On the Sequential Nature of Unification

Cynthia Dwork! Paris C. Kancllakis? John C. Mitchell3
MIT Brown Univ. ' MIT
November 1983
Abstract

The problem of unification of terms is log-space complete for P. In deriving this lower bound no
usc is made of the potentially concise representation of terms by directed acyclic graphs. In
addition, the problem remains complete cven if infinite substitutions are allowed. A consequence of
this result is that parallelism cannot significantly improve on the best sequential solutions for
unification. The “dual” problem of computing the congruence closure of an equivalence relation is
also log-space complete for P. However, we show that for the problem of term matching, an
important subcase of unification, there is a good parallel algorithm using 0{log2 n) time and n0d)
processors on a PRAM. For the 0(log:2 n) parallcl time upper bound we assume that the terms are
represented by directed acyclic graphs; if the longer string representation is used we obtain an
O(log n) parallel time bound. '

1. Introduction

Unification is an important step in resolution theorem proving [R] with applications to a variety
of symbolic computation problems. In particular, unification is used in PROLOG interpreters [CM],
type inference algorithms [M], and term rewriting systems [GKM]. Many symbol manipulation
problems are inherently difficult and thus do not have efficient solutions. Theorem provers and
PROLOG interpreters do not always give us the answers we want fast enough. One way to combat
the difficulty of these problems is by coordinating many processors to solve a single problem
instance by working on several subproblems in parallel. Although there are a number of ways to
introduce parallelism into interpreters [S] and theorem provers, unification is a prime target since it
is the most commonly repeated operation in these tasks. However, our analysis suggests that parallel
unification algorithms will not perform significantly faster than the best sequential algorithms known
(e.g., [PW] runs in linear time). We show that, unless PCNC, an unlikely twist of complexity theory
[C], no parallel algorithm for unification will run in time bounded by a polynomial in the logarithm
of the input size, and using a number of processors boundcd by a polynomial in the size of the
input. We use the PRAM of [FW] as our model of parallel computation, although we could, just as
well, have used any other "reasonable parallel model" [J].

ISupported by a Bantrell Fellowship. 2Supported panly by NSF grant MCS-8210830 and partly by ONR-DARPA grant
N00014-83-K-0146. Supported by an IBM Fellowship.

Informally, two symbolic terms s and t arc unifiable if there is some’ way of substituting
additional terms for variables in s and t so that both become the same term. All occurences of a
variable x in both s and t must be replaced by the same term. For example, the terms f{x, x) and
fg(y). g(g(z))) may be unified by substituting g(z) for y and g(g(z)) for x. A unification problem like
“unify flt;, t5) and fit3. t4)" may be decomposed into two subproblems "unify t; and t3" and
"unify t5 and t4". However, these two problems cannot be solved entirely separately in parallel. If
some variable x occurs in both t) and t4, for example, then the solutions to the subproblems must
be coordinated so that both substitute the same term for x.

There are several variations of the unification problem. For example, a type inference algorithm
may construct labeled graphs which represent terms that must be unified. An acceptable result of
unification, in this case, may be a labeled graph with a cycle. Labeled graphs with cycles represent
types defined by recursion [MPS], or, if interpreted as terms, represent “infinite terms”. Thus one
natural, unrestricted version of unification is to allow "infinite terms" to be substituted for variables.
Using the "infinite term"” f(Rf...)), we can unify x and f{x), something we could not do otherwise.
Unrestricted unification also appears in many PROLOG interpreters; those omitting the occur test
[CM]. Another variation on unification is the special case in which the labeled graphs are from a
class of tree-like directed acyclic graphs (which we call simple dags). The complexity of unification
on simple dags is precisely the complexity of unification on symbolic (string) representations of
terms, as opposed to the complexity as a function of the size of more concise graph representations.
For this case it was known that unification, without "infinite terms", is co-NLOGSPACE-hard [LS].
This did not exclude the possibility of parallel algorithms, moreover no lower bound was known for
unrestricted unification.

We show that all of the above variants of unification are log-space complete for P [C, G1, G2],
and hence unlikely to have nice parallel solutions. The nondeterministic log-space test for
ununifiability in [LS], which could have led to a O(Io:)g2 n) parallel time solution, is sufficient, but
unfortunately not necessary (see Figure 3b for a counterexample to this test). In addition, we show
that the related problem of congruence closure [DST] is complete for P.

One important special case of unification can be solved quickly in parallel. This problem called
term matching, arises in term rewriting, A term s matches a term t if t is a substitution instance of s.
The rewrite rule /=7 may be used to rewrite a term t whenever / matches t [GKM]. We show that
matching can be accomplished in Iogz-time on a. PRAM, using a polynomial number of processors.
Our algorithm combines parallel transitive closure of a directed acyclic graph, with parallel
computation of connected components of an undirected graph [HCS, Ch]. Also, matching is in
NLOGSPACE, and for simple dags it is in DLOGSPACE.

