotone circuit p is a sequence (&, . . . , &,), where each pi is
either an input, an AND gate AND&k), or an OR gate ORCj, k); where for indices
j, k we have i > j > k, and the 0,l values of the inputs are given explicitly. In
addition, monotone circuits are assumed to have the following properties:

1. if pi is an input, then the index i appears at most once in /3, (fan-out I 1 for
inputs),

2. if pi is a gate, then the index i appears at most twice in /3, (fan-out I 2 for
gates),

3. & is an or-gate with one output.

The monotone circuit value problem is:

MCV = { p]p is a monotone circuit with the output value of &, = 0} .

From [6,7] we have:

Proposition 2. MCV is log-space complete for P.

3. THE COMF’LEXITY OF UNIFICATION

The general unification problem, encountered in theorem proving and elsewhere, is
to find a unifier for a set of terms. However, the general case is log-space and linear
time reducible to the special case of unifying a single pair of terms [15]. On a PRAM
this reduction can be performed in O(logn) parallel time and with O(n) processors;
it affects none of our results.

We first describe a naive unification algorithm based on the criterion of Proposi-
tion 1, and on the fact that the mgu is the minimal c-e relation [15]. The input to the
algorithm is a labeled dag G with two distinguished nodes u and v. We wish to solve
UNIFY(G, u, v). A relation @ is constructed and maintained as undirected edges in
G. The relation @ is by its representation symmetric and reflexive. In order to make
@ a c-e relation, both “correspondence” and “equivalence” must be satisfied. Setting

FIGURE 2. Illustrating naive-unification. (1) A@B. (2) CPD, C@E, H@F, L@G (propagation).
(3) INE (transitivity). (4) H@I (propagation). (5) F@I (transitivity). (6) L@J (propagation). (7)
J@G (transitivity). (8) M@K (propagation). (9) Ununifiable because M and K have distinct
labels g, and g,.

42 C.DWORKETAL.

sons equivalent, when their fathers are equivalent, is known as propagation. For @ to
be an equivalence relation we must also enforce transitivity. Having created the
minimal c-e relation @ for which L&J, we then test for homogeneity. In the
affirmative case a new labeled graph G’ can be constructed by coalescing classes of
nodes in G. Now we know that the input is at least unrestricted unifiable. If G’ is
acyclic it is unifiable.

proc naive-unification(G, u, v)

set u@v;

while (@ is not a c-e relation)do

propagation: while (t&v have corresponding sons ui, vi not related by 09) do
set ui@vi od;

transitivity: while (u@v and v&v, but u, w are not related by @) do
setu@wodorI;

if @ not homogeneous then print UNUNIFIABLE

else {coalesce equivalence classes to produce labeled graph G’)

if G’ has a cycle

then print UNUNIFIABLE BUT UNRESTRICTED UNIFIABLE

else print UNIFIABLE

Ii

fi

carp {G’ represents mgu}

In this algorithm all individual steps can be performed on a PRAM using logo%
time and nq’) processors. The difficulty arises in the outer loop, the body of which is
executed if @ is either not a correspondence, or not an equivalence relation, i.e., if
either condition inside an inner loop is satisfied. The problem is that on an input of
size n the body of the main loop might be executed Q(n) times. This behavior is
illustrated in Figure 2. The example can easily be generalized to force the n(n)
alternation between propagation and transitivity for any n.

Theorem I. UNIFY(G, u, v) and UNIFY”(G, u, v) are log-space complete for P.

PROOF. We show how to log-space reduce MCV to unifiability (for membership see
[15]). More specifically, if (Y is a monotone circuit { (Y,,,(Y~,...,(Y~}, we construct
G((u), u(a), and v((r) such that

(Y E MCV iff UNIFY(G(a), u(a), v(a)) = UNIFIABLE.

This reduction also applies to UNIFY” and is easily seen to use only log space.
The monotone circuit a can be represented as a diagram with wires, AND and

OR gates of fan-in 2 and fan-out at most 2, a special OR output gate with one
output wire, and with each input wire leading to one gate and having a 0 or a 1 value
[see Figures 3(a) and 3(b) for an example]. The input wire values combine to produce

ON THE SEQUENTIAL NATURE OF UNIFICATION 43

OR Y 1

(a)

u V
_--_________-_-_ -___-_---_---_

--,,,,--, ________

w 2

(b)

FIGURE 3. Label(u) = label(v) = h, label(w) = g, # g, = label(z); label(node of outdegree
1) = g; label(node of outdegree 2) = f; label(leaf other than w, z) = distinct variable.

values for ah other wires and the output wire in particular. The circuit has no
feedback, i.e., if the wires are viewed as arcs and the inputs and gates as nodes we
get a dag without multiple arcs.

