
Safety Veri�cation for Automated PlatoonManeuvers:A Case StudyEkaterina Dolginova and Nancy LynchMIT Laboratory for Computer ScienceCambridge, MA 02139, USAfkatya, lynchg@theory.lcs.mit.eduAbstract. A system consisting of two platoons of vehicles on a sin-gle track, plus controllers that operate the vehicles, plus communicationchannels, is modeled formally, using the hybrid input/output automatonmodel of Lynch, Segala, Vaandrager and Weinberg [7]. A key safety re-quirement of such a system is formulated, namely, that the two platoonsnever collide at a relative velocity greater than a given bound vallow .Conditions on the controller of the second platoon are given, designedto ensure the safety requirement regardless of the behavior of the �rstplatoon. The fact that these conditions su�ce to ensure safety is proved.It is also proved that these conditions are \optimal", in that any con-troller that does not satisfy them can cause the safety requirement tobe violated. The model includes handling of communication delays anduncertainty. The proofs use composition, invariants, levels of abstraction,together with methods of mathematical analysis.This case study is derived from the California PATH intelligent highwayproject, in particular, from the treatment of the platoon join maneuverin [3].1 IntroductionIncreasing highway congestion has spurred recent interest in the design of intel-ligent highway systems, in which cars operate under partial or total computercontrol. An important new e�ort in this area is the California PATH project (see,for example, [9]), which has developed a design for automating the operation ofcars in several lanes of selected California highways. In this design, cars becomeorganized into platoons consisting of a leader car and several following cars; thefollowers do not operate independently, but follow the control instructions of theleader.An important maneuver for the proposed PATH system is the platoon joinmaneuver, in which two or more adjacent platoons combine to form a singleplatoon. The design of such a maneuver is described and analyzed in [3]. Thismaneuver involves both discrete and continuous behavior: discrete behavior ap-pears in the form of synchronization and agreement among the controllers aboutthe join process, plus communication among the various system components,

whereas continuous behavior appears in the motion of the cars. The combina-tion forms a hybrid system of considerable complexity.A key issue for the platoon join maneuver is its safety, represented by therequirement that cars never collide at too great a relative speed. In [3], a proofof such a safety property is outlined, for the speci�c platoon join maneuver givenin that paper. The key to the proof turns out to be that the given maneuveralways ensures that either (a) the platoons are su�ciently far apart that thesecond platoon can slow down su�ciently before hitting the �rst platoon, or (b)the relative speeds of the two platoons are already close enough.Although the outline [3] gives the key ideas, from our point of view, it isincomplete as a safety veri�cation. It does not include a complete model of allsystem components { in particular, the discrete components are not modeled. Itdoes not seem to cover all cases that could arise: for instance, only some typesof communication delay are handled, and uncertainties in the values of someparameters are not considered. The analysis contains informal \jumps" in whichcertain types of behavior are claimed to be the \worst possible", and then onlythese cases are analyzed carefully; however, it is not made clear how one canbe sure that the claimed worst cases are in fact the worst. Another problem isthat the analysis is presented for just the single maneuver, and is intertwinedwith the proofs of other properties for that maneuver (successful join, optimalityof join time). However, it seems that the analysis should be decomposable, forexample, proving the safety requirement in a way that allows the proof to applyto other maneuvers besides just the platoon join.In previous work [7], Lynch, Segala, Vaandrager and Weinberg have devel-oped a formal model, the hybrid input/output automaton model , for hybridsystems, together with associated proof techniques. These techniques includemethods based on automaton composition, on invariant assertions, on levelsof abstraction, and on mathematical analysis for reasoning about continuousbehavior. They have developed methods of incorporating standard methods ofanalysis into automaton-based proofs. So far, these methods have been used tomodel and verify a variety of simple real-time systems, including several verysimple maneuvers arising in automated transportation systems ([11], [10], [6]).In this case study, we apply the hybrid I/O automaton model and its associ-ated proof methods to the task of describing and verifying safety for the PATHplatoon join maneuver. This is a more complex example than those previouslyconsidered using hybrid I/O automata. We aim for an accurate, complete modelof the system, plus proofs that cover all cases and accommodate all realisticvariations, including delays and uncertainties. Our safety proofs should applyas generally as possible, for instance, to other maneuvers besides platoon join.Our model should also be usable for proving other properties, such as successfuljoin and optimality. The system and its proofs should admit decomposition intoseparate parts, as far as possible, and should be easy to extend.In the work we have completed so far, we have made certain simpli�cations.Namely, we consider the case of two platoons only (as in [3]), and we consideruncertainties in only some of the parameter values. Moreover, we pretend that