Following the dcfinitions presented in Section 2, we will discuss labeled graph unification in
Section 3, unification for simple dags and congruence closure in Section 4, and term matching in
Section 5.

2. Delinitions
2.1 Terms and Dags

Let ¥ be an infinite set of variables x.y.zxj... and I an infinite set of function symbols
fghfy... We assume that } and F arc disjoint. Each function symbol f has a fixed arity, a
nonnegative integer a(f). A function symbol g€/ with a(g)=0 is called a constani. The set T of
terms is defined inductively by:

a variable x€V or constant g€F is a term, and
if fEF and Uuly(p) are terms, then flt;... tam) is a term.

Terms may be represented using directed acyclic graphs with labeled nodes and, possibly,
multiple labelled arcs. A labeled directed graph is a finite dirccted graph G, such that:

(1) every node v of G has a unique label, denoted label(v), with label(v)E VUF,
(2) for each x€V, there is at most one node v with label(v)=x, and it has outdegree 0,

(3) if a node v has label f€EF, with arity a(f)>0, then it has outdegree a(f), and
the arcs leaving it are labeled 1,2,...a(f).

If there is an arc labeled i from node u to node v, then we say that v is the i-th son of u.
A labeled dag G is a labeled dirccted acyclic graph. The leaves of G are the nodes of outdegree 0;
note that a node v is a leaf iff label(v) is either a variable or a constant, The height of a node v of a
dag G is the length of the longest path from v to a leaf. A roor of a dag is a node of indegree 0.

If G is a labeled dag, we can associate a term t, with any node v of G. We say that
v represenis t,. The term t, is defined by induction on the height of v:

if v is a leaf, then t, =label(v),
if v has sons vy,..,Vy, and label(v)=f, then tv=f(tvl,....t.vk).

The definition of labeled dags above ensures that t, is always a well-formed term. If G is a
labeled directed graph, then we can associate an infinite term t,, with each node v of G by a similar
definition. Since we only consider finite graphs, all terms represented by nodes of a labeled graph G
are finite iff G is acyclic. If G is a labeled dag with only one root r, then we say that G represents
the term t.

The representation of terms by labeled dags is illustrated in Figure 1. The terms g(x) and x are
represented by the two nodes of the labeled dag in Figure 1a. Both roots in Figures 1b, 1c repr]:sent
f(f(x, x), fx, x)). The terms h(x, x, y, z) and h(g(y), g(g(z)), &(8(g})). &(gy)) are represented by the
roots of Figure 1d. In Figure 1, we assume that a(f)=2, a(h)=4, a(g)=1, and a(g))=a(g;)=0.

Although each node of a labeled dag determines a single term, the converse is not true. A term
t can be represented by several different dags. In particular, if t is a term with several occurrences
of a subterm t}, then we may use a separatc subdag for cach occurrence of ty in t, or usc one
subdag for all occurrences; cf. Figures 1b and 1c. Since a repeated subterm necd be represented

only once, it is possible to represent some very long terms with relatively small lubeled dags. For
example, the dag in Figure le with n nodes represents a term with O2") symbuols. We define a
class of labeled dags which are no more concise that terms.

A simple dag is a labeled dag G such that the only nodes of G with indegree greater than 1 are
leaves. Thus every node of a simple dag that is not a leaf or a root must have indegree 1. Given a
term t (in the form of a string of symbols), we can construct a simple dag representing t in lincar
time, using only logarithmic space. Similarly. given a simple dag G with a single root, we can write
out the term represented by G in lincar time and logarithmic space. Morcover, the size of a simple
dag, mecasured in number of nodes and arcs, is within a constant multiplicative factor of the length
of the term it represents.

2.2 Unification and Term Matching

Unification and term matching arc both problems that are solved by computing substitutions. A
substitution o is a mapping from variables to terms such that o(x)=x for all but finitcly many x€V.
The action of a substitution o on a term t, written o(t), is the result of replacing each variable x in t
by o(x). Thus o(f(ty,....ty)) = fa(ty),...o(ty)). In particular, any substitution & maps every function
symbol to itself. We use = to denote syntactic equality of strings.

Two terms s and t are wnifiable if there exists a substitution ¢ such that o(s)=o(t). A term s
matches term t if there exists a substitution ¢ with o(s)=t

In some instances we may wish to allow substitutions to map variables to infinite terms. If we
allow these more general substitutions, then we have the unrestricted unification and unrestricted
malching problems. Unrestricted unification differs from unification (e.g., in Figure 1a x and g(x)
are ununifiable but unrestricted unifiable with o(x)=g(g(...)) an infinite term). Unrestricted
matching and matching are the same; note that we only consider substitutions that involve infinite
terms, not unification of infinitc terms s and t

If a(s)=o(t), then o is called a unifier for s and t. A substitution o is more general than a
substitution = if there exists a substitution p with r=pee. In [R], it is shown that whenever terms s
and t are unifiable, there is a unifier ¢ for s and t, which is more general than any other unifier.
This is called the most general unifier (mgu) for s and t. The mgu is unique up to renaming of
variables. For example, consider the terms s=f{x, y) and t="f(g(y), &(z)) represented in Figure 1f.
These terms are unifiable, with mgu o(x)=g(g(z), o(y)=gz), and o(z)=z; then
o(s)=o(t)=fg(g(), 8(2).

