
On Building Blocks for Distributed SystemsbyRoberto De PriscoDottorato in Applied Mathematics and Computer ScienceUniveristy of Naples, Italy (1998)M.S. in Electrical Engineering and Computer ScienceMassachusetts Institute of Technology (1997)Laurea in Computer ScienceUniversity of Salerno, Italy (1991)Submitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofDoctor of Philosophy in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYDecember 1999c
 Massachusetts Institute of Technology. All rights reserved.
Author .Department of Electrical Engineering and Computer ScienceDecember 10, 1999
Certi�ed by. .Prof. Nancy LynchNEC Professor of Software Science and EngineeringThesis Supervisor
Accepted by .Prof. Arthur C. SmithChairman, Department Committee on Graduate Theses

2

On Building Blocks for Distributed SystemsbyRoberto De PriscoSubmitted to the Department of Electrical Engineering and Computer Scienceon December 10, 1999, in partial ful�llment of therequirements for the degree ofDoctor of Philosophy in Electrical Engineering and Computer ScienceAbstractIn this thesis we have investigated two building blocks for distributed systems: group communicationservices and distributed consensus services.Using group communication services is a successful approach in developing fault tolerant dis-tributed applications. Such services provide communication tools that greatly facilitate the devel-opment of applications. Though many existing systems are used in real world applications, thereis still the need of providing formal speci�cations for the group communication services o�ered bythese systems. Great e�orts are being made by many researchers to provide such speci�cations. Inthis thesis we have tackled this problem and have provided speci�cations for group communicationservices. One of our speci�cations considers the notion of primary view; another one generalizesthis notion to that of primary con�gurations (views with quorums). Both speci�cations are shownto be implementable. The usefulness of both speci�cations is demonstrated by applications runningon top of them. Our speci�cations are tailored to dynamic systems, where processes join and leavethe system even permanently. We also showed how the approach used to develop the speci�cationscan be applied to transform known algorithms, designed for stating settings, in order to make themadaptable to dynamic systems.Distributed consensus is the abstraction of many coordination problems, which are of fundamen-tal importance in distributed systems. Distributed consensus has been thoroughly studied and oneimportant result showed that it is not possible to solve consensus in asynchronous systems if failuresare allowed. However in such systems it is possible to solve the k-set consensus problem, which isa relaxed version of the consensus problem: each participating process begins the protocol with aninput value and by the end of the protocol it must decide on one value so that at most k total valuesare decided by all correct processes (the classical consensus problem requires that there be a uniquevalue decided by all correct processes). In this thesis we have investigated the k-set consensus prob-lem in asynchronous distributed systems. We extended previous work by exploring several variationsof the problem de�nition and model, including for the �rst time investigation of Byzantine failures.We showed that the precise de�nition of the validity requirement, which characterizes what decisionvalues are allowed as a function of the input values and whether failures occur, is crucial to thesolvability of the problem. We introduced six validity conditions for this problem (all considered invarious contexts in the literature), and we demarcated the line between possible and impossible foreach case. In many cases this line is di�erent from the one of the originally studied k-set consensusproblem.Thesis Supervisor: Prof. Nancy LynchTitle: NEC Professor of Software Science and Engineering

AcknowledgmentsI would like to thank my advisor Nancy Lynch for her constant support throughout my years atMIT and her guidance in the development of Part I of this thesis. Nancy has been a wonderfuladvisor, never putting too much pressure but always checking for progress and suggesting on howto continue. I also thank Alan Fekete and Alex Shvartsman for working with me and Nancy on theresearch presented in Part I of this thesis.I would also like to thank Dahlia Malkhi and Michael Reiter for working with me on the researchpresented in Part II of the thesis. I really enjoyed the collaboration with Dahlia and Mike.Finally I would like to thank the committee of my thesis defense, Idit Keidar and Butler Lampson(and of course Nancy), for providing insightful comments. Special thanks go to Idit for severaldiscussions and useful suggestions.This is my fourth thesis: I wrote a thesis for my Laurea degree at the University of Salerno, anM.S. thesis here at MIT, a thesis for my Dottorato degree at the University of Naples and this Ph.D.thesis ... that's it. I will never write another thesis1.

1Nancy's comment: Amen!

Contents
1 Introduction 91.1 Group communication services . 101.1.1 Overview and related work . 101.1.2 Work in this thesis . 131.2 Distributed consensus . 171.2.1 Overview and related work . 171.2.2 Work in this thesis . 191.3 Summary of contributions . 191.4 Thesis roadmap . 20I Group Communication Services 212 Group Communication Services: Overview 223 Mathematical foundations 253.1 Notation and terminology . 253.1.1 Sets, functions, sequences . 253.1.2 Processors, views, con�gurations, identi�ers 263.2 The I/O automaton (IOA) model . 273.2.1 IOA de�nition . 273.2.2 Composition of IOA . 294 The vs service 324.1 The vs service . 324.2 Variations: The cs and lc services . 355 The dvs service 375.1 The dvs speci�cation . 375.2 An implementation of dvs . 405

5.2.1 Overview . 415.2.2 Invariants of dvs-impl . 435.2.3 Proof that dvs-impl implements dvs . 585.3 An application of dvs . 655.3.1 The to service . 665.3.2 The implementation of to . 665.3.3 Proof that to-impl implements to . 705.4 Remarks . 736 The dc service 756.1 Overview . 756.2 The dc speci�cation . 766.3 Invariants of dc . 806.4 An implementation of dc . 816.4.1 Overview . 816.4.2 Invariants of dc-impl . 836.4.3 Proof that dc-impl implements dc . 926.5 An application of dc . 986.5.1 Overview . 986.5.2 Proof that abd-sys is an atomic register . 1016.6 Remarks . 1127 Dynamic Algorithms 1147.1 The dlc speci�cation . 1147.1.1 Di�erences with dc . 1147.1.2 Full description of dlc . 1167.1.3 Invariant of dlc . 1187.2 Dynamic paxos algorithm . 1197.2.1 Distributed Consensus . 1197.2.2 The original paxos algorithm . 1207.2.3 The dpaxos algorithm . 1227.2.4 Proof of correctness for dpaxos . 1267.2.5 Remarks . 1327.3 A Replicated Atomic Object Algorithm . 1327.3.1 Description of rab . 1337.3.2 The code of dlc-to-rab . 1337.3.3 Sketch of proof of correctness . 1396

7.4 Remarks . 1468 Conclusions 148II Distributed k-set Consensus 1529 Distributed k-set Consensus: Overview 15310 The problem 15611 Crash failures 15811.1 Known results . 15811.2 Impossibilities . 15811.3 Protocols . 16211.4 Remarks . 16312 Byzantine failures 16412.1 Impossibilities . 16412.2 Protocols . 16712.3 Remarks . 17113 Conclusions 172

7

List of Figures3-1 An I/O automaton. 284-1 The vs service . 334-2 The cs service . 365-1 The dvs service. 385-2 The dvs-impl system. 415-3 The vs-to-dvsp code. 425-4 The abstraction function Fdvs. 595-5 The to service. 665-6 The dvs-to-top code. 685-7 The dvs-to-top code (cont'd). 695-8 The abstraction function Fto. 736-1 The dc speci�cation . 786-2 cs-to-dcp . 846-3 cs-to-dcp (transitions cont'd) . 856-4 The abstraction function Fdc. 926-5 The abd interface and state. 996-6 The abd-code transitions. 1007-1 The dlc speci�cation . 1157-2 The dlc-to-paxos code. 1247-3 The dlc-to-rab code. 1357-4 The dlc-to-rab code (cont'd). 13610-1 Validity conditions. 15711-1 Crash model: Solvable and impossible . 15912-1 Byzantine model: Solvable and impossible. 1658

Chapter 1
IntroductionIn the last decade the impact of distributed systems on computing has been tremendous. Nowadaysno single workstation is stand-alone; even personal computers in homes are connected with the restof the computing world by means of the Internet. Computer interconnections can be classi�ed atvarious levels, depending on the kind of interaction required by the components that are connected.The connection can be as simple as a cable connecting two computers and as complex as the Internetwhich literally connects millions of computers around the world. The more distributed is the systemthe more complex is the interconnection. Because of this, distributed systems are more subject tofailures than stand-alone computers. Also, distributed systems are harder to program because of thedi�culties deriving from sharing data, sharing resources, and coordinating work. Thus developingdistributed applications is a complex task.A popular and successful approach to managing this complexity is to decompose the systemdesign, by constructing the system from pre-de�ned communication, synchronization, and memorybuilding blocks. These building blocks may represent global (that is, system-wide) or local services;they may be combined in parallel or may represent di�erent levels of abstraction. The structurethey provide makes the systems easier to build, to use, and to modify. Examples of such buildingblocks already in use are various types of group membership and group communication services;failure detection, leader election, consensus, and atomic commit services; resource allocation andsynchronization services; and various forms of strongly consistent and weakly consistent sharedmemory.In this thesis we investigate two such building blocks, namely, group communication services anddistributed consensus services.