the controllers control the cars' acceleration rather than their jerk (derivative ofthe acceleration). We intend to remove these restrictions in later work, and aredesigning our models and proofs to make such extensions easy.For this simpli�ed setting, we have succeeded in modeling the complete sys-tem, which consists of two platoons of cars on a single track, plus controllers thatoperate the cars, plus communication channels. We have formulated the safetyrequirement, namely, that the two platoons never collide at a relative velocitygreater than a given bound vallow . We have given conditions on the controllerof the second platoon, designed to ensure the safety requirement regardless ofthe behavior of the �rst platoon, and we have proved that these conditions suf-�ce to ensure safety. Our proofs cover all cases, and are su�ciently general toapply to other maneuvers besides platoon join. The proofs use discrete systemstechniques, such as composition, invariants, and levels of abstraction. Addition-ally, the methods of mathematical analysis developed for proving invariance ofstate-space sets in [2] are used for reasoning about the continuous parts of thesystem.In addition to proving safety, we also give results showing that the givenconditions on the controllers are \optimal", in the sense that any controllerthat does not satisfy them can cause the safety requirement to be violated. Theoptimality results are proved using the same techniques (in particular, invariantsand composition) that are used for the safety proof. Again, the optimality resultsapply to other maneuvers besides platoon join.An alternative approach to proving safety for the platoon join maneuver,based on game theory, is presented in [5], [4]. There has been a large amountof prior work on modelling and veri�cation of hybrid systems, as represented,for example, in the six previous workshops on hybrid systems. Nearly all of thiswork di�ers from ours in using either control theory methods, or else algorith-mic techniques (e.g., decision procedures based on �nite-state analysis). Otherformal models for hybrid systems appear in [8], [1]; these di�er from ours pri-marily in placing less emphasis on issues of external behavior, composition andabstraction.We consider the research contributions of this paper to be: (a) The model andproof of safety for the platoon join (and other maneuvers). (b) The optimalityresult and its proof. (c) A demonstration of the power of hybrid I/O automataand its associated proof methods for reasoning about interesting hybrid systems.(d) A demonstration of the use of abstraction levels as a means of handlingcomplexity.2 HIOA ModelThe Hybrid I/O Automata model presented in [7] is capable of describing bothcontinuous and discrete behavior. The model allows communication among com-ponents using both shared variables and shared actions. Several HIOA techniquesmake them particularly useful in modeling and reasoning about hybrid systems.These include composition, which allows to form complex automata from simple

building blocks; implementation relations, which make it easy to use levels of ab-straction when modeling complex systems; invariant assertions, which describethe non changing properties of the system.A state of a HIOA is de�ned to be a valuation of a set of variables. A trajectoryw is a function that maps a left-closed interval I of the reals, with left endpointequal to 0, to states; a trajectory represents the continuous evolution of the stateover an interval of time. An HIOA A consists of:{ Three disjoint sets of input, output and internal variables. Input and outputvariables together are called external variables.{ Three disjoint sets of input, output and internal actions.{ A nonempty set of start states.{ A set of discrete transition, i.e. (state, action, state) triples.{ A set of trajectories over the variables of A.We now de�ne executions of HIOAs. A hybrid execution fragment of A is a�nite or in�nite alternating sequence of trajectories and actions, ending with atrajectory if it is �nite. An execution fragment records all the discrete changesthat occur in an evolution of a system, plus the continuous state changes thatoccur in between. Hybrid execution fragments are called admissible if they arein�nite. A hybrid execution is an execution fragment in which the �rst state is astart state. A state of A is de�ned to be reachable if it is the last state of some�nite hybrid execution of A. A hybrid trace of a hybrid execution records onlythe changes to the external variables. Hybrid traces of an HIOA A (hybrid tracethat arise from all the �nite and admissible hybrid executions of A) describe itsvisible behavior.HIOA A implements HIOA B if every behavior of A is allowed by B. A istypically more deterministic than B in both the discrete and the continuouslevel. Formally, if A implements B, then 1) A and B are comparable HIOA,meaning that they have the same external actions and external variables; 2) allthe hybrid traces of A are included in those of B. To prove the second part, weneed to show that there exists a simulation relation from A to B. A simulationrelation from A to B is a relation R from states of A to states of B satis�ying:{ If sA is a start state of A, then there exists sB , sARsB , such that sB is astart state of B.{ If a is an action of A, (sA; a; s0A) is a discrete transition of A, sARsB , andboth sA and sB are reachable, then B has a �nite execution fragment startingwith sB , having the same trace as the given step, and ending with a states0B with s0ARs0B .{ If wA is a trajectory of A from sA to s0A, sARsB , and both sA and sB arereachable, then B has a �nite execution fragment starting with sB , havingthe same trace w, and ending with a state s0B with s0ARs0B .Another technique for reducing complexity is HIOA composition. HIOAs Aand B can be composed if they have no output actions or output variables incommon, and if no internal variable of either is a variable of the other. The