Two terms s and t are unifiable if a certain kind of relation, can be constructed on the nodes of
a labeled dag representing s and . If u and v are two nodes of a labeled dag and if u; is the i-th
son of u and v; the ith son of v, for some i, then u;,v; are corresponding sons of u,yv.
A relation R on the nodes of a labeled dag is a correspondence rtelation if, for all U,v,u;, V4

uRv = uRv; whenever uy,v; are corresponding sons of u,v.

A correspondence relation that is also an cquivalence relation will be called a e-e relation.
A relation R is homogencous if label(u) and label(v) are not different symbols whenever uRv.
An cquivalence relation R on nodes of a labeled directed graph G is acyclic if the R-cquivalence
classes are partially ordered by the arcs of G. In [PW], acyclic, homogeneous c-¢ relations are called
valid ecquivalence relations. These relations characterize unifiability.

Proposition 1: [PW] Let u and v be nodes in a labeled dag G. Then t, and t, are unrestricted
unifiable iff there is a homogencous c-e relation R, with uRv. Similarly, t,, and t, arc unifiable iff
there is an acyclic, homogencous c-¢ relation R, with uRv. O :

If R is an acyclic, homogencous c-¢ relation on a labeled dag G, then the reduced graph formed
by treating each cquivalence class as a single node is again a labeled dag. If u and v are the only
two roots of G, and uRv, then this reduced graph with a single root represents a term s that is a
substitution instance of both t and t,. If R is the minimal c-e relation with uRv, then
szo(tu)= o(t,), where o is the mgu of t; and t, [PW]. We can extract o from R by taking o(x) to
be the term in the reduced graph that is represented by the node formed from the equivalence class
of x. We can therefore consider the reduced labeled dag as a reasonable representation of a unifier
for two terms. This representation of a unifier has the virtue of beinig compact; it is clear that the
reduced graph is no larger than the original dag. However, if we were to write out each unifier
explicitly, we might end up writing out terms that werec much longer than the terms represented by
the input dag. An example in [PW] shows that the length of the substitution may be an exponential
function of the length of the input terms.

As in [PW], we will represent equivalence relations on the nodes of labeled dags by adding
undirected edges to the labeled dag data-structure.

Matching may be viewed as a special case of unification. Let o, be a substitution such that for
each distinct variable x, in the terms we are examining, o.(x) is c,, a distinct constant symbol not
appearing in these terms. It is easy to see that a term s matches a term t iff s and oc(t) are
unifiable. Another, degenerate case of unification is to determine whether two terms are syntactically
identical. Of course, this is a trivial operation on strings, but it is not quite so trivial an operation
when terms are represented by labeled dags. Clearly, s and t are syntactically equal iff o(s) and
o(t) are unifiable.

In summary, using the labeled dag data structure, we have the following problems:

UNIFY(G,u,v)
Input: A labeled dag G with distinguished nodes u and v,
Output: Are t, and t, unifiable?

If yes, then prdduce a labeled dag representing the mgu.

MATCH(G,u,v): This is UNIFY(G,u,v) with o.(t,) instcad of t..
EQUAL(G.uv)): This is UNIFY(Guy) with o.(t,). o.t,) instcad of ty

Of course, there is also unrestricted unification UNIFY®®(G,u,v). We have a special case of
each of the above problems when G is a simple dag.

2.3 Parallclism, NC and P

For sequential computation we use the standard definitions for time, space, space-bounded
reductions and complexity classes such as P, DLOGSPACE, NLOGSPACE, T(n)-DSPACE, on a
Random Access Machine (RAM) [C]. We denote log-space reducibility by Slog' As usual, P is the
class of languages recognizable in deterministic polynomial time. The problems UNIFY, MATCH
and EQUAL all belong to P [PW, MM]. Some may be solved in logo(l)n space, while others, those
log-space complete for P, most probably cannot.

For parallel computation we use the Parallel RAM (PRAM) of [FW] as our model, with parallel
time and number of processors as the critical resources. We make use of the parallel computation
thesis, relating parallel time and sequential space, and its proof for PRAM's [FW]:

Upso logh(n)-parallel time-PRAM = Uys.(log"(n)-DSPACE.

We take NC to be the class of problems solvable on a PRAM using_logo(l)n parallel time, and
nOd) processors. We try to determine whether a problem in P is "parallelizable” (i.., in NC) or
"most probably not parallelizable" (i.e., log-space complete for P); [C, J] review related results.