9

1.1 Group communication services1.1.1 Overview and related workRecently, view-oriented group communication services (see [1] for a survey) have been of particularinterest. Such a service allows application processes located at di�erent nodes of a distributednetwork to operate collectively as a group, using the service to multicast messages to all membersof the group. The group communication service is based on a group membership service, whichprovides each group member with a view of the group, including a list of the processes that are groupmembers. Messages sent by a process in a view are delivered only to processes that are members ofthat view, and only when they have that view. Within each view, the service o�ers guarantees aboutthe order and reliability of message delivery. Thus, a view-oriented group communication servicemanages both consistent delivery of messages within each view and the recon�guration involved inchanging views. Examples of such services are found in the Isis [19], Transis [6, 33], Ensemble [49],Newtop [38] and Relacs [14] systems as well as in other systems. Typical applications that useview-oriented group communication services include state-machine replication (e.g., [46, 45, 57]),distributed transactions and database replication (e.g., [85, 48, 56]), system management (e.g., [4])and monitoring (e.g., [3]), video-on-demand servers (e.g., [10, 9]), collaborative computing, such as,distance learning, audio and video conferences, application sharing and even distributed musical\jam sessions" (see [87] for more references).In order to be most useful group communication services (as well as other building blocks) re-quire clear and precise speci�cations of their guaranteed behavior. Such speci�cations would allowapplication programmers to think carefully about the behavior of systems that use the primitives,without having to understand how the primitives themselves are implemented. Unfortunately, pro-viding appropriate speci�cations for group communication services is not an easy task. Some ofthese services are rather complicated, and there is still no agreement about exactly what the guar-antees should be. Di�erent speci�cations arise from di�erent implementations of the same service,because of di�erences in the safety, performance, or fault-tolerance that is provided. Moreover, thespeci�cations that most accurately describe particular implementations may not be the ones thatare easiest for application programmers to use.Hence providing group communication speci�cations is a serious challenge, and requires theo-retical work to support the system development work. Such work has included formal speci�cationof global membership and communication services (e.g., [17, 23, 25, 27, 34, 72, 81, 83]), design andanalysis of distributed algorithms that implement or exploit such services (e.g., [57, 7, 88]), and evenimpossibility results (e.g., [23]).The Isis system introduced the important concept of virtual synchrony [19]. This concept hasbeen interpreted in various ways, but an essential requirement is that if a particular message is10

delivered to several processes, then all have the same view of the membership when the message isdelivered. This allows the recipients to take coordinated action based on the message, the member-ship set and the rules prescribed by the application.The Isis system was designed for an environment where processors might fail and messages mightbe lost, but where the network does not partition. This assumption might be reasonable for somelocal area networks, but it is not valid in wide area networks. Therefore, the more recent systemsmentioned above allow the possibility that concurrent views of the group might be disjoint.The �rst major work on the development of speci�cations for fault-tolerant group-oriented mem-bership and communication services appears to be that of Ricciardi [81], and the research area isstill active (see, e.g., [75, 23, 88, 41]). In particular, there has been a large amount of work on devel-oping speci�cations for partitionable group services. Some speci�cations deal just with membershipand views [54, 86] while others also cover message services (ordering and reliability properties)[72, 16, 15, 26, 34, 44, 53]. These speci�cations are all complicated, many are di�cult to under-stand, and some seem to be ambiguous. It is not clear how to tell whether a speci�cation is su�cientfor a given application. It is not even clear how to tell whether a speci�cation is implementable atall; impossibility results such as those in [23] demonstrate that this is a signi�cant issue. Vitenberget al. [87] provide a comprehensive study and comparison of several existing group communicationspeci�cations.Among previous work the speci�cation of a group communication service provided in [41] isparticularly relevant to the work done in this thesis. The group communication service speci�cationprovided in [41], called vs, captures what seem to be the basic property of a view oriented groupcommunication service: processes are provided with views of the system and communication is view-oriented, meaning that messages sent in a particular view are delivered only within that view. Weremark that this is not the only property of existing systems, but it is the most important one. Thestrength of the vs speci�cation lies in its simplicity. Yet the speci�cation is powerful enough to buildapplications on top of it.Providing speci�cations that are simple enough to be implementable and strong enough to beusable in applications is the key for designing good building blocks. Previous work has shown thatthis is not an easy task: some speci�cations are too strong to be implementable, e.g. [23], andsome of them fail to capture the non-triviality of existing group communication services. The vsspeci�cation has been proven to be implementable and useful as building block for more powerfulservices. Lesley and Fekete [63] have proved that a version of an algorithm of Cristian and Schmuck[27] implements the vs service. Khazan et al. [58, 59] have used vs in the design of a load-balancingdatabase algorithm and in [41] a totally ordered broadcast service is built on top of vs.We have mentioned that real distributed systems can partition. When a partition occurs the mainproblem to be faced is that of maintaining consistency of replicated data. To cope with partitions,11

usually the application processes perform signi�cant computations only when they have a specialtype of view called a primary view . For example, a replicated database application might onlyperform a read or write operation within a primary view, in order to ensure that each read receivesthe result of the last preceding write, in some consistent order of the operations. In this setting, aprimary view is typically de�ned to be one whose membership comprises a majority of the universeof processes. The intersection property guaranteed by majorities permits information
ow from anyprevious primary to a newly formed one.This thesis focuses on primary view group communication services because many real applicationsdo need to maintain consistency of replicated data. However, applications that can tolerate somedegree of inconsistency can use partitionable group communication services. For example, in ashared white-board application, a partition would result in users seeing only whatever is written byusers in their component. When (possibly) the partition is recovered the white-board can displayinformation written from each component (maybe with some criteria to merge the di�erent white-boards of di�erent components). Another example is a distributed booking system for airline tickets.If the system partitions into two (or more) components each of them could still accept reservations,provided that the airline is willing to face over-booking.In distributed applications involving replicated data, a well known way to enhance the availabilityand e�ciency of the system is to use quorums. A quorum system is a set of subsets of the membersof the system which satisfy the property that any two sets intersect. We refer to a view with aquorum system de�ned over the members of the view as a con�guration. Using con�gurations anupdate can be performed with only a quorum available, while with an ordinary view all of themembers must be available. The intersection property of quorums permits one to maintain dataconsistency, within a given con�guration. Quorum systems have been extensively studied and usedin applications, e.g. [2, 37, 47, 50, 79, 70, 8, 74]. The use of quorums has been proven e�ective alsoagainst Byzantine failures [68, 69].Pre-de�ned quorum sets can yield e�cient implementations in settings which are relatively static,i.e., failures are transient. However they work less well in settings where processes routinely join andleave the system, or where the system can su�er multiple partitions. For such a setting, a dynamicnotion of primary is needed. A dynamic notion of primary still needs to maintain some kind ofintersection property, in order to permit enough information
ow between successive primary viewsto achieve coherence. For example, each primary view might have to contain at least a majority ofthe processes in the previous primary view. Several dynamic voting schemes have been developedto de�ne primaries adaptively, e.g. [28, 36, 55, 88, 77].In particular, Yeger Lotem, Keidar, and Dolev [88] have described an implementation of a groupmembership service that yields only primary views, according to a dynamic notion of primary. Aninteresting feature of their work is that it points out various subtleties of implementing such a12

