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Abstract. A system consisting of two platoons of vehicles on a sin-
gle track, plus controllers that operate the vehicles, plus communication
channels, is modeled formally, using the hybrid input/output automaton
model of Lynch, Segala, Vaandrager and Weinberg [7]. A key safety re-
quirement of such a system is formulated, namely, that the two platoons
never collide at a relative velocity greater than a given bound vaiiew.
Conditions on the controller of the second platoon are given, designed
to ensure the safety requirement regardless of the behavior of the first
platoon. The fact that these conditions suffice to ensure safety is proved.
It is also proved that these conditions are “optimal”, in that any con-
troller that does not satisfy them can cause the safety requirement to
be violated. The model includes handling of communication delays and
uncertainty. The proofs use composition, invariants, levels of abstraction,
together with methods of mathematical analysis.

This case study is derived from the California PATH intelligent highway
project, in particular, from the treatment of the platoon join maneuver
in [3].

1 Introduction

Increasing highway congestion has spurred recent interest in the design of intel-
ligent highway systems, in which cars operate under partial or total computer
control. An important new effort in this area is the California PATH project (see,
for example, [9]), which has developed a design for automating the operation of
cars in several lanes of selected California highways. In this design, cars become
organized into platoons consisting of a leader car and several following cars; the
followers do not operate independently, but follow the control instructions of the
leader.

An important maneuver for the proposed PATH system is the platoon join
maneuver, in which two or more adjacent platoons combine to form a single
platoon. The design of such a maneuver is described and analyzed in [3]. This
maneuver involves both discrete and continuous behavior: discrete behavior ap-
pears in the form of synchronization and agreement among the controllers about
the join process, plus communication among the various system components,



whereas continuous behavior appears in the motion of the cars. The combina-
tion forms a hybrid system of considerable complexity.

A key 1ssue for the platoon join maneuver is its safety, represented by the
requirement that cars never collide at too great a relative speed. In [3], a proof
of such a safety property is outlined, for the specific platoon join maneuver given
in that paper. The key to the proof turns out to be that the given maneuver
always ensures that either (a) the platoons are sufficiently far apart that the
second platoon can slow down sufficiently before hitting the first platoon, or (b)
the relative speeds of the two platoons are already close enough.

Although the outline [3] gives the key ideas, from our point of view, it is
incomplete as a safety verification. It does not include a complete model of all
system components — in particular, the discrete components are not modeled. It
does not seem to cover all cases that could arise: for instance, only some types
of communication delay are handled, and uncertainties in the values of some
parameters are not considered. The analysis contains informal “jumps” in which
certain types of behavior are claimed to be the “worst possible”, and then only
these cases are analyzed carefully; however, it is not made clear how one can
be sure that the claimed worst cases are in fact the worst. Another problem is
that the analysis is presented for just the single maneuver, and is intertwined
with the proofs of other properties for that maneuver (successful join, optimality
of join time). However, it seems that the analysis should be decomposable, for
example, proving the safety requirement in a way that allows the proof to apply
to other maneuvers besides just the platoon join.

In previous work [7], Lynch, Segala, Vaandrager and Weinberg have devel-
oped a formal model, the hybrid inpul/output automaton model, for hybrid
systems, together with associated proof techniques. These techniques include
methods based on automaton composition, on invariant assertions, on levels
of abstraction, and on mathematical analysis for reasoning about continuous
behavior. They have developed methods of incorporating standard methods of
analysis into automaton-based proofs. So far, these methods have been used to
model and verify a variety of simple real-time systems, including several very
simple maneuvers arising in automated transportation systems ([11], [10], [6]).

In this case study, we apply the hybrid I/O automaton model and its associ-
ated proof methods to the task of describing and verifying safety for the PATH
platoon join maneuver. This is a more complex example than those previously
considered using hybrid I/O automata. We aim for an accurate, complete model
of the system, plus proofs that cover all cases and accommodate all realistic
variations, including delays and uncertainties. Our safety proofs should apply
as generally as possible, for instance, to other maneuvers besides platoon join.
Our model should also be usable for proving other properties, such as successful
join and optimality. The system and its proofs should admit decomposition into
separate parts, as far as possible, and should be easy to extend.