One problem that is log-space complete for P is the circuit value problem for monotone circuits.
A monote circuit B is a sequence (By,...B,), where each B; is either an input, an and-gate AND(j,k),
or an or-gate OR(j,k); where for indices j,k we have i>j>k, and the 0,1 values of the inputs are given
explicitly. In addition, monote circuits are assumed to have the following properties:

(1) if B; is an input, then the index i appears at most once in B, (fan-out <1 for inputs),
(2) if B; is a gate, then the index i appears at most twice in B, (fan-out <2 for gates),
(3) B, is an or-gate with one output.

The monotone circuit value problem is:
MCV={g| B is a monotone circuit with the output value of B, =0}

From [Gi, G2] we have:

Proposition 2: MCV is log-spacc complete for P. O

3. The Complexity of Unification

The general unification problem, encountered in theorem proving and clsewhere, is to find a
simultancous unifier for a set of terms. However, the general case is log-space and lincar time
reducible to the special case of unifying a single pair of terms [PW]. On a PRAM this reduction can
be performed in O(log n) parallel time and with O(n) processors; it affects none of our results.

We first describe a naive unification algorithm based on the criterion of Proposition 1, and on
the fact that the mgu is the minimal c-¢ relation [PW]. The input to the algorithm is a labeled dag
G with two distinguished nodes u and v. We wish to solve UNIFY(G.u.v). A relation @ is
- constructed and maintained as undirected edges in G. The relation ® is by its representation
symmetric and reflexive. In order to make ® a c-¢ relation, both “"correspondence™ and
“equivalence” must be satisficd. Setting sons cquivalent, when their fathers arc equivalent, is known
as propagation. For ® to be an cquivalence rclation we must also enforce fransitivity. Having
created the minimal c-¢ relation ® for which u®v, we then test for homogeneity. In the
affirmative case a new labeled graph G’ can be constructed by coalescing classes of nodes in G.
Now wec know that the input is at least unrestricted unifiable. If G' is acyclic it is unifiable.

proc naive-unification(G,u,v)
set u®v ;
while (® is not a c-e relation) do
propagation: while (u®v have corresponding sons uj,v; not related by ®) do set u;®v; od ;
transitivity: while (u®v and v®w, but uw are not related by ®) do set u®w od
od ;
if ® not homogeneous then print UNUNIFIABLE
else {coalesce equivalence classes to produce labeled graph G’}
if G’ has a cycle
then print UNUNIFIABLE BUT UNRESTRICTED UNIFIABLE
else print UNIFIABLE
fi
fi
proc {G’ represents mgu}

In this algorithm all individual steps can be performed on a PRAM using 10g®(n time and
nO) processors. The difficulty arises in the outer loop, the body of which is executed if ® is
either not a correspondence, or not an equivalence relation, i.e., if either condition inside an inner
loop is satisfied. The problem is that on an input of size n the body of the main loop might be
executed £(n) times. This behavior is illustrated in Figure 2. The example can easily be generalized
to force the 02(n) alternation between propagation and transitivity for any n.

Theorem 1: UNIFY(G.uy) and UNIFYOOQG.u.v) are log-space complete for P,

Proof: We show how to log-space reduce MCV to unifiability (for membership sce [PW]). More
specifically, if a is a monotone circuit {ag.ay...apy}. we construct G(a), u(a), and v(a) such that
a€EMCV iff UNIFY(G(a).u(a).v(a))=UNIFIABLE.
This reduction dircctly applies to UNIFY® and is casily seen to use only log space.

The monotone circuit @ can be represented as a diagram with wires, AND and OR gates of
fan-in-2 and fan-out at most 2. a special OR output gate with one output wire, and with cach input
wire leading 1o onc gatc and having a 0 or a 1 value (sec Figure 3a for an example). The input wire
values combine to produce values for all other wires and the output wire in particular. The circuit
has no feedback. i.e., if the wires are viewed as arcs and the inputs and gates as nodes we get a dag
without multiple arcs.

(1) Introduce two nodes u(a), v(a) in G(a).

@) If a; is an AND gate include Gand from Figure 4a in G(a). If a; is an OR gate include
G, from Figure 4b in G(a). These dags have two pairs of input nodes and onc pair of output .
nodes each, ie, {INy; INzi}, {IN3;, IN4i}, and {OUTy;, OUT,;}. Corresponding sons are
illustrated by the labels a, b on the arcs.

(3) If a; is an input include in G(a) a pair of nodes {OUTy;, OUT5;}. If the value of the input
is 1 then make OUTy;, OUT,; corresponding sons of u(a), v(a). If the value of the input is 0 then
make OUTU' OUTZi sons of u(a) and let v(a) have two sons that correspond to them and are two
new leaves in G(a).

(4) If gate a; is connccted to o, ag (i.e., in the wire diagram) then identify nodes
IN1i=0UT1j. IN21=OUT2j. IN3;=0UTyy, INgj=0UT,;. When these subdags are concatenated
nodes have outdegree <2, and the labels on the arcs can be made 1 and 2, so that the equalities of
labels a, b in Figures 4a, 4b is preserved.