membership service in a distributed manner { subtleties involving di�erent opinions by di�erentprocesses about what is the previous primary view. These di�culties have led to errors in some ofthe past work on dynamic voting. The algorithm of [88] copes with these subtleties by maintaininginformation about a collection of primary views that \might be" the previous primary view. Theservice deals with group membership only, and not with communication.1.1.2 Work in this thesisIn this thesis we have provided group communication speci�cations which handle primary viewsand primary con�gurations; the latter required extending the notion of primary view to that ofprimary con�guration. We have proved that the speci�cations are implementable, by exhibitingalgorithms that implement them, and useful as building block for more powerful services, by pro-viding algorithms that implement these more powerful services exploiting the group communicationservices.Dynamic viewsWe have provided a group communication service, called dvs, that integrates the vs group com-munication service with a dynamic primary view membership service, yielding a dynamic primaryview group communication service. The dvs service is inspired by the implementation of [88], butintegrates communication with the group membership service.An important feature of the dvs speci�cation is the careful handling of the interface betweenthe service and the application. When a new view starts, applications generally require some pre-processing, typically, an exchange of information, to prepare for ordinary computation. For example,processes in a coherent database application may need to exchange information about previousupdates in order to bring everyone in the new view up to date. We expect each application processto \register" a new view v when it has completed this pre-processing for view v. The dvs service usesregistration information when it creates a new view v, in order to determine which previously-createdviews must satisfy the intersection property with respect to v. When all members have registered v,the application has gathered all information it needs from previous views, and the service no longerneeds to ensure intersection in membership between views before v and any subsequent ones thatare formed.Another feature of the dvs speci�cation, compared to that of Yeger Lotem et al. [88], is thatour speci�cation is given as an automaton, which maintains state information about the viewsand the messages sent in each view. This global state can be used in invariants and abstractionfunctions, leading to assertional proofs of the correctness of implementations of dvs, and also ofapplications built over dvs. In contrast, Yeger Lotem et al. use a speci�cation given in terms ofthe whole sequence of events in an execution, and therefore must use operational reasoning about13

complex sequences of events. Extensive experience with proofs of distributed algorithms suggeststhat assertional techniques are less error-prone; also they are more amenable to automated checking.We have demonstrated the value of the dvs speci�cation by showing both how it can be imple-mented and how it can be used in an application. Both pieces are shown formally, with assertionalproofs.The implementation is a variant of the group membership algorithm of [88]. We have provedthat this algorithm implements dvs, in the sense of trace inclusion, that is, the external behavior ofthe implementation is allowed by the dvs speci�cation. The proof uses a (single-valued) simulationrelation and invariant assertions. The key to the proof is an invariant expressing a strong conditionabout nonempty intersections of views; the proof of this depends on relating a local check of majorityintersection with known views to a global check of nonempty intersection with existing views.We have also provided an application algorithm that is a variant of an algorithm in [57, 7, 41],modi�ed to use dvs instead of a static view-oriented service. The modi�ed algorithm uses theregistration capability to tell the dvs service that information has been successfully exchanged atthe beginning of a new view. We show that it implements a (non-group-oriented) totally-ordered-broadcast service. This proof also uses a simulation relation and invariant assertions.We have designed our dvs speci�cation to express the guarantees that we think are useful inverifying correctness of applications that use the service. Among previous work, two di�erent sortsof speci�cations for a primary group service are notable. Work by Ricciardi and others [83] isexpressed in terms of temporal logic on consistent cuts; the idea of their speci�cation is that on anycut, there are no disjoint sets of processes such that each set is collectively aware of no membersoutside that set. Yeger Lotem et al. [88] use a property of an execution, which was previously de�nedby Cristian [26] for majority groups: any two primary views are linked by a chain of views whereevery consecutive pair of views includes a process that \knows" it belongs to both views. As faras we know, these previous speci�cations have not been used to verify properties of applicationsrunning above them.The dvs speci�cation omits some properties of existing dynamic primary view managementalgorithms. For example, Isis [19] guarantees that processes that move together from one view tothe next receive exactly the same messages in the �rst view. Guaranteeing this property requiresstate exchange within the view management service. This property is not needed to verify propertiesof other applications, such as the totally-ordered broadcast service of [41]. Also, our service providesno explicit support for application-level state exchange. Real systems, e.g. Isis, do provide suchsupport, by allowing application-level state exchange messages to be piggy-backed on the lower-levelstate exchange messages.
14

Dynamic con�gurationsQuorum-based methods for managing replicated data are popular because they provide availabilityof both reads and writes in the presence of faulty behavior by some sites or communication links. Aquorum system is also called a con�guration. If a system lasts for a very long time, it may becomenecessary to alter the con�guration, perhaps because some sites have failed permanently and othershave joined the system, or perhaps because users want a di�erent trade-o� between read-availabilityand write-availability. For example, if more sites join the system, these sites must be included inthe quorums in order to use them; If many sites fail permanently, these sites must be taken outof the quorums in order to maintain availability. The most common proposal has been to use atwo-phase commit protocol which stops all application operations while all sites are noti�ed of thenew con�guration. Since two-phase commit is a blocking protocol, this solution is vulnerable to asingle failure during the con�guration change. An alternative proposal in [66] has recon�gurationdirected by a single site, thus this is also not fault-tolerant. In a setting of database transactions,[47] showed how to integrate fault-tolerant updates of replicated information about quorum sizes(using the same quorums for both data item replicas and quorum information replicas).Herlihy [51] provides algorithms to shrink and enlarge quorums within a static universe of proces-sors; the setting considered in [51] does not allow processors to join and leave the system. Lamportdiscusses how to modify his paxos algorithm [61] in order allow processors to join and leave thesystem. In this thesis we integrate these aspects in a group communication framework.There are subtle issues that arise in managing the change of con�gurations, including how tomake sure that any operation using the new con�guration is aware of all information from operationsthat used an old con�guration, and how to allow concurrent attempts to alter the con�guration.In this thesis we have addressed this problem by extending dynamic primary views group commu-nication services to handle con�gurations. The main di�culty in combining con�gurations with thenotion of dynamic primary view is the intersection property required to maintain consistency amongdata stored at di�erent sites. A dynamic primary view must intersect the previous one in at leasta quorum of processors (this property is required, for example, by replicated data applications inorder to keep all the replicas consistent). With con�gurations this intersection property that worksfor primary views, is no longer enough. Indeed updated information might be only at a quorum andthe processors in the intersection might be not in that quorum. A stronger intersection property isrequired. We have proposed one possible intersection property that allows applications to keep dataconsistency across changes of primary con�gurations. Namely, we require that there be a quorum ofthe old primary con�guration which is included in the membership set of the new primary con�gu-ration. This guarantees that there is at least one process in the new primary con�guration that hasthe most up to date information. This, similarly to the intersection property of dynamic primaryviews, allows
ow of information from the old con�guration to the new one and thus permits one to15

preserve data consistency.We actually considered a more specialized version of con�gurations which uses two sets of quo-rums, a set of read quorums and a set of write quorums, with the property that any read quorumintersects any write quorum. (This choice is justi�ed by the application we develop, an atomicread/write register.) With this kind of con�guration the intersection property that we require for anew primary con�guration is that there be one read quorum and one write quorum both of whichare included in the membership set of the new primary con�guration. The use of read and writequorums (as opposed to just quorums) can be more e�cient in order to balance the load of thesystem (e.g., [37]).The resulting dynamic primary con�guration group communication service is called dc. Thisservice also integrates support for state exchange into the dc speci�cation. This improves themodularity of the building block. When a new con�guration starts, applications generally requiresome pre-processing, such as an exchange of information, to prepare for ordinary computation.Typically this is needed in order to bring every member of the con�guration up to date. Forexample, processes in a coherent database application may need to exchange information aboutprevious updates in order to bring everyone in the new con�guration up to date. We will refer tothe up-to-date state of a new con�guration as the starting state of that con�guration. The startingstate is the state of the computation that all members should have in order to perform regularcomputation. The computation of the starting state should be o�ered by the communication serviceso that applications do not have to worry about the details of the underlying state exchange. Wehave demonstrates the value of the dc speci�cation by showing both an algorithm that implementsdc and how dc can be used in an application. The implementation is based on a variant of thegroup membership algorithm of [88]. The application is an atomic read/write shared register, andis similar to the work of of Attiya, Bar-Noy and Dolev [12] and of Lynch and Shvartsman [66].Dynamic algorithmsWe have investigated the use of the technique introduced to design the dvs and dc services totransform services and applications that are designed for \static" settings, into ones that work wellin \dynamic" settings.We used a variant of the dc service to provide a dynamic version of the Lamport's paxosalgorithm [61]. The paxos algorithm solves a fundamental problem of distributed computing: theconsensus problem. In such a problem processors of a distributed system start computation withan input value and have to make an irreversible decision guaranteeing agreement, which requiresthat all decisions are the same, and validity, which requires that any decision is equal to some inputvalue.The paxos algorithm tolerates many types of failures: timing failures, loss, duplication and16