composed HIOA C's input variables/actions are the union of A and B's inputvariables/actions minus the union of A and B's output variables/actions; all theother components (output and internal variables/actions, start states, discreteactions, trajectories) are the unions of the corresponding components of A andB. The crucial result is that the composition operator respects the implemen-tation relation: if A1 implements A2 then A1 composed with B implements A2composed with B. Finally, invariant assertions state system properties that aretrue in any reachable state of the system.3 System ModelWe consider two platoons of vehicles, moving along a single track. While the be-havior of the leading platoon is arbitrary, the second platoon's controller mustmake sure that no \bad" collisions occur. \Bad" collisions are collision at a highrelative speed. This is called the Safety requirement for the second controller.This Safety requirement is general for all platoon maneuvers, and is indepen-dent of the particular algorithm used. We devise the most nondeterministic safecontroller, so that later we can use this controller as a correctness check: a con-troller implementing any platoon maneuver must implement our safe controllerin order to be correct. This should be very useful in formally proving correctnessof complicated algorithms.3.1 Controlled-PlatoonsWe compose our system of a piece modeling the real world (the physicalplatoons) and two pieces modeling the controllers of each platoon (which aredescribed in the next subsection). Each piece is modeled by a hybrid automaton.The real world piece is called Controlled-Platoons, shown in Figure 1. It consistsof two platoons, named 1 and 2, where platoon 1 precedes platoon 2 on a singletrack. Positions on the track are labeled with nonnegative reals, starting with 0as a designated beginning point. We pretend for simplicity here that the platoonshave size 0. In the full version of the paper this restriction is relaxed. Note thatthe velocities of the platoons are always nonnegative { the vehicles will never gobackwards, and the platoons are not allowed to bypass each other.Only single collisions are modeled here. A special collided variable keepstrack of the �rst occurrence of a collision. Before a collision, the platoons obeytheir respective controllers by setting the given acceleration. After a collisionoccurs, the platoons are uncoupled from the controllers and their velocities areset arbitrarily.We use the constants vallow 2 R�0 to represent the largest allowable velocitywhen a collision occurs, and amin 2 R�0 to represent the absolute value of themaximum emergency deceleration. The platoons' position, velocity, and accel-eration data is modeled by xi, _xi, and �xi, respectively. The dots are used as asyntactic device only. The di�erential relationships between these variables is aconsequence of the trajectory de�nitions; however, this di�erential relationship

Actions:Internal: collideVariables:Input: �xi 2 R, i 2 f1; 2g, initially arbitraryOutput: _xi 2 R�0, i 2 f1; 2g, initially arbitraryxi 2 R�0, i 2 f1; 2g; initially x2 = 0 and x1 is arbitrarycollided, Boolean, initially falsenow , initially 0Discrete Transitions:collidePre: x1 = x2collided = falseE�ect: _xi := arbitrary value, i 2 f1; 2gcollided = trueTrajectories:an I-trajectory w is included among the set of nontrivial trajectories exactly ifcollided is unchanged in wfor all t 2 I the following hold:if collided = false in w thenw(t): _xi = w(0): _xi + R0tw(u): �xidu, i 2 f1; 2g.w(t):now = w(0):now+ tw(t):x2 � w(t):x1w(t):xi = w(0):xi + R0tw(u): _xiduif w(t):x1 = w(t):x2 and t is not the right endpoint of I thencollided = true.Fig. 1. The Controlled-Platoons Hybrid I/O Automatonis partly lost after a collision occurs. The acceleration data is received from thecontrollers which are de�ned below. This will be used in our statement of the cor-rectness property, below | we only want to assert what happens the �rst time acollision occurs. The second conditions on the trajectories of Controlled-Platoonsguarantees that the platoon only executes the controller's decisions until the �rstcollision occurs.3.2 ControllersController1 is described in Figure 2. It is an arbitrary hybrid automatonwith the given interface, restricted only by physical limitations. Note that thecontroller does not have any actions. The last restriction on continuous trajec-tories, for example, guarantees that the controller does not make the platoon tohave negative velocity. The internal velocity and position variables (_xint1 andxint1) are used to keep track of the platoon's own data. This data is obtained byintegrating their acceleration settings. Since there are no delays or uncertainties,these variables should correspond exactly to the actual position and velocity ofthe platoon.The Controller2 hybrid automaton is the same as Controller1, except that

