
On the Minimal Synchronism Needed
for Distributed Consensus

DANNY DOLEV

Hebrew University, Jerusalem, Israel

CYNTHIA DWORK

Cornell Univer.sity, Ithaca, New York

AND

LARRY STOCKMEYER

IBM Ahnaden Research Center, San Jose, California

Abstract. Reaching agreement is a primitive of distributed computing. Whereas this poses no problem
in an ideal, failure-free environment, it imposes certain constraints on the capabilities of an actual
system: A system is viable only if it permits the existence of consensus protocols tolerant to some
number of failures. Fischer et al. have shown that in a completely asynchronous model, even one failure
cannot be tolerated. In this paper their work is extended: Several critical system parameters, including
various synchrony conditions, are identified and how varying these affects the number of faults that can
be tolerated is examined. The proofs expose general heuristic principles that explain why consensus is
possible in certain models but not possible in others.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems-
distributed applications; distributed databases; network operating systems; C.4 [Performance of
Systems]: reliability, availability, and serviceability; F. I .2 [Computation by Abstract Devices]: Modes
of Computation-parallelism; H.2.4 [Database Management]: Systems-distributed systems

General Terms: Algorithms, Reliability, Theory, Verification

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, reliability

1. Introduction

The problem of reaching agreement among separated processors is a fundamental
problem of both practical and theoretical importance in the area of distributed
systems; (see, e.g., [I], [7], [8], [1 l] and [121). We consider a system of N processors

A preliminary version of this paper appears in the Proceedings of the 24th Annual Symposium on
Foundations of Computer Science, November 7-9, 1983, Tucson, Ariz., pp. 393-402. 0 1983 IEEE.
Any portions of this paper that appeared in the original version are reprinted with permission. The
work of D. Dolev was performed in part at Stanford University, supported in part by DARPA under
grant MDA903-80-C-0107 and in part at the IBM Research Laboratory, San Jose, Calif. The work of
C. Dwork was supported in part by National Science Foundation grant MCS 8 I-O 1220.
Authors’ present addresses: D. Dolev, Computer Science Department, Hebrew University, Jerusalem,
Israel; C. Dwork, Department K53/802, IBM Almaden Research Center, 650 Harry Road, San Jose,
CA 95120; L. Stockmeyer, Department K53/802, IBM Almaden Research Center, 650 Harry Road,
San Jose, CA 95 120.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1987 ACM 0004-5411/87/0100-0077 $00.75

Journal ofthe Association for Computing Machinery, Vol. 34, No. I, January 1987, pp. 77-97.

78 D. DOLEV, ET AL.

PI,... , PN (N 2 2) that communicate by sending messages to one another. Initially,
each pi has a binary value x;. At some point during its computation, a processor
can irreversibly decide on a binary value V. Each processor follows a deterministic
protocol involving the receipt and sending of messages. Even though the individual
processor protocols are deterministic, there are three potential sources of nonde-
terminism in the system. Processors might run at varying speeds, it might take
varying amounts of time for messages to be delivered, and messages might be
received in an order different from the order in which they were sent.

A protocol solves the (nontrivial) consensus problem if

(i) no matter how the system runs, every nonfaulty processor makes a decision
after a finite number of steps;

(ii) no matter how the system runs, two different nonfaulty processors never
decide on different values;

(iii) 0 and 1 are both possible decision values for (possibly different) assignments
of initial values. (This condition is needed to avoid the trivial solution where
each processor decides 1 regardless of its initial value.)

If the processors and the communication system are completely reliable, the
existence of consensus protocols is trivial. The problem becomes interesting when
the protocol must operate correctly when some processors can be faulty. The failure
mode studied in this paper is fail-stop, in which a failed processor neither sends
nor receives messages. A consensus protocol is t-resilient if it operates correctly
when at most t processors fail. The existence of N-resilient consensus protocols is
easily established if the processors and the communication system are both syn-
chronous. Intuitively, synchronous processors means that the internal clocks of the
processors are synchronized to within some fixed rate of drift. Synchronous
communication means that there is a fixed upper bound on the time for a message
to be delivered. These two types of synchrony are assumed in much of the research
on “Byzantine Agreement,” (e.g., [7] and [111).

Our point of departure and motivation for this paper was the interesting recent
result of Fischer et al. [lo], which states that in a completely asynchronous system
no consensus protocol is l-resilient, that is, even one failure cannot be tolerated.
In reading the proof of this result, one sees that three different types of asynchrony
are used:

(i) Processor asynchrony allows processors to “go to sleep” for arbitrarily long
finite amounts of time while other processors continue to run.

(ii) Communication asynchrony precludes an a priori bound on message delivery
time.

(iii) Message order asynchrony allows messages to be delivered in an order different
from the order in which they were sent.

One major goal of this work was to understand whether all three types of
asynchrony are needed simultaneously to obtain the impossibility result. We find
they are not. In fact, we prove the impossibility of a l-resilient consensus protocol
even if the processors operate in lockstep synchrony, thus strengthening the main
result of [lo]. In this result we retain Fischer et al.‘s definition of an “atomic step,”
in which a processor can attempt to receive a message and, depending on the value
received, if any, it can change its internal state and send messages to all the other
processors. In contrast, using this same definition of an atomic step, we prove that
either synchronous communication alone or synchronous message order alone is
sufficient for the existence of an N-resilient consensus protocol.

Minimal Synchronism Needed for Distributed Consensus 79

These two N-resilient protocols are fairly delicate and depend on the definition
of an “atomic step” of a processor. For example, in the case in which we have
synchronous communication, if receiving and sending are split into two separate
operations so that an unbounded amount of time can elapse in between, then the
N-resilient protocol falls apart, and in fact we can prove that there is no l-resilient
protocol in this case. Similarly, if a processor can send a message to at most one
other processor in an atomic step (we call this point-to-point transmission), then
there is a l-resilient protocol but no 2-resilient protocol.

We identify five critical parameters:

(1) processors synchronous or asynchronous,
(2) communication synchronous or asynchronous,
(3) message order synchronous or asynchronous,
(4) broadcast transmission or point-to-point transmission,
(5) atomic receive/send or separate receive and send.

In defining the system parameters, even informally as we do now, it is useful to
imagine that one is standing outside the system holding a “real-time clock” that
ticks at a constant rate. At each tick of the real clock, at most one processor can
take a step. The processors are modeled as infinite-state machines. In the most
general definition of “step,” a processor can attempt to receive a message, and on
the basis of the value of the received message (or on the basis of the fact that no
message was received) it can change its state and broadcast a message to all
processors. Restrictions on this definition of step are given by (4) and (5) below.
The letters U and F below refer to situations that are unfavorable or favorable,
respectively, for solving the consensus problem.

1. Processors
U. Asynchronous. Any processor can wait an arbitrarily long, but finite, amount

of real time between its own steps. (In the language of distributed systems, there is
no bound on the rate of drift of the internal clocks of the processors.) However, if
a processor takes only finitely many steps in an infinite run of the system, then it
has failed.

F. Synchronous. There is a constant Cp 2 1 such that in any time interval in
which some processor takes Q, + 1 steps, every nonfaulty processor must take at
least one step in that interval.

2. Communication
U. Asynchronous. Messages can take an arbitrarily long, but finite, amount of

real time to be delivered. However, in any infinite run of the system, every message
is eventually delivered; that is, messages cannot be lost.

