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Abstract

A shared counter is a concurrent object which provides the fetch-and-increment operation on a
distributed system. Recently, diffracting trees have been introduced as shared counters which
work well under high load. They efficiently divide high loads into lower loads that can quickly
access lock-based counters that share the overall counting. Their throughputs have surpassed
all other shared counters when heavily loaded. However, diffracting trees of differing depths are
optimal for only a short load range. The ideal algorithm would scale from the simple queue-
lock based counter to a collection of counters with a mechanism (such as a diffracting tree) to
distribute the load.

In this thesis, we present the dynamic diffracting tree, an object similar to a diffracting tree,
but which can expand and collapse to better handle current access patterns and the memory
layout of the object's data structure, providing true scalability and locality. This tree then
assumes each diffracting tree over its optimal range, from the trivial diffracting tree, a lock-
based counters, to larger trees that have a collection of lock-based counters. This reactive
design pushes consensus to the leaves of the tree, making agreement easier to achieve. It does
so by taking advantage of cache-coherence to keep agreement at the higher contention areas of
the tree.

Empirical evidence, collected on the Alewife cache-coherent multiprocessor and a distributed
shared-memory simulator, shows that the dynamic diffracting tree provides throughput within
a constant factor of optimal diffracting trees at all load levels. It also shows to be an effective
competitor with load balancing algorithms in produce/consumer applications.

We believe that dynamic diffracting trees will provide fast and truly scalable implemen-
tations of many primitives on multiprocessor systems, including shared counters, k-exclusion
barriers, pools, stacks, and priority queues.

Thesis Supervisor: Nir Shavit

Title: Assistant Professor of Computer Science and Engineering

Thesis Supervisor: Nancy Lynch
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Chapter 1

Introduction

Coordination problems on multiprocessor systems have received much attention recently. Shared

counters in particular are an important area of study because the fetch-and-increment operation

is a primitive that is being widely used in concurrent algorithm design. Since good hardware

support is not readily available, there have been a variety of solutions presented for this problem

in software.

1.1 Background

Simple solutions often involve protecting a critical section with either test-and-set locks with

exponential backoff (spin-locks) by Agarwal, Anderson, and Graunke [2, 3, 10] or the queue-locks

of Anderson or Mellor-Crummey and Scott [3, 15]. These algorithms are popular because they

provide great latencies in low load situations, when requests are sparse and mostly sequential

in nature. However, they can not hope to obtain good throughput under high loads due to the

bottleneck inherent in mutual exclusion.

More sophisticated algorithms proposed have included the combining trees of Yew, Tzeng,

and Lawrie [21] and Goodman, Vernon, and Woest [9], the counting networks of Aspnes, Her-

lihy, and Shavit [4], and the diffracting trees of Shavit and Zemach [20, 18]. These methods

are distributed and lower the contention on individual memory locations, allowing for better

performance at high loads.

A combining tree consists of a lock-based shared counter and a binary tree which "combines"



the requests that travel up the tree from the leaves. A single processor reaches the counter with

several requests, which it can perform by incrementing the counter with the appropriate offset.

This tree takes advantage of contention, so performs much better than a simple lock-based

counter. The binary tree provides n processors with at best a time of O(log n) and a throughput

of n/2 log n indices per time step. The pitfall with combining trees is that a single processor's

delay or failure in traversing the tree delays those that combined with it indefinitely.

A Bitonic counting network [4] is a data structure isomorphic to Batcher's Bitonic sorting

network [5], with a "local counter" at the end of each output wire. At a junction in the

network, the first processor that arrives exits on the top wire, the next on the bottom wire, and

it continually oscillates. This is the first kind of tree to break away from a single lock-based

counter at its root, distributing the counting to several lock-based counters that count with

fixed offsets. This allows requests to be independent, making it fault tolerant. These networks

have width w < n and depth O(log2 w). At their best, the throughput is w and latency a high

O(log2 w). The biggest disadvantage with counting networks is their rigid network structure.

It is unclear how to change the structure of the tree.

The key advantage of counting networks are the k lock-based counters. If the load is too

high for a lock-based counter to be effective, divide-and-conquer would encourage the load

to be divided into pieces that can rapidly access a lock-based counter. By doing so, the k

lock-based counters can efficiently move their lower loads through the shared counter, so the

focus shifts to the mechanism for dividing the load. Diffracting trees [20] provide the most

effective tool for distributing the load. The trivial Diffracting tree is just a simple lock-based

counter. Once the load is high enough that division would benefit performance, diffracting trees

of various depths can be used to effectively divide the load. They are constructed from simple

one-input two-output computing elements called balancers that are connected to one another

by wires to form a balanced binary tree. These balancers evenly divide their requests amongst

their children. This tree of balancers can then quickly distribute requests to its output wires,

which can be connected up to k lock-based counters for a high-performance distributed shared

counter. Diffracting trees of various depths provide optimal performance throughout the load

range, and the trivial diffracting tree, a queue-lock, provides the best performance under low

load. However, a diffracting tree of a certain depth has unwanted costs for lower loads due to

its higher latencies, and eventually level out as they become overcapacitated.



The prior art seems to be firmly divided into two camps: the lock-based algorithms which

work well in the low load cases and the distributed algorithms that do better under high load.

The lock-based algorithms are championed by queue-locks and the distributed algorithms are

currently led by Diffracting Trees. One set of experiments revealed that in a low load situation,

the throughput over a fixed period of time for a queue-lock counter was 652 operations while

the diffracting delivered 46 operations. With the same period of time but with a high load,

the queue-lock counter went down to 595 operations, while the diffracting tree rose to 5010

operations. A factor of 10 difference separates each of these sets of numbers.

1.2 Goals

Diffracting trees, from the simple queue-lock based counters to large trees with a collection of

counters, provide optimal performance at all load levels. Our goal is to make the diffracting tree

structure dynamic, so it can react to the current load and assume the optimal size, guaranteeing

the best possible performance.

B.H. Lim recently came up with a reactive scheme [11, 12] that switched between a test-test-

and-set lock by Rudolph [17], a queue lock, and a combining tree. This performed well from the

low to mid-load ranges, as the combining tree took over for the queue lock. His algorithm only

applies to algorithms that have one centralized lock-based counter, which precludes diffracting

trees, but gave valuable insights to reactive policy making.

We now focus on the two main insights necessary to create such an algorithm.

* Localize decision making

* Use cache-coherence to make global agreement inexpensive

Localized decision making spares processors from continually deciding on the overall struc-

ture of the shared counter, which is what Lim's algorithm requires. A major drawback with

global decision making is that processors can get delayed while they wait for a change to oc-

cur. By making the changes in the shared counter local to only part of the counter, then the

number of processors directly delayed drops significantly, and when other processors arrive in

the changed part of the structure, the decision has been made and they can quickly adapt.



Cache-coherence makes localized decision making a reality. Keeping processors in agreement

globally is usually an expensive requirement. If an algorithm adds global state which does not

often change in high load situations, then this information can be cached, making constant

reference to it an inexpensive proposition. If the load in an area of the tree is low, then changes

can be made without high cost, which enables localized decision making.

1.3 Dynamic Diffracting Trees

Our algorithm, the Dynamic Diffracting Tree (or DDT), uses these two principles to make

diffracting trees dynamic and reactive. A significant change in the load of the system will cause

the DDT to expand or collapse into the optimal tree. These changes occur at the end of the

tree, a local decision, but one that should be mirrored by the other ends of the tree in a genuine

change of load. However, if the tree's memory layout is designed so that different ends of the

trees exist in separate parts of memory, the tree may become irregularly formed to give optimal

performance. State is added to the nodes of the tree to indicate what kind of node they are,

and the caching of this state enables processors to pass through the tree without much delay.

We describe an implementation of the DDT concurrently with a thorough discussion of how

the algorithm works. We discuss the scaling policies and the requirements that they must have,

and describe the one that was implemented.

We implement the DDT on the MIT Alewife machine of Agarwal, Chaiken, Johnson, Krantz,

Kubiatowicz, Kurihara, Lim, Maa, and Nussbaumet [1]. However, the largest Alewife machine

only has 32 nodes, limiting the load range we could test with. We show that the Proteus

Parallel Hardware Simulator of Brewer, Dellarocas, Colbrook and Weihl [6, 7], which we run up

to 256 processes, simulates Alewife well, giving results that are comparable when normalized.

We obtain results from various experiments, comparing the DDT to optimal diffracting trees

of various depths, simple queue-locks, and implementing a job queue to compete with the load

balancing scheme by Rudolph, Slivkin-Allalouf, and Upfal[16]. In the same experiment we

ran earlier, the DDT under low load provides 243 operations and under high load provides

3932 operations. The results show that the DDT performs within a constant factor of optimal

diffracting trees at all load levels, and future work shows good promise in lowering this factor.

A particularly interesting result on the MIT Alewife machine shows a range where the DDT



outperforms all regular Diffracting Trees due to its ability to assume an irregularly-shaped tree

structure, taking advantage of locality. We also show that the DDT performs effectively in

Producer/Consumer applications.

We define safety and liveness properties that any shared counter should satisfy. We present

a specification of the DDT using the I/O Automata of Lynch and Tuttle [13] and formally prove

that it satisfies these properties. We sketch an argument which shows that the implementation

presented meets the specification.

In summary, we believe that the DDT and its underlying concepts will prove to be an effec-

tive paradigm for the design of future data structures and algorithms for multi-scale computing.

This paper is organized as follows: Chapter 2 explains the design of the DDT, presenting the

asynchronous shared-memory implementation, and discusses different scaling policies, Chapter 3

discusses the performance results on Alewife and Proteus, Chapter 4 gives the formal description

of the DDT, Chapter 5 gives the proof of the specification, Chapter 6 presents the argument

that the implementation meets the specification, and Chapter 7 concludes this paper and lists

areas of further research.





Chapter 2

DDT Design

We begin by reviewing the basics of diffracting trees and describe in detail the changes necessary

to make them dynamic. This includes an implementation of the DDT on an asynchronous,

cache-coherent, distributed shared-memory system. Finally, the scaling policy issue is discussed.

2.1 Diffracting Trees

A Diffracting tree [20] consists of balancers that are connected to one another by wires in the

form of a balanced binary tree, and local counters attached to the final output wires of the tree.

A balancer's job is to continually split the number of requests on its input wires onto its two

output wires. A local counter counts with an increment based on its depth into the tree, and

although its implementation is not restricted, it is assumed that it is a lock-based counter.

2.1.1 Balancers

First, we give the requirements that a balancer must satisfy. We denote by x the number of

input requests, or tokens, ever received on the balancer's input wire, and by yi, i E {0, 1} the

number of tokens ever output on its ith output wire. Given any finite number of input tokens

x, it is guaranteed that within a finite amount of time, the balancer will reach a quiescent state,

that is, one in which the sets of input and output tokens are the same. In any quiescent state,

yo = [x/2] and y, = Lx/2]. Figure 2-1 shows how a balancer could split up 9 distinct process

requests (A-I), where the requests without spaces between them happen at the same time.
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Figure 2-1: A Balancer at work

A simple implementation of a balancer would be a memory location with a lock that toggles

between the values 0 and 1. A token entering the balancer obtains the lock, gets the value,

stores the inverse value, and exits on the wire indexed by the value obtained, unlocking the

bit. This clearly satisfies the properties above, but the lock reduces this problem to the same

as that of a lock-based counter, and does nothing to reduce the bottleneck.

Shavit and Zemach present a much better implementation of a balancer [20], which exploits

large numbers of requests to pair off processors onto the two output wires and avoid contention.

When a processor enters a balancer, it enters that balancer's ID in its position in a global

location array, selects a random location in that balancer's prism, and swaps the processor's

own ID into that location. It attempts to pair off with the processor ID that it receives from

the swap. If it fails, it then spins for a certain amount of time waiting for a processor to choose

it. If all else fails, it attempts to access the test-and-test-and-set [17] lock described above. If

it fails, then it starts all over, trying to reenter the prism [18]. This algorithm is really just

an optimization since two processors flipping the bit would leave it unchanged. Figure 2-2

shows the code for the balancing code. This algorithm has been shown to satisfy the properties

above [20].

The most important parameters for a diffracting tree are the sizes of the prisms and the

spin constants mentioned above. Shavit and Zemach's steady-state analysis [18] found that a

tree that would serve P processes should have a depth d and a number of prism locations L

such that 1 = 0(1), L < d, and L = cd2d, where c is a machine-dependent constant. Given

the approximate range of load that a diffracting tree would get, a developer can then choose d

and subsequently decides upon L. A reactive backoff scheme was also implemented in [18] to

provide the best spin constant.



type balancer is
spin: int
size: int
prism: array[1..size] of int
toggle: int /* 0 or 1 */
lock: Lock
Left: ptr to balancer /* wire yO */
Right: ptr to balancer /* wire yl */

endtype

location: global array[l..NUMPROCS] of ptr to balancer

function diff-bal(b: ptr to balancer) returns ptr to balancer
begin

location[MYID] = b
forever

randplace = random(b->size)
his--id = Swap(b->prism[randplace], MYID)
if CompareSwap(location[MYID], b, EMPTY) then
if CompareSwap(location[hisid], b, EMPTY) then
return b->Left

else location[MYID] = b
else return b->Right

repeat b->spin times
if location[MYID] != b then

if b->spin < MAXSPIN then
b->spin = b->spin * 2

return b->Right
end repeat

if TestTestSet(b->lock) then
if CompareSwap(location[MYID], b, EMPTY) then

k = b->toggle

b->toggle = I - k

release_lock(b->lock)
if b->spin > MAXSPIN then
b->spin = b->spin / 2

return k
else

release_lock(b->lock)
return b->Right

endfor
end

Figure 2-2: Code for Balancing



2.1.2 Counters

The counters at the end of the tree have an increment equal to their depth into the tree. Their

initial values are based on their position in the tree. The "Leftmost" counter, or counter at

which a single entrant to the tree would arrive, has initial value 0. The counter with initial

value 1 would be the "Leftmost" counter of the subtree rooted by the main root's Right child.

It is clear how the ordering then proceeds. Figure 2-3 shows a diffracting tree of size 8 with its

output wires ordered for counting.

08 16...
1 9 17...
210 18...
31119...
4 12 20...

5 13 21...
6 14 22...

7 15 23...

Figure 2-3: A counting diffracting tree

The algorithm for traversing the tree is clear. A token starts at a root node, and balances

until it reaches a leaf counter, at which point it interacts with the counter, obtains a value, and

exits.

2.2 Dynamic Diffracting Trees

We now start to move to a less rigid structure. Our goal is to allow Dynamic Diffracting Trees

to control the following three parameters:

* Depth of Tree

* Prism Sizes

* Spin

By doing so, we gain full control of the parameters on page 2.1.1 that can be set to craft

the optimal diffracting tree for a given load. We will employ localized decision making to allow



the tree to change height. As the number of processors P and subsequently the load changes,

the tree would optimally expand or collapse to result in the best d and L possible, with the

spin constant still determined by the reactive backoff scheme designed in [18].

We now individually discuss each loosening or addition to the original diffracting tree.

2.2.1 Irregular Diffracting Trees

In this kind of tree, we relax the restriction that the tree must be balanced. We only require

that balancers have two children and counters are only at leaves. It should be clear that this

restriction is not necessary for the algorithm to work correctly, and was instead placed under

the assumption that a balanced tree gives the best performance. Abstractly, each balancer and

its subtree represents an implementation of a counter, so it could be replaced by a lock-based

counter and still function correctly. Figure 2-4 shows how one would set the counter's increment

and initial values to make it work correctly.

04 8 12 16...

2 10 18...

6 14 22...

1 3 D / 11...

Figure 2-4: An irregular diffracting tree's counting scheme

The reason we must consider this is because it would be very expensive to change an entire

diffracting tree to a different size. However, processors can work on different leaves in the tree,

expanding or shrinking locally, causing the tree to be irregular at times. It is expected that the

rate-making policy at one leaf would ask for the same kind of change as another leaf, due to

the average contention levels that the balancers distribute over the entire tree, but if locality

dictated that certain ends of the tree were slower than other ends of the tree because of the

memory layout of the data structure, then it would be optimal to make the tree irregular to

maximize performance on that given memory layout.



2.2.2 State and Versioning Information

Now, once we let the tree size change, we could potentially get trapped into some alloca-

tion/deallocation memory issues. We could run out of memory, allocation could take a very

long time and bottleneck the processors, or a pointer to a deallocated node could remain around

long enough to cause a problem if it was reallocated. Also, since we allow the trees to shrink

and grow, it is no longer possible for every processor to initially memorize the structure of the

tree, as it could in the diffracting or irregular diffracting tree. So, upon visiting a node of the

tree, a processor would need to determine if that node was a counter or balancer.

We solve all of the above problems in the following way. We first add a state variable. This

state variable initially only takes three variables, Counter, Balancer, or Off. The first two are

clear in the context of merging the types of data structures together. A processor that visits

a Balancer node balances, and one that visits a Counter node counts. However, if a processor

visits an Off node, then it would know that the tree somehow changed beneath it, so it would

trace up the node's ancestral path til it found a node it could successfully visit. We now solve

the memory problems by creating a large, balanced tree then creating an initial configuration

of balancers and counters from the root and leaving the rest of the tree Off. The designer can

decide whether a real leaf of this tree can have an allocation call if it wishes to expand or if

there is a static limit to the tree. Finally, we add a CounterLimit state for the case where the

tree shrinks, which will be explained soon.