Variables:Input: _x2 2 R�0x2 2 R�0Output: �x1Internal: _xint1 2 R�0, initially _xint1 = _x1xint1 2 R�0, initially xint1 = x1Trajectories:an I-trajectory w is included among the set of nontrivial trajectories exactly if�x1 is an integrable functionfor all t 2 I, at w(t)_xint1 = w(0): _xint1 + R0tw(u):�x1duxint1 = w(0):xint1 + R0tw(u): _xint1du�x1 � �aminFig. 2. Controller1 Hybrid I/O Automatonit inputs x1 and _x1, and outputs �x2.Compose Controlled-Platoons, Controller1 and Controller2 using hybrid I/Oautomata composition rules to obtain an automaton that models our platoonsystem with each platoon having its own controller.3.3 Safety ConditionWe place a safety condition on states of Controlled-Platoons. The safety con-dition guarantees that if the platoons ever collide, then the �rst time they doso, their relative velocity is no more than vallow. We formulate this conditionformally as an invariant assertion:Safety : If x1 = x2 and collided = false, then _x2 � _x1 + vallow .We de�ne a new automaton, Safe-Platoons , to serve as a correctness speci�-cation. Safe-Platoons is exactly the same as Controlled-Platoons except that allthe states are restricted to satisfy the safety condition.We are supposed to design Controller2 so that when it is composed in this waywith arbitrary Controller1, the resulting system satis�es the safety condition.Then we can say that it implements the Safe-Platoons automaton, using a notionof implements based on preserving hybrid traces. Here, the hybrid trace includesthe output variables, which are the positions, velocities and accelerations of bothplatoons plus the collided
ag. That is enough to ensure that the Safety conditionof the spec carries over to the implementation.4 The Ideal Case4.1 The ModelWe start with a treatment of the safety property in the ideal setting. This allowsus to prove some important properties of the simpler model �rst, and then extend

them to the more complicated models via simulation mappings. By ideal settingwe mean that there are no delays and/or uncertainties in either the sensor's dataor the controller's directives. In the next few sections we will make the modelmore realistic by relaxing these restrictions. Also, in this abstract, we make thesimplifying assumption that the platoons have size 0. In the full paper we showhow to relax this restriction easily.We de�ne and prove correctness of a speci�c Controller2, called C2, whichimplements our safety condition, in Figure 3. This controller is very nondeter-ministic.De�nition:safe-measure = max(x1 � xint2 � (_xint2)2�(_x1)2�(vallow)22amin ; _x1 + vallow � _xint2)Variables:Input: _x1 2 R�0x1 2 R�0Output: �x2, initially if safe-measure � 0, then �x2 = 0Internal: _xint2 2 R�0, initially _xint2 = _x2xint2 2 R�0, initially xint2 = x2Trajectories:an I-trajectory w is included among the set of nontrivial trajectories exactly ifw is a trajectory of Controller2if collided = false in w(0) then 8t 2 Iif safe-measure � 0 then �x2 = �aminFig. 3. C2 Hybrid I/O AutomatonC2 ensures that if the position and velocity parameters are on the boundaryde�ned by safe-measure, then platoon 2 is guaranteed to be decelerating as fastas possible. This is guaranteed by the second condition on the trajectories of C2.4.2 Correctness of C2We will now prove correctness of our controller. This means that any controllerthat implements C2, will be correct (safe).We de�ne a predicate S on states of Platoons , as follows:Predicate S: If collided = false then safe-measure � 0, wheresafe-measure = max(x1�xint2� (_xint2)2 � (_x1)2 � (vallow)22amin ; _x1+vallow� _xint2)This says (from the de�nition of safe-measure, see Figure 3) that if the pla-toons have not collided yet, then either (a) the distance between the two platoonsis great enough to allow platoon 2 to slow down su�ciently before hitting pla-toon 1, even if platoon 1 decelerates at its fastest possible rate, or (b) the relativevelocities of the two platoons are already close enough.