(5) In the dag constucted in steps 1-4 above assign labels to the nodes as follows:
label(u) =1abel(v)=h,
label(node of outdegree 1)=g,
label(node of outdegree 2)=f,
label(OUTy)=g # gy=1abel(OUT,y),
label(leaf other than OUT;,, OUT,,)=distinct variable.

We can easily see now that every wire w in the wire diagram can be associated to a pair of
nodes OUT,,, OUT,,». We require u(a)®v(a). For such a minimal c-e relation ®, we claim that
the value of wire w in a is 1 iff OUT, ® OUT,,. This certainly holds for the inputs, because of
the way we built corresponding sons of u and v. Also, it is trivial to check that G,pq and Gor
simulate the behavior of AND and OR gates. Therefore the value of a is 1 iff OUT;,®0UT,,,.
The graph G(a) is constructed in such a way that the only place homogencity could be violated by
® is if OUT},®0UT,,,. As a result, if a=1, the terms represented by u(a) and v(a) are not
unrestricted unifiable, and if a=0 they are unifiable (the acyclicity condition is also true). O

4. Simple Dags and Congruence Closure

In this Section we will make our lower bounds independent of the potentialy concise dag
representation of terms, by extending them to simple dags. We will also investigate the related
problem of computing the congruence closure of an cquivalence relation. -

Theorem 2: UNIFY(G.u,v) and UNI I-'Ym(G,u,v) are log-space complete for P, even when G is
a simple dag,

Proof: Given monotone circuit a@ we construct a simple dag G(a) with two roots u(a), and v(a)
so that, if @, =0 then the terms Lia) W(a) 3TC unifiable else they are not unrestricted unifiable.
This suffices for the completeness of both UNIFY and UNIFY®. Note that the proof of
Theorem 1 no longer applies, because the Gy dags used in that reduction could introduce nodes
with indegree 2, i.c., their output nodes, which werc not leaves.

As in the proof of Theorem 1, we encode the input of a using a pair of nodes for each circuit
input. The input-subgraph of the graph of Theorem 1 is actually a simple dag, so we use the same
construction. However, we cannot attach “gates” directly to the input-subgraph since this will
produce a dag which is not simple. Instead, each gate will be constructed separately using a pair of
subgraphs. Any c-e relation ® with u(a)®v(a) will relate the two parts of each gate. In addition,
the input nodes of one gate will be “connected” to input-subgraph nodes or output nodes of other
gates using a separate "patch board" subgraph. Recall that the gates of a are numbered so that if an
output of gate a; goes to an input of gate a; then Kj.

For each gate of a, we use four input nodes and four output nodes. For gate a;, let us denote
these nodes by INyj,... INg; and OUTy;..., OUTy;. As in the proof of Theorem 1, the nodes of
G(a) work in pairs. Inputs INy; and IN,; represent the first input to a; and IN3; and INg; the
second. Similarly, nodes OUTy; and OUT,; represent the first output of a; and OUT3; and OUTy
the second. We also use nodes u;, v; which are the i-th sons of roots u(a) and v(a), respectively,
and four or seven internal nodes which may remain anonymous.

If a; is an OR-gate, then we construct a simple dag GATE; as in Figure 5a, with u; v;
corresponding sons of u(a), v(a). If ® is a c-e relation with u(a)®v(a), it is easy to see that
0UT1i®OUT2j and 0UT3i®0Ur4i if either IN li®IN21 or IN3i®IN4i. It will be clear from the
construction of G(a) that if ® is minimal, then these are the only cases in which the output nodes
will be related by ®. If a; is an AND-gate, exactly similar reasoning applies for the simple dag of
Figure 5b, which simulates the logic of AND.

The remaining task is to "conncct” the gates so that if, for example, the first output of «; goes
to the second input of o, then IN3j®IN4j whenever OUT;®0UT,;. We use an example
connection between a; and aj 10 illustrate the construction of a "patch board” simple dag PATCH,
which contains two new nodes U, V and IN and OUT nodcs from the input-subgraph and gate
subgraphs of G(a). Let Ups Vp be corresponding sons of u(a), v(a), different from the sons used in
the gate and input subgraphs. Now make IN3j and OUT); corresponding sons of up and Vps also

make iN4j and OU'I'zi corresponding sons of Up and p (see Figures 5¢ and 5d). When w@)®v(a),
wo input nodes of GA'l‘l{j will be merged if the right two output nedes of GATE; are.

As in the proof of Theorem 1, we label the outputs of the final gate with different constant
symbols. All other nodes have labels that depend on their arity, so that nodes with outdegree 2, say,
have the same label. It is casy to verify by induction that in the minimal c-¢ rclation ® with
u(a)®v(a), we have ()U'l'ln®0U'l'2n and OUT3,®0UTy,, iff the output of the last gate ap is 1.
This complctes the proof of Theorem 2.0

Congruence closurc is a practical problem that is in many ways a dual to unificatior. In
unification, the equivalence classes of m and n are merged whenever there exist some cquivalent r
and s such that m and n arc corresponding sons of r and s. In congruence closure, the equivalence
classcs of r and s are merged whenever, for all pairs of corresponding sons m, n, we have that m
is equivalent to n. We consider a pure form of congruence closure in which the node labels are
ignored, however, the arcs must still be labeled so that we can see which sons correspond. Efficient
algorithms for congruence ciosure arc contained in [DST].