1. Introduce two nodes u(cw), v(a) in G(a).
2. If (Yi is an AND gate include Gand from Figure 4(a) in G(a). If q is an OR

gate include G,, from Figure 4(h) in G(a). These dags have two pairs of input
nodes and one pair of output nodes each, i.e., {IN,,, IN, }, {IN,,, IN, }, and

44 C. DWORK ET AL.

a+

j O” Ii

(a)

4

b I
OUT2i

lNli

FIGURE 4. Theorem 1 subgraphs. (a) Gmd.

(b) Go,.

IN4i

f

(b)

{OUT,,, OUT,i }. Corresponding sons are illustrated by the labels a, b on the
arcs.

3. If ai is an input include in G(a) a pair of nodes {OUT,,, OUT,, }. If the value
of the input is 1 then make OUT,,, OUT,, corresponding sons of u(cw), v(cx). If
the value of the input is 0 then make OUT,,, OUT,, sons of u(a) and let v(a)
have two sons that correspond to them and are two new leaves in G(o).

4. If gate oi is connected to oj, ak (i.e., in the wire diagram) then identify nodes
INi, = OUT,j, IN,, = OUTIj, IN,, = OUT,,, IN,, = OUT,,. When these subdags
are concatenated, nodes have outdegree I 2, and the labels on the arcs can be
made 1 and 2, so that the equalities of labels a, b in Figures 4(a) and 4(b) are
preserved.

5. In the dag constructed in Steps l-4 above assign labels to the nodes as
follows:

label(u) = label(v) = h,

label(node of outdegree 1) = g,

label(node of outdegree 2) = f,

label(OUT,,) = g, Z g, = label(OUT,,),

label(leaf other than OUT,,, OUT,,) = distinct variable.

We can easily see now that every wire w in the wire diagram can be associated to
a pair of nodes OUT,, OUT,,. We require u(a)%(o). For such a minimal c-e
relation @, we claim that the value of wire w in a is 1 iff OUT,@OUT,,. This
certainly holds for the inputs, because of the way we built corresponding sons of u
and v. Also, it is trivial to check that Gand and G,, simulate the behavior of AND
and OR gates. Therefore the value of an is 1 iff OUT,,@OUT,,. The graph G(a) is

ONTHESEQUENTIALNATUREOFUNIFICATION 45

constructed in such a way that the only place homogeneity could be violated by @ is
if OUT,,@OUT,,. As a result, if (Y = 1, the terms represented by u(a) and v(a) are
not unrestricted unifiable, and if (Y = 0 they are unifiable (the acyclicity condition is
also true). q

4. SIMPLE DAGS

In this section we will make our lower bounds independent of the potentially concise
dag representation of terms, by extending them to simple dags.

Theorem 2. UNIFY(G,u,v) and UNIFY”(G,u,v) are log-space complete for P,
even when G is a simple dag.

PROOF. Given monotone circuit (Y we construct a simple dag G(a) with two roots
u(a), and v(a) so that, if (Y, = 0 then the terms t,(,), t v(a) are unifiable or else they
are not unrestricted unifiable. This suffices for the completeness of both UNIFY and
UNIFY”. Note that the proof of Theorem 1 no longer applies, because the G,, dags
used in that reduction could introduce nodes with indegree 2, i.e., their output nodes,
which were not leaves.

As in the proof of Theorem 1, we encode the input of a: using a pair of nodes for
each circuit input. The input-subgraph of the graph of Theorem 1 is actually a
simple dag, so we use the same construction. However, we cannot attach “gates”
directly to the input-subgraph since this will produce a dag which is not simple.
Instead, each gate will be constructed separately using a pair of subgraphs. Any c-e
relation ~3 with u(a)@%(a) will relate the two parts of each gate. In addition, the
input nodes of one gate will be “connected” to input-subgraph nodes or output
nodes of other gates using a separate “patch board” subgraph. Recall that the gates
of (Y are numbered so that if an output of gate (xi goes to an input of gate aj, then
i<j.

For each gate of (Y, we use four input nodes and four output nodes. For gate ai,
let us denote these nodes by IN,,, . . . , IN, and OUT,,, . . . , OUT,,. As in the proof of
Theorem 1, the nodes of G(a) work in pairs. Inputs IN,, and IN,, represent the first
input to ai and IN,, and IN,, the second. Similarly, nodes OUT,, and OUT,,
represent the first output of ai and OUT,, and OUT,, the second. We also use nodes
ui, vi which are the ith sons of roots u(a) and v(a), respectively, and four or seven
internal nodes which may remain anonymous.