reordering of messages and process stopping failures. Process recoveries are considered; some stablestorage is needed. paxos is guaranteed to work safely, that is, to satisfy agreement and validity,regardless of process, channel and timing failures and process recoveries. When the distributedsystem stabilizes, meaning that there are no failures nor process recoveries and a majority of theprocesses are not stopped, for a su�ciently long time, termination is achieved; the performance ofthe algorithm when the system stabilizes is good.The original algorithm is designed for static settings, where failures are transient, that is, failedprocessors recover. If a majority (or a quorum) of the processors is not available the system isblocked. If such a majority or quorum permanently leaves the system, then the system is blockedforever. The variant we have designed adapts well to permanent changes of the underlying distributedsystem.The paxos algorithm bears many similarities with an earlier algorithm of Liskov and Oki [76].The work of Liskov and Oki uses a notion of \view" which changes when a new primary site needs tobe selected. The notion of \view" and that of \view synchrony" has later been proven very successful(see the overview and related work of this section).We have also provided a dynamic primary copy data replication algorithm. As the dynamicversion of paxos also this algorithm is based on a variant of the dc service. This algorithm usesa centralized approach in which a \leader" process is responsible for providing responses to client'squeries. In order to keep consistency this leader process replicates (part of) its own state to aquorum of processes. The algorithm exploits the quorum-oriented framework provided by the dcservice. We sketch the proof of correctness of this algorithm; the technique used to prove correctother applications developed in this thesis should apply also to this algorithm.1.2 Distributed consensus1.2.1 Overview and related workAnother important building block for distributed systems is distributed consensus. Such a prob-lem arises in many forms and various contexts, such as, for example, distributed data replication,distributed databases,
ight control systems. Data replication is used in practice to provide highavailability: having more than one copy of the data allows easier access to the data, i.e., the near-est copy of the data can be used. However, consistency among the copies must be maintained. Aconsensus algorithm can be used to maintain consistency. A practical example of the use of datareplication is an airline reservation system. The data consists of the current booking informationfor the
ights and it can be replicated at agencies spread over the world. The current bookinginformation can be accessed at any of the replicas. Reservations or cancellations must be agreedupon by all the copies. 17

In a distributed database, the consensus problem arises when a collection of processes participat-ing in the processing of a distributed transaction has to agree on whether to commit or abort thetransaction, that is, make the changes due to the transaction permanent or discard the changes.A common decision must be taken to avoid inconsistencies. A practical example of the use of dis-tributed transactions is a banking system. Transactions can be done at any bank location or ATMmachine, and the commitment or abortion of each transaction must be agreed upon by all the banklocations or ATM machines involved.In a
ight control system, the consensus problem arises when the
ight surface and airplane controlsystems have to agree on whether to continue or abort a landing in progress or when the controlsystems of two approaching airplanes need to modify the air routes to avoid collision.Distributed consensus has been extensively studied; a good survey of early results is provided in[42]. We refer the reader to [65] for a more up-to-date treatment of consensus problems.One of the most celebrated result about distributed consensus is the impossibility result ofFischer, Lynch and Paterson [43]. This impossibility result, popularly known as FLP, states that itis impossible to achieve distributed consensus in asynchronous systems even if only one stop failuresis possible. This surprising result sparked various directions of research aimed to solve the problemby either restricting the asynchrony of the computation model (e.g. [31, 35]) or using randomizedprotocols (e.g. [18, 21, 80]) or weakening the problem de�nition (e.g. [24, 32, 39, 40]).The last of these three directions of research falls in the more general research area of demarcat-ing what is deterministically computable and what is deterministically impossible in asynchronousdistributed systems in the presence of failures. The FLP impossibility seemed to suggest that nonontrivial problem could be solved deterministically and asynchronously in the presence of faults.Attiya, Bar-Noy, Dolev, Peleg and Reischuk [13] showed that the renaming problem can be solvedin a deterministic way in asynchronous system in the presence of failures. Informally, in the renam-ing problem processors start the computation with a \name" taken from some unbounded orderedname space and have to \rename" themselves with names chosen from a new small name space.This result revived the research trend of exploring computable and impossible in deterministic asyn-chronous distributed systems subject to failures. Following this direction, Chaudhuri [24] de�nedthe k-consensus problem, which is a natural generalization of the consensus problem obtained byallowing processes to decide on k di�erent values, instead of requiring them to agree on a singlevalue. The 1-consensus problem is the classical consensus problem.Chaudhuri provided an algorithm to solve the k-consensus problem that tolerates up to a thresh-old t of process failures strictly smaller than k. This result proved that the k-consensus problem,for k � 2, allows more resilience than the 1-consensus problem. Chaudhuri conjectured that thek-consensus problem was impossible to solve while tolerating k or more failures. This conjecture wasproven true by three independent research teams: Borowsky and Gafni [20], Herlihy and Shavit [52]18

and Saks and Zaharoglou [84]. Attiya [11] provided an alternative proof of the same result.The results of [24, 20, 52, 84] completely characterize the k-consensus problem in asynchronoussystems with stop failures. In such a model the k-consensus problem is solvable if and only if t < k.The formal de�nition of the k-consensus problem requires three conditions to be satis�ed: agree-ment , termination and validity. The agreement condition requires that each process decide on avalue in such a way that the set of decided values has cardinality at most k. The termination con-dition simply requires that each (correct) process decide. For what concern the validity condition,several variants have been considered in the literature. The validity condition used in [24, 20, 52, 84]requires that each of the decision be equal to some input value.An alternative de�nition of the validity condition considered for the 1-consensus problem withstop failures requires that if all the inputs to the processes of the systems are equal then any decisionmust be equal to the input (see, for example, Chapter 6 of [65]).In a Byzantine environment faulty processes can \mask" their inputs. Hence a more suitablevalidity condition considered for the 1-consensus problem with Byzantine failures requires that if allthe correct processes have the same input then any decision be the input of a correct process [62, 78].1.2.2 Work in this thesisIn this thesis we have explored several alternative validity conditions and we consider the k-consensusproblem in asynchronous systems both with stop failures and with Byzantine failures. We haveconsidered six di�erent de�nitions for the validity condition of the k-consensus problem. In manycases the validity condition makes a di�erence. We have considered the six variations of the k-consensus problem both in the stop failure case and in the Byzantine failure case. This lead to twelvedi�erent problems. One of this is the k-consensus problem considered in [24, 20, 52, 84]. Hence forthis problem we already know the line that separate solvable from impossible (the problem is solvableif and only if the number of allowed failures is strictly less than k). For the other variations of theproblem and in particular for the Byzantine settings, the line between impossible and possible wasnot known. We have demarcated these lines.1.3 Summary of contributionsThis thesis provided new formal speci�cations for group communication services. The speci�cationsare shown to be implementable and useful to build applications. The signi�cance of this work istwo-fold: on one hand it is a contribution in the identi�cation of useful formal speci�cations forgroup communication services, a research area very active recently; on the other hand we haveexplored the possibility of integrating into a single group communication building block the notionof primary view and that of con�guration, both of which are well known but never have been used19

together. The speci�cations we have provided are tailored to dynamic systems, where processorsjoin and leave the system routinely and possibly permanently. The approach used to design such adynamic services has been applied also to transform known algorithms, designed for stating settings,in order to make them adaptable to dynamic systems.This thesis investigated also some theoretical aspects of another important building block for dis-tributed systems: distributed consensus. We extended previous work by exploring several variationsof the problem de�nition and model, including for the �rst time investigation of Byzantine failures.We showed that the precise de�nition of the validity requirement, which characterizes what decisionvalues are allowed as a function of the input values and whether failures occur, is crucial to thesolvability of the problem. We introduced six validity conditions for this problem (all considered invarious contexts in the literature), and we demarcated the line between possible and impossible foreach case. In many cases this line is di�erent from the one of the originally studied k-set consensusproblem.1.4 Thesis roadmapThe rest of thesis is divided into two parts. The �rst part is dedicated to group communicationservices while the second part studies the consensus problem.Part I (group communication services) is structured as follows. Chapter 2 contains an overviewof group communication services. Chapter 3 contains notation and terminology used throughout therest of the part and introduces the I/O automaton model, which is used to provide the speci�cations,the implementations and the applications. Chapter 4 describes the vs service of [41]; such a service isused as building block for the implementations of the group communication services provided in thisthesis. Chapter 5 contains the dvs speci�cations, a speci�cation for a dynamic primary view groupcommunication service, together with an implementation and a totally ordered broadcast servicerunning on top of dvs. Chapter 6 contains the dc speci�cations, a speci�cation for a dynamicprimary con�guration group communication service, together with an atomic read/write registerimplemented top of dc. Chapter 7 provides a version of Lamport's paxos algorithm implementedon top of a variation of the dc service. Finally Chapter 8 provides concluding remarks for Part I.Part II (distributed consensus) is structured as follows. Chapter 9 contains an introduction tothe problem. Chapter 10 describes the model of computation and provides a formal de�nition of theproblem. Chapters 11 and 12 study the k-set consensus problem in the crash failures and Byzantinefailures models, respectively. Finally, Chapter 13 provides concluding remarks for Part II.
20