An equivalence relation ® on the nodes of a labeled graph is a congruence relation when:

if u,v have same outdegree and for each pair of corresponding sons we have u;©yv;, then u®v.
Given any cquivalence relation R, there is a unique minimal congruence relation that contains R,
called the congruence closure of R. An equivalence relation R can be represented using undirected
edges in a labeled dag. We can now pose the following language recognition problem:
CONG={<G,u,v,R>| nodes u and v of labeled dag G are relatcd by the congruence closure of R}.

By using a construction that resembles that of Theorem 1 "turned upside-down" and that
exhibits an and/or duality between unification and congruence closure we can show that:

Theorem 3: The language CONG is complete for P.

Proof: Again we reduce MCV to CONG. The wires of the circuit diagram correspond to pairs
of nodes, such that, the two nodes are rclated in ©® (the congruence closure) iff the value on the
wire is 1. Given a monotone circuit a we construct a dag G(a), an equivalence relation R(a) on its
nodes, and two roots of the dag u(a), v(a). We wish to test the two roots for equivalence in ©, the
congruence closure of R(a).

The construction is bottom-up, so that each circuit input corresponds to a pair of leaves and
each OR and AND gate to a subgraph with two pairs of input and two pairs of output nodes each;
the last OR-subgraph has only one pair of output nodes u(a), v(a). The inputs and outputs are
connected in a pattern similar to that of the proof of Theorem 1. The input lcaves are represented
in Figure 6a, note that for inputs that are 1 the two leaves are in the same equivalence class of
R(a). The OR-subgraph is in Figure 6b, and two pairs of internal nodes form equivalence classes of
R(a). The AND-subgraph is in Figure 6c. It is simple to verify that the gate subgraphs simulate the
gate logic and that u(a)©v(a) iff the output of the circuit a is 1. O

10

5. A Parallel Algorithm for Term Matching

Unification is a practical sequential algorithm for matching since unification can be done in
lincar time. However, unification is not a good parallel approach to matching. We show how
MATCH(G,u.v) can be computed in lngzn parallel time using polynomially many processers. In
addition, we prove that MATCH(G.u.y) is in co-NLOGSPACE. If G is a simple dag then
MATCH(G,u,v) is actually in DILOGSPACE.

When we wish to determine whether s matches t, we will assume w.Lo.g. that no variables
appear in t. In Section 6 we further clarify the relationship between matching and unification. Since
MATCH(G.u.v) is the same as UNIFY(G,u.v) when no variables appear in t.. we know that ty
matches t, iff there is a homogencous c-¢ relation ~ on G with u~v. A refinement of this
characterization of term matching suggests an cfficient parallel algorithm,

Lemma 1: Let G be a labeled dag with nodes u and v, and let the subgrapﬁ of G induced by
the descendants of v have no nodes labeled with variables. Let R be the minimal correspondence
relation on G with uRv, S be the minimal cquivalence relation containing R, and T be the minimal
correspondence relation containing S. Then ty matches t, iff T is homogencous.

Proof: If t, matches t, then since t,, and t, arc unifiable, the minimal c-e relation ~ with u~v
is homogeneous, Since ~ must contain T, it follows that T is homogeneous.

For the converse, suppose that T is homogeneous. We will define a substitution o such that
a(Lu) = t,. Let Gu.(l.F be the subgraphs of descendants of u.v respectively. We first show that for
every node x in (.‘ru there is a node y in G, such that xRy. If, on the contrary, there is some x in
G,, without xRy for any y in G, then Ict w be the last node in some path from u to x with wRz
for some z in G,. Since w has a son, label(w) is a k-ary function symbol for some k>0. By similar
reasoning, label(z) is a zero-ary function symbol. But then label(w)#label(z) and hence T is not
homogencous. It follows from this contradiction that every S-equivalence class contains at least one
node from G,

For each S-equivalence class E, pick some node e from G,. If wis another G, node in E, then
since T is homogeneous and no variables appear in G, we can argue that t;, = t, (here we have
the problem EQUAL). We now define the substitution o. For any variable x in t, let E be the §-
equivalence class of the node labeled x and define a(x) = t,. It is casy to check by induction on
the height of a node w in G, that if wRz, then o(t,) = t,. Thus o(t,) = t, and t, matches t,.00

Given any relation, we can find the minimal correspondence relation R containing it, in logzn
parallel time and n0() processors on a PRAM, using a transitive closure algorithm [Ch]. If G is a
labeled dag with n nodes, we define an n? by n? boolean correspondence matrix C. We associate
cach (unordered) pair of nodes of G with a row and a column of C; and define the entries of Cg:

Cou, v}, {x, y}) = 1 iff x and y are u and v or corresponding sons of u and v.