F. Synchronous. There is a constant A r 1 such that every message is delivered
within A real-time steps.

3. Message Order
I!% Asynchronous. Messages can be delivered out of order.
F. Synchronous. If p sends ml to r at real time tl and q sends m2 to r at real

time t2 > t, , then r receives ml before m2. (p, q, and r are not necessarily distinct;
e.g., we could have r = p.)

4. Transmission Mechanism
U. Point-to-point. In an atomic step a processor can send to at most one

processor.
F. Broadcast. In an atomic step a processor can broadcast messages to all

processors.

80 D. DOLEV, ET AL.

TABLE I. MAXIMUM RESILIENCIES’

mb

a For each setting of the five system parameters, processors (p),
communication (c), message order(m), transmission mechanism (b),
and receive/send (s), to either favorable (1) or unfavorable (0), the
corresponding table entry gives the maximum resiliency for that case
and indicates the theorem(s) from which the resiliency bound follows.
“FLP” refers to the impossibility result of Fischer, Lynch, and
Paterson [IO].

5. Receive/Send
U. Separate. In an atomic step a processor cannot both receive and send.
F. Atomic. Receiving and sending are part of the same atomic step.

In the next section, these definitions are formalized by modifications to the
formal model of [lo].

To obtain the strongest possible results we make some further conventions.
Whenever we assume synchronous processors in an impossibility result, we actually
take @ = 1, that is, the processors operate in rounds, which is essentially the same
as lockstep synchrony. Whenever we assume synchronous communication in an
impossibility result, we actually take A = 1, that is, message delivery is instunta-
neous; in this case we assume that whenever a processor attempts to receive, it
receives all as yet unreceived messages that have been sent to it at previous real
times. In results giving a consensus protocol, our protocol actually solves a strong
con.sensus problem, defined like the nontrivial consensus problem in the Introduc-
tion with the additional condition that, if all initial values are the same, say v, then
all nonfaulty processors decide on v. Whenever we assume atomic receive/send in
a consensus protocol, the definition 5F above can be weakened to say only that,
whenever a processor executes a receiving step followed by a sending step, there is
a fixed upper bound on the amount of real time that can elapse between the two
steps.

Varying these five parameters yields 32 cases, and we have found the maximum
resiliency for each case (see Table I). More interestingly, we have identified four
cases in which N-resilient protocols exist, but any weakening of the system by
changing one parameter from favorable to unfavorable is sufftcient for a proof that
there is no t-resilient protocol where t is either 1 or 2. Thus the boundary between
possibility and impossibility of solving the consensus problem is very sharp. These

Minimal Synchronism Needed for Distributed Consensus 81

four “minimal” cases are

(1) synchronous processors and synchronous communication;
(2) synchronous processors and synchronous message order;
(3) broadcast transmission and synchronous message order;
(4) synchronous communication, broadcast transmission, and atomic receive/

send.

The delineation of these boundaries is the main contribution of this paper.
We find another type of boundary by allowing broadcast to k processors in an

atomic step. This “k-casting” is said to be serializable if, whenever processors p
and q k-cast messages ml and m2, respectively, to processors r and s, then both r
and s receive the two messages in the same order. In a system with asynchronous
processors and asynchronous communication, we show, for any 1 I k I N, that
serializable k-casting is sufficient for (k - I)-resiliency and that serializable
(k - I)-casting is not sufficient for (k - 1)-resiliency. More generally, if for any
two broadcasts there are at most k - 1 processors for which we can guarantee that
the order of reception is the same as the order of transmission, and we can say
nothing at all about the order in which the other processors receive the messages,
then there is no (k - l)-resilient consensus protocol.

Another goal of this paper has been to understand intuitively why Fischer et al.
were able to prove impossibility and to develop heuristic principles to allow one to
make an educated guess of the maximum resiliency before actually proving it. The
basic intuition is that, if letting t processors fail can effectively “hide” an event or
the relative ordering among several events, then no consensus protocol is
t-resilient. In the original proof in [lo], the event is a “critical step,” where one
processor p takes a step that moves the system from some configuration Co to some
configuration C,, and there are configurations DO and DI reachable from Co and
C,, respectively, by the same step such that v is the only possible decision value
when the system is started in configuration D, (v = 0, 1). If p fails, then the effect
of the critical step can be hidden from the other processors, since the communi-
cation system can hide all the messages sent by p during the critical step. However,
if we have a fixed upper bound on message delivery time or if message order cannot
be scrambled, then these messages cannot be hidden for an arbitrarily long time;
this explains intuitively why we get N-resiliency in these two cases. The heuristic
principle also explains why we get l-resiliency but not 2-resiliency in the case of
bounded message delivery time and point-to-point transmission. In the critical
step, p sends a message to a single processor q. In order to hide this event, it is
necessary and sufficient that both p and q fail. (Our detailed proofs are more
involved than this since we must show in each case that such a critical step exists.)

Finally, we should point out that Ben-Or [3, 41, Rabin [131, Bracha [5], and
Toueg [141 have shown that consensus in the presence of faults can be achieved in
various asynchronous environments by probabilistic protocols that reach consensus
in finite time with probability 1. Even in light of these probabilistic solutions, our
boundaries between possibility and impossibility are fundamental to the study of
distributed systems. In particular, our results identify cases in which probabilistic
solutions are needed to reach consensus because deterministic solutions are
impossible.

In the next section we give more formal definitions. Section 3 contains the results
on possibility and impossibility for the 32 choices of the parameters. In Section 4
we give the results on serializable k-casting. In Section 5, we suggest some directions

82 D. DOLEV, ET AL.

for future work, such as the extension of our results to Byzantine failures
(cf. [7, 111).

2. Definitions

In this section we extend the formal framework of Fischer et al. [lo] to handle our
various system parameters. A consensus protocol is a system of N (N 2 2) processors
P= (PI, *.., pi}, each with a special initial bit. The processors are modeled as
infinite-state machines with state set 2. There are two special initial states, z. and
zl. For v = 0, 1, a processor is started in state zV if its initial bit is v. Each processor
then follows a deterministic protocol involving the receipt and sending of messages.
The messages are drawn from an infinite set M. Each processor has a buj’k for
holding the messages that have been sent to it but not yet received. If message
order is synchronous, each buffer is modeled as a FIFO queue of messages. If
message order is asynchronous, each buffer is modeled as an unordered set of
messages. The collection of buffers support two operations:

(1) Send(p, m) places message m in p’s buffer;
(2) Receive(p) deletes some collection (possibly empty) of messages from p’s buffer

and delivers these messages to p.

The exact details of what messages can or must be delivered by Receive(p)
depend on the choice of system parameters, and this is defined precisely below.

First consider cases in which message order is synchronous. Each processor p is
specified by a state transition function 6, and a sending function & where

sp: z x iv* + z,

The pair (q, m) in the range of /3,, means that p sends message m to processor q.
Since we place no constraints on the message set M, we can assume that for each
p, q E P, z E Z, and cc E M* there is at most one message m with (q, m) E
&(z, p). It is also convenient to assume that a processor attaches its name and a
sequence number to each message so that the same message m is never sent by two
different processors nor at two different times.

If transmission is point-to-point, then] &(z, II)] I 1 for every p, z, and ~1. If
transmission is broadcast, then p can send messages to any number of processors
in one step.

If receive/send is separate, we assume that Z is partitioned into two disjoint sets
ZR (the receiving states) and ZS (the sending states), such that no messages are sent
when in a receiving state (formally, if z E Z,, then &(z, p) = 0), and no messages
are received when in a sending state (this condition is formalized below). It is also
convenient to assume that receiving and sending states alternate, that is, all
transitions from states in ZR must go to states in Zs, and vice versa. If receive/
send is atomic, then a processor can both receive and send messages from any state
in Z.