If Oli is an OR gate, then we construct a simple dag GATE, as in Figure 5(a), with
ui, vi corresponding sons of u(a), v(a). If @ is a c-e relation with u(a)@$ (Y), it is
easy to see that OUT,i~OUT,i and OUT,,@OUT,, if either IN,,@IN,, or IN,,@IN,,.
It will be clear from the construction of G(a) that if @ is minimal, then these are the
only cases in which the output nodes will be related by @. If q is an AND gate,
similar reasoning applies for the simple dag of Figure 5(b) which simulates the logic
of AND.

The remaining task is to “connect” the gates so that if, for example, the first
output of (Yi goes to the second input of aj, then IN,@IN,, whenever OUT,,@OUT,,.
We use an example connection between q and aj to illustrate the construction of a
“patch board” simple dag PATCH, which contains two new nodes up,vr, and IN
and OUT nodes from the input-subgraph and gate subgraphs of G(a). Let up, vr, be
corresponding sons of u(a),v(cr), different from the sons used in the gate and input

C. DWORK ET AL.

OUT,i OUT~i OUT3i OUT4i

(a) OUTli OUTzi OUG, OUT,,,

(b)

"P “P

.
a

a

..n M

b b

., . . .
OU$ 'N3j

OUTzi 'N4j

(cl W

FIGURE 5. Theorem 2 subgraphs. (a) OR subgraph. (b) AND subgraph. (c) Example use of
PATCH. (d) Putting everything together.

subgraphs. Now make IN3j and OUT,, corresponding sons of up and vr; also make
IN, and OUT*, corresponding sons of up and vr, [see Figures 5(c) and 5(d)]. When
u(a)%(a), two input nodes of GATE, will be merged if the right two output nodes
of GATEi are.

As in the proof of Theorem 1, we label the outputs of the final gate with different
constant symbols. All other nodes have labels that depend on their arity, so that
nodes with outdegree 2, say, have the same label. It is easy to verify by induction
that in the minimal c-e relation @ with u(a)%(a), we have OUT,,@OUT,, and
OUT,,@OUT,, iff the output of the last gate cx, is 1. This completes the proof of
Theorem 2. 0

5. A PARALLEL ALGORITHM FOR TERM MATCHING

Unification is a practical sequential algorithm for matching since unification can be
done in linear time. However, unification is not a good parallel approach to
matching. We show how MATCH(G, u, v) can be computed in log*n parallel time

ON THE SEQUENTIAL NATURE OF UNIFICATION 47

using polynomial many processors. In addition, we prove that MATCH(G, u, v) is in
co-NLOGSPACE. If G is a simple dag then MATCH(G,u, v) is actually in
DLOGSPACE.

When we wish to determine whether s matches t, we will assume w.1.o.g. that no
variables appear in t. In Section 6 we further clarify the relationship between
matching and unification. Since MATCH(G, u, v) is the same as UNIFY(G,u, v)
when no variables appear in t,, we know that t 11 matches t v iff there is a
homogeneous c-e relation - on G with u - v. A refinement of this characterization
of term matching suggests an efficient parallel algorithm.

Lemma 1. Let G be a labeled dag with nodes u and v, and let the subgraph of G
induced by the descendants of v have no nodes labeled with variables. Let R be the
minimal correspondence relation on G with URV, S be the minimal equivalence
relation containing R, and T be the minimal correspondence relation containing S.
Then t, matches t, ifl T is homogeneous.

PROOF. If t u matches t v then since t u and t v are unifiable, the minimal c-e relation
- withu- v is homogeneous. Since - must contain T, it follows that T is

homogeneous.
For the converse, suppose that T is homogeneous. We will define a substitution u

such that o(t “) = t “. Let G,, G, be the subgraphs of descendants of u, v, respec-
tively. We first show that for every node x in G, there is a node y in G, such that
xRy. If, on the contrary, there is some x in G, without xRy for any y in G,, then let
w be the last node in some path from u to x with wRz for some z in G,. Since w has
a son, label(w) is a k-ary function symbol for some k > 0. By similar reasoning,
label(z) is a zero-ary function symbol. But then label(w) # label(z) and hence T is not
homogeneous. It follows from this contradiction that every S-equivalence class
contains at least one node from G,.