In the work we have completed so far, we have made certain simplifications.
Namely, we consider the case of two platoons only (as in [3]), and we consider
uncertainties in only some of the parameter values. Moreover, we pretend that



the controllers control the cars’” acceleration rather than their jerk (derivative of
the acceleration). We intend to remove these restrictions in later work, and are
designing our models and proofs to make such extensions easy.

For this simplified setting, we have succeeded in modeling the complete sys-
tem, which consists of two platoons of cars on a single track, plus controllers that
operate the cars, plus communication channels. We have formulated the safety
requirement, namely, that the two platoons never collide at a relative velocity
greater than a given bound vgjs,. We have given conditions on the controller
of the second platoon, designed to ensure the safety requirement regardless of
the behavior of the first platoon, and we have proved that these conditions suf-
fice to ensure safety. Our proofs cover all cases, and are sufficiently general to
apply to other maneuvers besides platoon join. The proofs use discrete systems
techniques, such as composition, invariants, and levels of abstraction. Addition-
ally, the methods of mathematical analysis developed for proving invariance of
state-space sets in [2] are used for reasoning about the continuous parts of the
system.

In addition to proving safety, we also give results showing that the given
conditions on the controllers are “optimal”, in the sense that any controller
that does not satisfy them can cause the safety requirement to be violated. The
optimality results are proved using the same techniques (in particular, invariants
and composition) that are used for the safety proof. Again, the optimality results
apply to other maneuvers besides platoon join.

An alternative approach to proving safety for the platoon join maneuver,
based on game theory, is presented in [5], [4]. There has been a large amount
of prior work on modelling and verification of hybrid systems, as represented,
for example, in the six previous workshops on hybrid systems. Nearly all of this
work differs from ours in using either control theory methods, or else algorith-
mic techniques (e.g., decision procedures based on finite-state analysis). Other
formal models for hybrid systems appear in [8], [1]; these differ from ours pri-
marily in placing less emphasis on issues of external behavior, composition and
abstraction.

We consider the research contributions of this paper to be: (a) The model and
proof of safety for the platoon join (and other maneuvers). (b) The optimality
result and its proof. (c) A demonstration of the power of hybrid I/O automata
and its associated proof methods for reasoning about interesting hybrid systems.
(d) A demonstration of the use of abstraction levels as a means of handling
complexity.

2 HIOA Model

The Hybrid I/O Automata model presented in [7] is capable of describing both
continuous and discrete behavior. The model allows communication among com-
ponents using both shared variables and shared actions. Several HIOA techniques
make them particularly useful in modeling and reasoning about hybrid systems.
These include composition, which allows to form complex automata from simple



building blocks; implementation relations, which make it easy to use levels of ab-
straction when modeling complex systems; invariant assertions, which describe
the non changing properties of the system.

A state of a HIOA is defined to be a valuation of a set of variables. A trajectory
w 1s a function that maps a left-closed interval I of the reals, with left endpoint
equal to 0, to states; a trajectory represents the continuous evolution of the state
over an interval of time. An HIOA A consists of:

— Three disjoint sets of input, output and internal variables. Input and output
variables together are called ezternal variables.

— Three disjoint sets of input, output and internal actions.

— A nonempty set of start states.

— A set of discrete transition, i.e. (state, action, state) triples.

A set of trajectories over the variables of A.

We now define executions of HIOAs. A hybrid execution fragment of A is a
finite or infinite alternating sequence of trajectories and actions, ending with a
trajectory if it is finite. An execution fragment records all the discrete changes
that occur in an evolution of a system, plus the continuous state changes that
occur in between. Hybrid execution fragments are called admissible if they are
infinite. A hybrid exzecution is an execution fragment in which the first state is a
start state. A state of A i1s defined to be reachable if it is the last state of some
finite hybrid execution of A. A hybrid trace of a hybrid execution records only
the changes to the external variables. Hybrid traces of an HIOA A (hybrid trace
that arise from all the finite and admissible hybrid executions of 4) describe its
visible behavior.

HIOA A implements HIOA B if every behavior of A is allowed by B. A is
typically more deterministic than B in both the discrete and the continuous
level. Formally, if A implements B, then 1) A and B are comparable HIOA,
meaning that they have the same external actions and external variables; 2) all
the hybrid traces of A are included in those of B. To prove the second part, we
need to show that there exists a simulation relation from A to B. A simulation
relation from A to B is a relation R from states of A to states of B satisfiying:

— If s4 1s a start state of A, then there exists sp, s4 Rsp, such that sg is a
start state of B.