We de�ne a new automaton C-Platoons, which is exactly like Controlled-Platoons, with the additional restriction that in all the initial states safe-measure� 0 (thus all the initially states satisfy Predicate S, since initially collided =false). The system Implemented-Platoons that we are considering is the composi-tion ofC-Platoons , an arbitrary Controller1, and C2. C2 is designed to guaranteeexplicitly that if S is ever violated, or even if it in danger of being violated (be-cause equality holds), platoon 2 is decelerating as fast as possible. We claim thatthis strategy is su�cient to guarantee that S is always true:Lemma1. S is true in every reachable state of the Implemented-Platoons.As a simple consequence of Lemma 1, we obtain the safety condition:Lemma2. In any reachable state of Implemented-Platoons, if x1 = x2 andcollided = false, then _x2 � _x1 + vallow .Now we use Lemma 2 to prove that the system is in fact safe, i.e., that itimplements Safe-Platoons . We prove this using a simulation relation f . Thissimulation is trivial { the identity on all state components of Safe-Platoons(velocities, positions, and the collided
ag).Lemma3. f is a forward simulation from the composed system Implemented-Platoons to Safe-Platoons.Proof: By induction on the number of steps in the hybrid execution. Lemma2 deals with trajectories; the proofs for the start states and discrete steps arerelatively simple.Theorem4. The Implemented-Platoons system implements Safe-Platoons, inthe sense that for every hybrid execution � of Implemented-Platoons, there isa hybrid execution �0 of Safe-Platoons that has the same hybrid trace { here,means same positions, velocity and collided
ag values.Proof. Implemented-Platoons and Safe-Platoons are comparable and by Lemma3, there is a simulation relation f from Implemented-Platoons to Safe-Platoons .Therefore, this composed system implements Safe-Platoons .4.3 OptimalityWe will now prove optimality of safe-measure using the analysis theorem aboutnon-increasing functions. Informally, we want to prove that any Controller2 thatdoes not implements C2 is unsafe. The formal de�nition of this optimality prop-erty appears in Theorem 7. Combined with the correctness result of the previoussubsection, this will allows to decide whether any given controller is safe, sinceit is safe if and only if it implements C2.

De�ne Controller2 to be bad (and call it Bad-Controller2), if there existssome Controller1, such that in any admissible hybrid execution � of an au-tomaton composed of Controlled-Platoons, Controller2 and Controller1, 9s 2 �,which does not satisfy Predicate S.De�ne Bad-Controller1, given Bad-Controller2, so that in the system com-posed of Bad-Controller1, Bad-Controller2 and Controlled-Platoons (the systemcalled Bad-Platoons), for any admissible hybrid execution �, the following hold:{ 9s 2 �, s does not satisfy Predicate S;{ strictly after the occurrence of s, �x1 = �amin.The �rst lemma shows that once Predicate S is violated, it will remain vio-lated, given some "bad" Controller1. Formally,Lemma5. If a given Controller2 is bad, then in any Bad-Platoons system withthis Controller2, Predicate S is violated in all the states 2 � that occur strictlyafter s, in which collided = false. (Bad-Platoons, �, s are as de�ned above.)The next lemma shows that if Predicate S is violated in some state, thensafety will also be violated eventually. Formally,Lemma6. If a given Controller2 is bad, then in any Bad-Platoons system withthis Controller2, in any admissible execution
, 9s0 2
, which does not satisfysafety).Theorem7. For any Bad-Controller2, there always exists such Controller1 (C01,which is not necessarily the same as C1), that a Bad-Platoons system composedwith these controllers has in its hybrid trace a state s0, in which safety is violated.The last theorem shows that our controller is optimal, i.e., any Controller2that does not implement it, might lead to an unsafe state, given some \bad"Controller1.5 Delayed ResponseNow we consider the case where there is a delay between the receipt of informa-tion by the controller for platoon 2 and its resulting action. There appear to betwo distinct types of delay to consider | the inbound and the outbound delay;we model them separately. The inbound delay is due to delays in communicatingsensor information to the controllers. The outbound delay comes from the factthe controller's decision are implemented by the platoons after some delay.We use levels of abstractions to deal with the complexity of the delayed case.The use of simulation relations enables us to build correctness and optimalityproofs based on the previous ideal case results. This makes all the proofs signif-icantly easier.

5.1 The System with Inbound and Outbound DelaysWe model both the inbound and the outbound delays by special delay bu�ers.To obtain the delayed system, we then compose our new controller with thedelay bu�ers. First, we introduce the inbound delay bu�er Bi (lag time in com-municating sensor information) in Figure 4.Variables:Input: _x1 2 R�0, x1 2 R�0Output: _xi1 2 R�0, xi1 2 R�0Internal: saved - maps from an interval (0; di) to (_x1, x1)Trajectories:an I-trajectory w is included among the set of nontrivial trajectories exactly iffor all t 2 I, t > 0 the following hold:w(t):(_xi1; xi1) = �w(0):saved(t) if t < di(w(t� di): _x1; w(t� di):x1) otherwise8t0 2 (0; di),w(t):saved(t0) = �w(0):saved(t0 � t) if t0 > t(w(t� t0): _x1; w(t� t0):x1) otherwiseFig. 4. Bi Hybrid I/O AutomatonBi acts in such a way that the output variables have exactly the values of theinput variables, exactly time di earlier, where di is the maximum \informationdelay" { the longest time that it can take for a controller to receive the velocityand position sensor data. This delay bu�er actually implements the more realisticversion, in which the length of the delay varies nondeterministicallywithin knownbounds. Initially, the bu�er (saved) is \prefed" with information that could havehappened in that initial time period (so that the last position and velocity valuesin the bu�er match up the initial position and velocity values of the platoons).Setting the maximum deceleration for that \imaginary" time period lets thecontroller be the most
exible (and thus optimal, as will be proven later), in theinitial di time period.Formally, the initial value of the saved variable is determined as follows.For any start state s of the system, construct a trajectory w of length di ofControlled-Platoons so that w(0): _x1 = s: _x1 + diamin, w(0):x1 = s:x1 + s: _x1di +amindi22 , and 8t 2 (0; di), w(t):�x1 = �amin. The second platoon's state com-ponents can be arbitrary, as long as no collisions occur. Now, 8t 2 (0; di), letsaved(t) = w(t):(_x1; x1).Next, we add an outbound delay bu�er Bo (lag time in communicating controlinformation). An outbound delay bu�er Bo, is almost like the inbound bu�er Bi,but with input variable �xo2, and output variable �x2. The saved variable is thesame as in Bi, except that it now \saves" �xo2 and the length of the interval is do,where do 2 R�0 is the maximum\action delay" { the longest time that it can take