This state variable could potentially be an expensive item to check. If the state variable

in the root of the tree continually changed, all processors accessing it would be consistently

delayed, bringing performance down. However, a sensible scaling policy would prevent the root

node to change under high loads. In doing so, processors can utilize cache-coherence to keep

accesses to the top level state variables relatively inexpensive. This brings into mind the second

main property of the introduction, keeping global agreement inexpensive.

This solution provides distinctness and does not attempt to keep the different parts of the

tree in balance. To provide a good balance, a versioning scheme must also be added. More

precisely, the goal is to prevent a number from being handed out beyond the current number

of requests, to keep the counter in line with more traditional lock-based counters. To better

understand how this could be violated with the current design, consider this scenario: The tree



consists of a simple balancer at the root and two child counters. Clearly, one counter hands

out the even numbers and one the odd numbers. Assume that the first number to be handed

out is 0, and there are 10 requests made. 5 requests go along each of the two wires. After the

10 requests have been sent out, the tree decides to shrink, becoming a counter at the root and

making the two children Off. Assume that the 5 requests along the even wire arrive, see the

Off state, and return to the parent, obtaining the first 5 values, 0,1,2,3, and 4. Now, the tree

decides to unfold again, and it initializes the two counters to next hand out 5 and 6. Now,

the other 5 requests arrive at the odd counter. They receive 5, 7, 9, 11, and 13. Notice the

imbalance amongst the 10 numbers handed out.

The key change needed to solve this is that once a balancer becomes a counter, all requests

that have passed through that balancer and have not been satisfied have become delinquent.

These delinquent processors need to come back to the node and access it again. The way to

do this is to install a versioning scheme. When a balancer becomes a counter, the two children

need to increase their version numbers, so that if a processor arrives at a node with a distinct

version number' from that which its parent foretold, it would return to the parent and revisit,

to get updated. Each processor caches the versioning numbers throughout its traversal of the

tree, and if at any point it finds a differing version number, it traverses back up the tree until

it finds agreeing version numbers, which in the worst case is the Root node whose version never

changes. This versioning scheme can be folded into the state variable in an implementation, to

reduce size and complexity, since versioning really is additional state. But, for simplicity, it is

kept separate here. The definition of the new node structure is given in Figure 2-5.

'Technically, these version numbers are unbounded integers, but they are bounded by the values of the
counters, so any implementation which handled the overflow of the counters could handle this as well.



typedef State oneof Balancer, Counter, CounterLimit, or Off

type node is
node_lock:

state:
ID:
PID:

spin:
size:
prism:
toggle:
togglelock:

level:
count:
init:
change:

limit:

Left:
Right:
Parent:
Sibling:

endtype

Lock
/* state and versioning section*/

State
int /* version of node */
int /* version of children */

/* balancer section */
int
int
array[1..size] of int
int
Lock

/*counter section */
int
int
int
int

/* counter-limit section */
int

ptr
ptr
ptr
ptr

/* binary tree section */
node /* wire yO */
node /* wire yl */
node
node

Figure 2-5: Definition of node structure

7
K

Fo- lou
CM- Limit

State Count

Figure 2-6: Key elements of a DDT node



Figure 2-7 contains the code for the main traversal of a processor through a dynamic diffract-

ing tree. The Bookkeeping work is explained later in this chapter. Figure 2-8 contains the new

code for accessing a Counter or CounterLimit (which will be explained in the next section).

root: global ptr to node /* main root of
Bookkeeping: global array [I..NUMPROCS] of

function fetch.incr() returns int
answer: int
IDRecord: array [enumeration of nodes]
n: ptr to node

begin
IDRecord[root] = 0
n = root
answer =: INVALID

forever
if (n->ID != IDRecord[n]) then

n = n->Parent
continue

tree */
pair

of int

switch n->state
case Balancer:
Bookkeeping MYID] = <n>
if ((n->state != Balancer) II (n->ID != IDRecordEn]))

n = n->Parent
continue

IDRecord[n->Left] = n->PID
IDRecordEn->Right] = n->PID
if n->state == Balancer then
n = diff-bal(n)

case Off:
n = n->Parent;

case Counter or Counter_Limit:
answer = incrementcounter(n);
if valid(answer) then
return answer

else n = n->Parent
endswitch

endfor
end

Figure 2-7: Code for main traversal of DDT

2.2.3 Folding and UnFolding

We now describe how the changes in the tree work. The operation occurs locally at the bottom

of the tree, folding two sibling counters into their parent balancer, becoming a new counter, or



function increment_counter(n:ptr to node) returns int
answer: int

begin
acquirelock(n->nodelock)
if (n->state == Counter or CounterLimit) and

(n->ID == IDRecord[n]) then

answer = n->count
n->count = n->count + power(2,n->level)
if n->count == n->limit then

n->state = Off
n->ID = n->ID + 1

release_lock(n->nodelock)
return answer

else
release_lock(n->nodelock)
return INVALID

end

Figure 2-8: Code for counting in DDT

unfolding a counter into a balancer with two counter children. The algorithms we present here

involve possessing 3 locks at one time, but this should be adaptable to having 1 lock at a time

in the eventual goal of making this algorithm wait-free. We avoid this complication, however,

because it adds extra state to the system and obfuscates the actions which occur. We describe

each change below:

Folding

Figure 2-9 contains the code for folding. A processor, upon deciding that a balancer and its

children counters need to be folded will attempt to obtain all 3 locks. If it is successful, then it

tests whether the 3 nodes are a balancer with two child counters.



function attempt_fold(n:ptr to node) returns boolean
nLeft, nRight, nMax, nMin: ptr to node
valLimit: int

begin
nLeft = n->Left
nRight = n->Right

acquire lock(nLeft->togglelock)
acquirelock(nRight->togglelock)
acquire_lock(n->togglelock)

if (n->state == Balancer) and
(nLeft->state == Counter) and (nRight->state == Counter) and
((nLeft->count != nLeft->change) or (nRight->count != nRight->change)) then

n->state = Counter
n->PID = n->PID + 1
valLimit = MAX(nLeft->count,nRight->count) - power(2,n->Level)
n->count = valLimit

n->change = n->count

Assign nMin, nMax to be nLeft, nRight,
such that nMin->count < nMax->count

nMax->state = Off
nMax->ID = nMax->ID + 1

if nMin->count < valLimit then
nMin->state = Counter_Limit
nMin->limit = valLimit

else
nMin->state = Off
nMin->ID = nMin->ID + 1

releaselock(nRight->node_lock)
releaselock(nLeft->nodelock)
release lock(n->node-lock)
return TRUE

else
release lock(nRight->plock)
releasejlock(nLeft->plock)
releaselock (n->plock)
return FALSE

end

Figure 2-9: Code for folding



Once the locks are obtained and the states are checked, the two child counters' values are

compared. Now, the values these two counters hand out are intertwined. They are obviously

values that their parent would have handed out as a counter, and they share between them all

the values their parent would have handed out, alternating between them. Imagine enumerating

a list of numbers that their parent would hand out if it was a counter. Then, one of the child

counters hands out the values which appear in the odd positions of the list, and the other hands

out the even-indexed values. The ideal situation in folding is that the two counters' values are

adjacent on the list. Now, the value contained in the counter's register is the next value to be

handed out. If they are adjacent, the parent counter can be set to next hand out the lower of

the two numbers, the states are changed (the children are turned Off), and the parent is ready

to start counting. This is demonstrated by the first picture in Figure 2-10.

Figure 2-10: Two cases of Folding, Parent node at Level 1

Now, there are cases where the two counters' values are not adjacent on this list. This

is the case where some reasoning is required. We take the maximum of the two values, find

its position on the list, and move down one notch. This next-lower value on the list is the

limit value, and it is the value assigned to the parent counter. Now, this limit value would

normally be handed out by the smaller counter, since adjacent elements on the parent's list

are handed out by the different counters. We make the smaller counter a CounterLimit, which

acts just like a Counter, except it has a limit assigned to it of the limit value. If the smaller

counter's value reaches the limit value, it turns Off and hands out no more values. The larger

counter is immediately turned Off. It is clear that this scheme avoids any over-counting, and a

demonstration is presented in the second picture in Figure 2-10.

The only problem remaining is to show that a Counter_Limit has enough requests to use



up all of its available numbers. The parent becomes a Counter, so it does not balance any

more processors towards it, and unfolding cannot occur if one of a Counter's children is a

Counter_Limit. This is formally proven in the verification section, but informally, the reasoning

is as follows: Either these sibling counters have been running from the beginning, or they were

unfolded at some point. During unfolding, the values placed in sibling counters are initially

adjacent on their parent's list. This is also true upon initialization of the tree. The balancing

that occurs has the property that the requests are essentially evenly split amongst the two

children. The key insight then is that if one counter's value is more than one higher on the list

than the other counter, then it has satisfied more requests. But, due to the balancing process,

the other counter should receive the same number of requests, which would let it catch up

and fill up all of its values. (It could receive a maximum of one less, but that would imply

that it was second on the balancing, which would imply that it started initially larger than the

other counter, recovering the one to maintain the balance and allow the adjacency to eventually

occur.)

This key insight is what allows this algorithm to work quickly. A scheme could be imple-

mented that allowed for storing the values that weren't handed out in a queue, but this would

add another level of complexity and decrease performance.

Unfolding

Unfolding is a bit easier to understand, but has its own challenges. Figure 2-12 contains the

code. The same 3 locks are set, the states are checked (we can only unfold a Counter with two

Off children.), and then we do the obvious settings. The current counter value can be set to one

of the child counters. The next value is then set to the other child counter. Now, the problem

here is that we want the balancing to occur so that the extra request always goes to the smaller

child counter value. We do this by setting the balancer's toggle bit in the direction of the child

with the smaller value. The two different cases are shown in Figure 2-11.

An alternative to the above algorithm would be to keep consistent the role of the Left or first

child as the primary child in balancing. Then, the smaller value would always go here. Since

the toggle bit would then always be reset to 0, it is just a technical difference. The advantage

to the chosen scheme is that it allows each node to have a consistent set of values from which it

hands out, simplifying the verification process. In this alternate scheme, each unfolding could



Figure 2-11: Two cases of Unfolding, Parent node at Level 1

assign to a child node a distinct class of values to hand out that it didn't before.

The biggest problem with unfolding is primarily an implementation issue. Consider when

these actions would occur. Folding would occur because of below-average contention in that

area of the tree. There isn't much delay when the locks are set, since there just aren't that

many processors around. On the other hand, unfolding can be a costly process, since it occurs

because of high contention. The code presented here releases the parent lock as soon as it's

state is set, so that the processors that are waiting to access the counter can sooner find out

that it is now a balancer and balance. Some optimizations performed here include having the

lock.releaser go through and tell all of the processors waiting in the queue that the state has

changed, so they can diffract, which gives the balancer a good start with high contention. A

future optimization could lie in implementing a tree lock instead of a queue lock so this release

could occur even faster.

A specification of this algorithm is proved correct in Chapter 5, and an argument is sketched

in Chapter 6 about the correctness of this implementation.



function attempt_unfold(n:ptr to node) returns boolean
nLeft, nRight: ptr to node
val, ID, i: int

begin
nLeft = n->Left
nRight = n->Right
ID = n->ID
for i from 1 to NUMPROCS

if (Bookkeeping[il = n) return FALSE;

acquirelock(nLeft->togglelock)
acquire_lock(nRight->togglelock)
acquirelock(n->togglelock)

if (n->state == Counter) and (n->count != n->change) and
(nLeft->state == Off) and (nRight->state == Off) and
(n->ID == ID) then

n->state = Balancer
n->PID = n->PID + 1
val = n->count

if ((val - n->init) / power(2,n->level)) mod 2 == 1
n->toggle = 1

else
n->toggle = 0

release_lock(n->toggle lock)

nLeft->state = Counter
nRight->state = Counter
nLeft->ID = nLeft->ID + 1
nRight->ID = nRight->ID + 1
if ((val - n->init) / power(2,n->level)) mod 2 == 1

nRight->count = val

nLeft->count = val + power(2,n->level)
else

nLeft->count = val

nRight->count = val + power(2,n->level)
nLeft->change = nLeft->count
nRight->change = nRight->count

releaselock(nRight->toggle-lock)
release lock(nLeft->togglelock)
return TRUE

else
release_lock(nRight->toggle_lock)
release-lock(nLeft->togglelock)
release-lock(n->togglelock)
return FALSE

end

Figure 2-12: Code for unfolding



2.3 Bookkeeping

The missing item from the unfolding section was Bookkeeping. We now explain its necessity.

A Balancer, upon folding into a Counter, now must force all of the delinquent processors that

balanced through it to now return. Versioning causes this to happen. However, imagine that

the node now wishes to unfold again. If it becomes a Balancer, then new processors will balance

through it and have correct forecasts for the new child Counters. However, imagine a processor

that visited the node in its first incarnation as a Balancer. It received the forecast for its children,

then also Counters, and began to balance. While it was attempting to diffract or access the

toggle bit, all of these changes were to occur, and the node now went into its second incarnation

as a Balancer. If this old processor were to diffract against a new processor, then it would upset

the balance of the system, since it would arrive at one child Counter, find an incorrect version

number, and return to the parent, while its partner from diffraction would arrive at the other

child Counter and correctly access it. Now, imagine this happened potentially many times, and

each time the old processor went towards the same Counter. When it came time to fold again,

there would be no processors left that could bring the troubled Counter back into balance with

its sibling.

The solution to this is simple, and the code is given in the main traversal (Figure 2-7)

and unfolding code (Figure 2-12). We create a global bookkeeping array, one in which every

processor has an entry. A processor, upon visiting a Balancer, registers in its entry of the array

the balancer it is visiting. It then rechecks to make sure that the node is still a Balancer with

the forecasted ID and enters the balancing section of the code. If the information on the second

check was inconsistent with the processor's remembrance, it will go up the tree until it gets back

on track. Now, the final piece is a restriction on unfolding. In order for a processor to unfold

a Counter, it must traverse the bookkeeping array and make sure no processor is registered as

visiting this node as a Balancer. If this traversal is successful, it then unfolds the node if the

ID was the same as before the traversal. This is correct for the following reason. A processor

sees that the node is a Balancer and puts itself into its array location. An unfolding processor

saw that the node was a Counter and that the first processor's bookkeeping entry did not have

this node registered. The ordering of these events on a machine that guarantees atomicity

per memory location, (as our Alewife machine does guarantee [8], implies that either the first

processor will see the update upon its recheck, or the unfolding processor will learn that it was



out of date and will not unfold.

2.4 Cache Sizing

The size of the cache is an interesting study on its own. The steady-state analysis [18] predicts

that there should be cd2d prism locations in the tree, where c is a constant and d is the depth.

Now, in this tree, we have changing depths. The solution is for each processor to keep a notion

of the tree's current depth. A skeletal cache of the state is enough for a processor to average the

depths of the various paths into the tree and come up with an average depth. Given the best

experimental constant c and a large enough prism to handle the largest allowed tree, processors

can then simply pick a value randomly within their expected prism size. It is expected that

in practice eventually processors will approach the same average depth computation, providing

the most efficient balancing regardless of the size of the tree.

2.5 Folding and Unfolding Policy

There are three main qualifications that a good scaling policy should meet.

* A policy should react quickly to large changes in the load.

* A policy should keep the overhead that it causes low and factor it into its decision making

process

* A policy should keep the number of false positives low and limit many consecutive oscil-

lations

Keeping this in mind, most of our policy exploration was focused on studying the contention

at a counter lock. We felt that this was a good estimate for the overall load of the tree. If the

lock was always empty when a processor arrived at the counter, then that counter should be

folded into its parent. If the lock was always overloaded, then the counter should be unfolded.

We found that observing the time it took to access the counter was a good measure. Queue

locks have the nice property that the times measured are stable under consistent contention

levels, unlike the oscill.ating times a spin lock would provide.



We then designed our policy around setting thresholds for these times. Passing below a

folding threshold or taking longer than the unfolding threshold was a good indication that

the local area should change. However, the data structure should not change based on the

opinion of one processor. Our final policy is a variant of B.H. Lim's policy in his reactive data

structure [11]. It uses a string of consecutive times to allow a change to occur. The minimum

number of consecutive times was a constant that was decided upon by experimentation.

This met all three qualifications. A large change in the load will move the time consistently

below or above these thresholds and allow for a change. The overhead is low since only one

test is needed to see if the time is within the thresholds, stopping any current streaks and

allowing the processor to continue. Finally, by requiring consecutive times, a nice hysteresis

affect occurs, because it could not immediately change back in the other direction.

Future possibilities include on-line competitive schemes [14] or policies that measure the

balancer performance. Since the balancers are tuned by the dynamic prism sizing, a study

of the toggling behavior and diffracting rates could reveal a pattern which indicated when it

should fold and when its children should unfold.