— If @ is an action of A, (sa,a,s’) is a discrete transition of A, s4 Rsp, and
both s4 and sp are reachable, then B has a finite execution fragment starting
with sp, having the same trace as the given step, and ending with a state
s’y with s, Rs’.

— If wy is a trajectory of A from s4 to s/, saRsp, and both s4 and sp are
reachable, then B has a finite execution fragment starting with sp, having
the same trace w, and ending with a state s with s, Rs’p.

Another technique for reducing complexity 1s HIOA composition. HIOAs A
and B can be composed if they have no output actions or output variables in
common, and if no internal variable of either is a variable of the other. The



composed HIOA C’s input variables/actions are the union of A and B’s input
variables/actions minus the union of A and B’s output variables/actions; all the
other components (output and internal variables/actions, start states, discrete
actions, trajectories) are the unions of the corresponding components of 4 and
B. The crucial result is that the composition operator respects the implemen-
tation relation: if A; implements A5 then A; composed with B implements As
composed with B. Finally, invariant assertions state system properties that are
true in any reachable state of the system.

3 System Model

We consider two platoons of vehicles, moving along a single track. While the be-
havior of the leading platoon is arbitrary, the second platoon’s controller must
make sure that no “bad” collisions occur. “Bad” collisions are collision at a high
relative speed. This is called the Safety requirement for the second controller.
This Safety requirement i1s general for all platoon maneuvers, and is indepen-
dent of the particular algorithm used. We devise the most nondeterministic safe
controller, so that later we can use this controller as a correctness check: a con-
troller implementing any platoon maneuver must implement our safe controller
in order to be correct. This should be very useful in formally proving correctness
of complicated algorithms.

3.1  Controlled-Platoons

We compose our system of a piece modeling the real world (the physical
platoons) and two pieces modeling the controllers of each platoon (which are
described in the next subsection). Each piece is modeled by a hybrid automaton.
The real world piece is called Controlled-Platoons, shown in Figure 1. It consists
of two platoons, named 1 and 2, where platoon 1 precedes platoon 2 on a single
track. Positions on the track are labeled with nonnegative reals, starting with 0
as a designated beginning point. We pretend for simplicity here that the platoons
have size 0. In the full version of the paper this restriction is relaxed. Note that
the velocities of the platoons are always nonnegative — the vehicles will never go
backwards, and the platoons are not allowed to bypass each other.

Only single collisions are modeled here. A special collided variable keeps
track of the first occurrence of a collision. Before a collision, the platoons obey
their respective controllers by setting the given acceleration. After a collision
occurs, the platoons are uncoupled from the controllers and their velocities are
set arbitrarily.

We use the constants vai0w € RZ” to represent the largest allowable velocity
when a collision occurs, and am;, € RZY to represent the absolute value of the
maximum emergency deceleration. The platoons’ position, velocity, and accel-
eration data is modeled by x;, #;, and Z;, respectively. The dots are used as a
syntactic device only. The differential relationships between these variables 1s a
consequence of the trajectory definitions; however, this differential relationship



Actions:
Internal: collide
Variables:
Input: #; € R, 1 € {1,2}, initially arbitrary
Output: ; € RZ°, ¢ € {1,2}, initially arbitrary
©; € R2° i € {1,2}; initially z» = 0 and &, is arbitrary
collided, Boolean, initially false
now, initially 0
Discrete Transitions:
collide
Pre: T = To
collided = false
Effect: &, := arbitrary value, ¢ € {1,2}
collided = true
Trajectories:
an [-trajectory w is included among the set of nontrivial trajectories exactly if
collided is unchanged in w
for all ¢ € I the following hold:
if collided = false in w then
w(t).ds = w(0).4; + [ 'w(u).didu, i € {1,2}.
w(t).now = w(0).now + ¢
w(t).zo < w(t).zy
w(t).z; = w(0).z; + fotw(u).x'idu
if w(t).z1 = w(t).z2 and t is not the right endpoint of I then
collided = true.

Fig. 1. The Controlled-Platoons Hybrid 1/O Automaton

—

is partly lost after a collision occurs. The acceleration data is received from the
controllers which are defined below. This will be used in our statement of the cor-
rectness property, below — we only want to assert what happens the first time a
collision occurs. The second conditions on the trajectories of Controlled-Platoons
guarantees that the platoon only executes the controller’s decisions until the first
collision occurs.