For each S-equivalence class E, pick some node e in E from G,. If w is another G,
node in E, then since T is homogeneous and no variables appear in G,, we can argue
that t, = t, (here we have the problem EQUAL). We now define the substitution u.
For any variable x in t “, let E be the S-equivalence class of the node labeled x and
define a(x) = t,. It is easy to check by induction on the height of a node w in G, that
if wRz, then a(t,)= t,. Thus u(t,)= t, and t, matches t,. 0

Given any relation, we can find the minimal correspondence relation R contain-
ing it, in log*n parallel time and no(l) processors on a PRAM, using a transitive
closure algorithm [2]. If G is a labeled dag with n nodes, we define an n* by n*
boolean correspondence matrix C,. We associate each (unordered) pair of nodes of
G with a row and a column of Co and define the entries of Co:

Co({u,v}, {x,y}) = I iff x and y are u and v or corresponding sons of u and v.

Lemma 2. Let G be a labeled dag with nodes u and v, and let R be the min.
correspondence relation s. t. uRv. Then xRy rf the ({u, v}, {x, y}) entry of CG’s
transitive closure equals 1.

Now given relation R, we can find the minimal equivalence relation S containing
R using a connected components algorithm on the rows of Co. It is well known that

48 CDWORKETAL.

connected components can be computed in log% parallel time and no(l) processors
on a PRAM [2,17].

Since computing correspondence relations twice, connected components once,
and testing for homogeneity are sufficient to decide matching, we have that
MATCH(G,u,v) can be computed in log*n parallel time and no(l) processors on a
PRAM (or equivalently MATCH E NC).

In fact, we can show somewhat tighter complexity upper bounds, since DLOG-
SPACE c NLOGSPACE c NC:

Theorem 3. The set of (G, u, v) such that MATCH(G,u, v) = false is in NLOG-
SPACE. Furthermore, if G is a simple dag, then this recognition problem is in
DLOGSPACE.

PROOF. Let G be a dag with MATCH(G, u, v) = false. Let R, S, T be relations on the
nodes of G as in the statement of Lemma 1. By Lemma 1, there must be nodes x and
y of G such that xTy, but label(x) and label(y) are two different function symbols.
We show that there is a log-space bounded nondeterministic Turing machine M,
capable of guessing all pairs (x, y) such that xTy, and checking whether x and y have
the same labels. Thus, recognizing the (G, u, v), such that, MATCH(G, u, v) = true is
a problem in co-NLOGSPACE (also a subset of the class NC).

To begin with, let Ma be a nondeterministic machine that starts with the pair
(u,v) on its worktape. A move of M, consists of replacing a pair (x, y) with a pair
(xi, yi) of corresponding sons of x and y. Clearly Ma is capable of guessing (x, y) iff
xRy.

We now define a nondeterministic machine MS using Ma. The machine MS
begins by running Ma some nondeterministic number of steps to guess a pair (x, y).
Subsequently, MS repeats the following 3 steps nondeterministically:

1. If one pair (x, y) or two pairs (x, y)(w, z) are on the worktape, then it may
replace (x, Y) by (Y, x).

2. If (x, y), (y, z) are on the worktape, then it may replace both by the single pair

(x9 9.
3. If the single pair (x, y) is on the worktape, then it may run M, some number of

steps to guess (w,z) and end up with both pairs (w,z), (x, y) on the worktape.

With these primitive steps MS may guess (x, y) iff xSy.
Finally, we build M, from Ms. This machine behaves just like M,, but instead of

starting with (u, v), starts with any pair (x, y) that Ms is capable of guessing. This
concludes the proof of the first part of the theorem, which describes the PRAM
algorithm sketched above, from the point of view of nondeterministic log-space.

If G is a simple dag, then M, can easily be made a deterministic depth-first
enumerator of pairs (x, y). This machine MD, always maintains the pair im-
mediately preceding the current one, so that it can backtrack from leaf nodes.
Backtracking from internal nodes is straightforward since each has indegree 1.

Using a log-space preprocessor we can treat the subgraph rooted at v as a tree.
Recall that this graph has no variables, so that all we need to do is duplicate leaves
labeled with constants. By doing this we limit the number of times Step 2 of MS
must be repeated to only two. Thus we can construct a deterministic machine MD,
that enumerates all (x, y) such that xSy. Finally, we build a deterministic MD, from
MD, and MD, as before. 0

ON THE SEQUENTIAL NATURE OF UNIFICATION 49

A corollary of Theorem 4 is that for simple dags deciding whether
MATCH(G, u, v) = true is also in DLOGSPACE, since DLOGSPACE is closed
under complement. From the analysis in [5] it also follows that this problem can be
solved in O(logn) parallel time on a PRAM.