Lemma 2: Let G be a labeled dag with nodes u and v, and let R be the min. correspondence
relation s.t. uRv. Then xRy iff the ({u, v}, {x, y}) entry of CG’s transitive closure equals 1. O

.

11

Now given relation R, we can find the minimal equivalence relation S containing R using a
connected components algorithm. It is well-known that connected components can be computed in
Iugzn parallel time and nO() processors on a PRAM [CHS].

Since computing correspondence relations twice. connccted components once and testing for
homogeneity are sufficient to decide matching. we have that MATCH(G.u.v) can be computed in
logzn parallcl time and nO) processors on a PRAM (or cquivalently MATCH € NC).

In fact. we can show somewhat tighter complexity upper bounds, since DI.OGSPACE C
NLOGSPACE C NC:

Theorem 4: The set of <G,u,v> such that MATCH(G,u,v) = false is in NI.LOGSPACE.
Furthermore, if G is a simple dag. then this rccognition problem is in 1DI.OGSPACE.

Proof: Lect G be a dag with MATCH(G.u.v)=false. Let R.S.T be relations on the nodes of G
as in the statement of Lemma 1. By Lemma 1, there must be nodes x and y of G such that xTy,
but label(x) and label(y) are two different function symbols. We show that there is a log-space
bounded nondcterministic Turing machinc M- capable of guessing all pairs (x,y) such that xTy,
and checking whether x and y have the same labcls. Thus recognizing the <G,u.v>'s, such that,
MATCH(G,u,v) = true is a problem in co-NLOGSPACE (also a subset of the class NC).

To begin with, let Mp be a nondeterministic machine that starts with the pair (u,v) on its
worktape. A move of My consists of replacing a pair (x,y) with a pair (x;,y;) of corresponding sons
of x and y. Clearly Mp is capable of guessing (x,y) iff xRy.

We now define a nondeterministic machine Mg using Mp. The machine Mg begins by running

MR some nondeterministic number of steps to guess a pair (x,y). Subsequently, Mg repeats the
following 3 steps nondeterministically:
(1) If one pair (x,y) or two pairs (x,y) (w,z) are on the worktape, then it may replace (x,y) by (y,x).
(2) If (xy), (v,z) are on the worktape, then it may replace both by the single pair (x.z).
(3) If the single pair (x,y) is on the worktape, then it may run Mp some number of steps to guess
(w,z) and end up with both pairs (w,z), (x,y) on the worktape.

With these primitive steps Mg may guess (xy) iff xSy.
Finally, we build M from MS' This machine behaves just like Mg, but instead of starting with
(u,v), starts with any pair (x,y) that Mg is capable of guessing. This concludes the proof of the first

part of the theorem, which in a way describes the PRAM algorithm sketched above, but from the
point of view of nondeterministic log-space.

If G is a simple dag. then Mp can easily be made a deterministic depth-first cnumerator of
pairs (x.y)._ This machine MDp always maintains the pair immediately preceeding the current one,
so that it can backtrack from leaf nodes. Backtracking from internal nodes is staightforward since
each has indegree 1. -

Using a log-spacc preprocessor we can treat the subgraph rooted at v as a tree. Recall that this
“graph has no variables, so that all we need to do is duplicate leaves labeled with constants. By doing

-

12

this we limit the number of times step (2) of Mg must be repeated to only two. Thus we can
construct a deterministic machine Mg that enumerates all (x,y) such that xSy. Finally, we build a
deterministic MDyp from MDp and MDg as before. OO

~ A corollary of Theorem 4 is that for simple dags deciding whether MATCH(G.u,v) = irue is also
in DLOGSPACE, since DILOGSPACE is closed under complement. From the analysis in [FW] it
also follows that this problem can be solved in O(log n) parallel timc on a PRAM.

6. Conclusions and Open Problems

We have demonstrated that several versions of unification are complete for P. This suggests, by
way of the parallel computation thesis, that unification is inherently sequential. It is unlikely that
significant improvements in the speed of theorem provers, interpreters for logic programs, and the
like will be brought about by the development of parallel unification algorithms. However, for the
special case of term matching, the prospects are much brighter. Term matching can be accomplished
in log n or logzn parallcl time, depending on whether the input is in the form of a simple dag.

We might also point out that unification of terms s and t is complete for P even if s and t do
not contain any variables in common (this is different from t having no variables). Also, if s and t
are unifiable this does not imply that s matches t or that t matches s. However, if s matches t then s
and t are unrestricted unifiable. If s matches t and t matches s they are unifiable.

Intuitively, congruence closure appears to be a "dual” of unification. It, too, is complete for P.
As a consequence, various congruence closure problems, such as the decision problem for the first-
order quantifier-free theory of equality [DST] are not conducive to extremely fast parallel solutions.