3.2 Controllers

Controllery 1s described in Figure 2. It is an arbitrary hybrid automaton
with the given interface, restricted only by physical limitations. Note that the
controller does not have any actions. The last restriction on continuous trajec-
tories, for example, guarantees that the controller does not make the platoon to
have negative velocity. The internal velocity and position variables (#;n41 and
Zint1) are used to keep track of the platoon’s own data. This data is obtained by
integrating their acceleration settings. Since there are no delays or uncertainties,
these variables should correspond exactly to the actual position and velocity of
the platoon.

The Controller; hybrid automaton is the same as Controllery, except that



Variables:
Input: 2> € R2°
Tro € RZO
Output: z
Internal: &5y € RZC, initially #inn = 41
Tint1 € RZO, initially xine = 21
Trajectories:
an [-trajectory w is included among the set of nontrivial trajectories exactly if
#1 1s an integrable function
for all ¢t € I, at w(t)
Tint1 = w(0).Tine1 + fotw(u).ildu
Tint1 = w(0).Tine + fotw(u).abmﬂdu
i1 Z —Qmin

Fig. 2. Controller; Hybrid I/O Automaton

it inputs 1 and &1, and outputs #,.

Compose Controlled-Platoons, Controller; and Controllers using hybrid 1/0
automata composition rules to obtain an automaton that models our platoon
system with each platoon having its own controller.

3.3 Safety Condition

We place a safety condition on states of Controlled-Platoons. The safety con-
dition guarantees that if the platoons ever collide, then the first time they do
so, their relative velocity is no more than vgj.. We formulate this condition
formally as an invariant assertion:

Safety : If x1 = x5 and collided = false, then ¥9 < &1 + Vaiiow-

We define a new automaton, Safe-Platoons, to serve as a correctness specifi-
cation. Safe-Platoons is exactly the same as Controlled-Platoons except that all
the states are restricted to satisfy the safety condition.

We are supposed to design Controllers so that when it is composed in this way
with arbitrary Controller;, the resulting system satisfies the safety condition.
Then we can say that it implements the Safe- Platoons automaton, using a notion
of implements based on preserving hybrid traces. Here, the hybrid trace includes
the output variables, which are the positions, velocities and accelerations of both
platoons plus the collided flag. That is enough to ensure that the Safety condition
of the spec carries over to the implementation.

4 The Ideal Case

4.1 The Model

We start with a treatment of the safety property in the ideal setting. This allows
us to prove some important properties of the simpler model first, and then extend



them to the more complicated models via simulation mappings. By ideal setting
we mean that there are no delays and/or uncertainties in either the sensor’s data
or the controller’s directives. In the next few sections we will make the model
more realistic by relaxing these restrictions. Also, in this abstract, we make the
simplifying assumption that the platoons have size 0. In the full paper we show
how to relax this restriction easily.

We define and prove correctness of a specific Controllery, called Cs, which
implements our safety condition, in Figure 3. This controller is very nondeter-
ministic.

Definition:
. 2 2 N2 2
safe-measure = max(e1 — Tintz — (Sinto) gz;)m (Waltow) , L1+ Valtow — Tint2)
Variables:
Input: 27 € R2°

r1 € RZO
Output: z3, initially if safe-measure < 0, then 22 =0
Internal: Z;n0 € RZO, initially Zine = @2
Tint2 € RZO, initially xine = o2
Trajectories:
an [-trajectory w is included among the set of nontrivial trajectories exactly if
w is a trajectory of Controllers

if collided = false in w(0) then V¢ € I

if safe-measure < 0 then 22 = —amin

Fig. 3. C> Hybrid I/O Automaton

C'5 ensures that if the position and velocity parameters are on the boundary
defined by safe-measure, then platoon 2 is guaranteed to be decelerating as fast
as possible. This is guaranteed by the second condition on the trajectories of C's.

4.2 Correctness of C,

We will now prove correctness of our controller. This means that any controller
that implements Ca, will be correct (safe).
We define a predicate S on states of Platoons, as follows:

Predicate S: If collided = false then safe-measure > 0, where

(iintZ)z - (1;1)2 - (Uallow)2
QGmm

safe-measure = max(x1—einro— , 1V allow—Fint2)

This says (from the definition of safe-measure, see Figure 3) that if the pla-
toons have not collided yet, then either (a) the distance between the two platoons
is great enough to allow platoon 2 to slow down sufficiently before hitting pla-
toon 1, even if platoon 1 decelerates at its fastest possible rate, or (b) the relative
velocities of the two platoons are already close enough.