A configuration C consists of

(i) N states st(pi, C) E Z for 1 5 i 5 N, specifying the current state of each
processor;

(ii) N strings buff(pi, C) E M* for 1 5 i 5 N, specifying the current contents of
each buffer.

Initially, each state is either zo or zI as described above, and each buffer contains X
(the empty string).

Minimal Synchronism Needed for Distributed Consensus 83

An event is a pair (p, p), where p E P and Z.L E M*. Think of the event (p, p) as
the receipt of message string ZL by p. Processor p is said to be the agent of the event
(p, CL). We now define conditions under which an event can be applied to a
configuration to yield a new configuration. The first condition applies only if
receive/send is separate.

(1) If st(p, C) E &, then (p, p) is applicable to C only if p = X.

The remaining conditions apply when st(p, C) E ZR if receive/send is separate, or
in general if receive/send is atomic.

(2) If communication is asynchronous, (p, cl) is applicable to C only if
p E M U (h 1 and p is a prefix of buff(p, C).

(3) If communication is synchronous, (p, p) is applicable to C only if ~ is a prefix
of buff(p, C).

(4) If communication is immediate, (p, cl) is applicable to C only if
/L = buff(p, C).

If the event e = (p, p) is applicable to C, then the next configuration e(C) is
obtained as follows:

(a) p changes its state from z = st(p, C) to &(z, p), and the states of the other
processors do not change;

(b) for all (q, m) E &(z, cl), append m to the right end of buff(q, C);
(c) delete p from the left end of buff(p, C).

In the case of asynchronous message order, the main difference in the above
definitions is that each buffer is modeled as an unordered finite set. Therefore, in
the discussion above, M* is replaced by the set of finite subsets of M, buff(p, C) is
a finite subset of M, events have the form (p, p), where ~1 is a finite subset of M,
and the empty set 0 takes the place of X. Minor modifications to the definition of
“applicable” and “next configuration” must also be made, and we leave these
obvious modifications to the reader; for example, in the case of asynchronous
communication, (p, p) is applicable only if ZJ C buff(p, C) and] Z.J] 5 1.

To define synchronous processors and synchronous (but not immediate) com-
munication and to define correctness of a protocol, we must consider sequences
of events. A schedule is a finite or infinite sequence of events. A schedule
u = ala2 -a. is applicable to an initial configuration Z under the following
conditions:

(1) the events of a can be applied in turn starting from Z, that is, ai is applicable
to Z, a2 is applicable to al(Z), etc.;

(2) if processors are @synchronous (constant @ L I), then, for every consecutive
subsequence T of a, if some processor takes % + 1 steps in T and if the processor
p takes no step in 7, then p takes no steps in the portion of a following 7 (this,
says that once a processor fails it cannot restart at a later time);

(3) if communication is A-synchronous (constant A L l), then, for every j, if
aj = (p, CL), if message m was sent to p by the event a; with i I j - A, if the
state of p in configuration [al . - - aj-l](Z) is a receiving state, and if none of
the events up with i < k < j is the receipt of m by p, then m belongs to p (this
says that messages must be delivered within A real-time steps, after which p
will receive m at its next Receive step, if it has not already received m earlier).

If + = 1 in (2), the processors are said to be in lockstep.

84 D. DOLEV, ET AL.

If u is finite, a(Z) denotes the resulting configuration that is said to be reachable
from I. A configuration reachable from some initial configuration is said to be
accessible. Henceforth, all configurations mentioned are assumed to be accessible.
If Q is a set of processors, the schedule u is Q-free if no p E Q takes a step in 6. A
schedule, together with the associated sequence of configurations, is called a run.

We assume that there are two disjoint sets of decision states Y. and Y, , such that
if a processor enters a state in Y, (v E (0, I)), then it must remain in states in Y,.
A configuration C has decision value v if st(p, C) E Y, for some p. A consensus
protocol is partially correct if

(1) no accessible configuration has more than one decision value;
(2) for each v E (0, 1), some accessible configuration has decision value v.

A processor p is nonfaulty in an infinite run if it takes infinitely many steps and
is faulty otherwise. For 0 5 t I N, an infinite run is a t-admissible run from I if

(1) the associated schedule is applicable to I;
(2) at most t processors are faulty;
(3) all messages sent to nonfaulty processors are eventually received.

A run is a deciding run if every nonfaulty processor enters a decision state. A
protocol is a t-resilient protocolfor the nontrivial consensus problem if it is partially
correct and every infinite t-admissible run from every initial configuration is a
deciding run. A protocol is a t-resilient protocol for the strong consensus problem
if it is partially correct and every infinite t-admissible run from every initial
configuration is a deciding run; moreover, if I, is the initial configuration in which
all processors have initial value v, then all deciding configurations reachable from
IV have decision value v.

For the purposes of our impossibility proofs we would also like to define when
a schedule is applicable to a noninitial configuration C. In the case of synchronous
processors or synchronous communication the definition must depend not only
on C but also on the history of events that led to C. If C is reached from initial Z
by schedule T, then d is applicable to C iff 70 is applicable to I. (To be completely
precise, we should include the history 7 as part of the configuration C. However,
in all our impossibility proofs, the history is clear from context, so we say simply
that u is applicable to C rather than to (C, T).)

For configuration C let V(C) be the set of decision values of configurations
reachable from C. Configuration C is bivalent if V(C) = (0, I), or univalent
otherwise. Univalent configurations are either 0-valent if V(C) = (01, or I-valent if
V(C) = (1). The following obvious fact is used often in our proofs:

For v = 0, 1, if C is v-valent and D is reachable from C, then D is v-valent.

Remark. To reduce the number of different proofs that must be given, when
we prove impossibility of a t-resilient nontrivial consensus protocol for some model
M(specilied by the five system parameters), we would like to conclude immediately
the impossibility of a t-resilient nontrivial consensus protocol in a weaker model
W obtained from M by changing either the transmission parameter or the receive/
send parameter (or both) from favorable to unfavorable. This conclusion can be
made since it is easy to see that, given any protocol Pw in the model IV, there is a
protocol 9M in the model M that simulates 9 w. So the existence of a t-resilient
nontrivial consensus protocol in model Wwould imply the same in model M, but
we have proved impossibility for model M. If M has broadcast transmission and
W has point-to-point transmission, the simulation is trivial because point-to-point

Minimal Synchronism Needed for Distributed Consensus 85

transmission is a special case of broadcast transmission, that is, take 9,+, = pW. If
A4 has atomic receive/send and W has separate receive/send, each processor pi in
9 wJ is simulated by a processor qj in 9 M. Simulating a receiving step Of pi is trivial.
If q; happens to receive messages when simulating a sending step of pi, then qi
remembers these messages until the next time it simulates a receiving step of pi.
The details of how the transition and sending functions of qi are obtained from pi
are left to the reader.

3. The Principal Boundaries

Since our impossibility proofs follow the general outline used by Fischer et al.
[lo], it is worthwhile to review this outline first. The proof assumes the existence
of a t-resilient protocol and reaches a contradiction. There are three steps.

Step I. Show that there is a bivalent initial configuration.

Step II. Show that if C is a bivalent configuration and p is a processor, then
there is a schedule u such that u(C) is bivalent and p takes a step in u. Moreover,
if p’s buffer is nonempty in C, then for any message m in p’s buffer there is such a
u in which p receives m. (This is the difficult part.)