Chapter 3

Experimental Results

We evaluated a Dynamic Diffracting Tree by implementing it on both a multiprocessor machine

and a simulator and running several experiments. The MIT Alewife machine developed by

Agarwal et. al. [1] was the target machine for this implementation. However, the largest

machine only has 32: nodes. We then ran the same experiments on the Proteus' simulator,

developed by Brewer et. al. [7], where we were able to extend our results to 256 processes,

and did a correlation to show that the results were comparable. The experiments we performed

include index-distribution, sudden spikes and drops in load levels, and producer/consumer runs,

all of which demonstrate the advantages of the DDT in a variety of applications.

3.1 Experimental Environments

The MIT Alewife machine consists of a multiprocessor with cache-coherent distributed shared

memory. Each node consists of a Sparcle processor, an FPU, 64KB of cache memory, a 4MB

portion of globally-addressable memory, the Caltech MRC network router, and the Alewife

Communications and Memory Management Unit (CMMU). The CMMU implements a cache-

coherent globally-shared address space with the LimitLESS cache-coherence protocol [8]. The

LimitLESS cache-coherence protocol maintains a small number of directory pointers in hard-

ware, and handles the rest in software. The Alewife machine guarantees sequential consistency

on its cache-coherent memory locations, which means that any processor's memory transactions

'Version 3.00, dated February 18, 1993



are ordered consistent with their code base, and memory transactions on a memory location

are processed as if they came from a FIFO queue. The Alewife LimitLESS cache coherency

policy specifically upon receipt of a write request will require all processors to flush their cached

copies of that variable and respond with an acknowledgment before granting the write request.

The primitive that Alewife provides as a read-modify-write operation is full/empty bits.

Every memory location has a full/empty bit associated with it. This allows for mutual exclusion,

since operations are provided which allow a processor to atomically set the bit full if empty

and vice-versa. Given this, we deal more abstractly in our remaining discussion about mutual

exclusion, taking for granted the availability of queue or spin locks.

Proteus multiplexes parallel threads on a single CPU to simulate the Alewife environment.

Each thread has its own complete virtual environment, and Proteus records how much time

each thread spends in its various components. In order to improve performance, Proteus does

not completely simulate the hardware. Instead, local operations are run uninterrupted on the

simulating machine, and this is timed in addition to the globally visible operations to derive

the correct local time. This limits its ability to accurately simulate the cache-coherence policy.

Proteus does not allow a thread to see global events outside of its local time environment.

3.2 Index Distribution Benchmark

Index-distribution is the simple algorithm of making a request and waiting some time before

the request is repeated. In this case, the amount of time between requests is randomly chosen

between 0 and work, a constant that determines the amount of contention present. work = 0

represents the familiar counting benchmark, providing the highest possible contention for the

number of processors given. A higher value, usually work = 1000 is chosen to give a lower-

contention environment. This is a good benchmark to study because it is often used in load-

balancing, when the tasks that the processors perform take a varying amount of time, but

usually within some predictable level of work. We ran this benchmark for a fixed amount of

time on the Alewife machine (10' cycles), varying the number of processors2 and the value of

work. We also ran this benchmark on the Proteus simulator (105 cycles), and correlated the

results. Since there are usually startup costs, the algorithms are run for some fixed time before

2Throughout this paper, each processor only runs one process



the timing begins. This brings into question the fact that the DDT will grow and shrink if the

load does not meet well with its initial conditions. Since a separate experiment is conducted to

test the changes of the DDT, a substantial startup period will be allowed before timing begins

to allow the DDT to best match the input load.

The data collected were the average latency and throughput. The average latency is the

average amount of time between the call to get.next_index() and its return. The throughput

is the total number of get.next_index() operations that returned in the time allowed. These

are clearly related numbers that can be approximately calculated from each other.

In this benchmark, the algorithms that were run were the Dynamic Diffracting Tree,

Diffracting Trees of widths 2, 4, and 8 (and on Proteus, 16 and 32), and a queue-lock based

counter. This queue-lock consists of a linked list of processors pointing towards their successors,

waiting for their predecessors to wake them up once they are done with the lock. There is a

tail pointer which directs new processors to the end of the queue. This code was implemented

using atomic register-to-memory-swap and compare-and-swap operations.

3.2.1 Diffracting Trees and Queue Locks

We experimented with two variants of the Diffracting Tree algorithm and with several different

prism sizes, and changed the diffracting tree algorithm to use queue-locks instead of spin-locks,

which made their performance more robust. For each depth of the diffracting tree, we found

the optimal prism size.

We tested both the original Diffracting Tree algorithm [20] and the alternate Diffracting Tree

algorithm [18]. The alternate algorithm performed better at all depth and prism sizes. The

main difference between these two algorithms occurs after the test-and-test-and-set operation

on the toggle bit fails. In the original algorithm, a processor then waited longer to see if it got

diffracted. In the alternate algorithm, a processor attempted to enter the prism again. This is

better because a processor is more likely to diffract when it re-enters the prism then when it

waits around.

The other major update of the original implementations is the use of queue-locks on the

counters as opposed to spin-locks. Originally, a test-and-test-and-set loop repeated until it could

acquire the lock and increment the counter. This caused the diffracting tree's throughput to



degrade after its peak due to contention. With the addition of a queue-lock, throughput remains

steady as higher contention on the lock simply increases the waiting time for the queue. This

makes the algorithm more robust, considerably extending the lifetime of a diffracting tree.

Figure 3-1, shows a comparison of throughputs of optimal depth 3 diffracting trees with queue-

and spin-locks, and Figure 3-2 shows the average waiting time for the two counters.
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Figure 3-1: Diffracting Trees of depth 3 with Queue or Spin Locks at Counters on Proteus

The Steady-State analysis [18] determined that there should be cd2d prism locations in the

tree, with c2d locations on each level of the tree, where c is a constant. We experimented by

comparing trees at each level and found that c = 1/2 was the best factor overall.

3.2.2 Alewife Results

We have the first published performance results for Diffracting Trees on the Alewife machine.

We implemented the Dynamic Diffracting Tree directly from the description given in Chapter 2.

We configured the dynamic prism sizing to use the constant c found above. We set the number

of consecutive timings before a change to be 80, a good experimental number that limited the

number of oscillations. Our experiments also determined that the best fold and unfold threshold

times were 150 and 800 cycles. Figure 3-3 shows throughputs for a queue-lock based counter,
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Figure 3-2: Average Latency of Queue or Spin Lock Counters on Diffracting Tree of depth 3
on Proteus

diffracting trees of depth 1, 2, and 3, and the DDT. The most interesting result is that the

DDT surpasses all of the diffracting trees shown for a brief range. This is due to its ability to

expand only where needed, supplying irregularly sized trees which perform better in this range.

Since the Dynamic Diffracting Tree should represent optimal diffracting trees at each of

their optimal points, we have constructed a composite graph of the diffracting tree and queue-

lock counter through-puts, with the highest throughput from any diffracting tree or queue-lock

counter at a given load level chosen for the graph. We show the optimal composite vs. the

DDT for the Alewife in Figures 3-4 and 3-5 under high contention. The throughput and

latency appear to stay within a factor throughout its performance. The average factor between

the throughput of the DDT and the optimal composite is 1.27.
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3.2.3 DDT Results on Proteus

Unfortunately, the Alewife machine only has 32 nodes. Until larger versions are available, we

must rely on simulations to provide higher load level results. We turn to the Proteus simulator,

which simulates Alewife's hardware, although it does not fully implement Alewife's LimitLESS

cache-coherence policy.

Throughput - Proteus - work = 0
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0.

0

500

n
0 5 10 15 20 25 30 35

Processors

Figure 3-6: Diffracting Trees, Queue-Lock Based Counter, and DDT on Proteus from 1-32
Processors

It is important at this point to compare the results gathered on the Alewife with the Proteus,

to make sure that the results can be extended over. Figure 3-6 is the counterpart to Figure 3-3.

Notice that the shapes of the Diffracting Trees look similar, although they seem to flatten out

more quickly on the Alewife than on the Proteus. But, we really need to see two curves side

by side. We construct a Proteus optimal composite for throughput for 1 to 32 processors and

normalize the Alewife curve to it. This graph is shown in Figure 3-7. The results show that

the Alewife trees have a higher optimal load level, but the graphs still look comparable, a good

result for Proteus.

We now extend the Proteus results up to 256 processes, and add Diffracting Trees of depths

4 and 5. Figures 3-8 and 3-9 show the throughputs and latencies of Diffracting Trees of depth
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DTree[2] -+---
DTree[4] -a--
DTree[8] .xx .

DDT -A--

o------------ E
- - - - -- -

-I

XI --------

" I . I'"

•,F -oo. t"



Throughput - work = 0
2200

2000

1800

Ca2 1600

1400

0.

r 1200

1000

800

600

Ann

0 10 15 20 25 30 35
Processors

Figure 3-7: Throughputs of Optimal Composite on Proteus and normalized Alewife

0 (queue-lock based counter) through 5.

The Proteus environment is different enough to require a change in some of the constants.

The difference in timing mechanisms forced us to move the fold threshold up to 200 cycles.

However, the queue-locks had more stable waiting times, enabling us to bring the consecutive

timings threshold down to 25.

We show the comparison between the optimal composite and the DDT in Figures 3-10

and 3-11 for high contention (work = 0) cases, and 3-12 and 3-13 for lower contention cases

(work = 1000). The results showed that Proteus charged more for the overhead required in

computing the changes, but this seems to be a constant factor that is machine-dependent. This

could be attributed to the cache-coherence differences between the two architectures. For the

high contention case, the average factor between the two throughputs was 1.56, and in the low

contention case, the average factor was 1.41.
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3.3 Large Contention Change Benchmark

We measured the response of a DDT to a sudden change in contention levels, measuring the

average latency of the DDT in fixed width intervals before and after the change occurred,

graphing the change in the average latency over time. Here, the system constant for the

number of consecutive timings was set at 10 to better handle sudden changes.

3.3.1 Sudden Surge

We ran the index-distribution benchmark with 32 participating processes for a fixed amount

of time and work = 0, to allow the tree to best fit the load. The tree sized to a depth 3 tree.

We then started timing for four time intervals of 25,000 cycles, and allowed an increase in the

number of processors to 256, timing for 400,000 additional cycles. The tree grew to depth 5.

Figure 3-14 shows the plot of these measurements. As you can see, it takes about 100,000 cycles

for the curve to level off, which given an eventual average latency of 4,000 cycles, indicates that

it took about 25 equivalent passes through the tree to expand 2 levels, which is what would be

expected with the consecutive timings constant set at 10. The throughput before the change

occurred was around 340 operations per 25,000 cycles. At the top of the spike, the throughput

goes up to around 440 operations, and as the latency drops off, the throughput rises quickly to

1500 operations and remains steady.

The plot also contains Diffracting Trees of depth 3 and 5 with their average latency at

256 processors, which are what the DDT emulates before and after the change. Here is a

good example of the tradeoff that a developer must consider in choosing to use the DDT.

Imagine that the developer initially used the diffracting tree of depth 3. The triangle on the

left formed by the DDT and the depth 3 Diffracting Tree represents the spike in latency that the

algorithm must necessarily absorb in order to change, and is a loss to the developer. However,

the quadrilateral-like shape formed between the DDT and the Diffracting Tree of depth 3 to

the right of the triangle is the region that a developer gains in using the DDT. Of course, the

developer could choose to use the depth 5 tree all along, but the DDT outperforms this tree in

the lower load case, which would most likely be the common case here.

Now, one of the reasons the spike is so high is due to dynamic prism sizing. The sudden

surge in processors all still think that the tree is of depth 3, so have a smaller prism range
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Figure 3-14: Average latency of DDT over time in response to sudden surge

to diffract through. We ran the experiment with statically sized prisms, large enough to best

handle the new load of 256 processors, and a comparison is shown in 3-15. As you can see, the

bigger prism has a smaller spike in latency, but pays for it with less than optimal performance

before the surge. A developer whose system is volatile may wish to choose a higher constant

for the dynamic prism sizing in order to handle surges in load but still maintain near optimal

levels of performance.

3.3.2 Sudden Drop

We now tried the opposite experiment, with the same settings, dropping from 256 to 32 pro-

cesses. It takes about 75000 cycles to level off at 2500 cycles. At an average latency of 2500

cycles, this would take around 20 passes, which again seems to be directly caused by the con-

secutive timings constant of 10 and the 2 levels of folding that are required.

The same trade-off described for the surge is evident here for the developer who currently

uses a Diffracting Tree of depth 5.
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Figure 3-15: Comparison of surges with dynamic and static prism sizing

3.4 Producer/Consumer Benchmarks

Job pools are a collection of jobs that need to be performed by the various processors in the

system. Any processor can enqueue (produce) a new job into the pool or dequeue (consume)

a job in order to perform it. The shared counter implementation of a job pool consists of two

shared counters and an array. To enqueue a job, a processor requests a value from the producer

counter and places the job at that location in the array. To dequeue a job, a processor requests

a value from the consumer counter and goes to find a job in that location.

An alternative job pool scheme consists of one of many load balancing techniques. Here,

processors keep local job pools from which they choose jobs to execute, and participate in load

balancing to trade their job allocations. The best load balancing scheme known is by Rudolph,

Silvkin-Allalouf, and Upfal (RSU) [16]. In RSU, a processor about to dequeue a job attempts

to load balance with probability inversely proportional to the size of its job pool. If it decides

to load balance, it picks a processor at random and attempts to equalize their job pool sizes.

In high load situations where processors frequently enqueue and dequeue jobs, the class of

load balancing algorithms currently outperforms the shared counters. The lock-based counters

~nnnn
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Figure 3-16: Average latency of DDT over time in response to sudden drop

do well against RSU in the low load levels, and the distributed counters seem to come close to

RSU's level of performance, but overall, no shared counters has been able to effectively compete

with RSU. We now show that the DDT has become an effective competitor.

3.4.1 10-Queens

The n-Queens problem is a good problem to test the DDT on. Here, every consume operation

will produce 10 new jobs at a higher depth until a limit is hit. The recursive nature of the

algorithm leads it to apply different load levels on the producer and consumer functions. Under

low loads, the counters can become lock-based algorithms and compete effectively against RSU.

As the number of processors participating increases, the trees can grow larger to give the

distributed performance necessary to compete with RSU. Figure 3-17 shows how close the

diffracting tree comes to RSU in total time elapsed throughout the differing load levels.
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repeat
instance = consume();
wait 8000 cycles;

if instance's depth < 3 then
produce 10 instances with depth greater by 1

until all instances have been consumed

Figure 3-17: 10-Queens Performance and Code

3.4.2 Sparse Producer/Consumer Actions

The pitfall of RSU and the other load balancing algorithms is the poor performance that occurs

under sparse access patterns. To exhibit this, we make half the active processors consumers and

the other half producers. Producers initially produce a job and wait until that job is consumed

before they produce a new job. This continues until a total of 2560 jobs have been completed.

This creates a sparse access pattern in the system since any load balancing transaction could

at most shift one job, which is the necessary consumption for the production to continue. We

run this system for RSU, a DDT job pool, and a queue-lock job pool. We measure the time

elapsed between the beginning of the benchmark until 2560 elements are consumed, and show
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the results in Figure 3-18. As one can see, the DDT provides near queue-lock performance in

low-loads, and approaches the performance of RSU in higher loads.
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producer:
repeat

produce(val);
wait until the element is consumed;

until a total of 2560 elements are consumed

consumer:
repeat

consume()
until a total of 2560 elements are consumed

Figure 3-18: Producer/Consumer Performance and Code
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Chapter 4

DDT Formal Model

We use Lynch and Tuttle's I/O Automata [13] as the framework for our model. This framework

allows us to clearly specify our model as the composition of automata that clearly describe our

system. Executions of this system start in some initial state and act through actions that are

enabled, moving the system from state to state. We now turn to our specific problem.

The counting problem involves the allocation of values to P users, U1,..., Up. It is formally

modeled by a system that contains P processes that acccept requests for values and return with

output responses. Each process is the agent of a specific user Up.

In order for the allocation to be consistent with a counter, there are several properties that

must be satisfied. We assume that the system returns values from N = {0, 1, 2,...}.

Property 4.1 (Safety Property) In any state of an execution, the values output are distinct

and in the set {0,..., k - 1}, where k is the number of requests.

Property 4.2 (Liveness Property) In any fair execution, if a finite number of requests ap-

pear, then the number of outputs will equal the number of requests.

Our implementation of such a system consists of P processes that accept input requests

(or tokens) from users and shepherd the tokens through a shared memory hierarchical data

structure using balancers to fairly distribute the tokens throughout the structure. The hierar-

chical data structure, known as the Dynamic Diffracting Tree, is an infinite binary tree whose

states determine the paths taken. It is dynamic because these states are subject to change in

a non-deterministic way.



We will model our system as the composition of two I/O automata. The main I/O automa-

ton is a shared memory system. It consists of processors that act as agents of the user and

non-deterministic actions that can change states. This automaton has access to various shared

variables, all part of one large binary tree structure. The second I/O automaton consists of a

composition of an infinite number of balancers. To solve the counting problem, we also model

the users as automata, can formally compose well-formed users with the system. See Figure 4-1

for the total composition.

Figure 4-1: Interaction between Well-Formed Users, the Shared Memory System, and Balancers

We first describe the user automata that interact with the system.