Part I
Group Communication Services

21

Chapter 2
Group Communication Services:OverviewDeveloping distributed applications is a di�cult task, because of the complexities of the applicationsthemselves and of the fault-prone distributed settings in which they run. Considerable e�ort is de-voted to making distributed applications robust in the face of typical processor and communicationfailures. A successful approach to overcome these di�culties is to modularize the system by im-plementing suitable building blocks that provide powerful general-purpose distributed computationservices.Among the most important examples of building blocks are group communication services. Groupcommunication services enable processes located at di�erent nodes of a distributed network to op-erate collectively as a group. The processes do this by using a group communication service tomulticast messages to all members of the group. Di�erent group communication services o�er di�er-ent guarantees about the order and reliability of message delivery. Examples are found in Isis [19],Transis [33], Totem [73], Newtop [38], Relacs [14] and Horus [86].The basis of a group communication service is a group membership service. Each process, at eachtime, has a unique view of the membership of the group. The view includes a list of the processesthat are members of the group. Views can change from time to time, and may become di�erent atdi�erent processes. Isis introduced the important concept of virtual synchrony [19]. This concepthas been interpreted in various ways, but an essential requirement is that if a particular messageis delivered to several processes, then all have the same view of the membership when the messageis delivered which is also the view where the message was sent. This allows the recipients to takecoordinated action based on the message, the membership set and, obviously, the application.To be most useful to application programmers, system building blocks should come equippedwith simple and precise speci�cations of their guaranteed behavior. Such speci�cations would allow22

application programmers to think carefully about the behavior of systems that use the primitives,without having to understand how the primitives themselves are implemented. Unfortunately, pro-viding appropriate speci�cations for group communication services is not an easy task. Some ofthese services are rather complicated, and there is still no agreement about exactly what the guar-antees should be. Di�erent speci�cations arise from di�erent implementations of the same service,because of di�erences in the safety, performance, or fault-tolerance that is provided. Moreover, thespeci�cations that most accurately describe particular implementations may not be the ones thatare easiest for application programmers to use. Example of speci�cations for group membership andcommunication services can be found in [17, 23, 25, 27, 34, 72, 81, 83]).In distributed application involving replicated data, a well known way to enhance the availabilityand e�ciency of the system is to use quorums. A quorum system is a set of subsets of the members ofthe system which satisfy the property that any two sets intersect. We refer to a view with a quorumsystem as a con�guration. Using con�gurations an update can be performed with only a quorumavailable, while with an ordinary view all of the members must be available. The intersectionproperty of quorums guarantees consistency within a given con�guration. Quorum systems havebeen extensively studied and used in applications (e.g., [2, 37, 47, 50, 70, 74]).Pre-de�ned quorum sets can yield e�cient implementations in settings where the system isrelatively static, that is, failures are transient. However, they work less well in settings where theset of processors in the network evolves over time, with processes joining and leaving the system.For such a setting, a dynamic notion of primary is needed. A dynamic notion of primary stillneeds to maintain some kind of intersection property, in order to permit enough information
owbetween successive primary views to achieve coherence. For example, each primary view might haveto contain at least a majority of the processes in the previous primary view. Several dynamic votingschemes have been developed to de�ne primaries adaptively, e.g. [28, 36, 55, 88, 71, 77].In particular, Yeger Lotem, Keidar, and Dolev [88] have described an implementation of a groupmembership service that yields only primary views, according to a dynamic notion of primary. Aninteresting feature of their work is that it points out various subtleties of implementing such amembership service in a distributed manner { subtleties involving di�erent opinions by di�erentprocesses about what is the previous primary view. These di�culties have led to errors in some ofthe past work on dynamic voting. The algorithm of [88] copes with these subtleties by maintaininginformation about a collection of primary views that \might be" the previous primary view. Theservice deals with group membership only, and not with communication. Yeger Lotem et al. provethat their protocol satis�es the following condition on system executions: any two (primary) viewsthat occur in an execution are linked by a chain of views where for every consecutive pair of viewsin the chain, there is some process that \knows" it belongs to both views.In Chapter 5 we provide a group communication service, called dvs, that integrates the vs23

group communication service with a dynamic primary view membership service, yielding a dynamicprimary view group communication service. The dvs service is inspired by the implementationof [88], but integrates communication with the group membership service. We also show how thedvs speci�cation can be implemented and used for an application.In Chapter 6 we extend the notion of \primary view" to that of \primary con�guration". Themain di�culty in making this step is to identify the intersection property between two successiveprimary con�gurations that allows to maintain consistency. We propose one possible such a property.Namely, we require that there be a quorum of the old primary con�guration which is included in themembership set of the new primary con�guration. This guarantees that there is at least one processin the new primary con�guration that has the most up to date information. This, similarly to theintersection property of dynamic primary views, allows
ow of information from the old con�gurationto the new one and thus permits to preserve consistency.We actually consider a more specialized version of con�gurations which uses two sets of quorums,a set of read quorums and a set of write quorums, with the property that any read quorum intersectsany write quorum. (This choice is justi�ed by the application we develop, an atomic read/writeregister.) With this kind of con�guration the intersection property that we require for a new primarycon�guration is that there be one read quorum and one write quorum both of which are includedin the membership set of the new primary con�guration. The use of read and write quorums (asopposed to just quorums) can be more e�cient in order to balance the load of the system (e.g., [37]).We provide a a group communication service, called dc, that integrates a group communicationservice with a dynamic primary con�guration membership service. We prove that the dc service isimplementable and can be used for applications.Finally, in Chapter 7, we investigate the use of the technique introduced to design dvs and dcto transform services and applications that are designed for \static" settings, into ones that workwell in \dynamic" settings. Speci�cally, we design a service similar to dc and we use that service toprovide a dynamic version of the Lamport's paxos algorithm [61]. The original algorithm is designedfor system that are relatively static: if a majority (o more generally a quorum) of the processors isnot available then the algorithm blocks. The dynamic version adapts well to permanent changes ofthe system. We also design a primary copy data replication algorithm; this algorithm is simlar tothe Liskov-Oki algorithm [76] but considers dynamic settings, while the Liskov-Oki is designed forstatic settings.
24

Chapter 3
Mathematical foundationsIn this chapter we introduce some terminology and notation, and then we provide the underlying for-mal model used to specify our group communication services and applications. Section 3.1 providesterminology and notation and Section 3.2 describes the IOA model.3.1 Notation and terminology3.1.1 Sets, functions, sequencesWe write � for the empty sequence. If a is a sequence then jaj denotes the length of a. If a isa sequence and 1 � i � j � jaj then a(i) denotes the ith element of a and a(i::j) denotes thesubsequence a(i); a(i+1); :::; a(j) of a. The head of a nonempty sequence a is a(1). A sequence canbe used as a queue: the append operation modi�es the sequence by concatenating it with a newelement and the remove operation modi�es the sequence by deleting its head.If a and b are sequences, a �nite, then a�b denotes the concatenation of a and b. We sometimesabuse this notation by letting a or b be a single element. We say that sequence a is a pre�x ofsequence b, written a � b, provided that there exists c such that a�c = b. A collection A ofsequences is consistent provided that a � b or b � a for all a; b 2 A. If A is a consistent collectionof sequences, we de�ne lub(A) to be the minimum sequence b such that a � b for all a 2 A.If S is a set, then seqof (S) denotes the set of all �nite sequences of elements of S. If a 2 seqof (S)and f is a partial function from S to T whose domain includes the set of all elements of S appearing ina, then applytoall (f; a) denotes the sequence b such that length(b) = length(a) and, for i � length(b),b(i) = f(a(i)).If S is a set, the notation S? refers to the set S [f?g. Whenever S is ordered, we order S?by extending the order on S, and making ? less than all elements of S. If R is a binary relation,then we de�ne dom(R), the domain of R, to be the set (without repetitions), of �rst elements of the25