Step III. Using I and II, construct an infinite t-admissible run that is not
deciding as follows. Let B1 be an initial bivalent configuration. In general, if Bi is
bivalent, let p = pj where j = i (mod N) and let Bi+l = u(B;), where u is obtained
from II. Moreover, if p’s buffer is nonempty in Bi, let p receive a message that has
been in the buffer for the longest time. The resulting infinite run is O-admissible.
It is not a deciding run because, by partial correctness, a bivalent configuration has
no decision value.

Although our proofs follow the general outline of [lo], in most cases we lose the
“commutativity” property of schedules that was used heavily in [lo]. Therefore,
we have had to develop new techniques beyond those used in [lo]. First we review
the first step of the outline.

LEMMA 3.1 [lo]. For any choice of the system parameters and any t 2 1, tf a
protocol is t-resilient and solves the nontrivial consensus problem, then the protocol
has a bivalent initial configuration.

PROOF. Suppose otherwise that all initial configurations are either 0-valent or
I-valent. Since partial correctness implies that 0 and 1 are both possible decision
values, there must be initial configurations lo and I, such that I,, is v-valent. By
changing the initial values in which lo and II differ, one at a time, we can find
initial configurations Jo and J, such that J, is v-valent and Jo and JI differ in the
initial value of exactly one processor, say p. Consider a finite deciding run from JO
in which p takes no steps; such a run must exist by t-resiliency. Letting u be the
associated schedule, u is applicable to J, also, and the same decision 0 is reached
in both cases. This contradicts the 1-valency of J, . Cl

Another basic lemma from [lo], variations of which are used in most of our
proofs, is the following.

LEMMA 3.2 [lo]. Suppose that processors and communication are both asyn-
chronous. Let C be a bivalent configuration and let e = (p, m) be an event applicable
to C. Let G? be the set of configurations reachable from C without applying e and
let .9 = (e(E) 1 E E g’). If 9 contains no bivalent configuration, then 9 contains
both a 0-valent and a I-valent configuration.

86 D. DOLEV, ET AL.

PROOF. Assume that 9 contains no bivalent configuration, and let v E (0, 1).
Since C is bivalent, there is a schedule u such that u(C) has decision value v. If e
is an event in u, then writing u = (TV eg2, where e does not occur in ul, and letting
D = e(u,(C)), we have D E 9 and D must be v-valent because u2(D) has decision
value v. If e is not in u, then u(C) E E: and e is applicable to a(C), so e(u(C)) E .9
and it must be v-valent because u(C) has decision value v. Cl

The main result of [lo] is that in the model with processors, communication,
and message order all asynchronous (and the other two parameters favorable),
there is no l-resilient protocol for the nontrivial consensus problem. Our first result
strengthens this by allowing synchronous, even lockstep, processors. In general, the
letters I and E in the names of our theorems refer to impossibility and existence of
protocols, respectively.

THEOREM IO. In the model with asynchronous communication and asynchro-
nous message order (and the other three parameters favorable), there is no
l-resilient nontrivial consensus protocol. Moreover, this is true tf processors are
lockstep synchronous.

PROOF. We introduce the notion of a “failure step” as an expositional conven-
ience. The corresponding event is denoted (p, t); the dagger denotes death. The
next configuration (p, t)(C) is identical to C. To the definition of applicable
schedule u, add the conditions that if a processor takes a failure step, then all of its
subsequent steps are failure steps, and if 7 is a subsequence of u in which some
processor takes @ + 1 steps, then every processor takes at least one step in T
(possibly a failure step). In other words, we force the processors to keep taking
steps, but we allow them to fail by taking failure steps from some point on. A
schedule or run is failure free if no processor takes a failure step. A configuration
C isflbivalent if there are configurations Do and D, reachable from C by failure-
free runs such that D,. has decision value v for v = 0, 1.

LEMMA IO. 1. Let C be a configuration reachablefrom some initial configuration
by a failure-free run. Then C is fl-bivalent tj-C is bivalent.

PROOF. Clearly ff-bivalency implies bivalency. The other direction follows
immediately from the following fact: If C can reach a configuration with decision
value v by a finite run R, then C can reach a configuration with decision value v
by a failure-free run. To see this, let u be the schedule associated with R. If u
contains no failure events, we are done. Say then that p takes failure steps in u.
Consider any schedule u’ identical to U, except that p takes normal steps of its
protocol instead of failure steps. Since communication and message order are
asynchronous, u’ is applicable to C also since any message sent by p in u’ but not
sent by p in u can be delayed until after the decision is reached. (We are using here
the fact that R is finite.) The failure-free run obtained by applying u’ to C leads to
decision v. Cl

LEMMA 10.2. Let C be a bivalent configuration reachable from some initial
configuration by a failure-free run, and let p be a processor. If buff(p, C) # 0, let
m be an arbitrary message in bufl(p, C), or let m = 0 if buff (p, C) = 0. Let ~37 be
the set of configurations reachable from C by any failure-free run in which the event
e = (p, m) is not applied, and let

9 = (e(E) 1 E E GY and e is applicable to EJ.

Then 9 contains a bivalent configuration.

Minimal Synchronism Needed for Distributed Consensus 81

PROOF. Suppose for contradiction that 0 contains only univalent configura-
tions. Say that processors are @-synchronous for some Cp L 1. Since the message m
is still in p’s buffer for every E E ‘Z, e is applicable to E iff having p take a step
from E does not form a subschedule in which p takes + + 1 steps but some other
q takes no step.

As in the proof of Lemma 3.2, it is easy to show that 0 contains both a 0-valent
and a I-valent configuration. In carrying out the det$ls of the proof, first use
Lemma IO. 1 to conclude that C is ff-bivalent. ThereforF, for each v E (0, 1) there
is a failure-free run from C that leads to decision value v, so there must be both a
0-valent and a I-valent configuration in 0.

The next step is to argue that there are configurations CO, CI E B and a failure-
free schedule p such that C, = p(G), e(G), and e(C,) have different univalencies,
and p is the agent of no event in p except possibly the first. To show this, let

8’={E]EE8andeisapplicabletoE).

If B E 8’ and e(B) is v-valent, then label B with v. We have argued above that
every member of 8’ receives a label of either 0 or 1, and that 0 and 1 both appear
as labels of (different) elements of 0’. Therefore, there must be a failure-free
schedule c and a configuration C’ E S’ such that C’ = u(C) and C and C’ are
labeled differently. On the path of configurations obtained by applying 0 to C, let
Co and C, be two configurations on this path that are labeled differently, and such
that there is no configuration of B’ on the portion of the path strictly between CO
and C,. Let p be the portion of the schedule u between Co and C1 so that
C, = p(G). We still must argue that p is the agent of no event of p, except possibly
the first. Suppose otherwise that p = crf /3, where LY is nonempty and p is the agent
off: Since f is applicable to (Y(G), it is easy to see that e is applicable to a(G); so
(Y(G) E GY’. But this contradicts the fact that CO and gI were chosen so that no
member of B’ lies on the path p between them. Say, ,without loss of generality,
that C, is labeled v for v = 0, 1. Let D,. = e(C), so D,. is v-valent.

There are two cases. If p is the agent of no event in p, then p is applicable to
LCO) and

P(Do) = p(e(Cd) = WCd) = 4CJ = 0,

which is a contradiction because D,, is v-valent. (This is an application of commu-
tativity as in [lo].)

If p is the agent of the first event in p (but no other), write p = f7,
where f = (p, m’) and m # m’, and write

7 = (q2, m2), (43, m3), . . . , (qk, mk).