for a platoon to react to the controllers directives. Again, the delay time-lengthis exact. Initially, 8t 2 (0; do), saved (t) = �amin . This makes the platoons safein the initial do time interval even if the �rst platoon starts decelerating.De�nition:safe-measured = max(xi1 + _xi1t0 � amint022 � xnew2 � _x2new2�(_xi1�amint1)2�(vallow)22amin ,_xi1 � amint0 � _xnew2 + vallow),where t0 = min(di + do; _xi1amin)Variables:Input: _xi1 2 R�0xi1 2 R�0Output: �xo2, initially if safe-measure � 0, then �x2 = 0Internal: internal variables of Controller2 (_xint2 and xint2)a2 - maps from an interval (0; do) to �xo2,initially, 8t 2 (0; do); a2(t) = �amin, otherwise { arbitraryxnew2, _xnew2 - the position and velocity of the second platoonafter time do passes, provided collided still equals falseTrajectories:an I-trajectory w is included among the set of nontrivial trajectories exactly ifw is a trajectory of Controller2if collided = false in w(0) then for all t 2 I, t > 0:if safe-measured � 0 then�x2 = �amin8t0 2 (0; do),w(t):a2(t0) = �w(0):a2(t0 � t) if t0 > tw(t� t0):�xo2 otherwisew(t): _xnew2 = w(t): _xint2 + R0dow(t):a2(u)duw(t):xnew2 = w(t):xint2 + R0do(R0uw(t):a2(u0)du0 +w(t): _xint2)duFig. 5. D2 Hybrid I/O AutomatonFinally, we modify the controller so that it handles the delays correctly. Thecontroller D2 (see Figure 5) implements Controller2. It is similar to C2 in thatit also tries to keep the second platoon within the bounds set by safe-measured,which is safe-measure rede�ned for the delayed case. The new controller getsits inputs from the inbound delay bu�er Bi and its output variable goes intothe outbound delay bu�er Bo. Additional internal variables (xnew2 and _xnew2)are added to store the \future" position and velocity data, as calculated fromthe acceleration settings. A bu�er for storing acceleration settings that the con-troller has output, but that has not been executed yet (a2) is used for this pur-pose. Also, safe-measured is de�ned instead of safe-measure; the only changesfrom safe-measure are that the 1st platoon's parameters are exchanged by their\worst-case" values after di + do time units pass; and the 2nd platoon's param-eters are exchanged by their projected values after do time units pass.

5.2 Correctness of D2We will now compose Bi, D2, Bo using the hybrid I/O automata composi-tion rules to obtain the delayed controller, which we call Bu�ered-Controller.A straightforward simulation relation shows that this composed system imple-ments C2. This simulation relation f is the identity on all the external statecomponents of C2. The use of simulation relations will allows us to prove cor-rectness of our more complicated delayed controller relatively easily, since wehave already proven correctness in the simple (ideal) case.First we prove that if the old safe-measure (the one used in the ideal case) isnon-positive in some state of a trajectory of Bu�ered-Controller, then the newcontroller D2 (the one that has both the inbound and the outbound delays),will also output maximum deceleration, just as the old (ideal) controller would.Formally,Lemma8. If collided = false in w(0) of a trajectory w of Bu�ered-Controller,then 8t 2 I, such that w(t):safe-measure � 0, �x2 = �amin.Lemma9. f (an identity relation on all the external components of C2) is aforward simulation from the composed system Bu�ered-Controller to C2.Proof. By induction on the number of steps in the hybrid execution. Start statesand discrete steps are proven trivially; Lemma 8 is used to prove the simulationrelation on continuous trajectories.This lemma proves that Bu�ered-Controller implements C2, since the twoautomata are comparable and there is a simulation relation from the �rst one tothe second one. Therefore, we are now able to prove correctness of our delayedcontroller:Theorem10. The doubly-delayed hybrid automaton composed of C-Platoons,Bu�ered-Controller implements Safe-Platoons.Proof. We have proved that the system Bu�ered-Controller implements C2 inLemma 9. But by Theorem 4, C2 composed with C-Platoons (the Implemented-Platoons system) implements Safe-Platoons. Thus, the doubly-delayed hybridautomaton composed of C-Platoons, and Bu�ered-Controller also implementsSafe-Platoons by the hybrid I/O automata composition rules!5.3 OptimalityWe will now prove optimality of D2. Again, we will be basing our proofs onthe optimality property of the controller C2, which was proven in section 4.3.We want to prove that any controller with both inbound and outbound delaysthat does not implement controller D2, is unsafe given some \bad" controllerC1. However, knowing that C2 is optimal makes the proof much easier: we onlyneed to show that a controller that would let safe-measured get negative, will