ordered pairs comprising relation R. If f is a partial function from S to T , and hs; ti 2 S � T , thenf � hs; ti is de�ned to be the partial function that is identical to f except that f(s) = t.We denote by arrayof (S) the set of all arrays, indexed by positive integers, whose entries consistsof elements of S?.3.1.2 Processors, views, con�gurations, identi�ersP denotes the universe of all processors,1 and M the universe of all possible messages. G is atotally ordered set of identi�ers used to distinguish views or con�gurations, with a distinguishedleast element g0.A view v = hg; P i consists of a view identi�er g 2 G and a nonempty membership set P � P ; wewrite v:id and v:set to denote the view identi�er and membership set components of v, respectively.V denotes the set of all views, and v0 = hg0; P0i is a distinguished initial view .The notion of view can be generalized to that of con�guration. A con�guration is a view witha structure de�ned on the view. For example a con�guration can be a view with a set of quorumsde�ned over the memebrship set of the view. However con�gurations can be tailored to applications.For example, applications that use read and write quorums, use con�gurations which are views witha set of read quorums and a set of write quorums; applications that use a \leader" processor usecon�gurations with a leader processor. Next we de�ne several types of con�gurations. We willspecify the type of con�guration we use in the chapter where we use it.A con�guration is a triple, c = hg; P;Qi, where g 2 G is a unique identi�er, P � P is a nonemptyset of processors, and Q is a nonempty sets of nonempty subsets of P , such that any two subsetsintersects. Each element of Q is called a quorum of c.A more specialized type of con�guration is a quadruple, c = hg; P;R;Wi, where g 2 G is a uniqueidenti�er, P � P is a nonempty set of processors, and R and W are nonempty sets of nonemptysubsets of P , such that R\W 6= ; for all R 2 R, W 2 W . Each element of R is called a read quorumof c, and each element of W a write quorum. We refer to this type of con�guration as read-writequorum con�guration.Another type of con�guration is a quadruple, c = hg; P;Q; pi, where g 2 G is a unique identi�er,P � P is a nonempty set of processors, and Q is a quorum system and p 2 P is a distinguishedprocessor, called the leader of the con�guration. We refer to this type of con�guration as leadercon�guration.Once �xed a particular type of con�guration, welet C denote the set of all con�gurations. Givena con�guration c, the notation c:id refers to the con�guration identi�er g, the notation c:set refersto the membership set P ; the notation c:qrms refers to the quorum system Q while c:rqrms and1We use \processor" and \process" interchangeably. 26

c:wqrms refer to the read quorums set R and the write quorum sets W , respectively; the notationc:ldr refers to the leader p of con�guration c.We distinguish an initial con�guration c0 = hg0; P0;R0;W0i (or c0 = hg0; P0;Q0i, or c0 =hg0; P0;Q0; p0i, depending on the type of con�guration that we are using), where g0 is a distinguishedcon�guration identi�er.3.2 The I/O automaton (IOA) modelWe describe our services and algorithms using the I/O automaton model of Lynch and Tuttle [67](without fairness).The I/O automata (IOA for short) model is a formal model suitable for describing asynchronousdistributed systems. The basic I/O automaton model was introduced by Lynch and Tuttle [67].Various extensions of the basic model have been developed. For example two extensions provideformal mechanisms to handle the passage of time and thus are suitable for describing partiallysynchronous distributed systems; these models are the MMT automaton (MMTA for short) and thegeneral timed automaton (GT automaton or GTA for short). The MMTA is a special case of GTA,and thus it can be regarded as a notation for describing some GT automata.For the purpose of this thesis, we will use this basic I/O automaton model, which we describein Section 3.2.1. Section 3.2.2 describes the \composition" operation on automata. The interestedreader can �nd more information about IOA in [65].3.2.1 IOA de�nitionAn I/O automaton is a simple type of state machine in which transitions are associated with namedactions. These actions are classi�ed into categories, namely input, output, internal and, for the timedmodels, time-passage. Input and output actions are used for communication with the external envi-ronment, while internal actions are local to the automaton. The time-passage actions are intendedto model the passage of time. The input actions are assumed not to be under the control of theautomaton, that is, they are controlled by the external environment which can force the automatonto execute the input actions. Internal and output actions are controlled by the automaton. Thetime-passage actions are also controlled by the automaton (though this may at �rst seem somewhatstrange, it is just a formal way of modeling the fact that the automaton must perform some actionbefore some amount of time elapses).As an example, we can consider an I/O automaton that models the behavior of a process involvedin a consensus problem. Figure 3-1 shows the typical interface (that is, input and output actions)of such an automaton. The automaton is drawn as a circle, input actions are depicted as incomingarrows and output actions as outcoming arrows (internal actions are hidden since they are local27

Receive(m)Send(m)

Init(v) Decide(v)

I/O automaton

Figure 3-1: An I/O automaton.to the automaton). The automaton receives inputs from the external world by means of actioninit(v), which represents the receipt of an input value v and conveys outputs by means of actiondecide(v) which represents a decision of v. Actions send(m) and receive(m) are supposed to modelthe communication with other automata.A signature S is a triple consisting of three disjoint sets of actions: the input actions, in(S),the output actions, out(S), and the internal actions, int(S). The external actions, ext(S), arein(S)[out(S); the locally controlled actions, local(S), are out(S)[int(S); and acts(S) consists of allthe actions of S. The external signature, extsig(S), is de�ned to be the signature (in(S); out(S); ;).The external signature is also referred to as the external interface.An I/O automaton (IOA for short) A, consists of �ve components:� sig(A), a signature� states(A), a (not necessarily �nite) set of states� start(A), a nonempty subset of states(A) known as the start states or initial states� trans(A), a state-transition relation, where trans(A) � states(A) �acts(sig(A)) � states(A); this must have the property that for every state s and every in-put action �, there is a transition (s; �; s0) 2 trans(A)� tasks(A), a task partition, which is an equivalence relation on local (sig(A)) having at mostcountably many equivalence classesOften acts(A) is used as shorthand for acts(sig(A)), and similarly in(A), and so on.An element (s; �; s0) of trans(A) is called a transition, or step, of A. If for a particular state sand action �, A has some transition of the form (s; �; s0), then we say that � is enabled in s. Inputactions are enabled in every state.The �fth component of the I/O automaton de�nition, the task partition tasks(A), should bethought of as an abstract description of \tasks," or \threads of control," within the automaton. This28

partition is used to de�ne fairness conditions on an execution of the automaton; roughly speaking,the fairness conditions say that the automaton must continue, during its execution, to give fair turnsto each of its tasks.An execution fragment of A is either a �nite sequence, s0; �1; s1; �2; : : : ; �r; sr, or an in�nitesequence, s0; �1; s1; �2; : : : ; �r; sr; : : :, of alternating states and actions of A such that (sk; �k+1; sk+1)is a transition of A for every k � 0. Note that if the sequence is �nite, it must end with a state.An execution fragment beginning with a start state is called an execution. The length of a �niteexecution fragment � = s0; �1; s1; �2; : : : ; �r; sr is r. The set of executions of A is denoted byexecs(A). A state is said to be reachable in A if it is the �nal state of a �nite execution of A.The trace of an execution � of A, denoted by trace(�), is the subsequence of � consisting of allthe external actions. A trace � of A is a trace � of an execution of A. The set of traces of A isdenoted by traces(A).3.2.2 Composition of IOAThe composition operation allows an automaton representing a complex system to be constructed bycomposing automata representing simpler system components. The most important characteristic ofthe composition of automata is that properties of isolated system components still hold when thoseisolated components are composed with other components. The composition identi�es actions withthe same name in di�erent component automata. When any component automaton performs a stepinvolving �, so do all component automata that have � in their signatures. Since internal actions ofan automaton A are intended to be unobservable by any other automaton B, automaton A cannotbe composed with automaton B unless the internal actions of A are disjoint from the actions of B.(Otherwise, A's performance of an internal action could force B to take a step.) Moreover, A andB cannot be composed unless the sets of output actions of A and B are disjoint. (Otherwise twoautomata would have the control of an output action.)Let I be an arbitrary �nite index set2. A �nite countable collection fSigi2I of signatures is saidto be compatible if for all i; j 2 I , i 6= j, the following hold3:1. int(Si) \ acts(Sj) = ;2. out(Si) \ out(Sj) = ;A �nite collection of automata is said to be compatible if their signatures are compatible.2The composition operation for IOA is de�ned also for an in�nite but countable collection of automata [65], butwe only consider the composition of a �nite number of automata.3We remark that for the composition of an in�nite countable collection of automata, there is a third condition onthe de�nition of compatible signature [65]. However this third condition is automatically satis�ed when consideringonly �nite sets of automata. 29