7’ = b?2 0) (cl3 0) (qk 0) and p ’ = f 7 ‘. (If 7 is empty then T ’ is empty
ki p = p’ ix) If e[p ‘(&),))ii bivaledt, we are done since e(p ‘(Co); E 0. If e(p’(Co))
is not bivalent, we claim that it is 1-valent. Suppose otherwise that it is 0-valent.
For 1 rj=k,let

7j = (q2, n2), . . . , (qk, nk),

where n; = mi if i I j and n; = 0 if i > j, and let pj = f Tj. In particular, p, = p ’ and
pk = p. Note that pje is applicable to CO for all j because e is applicable to Co and e
is not applied in pi. Since e(pl(Co)) is 0-valent and e(pk(CO)) is I-valent, there must
exist aj such that e(pj-,(CO)) is 0-valent and e(pj(Co)) is 1-valent. The only difference
between pj-1 and pj is that pi-1 contains (a, 0) where pj contains (a, mj). Let 1
be identical to p,, except that the event (a, mj) in pj, as well as all events with

88

FIGURE 1

(P,V 1
t

I

v

I I
(PA (P,H

EtpEl E l
21

i

agent 4, following this event, are replaced by (qj, t) in q. Note that ae is applicable
to Co also. Let u be a a-free finite schedule applicable to G2 = e(v(Co)) such
that the associated run is deciding. Then c is applicable to GO = e(pj-l(Co)) and
to G, = e(pj(Co)). Since st(r, Go) = st(r, G,) = st(r, G2) for all r # a, the same
decision is reached when u is applied to Go, G, , and G2. But this contradicts
either the 0-valency of Go or the I-valency of G, and completes the proof that
El = e(p’(C0)) is 1-valent.

Our purpose in changing T to T ’ is to ensure that no event in T ’ is the receipt of
a message sent by the event J Therefore, [T ‘, (p, t)] is applicable to DO; let EO be
the resulting configuration. Also, [(p, t), 7’, (p, t)] is applicable to Co; let EZ be
the resulting configuration (see Figure 1). (We indicate v-valency in figures by
writing v inside a small box.) Let cr be a p-free schedule applicable to E2 such that
the associated run is deciding. Since c is applicable to both E. and El and since
st(r, Eo) = st(r, El) = st(r, E2) for all r # p, the same decision is reached in all three
cases, which contradicts either the 0-valency of E. or the I-valency of El. 0

Using Lemmas 3.1 and 10.2, the proof of Theorem IO is now completed, as
described in step III of the general outline. 0

Minimal Synchronism Needed for Distributed Consensus 89

Remark. Fischer et al. [lo] use a slightly weaker definition of a correct consen-
sus protocol that requires a decision by at least one nonfaulty processor, rather
than by all nonfaulty processors as in our definition. In the case of atomic
receive/send and broadcast transmission, it is easy to see that the two definitions
are equivalent. If we have a protocol where at least one processor must decide, we
can turn it into a protocol where every nonfaulty processor decides by the following
modification to the transition rules of the processors: At any step when a processor
first makes a transition into a decision state in Y,, it broadcasts “Decide v” to all
others. Any processor receiving a “Decide v” message immediately decides v.
Therefore, Theorem IO indeed strengthens the impossibility result of [lo].

Another set of definitions and a simple lemma are used often in the remaining
proofs.

Definition. Let X G P. Two configurations C and D are X-equivalent if
st(p, C) = st(p, D) and buff(p, C) = buff@, D) for all p E P - X.

Definition. Let e = (p, 1~) be an event applicable to the configuration C. If
receive/send is separate, assume that st(p, C) is a receiving state. Event e (when
applied to C) is a total reception if P = buff(p, C).

LEMMA 3.3. Assume any model in which processors are asynchronous. In any
t-resilient consensus protocol, there do not exist a 0-valent Do, a I-valent D,, and
a set X G P with 1 X 1 I t such that Do and D1 are X-equivalent.

PROOF. Suppose otherwise. Let u be an X-free schedule applicable to DO such
that the associated run is deciding and every receiving event in u is a total reception.
If no such u existed, then there would be an infinite nondeciding run with t faulty
processors (those in X), contradicting t-resiliency. Since all receptions in u are total
and processors are asynchronous, u is applicable to D, also, and the same decision
is made in both cases. Cl

By Theorem IO we can henceforth restrict attention to models where either
communication or message order is synchronous. In each case we identify models
where N-resilient protocols exist, but the model cannot be weakened and still have
N-resilient protocols. We first consider synchronous communication.

THEOREM E 1. If communication is synchronous, transmission is broadcast and
receive/send is atomic (and the other two parameters are unfavorable), there is an
N-resilient strong consensus protocol.

PROOF. We describe the protocol for pi. First pi broadcasts its name and initial
value (i, Xi). pi then attempts to receive messages for 2A of its own steps (where
communication is A-synchronous). If it receives a message “Decide v,” it decides
v. If it receives (j, xj) from some other processor, it remembers Xj and attempts to
receive for 2A more steps. If at some point it has run for 2A steps without receiving
any messages, it sees whether all initial values received from other processors are
the same as its own initial value. If so, it decides on this common value v; if not,
it decides v = 0. In either case it broadcasts “Decide vi”

Termination of the protocol is obvious: Since at most N messages of the form
(i, xi) are sent, a processor can run for at most 2ANof its own steps before deciding.
It is also clear that, if all initial bits have the same value v, then all nonfaulty
processors decide v. If the initial bits are not all the same, it remains to show that
there is no run with two different decision values. Suppose there is such a run.

90 D. DOLEV, ET AL.

Number the steps 1, 2, 3, These are the “times” at which the steps occur. Let
p be the processor that makes the earliest broadcast of a message “Decide v” for
some v. If some other processor decides i, (the negation of v), let q be the processor
that decides 3 earliest. Before deciding, both p and q attempt to receive for 2A steps
but receive no messages. Let s,, be the time of p’s first such attempt to receive, and
let d,, be the time when p decides. Let s, be the time of q’s first attempt, let my be
the time of q’s Ath attempt, and let d, be the time when q decides. If m, > d,, then
q will receive the message “Decide v” from p before time d,, so q will also decide
v. Therefore, we must have m, < d,,. Since m, I s, + A, it follows that
d,, > s, + A, so any message received by q before time s, will be received by p
before time d,,. Similarly, since d, > d, > s, + A, any message received by p before
time s,, will be received by q before time d,. Therefore, p at time d,, has collected
exactly the same set of initial values as q has collected at time d,. Since q is the
earliest processor to decide 3, q has not received a message “Decide G” from some
other processor. Therefore, p and q must decide on the same value. Cl

The next two results show the effect of replacing broadcast transmission by
point-to-point transmission in the protocol of Theorem E 1. We find the unexpected
phenomenon that 1 -resiliency is possible but 2-resiliency is not.

THEOREM E 1.1. If the model of Theorem E 1 is weakened by having point-to-
point transmission (i.e., communication is synchronous, receive/send is atomic, and
the other three parameters are unfavorable), then there is a I-resilient strong
consensus protocol.

PROOF. The proof follows easily from Theorem El. Let p1 and p2 run the
protocol of Theorem E 1. In this protocol, a processor need never send to itself,
so atomic sending to N - 1 or “(N - 1)-casting” suffices. Since there are
only two processors participating, point-to-point transmission is equivalent to
(N - I)-casting. When one of p, or p2 (or both) decides, it sends the decision to all
others. Cl

THEOREM 11.1. Assume N r 3. If the model of Theorem E 1 is weakened by
making transmission point-to-point (i.e., communication is synchronous, receive/
send is atomic, and the other three parameters are unfavorable), then there is no
2-resilient nontrivial consensus protocol. Moreover, this is true even if message
order is synchronous and communication is immediate.