eventually lead to a state in which safe-measure itself is negative. Then we canuse optimality of C2 to show that any such controller would not be correct.De�ne Bu�ered-Controller2 to be bad (Bad-Bu�ered-Controller2), if thereexists some Controller1 (Cd1), such that in any admissible hybrid execution� of an automaton composed of Controlled-Platoons, Cd1 and Bad-Bu�ered-Controller2, 9sd 2 �, which does not satisfy Predicate Sd.Lemma11. Any Bad-Bu�ered-Controller2 implements Bad-Controller2.Since we have just shown that the delayed automaton implements the non-delayed one, we can use the optimality property of the ideal case controller, toprove the optimality of the delayed controller easily:Theorem12. Given any Bad-Bu�ered-Controller2, we can always constructController1 (Cd1) such that a system composed of Controlled-Platoons and thesecontrollers has in any admissible hybrid execution a state s0, in which safety isviolated.Proof. Take any Bad-Bu�ered-Controller2. By Lemma 11, it implements Bad-Controller2. Then by Theorem 7, there exists such Controller1 (C 01), that asystem composed of Controlled-Platoons, C01 and this Bad-Bu�ered-Controller2has in its hybrid trace a state s0 that violates safety.Therefore, the delayed Controller2 is also optimal.6 UncertaintyOur model already includes both the inbound and the outbound delays in sendingand receiving information between the controller and Controlled-Platoons. Nowwe will introduce an extra complexity which will make the model even more re-alistic: the uncertainty in information that the controller receives. This inbounduncertainty arises from inexact sensors that communicate the position and ve-locity data to the controllers. We will use similar methods to the ones used in thedelay case. A special \uncertainty bu�er" automaton will be de�ned, similar tothe previous delay bu�ers. Then, the uncertainty will be implemented by addingthis new automaton to the model and modifying the controller slightly. We willthen prove correctness using the simulation relation to the delayed case whichwe have already worked out. This use of levels of abstraction makes the proofsfor the complicated case, which involves both the delays and the uncertainties,relatively easy to both write and understand.6.1 The SystemWe implement the delayed controller D2 with a composition of two hybridautomata: another controller U2, and an inbound uncertainty bu�er Ui. We call

Variables:Input: _xi1, xi1Output: _xiu1, xiu1Trajectories:an I-trajectory w is included among the set of nontrivial trajectories exactly iffor all t 2 I, t > 0 the following hold:_xiu1 2 [_xi1 � _�; _xi1 + _�]xiu1 2 [xi1 � �; xi1 + �]Fig. 6. Ui Hybrid I/O Automatonthis composed system Uncertain-Controller. The uncertainty bu�er Ui nonde-terministically garbles the position and velocity data within the given bounds(see Figure 6). The bounds are prede�ned constants � 2 R�0 | the maximumabsolute value of uncertainty in position sensor data, and _� 2 R�0 | the maxi-mum absolute value of uncertainty in velocity sensor data. The controller U2 isthe same as D2 except that it now takes its inputs from the inbound uncertaintybu�er Ui and that safe-measureu (see below) is de�ned to account for the un-certainties. Same as in the delay case, the only changes from safe-measured arethat the �rst platoon's data is adjusted to the \worst case" behavior of the �rstplatoon.safe-measureu = max((xiu1 � �) + (_xiu1 � _�)t00 � amint0022 � xnew2� (_xnew2)2 � ((_xiu1 � _�) � amint00)2 � (vallow)22amin ;(_xiu1 � _�)� amint00 � _xnew2 + vallow);where t00 = min(di + do; _xiu1+ _�amin).6.2 Correctness of U2A straightforward simulation relation shows that the Uncertain-Controller sys-tem implements D2. This simulation relation f is the identity on all state com-ponents of D2.First we show that if the old safe-measured (the one used in the delayed case)is non-positive in some state of a trajectory of Uncertain-Controller, then thenew controller (the one that has an inbound uncertainty), will also output max-imum deceleration, same as the old (delayed only) controller would. Formally,Lemma13. Let w be an I-trajectory of Uncertain-Controller. If collided =false in w(0), then 8t 2 I, such that safe-measured � 0, �xo2 = �amin andsafe-measureu � 0.Then we are able to prove that f is the simulation relation from the composedsystem Uncertain-Controller to D2.