4.1 User I/O Automaton

Each user communicates with its process agent to obtain values from the DDT. The only

restriction we assume is a handshake protocol in which Up invokes request, to obtain a value,

and waits for a return(V), action before it can request a Iew value. This cyclic sequence is

defined to be well-formed for user U,, and can easily be modeled by a state machine.

We now define the balancer automata that are accessed by the main process automata.

4.2 Balancer I/O Automaton

Balancers are used to distribute the tokens throughout the tree. Specifically, they are used

to pass a token from a parent node to a child node, attempting to split the number of tokens

evenly between the children.

Balancers have an input wire and two output wires. The number of tokens ever received on

the input wire is denoted by x and the number of tokens output on its two output wires are

denoted yo and yl. Balancers are formally defined to satisfy the following two properties.

Property 4.3 (Balancer safety) In any reachable state, x 2 yo + yl, Yo • [x/2], and yl •

L[/2J.

Property 4.4 (Balancer Liveness) In any fair execution, if there are a finite number of

input tokens x to the balancer, then x = yo + yl.

As the tree changes, new balancers will be needed for each node. We will create an infinite

number of balancers for each node, and process automaton can agree on which balancer to use.

For now, we define distinct balancers b E B. We guarantee for now that B is a countable set,

and later give a precise definition for B.

Figure 4-2 shows an I/O automaton for a balancer that clearly preserves these properties

when composed with our main process automata whose actions invoking the balancer are well-

formed.

Before we define the main process automaton, we turn our attention to defining the hierar-

chical data structure in our system.



Figure 4-2: Balancer I/O Automaton

4.3 Tree Structure

The tree of nodes is an infinite binary tree rooted at Root. The initial start state of the system

can have a variety of values stored in shared memory, because the state of each node can be

one of several values based on other nodes in the tree.

N is the collection of nodes in our system.

There are four immutable functions for every node n E N, which behave exactly as the

commonly understood definitions of these terms in any binary tree. Here Left and Right are

the left and right children.

Functions:

Parent(n) C NI1

Left(n) E N
Right(n) E N
Sibling(n) E N

We have to allow Parent(n) to take on I because Root has no parent, and we can conveniently

assign Parent(Root) := I. What follows is a list of rules which these relationships satisfy, all of

1 L is another name for null or unknown, and A - A AU {I}



which satisfy the commonly understood definitions.

Parent(n) = I

Parent(Left(n))

Sibling(Left(n))

Sibling(Right(n))

Left(n) = m

Right(n) = m

n = Root

= Parent(Right(n))

= Right(n)

= Left(n)

-== Parent(m) = n

- Parent(m) = n

We also define two subsidiary relationships:

Anc(n) C N
Des(n) C N

These stand for the sets of Ancestors and Descendants. Here are the rules for determining

these sets, which makes them satisfy their commonly understood definitions.

Parent(Left(n))

Parent(Right(n))

Left(n)

Right(n)

Anc(Parent(Left(n)))

Anc(Parent(Right(n)))

Des(Left(n))

Des(Right(n))

n

n

Anc(Root)

E

E

E

E

C

C
C
C
€

Anc(Left(n))

Anc(Right(n))

Des(n)

Des(n)

Anc(Left(n))

Anc(Right(n))

Des(n)

Des(n)

Anc(n)

Des(n)

0

Now, there are two additional immutable values for each node n E N

Values:

(4.5)
(4.6)

(4.7)
(4.8)

(4.9)
(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



Level(n) E N
Init(n) E M

These describe for each node n E N its depth in the tree and its initial value as a counter.

Here are the formulas which generate these values.

Level(Root)

Level(Left(n))

Level(Right(n))

Init(Root)

Init(Left(n))

Init(Right(n))

= 0

= Level(n) + 1

= Level(n) + 1

= 0it

= Init(n)

= Init(n) + 2Level(n)

Finally, each node consists of several shared variables which can be accessed throughout the

entire automaton.

Shared variables:

Status E S, initially Status E S o
Count E N, initially Init(n)
Change E N, initially Init(n)
Limit E N, initially Init(n)
ID E N, initially 0
PID E N, initially 0
toggle E N x {0, 1}, initially {(n, 0) : n E N

The Status variable controls how the processors pass through the tree. Here are the defini-

tions:

S is the collection of possible states for a node and So is the collection of possible initial

states for a node.

S := {Balancer, Counter, Counter_Limit, Off}

So := {Balancer, Counter, Off}

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)



4.3.1 Restrictions on Status

Here are the restrictions on the initial value of Status as the node fits into the tree structure.

(4.28) Root.Status $ Off

(4.29) Parent(n).Status = Counter =- n.Status = Off

(4.30) Parent(n).Status = Off - n.Status = Off

(4.31) n.Status # Off = (Parent(n) = I) V

(Parent(n).Status = Balancer)

We now define the indexing scheme for the composition with the balancer automata. B = N x N.

We know that N and N are countable, so a simple dove-tailing argument shows that B is

countable. We will refer in the automaton to b E B as b =< n, i >, where n E N, i E N.

Finally, before we finish defining the automata, it will be useful to define some macros to

simplify the readability and save the mathematics for the proofs. Their definitions will be

clearly explained throughout their use in the proof.

Macros:

Increment(n) = 2 Leve l(n)

Toggle-lnit(n, v)= Mod( -I•(", 2)

Fold(n, vL, vR) = Max(vL, vR) - 2Lv' ' (n)

UnFold(n, v) = v Mod(v - Init(n), 2 Level(n))

v + 2L ' '(n)-  Otherwise

4.4 Main I/O Automaton

Figures 4-3 and 4-4 describe the main I/O automaton. When the change actions, shown in

Figure 4-4, do not act, the steps taken by the automaton are clear. A process, upon invoking

the input request, goes through balancers, (formally invoking balancer automata) balancing out

throughout the tree until it reaches a counter, upon which it increments the counter, obtains a

value, and returns an output value to its user.

Now, if a change action acts, changing the states of the tree, then the process' actions

become more complicated. When a process originally traverses the tree, it records version



Signature:
Input:

request
,

States:
nodep E NL, initially -I
balwait, E {True, False}, initially False
answerval, E N•L, initially _1
ID, EN x N , initially ((n, I) : n N}

Transitions:
request

,
Effect:

node, := Root
answer.valp := -L
baLwaitp := False
IDp[Root] := Root.ID

bal-reqp,<n,i>
Precondition:

answer.val = _
bal-waitp = False
np.Status = Balancer
i = n.PID
n.ID = IDp[n]
n E Anc(nodep) U {node,}
Vn' E Des(n) n Anc(nodep) U node,

n'.ID # ID,[n']
Effect:

node, := n
ID,[Left(nodep)] := nodep.PID
IDp[Right(nodep)] := nodep.PID
baLwaitp := True

Output:
return(V)p, V E N

Shared Variables:
Root, the root of tree

Node data structure:
Status E S, initially Status E So
Count E N, initially Init(n)
Change E N, initially Init(n)
Limit E N, initially Init(n)
ID E N, initially 0
PID E N, initially 0
toggle E N x {0, 1}, initially {(n, 0) :n E N}

return(V),
Precondition:

V = answer.val, 0 I_
Effect:

answer.val, := I

inccount(n),
Precondition:

answer-val, = I
baLwait, = False
n.Status = CounterLimit or Counter
n.ID = IDp[n]
n E Anc(nodep) U { nodep)
Vn' E Des(n) fn Anc(nodep) U node,

n'.ID # IDp[n']
Effect:

answer.val, := n. Count
n. Count := n. Count + Increment(n)
if n.Count = n.Limit

n.Status := Off
n.ID := n.ID + 1

fold(n) and unfold(n) are in Figure 4-4.

balret(V)p,<.,i>
Effect:

if V = toggle, [i]
node, := Left(nodep )

else node, := Right(nodep)
baLwaitp := False

Tasks:
{return(V)p : VE N)

Figure 4-3: Main I/O Automaton



fold(n)
Effect:

if n.Status = Balancer and
Left(n).Status = Counter and
Right(n).Status = Counter and
(Left(n). Count Left(n). Change or
Right(n). Count - Right(n). Change)

n.Status := Counter
n. Count := Fold(n, Left(n). Count,

Right(n). Count)
n. Change := n.Count
n.PID := n.PID + 1
Vm E {Left(n), Right(n)}

if m. Count < n. Count
m.Status := Counter_Limit
m.Limit := n. Count

else
m.ID := m.ID + 1
m.Status := Off

unfold(n)
Effect:

if n.Status = Counter and
Left(n).Status = Off and
Right(n).Status = Off and
n. Count $ n. Change

n.Status := Balancer
n.PID := n.PID + 1
n.toggle[n.PID] := Togglelnit(n, n. Count)
Vm E {Left(n), Right(n)}

m.ID := m.ID + 1
m.Status := Counter
m. Count := UnFold(m, n. Count)
m. Change := m. Count

Figure 4-4: Folding and UnFolding Change Actions

information about the nodes it visits and receives forecasted information about nodes it will

visit. If, upon arrival at a node, the forecasted information is now out of date, the processor will

go back up the tree until it finds a point at which its recorded information is correct, and start

again down the tree. If it eventually reaches a counter with correctly forecasted information

and can successfully access it, then it can exit with its obtained value.

This automaton is not program counter structured. It focuses entirely on the flow of a

processor's thread of control throughout the tree. node, contains the node that the processor

has arrived at. If the forecasted information is correct, this is the node that a processor would

access. If it was incorrect, then this node serves as the base from which it searches up the tree to

find a node which it can access. answerval, contains the value that it has obtained. It is initially

I, a precondition for most of the actions, and once a value is obtained, the only action which is

enabled is return(v),. The preconditions for balreq,,<,,i, and inccount(n), are similar except

for the Status variable, which forces processes at a Balancer node away from inccount(n), and

processes at a Counter or CounterLimit node away from balreq,,<n,i>. Finally, once a process

accesses a balancer automaton, balwait, goes true to keep that process automaton from having

any other actions enabled until the balancer automaton returns. Similarly, if inccount(n), is

enabled and occurs, it sets a value to answer_valp, which only enables the output action.



The IDs are the version information we mentioned earlier. This is necessary for the changes

that can occur. Figure 4-4 shows the two allowed changes. Either two siblings who are counters

fold into their parent, making their parent a counter, or a counter with two off children unfolds

into a balancer and two children counters. IDs are necessary for the following reason. A

balancer sends processes to children nodes to evenly maintain a split. If a balancer folds, the

processes enabled on its children need to return to the parent to obtain a value. However, if

the new counter then unfolds, then the processes that remained inactive will see the same state

configuration they saw before and will attempt to access the counter they were originally sent

to access. This access could not be predicted by the new balancer, because it does not know

whether the process saw the change. This requires a versioning scheme to be added.

Each node's ID value really refers to the number of changes that a node has gone through

in conjunction with its parent and sibling. Each parent keeps a copy of the children's ID

value in their PID value. This is the forecasting indicated before. When a processor balances

through a balancer, it records the PID value as the predicted values of either of the children it

might arrive at. Since Root has no parent, its ID never changes. In order to access a node for

balancing or counting, the forecasted value has to agree with the node's current ID. If it does

not, then the processor moves up the tree until it finds values that do agree, which always as a

last resort is Root. This is the reason for the complicated precondition in the inc.count(n)p and

bal_reqp,<n,i, actions. As soon as a change is made, these preconditions allow a processor to

immediately "move" up the tree, by enabling the processor on the correct node. If a processor

is stuck inside a balancer, then as soon as it leaves the balancer, it will move up the "tree" until

it is enabled on the correct node. This is a more general model, and an implementation could

safely do this by walking the processors up the tree until it finds values that agree, since these

values can not decrease, hence never come back into agreement.

With that, we now prove the safety property hold for the composition of the main and

balancer I/O automata and well-formed users.



Chapter 5

Automaton Verification

We now prove that the automaton composed of well-formed users and the main and balancer

I/O automata satisfies the safety property. The safety property says that in any state of an

execution, the values output are distinct and in the set {0,..., k - 1}, where k is the number

of inputs.

We shall prove separately the distinctness property and the limit on the output values.

5.1 Distinctness

The goal here is to prove that the output values are distinct. However, there is a delay between

the action in which the value is chosen and the output action. It would also be useful to formally

keep track of the values that have been chosen for output over the entire system. To solve these

problems, we shall introduce a history variable Outputs that contains all the values that have

been chosen for output. Since a value could be chosen more than once (although this is what

we will prove will not happen), we shall make Outputs a multi-set.

5.1.1 Multi-Sets

The multi-set M contains multiple copies of elements. Notationally, M(i) = j if there are j

occurrences of i in M. If M(i) > 0, then i E M, otherwise i ý M.



5.1.2 Outputs definition

The specification for Outputs is as follows.

Outputs multi-set of N, initially 0.

Any action that assigns a non-I value v to answerval also does the following:

Outputs := Outputs U {v}

We now justify why recording values assigned to answervalý is equivalent to recording

values that are the argument of the output action.

Lemma 5.1 If Output action return(V)p occurs in an execution, then in the last state of that

execution, V E Outputs and V 0 i.

Proof: This follows from the type of the action and the definition of Outputs.

We will prove distinctness by proving invariants that restrict the values that n.Count can

obtain. Specifically, we will show that in every state of the execution, a value that n. Count can

obtain is not in Outputs.

First, we create the sets from which n.Count can obtain values and prove that the values

are restricted to these sets.

5.1.3 Value Sets

The binary tree has a recursive method of dividing the values it works with. Each node in the

tree has a set from which it can hand out values. The Root node counts from the entire set N.

We give a definition of Values(n) below:

ValueSet(n, k)

Values(n)

:= {k + i * 2Leve(n) : i > 0}

ValueSet(n, Init(n))



We first show that siblings split their parent's values completely.

Lemma 5.2 Values(n) = Values(Left(n)) U Values(Right(n)),

Values(Left(n)) n Values(Right(n))= 0.

Proof:

Values(n)

Values(Left(n))

Values(Right(n))

= {Init(n) + i * 2 Level(n) : i > 0}

= {Init(Left(n)) + i * 2L"'' (L' ft( " )) : i > 0}

= {Init(Right(n)) + i * 2 Leve l(Right(n)) : i > 0}

We can rewrite the last two using equations 4.23, 4.24, 4.26, 4.27 as follows:

Values(Left(n))

Values(Right(n))

= {Init(n) + 2i * 2LeveI(n) : i > 0}

{Init(n) + (2i + 1) * 2Lev' (n) : i > 0}

Finally, we rewrite it as follows, substituting j = 2i and j = 2i + 1.

Values(Left(n))

Values(Right(n))

= {Init(n) + j * 2L'v(n) : jeven,j 2 0}

= {Init(n) + J * 2 Lve(n) : jodd,j > 0}

This then satisfies both parts of the lemma.

Next, we show that siblings alternate the values they obtain from their parents, such that

the distance between consecutive values for a child is double that of two consecutive values of

its parent.

Lemma 5.3 For all n E N, if V E Values(n), then V + 2 Leve(n) E Values(n), if Parent(m) = n,

either V or V + 2Le"' l( ) E Values(m), but not both, and if V E Values(n), V 0 Values(Sibling(n)).

Proof: If V E Values(n), then 3i s.t. V = Init(n) + i * 2Le'vc (n ). But, V + 2Leve(n) = Init(n) + (i +

1) * 2Le'v (") =- V + 2L 'vl(n) E Values(n). Now, by Lemma 5.2, if V E Values(n), then either

V E Values(Left(n)) or V E Values(Right(n)) but not both. However, the minimum difference

between distinct elements in Values(m) is 2 Level(m) = 2 * 2 Leve(n ) . But (V + 2Leve(n)) - V =



2 Leve l(n) < 2 * 2Le vel(n). So, either V or or V + 2 Leve l(n) E Values(m), but not both. The final part

of the lemma is true directly from Lemma 5.2. I

We now show that nodes with no relationships have distinct value sets.

Lemma 5.4 m 0 Anc(n) U Des(n) U {n} == Values(m) n Values(n) = 0.

Proof: If m is not an Ancestor or Descendant of n, and m ý n, then there exists a least common

ancestor a such that m and n both have a as an ancestor but do not share either of the children

of a as an ancestor. Without loss of generality, assume that Left(a) is an ancestor of m and

Right(a) is an ancestor of n. Values(m) 9 Values(Left(a)) and Values(n) g Values(Right(a)) by

Lemma 5.2. But, by the same lemma, Values(Left(a)) n Values(Right(a)) = 0, which implies

that Values(m) n Values(n) = 0. I

We now prove our first main invariant. We show that n. Count is always a value in its value

set. Our all invariants refer to statements that are true in every reachable state of an execution

of our system.

Invariant 5.5 Vn, n.Count E Values(n).

Proof: This is initially true, since Vn E N, n.Count = Init(n), and Init(n) E Values(n).

Now, we only need to consider the actions which change Count and inductively assume that

this invariant was true for all n E N before the action occurred. There are three actions to

consider: inc.count(n)p, fold(n), and unfold(n).

inc_count(n)p can add Increment(n) to n.Count. Originally, n.Count E Values(n) and

Increment(n) = 2 Lv"'(" ) . By Lemma 5.3, this preserves the invariant.