PROOF. Assume that communication is A-synchronous for some A L 1 and
that message order is synchronous. Assume there is a 2-resilient protocol in this
model.

We let p denote the total reception event with agent p (so the messages received
depend on the configuration to which this event is applied). In particular, p(C)
denotes the configuration reached when the event (p, buff(p, C)) is applied to C.

LEMMA Il. 1.1. There do not exist a bivalent C and v-valent D, for v = 0, 1 and
distinct processors p and q such that Do = p(C) and D, = q(C).

PROOF. Suppose otherwise. Recall that a processor can send to at most one
processor in a step. If the set of processors receiving messages sent by the events p
and q is contained in (p, q) , then Do and D, are (p, q J-equivalent, which contradicts
Lemma 3.3. If one of p or q sends to some r 4 (p, 41, say that p sends to r. Since
Nq, Cl = st(q, DO) and buff(q, C) = buff(q, DO), q will act the same when q is
applied to DO as when q is applied to C. But q(DO) is 0-valent, and q(DO) and D,
are (p, r)-equivalent, again a contradiction. Cl

Minimal Synchronism Needed for Distributed Consensus

~~~~~~~~&---~-.91 

El El not both 
0-valent 0 III 

FIGURE 2 

LEMMA 11.1.2. Let C be a bivalent configuration and let p and q be distinct 
processors. There is a configuration E reachable from C and an event e whose agent 
is either p or q such that e(E) is bivalent. 

PROOF. If either p(C) or q(C) is bivalent, we are done. By Lemma Il. 1.1, p(C) 
and q(C) cannot have different univalencies, so say that they are both 0-valent. 
Since C is bivalent, there is a finite deciding run R from C with decision value 1. 
If D is a configuration in R with decision value 1, then p(D) and q(D) are obviously 
both 1-valent. Therefore, there are configurations A and B in R and an event f 
such that B = f(A), p(A) and q(A) are both 0-valent, but p(B) and q(B) are not 
both 0-valent (see Figure 2). Ifp(B) or q(B) is bivalent, we are done. We show that 
p(B) and q(B) both univalent leads to a contradiction. If we assume then that p(B) 
and q(B) are both univalent, Lemma Il. 1.1 and the choice of B imply that p(B) 
and q(B) must both be I-valent. Let r be the agent off: There are two cases. 

(I) A = 1. Since f must be a total reception in this case, note that r # p and 
r # q, since p(A) and q(A) are both 0-valent but B (= r(A)) is not 0-valent. Let s be 
the processor to which r sends when it takes the step from A to B. Say without loss 
of generality that s # p. Now it is easy to see that p(A) and p(B) are (r, &equivalent, 
which contradicts Lemma 3.3. 

(2) A I 2. If r 4 (p, q), the proof is identical to case (1). Say then that r = p. 
Let s be as above. Ifs # q, then q(A) and q(B) are (p, &equivalent. Ifs = q, let g 
be the event (q, buff(q, A)). Since A 2 2, g is applicable to B (i.e., the message sent 
from p to q by the event fdoes not have to be received when q takes a step from 
B). If g(B) is 0-valent, then B is bivalent and we are done by taking E = A and 
e = 1: If g(B) is I-valent, then we have another contradiction to Lemma 3.3, since 
q(A) and g(B) are (p, q)-equivalent. 0 

To complete the proof of Theorem Il. 1, we must slightly modify step III of the 
outline. Starting from a bivalent initial configuration, we again try to let processors 
take steps, in turn, while keeping the system in a bivalent configuration. If at some 
point we cannot let p take a step and maintain bivalency, we use Lemma Il. 1.2 to 
let the other processors take steps, in turn, while staying in bivalent configurations. 
Note that since communication is synchronous, every message sent to a nonfaulty 
processor is received at some time in this infinite run. Therefore, we have con- 
structed a l-admissible infinite nondeciding run. El 

The next result shows the effect on the protocol of Theorem El by separating 
the Receive and Send operations. 

THEOREM 11.2. If the model of Theorem E 1 is weakened by making receive/ 
send separate (i.e., communication is synchronous, transmission is broadcast, and 
the other three parameters are unfavorable), then there is no l-resilient nontrivial 
consensus protocol. Moreover, this is true tfcommunication is immediate. 



92 

CO 

eO 
(agent p) 

f (agent 4) 

I 

el 
(agent p) 

D. DOLEV, ET AL. 

Cl 

.Dl 
El El 

FIGURE 3 

LEMMA 11.2. Let C be a bivalent configuration and let p be a processor. Let 8 
be the set of configurations reachable from C without letting p take a step and let 

9 = {e(E) 1 E E 8 and e is an event with agent p which is applicable to E). 

Then .9 contains a bivalent configuration. 

PROOF. Suppose that B contains only univalent configurations. By a proof very 
similar to the proof of Lemma 3.2, .9 contains both a 0-valent and a 1-valent 
configuration. Therefore, we can find configurations CO, C1 E E? and events eo, el , 
and f such that C, = f(Co), p is the agent of e. and el, and eo(Co) and e,(C,) have 
different univalencies. Say, without loss of generality, that D, = e,(G) is v-valent 
(see Figure 3). Let q be the agent off: By definition of %, p # q. There are four 
cases, depending on whether p or q are in receiving or sending states in CO, and in 
each case we find an equality or equivalence that contradicts Lemma 3.3. 

( 1) st(p, CO) E ZS and Nq, CO) E ZS. 

Since p is deterministic, e. = el . Let 06 = f (Do); 06 is 0-valent. Since message 
order is asynchronous, 

06 = f (eo(C0)) = eocf(C0)) = e(G) = DI. 

(2) st(p, Co) E ZR and w, Co) E 2s. 

Let 06 = f(Do). Since st(q, Co) = st(q, DO) and buff(q, CO) = buff(q, DO), q acts the 
same when f is applied to Co as when f is applied to DO; in particular, the messages 
sent are the same in the two cases. Also, st(p, CJ E &. It follows that 06 and D1 
are ( p)-equivalent. 

(3) st(P, CO) E ZR and st(q, CO) E ZR. 

By an argument similar to case (2), D,$ and D, are (p)-equivalent. 

(4) Np, CO) E ZS and st(q, CO) E ZR. 

Since e. = el in this case, Do and D1 are (qj-equivalent. Cl 

Starting from an initial bivalent configuration and using Lemma Il.2 as in 
step III of the outline, we construct an infinite nondeciding run in which every 
processor takes infinitely many steps. Since communication is synchronous, all 
messages must be received; so this is a O-admissible nondeciding run. Cl 



Minimal Synchronism Needed for Distributed Consensus 93 

THEOREM E2. Ifprocessors and communication are both synchronous (and the 
other three parameters are unfavorable), then there is an N-resilient strong consensus 
protocol. 

Theorem E2 is well known. A processor can tell if another has failed by using 
“time-outs.” Consensus can be reached by simplifying any algorithm that reaches 
Byzantine agreement, for example, [7]. 

THEOREM 12. If the model of Theorem E2 is weakened by making processors 
asynchronous (i.e., communication is synchronous and the other four parameters 
are unfavorable), then there is no l-resilient nontrivial consensus protocol. Moreover, 
this is true even if message order is synchronous and communication is immediate. 

PROOF. The proof is very similar to the proof of Theorem 11.2. The only 
difference is in case (I), the only place where we used asynchronous message order. 
In this proof, message order is synchronous but transmission is point-to-point. The 
new case (1) is as follows. 

( 1’) st( p, CO) E Zs and st(q, Co) E ZS. 

Let 06 = f (DO). Note again that e. = el. If p and q do not send to the same 