We define a new automaton C-Platoons, which is exactly like Controlled-
Platoons, with the additional restriction that in all the initial states safe-measure
> 0 (thus all the initially states satisfy Predicate S, since initially collided =
false). The system Implemented-Platoons that we are considering is the composi-
tion of C-Platoons, an arbitrary Controller;, and C5. C is designed to guarantee
explicitly that if S is ever violated, or even if it in danger of being violated (be-
cause equality holds), platoon 2 is decelerating as fast as possible. We claim that
this strategy is sufficient to guarantee that S is always true:

Lemmal. S s true in every reachable state of the Implemented-Platoons.
As a simple consequence of Lemma 1, we obtain the safety condition:

Lemma2. In any reachable state of Implemented-Platoons, if x1 = x5 and
collided = false, then ¥s < &1 4+ Vaiiow-

Now we use Lemma 2 to prove that the system is in fact safe, 1.e., that it
implements Safe-Platoons. We prove this using a simulation relation f. This
simulation is trivial — the identity on all state components of Safe-Platoons
(velocities, positions, and the collided flag).

Lemma 3. f is a forward simulation from the composed system Implemented-
Platoons to Safe-Platoons.

Proof: By induction on the number of steps in the hybrid execution. Lemma
2 deals with trajectories; the proofs for the start states and discrete steps are
relatively simple.

Theorem4. The Implemented-Platoons system implements Safe-Platoons, in
the sense that for every hybrid execution o of Implemented-Platoons, there is
a hybrid execution o of Safe-Platoons that has the same hybrid trace — here,
means same positions, velocity and collided flag values.

Proof. Implemented-Platoons and Safe-Platoons are comparable and by Lemma
3, there is a simulation relation f from Implemented-Platoons to Safe-Platoons.
Therefore, this composed system implements Safe-Platoons.

4.3 Optimality

We will now prove optimality of safe-measure using the analysis theorem about
non-increasing functions. Informally, we want to prove that any Controllers that
does not implements C 1s unsafe. The formal definition of this optimality prop-
erty appears in Theorem 7. Combined with the correctness result of the previous
subsection, this will allows to decide whether any given controller is safe, since
it 1s safe ¢f and only ¢f it implements C5.



Define Controllers to be bad (and call it Bad-Controllers), if there exists
some Controllery, such that in any admissible hybrid execution « of an au-
tomaton composed of Controlled-Platoons, Controllery and Controller;, 3s € «,
which does not satisfy Predicate S.

Define Bad-Controller,, given Bad-Controllers, so that in the system com-
posed of Bad-Controllery, Bad-Controllers and Controlled-Platoons (the system
called Bad-Platoons), for any admissible hybrid execution 73, the following hold:

— ds € 3, s does not satisfy Predicate S;
— strictly after the occurrence of s, 21 = —amin.

The first lemma shows that once Predicate S is violated, it will remain vio-
lated, given some "bad” Controller;. Formally,

Lemma 5. If a given Controllers is bad, then in any Bad-Platoons system with
this Controllery, Predicate S is violated in all the states € 8 that occur strictly
after s, in which collided = false. (Bad-Platoons, 3, s are as defined above.)

The next lemma shows that if Predicate S is violated in some state, then
safety will also be violated eventually. Formally,

Lemma 6. If a given Controllers is bad, then in any Bad-Platoons system with
this Conirollers, in any admissible evecution v, As’ € v, which does not satisfy
safety ).

Theorem 7. For any Bad-Controllers, there always exists such Controller; (C7,
which is not necessarily the same as C1), that a Bad-Platoons system composed
with these controllers has in its hybrid trace a state s', in which safety is violated.

The last theorem shows that our controller is optimal, i.e., any Controller,
that does not implement it, might lead to an unsafe state, given some “bad”
Controller, .

5 Delayed Response

Now we consider the case where there is a delay between the receipt of informa-
tion by the controller for platoon 2 and its resulting action. There appear to be
two distinct types of delay to consider — the inbound and the outbound delay;
we model them separately. The inbound delay 1s due to delays in communicating
sensor information to the controllers. The outbound delay comes from the fact
the controller’s decision are implemented by the platoons after some delay.