Next, consider fold(n). Here, n.Count := Fold(n, Left(n).Count, Right(n).Count). By induc-

tion, Left(n).Count E Values(Left(n)) and Right(n).Count E Values(Right(n)). By Lemma 5.2,

this implies that Left(n).Count and Right(n).Count e Values(n). Now, Fold(n, vL, vR) =

Max(vL, vR) - 2Leve ( "n) . We know that Max(vL, vR) E Values(n). Max(vL, vR) - Init(n) be-

cause Max(vL, vR) > Min(vL, vR) (vL and vR are necessarily distinct by Lemma 5.2), and

Min(vL, vR) E Values(n). So, n.Count E Values(n) and is not equal to Init(n), so n.Count -

2 Levet (n) E Values(n), and the invariant is preserved.

Finally, consider unfold(n). The changes are Left(n).Count := UnFold(Left(n), n.Count)



and Right(n).Count := UnFold(Right(n),n.Count). It is known that n.Count E Values(n). Now,

consider what UnFold(m, V) returns, where n = Parent(m). Mod(V - Init(m),2L'evem)) is only

equal to zero precisely when 3i s.t. V = Init(m) + i * 2Le veI(m), which means that V E Values(m).

However, by Lemma 5.3, if V ' Values(m), then V + 2 Level(m)-1 E Values(m), and the invariant

is preserved. M

5.1.4 Status Restrictions on Counters

We now turn our attention to the Status variable. We will show several invariants that restrict

the possible enumeration of states for distinct nodes in the tree. In this section, we show that

in any state of the execution, there is at most one Counter on any path from the root. We show

here that in any state of the execution, if a node has a Status of a Counter or Balancer then all

of its ancestors are Balancers.

Invariant 5.6 Vn, (n.Status = Counter) V (n.Status = Balancer) =-

Vm E Anc(n), m.Status = Balancer.

Proof: All initial states of the execution satisfy this property by restriction 4.31. We now

consider all actions that could possibly violate this invariant. Namely, we look at all changes

of Status variables from or to Counter or Balancer. These actions are fold(n) and unfold(n).

fold(n) only acts if n.Status = Balancer, Left(n).Status = Counter and Right(n).Status =

Counter. Now, n.Status := Counter and it originally satisfied the hypothesis of the invariant,

so it still preserves it. Meanwhile, Left(n).Status and Right(n).Status change to either Off or

CounterLimit . They no longer satisfy the hypothesis of the invariant and vacuously preserve

the invariant.

unfold(n) only acts if n.Status = Counter, Left(n).Status = Off and Right(n).Status = Off.

Now, n.Status := Balancer and it originally satisfied the hypothesis of the invariant, so it

still preserves it. Meanwhile, Left(n).Status and Right(n).Status change to Counter and since

n.Status := Balancer, the invariant is preserved. U

We now do similar reasoning in the other direction. We show that if a node is not a Balancer,

then all of its descendants are not Counters.

Invariant 5.7 Vn, n.Status : Balancer == Vm E Des(n), m.Status $ Counter.



Proof: This is initially true in all initial states of the tree by restrictions 4.29 and 4.30. We

now consider all possible actions that could possibly violate this invariant. Namely, we look at

all changes of Status variables from or to Counter or Balancer. These actions are fold(n) and

unfold(n).

fold(n) only acts if n.Status = Balancer, Left(n).Status = Counter and Right(n).Status =

Counter. Left(n).Status and Right(n).Status change to either Off or CounterLimit from Counter;

they inductively satisfied the invariant, so they satisfy the invariant after the action. n.Status :=

Counter and it originally violated the hypothesis of the invariant. Now it satisfies the hypothesis,

and its children both satisfy the consequent, so it preserves the invariant.

unfold(n) only acts if n.Status = Counter, Left(n).Status = Off and Right(n).Status =

Off. Left(n).Status and Right(n).Status change to Counter from Off, so they still preserve the

invariant. n.Status := Balancer, so it now violates the hypothesis, and vacuously preserves the

invariant. U

5.1.5 Count Properties

We are now equipped to show some properties about the Count variable.

We first show that if two nodes are Counters in the same state of the execution, their value

sets do not cross.

Invariant 5.8 Vn, m, n A m if (n.Status = Counter) A (m.Status = Counter) ==-

(n.Count 0 ValueSet(m, m.Count)) A (m.Count 0 ValueSet(n, n.Count)).

Proof: By Invariants 5.6 and 5.7, the fact that both n and m have Status Counter implies

that m 0 Anc(n) U Des(n) U {n}. This implies by Lemma 5.4 that Values(n) n Values(m) =

0. Finally, by Invariant 5.5, n.Count E ValueSet(n,n.Count) _ Values(n) and m.Count E

Values(m, m.Count) _ Values(m), so the lemma holds. U

We now show that n.Count is always greater than or equal to n.Change, a variable that

gets set whenever n.Count gets set in a fold or unfold action.

Invariant 5.9 Vn, n.Count > n.Change.



Proof: This is initially true, since n.Count = n.Change = Init(n). We now consider all changes

of n.Count and n.Change.

In inccount(n),, n.Count is incremented by Increment(n), which as a power of 2 is positive.

Inductively, n.Count > n.Change == n.Count + Increment(n) _ n.Change.

Now, in fold(n) and unfold(n), both n.Count and n.Change are set to the same values. So,

the invariant holds. I

We now introduce the n.Limit value, which is the value that caps the counting of a

Counter_Limit from above.

Invariant 5.10 Vn, n.Limit E Values(n).

Proof: This is initially true, since n.Limit = Init(n). We now consider all changes of n.Limit.

The only action that changes this value is fold(n). Consider n to be the child node whose

Limit gets assigned. n.Limit := Parent(n).Count = Fold(Parent(n), n.Count, Sibling(n).Count).

This occurs if n.Count < Parent(n).Count. However, Fold(Parent(n), vL, vR) = Max(vL, vR) -

2 Leve(Parent(n)) . Clearly, if n.Count > Sibling(n).Count, then n.Count > Parent(n).Count. So,

in order for limit to be assigned, n.Count < Sibling(n).Count. This means Parent(n).Count =

Sibling(n).Count - 2Level(Parent(n)) . However, from Lemma 5.3, given that Sibling(n).Count E

Values(Sibling(n)) and Sibling(n).Count e Values(Parent(n)), Sibling(n). Count - 2 Leve l(Parent(n)) E

Values(n). This means Parent(n).Count E Values(n). If Parent(n).Count > n.Count, then

n.Limit := Parent(n).Count, and the invariant holds. I

We show that a CounterLimit always has the n.Count lower than its limit value.

Invariant 5.11 Vn, n.Status = CounterLimit -=> n.Count < n.Limit.

Proof: This is vacuously true for the initial state of the tree, since Counter_Limit 0 So. We now

look at all places where the Status of n is changed to or from Counter.Limit and where n. Count

changes. These actions are fold(n) and inc.count(n),.

In fold(n), child n's Status variable can only set to CounterLimit if it is initially Counter

and n.Count < Parent(n).Count. However, if this occurs, then n.Limit := Parent(n).Count,

which preserves the invariant.



In inc_count(n)p, n.Count is incremented to the next value in Values(n). However, by

Invariant 5.10, n.Limit E Values(n) and we know that prior to this action, n.Count < n.Limit.

This implies that after the assignment, n.Count < n.Limit. However, if n.Count = n.Limit

then n.Status := Off. Either way, the invariant is preserved. U

5.1.6 Count Never Decreases

Now, we would like to prove that n.Count never decreases. To do this, we add to each node a

variable CountMax that keeps the maximum value that n.Count has ever taken on. Here is its

definition:

n. CountMax E N, initially Init(n).

Any action that assigns a value to n. Count also performs the following bookkeeping change:

n. CountMax := Max(n. CountMax, n. Count)

We have to take into account the changes that occur from an increment, fold, or unfold. The

following invariant will set up this proof for the unfold action.

Invariant 5.12 Vn, n.Status = Off -= n.Count < UnFold(n, Parent(n).Count) and

n.Status = Counter_Limit -= n.Count < UnFold(n, Parent(n).Count) and

n.Status = CounterLimit ==> n.Limit < Parent(n).Count.

Proof: This is initially true since Vn : Root, UnFold(n, Init(Parent(n))) = Init(n).

First, examine inccount(Parent(n))p. This action can only increase the value of Un-

Fold, which preserves the invariant. Now consider inc_count(n)p. It won't change n.Count

if n.Status = Off, which preserves the invariant. If n.Status = Counter_Limit, it increments

n.Count. Now, we know from Invariants 5.11 and 5.10 that the value of n.Count < n.Limit

and that n.Limit E Values(n), so the new value of n.Count satisfies n.Count < n.Limit. If

n.Count = n.Limit, then n.Status := Off, and by the induction, n.Limit < Parent(n).Count <

UnFold(n, Parent(n).Count), so the invariant is preserved. If n.Count < n.Limit, then by the

previous, n.Count < UnFold(n, Parent(n).Count) and the invariant is preserved.

Now, consider foldp. We only need to consider the case where we call fold(Parent(n)), since



the children become Off or Counter_Limit. The assignment for the Count is shown below. Since

in most cases n.Status := Off, we need to show that

Parent(n).Count := Fold(Parent(n), n.Count, Sibling(n).Count)

n.Count < UnFold(n, Parent(n).Count)

If n.Count > Sibling(n).Count, then Fold(...) = n.Count - 2Level(Parent(n)) . But n.Count -

2 Leve l(Parent(n)) 0 Values(n) by Lemma 5.3, so UnFold adds 2Le' ' ' (n)-1 to it, and out comes n.Count.

If n.Count < Sibling(n).Count, then Fold(...) = Sibling(n).Count - 2Level(Parent(n)) and it is

clear that n.Count < Sibling(n).Count - 2 Level(Parent(n)) . So, if n.Status := Off, the invariant is

preserved. Now, if n.Status := CounterLimit, then necessarily n.Count < Parent(n).Count and

n.Limit = Parent(n).Count and the invariant is preserved.

The only other action to examine is unfold(n). Now, if n.Status := Counter, the invariant is

vacuously true. However, if Parent(n) # Root, consider unfold(Parent(Parent(n))). Any action

implies that Parent(n).Status = Off, which means n.Count < UnFold(n, Parent(n).Count). So,

the assignment n.Count := UnFold(n, Parent(n).Count) preserves the invariant with respect to

n, since Parent(n).Count did not decrease. U

We now need to show that n. Count is always less than or equal to the value it would obtain

in a fold action.

Invariant 5.13 Vn, n.Status = Balancer -==

n. Count < Fold(n, Left(n). Count, Right(n). Count).

Proof: This is initially true since Vn, Fold(n, Init(Left(n)), Init(Right(n))) = Init(n).

First, examine inccount(n),. This action is not enabled if n.Status = Balancer. If we call

this action on Left(n) or Right(n), then incrementing their Count can only increase the right

hand side of the inequality, which preserves the invariant.

The only other action to consider is unfold(n). n.Status := Balancer, and the two children's

Count get assigned UnFold's. The two UnFold's return the values n. Count and n.Count+2L"even)

to the two Count variables. But, Fold(n, vL, vR) returns Max(vL, vR) - 2Leve(n) = n.Count. So,

n.Count < n.Count, and the invariant is preserved. U



We are now ready to show that n.Count never decreases.

Invariant 5.14 Vn, n.Count = n.CountMax.

Proof: This is initially true since they are both equal to Init(n).

Consider the three actions that change n.Count. inc.count(n)p increases n.Count, so by

the inductive assumption, n.CountMax := n.Count and the invariant is preserved. fold(n)

can only assign Fold(n, Left(n).Count, Right(n).Count) to n.Count if n.Status = Balancer, but

by invariant 5.13, this assignment preserves the invariant. Finally, unfold(Parent(n)) can only

assign UnFold(n, Parent(n).Count) to n.Count if n.Status = Off, but by invariant 5.12, this

preserves the invariant. U

5.1.7 Counter_Limit Count properties

We now need to show that if there exists a Counter-Limit in the tree, its Count variable is

restricted by a Counter ancestor.

Invariant 5.15 Vn, m, ((n.Status = Counter_Limit) A (m.Status = Counter or Counter_Limit) A

(m E Anc(n)) ==- n.Count < m.Count.

Proof: Invariant 5.12 provides two inequalities regarding Off and Counter_Limit nodes. If

n.Status = Off, n.Count < UnFold(n, Parent(n).Count). We can restate this as:

Parent(n). Count > n. Count - 2Leve l(Parent(n))

If n.Status = CounterLimit, by the same invariant, n.Limit < Parent(n).Count, from invari-

ant 5.11, n.Count < n.Limit, and from invariant 5.10, n.Limit E Values(n), so n.Count +

2 Le 'e (" ) < n.Limit, and we can conclude

Parent(n).Count > n.Count + 2Leve l(n)

Now consider the nearest ancestor m whose Status is Counter or CounterLimit . The pathway

from n to m consists of nodes nl,n 2,... , nj s.t. Parent(n) = nl,..., Parent(nj) = m. By

invariant 5.7, ni.Status = Off. So, m.Count > nj.Count - 2 Level(m) and Vi > 1, ni.Count >



nil 1.Count - 2Leve l(n" ) . So, putting them all together, m.Count > ni_1.Count - (2 Leve l(n 2) +... +

2 Level(m)). Finally, since n.Status = CounterLimit, nh.Count > n.Count + 2Lev 'l(n), and we can

finally relate m. Count and n. Count by the inequality m. Count > n. Count+ 2L *'ve(n ) _ (2 Leve(n2) +

S. -+ 2Lev'I(m)). However, it is a basic mathematical fact that 2k > 1 + - - + 2k-1, and Level(n) is

greater than any of the other levels in the expression. So, 2Lt eve l( ) > ( 2Leve l(n2) + ... + 2 Level(m)),

and 2 Leve l(n) (2 Leve l(n 2) +. -+ 2Level(m )) > 1, which makes m. Count > n. Count + 1, or m. Count >

n.Count, which satisfies the lemma.

Finally, if m.Status = Counter, then by invariant 5.6, all ancestors of m are Balancers. if

m.Status = Counter_Limit, then we can re-apply the lemma to inductively finish the proof of

this lemma.

5.1.8 Final Count Properties

We are now near completion of the distinctness proof. We need to show that the values that

any Counter or Counter_Limit can take on do not ever intersect with each other.

First, we show that any value in the value set of a Counter can not be taken on by the Count

variable of any other Counter or CounterLimit node.

Invariant 5.16 Vn, m, n $ m, (n.Status = Counter)A(m.Status = Counter or CounterLimit) -=

m.Count .ValueSet(n, n.Count).

Proof: If m and n have Counter as their Status, then this lemma is proved by lemma 5.8.

Now consider when m.Status = Counter_Limit. There are two cases, either n E Anc(m) or

n 0 Anc(m). If n 0 Anc(m), we know that n 0 Des(n) by lemma 5.7. By lemma 5.4, Values(m)n

Values(n) = 0, and m. Count 0 ValueSet(n, n. Count).

Now, consider the case that n E Anc(m). By invariant 5.15, m.Count < n.Count, and

m.Count 0 ValueSet(n, n.Count), so the lemma holds. I

Then, we show that any value in the value set of a CounterLimit can not be taken on by

the Count variable of any other Counter or CounterLimit node.

Invariant 5.17 Vn, m, n $ m, (n.Status = CounterLimit)A

(m.Status = Counter or Counter_Limit) --=



m. Count 0 Values(n, n.Limit) - ValueSet(n, n. Count).

Proof: There are three cases. Either n E Anc(m), n E Des(m), or n ý Anc(m) U Des(m). Con-

sider the last case. By lemma 5.4, Values(m)nValues(n) = 0, and m.Count ý Values(n, n.Limit)-

ValueSet(n, n.Count).

Now, consider the case that n E Des(m). By lemma 5.15, n.Count < m.Count This is

true for all values of n.Count < n.Limit, thus n.Limit < m.Count. This implies then that

m. Count _ Values(n, n.Limit) - ValueSet(n, n. Count).

Finally, consider the case that n E Anc(m). We know from lemma 5.7 that m.Status #

Counter. So, m.Status = CounterLimit. However, m is a descendant of n, and so m.Count <

n.Count. This implies that m.Count 0 Values(n, n.Limit) - ValueSet(n, n.Count), and the

lemma is proved. U

We now show that any value that a Counter or CounterLimit may hand out in a future state

is not presently in the Outputs set.

Invariant 5.18 Vn,n.Status = Counter, v E ValueSet(n, n.Count) == v _ Outputs, and

n.Status = Counter_Limit, v E ValueSet(n, n.Limit) - ValueSet(n, n.Count) == v 0 Outputs.

Proof: Initially, this is true since Outputs = 0.

Consider the actions that make assignments to answer_val, or change n.Count or n.Status.