processor in the two events e. and f; then 06 = D, . If p and q send to the same 
processor r, then 06 and DI are (&equivalent. Cl 

Remark (partial synchrony). Consider cases in which transmission is point-to- 
point, receive/send is separate, and message order is asynchronous (a practically 
realistic situation). Theorems IO and 12 show that either asynchronous processors 
or asynchronous communication precludes any nonzero resiliency. Dwork et al. 
[9] deline various types of “partially synchronous models” that lie between the 
completely synchronous and completely asynchronous cases, and show that 
resiliency proportional to N is achievable in these models. In one version of partial 
synchrony, Dwork et al. [9] give partially correct consensus protocols (i.e., no two 
correct processors decide differently no matter how asynchronously the system 
behaves); for termination of the protocols, the bounds A and + in the definitions 
of synchronous communication and synchronous processors do not have to hold 
throughout the execution of the protocol, but these bounds only have to hold 
starting at some real time T, which is unknown a priori to the processors. For 
example, a special case of partially synchronous processors allows different pro- 
cessors to start the protocol asynchronously, that is, at very different (real) times. 
The exact resiliency that is possible depends on the fault model and on the particular 
synchrony or partial synchrony assumptions, and the reader is referred to [9] for 
more details. 

The next group of results have synchronous message order. 

THEOREM E3. Zf message order is synchronous and transmission is broadcast 
(and the other three parameters are unfavorable), there is an N-resilient strong 
consensus protocol. 

PROOF. The first step of each processor is to broadcast its initial value. It then 
attempts to receive and decides on the first value received. Since message order is 
synchronous, the lirst value broadcasted will be the value decided by all. Cl 

Remark. For Theorem E3 a weaker definition of synchronous message order 
suffices: Whenever p broadcasts a message m,, and q broadcasts a message m,,, then 



94 D. DOLEV,ET AL. 

m,, and my appear in the same order in the queues of all processors. The exact 
order does not matter as long as it is the same for all processors. 

THEOREM 13. If the model of Theorem E3 is weakened by making transmission 
point-to-point (i.e., message order is synchronous and the other four parameters are 
unfavorable), then there is no l-resilient nontrivial consensus protocol. Moreover, 
this is true even tfreceivelsend is atomic. 

Theorem 13 is obtained as a corollary of a more general result in the next section. 

THEOREM E4. If message order is synchronous and processors are 9- 
synchronous for some constant + L 1 (and the other three parameters are unfavor- 
able), there is an N-resilient strong consensus protocol. 

PROOF. The proof is by induction on N. The basis N = 1 is obvious. Say that 
N > 1. Let 9 be the (N - 1)-resilient consensus protocol for N - 1 $-synchronous 
processors that exists by the induction hypothesis. 

On every other one of its own steps, each processor pi with 1 5 i I N - 1 runs 
the protocol 9. When not running 9, pi sends the message “p; is alive” to pN. If pi 
decides in the protocol 9, it first sends the decision value to pN and then pi itself 
decides. Since 9 requires only that processors be +-synchronous, it can be seen 
thatp,, . . . . p,+I simulate 9 correctly. On every other one of its own steps, pN 
sends a message to itself. On its other steps pN attempts to receive. If at some point 
pN has received a sequence of 9 + 1 of its own messages without receiving a 
message “pi is alive” between two of its own messages in the sequence, then pN 
concludes that pi has failed. If pN concludes that pl, . . . , p&I have all failed, it 
decides on its own initial value. 

The correctness proof has two cases. (1) If some p; reaches a decision in 9 and 
sends the decision to pN before failing, then pN will receive this decision before pN 
can conclude that pi has failed. (2) Ifp, , . . . , pN-] all fail before sending a decision 
to pN, then pN will eventually discover this and decide on its own initial value. 0 

It follows from previous results that any weakening of the model of Theorem E4 
cannot tolerate one failure. By the remark at the end of Section 2, these theorems 
together with the impossibility result of [lo] cover all 32 cases of choosing the 
system parameters. Table I summarizes the maximum resiliency and the relevant 
theorem(s) for each of these cases. 

4. Another Type of Boundary 

In this section we consider models where the transmission mechanism is interme- 
diate between point-to-point and full broadcast and where message order is inter- 
mediate between synchronous and asynchronous. 

Definition. A model supports k-casting, 1 I k 5 N, if a processor can send to 
at most k processors in an atomic step. (In particular, broadcasting as defined 
previously is N-casting and point-to-point is l-casting.) The k-casting is 
s-serializable, 1 5 s I k, if, for any two k-casts from p to the set of processors Q,, 
and from q to the set of processors Q,, there are at least min(s, ] Q,, n Q, ] ) 
processors in Q,, n Q, that must receive the messages in the order in which they 
were sent, but there are no constraints on the order in which the other processors 
receive the messages. The set of processors that must receive in the correct order 
depends only on p, q, Q,,, and Q,. 

In this section processors and communication are asynchronous. The choice of 
the receive/send parameter is irrelevant. 



Minimal Synchronism Needed for Distributed Consensus 

FIGURE 4 

THEOREM E5. For any k, 1 I k 5 N, k-serializable k-casting is sufficient for 
(k - 1 )-resiliency. 

PROOF. Let S= (pl, . . . , pk). Each processor in S k-casts its initial value to all 
processors in S. Each then attempts to receive and decides on the first value 
received. This decision value is then sent to p~.+~, . . . , pN. Since the k-casting is 
k-serializable, all processors in S receive the same initial value first. Since at most 
k - 1 in S can fail, at least one will decide and send the decision to P - S. 0 

THEOREM 15. For any k, 2 5 k 5 N, (k - 1 )-serializable broadcasting is not 
suficient for (k - l)-resiliency. 

LEMMA 15.1. There is no configuration C, events e = (p, m) and f = (q, n) with 
p # q, and v E (0, 1) such that e(C) is v-valent and e(f(C)) is 9-valent. 

PROOF. Since p # q, f is applicable to e(C). Let D = e(f (C)) and E = f (e(C)), 
so D is V-valent and E is v-valent. Let Q be the set of processors that must receive 
the messages from the two broadcasts e and f in the same order, so 1 Q 1 5 k - 1. 
Any Q-free finite deciding run applicable to D is also applicable to E, and the same 
decision is reached in both cases since st(r, D) = st(r, E) for all r. Cl 

LEMMA 15.2. Let C be bivalent and let e = (p, m) be an event applicable to C. 
Let E: be the set of configurations reachable from C without applying e, and let 
9 = (e(E) ] E E %?‘I. Then g contains a bivalent configuration. 

PROOF. Say that 9 contains only univalent config&ations. By Lemma 3.2 and 
a simple argument as in preceding proofs, there are configurations CO, C, E 8 
and an event f = (q, n) such that Cr = f(G), Do = e(G) is 0-valent, and D1 = 
e(C,) (= e(f(Co))) is I-valent. By Lemma 15.1, p = q. Let R be a p-free finite 