When we compose a collection of automata, output actions of the components become outputactions of the composition, internal actions of the components become internal actions of the com-position, and actions that are inputs to some components but outputs of none become input actionsof the composition. Formally, the composition S = Qi2I Si of a �nite compatible collection ofsignatures fSigi2I is de�ned to be the signature with� out(S) = [i2Iout(Si)� int(S) = [i2I int(Si)� in(S) = [i2I in(Si)�[i2Iout(Si)The composition A =Qi2I Ai of a �nite collection of automata, is de�ned as follows:4� sig(A) =Qi2I sig(Ai)� states(A) =Qi2I states(Ai)� start(A) =Qi2I start(Ai)� trans(A) is the set of triples (s; �; s0) such that, for all i 2 I , if � 2 acts(Ai), then (si; �; s0i) 2trans(Ai); otherwise si = s0i� tasks(A) = [i2I tasks(Ai)Thus, the states and start states of the composition automaton are vectors of states and startstates, respectively, of the component automata. The transitions of the composition are obtained byallowing all the component automata that have a particular action � in their signature to participatesimultaneously in steps involving �, while all the other component automata do nothing. Thetask partition of the composition's locally controlled actions is formed by taking the union of thecomponents' task partitions; that is, each equivalence class of each component automaton becomes anequivalence class of the composition. This means that the task structure of individual components ispreserved when the components are composed. Notice that since the automata Ai are input-enabled,so is their composition. The following theorem follows from the de�nition of composition.Theorem 3.2.1 The composition of a compatible collection of I/O automata is an I/O automaton.The following theorems relate the executions and traces of a composition to those of the com-ponent automata. The �rst says that an execution or trace of a composition \projects" to yieldexecutions or traces of the component automata. Given an execution, � = s0; �1; s1; : : : ; of A, let4The � notation in the de�nition of start(A) and states(A) refers to the ordinary Cartesian product, while the �notation in the de�nition of sig(A) refers to the composition operation just de�ned, for signatures. Also, the notationsi denotes the ith component of the state vector s. 30

�jAi be the sequence obtained by deleting each pair �r; sr for which �r is not an action of Ai andreplacing each remaining sr by (sr)i, that is, automaton Ai's piece of the state sr. Also, given atrace � of A (or, more generally, any sequence of actions), let �jAi be the subsequence of � consistingof all the actions of Ai in �. Also, j represents the subsequence of a sequence � of actions consistingof all the actions in a given set in �.Theorem 3.2.2 Let fAigi2I be a compatible collection of automata and let A =Qi2I Ai.1. If � 2 execs(A), then �jAi 2 execs(Ai) for every i 2 I.2. If � 2 traces(A), then �jAi 2 traces(Ai) for every i 2 I.The other two are converses of Theorem 3.2.2. The next theorem says that, under certainconditions, executions of component automata can be \pasted together" to form an execution of thecomposition.Theorem 3.2.3 Let fAigi2I be a compatible collection of automata and let A =Qi2I Ai. Suppose�i is an execution of Ai for every i 2 I, and suppose � is a sequence of actions in ext(A) such that�jAi = trace(�i) for every i 2 I. Then there is an execution � of A such that � = trace(�) and�i = �jAi for every i 2 I.The �nal theorem says that traces of component automata can also be pasted together to forma trace of the composition.Theorem 3.2.4 Let fAigi2I be a compatible collection of automata and let A =Qi2I Ai. Suppose� is a sequence of actions in ext(A). If �jAi 2 traces(Ai) for every i 2 I, then � 2 traces(A).Theorem 3.2.4 implies that in order to show that a sequence is a trace of a system, it is enoughto show that its projection on each individual system component is a trace of that component.

31

Chapter 4
The vs serviceIn this chapter we describe the view-oriented group communication service vs introduced in [41]. Thevs service deals with views. We describe \variations" of the service, which deal with con�gurations.4.1 The vs serviceThe vs service is a view-oriented group communication service. The name vs stands for \viewsynchrony" and refers to the property that a message sent within a particular view is deliveredonly to members of that view and only if they are still in that view. This seems to be the mostimportant property of group communication services that go under the label of \virtual synchrony"(the expression \virtual synchrony" has been actually semantically overloaded and several virtualsynchronous services provide di�erent guarantees).Another important feature of the vs speci�cation is that it requires that the sequence of messagesreceived by two di�erent processes within a given view are such that one is the pre�x of the other.Finally, new views are reported to their members in order of view identi�er.The external actions of the vs speci�cation include vs-gpsnd(m)p actions, representing the clientat p sending a message m, and vs-gprcv(m)p;q actions, representing the delivery to q of the messagem sent by p. Output actions vs-safe(m)p;q are also provided at q to report that the earlier messagem from p has been delivered to all locations in the current view as known by q.The vs service informs its clients of group status changes through vs-newview(hg; P i)p actions(with p 2 P), which tells p that the view identi�er g is associated with membership set P andthat, until another vs-newview occurs, the following messages will be in this view. After any �niteexecution, the current view at p is de�ned as the argument v in the last newview(v)p event, if any,otherwise it is either the initial view hg0; P0i if p 2 P0, or ? if p =2 P0. This re
ects the concept thatthe system starts with the processors in P0 forming the group, and other processors unaware of thegroup. 32

vsSignature:Input: vs-gpsnd(m)p, m 2 M, p 2 PInternal: vs-createview(v), v 2 Vvs-order(m; p; g), m 2 M, p 2 P, g 2 G Output: vs-gprcv(m)p;q , m 2 M, p; q 2 Pvs-safe(m)p;q , m 2 M, p; q 2 P,vs-newview(v)p , v 2 V, p 2 v:setState:created 2 2V , init fv0gfor each p 2 P:current-viewid[p] 2 G?, init g0 if p 2 P0, ? elsefor each g 2 G:queue[g] 2 seqof (M�P), init � for each p 2 P, g 2 G:pending [p; g] 2 seqof (M), init �next[p; g] 2 N>0, init 1next-safe[p; g] 2 N>0, init 1Transitions:internal vs-createview(v)Pre: 8w 2 created : v:id > w:idE�: created := created [fvgoutput vs-newview(v)pPre: v 2 createdv:id > current-viewid[p]E�: current-viewid[p] := v:idinput vs-gpsnd(m)pE�: if current-viewid[p] 6= ? thenappend m to pending [p; current-viewid[p]]
internal vs-order(m; p; g)Pre: m is head of pending[p; g]E�: remove head of pending [p; g]append hm; pi to queue[g]output vs-gprcv(m)p;q , choose gPre: g 6= ?g = current-viewid[q]queue[g](next[q; g]) = hm; piE�: next[q; g] := next[q; g] +1output vs-safe(m)p;q , choose g; PPre: g 6= ?g = current-viewid[q]hg; P i 2 createdqueue[g](next-safe[q; g]) = hm; pifor all r 2 P :next[r; g] > next-safe[q; g]E�: next-safe[q; g] := next-safe[q; g] +1Figure 4-1: The vs service