6. CONCLUSIONS AND OPEN PROBLEMS

We have demonstrated that several versions of unification are complete for P. This
suggests, by way of the parallel computation thesis, that unification is inherently
sequential. It is unlikely that significant improvements in the speed of theorem
provers, interpreters for logic programs, and the like will be brought about by the
development of parallel unification algorithms. However, for the special case of term
matching, the prospects are much brighter. Term matching can be accomplished in
logn or log*n parallel time, depending on whether the input is in the form of a
simple dag.

We might also point out that unification of terms s and t is complete for P even if
s and t do not contain any variables in common (this is different from t having no
variables). Also, if s and t are unifiable this does not imply that s matches t or that t
matches s. However, if s matches t then s and t are unrestricted unifiable. If s
matches t and t matches s they are unifiable.

The problem of computing the congnrence closure of a relation [4, lo] appears to
be a directional dual of the unification problem. In [lo] computing the congruence
closure of a relation is shown to be log-space complete for P. The complexity of
other algebraic word problems, which may be viewed as generalizations of the
unification problem, is also examined in [lo].

In the sequential case congruence closure seems slightly harder than unification
[4]. Perhaps because there are remarkable similarities between the sequential algo-
rithms for unification and testing equivalence of deterministic finite automata.
However, the inequivalence of deterministic finite automata can be detected nonde-
terministically using only logarithmic space. A machine can see that two automata
A, and A, are inequivalent by guessing an input string, character by character, and
simulating the actions of both machines as it goes. If one ends up in an accept state
while the other rejects, then the two are clearly different. If A, and A, differ, then
some sequence of characters must surely uncover this. Thus unification is subtly, but
fundamentally different from this “almost identical” problem.

In [18] H. Yasuura, using different techniques, has independently derived Theo-
rem 1 of Section 3.

Some interesting open problems remain unresolved, namely: (1) lower bounds for
the complexity of MATCH and EQUAL, or can our upper bounds be improved, (2)
the number of processors used in the transitive closure of a correspondence matrix is
unrealistically large, and it would be of some practical significance to decrease it to
even n3, and finally (3) what is the complexity of commutative matching, i.e., if
function symbols stand for commutative operations.

REFERENCES

1. Cook, S. A., An Overview of Computational Complexity, Commun. ACM 26:40&409
(1983).

2. Chandra, A. K., Maximal Parallelism in Matrix Multiplication, IBM report, RC 6193,
1976.

50 C. DWORK ET AL.

3. Clocksin, W. F. and Me&h, C. S., Programming in Prolog, Springer, New York, 1981.
4. Downey, P. J., Sethi, R., and Tarjan, R. E., Variations on the Common Subexpression

Problem, J. ACM 27: 758-771 (1980).
5. Fortune, S., and Wylhe, J., Parallelism in Random Access Machines, Proc 10th ACM

STOC, pp 114-118 (1978).
6. Goldschlager, L. M., The Monotone and Planar Circuit Value Problems are Log Space

Complete for P, SZGACT News 9:25-29 (1977).
7. Goldschlager, L. M., Shaw, R. A., and Staples, J., The Maximum Flow Problem is Log

Space Complete for P, Theor. Computer Sci. 21:105-111 (1982).
8. Guttag, J. V., Kapur, D., and Musser, D. R., On Proving Uniform Termination and

Restricted Termination of Rewriting Systems, Siam J. Computing 12:189-214 (1983).
9. Hirschberg, D. S., Chandra, A. K., and Sarwate, D. V., Computing Connected Compo-

nents on Parallel Computers, Commun. ACM 22:461-464 (1979).
10. Kozen, D., Complexity of Finitely Presented Algebras, Proc 9th ACM STOC, pp.

164-177 (1977).
11. Lewis, H. R., and Statman, R., Unifiability is Complete for co-NLOGSPACE, Info.

Process. Lett. 15:220-222 (1982).
12. Milner, R., A Theory of Type Polymorphism in Programming, JCSS 17:348-375 (1978).
13. Martelli, A. and Montanari, U., An Efficient Unification Algorithm, ACM Trans.

Programming Languages and Systems 4(2) (1982).
14. MacQueen, D., Plotkin, G., and Sethi, R., An Ideal Model for Recursive Polymorphic

Types, Proc. 1984 ACM POPL, to appear.
15. Paterson, M. S. and Wegman, M. N., Linear Unification, JCSS 16:158-167 (1978).
16. Robinson, J. A., A Machine Oriented Logic Based on the Resolution Principle, J. ACM

12:23-41 (1965).
17. Shapiro, E. Y., A Subset of Concurrent Prolog and its Interpreter, ICOT report TR-003,

Tokyo, Japan (1983).
18. Yasuura, H., On the Parallel Computational Complexity of Unification, Yajima Lab.

Research Report ER 83-01, Oct. 1983.