We use levels of abstractions to deal with the complexity of the delayed case.
The use of simulation relations enables us to build correctness and optimality
proofs based on the previous ideal case results. This makes all the proofs signif-
icantly easier.



5.1 The System with Inbound and Outbound Delays

We model both the inbound and the outbound delays by special delay buffers.
To obtain the delayed system, we then compose our new controller with the
delay buffers. First, we introduce the inbound delay buffer B; (lag time in com-
municating sensor information) in Figure 4.

Variables:
Input: 1 € R2° z; € R2°
Output: &1 € RZ%, z;; € R2°
Internal: saved - maps from an interval (0, d;) to (&1, ©1)
Trajectories:
an [-trajectory w is included among the set of nontrivial trajectories exactly if
for all ¢t € I, ¢t > 0 the following hold:

0). d(t if t < d;
w(t).(sx, 2i1) = w(0).save ( ) ift < :
(w(t —di).g1,w(t —ds).z1) otherwise
vit' € (0, di),
I : I
w(t).saved(t') = w(O).saved.(t t) ift' > t
(w(t—t').71,w(t —1t).z1) otherwise

Fig.4. B; Hybrid I/O Automaton

B; acts in such a way that the output variables have exactly the values of the
input variables, exactly time d; earlier, where d; is the maximum “information
delay” — the longest time that it can take for a controller to receive the velocity
and position sensor data. This delay buffer actually implements the more realistic
version, in which the length of the delay varies nondeterministically within known
bounds. Initially, the buffer (saved) is “prefed” with information that could have
happened in that initial time period (so that the last position and velocity values
in the buffer match up the initial position and velocity values of the platoons).
Setting the maximum deceleration for that “imaginary” time period lets the
controller be the most flexible (and thus optimal, as will be proven later), in the
initial d; time period.

Formally, the initial value of the saved variable is determined as follows.
For any start state s of the system, construct a trajectory w of length d; of
Controlled-Platoons so that w(0).&, = s.&1 + diamin, w(0).21 = s.xq + s.#1d; +
am,2+d,2’ and Vt € (0,d;), w(t).#1 = —amsn. The second platoon’s state com-
ponents can be arbitrary, as long as no collisions occur. Now, ¥t € (0,d;), let
saved(t) = w(t).(£1, x1).

Next, we add an outbound delay buffer B, (lag time in communicating control
information). An outbound delay buffer B,, is almost like the inbound buffer B;,
but with input variable Z,2, and output variable #,. The saved variable is the
same as in B;, except that it now “saves” Z,» and the length of the interval is d,,
where d, € R2% is the maximum “action delay” — the longest time that it can take



for a platoon to react to the controllers directives. Again, the delay time-length
is exact. Initially, ¥t € (0,d,), saved(t) = —amin . This makes the platoons safe
in the initial d, time interval even if the first platoon starts decelerating.

Definition:

2 2 o= (Fi1—mint1)? —(Vatiow)®
— Tnew2 —

2qmin

. :
safe-measure, = max(zi1 + £t — dmiz ’

. ' .
Tl — amint — Tpew2 + Uallow),
where ¢ = min(d; + do, 22-)

Amin

Variables:
Input: &;; € R2°
zi € RZ°
Output: Z.2, initially if safe-measure <0, then 2 =0
Internal: internal variables of Controllers (x.intQ and xth)
az - maps from an interval (0,d.) to o2,
initially, Vt € (0,d.), a2(t) = —amin, otherwise — arbitrary
Tnew2, Tnewz - the position and velocity of the second platoon
after time d, passes, provided collided still equals false
Trajectories:
an [-trajectory w is included among the set of nontrivial trajectories exactly if
w is a trajectory of Controllers
if collided = false in w(0) then for all t € I, ¢ > 0:
if safe-measure; < 0 then
55..2 = —Qmin

vt € (0,do),
w(t).az(t') = {

w(t).Enews = w(t).dine2 + [, w(t).az(u)du
w(t).Tnewe = w(t).zinez + [, ([, “w(t).az(w)du + w(t).dinez)du
Fig.5. D, Hybrid I/O Automaton