First, look at inccount(n),. answervalp is assigned n.Count, Outputs := Outputs U n.Count,

and n.Count takes on the next value in Values(n). This only happens if the Status is Counter

or Counter_Limit, and by invariants 5.16 and 5.17, this does not invalidate the invariant for any

other node, preserving the invariant for this node.

fold(n) makes n a counter and n.Count := Fold(n, Left(n).Count, Right(n).Count). Now,

Vv E ValueSet(Left(n), Left(n).Count) U ValueSet(Right(n), Right(n).Count), v _ Outputs. But

assuming the assignment has occurred, we know

ValueSet(n, n.Count) C ValueSet(Left(n), Left(n). Count) U ValueSet(Right(n), Right(n).Count)

so the invariant is preserved. When a child m has m.Status:= CounterLimit, it automatically

satisfies the invariant by 5.17.



Finally, consider unfold(n). It creates two child counters. Assuming n = Parent(m),

m.Count := UnFold(m,n.Count). However, we know Vv E Values(n,n.Count),v V Outputs,

and UnFold(m, n.Count) > n.Count, so Values(m, m.Count) C Values(n, n.Count) and the in-

variant is preserved. U

We can now prove that the value currently in the Count variable of a Counter or CounterLim it

is never in Outputs.

Invariant 5.19 Vn E N, (n.Status = Counter) V (n.Status = CounterLimit) ==- n.Count .

Outputs.

Proof: By definition, n.Count E ValueSet(n, n.Count) and n.Count E ValueSet(n, n.Limit) -

ValueSet(n, n.Count), so this holds by invariant 5.18. U

5.1.9 Conclusion

We are now ready to conclude the distinctness proof. We just showed that n. Count V Outputs

in any reachable state where n is a Counter or CounterLimit. Now we show that n.Count is the

only source of values for Outputs, which results in the lemma that every value that appears in

Outputs has only 1 occurrence in the multi-set.

Lemma 5.20 Vv E N, Outputs(v) <= 1

Proof: By definition, a value can only go in Outputs if it is assigned to answer valp. How-

ever, this only occurs in inc.count(n)p, the value assigned is n.Count, and only if (n.Status =

Counter) V (n.Status = CounterLimit). But, by 5.19, n.Count V Outputs, and the action con-

cludes by incrementing n.Count. Finally, n.Count never decreases by 5.14, so this lemma holds.

This last lemma is strong enough to show our main theorem, since values can only be output

if they are in Outputs.

Theorem 5.21 If return(V1 ),p and return(V2)p, occur, V1 0 V2.

Proof: If return(V1 )p, and return(V2)p, occur, then inccount(n),, and inccount(m),, oc-

curred, where answervalp, := V1 and answervalp, := V2. However, Outputs would have



recorded both of these transactions, and V1,V2 E Outputs. However, for all v, Outputs(v) < 1,

so V1 € V2. U

5.2 Output Value Limit

If there have been only k input requests, we will prove that return(V)p can only occur if V < k.

To be more precise, we add a history variable k accessible over the entire automata composition,

give it an initial value 0, and place k := k+ 1 in request,. We will then show that if v E Outputs,

v < k. To do this, we will show the following two things: every v E Outputs is bounded above

by some existing n.Count and every n.Count is bounded in some way by k to guarantee that

v < k.

We immediately show the first condition mentioned above.

Invariant 5.22 Vv E N, v E Outputs ==€ 3n, v <= n.Count - 2Level(n)

Proof: This is initially true since Outputs = 0.

We now consider when v is added to Outputs. This only occurs in inc.count(n),, the

value assigned is n.Count, and n.Count is incremented by 2Level(n) . However, by invariant 5.14,

n. Count never decreases. So this invariant always holds. E

We now have to prove the more difficult second condition. First, however, we present some

necessary mathematical formulas.

5.2.1 Mathematical Facts

We must first give some mathematical facts about floors and ceilings, since they abound in the

following proofs. In all the equations, a E N. We leave the proofs to the interested reader.
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5.2.2 Limits and Value Sets Revisited

begin by adding an additional value set operator that lets us easily refer to the ith

of the value set. We define Limit functions which will be the necessary bound on

to keep it below k. Finally, we define Half functions which let us avoid the proliferation

and ceilings everywhere.

Values(n)[j] := Init(n) + j * 2Leve(n), j > 0

k n = Root

Limit(n, k) := Limit(Parent(n),k) n = Left(Parent(n))
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We now show that this Limit definition will be a suitable bound for n.Count to keep it

safely below k.

Lemma 5.30 Values(n)[Limit(n, k) - 1] < k.

Proof: First, we give some equations which clearly come out of the definition of Values(n)[j].

Values(Left(n))[j] = Values(n)[2j]

Values(Right(n))[j] = Values(n)[2j + 1]

Now, we will calculate the value of Values(n)[Limit(n, k) - 1]. If n = Root, then Limit(n, k) = k

and Values(Root)[k - 1] = k - 1, so the inequality holds for Root. We will now do an inductive

proof indexed by the depth into the tree.

Assume m = Parent(n). There are two cases.

n = Left(m), then

Either n = Left(m) or n = Right(m). If

Values(n)[Limit(n, k)- 1] = Values(m)[2( Limit(m, 
)]

Values(m)[Limit(m, k) - 2] Limit(m, k) even

Values(m)[Limit(m, k) - 1] Limit(m, k) odd

By induction, the inequality 5.30 holds for m, so it clearly holds for Left(m). Now, assume

n = Right(m).

Values(n)[Limit(n, k) - 1] = Values(m)[2( Limit(m 1) + 1]

SValues(m)[Limit(m, k) - 1] Limit(m, k) even

Values(m)[Limit(m, k) - 2] Limit(m, k) odd

By induction, the inequality 5.30 holds for m, so it holds for Right(m).

We now begin the long journey towards proving that this bound holds. First, some necessary

invariants about IDs, states, and balancers.



5.2.3 ID, Status, and Balancer Properties

We now give several low level invariants that are needed. This first invariant shows that a

Balancer can only have Balancers and Counters as children.

Invariant 5.31 n.Status = Balancer -= (Left(n).Status : Off or CounterLimit) A

(Right(n).Status $ Off or CounterLimit).

Proof: This is initially true from equation 4.31.

The only actions to consider are those that change Status. fold(n) changes a Balancer to a

Counter, so the invariant is vacuously preserved. unfold(n) changes a Counter to a Balancer, but

also changes both children to Counters, which preserves the invariant. inc_count(n)p can change

n.Status to Off, but only if it was previously a CounterLimit, which by the contrapositive of

the invariant, implies that Parent(n).Status $ Balancer. This proves the invariant. U

Invariant 5.32 Root.ID = 0.

Proof: This is initially true, and the only actions that change ID are fold(n) and unfold(n),

which change children nodes' IDs. However, Root has no parent, so the invariant is preserved.

Invariant 5.33 Root.Status $ Off or Counter-Limit.

Proof: This is initially true. All actions that change n.Status to CounterLimit are acting on

the child of a node. All actions that change n.Status to Off either operate on the child of a

node or change a CounterLimit to Off. But Root has no parent, so the invariant is preserved.

This invariant shows that if a processor has the correctly forecasted ID information for a

node, then the node cannot be Off.

Invariant 5.34 IDp[n] = n.ID ==- n.Status $ Off.

Proof: This is initially true since Vn, IDp[n] = i.

Now, requestp sets ID,[Root] := Root.ID = 0 which is always true by 5.32, but the conse-

quent is always true by 5.33, so this preserves the invariant.



bal_req,,<,,i, sets node := n and caches the ID's of Left(n) and Right(n). But at this time,

n.Status = Balancer, and by invariant 5.31, neither child's Status is Off.

All other actions to consider add 1 to n.ID, but these actions invalidate the hypothesis of

the invariant and trivially preserve the invariant. U

Finally, we show that a processor is inside a balancer iff balwait, is True.

Invariant 5.35 3b,p E Pb =- baLwaitp = True.

Proof: This is initially true since Vb, Pb = 0 and Vp, bal_wait, = False.

The only actions to consider are bal_req,<,,,i, and bal_ret(V),<,,,i>. balreq,,<n,i> adds p to

P<n,i> and sets baLwaitp := True. bal ret(V),,<,,i> removes p from P<,,i> and sets baLwaitp:=

False, and is only enabled when p E P<n,i>.

5.2.4 Active Processor Tracking

We need to show that an active processor is either enabled on exactly one action in the main

process automaton, or is inside a balancer automaton, waiting to be returned to the main

process automaton. To define an active processor, we create a history variable Active that is

defined as follows:

Active C {1,... , P}, initially 0.

We add assignment 5.36 to request, and 5.37 to return(v),.

(5.36) Active := Active U {p}

(5.37) Active := Active - {p}

We now show that an active processor not in a balancer has only one action enabled in any

one state.

Invariant 5.38 (p E Active) A (balwait, = False) =#- exactly one action is enabled, and it is

in {return(v),, bal_req,, <,,>, inc-count(n), : V, i E N, n E N}.

Proof: Initially, this is true since Active = 0.



Now, we consider every action. requestp adds p to Active, sets nodep to Root and sets

answer_valp to I and baLwaitp to False. It also sets IDp[Root] := Root.ID = 0 and by 5.32

and 5.33, Root.ID = 0 and Root.Status $ Off. So, p must be enabled on bal_reqP,<Root,i> or

inc_count(Root),.

balreqp,,,,i, sets baLwaitp := False, which vacuously preserves the invariant.

balret(V)p,<,,i, is only enabled if p E P<,,i>. But by invariant 5.35, this is true iff

baLwaitp := True, when this invariant is vacuously preserved. Now, when this action does occur,

it sets balwait, := False and sets nodep to either Left(nodep) or Right(nodep). If the assigned

node has a matching ID, then invariant 5.34 shows that bal_reqp,<node,,i> or inccount(nodep)p

will be enabled. If the ID is not the same, then a traversal up the tree of nodep's ancestors

will eventually reach a node n whose ID is the same (by invariant 5.32), and by 5.34, either

balreq,,,,i> or inc.count(n), will be enabled.

inc_count(n), sets answer_val, to a non-I value V, so return(v)p is enabled. All other

actions in this set have a answervalr  = I precondition, so the invariant is preserved.

return(v)p outputs the value V, and removes p from Active, preserving the invariant.

fold(n) does several things. It changes n.Status from Balancer to Counter. So, any processors

enabled on bal_req,<,,,i> are now enabled on inc_count(n)p. If it changes a child m to a

CounterLimit, it keeps the same ID and all the processors enabled on inc.count(m)p remain

enabled there. If it changes a child to Off, it increases the ID, and any processors enabled on

inc_count(m), can seek up the ancestors of m until they find a node n' on which n'.ID = ID,[n'],

and by 5.34, either inccount(n')p or bal_req,l<,,,i> will be enabled.

unfold(n) changes a Counter to a Balancer. So, all processors that had inccount(n)p enabled

now have bal_reqP,<,,,> enabled. There were no processors enabled on either child, since they

were Off, and hence had an ID distinct from that of any cached copy. U

5.2.5 ID tracking

We now give some properties about ID's and PID's.

Lemma 5.39 Vn, n.ID and n.PID do not decrease.

Proof: These are trivial, since all changes increment the variables by 1. M



We now show the correlation between a parent's PID and a child's ID.

Invariant 5.40 Vn $ Root, n.Status = Counter_Limit == n.ID + 1 = Parent(n).PID and

n.Status $ Counter_Limit ==: n.ID = Parent(n).PID.

Proof: This is initially true, since Vn, n.ID = n.PID = 0.

We now consider all actions that change this. unfold(n) increments n.PID, Left(n).ID,

and Right(n).ID, and CounterLimit's are not involved, so the invariant is preserved. unfold(n)

increments n.PID, and if a child m becomes Off, increments m.ID, preserving the invariant.

The alternative is to make the child a Counter_Limit, which preserves the invariant. Finally,

inccount(n)p increments n.ID only if it is a Counter_Limit, changes it to Off, and the invariant

is preserved. I

5.2.6 PathID tracking

We now introduce another history variable that clears up the confusion inherent in the ID

structure. Each node has a PathID array that indicates what version of the tree that node

currently belongs to. If a node is a Balancer or Counter, then this history variable contains

the current IDs for all of its ancestors. If a node is a CounterLimit, then this history variable

contains the old IDs that were around when the node became a Counter_Limit. This is important,

because processors enabled on a node will have their ID, array equal to this array, and hence,

equal to each other. Here is its definition.

n.PathlD C N x N, initially {(n', 0) : n' E Anc(n') U {n}}.

We perform assignment 5.41 wherever we increment m.ID (fold(n) and inccount(n), have

this case). We also perform assignment 5.42 in the end of unfold(n), where the code for m is

performed for m = Left(n) and m = Right(n).

(5.41) m.PathID[m] := m.ID

(5.42) Vn' E Anc(m),m.PathID[n'] := n.PathID[n']

We now show that a Counter or Balancer node's PathID variable has ID information consistent

with its ancestors IDs in any state.

Invariant 5.43 Vn, (n.Status = Counter or Balancer) == Vn' E Anc(n) U {n}, n'.ID =

n.PathlD [n'].



Proof: This is initially true since Vn, n.ID = 0, and Vn' E Anc(n), n.PathID[n'] = 0.

We now consider any changes of ID's, the history variable, or Status. fold(n) turns a

Balancer into a Counter and does not change the parent's ID, so it still satisfies the invariant.

The two children become Counter_Limit or Off, so no longer satisfy the hypothesis, preserving

the invariant.

unfold(n) turns a Counter into a Balancer and as above, preserves the invariant. The two

children become Counters, so they now satisfy the hypothesis. However, each child receives a

full copy of n.PathlD which inductively satisfies the invariant, and then fills in its own value

with the new ID assigned it, so it satisfies the invariant, and completes this proof. N

We now show that a processor who has the current ID for a Counter or Balancer has the

correct ID for its parent node.

Invariant 5.44 Vn, (n.Status = Counter or Balancer) A (ID,[n] = n.ID) ==; (n = Root) V

(IDp[Parent(n)] = Parent(n).ID).

Proof: This is initially true since Vn, IDp[n] = i.

requestp sets IDp[Root] = Root.ID, and this equality and the rest of the hypothesis is

invariant for Root, and always preserves the invariant by the first part of the consequent.

We now consider the actions that change Status or ID. bal_reqP,,, < > sets IDp[Left(n)]

Left(n).ID and IDp[Right(n)] := Right(n).ID, so if either child is a Counter or Balancer, n has

IDp[n] = n.ID, and this preserves the invariant.

inc.count(n)p increments n.ID if n.Status = Counter_Limit, which vacuously satisfies the

invariant. By 5.7, no descendants of n are Counter or Balancer, so there is no danger in violating

any node's consequent.

fold(n) changes n.Status from Balancer to Counter, and remains preserving the invariant.

The children turn to CounterLimit or Off , and so vacuously preserve the invariant.

unfold(n) changes n.Status from a Counter to a Balancer, and remains preserving the in-

variant. Both children become Counters, but their ID's increase, and since these values do

not decrease (lemma 5.39) and values in ID,[n'] come from n'.ID, no processor p could have

ID,[m] = m.ID, where Parent(m) = n. I



We can now show this simple but useful lemma which shows that a processor that is enabled

on a Balancer or Counter node has ID records that are in agreement with the node's PathID.

Lemma 5.45 Vn, (n.Status = Counter or Balancer) A (IDp[n] = n.ID) ==-

Vn' E Anc(n), (ID,[n'] = n.PathlD[n'])

Proof: By invariant 5.43, n.PathID contains the correct ID's for its ancestors if it is a Balancer

or Counter. But by invariant 5.44, if a processor p has the correct ID for a node, it also has

the correct ID for it's parent. By invariant 5.6, the ancestors of a Balancer or Counter are all

Balancers, so we can recurse this condition up the tree to conclude this proof. M

Now, all we have left to show in this section is that a variant of the above lemma holds

when n.Status = CounterLimit.

Invariant 5.46 If n.Status = Counter or Counter_Limit and p E {p : p E P<Parent(n),n.ID> } U {p :

inccount(n'), is enabled and ID,[n] = n.ID, n' e {n} U Des(n)}, then Vn" e Anc(n), ID,[n"] =

n.PathlD[n"].

Proof: This is initially true since there are no processors enabled on any actions.

We now consider all actions. request would only affect this if Root.Status = Counter, but

Root.ID = 0 always and so does Root.PathID[Root], so the invariant is preserved.

balreq,,<,,j> affects this by its output action placing p in Pn,n.PID. But, in order for this

action to be enabled, n.Status = Balancer which by invariant 5.31 implies that both children

are Counters. But, a child m in this situation has m.ID = n.PID, and so the invariant needs

to be withheld. However, this action sets ID,[m] := m.ID for both children, and we then know

from invariant 5.44 that Vn" e Anc(m), ID,[n"] = m.PathID[n"], so the invariant is preserved.

baLret(V),,<n,i> assigns node, to be one of its children. However, the precondition for

balret(V),,<,,> is that p E P<,,i>. If a child m is a Counter or Counter_Limit, ID,[m] = m.ID,

and i = m.ID, then the inductive assumption holds. So, if node, := m, then inc_count(m),

becomes enabled, the hypothesis is still satisfied, and the consequent does not change, so the

invariant is preserved. If node, := m and i < m.ID, then ID,[m] = i $ m.ID, so inc.count(m),

is not enabled and the hypothesis is invalidated, so the invariant is preserved.

inc.count(n), only affects this invariant by changing n.Status from CounterLimit to Off.