There are remarkable similarities between the sequential algorithms for unification and testing
equivalence of deterministic finite automata. However, the inequivalence of deterministic finite
automate can be detected nondeterministically using only logarithmic space. A machine can se¢ that
two automata Ay and A, are equivalent by guessing an input string, character by character and
simulating the actions of both machines as it goes. If one ends up in an accept state while the other
rejects, then the two are clearly different. If A; and A differ, then some sequence of characters
must surely uncover this. Thus unification is subtly, but fundamentally different from this "almost
identical” problem.

Some interesting open problems remain unresolved, namely; (1) lower bounds for the
complexity of MATCH and EQUAL, or can our upper bounds be improved, (2) the number of
processors used in the transitive closure of a correspondence matrix is unrealistically large, and it
would be of some practical significance to decrease it to even n3, and finally (3) what is the
complexity of commutative matching, ie., if function symbols stand for commutative operations.

13

14

References
[C] Cook, S.A., "An Overview of Computational Complexity”, CACM 26(6), 1983, pp 400-409.

[Ch] Chandra, A.K., "Maximal Parallelism in Matrix Multiplication”, IBM report, RC 6193, 1976.
[CM] Clocksin, W.F., Mecllish, C.S., "Programming in Prolog", Springer-Verlag, 1981.

[DST] Downey, P.J., Sethi, R., Tarjan, R.E., "Variations on the Common Subexpression Problem”,
JACM 27(4), 1980, pp 758-771.

[FW] Fortune, S., Wyllie, J., "Parallelism in Random Access Machines", Proc 10th ACM STOC,
pp 114-118.

|G1] Goldschlager, LM., "The Monotone and Planar Circuit Value Problems are Log Space
Complete for P", SIGACT News 9(2), 1977, pp 25-29.

[G2] Goldschlager, L.M., Shaw, R.A., Staples, J., "The Maximum Flow Problem is Log Space
Complete for P, TCS 21, 1982, pp 105-111.

[GKM] Guttag, J.V., Kapur, D., Musser, D.R., "On Proving Uniform Termination and Restricted
Termination of Rewriting Systems"”, Siam J. Computing 12(1), 1983, pp 189-214.

[HCS] Hirschberg, D.S., Chandra, AK., Sarwate, D.V., "Computing Connected Components on
Parallel computers”, CACM 22(8), 1979, pp 461-464.

[7]1 Johnson, D.S., “The NP-Completeness Column: An Ongoing Guide", J. of Algorithms 4, 1983,
pp 189-203.

[LS] Lewis, H.R., Statman, R., "Unifiability is Complete for co-NLOGSPACE", IPL 15(5), 1982,
pp 220-222.

[M] Milner, R., "A Theory of Type Polymorphism in Programming”, JCSS 17, 1978, pp 348-375.
[MM] Martelli, A., Montanari, U, "An Efficient Unification Algorithm”, ACM Trans. on
Programming Languages and Systems, 4(2), 1982.

[MPS] MacQueen, D., Plotkin, G., Sethi, R., "An Ideal Model for Recursive Polymorphic Types",
Proc. 1984 ACM POPL, to appear.

[PW] Paterson, M.S., Wegman, M.N., "Linear Unification", JCSS 16, 1978, pp 158-167.

[R] Robinson, J.A., "A Machine Oriented Logic Based on the Resolution Principle”, JACM 12(1),
1965, pp 23-41.

[S] Shapiro, E.Y., "A Subset of Concurrent Prolog and its Interpreter”, ICOT report TR-003, Tokyo,
JAPAN, 1983.

Figure 1: labeled dags

15

1
2
3
4

5
6

. A®B
. CeD, C®E, H®F, LeG (propagation)

3. D®E (transitivity)

. Hel (propagation)

5. F®l (transitivity)

. L®J (propagation)
. JOG (transitivity)

7
8. M®K (propagation)
9

. ununifiable because M and K have distinct labels g and g).

Figure 2: illustrating naive-unification

i6

label(u) =label(v)=h, label(w) =g1#g, =label(z)
label(node of outdegree 1)=g

label(node of outdegree 2)=f

label(leaf other than w, z)=distinct variable

(b) '

Figure 3

iT

'"gri INgi y I
a b
avy IJ‘L
0 UT# LI:J UT2 '
(@) Gand

(b) GOI’

Figure 4: Theorem 1 subgraphs

i3

OUT, OUTy, OUTy OUT,

(a) OR subgraph

Uty INg; 0UTy;

(c) example use of PATCH

IN4i

2/3\4

INy; INg; NG, IN,

d
0uT,; OUTy, OUT,; OUT,,

(b) AND subgraph

(d) putting everything together

Figure 5: Theorem 2 subgraphs

19

(a) inputs

(b) OR subgraph

lN!i INzi IN3|‘ IN"‘i

(c) AND subgraph

Figure 6: Theorem 3 subgraphs
(R is denoted by ---------)

20