w(0).ax(t' —t) ift' >t

w(t —t') i otherwise

Finally, we modify the controller so that it handles the delays correctly. The
controller Dy (see Figure 5) implements Controllers. Tt is similar to Cz in that
it also tries to keep the second platoon within the bounds set by safe-measure,,
which is safe-measure redefined for the delayed case. The new controller gets
its inputs from the inbound delay buffer B; and its output variable goes into
the outbound delay buffer B,. Additional internal variables (Znew2 and pey2)
are added to store the “future” position and velocity data, as calculated from
the acceleration settings. A buffer for storing acceleration settings that the con-
troller has output, but that has not been executed yet (az) is used for this pur-
pose. Also, safe-measure, is defined instead of safe-measure; the only changes
from safe-measure are that the 1st platoon’s parameters are exchanged by their
“worst-case” values after d; + d, time units pass; and the 2nd platoon’s param-
eters are exchanged by their projected values after d, time units pass.



5.2 Correctness of D,

We will now compose B;, Dy, B, using the hybrid I/O automata composi-
tion rules to obtain the delayed controller, which we call Buffered-Controller.
A straightforward simulation relation shows that this composed system imple-
ments C5. This simulation relation f is the identity on all the external state
components of C5. The use of simulation relations will allows us to prove cor-
rectness of our more complicated delayed controller relatively easily, since we
have already proven correctness in the simple (ideal) case.

First we prove that if the old safe-measure (the one used in the ideal case) is
non-positive in some state of a trajectory of Buffered-Controller, then the new
controller Da (the one that has both the inbound and the outbound delays),
will also output maximum deceleration, just as the old (ideal) controller would.
Formally,

Lemma 8. If collided = false in w(0) of a trajectory w of Buffered-Controller,
then Yt € I, such that w(t).safe-measure <0, &5 = —amin .-

Lemma9. [ (an identity relation on all the external components of Cy) is a
forward simulation from the composed system Buffered-Controller to Cl.

Proof. By induction on the number of steps in the hybrid execution. Start states
and discrete steps are proven trivially; Lemma 8 is used to prove the simulation
relation on continuous trajectories.

This lemma proves that Buffered-Controller implements C's, since the two
automata are comparable and there is a simulation relation from the first one to
the second one. Therefore, we are now able to prove correctness of our delayed
controller:

Theorem 10. The doubly-delayed hybrid automaton composed of C-Platoons,
Buffered-Controller implements Safe-Platoons.

Proof. We have proved that the system Buffered-Controller implements Cs in
Lemma 9. But by Theorem 4, Cs composed with C-Platoons (the Implemented-
Platoons system) implements Safe-Platoons. Thus, the doubly-delayed hybrid
automaton composed of C-Platoons, and Buffered-Controller also implements
Safe-Platoons by the hybrid I/O automata composition rules!

5.3 Optimality

We will now prove optimality of Dy. Again, we will be basing our proofs on
the optimality property of the controller C's; which was proven in section 4.3.
We want to prove that any controller with both inbound and outbound delays
that does not implement controller s, is unsafe given some “bad” controller
(. However, knowing that C5 i1s optimal makes the proof much easier: we only
need to show that a controller that would let safe-measure; get negative, will



eventually lead to a state in which safe-measure itself 1s negative. Then we can
use optimality of Cs to show that any such controller would not be correct.

Define Buffered-Controllery to be bad (Bad-Buffered-Controllers), if there
exists some Controller; (Cg1), such that in any admissible hybrid execution
a of an automaton composed of Controlled-Platoons, C3; and Bad-Buffered-
Controllers, 3sq4 € a, which does not satisfy Predicate S;.

Lemma11l. Any Bad-Buffered-Controller, implements Bad-Controllers.

Since we have just shown that the delayed automaton implements the non-
delayed one, we can use the optimality property of the ideal case controller, to
prove the optimality of the delayed controller easily:

Theorem 12. Given any Bad-Buffered-Controllery, we can always construct
Controller; (Cyqy) such that a system composed of Controlled-Platoons and these
controllers has in any admissible hybrid execution a state s', in which safety is
violated.

Proof. Take any Bad-Buffered-Controllers. By Lemma 11, it implements Bad-
Controllers. Then by Theorem 7, there exists such Controllery (C}), that a
system composed of Controlled-Platoons, C| and this Bad-Buffered-Controllers
has in its hybrid trace a state s’ that violates safety.

Therefore, the delayed Controller; is also optimal.