However, this invalidates the hypothesis and preserves the invariant.

fold(n) changes both children to Off or Counter_Limit. If a child becomes Off, it invalidates

the hypothesis. Now, if a child becomes a Counter_Limit, it was a Counter so it preserved the

invariant, and the ID remains the same, so it still preserves the invariant. The parent node

becomes a Counter so it must now uphold the invariant. If p E PParent(n),n.ID, then necessarily

IDp[n] = n.ID, and the other two possibilities for the processor require that IDp[n] = n.ID.

But, since n becomes a Counter, invariant 5.45 proves the invariant.

unfold(n) changes the parent to a Balancer so it invalidates the invariant. It makes both

children Counters, and only if they were both Off. since n.PID increases by 1 to a new value,

Pn,n.PID = 0. Similarly, since each child takes on a new ID, no processor could have this value

cached, and so there are no processors that meet the conditions, so the invariant is vacuously

preserved. l

Now, two corollaries.

Corollary 5.47 If inccount(n)p is enabled, Vn' E Anc(n), IDp[n'] = n.PathID[n'].

Proof: This follows directly from invariant 5.46. U

Corollary 5.48 If balreqP,,,,<> is enabled, Vn' E Anc(n), IDp[n'] = n.PathID[n'].

Proof: This follows directly from the preconditions of balreqP,<,,i> and invariant 5.45. U

5.2.7 Processor Travel Plans

We can now discuss the final piece needed before we can start the main proof. A processor

enabled on a Balancer or Counter is simply waiting until it can perform. However, if a change

occurs in the tree or it is waiting on a CounterLimit or it is stuck inside a Balancer, it is

necessary to define where a processor would go next. We can now give a more precise definition.

Next(m) = n iff
n E Anc(m)
n.ID = m.PathlD[n]
Vn' E Des(n) n Anc(m)

n'.lD # m.PathID[n']



We will immediately show the use of this function.

Invariant 5.49 If inccount(n)p is enabled, then in the next state, either inccount(n),,

bal_req,<n,i>,, inccount(Next(n))%, bal_reqp,<Next(n),i>, or return(v)p is enabled.

Proof: If inc.count(n)p is performed, then return(v)p is enabled. The only other ways that

this action would be disabled (by 5.38, the only way another action could be enabled) would

be that either n.Status := Balancer, in which case bal_reqP,<n,i> would be enabled, or n.ID

was increased. However, by 5.47, each processor has the same ancestral ID record, equal to

n.PathID, so each processor travels up the tree, and all clearly arrive at inccount(Next(n))p

or balreq,,<Nxt(n),i>, depending on the Status of n. (and by 5.34, n.Status 5 Off). U

Invariant 5.50 If balreqP,<n,i> is enabled, then in the next state, either balreqP,<n,i>,

inc.count(n),,inccount(Next(n))p, or bal_req,,<Next(n),i> is enabled, or baLwaitp := True.

Proof: This should be clear from the actions of balreqP,<n,j> and the above proof. U

5.2.8 Conservation of Energy

We have now reached the pivotal point of this proof, showing that n.Count is bounded by the

Limit function. We need to track where in the tree processors are enabled to act, so that one

counter does not get increased too high. We will create an equality which shows that balancing

preserves a Conservation of Energy which limits the concentrations of processors throughout

the tree.

We now define several derived variables that can be derived from other variables in a given

state of an execution. These variables are all an attempt to count processors to create equations

for the nodes that always hold. Some processors can be counted directly, because it is clear

what they will do next. However, processors in a balancer have two possible paths. These

processors have to be carefully counted using the balancer properties, and these counts will

take into account numbers and not allocated processors.

V(n) - j where n.Count = Values(n)[j].

We give an invariant that shows that this is related to the toggle bits.



Invariant 5.51 Vn, n.Status = Balancer ==- V(n) mod 2 = n.toggle[n.PID].

Proof: This is initially true, since Vn, V(n) = 0 and n.toggle[n.PID] = 0.

Now, whenever n becomes a Balancer, n.toggle[n.PID] := Togglelnit(n, n.Count), which

has the same parity as V(n). While n is a Balancer, V(n) doesn't change. So, the invariant is

preserved. U

This is necessary because new balancers are oriented in different ways. Either the odd

processor goes left or right. Many times throughout the proof, we will use this. The automaton

easily handles this by assigning the left child the index of y equal to n.toggle[n.PID] and testing

if the value returned is this index in order to go left. However, it will clutter up the proof to

continually calculate which child gets which value. So, we add a derived variable tog to each

node that is equal to the index it currently is assigned in its parents balancer. Here is the rule

for computing it:

(5.52) m.tog := n.toggle[n.PID] m = Left(n)
1 - n.toggle[n.PID] m = Right(n)

W(n) is equal to the number of processors that are enabled to act on n. If n.Status =

Balancer, then these processors are enabled to perform balreqP,<,,i>. If n.Status = Counter or

CounterLimit then these processors are enabled to perform inc.count(n),.

S(n) is equal to the maximum number of processors that are in a balancer (i.e. p E

P<,,,i>, i < n'.PID) whose version i is no longer equal to the original parent node's PID. In

other words, it can no longer be counted by the next defined variable, which handles normal

balancer transactions. In a situation like this, either a processor arrives at a CounterLimit,

which it can then safely access, or it will pass up the tree until it finds the correctly reconciled

node to access. In either case, S(n) counts the maximum number of processors in the tree in

this situation who would eventually reach n. Now, these balancers are old, since i < n'.PID.

This means that bal_reqp,<n,i>n' will never again be enabled. So, x<,,i> is fixed and we can

calculate how many of the remaining processors will go to Left(n') and Right(n').

Halfn, tog (x< Parent(n),n.ID>) - Yn.tog<Parent(n),n.ID>



We now get into some slight confusion because the next two definitions depend on each other.

However, they apply to different nodes in the tree and will be inductively used in the next

invariant.

I(n) represents the maximum number of processors to be inherited from its parent. This

uses the Half function to compute the splitting the balancer does. Given that m = Parent(n),

I(n) A Halfn.tog(I(m) + C(m) + S(m) + W(m) + z<m,m.PID>) -

Yn.tog<m,m.PID>

C(n) counts the excess processors that are enabled at descendant Counter_Limits but won't

be able to take values because there are more processors than values. Once the CounterLimit

turns Off, the remaining processes will move up to the next CounterLimit, Counter, or Balancer

that they are enabled to access. We need to count these processors because the excess will

eventually float up to the appropriate Counter or Balancer. Since all processors enabled on

inc.count(m)p share the same ID, array up the tree from m by invariant 5.47, a particular

Counter-Limit node will send all of its extra processors to the same node once it turns Off.

Define CL(n) to be the set of nodes n' that are Counter-Limit's and Next(n') = n. Define

R(n) for a CounterLimit to be the number of values it has remaining to hand out, (n.Limit -

n.Count)/2Leve' (n). We can then define C(n). Let n' = Parent(m).

C(n) ~ C(m) + S(m) + I(m) + W(m) - R(m)
mECL(n)

We summarize these formulas in table 5.1.

We now state the invariant.

Invariant 5.53 Conservation of Energy

Vn, n.Status = Balancer -==

V(n) + C(n) + S(n) + I(n) + W(n) + Zn,n.PID = Limit(n, k)

n.Status = Counter ==-

V(n) + C(n) + S(n) + I(n) + W(n) = Limit(n, k)

n.Status = CounterLimit ==

C(n) + W(n) + S(n) - R(n) > 0.



Function Definition Description

V(n) j where n.Count = Values(n)[j] values already handed out or held by
other CounterLimit.

W(n) I{p E P : inccount(n)p or processors enabled to act on n.
bal_reqp,<,,i> are enabled}I

S(n) for CounterLimit, processors waiting in balancer automaton
Halfn.tog(X<Parent(n),n.ID>)- out of date and destined towards n.

Yn.tog< Parent(n),n.ID>
I(n) Halfn.tog(I(m) + C(m) + S(m)+ maximum number of processors coming

W(m) + <,m,,.PID>)- through parent balancer
Yn.tog<m,m.PID>, m = Parent(n)

R(n) (n.Limit - n.Count)/2Level(n) number of values CounterLimit has left
to give out

C(n) EmEcL(n) C(m) + S(m) + I(m)+ excess number of processors at CounterLimit
W(m) - R(m) that are destined to arrive at n.

Table 5.1: Conservation of Energy definitions

This invariant is initially true since k = 0,Vn, Limit(n, k) = 0, and CounterLimit 0 So.

Proof: We will now consider each action using an inductive proof.

requestp

The effect of executing this action is that k := k + 1. We now need to consider every node and

make sure that the count went up accordingly. This process is now enabled on balreqP<n,.i>,

where n = Root, so W(Root) := W(Root) + 1, and since Limit(Root, k + 1) = k + 1, that terms

also goes up by one, but they are on opposite sides of the invariant, so the invariant is preserved.

Now consider any node whose Status is Balancer or Counter. We need to consider how

Limit(n, k) changes when k changes by 1.

Limit(Left(n), k + 1) - Limit(Left(n), k)

Limit(Right(n), k + 1) - Limit(Right(n), k)

Limit(n, k) even

Limit(n, k) odd

Limit(n, k) odd

Limit(n, k) even

Now, we show that for any of the invariant expressions that contain Limit(n, k), I(n) only

increases by 1 because of the increase in k if and only if Limit(n, k) increases by 1, and this will

(5.54)

(5.55)



Table 5.2: Proof of Invariant on request,

clear this action for the invariant, because it works inductively down the chain of I(n) and it

was proven for I(Root). We can now assume that for n, its parent m is a Balancer, because

either n is a Balancer or n is a Counter

We now generate a useful expression for I(n).

I(n) = Halfn.tog(I(m) + C(m) + S(w) + W(m) + <m,,m.ID>) -

Yn.tog<m,m.ID>, m = Parent(n)

Limit(m, k) = V(m) + C(m) + S(I) + I(m) + W(m) + Xm,m.ZD I

I(n) = Halfn.to(Limit(m, k) - V(m))- yn.tog<,,,m.D >

Now, we know from Invariant 5.51 that the parity of V(m) is equal to the toggle's parity. From

this, we can show using a simple case-by-case analysis that I(n) increases by 1 if and only if

Limit(n, k) increases by 1. This analysis is done in Table 5.2. This table and the incremental

analysis done in equations 5.54 and 5.55 proves the induction.

bal-requestp,<,,i>

A processor that is enabled here is counted by W(n). Now, when this action is performed, it is

no longer enabled for that processor, so W(n) := W(n) - 1. But, X<n,n.PID> := X<n,n.PID> + 1

by the composition with the balancer automaton. So, every invariant that contains W(n) also

contains Z<n,n.PID> as a summand, and all the invariants are still preserved.

Akl(Left(m)) AkI(Right(m))
Limit(m, k) even i = 0 i = 1
V(n) even Apply 5.27.1 Apply 5.28.2
m.toggle[m.ID] = 0 Ak =1 k = 0

Limit(m, k) even i =1 i = 0
V(n) odd Apply 5.28.2 Apply 5.27.1
m.toggle[m.ID] = 1 Ak =1 Ak = 0
Limit(m, k) odd i = 0 i =1
V(n) even Apply 5.27.2 Apply 5.28.1
m.toggle[m.ID] = 0 Ak = 0 Ak = 1

Limit(m, k) odd i = 1 i = 0
V(n) odd Apply 5.28.1 Apply 5.27.2
m.toggle[m.ID] = 1 Ak = 0 Ak = 1



bal_return(V),,< m,i>

When this action is called, a processor's node, gets assigned to one of its children. There are

two cases.

If i = m.PID, then by 5.40, this processor is now enabled on a child node n of m. So,

W(n) := W(n) + 1. But, I(n) = Half,.tog(I(m) + S(m) + C(m) + W(m) + X<m,m.PID>) -

Yn.tog<mI,,D> However, node, is set to n only if yn.tog := yn.tog + 1, and so I(n) := I(n) - 1.

W(n) and I(n) are summands, so they cancel and the invariants are preserved.

The other case is that i < m.PID. The processor then inductively belongs to a S(n') for

some node n'. It will join W(n') and leave S(n'), cancelling out.

inc_count(n),

When this action occurs, answer_val is assigned and inc_count(n), is no longer enabled for

p, so W(n) := W(n) - 1. But, the assignment to answer_val, causes V(n) := V(n) + 1 and
these effects cancel. Now, consider when it is a CounterLimit. R(n) := R(n) - 1 and they

are subtracted so these effects cancel. If the Status becomes Off all the processes go to their

destined n' and increase W(n'), but come out of C(n'). They also contribute all their S(n) and

C(n) to n'. which were originally counted in C(n'), so this cancels out as well. If they find

another Counter_Limit at node n', their addition to W(n') is cancelled by their departure from

C(n'), preserving the CounterLimit invariant.

fold(n)

Consider a successful fold(n) action. Assume Parent(m) = n, m' = Sibling(m). We then have

the following two equations from the invariant, and do a simple sum.

Limit(m, k) = I(m) + V(m) + C(m) + S(m) + W(m)

Limit(m', k) = I(m') + V(m') + C(m') + S(m') + W(m')

Limit(m, k) + Limit(m', k) = I(m) + I(m') + V(m) + V(m') + C(m) + C(m') +

S(m) + S(m') + W(m) + W(m')



Now, we know that [a/2J + [a/21 = a. So, the Limit terms and the I terms add up to

produce the new equation:

Limit(n, k) = I(n) + W(n) + C(n) + S(n) + X<n,n.PID> - YO<n,n.PID> - Yl<m,n.ID> +

V(m) + V(m') + C(m) + C(m') + S(m) + S(m') + W(m) + W(m')

There are two cases. Either both child nodes become Off, or one becomes a Counter_Limit.

Consider when both children become Off. Then, given the definition of V(n) and the

assignment of n.Count, V(n) := V(m) + V(m'). All processors who were stragglers and were

being counted by m or m' since that was their eventual destination now have n as a destination.

But, C(n) already counted these, so C(n) = C(m) + C(m'). All processors in W(n) remain in

W(n). Since both nodes become off, all processors that eventually come out of the balancer will

also be enabled on n, so and S(n) := S(n)+S(m)+S(m')+X<n,n.PID> -YO<n,n.PID>- Yl<m,n.PID>.

These new values together satisfy the invariant.

If one child becomes a Counter_Limit(and only one can), without loss of generality m,

then the processors in the balancer join S(m). So, S(m) := S(m) + Halfm.to9g(<n,m.ID>) -

Ym.tog<n,m.ID>. m keeps W(m) and C(m). Now, the parent gets all the processors from the

other child. So, W(n) := W(n) + W(m'). C(n) = C(m') + W(m) + C(m) + S(m) - R(m).

The processors in the balancer allocated towards the Off node get added to S(n) = S(n) +

Halfm,.tog(X<n,n.PID>) - Ym.tog<n,n.PID>. Finally, it is clear that V(n) := V(m) + V(m') + R(m').

Notice however that R(m) cancels with the -R(m) in the equation for W(n), and the balancer

equation sums correctly as above, preserving the invariant.

We now need to show in that last case that S(m) + W(m) + C(m) - R(m) > 0 to preserve

the Counter_Limit invariant. We calculate the value of R(m).

R(m) = V(m') - V(m) m = Left(Parent(m))
V(m') - V(m) - 1 m = Right(Parent(m))

So, we can consider the difference V(m) - V(m') since we need -R(m).

V(m) - V(m') = I(m') + C(m') + S(m') + W(m') - Limit(m', k) +

Limit(m, k) - I(m) - C(m) - S(m) - W(m)



We now add identical terms to both sides:

V(m) - v(ml)+
C(m) + S(m) + W(m)+

H alfm.tog (X< Parent(m),m.ID> )-

Ym.tog< Parent(m),m.ID>

C(m') + S(m') + W(m') + I(m') - I(m) +

= Limit(m, k)- Limit(m', k) +

Halfm.tog(x<Parent(m),m.ID>) -

Ym.tog <Parent(m),m.ID>

We can finally rewrite this substituting for I.

V(m)- v(m')+

C(m) + S(m) + W(m)+

Halfm.tog (X<Parent(m),m.ID>)-

Ym.tog <Parent(m),m.ID>

C(m') + S(m') + W(m') +

= Limit(m, k) - Limit(m', k) +

Halfm.tog(x<Parent(m),m.ID>) -

Ym.tog<Parent(m),m.ID> +

Halfm,.tog(Limit(n, k) - V(n)) - ym'.tog<Parent(m),m.ID>

Halfm.tog(Limit(n, k) - V(n)) + Ym.tog<parent(m),m. ID>

We can now cancel two terms and do a final rewrite.

V(m) - V(m')+

C(m) + S(m) + W(m)+

Halfm.tog(x< Parent(m),m.D> )-

Ym.tog <Parent(m),m.ID>

C(m') + S(m') + W(m') +

Limit(m, k) - Limit(m', k) +

Halfm,.tog(Limit(n, k) - V(n)) -

Halfm.tog(Limit(n, k) - V(n)) +

Halfm.tog(x<Parent(m),m.ID>) -

Ym'.tog<Parent(m),m.ID>

We now have the equation on the right side that has to be greater than or equal to 0 when

m = Left(Parent(m)) and we can just subtract one to get the equation for the other child. We

now perform a case-by-case analysis.