deciding run from Co. If R contains a configuration E with decision value 1, then, 
since e(C,,) is 0-valent and e(E) is 1-valent, there must be configurations A and B 
in R such that B = g(A) for some event g (the agent of g is not p since R is p-free), 
e(A) is 0-valent and e(B) (= e(g(A))) is I-valent. This contradicts Lemma 15.1. 
Therefore, R has decision value 0. 

By a similar argument, there must be configurations B, and BO in R and an event 
b such that B0 = b(BJ, [fe](BO) is 0-valent, and [fe](B,) is I-valent. Since the agent 
of b is not p, the schedule [be] is applicable to f(B,) (see Figure 4). If [fbe](B,) is 
bivalent, we are done because this configuration belongs to 9. Let Q, with 
1 Q 1 5 k - 1, be the set of processors that receive the messages from the two 
broadcasts b and f in the same order. Any Q-free finite deciding run applicable to 
[fbe](B,) is also applicable to [bfe](B1), and the same decision is reached in both 



96 D. DOLEV, ET AL. 

cases. Therefore, [@e](&) is 0-valent because [&I(&) is 0-valent. Letting B2 = 
f(BJ, e(B2) is 1-valent and e(b(B2)) is 0-valent, which contradicts Lemma 15.1. Cl 

The proof of Theorem 15 is now completed as in step III of the outline. Cl 

Since the model with point-to-point transmission and synchronous message 
order is a special case of the model with l-serializable broadcasting, Theorem 13 is 
an immediate corollary of Theorem 15 with k = 2. Also note that the completely 
asynchronous model of [lo] is precisely O-serializable broadcasting with 
receive/send atomic, so the impossibility result of [lo] also follows from Theorem 
15 and the remark after Theorem IO. 

5. Open Questions 

A number of directions for future research come easily to mind. 

(1) Byzantine Failures. Most of the research on reaching agreement in the 
“standard” synchronous model with synchronous processors and synchronous 
communication (Theorem E2) has dealt with Byzantine failures where processors 
can send erroneous messages. For example, given a reasonable definition of 
correctness of a consensus protocol in the case of Byzantine failures, then with 
authentication (i.e., a processor can attach its unforgable signature to any message) 
it is known that there is a consensus protocol that is resilient to any number of 
Byzantine failures [7, 121; without authentication, t-resilient consensus is possible 
iff t 5 L(N - 1)/3J [ 11, 121. What is the effect of Byzantine failures on our other 
protocols? If the model has broadcast (or k-cast) transmission (Theorems El, E3, 
and E5), the answer might depend on whether a Byzantine processor is forced to 
broadcast (or k-cast) a message, including erroneous messages, whenever the correct 
action calls for a broadcast (or k-cast). In contrast, a possibly more destructive type 
of behavior would be to send a message to some processors but not to others. One 
model where this might matter is the model of Theorem E3. If Byzantine processors 
are forced to broadcast, a trivial modification to the protocol of Theorem E3 is still 
correct and iv-resilient, since the only thing that matters in this protocol is that the 
same message is broadcast to all processors at the same time. However, if a 
Byzantine processor can send to some but not others, then this particular protocol 
is not correct. Attiya et al. [2] have established bounds on the maximum resiliency 
possible in the model of Theorem E I under Byzantine failures with authentication. 

(2) Complexity. Once one knows that a consensus protocol exists in a certain 
model, it then becomes interesting to place bounds on various measures of 
efficiency such as the time to reach agreement and the number of messages that 
must be sent. In the “standard” synchronous model, considerable work has been 
done on these efficiency issues (e.g., [6], [7]). One specific open question for the 
model of Theorem E 1 is the following. We noted in the proof of Theorem E 1 that 
every nonfaulty processor decides after at most 2AN of its own steps. If we only 
want to solve the nontrivial consensus problem, there is a similar protocol in which 
every nonfaulty processor decides after at most 2A steps. Is there a constant c such 
that for any number N of processors, there is an N-resilient strong consensus 
protocol for this model in which every nonfaulty processor decides within CA of its 
own steps? 

Another general direction is to study the effect of network topology and network 
failures. 

ACKNOWLEDGMENT. We thank Joe Halpern, Nancy Lynch, Michael Merritt, and 
Dale Skeen for helpful discussions and comments. 



Minimal Synchronism Needed for Distributed Consensus 97 

REFERENCES 

1. AGHILI, H., ASTRAHAN, M., FINKELSTEIN, S., KIM, W., MCPHERSON, J., SCHKOLNICK, M., AND 

STRONG, R. A prototype for a highly available database system. Rep. RJ 3755, IBM Research 
Division, San Jose, Calif., 1983. 

2. ATTIYA, C., D~LEV, D., AND GIL, J. Asynchronous Byzantine consensus. In Proceedings ojthe 
3rd Anmrul ACM Symposium on Principles of Distributed Computing (Vancouver, B.C., Canada, 
Aug. 27-29). ACM, New York, 1984, pp. 119-133. 

3. BEN-OR, M. Another advantage of free choice: Completely asynchronous agreement protocols. In 
Proceedings of the 2nd Annual ACM Symposium on Principles of Distributed Computing (Montreal, 
Quebec, Canada, Aug. 17-19). ACM, New York, 1983, pp. 27-30. 

4. BEN-OR, M. Fast asynchronous Byzantine agreement. In Proceedings of the 4th Annual ACM 
Symposium on Principles of Distributed Computing (Minaki, Ontario, Canada, Aug. 5-7). ACM, 
New York, 1985, pp. 149- 15 1. 

5. BRACHA, G. An asynchronous L(n - 1)/3.l-resilient consensus protocol. In Proceedings ofthe 3rd 
Annual ACM Symposium on Principles ofDistributed Computing (Vancouver, B.C., Canada, Aug. 
27-29). ACM, New York, 1984, pp. 154-162. 

6. I%LEV, D., AND REISCHUK, R. Bounds on information exchange for Byzantine agreement. In 
Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing 
(Ottawa, Canada, Aug. 18-20). ACM, New York, 1982, pp. 132-140. 

7. DOLEV, D., AND STRONG, H. R. Authenticated algorithms for Byzantine agreement. SIAM J. 
Comput. 12 (1983), 656-666. 

8. DOLEV, D., REISCHUK, R., AND STRONG, H. R. Eventual is earlier than immediate. In Proceedings 
of the 23rd Anmrul IEEE Symposium on Foundations of Computer Science (Chicago, Ill., Nov. 
3-5). IEEE, New York, 1982, pp. 196-203. 

9. DWORK, C., LYNCH, L., AND STOCKMEYER, L. Consensus in the presence of partial synchrony. 
IBM Res. Rep. RJ 4892, IBM Research Division, San Jose, Calif., Oct. 1985. 

10. FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibility of distributed consensus with 
one faulty process. J. ACM 32 (1985), 374-382. 

11. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problem. ACM Trans. 
Program. Lang. Syst. 4, 3 (July 1982), 382-401. 

12. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreement in the presence of faults. J. ACM 
27,2 (Apr. 1980), 228-234. 

13. RABIN, M. 0. Randomized Byzantine generals. In Proceedings of the 24th Annual IEEE Sympo- 
sium on Foundations of Computer Science (Tucson, Ariz., Nov. 7-9). IEEE, New York, 
pp. 403-409. 

14. TOUEG, S. Randomized Byzantine agreements. In Proceedings of the3rdAnnualACMSymposium 
on Principles of Distributed Computing (Vancouver, B.C., Canada, Aug. 27-29). ACM, New York, 
1984, pp. 163-178. 

RECEIVED MARCH 1984; REVISED JANUARY 1986; ACCEPTED FEBRUARY 1986 

Journal of the Association for Computing Machinery, Vol. 34. No. I. January 1987. 