6 Uncertainty

Our model already includes both the inbound and the outbound delays in sending
and receiving information between the controller and Controlled-Platoons. Now
we will introduce an extra complexity which will make the model even more re-
alistic: the uncertainty in information that the controller receives. This inbound
uncertainty arises from inexact sensors that communicate the position and ve-
locity data to the controllers. We will use similar methods to the ones used in the
delay case. A special “uncertainty buffer” automaton will be defined, similar to
the previous delay buffers. Then, the uncertainty will be implemented by adding
this new automaton to the model and modifying the controller slightly. We will
then prove correctness using the simulation relation to the delayed case which
we have already worked out. This use of levels of abstraction makes the proofs
for the complicated case, which involves both the delays and the uncertainties,
relatively easy to both write and understand.

6.1 The System

We implement the delayed controller Dy with a composition of two hybrid
automata: another controller Us, and an inbound uncertainty buffer U;. We call



Variables:
Input:  z;1, za1
Output: T;yu1, Tiul
Trajectories:
an [-trajectory w is included among the set of nontrivial trajectories exactly if
for all ¢t € I, ¢t > 0 the following hold:
Tiw1 € [Ti1 — &, %41 + 6]
Tiu1 € [i1 — 8,251 + 6]

Fig.6. U; Hybrid I/O Automaton

this composed system Uncertain-Controller. The uncertainty buffer U; nonde-
terministically garbles the position and velocity data within the given bounds
(see Figure 6). The bounds are predefined constants é € RZO — the maximum
absolute value of uncertainty in position sensor data, and § € R2? — the maxi-
mum absolute value of uncertainty in velocity sensor data. The controller Us is
the same as Dy except that 1t now takes its inputs from the inbound uncertainty
buffer U; and that safe-measure,, (see below) is defined to account for the un-
certainties. Same as in the delay case, the only changes from safe-measure, are
that the first platoon’s data 1s adjusted to the “worst case” behavior of the first
platoon.

) g2
safe-measure, = max((@;y1 — 6) + (L1 — )t — am# — Tpew?
. ) . 2
_ (xnewZ)z - ((xzul - 6) - amint//) - (Uallow)2
2amin ’

(iiul - 6) - amint// - i‘newZ + Uallow)a

where ' = mln(dZ +d i‘zu1+$).

%) Amin

6.2 Correctness of U,

A straightforward simulation relation shows that the Uncertain-Controller sys-
tem implements D,. This simulation relation f is the identity on all state com-
ponents of Ds.

First we show that if the old safe-measure; (the one used in the delayed case)
i1s non-positive in some state of a trajectory of Uncertain-Controller, then the
new controller (the one that has an inbound uncertainty), will also output max-
imum deceleration, same as the old (delayed only) controller would. Formally,

Lemmal3. Let w be an I-trajectory of Uncertain-Controller. If collided =
false in w(0), then ¥Vt € I, such that safe-measure; < 0, &0 = —amin and
safe-measure, < 0.

Then we are able to prove that f is the simulation relation from the composed
system Uncertain-Controller to Ds.



Theorem 14. [ (an identity relation on all the external state components of
Dy ) is a forward simulation from the Uncertain-Controller system to Ds.

We have already proven correctness of the delayed controller D5, and we have
also shown that Uncertain-Controller implements Ds; thus, our new uncertain
system is also correct in a sense that 1t implements our correctness specification,
Safe-Platoons.

7 Conclusion

The system consisting of two platoons movingon a single track has been modeled
using hybrid I/O automata, including all the components (physical platoons,
controllers, delay and uncertainty buffers), and the interactions between them.
Safety conditions were formulated using invariant assertions. Correctness and
optimality of controllers were proved using composition, simulation mappings
and invariants, and the methods of mathematical analysis. Complexity (delays
and uncertainty) was introduced gradually, using the levels of abstraction, which
significantly simplified the proofs.

The case study describes formally a general controller that would guarantee
the safety requirement regardless of the behavior of the leading platoon. Such
a controller can be later reused to prove correctness of complicated maneuvers,
such as merging and splitting, where the setup is similar.

In future work, we will extend the model to handle outbound uncertainty;
use jerk instead of acceleration; motion in 2D planes. Also, we will consider cases
with several platoons operating independently. Additional properties of the join
maneuver, such as successful join, time optimality, and passenger comfort, will
be studied; other maneuvers arising in this setting will be investigated using the
same models.
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