Theorem14. f (an identity relation on all the external state components ofD2) is a forward simulation from the Uncertain-Controller system to D2.We have already proven correctness of the delayed controller D2, and we havealso shown that Uncertain-Controller implements D2; thus, our new uncertainsystem is also correct in a sense that it implements our correctness speci�cation,Safe-Platoons .7 ConclusionThe system consisting of two platoons moving on a single track has been modeledusing hybrid I/O automata, including all the components (physical platoons,controllers, delay and uncertainty bu�ers), and the interactions between them.Safety conditions were formulated using invariant assertions. Correctness andoptimality of controllers were proved using composition, simulation mappingsand invariants, and the methods of mathematical analysis. Complexity (delaysand uncertainty) was introduced gradually, using the levels of abstraction, whichsigni�cantly simpli�ed the proofs.The case study describes formally a general controller that would guaranteethe safety requirement regardless of the behavior of the leading platoon. Sucha controller can be later reused to prove correctness of complicated maneuvers,such as merging and splitting, where the setup is similar.In future work, we will extend the model to handle outbound uncertainty;use jerk instead of acceleration; motion in 2D planes. Also, we will consider caseswith several platoons operating independently. Additional properties of the joinmaneuver, such as successful join, time optimality, and passenger comfort, willbe studied; other maneuvers arising in this setting will be investigated using thesame models.References1. R. Alur, C. Courcoubetis, T.A. Henzinger, P.H. Ho, X. Nicollin, A. Olivero,J Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoret-ical Computer Science, 138:3{34, 1995.2. Michael S. Branicky, Ekaterina Dolginova, and Nancy Lynch. A toolbox for provingand maintaining hybrid speci�cations. Submitted for publication. To be presentedat HS'96: Hybrid Systems, October 12-16, 1996, Cornell University, Ithacs, NY.3. Jonathan Frankel, Luis Alvarez, Roberto Horowitz, and Perry Li. Robust platoonmaneuvers for AVHS. Manuscript, Berkeley, November 10, 1994.4. John Lygeros. Hierarchical Hybrid Control of Large Scale Systems. PhD thesis,University of California, Department of Electrical Engineering, Berkeley, Califor-nia, 1996.5. John Lygeros, Datta N. Godbole, and Shankar Sastry. A game theoretic approachto hybrid system design. Technical Report UCB/ERL-M95/77, Electronic Re-search Laboratory, University of California Berkeley, October 1995.

6. Nancy Lynch. A three-level analysis of a simple acceleration maneuver, with un-certainties. In Proceedings of the Third AMAST Workshop on Real-Time Systems,pages 1{22, Salt Lake City, Utah, March 1996.7. Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/Oautomata. In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems III:Veri�cation and Control (DIMACS/SYCONWorkshop on Veri�cation and Controlof Hybrid Systems, New Brunswick, New Jersey, October 1995), volume 1066 ofLecture Notes in Computer Science, pages 496{510. Springer-Verlag, 1996.8. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W.de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, REX Work-shop on Real-Time: Theory in Practice, volume 600 of Lecture Notes in ComputerScience, pages 447{484, Mook, The Netherlands, June 1991. Springer-Verlag.9. Pravin Varaiya. Smart cars on smart roads: Problems of control. IEEE Transac-tions on Automatic Control, AC-38(2):195{207, 1993.10. H. B. Weinberg and Nancy Lynch. Correctness of vehicle control systems: A casestudy. In 17th IEEE Real-Time Systems Symposium, pages 62{72, Washington,D. C., December 1996. Complete version in Technical Report MIT/LCS/TR-685,Laboratory for Computer Science, Massachusetts Institute of Technology, February1996. Masters Thesis.11. H. B. Weinberg, Nancy Lynch, and Norman Delisle. Veri�cation of automatedvehicle protection systems. In R. Alur, T. Henzinger, and E. Sontag, editors,Hybrid Systems III: Veri�cation and Control (DIMACS/SYCON Workshop onVeri�cation and Control of Hybrid Systems, New Brunswick, New Jersey, October1995), volume 1066 of Lecture Notes in Computer Science, pages 101{113. Springer-Verlag, 1996.
This article was processed using the LaTEX macro package with LLNCS style