If m = Left(Parent(m)), then we have to prove the LHS of 5.56 is greater than or equal to



0. C(m') + S(m') + W(m') > 0, so we can ignore these. Also, we know that m.tog is 0 when

V(n) is even, and 1 otherwise. So, if V(n) is even, we get the following equation:

V(m) - V(m')+

C(m) + S(m) + W(m)+

Halfm.tog (x <Parent(m),m.ID>)--

Ym.tog <Parent(m),m.ID>

C(m') + S(m') + W(m') +

Halfo(Limit(n, k)) - Halfi(Limit(n, k)) +

Halfl(Limit(n, k) - V(n)) -

Halfo(Limit(n, k) - V(n)) +

Halfo(X<parent(m),m.ID> )-

Y1 <Parent(m),m. ID>

Since V(n) is even, Limit(n,k) and Limit(n,k) - V(n) have the same parity, so the first

two sets of differences always cancel, by 5.29. The maximum value of Y1<Parent(m),m.ID> is

Halfl(x<parent(m),m.ID>), which by 5.29 is less than or equal to Halfo(X<Parent(m),m.ID>), so the

invariant is preserved.

If V(n) is odd, we get the following equation:

V(m)- V(m')+

C(m) + S(m) + W(m)+

Halfm.tog( <Parent(m),m.D> )-

Ym.tog <Parent(m),m.ID >

C(m') + S(m') + W(m') +

= Halfo(Limit(n, k)) - Half 1(Limit(n, k)) +

Halfo(Limit(n, k) - V(n)) -

Half (Limit(n, k) - V(n)) +

Halfl(Z<Parent(m),m.ID>) -

YO <Parent(m),m.ID>

The first two sets of differences have the same ordering, ceilings minus floors. Since V(n) is odd,

either Limit(n, k) or Limit(n, k)-V(n) is odd, so by 5.29, these two sets of differences all sum to 1.

The maximum value of Y0<Parent(m),m.ID> is Halfo(X<Parent(m),m.ID>), and Half1 (X<Parent(m),m.ID>)-

Half0o(<Parent(m),m.ID>) has a minimum value of -1, by 5.29. So, the 1 and -1 cancel and the

invariant is preserved.

If m = Right(Parent(m)), then we have to prove the LHS of 5.56 is greater than or equal to

-1. C(m') + S(m') + W(m') > 0, so we can ignore these. Also, we know that m.tog is 1 when



V(n) is even, and 0 otherwise. So, if V(n) is even, we get the following equation:

V(m) - V(m')

C(m) + S(m) + W(m)+

Halfm.tog(X<Parent(m),m.ID> )-

Ym. tog <Parent(m),m.ID >

C(m') + S(m') + W(m')

Halfl(Limit(n, k)) - Halfo(Limit(n, k)) +

Halfo(Limit(n, k) - V(n)) -

Halfl(Limit(n, k) - V(n)) +

Half (x<Parent(m),m.ID> )-

Y0 <Parent(m),m.ID>

Since V(n) is even, Limit(n, k) and Limit(n, k) - V(n) have the same parity, so the first

two sets of differences always cancel, by 5.29. The maximum value of YO<Parent(m),m.ID> is

Halfo(x<parent(m),m.ID>), and Halfl(x<parent(m),m.ID>) - Halfo(x<Parent(m),m.ID>) has a minimum

value of -1, by 5.29, so the invariant is preserved.

If V(n) is odd, we get the following equation:

V(m)- V(m')+

C(m) + S(m) + W(m)+

Halfm.tog(x<Parent(m),m.ID> )-

Ym. tog <Parent(m),m.ID>

C(m') + S(m') + W(m') +

Halfl(Limit(n, k)) - Halfo(Limit(n, k)) +

Half,(Limit(n, k) - V(n)) -

Halfo(Limit(n, k) - V(n)) +

Halfo(x<ar,,nt(m),m.ID>) -

Y1 <Parent(m),m.ID>

The first two sets of differences have the same ordering, floors minus ceilings. Since V(n) is

odd, either Limit(n, k) or Limit(n, k) - V(n) is odd, so by 5.29, these two sets of differences all

sum to -1. The maximum value of Y1<Parent(m),m.ID> is Halfl(x<parent(m),m.ID>), which by 5.29

is less than or equal to Halfo(x<parent(m),m.ID>), so the invariant is preserved.

This shows that the CounterLimit invariant is preserved.



unfold(n)

This action, if successful, creates two counters, so we must show that both counters and the

new balancer all preserve the invariant. First, n becomes a balancer. It's ID does not change, so

all processes enabled on inc.count(n)p now are enabled on balreqP,<,,i>, and so W(n) := I(n).

C(n) and I(n) do not change. It is a new balancer, because n.PID is changed, so X<n,n.PID> = 0.

So, the invariant is preserved for the parent.

To see that it is preserved for the children (say m = Left(n) and m' = Right(n)), we know

that W(m) = W(m') = C(m) = C(m') = S(m) = S(m') = 0 because these counters were

just created with a new ID so no processor could be enabled on them. We also know that

V(m) = Halfo(V(n)) and V(m') = Halfi(V(n)). Finally, I(m) and I(m') become:

I(m) := Half,m.to(I(n) + C(n) + S(n) + W(n) + x<n,n.PID>) - Ym.tog<,,,n.PD>

I(m') := Halfm,.tog(I(n) + C(n) + S(n) + W(n) + X<,n.PD>) - Ym'.tog<n,n.PID>

We can do a substitution using the invariant, and realizing that as a new balancer, the yi are

both zero, these are equivalent to:

I(m) := Halfm.,to(Limit(n, k) - V(n))

I(m') := Halfm,.tog(Limit(n, k) - V(n))

But, V(n), m.tog, and m'.tog are related. m.tog = n.toggle[n.ID], m'.tog $ n.toggle[n.ID]. So,

we now wish to compute what V(m) + I(m) and V(m') + I(m') sum in all possible cases.

If V(n) is even, then m.tog = 0 and m'.tog = 1. So, V(m) = Halfo(V(n)) and I(m) =

Halfo(Limit(n, k)-V(n)). But, by 5.25.1, V(m)+I(m) = Halfo(Limit(n, k)) = Limit(m, k). Now,

V(m') = Half (V(n)) and I(m') = Half 1(Limit(n, k) - V(n)). But, by 5.26.1, V(m') + I(m') =

Half (Limit(n, k)) = Limit(m', k).

If V(n) is odd, then m.tog = 1 and m'.tog = 0. So, V(m) = Halfo(V(n)) and I(m) =

Halfl(Limit(n, k)-V(n)). But, by 5.25.2, V(m)+I(m) = Halfo(Limit(n, k)) = Limit(m, k). Now,

V(m') = Half 1(V(n)) and I(m') = Halfo(Limit(n, k) - V(n)). But, by 5.26.2, V(m') + I(m') =

Half (Limit(n, k)) = Limit(m', k).

So the invariant is fully proved. U



5.2.9 Conclusion

We can now finally prove the necessary lemma to finish the output limit theorem.

Lemma 5.56 Vn, n.Count < Values(n)[Limit(n, k)].

Proof: This just means that V(n) < Limit(n, k). But, we just proved that for all Counter and

Balancer, V(n) + ... = Limit(n, k), and showed that all those excess terms are greater than or

equal to 0. So, for all Counter and Balancer, this invariant holds. If a node n is a Counter_Limit,

then by invariant 5.15, there is a Counter ancestor m of n and n.Count < m.Count, so this

holds for all CounterLimit's. Finally, if a node n is Off, it does not count. If it has not always

been Off, then it was last a Counter or CounterLimit, this invariant held then, and Limit(n, k)

increases with k, so it holds. This concludes the proof. U

We are now ready to prove the output limit theorem.

Theorem 5.57 If v E Outputs, v < k.

Proof: Invariant 5.22 from the beginning of the section stated that Vv E N, v E Outputs -==

3n, v <= n. Count- 2Le"vI(n). The lemma above shows that Vn, n. Count < Values(n)[Limit(n, k)],

or just slightly renumbered, Vn, n.Count - 2Level(n) < Values(n)[Limit(n, k) - 1]. Finally,

lemma 5.30 stated Values(n)[Limit(n, k) - 1] < k. This, however, leads to the following chain of

events which proves our theorem.

v E Outputs ==- 3n, v < n.rCount - 2Leve' (n) =

v < n.Count - 2 Leve l(n) < Values(n)[Limit(n, k) - 1] < k ==- v < k

5.3 Safety Property

Property 5.58 (Safety Property) In any state of an execution, the values output are dis-

tinct and in the set {0,..., k - 1}, where k is the number of requests.

Proof: Theorems 5.21 and 5.57 together prove the safety property. U
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Chapter 6

Implementation Verification

We now argue that the implementation presented efficiently meets and optimizes the specifica-

tion presented in 4. We will discuss each action in the automata and show its implementation,

arguing its correctness.

* Request

* Increment_Count

* Return

* Balancer-Request

* BalancerJteturn

* Fold

* UnFold

6.1 Request

The request is implemented by the initial lines of the main traversal code, found on page 27.

The initial balancer is set to Root, the ID of Root is set to 0, which is always its value, and

answer is set to INVALID, which is the same as answervalp.

101



6.2 Increment_Count

IncrementCount is implemented by the incrementcounter code on page 28. The atomicity is

created by a mutual exclusion lock. The preconditions are checked after the lock is obtained,

and if the preconditions are false, INVALID is returned and the processor climbs up the tree,

which corresponds to a processor in the automata being enabled on the ancestor of the node

that was accessed here due to versioning. The assignments in the automata action are all clearly

here.

6.3 Return

Return only occurs if a valid answer is returned from Increment_Count, which correctly simu-

lates the behavior of the automata.

6.4 Balancer_Request

This is where an optimization comes in. The Bookkeeping array, as clearly described in Chap-

ter 2, is implemented for the same reason that the infinite balancer scheme is designed in the

specification. The infinite balancer scheme allows old processors to sit in older incarnations of a

Balancer potentially forever. The implementation limits this behavior, restricting changes in the

tree until all processors leave the balancer code for a new counter. The bookkeeping scheme also

resolves the atomicity of the precondition. If a processor registers its observance of a Balancer

in the bookkeeping array, and rechecks to find it still a Balancer, then other processors upon a

folding of this action are unable to unfold this node until the processor finishes balancing. Now,

technically this processor balanced through the node while it transitioned from a Balancer to a

Counter, which increments PID, a precondition for balancing. However, the Counter condition

is another precondition which limits processors from balancing in the automata, so the balancer

actions in the Balance I/O Automaton that correspond to this balancer will remain empty for

the Counter. We can then charge the processor safely to the prior incarnation as a Balancer,

and the correspondence is preserved.
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6.5 Balancer _Return

This is proven in the original work by Shavit and Zemach [20].

6.6 Fold

This action is implemented directly from the specification, with mutual exclusion on all three

nodes obtained.

6.7 UnFold

This action is implemented almost directly from the specification, with the added restriction of

the bookkeeping entry. Since this was originally a non-deterministic action, this does not affect

correctness. The implementation also releases the lock for the parent node early. Since all the

changes to the parent occur beforehand, this is clearly a correct optimization.

6.8 Liveness

Safety is normally a property that comes along with showing that an implementation meets the

specification. Liveness properties do not have the same luxury. However, in this case, liveness

is rather easy to prove for the specification and the implementation. Notice the specification

and implementation's fold and unfold actions restrict the changes to be made only if the count

variable is distinct from the change variable, which is recorded from the last change made. This

is the key reason why liveness is satisfied. Clearly, in a DDT environment where no changes

occur, it is clear that every fair execution should have all processors eventually terminate with

values. Now, the effect of the conditions on the change code is that we allow a change to occur

only once a processor terminates. Once that change occurs, any processors dependent on that

change can go up the tree and eventually can rely on getting to the root node who's ID never

changes and can always be accessed. We can then run a simple induction on the number of

requests made, since the liveness condition specifies a finite number of requests, and the liveness

condition is satisfied.
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Chapter 7

Summary and Future Work

This thesis bridges the gap between queue-locks and diffracting trees of various depths, providing

near-optimal performance at all loads. We develop, implement, and verify the specification of

a new reactive shared counter, the Dynamic Diffracting Tree, that performs well at all static

levels of contention and can react to better handle new levels of contention. We summarize the

work below and then present items for future work.

We begin the design of the DDT by taking a diffracting tree and generalizing it into an

irregular diffracting tree, removing the restriction that the tree must be balanced. Merging a

counter node and a balancer node into a single node with a state variable allow us the possibility

of change. Versioning information to keep the values handed out balanced throughout the tree

is described. The folding and unfolding mechanisms are presented in detail, with an informal

understanding of why they work. An implementation is given using multiple locks. Finally,

scaling policies are discussed and presented, and some warnings are presented about necessary

policy restrictions.

We then give experimental results that show that the DDT performs within a constant

factor of optimal diffracting trees in throughput and average latency at all levels of contention,

and on the Alewife, even surpasses diffracting trees for a range in which an irregular tree is best

suited for the task. We also show that it effectively competes with load balancing schemes in

some Producer/Consumer applications.

Next, we give a formal description of the shared counter problem and describe safety and

liveness properties that our algorithm must satisfy. We present a specification written in Lynch
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and Tuttle's I/O Automata [13] format for which we prove the safety property. We then argue

that our implementation meets the specification, carrying with it the safety property. Finally,

we argue that our implementation also satisfies the liveness property.

In conclusion, the DDT is a new and exciting algorithm that carries with it the best features

of diffracting trees while avoiding the latency drawbacks in low contention cases. Using cache-

coherence, it pushes agreement into the low-contention levels of the tree, making it faster and

easier to reach consensus. It provides a locality measure that allows trees of irregular size

to occur based on the memory-layout of the data structure. Overall, it provides a truly fast

and scalable implementation of fetch-and-increment for a variety of applications, including

k-exclusion barriers, pools, stacks, and priority queues.

7.1 Continued Work

There is still much work left to do on this project. The most important are listed below.

7.1.1 More Performance Results

It would be important to run this algorithm on larger versions of the MIT Alewife machine

when they become available to see whether irregular diffracting trees continue to fill in the gaps

between optimal diffracting trees and to bring down the constant factor seen in the Proteus

simulations.

7.1.2 Completion of Implementation Proof

It would be valuable to construct a simulation relation between the implementation and the

specification, which would formally prove the safety property for the implementation. A good

formal model of the Alewife's operation should be designed, to make future distributed design

easier to correctly think about.
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7.1.3 Wait-Free Version

A single lock version of the algorithm should be feasible, even with difficulties in keeping the

tree consistent. Once this step is taken, then the DDT is closer to being wait-free. The

state variable still needs to be checked during the counter fetch-and-increment, but a hardware

provided conditional fetch-and-increment would be enough to make a single lock version of this

algorithm wait-free.

7.1.4 Timing Scheme

In this scheme, a processor in the balancing algorithm would check the state variable each time

it failed on the test and set toggle lock. Then, if a timing constant could be produced which was

longer than the maximum amount of time necessary for a processor to pass through one pass of

the balancing algorithm, this could be used to delay unfolding to guarantee that all processors

were out of the balancer before the newest counter version of the node could successfully unfold.

7.2 Future Work

There are a variety of directions that this work should lead. The most important areas of study

are listed below.

7.2.1 Message Passing

A message passing version of this algorithm should be implemented, due to its superior perfor-

mance on the MIT Alewife machine. In a message passing system, different processors act as

nodes in the tree, passing messages to other nodes as a substitute for traversing the tree. This

allows a processor to solely control a node, providing better understanding of the contention

levels and thus it can more accurately decide when to grow or shrink. This algorithm can

easily be implemented on a message passing system and should outperform our shared memory

results.
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7.2.2 Elimination Trees

The folding and unfolding mechanisms in DDTs should be implementable in an elimination tree,

a form of diffracting tree presented by Shavit and Touitou [191 where tokens and anti-tokens

pass through the tree in different ways, either acting as increments and decrements at leaf

counters or as enqueue and dequeue operations on leaf pools, queues, or stacks. This algorithm

clearly carries over to the second case, and might be applicable to the first case.

7.2.3 Scaling Policies

We present some simple policies for determining when to change the tree, and some suggestions

on when to hold back from changing the tree. However, there seems to be much work to be

researched in this area, since it is directly related to on-line algorithms.

7.2.4 Distributed Data Structures

We feel that many of the issues discussed here are applicable to future design of data structures.

The key idea of pushing agreement into the low-contention levels of the tree by exploiting cache-

coherence is definitely an idea that deserves further attention in current data structure design.

The verification done in this paper, although of a slightly difficult nature, is also a necessity in

future distributed design. I/O Automata and their proof mechanisms at an early stage greatly

helped the algorithm come into shape by centering the focus on the invariants of the algorithm,

which is difficult to do when looking at distributed system code. Finally, the reactive nature

of this tree and of B.H. Lim's work should lead the way for other data structures to become

reactive, which may soon become a necessity in the distributed world.
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