33

The code is given in Figure 4-1.The state of the vs service keeps track of the created views in variable created , and for eachprocessor p, it keeps track of the current view at p, in variable current-view [p]. For each view,incoming message from a client at p are �rst bu�ered into a queue for processor p, pending [p; g],and then they are \ordered" into a global queue for the view, queue[g]. The pointers next [p; g] andnext-safe[p; g] point to, respectively, the next message of the gloabal queue that has to be deliveredto the client at p and the next safe indications that has to be delivered to the client at p. In anytrace of the vs service, there is a natural correspondence between vs-gprcv events and the vs-gpsndevents that cause them, and between vs-safe events and the vs-gpsnd events that cause them.The actions for creating a view and for informing a processor of a new view are straightforward(recall that the signature ensures that only members, but not necessarily all members, receivenoti�cation of a new view).A message that is sent before the sender knows of any view (when the current view is ?) issimply ignored, and never delivered anywhere.Note that vs speci�cation does not include any restrictions on when a new view might be formed.Clearly it is possible to analyze the service conditionally to some restrictions on the execution. Firexample, the performance and fault-tolerance property analysis provided in [41], does consider somerestrictions: it implies that \capricious" view changes must stop shortly after the behavior of theunderlying physical system stabilizes.We note that the fact that vs allows views to be created only in order of view identi�er isunimportant: weakening this requirement to allow out-of-order view creation would not change theexternal behavior, because vs-newview actions are constrained to occur in such a way that views aredelivered in order of view indenti�ers anyway.The following are safety properties of the vs service which we will be using in Chapter 5.� New views are reported in increasing order of view identi�er (Monotone views property);� Messages sent in a view are delivered only within that view (View synchrony property);� The sequences of messages delivered in a view at any two processors are such that one sequenceis a pre�x of the other (Pre�x order property).The following invariant holds.Invariant 4.1.1 (vs)In any reachable state, if v; v0 2 created and v:id = v0:id , then v = v0.
34

4.2 Variations: The cs and lc servicesIn many applications involving shared data, updates to the shared data have to be agreed upon byall the members of a view. In order to improve availability of the service and to balance the load ofthe system it is desirable to make updates without involving all the members of a view while stillpreserving consistency. This is achieved by using con�gurations.A con�guration is di�erent from an ordinary view in that it is an ordinary view equipped with aset of subsets of the members of the view which satisfy the property that any two sets intersect. Suchsets are called quorums. Hence a con�guration is a view plus a set of quorums. The intersectionproperty of quorums guarantees consistency within a given con�guration: indeed for any givenquorum there is always at least one process that has the latest update.We will consider two more specialized types of con�gurations, which have been introduced inChapter 3.On such a con�guration is the read-write-quorum con�guration. Recalling the de�nition fromChapter 3, we have that a con�guration is c = hg; P;R;Wi, where g is a con�guration identi�er, Pis the set of members and R and W are the sets of read and write quorums.Another such a con�guration is the leader con�guration. Recalling the de�nition from Chapter 3,we have that, in this case, a con�guration is c = hg; P;Q; pi, where g is a con�guration identi�er, Pis the set of members and Q is the sets of quorums and p is the leader of the con�guration.The vs service supports ordinary views v = hg; P i but can be easily generalized to con�gurations.We call these generalizations cs and lc, respectively, for the read-write-quorums con�gurations andfor the leader con�gurations. The only di�erence between cs and vs, as well as lc and vs, is thatcs and lc announce con�gurations while vs announces ordinary views. The code of cs, as well asthat of lc, is exactly the code of vs. Indeed con�gurations are treated as a single entity, as areordinary views. The reason we \rename" the code is because the two services are actually di�erent(one provides views and the other provides con�gurations), thus we must distinguish them.Figure 4-2 shows the code of the cs and lc speci�cations. Since these codes are the same as vs allthe properties and invariants of vs apply to cs and lc too. In particular we have that con�gurationsare reported in increasing order of con�guration identi�er (Monotone con�gurations property), mes-sages sent in a con�guration are delivered only within that con�guration (Con�guration synchronyproperty), and the sequence of messages delivered in a con�guration at any two processes are suchthat one is a pre�x of the other.
35

cs and lcSignature:Input: cs-gpsnd(m)p , m 2 M, p 2 PInternal: cs-createconf(c), c 2 Ccs-order(m; p; g), m 2 M, p 2 P, g 2 G Output: cs-gprcv(m)p;q , m 2 M, p; q 2 Pcs-safe(m)p;q , m 2 M, p; q 2 P,cs-newconf(c)p, c 2 C, p 2 c:setState:created 2 2C, init fc0gfor each p 2 P:current-con�d [p] 2 G?, init g0 if p 2 P0, ? elsefor each g 2 G:queue[g] 2 seqof (M�P), init � for each p 2 P, g 2 G:pending [p; g] 2 seqof (M), init �next[p; g] 2 N>0, init 1next-safe[p; g] 2 N>0, init 1Transitions:internal cs-createconf(c)Pre: 8w 2 created : c:id > w:idE�: created := created [fcgoutput cs-newconf(c)pPre: c 2 createdc:id > current-con�d [p]E�: current-con�d [p] := c:idinput cs-gpsnd(m)pE�: if current-con�d [p] 6= ? thenappend m to pending [p; current-con�d [p]]internal cs-order(m; p; g)Pre: m is head of pending[p; g]E�: remove head of pending [p; g]append hm; pi to queue[g]

output cs-gprcv(m)p;q , choose gPre: g = current-con�d [q]g 6= ?queue[g](next[q; g]) = hm; piE�: next[q; g] := next[q; g] + 1output cs-safe(m)p;q , choose g; PPre: g = current-con�d [q]g 6= ?hg; P i 2 createdqueue[g](next-safe[q; g]) = hm; pifor all r 2 P :next[r; g] > next-safe[q; g]E�: next-safe[q; g] := next-safe[q; g] + 1Figure 4-2: The cs service

36

Chapter 5
The dvs serviceIn this chapter we present dvs, a speci�cation for a dynamic primary view group communicationservice. Section 5.1 provides the dvs speci�cation, Section 5.2 provides an implementation of dvsand �nally Section 5.3 describes an application that uses dvs as building block. Section 5.4 closesthe chapter with some remarks.5.1 The dvs speci�cationThe dvs service works as follows. Each client of the service has a \current" view of the group ofprocesses. A process can send a message to all other members of its current view and the serviceguarantees that messages sent within a view are delivered only within that view and each member ofthe view receives messages in the same order as other members. However, not all messages need tobe delivered to all members. The service also provides a \safe" noti�cation for a particular messagem that tells the recipient that message m has been received by all the members of the current view.New views are announced to all members of the new view and new views are guaranteed to be\primary" views. Primary views are de�ned according to a dynamic notion [55]: a new primaryneeds to contain a majority of the members of the previous primary. The dvs service allows theclients to \register" a new view after completing the pre-processing for that view.The speci�cation is given in Figure 5-1. In this speci�cation,Mc �M denotes the set of messagesthat clients may use for communication. The most interesting part of the dvs speci�cation is thetransition de�nition for dvs-createview(v). The precondition speci�es the properties that a viewmust satisfy in order to be considered primary. The precondition says that v:set must intersect themembership set of all previously-created smaller-id views w for which there is no intervening totallyregistered view { that is, the set of all \possible previous primary views". Since (for convenience) weallow out-of-order view creation in dvs, we also include a symmetric condition for previously-createdlarger-id views. All created views are recorded in created .37

dvsSignature:Input: dvs-gpsnd(m)p, m 2 Mc, p 2 Pdvs-registerp, p 2 PInternal: dvs-createview(v), v 2 Vdvs-order(m; p; g), m 2 Mc, p 2 P, g 2 G Output: dvs-gprcv(m)p;q , m 2 Mc, p; q 2 Pdvs-safe(m)p;q , m 2Mc, p; q 2 Pdvs-newview(v)p , v 2 V, p 2 v:setState:created 2 2V , init fv0gfor each p 2 P:current-viewid[p] 2 G?, init g0 if p 2 P0, ? elsefor each g 2 G:queue[g] 2 seqof (Mc �P), init �attempted [g] 2 2P , init P0 if g = g0, ; elseregistered [g] 2 2P , init P0 if g = g0, ; else for each p 2 P, g 2 G:pending [p; g] 2 seqof (Mc), init �next[p; g] 2 N>0, init 1next-safe[p; g] 2 N>0, init 1Derived variables:Att 2 2V , de�ned as fv 2 created j attempted [v:id] 6= ;gTotAtt 2 2V , de�ned as fv 2 created j v:set � attempted [v:id]gReg 2 2V , de�ned as fv 2 created j registered [v:id] 6= ;gTotReg 2 2V , de�ned as fv 2 created j v:set � registered [v:id]gTransitions:internal dvs-createview(v)Pre: 8w 2 created : v:id 6= w:id8w 2 created :9x 2 TotReg : w:id < x:id < v:idor 9x 2 TotReg : v:id < x:id < w:idor v:set \ w:set 6= ;E�: created := created [fvgoutput dvs-newview(v)pPre: v 2 createdv:id > current-viewid[p]E�: current-viewid[p] := v:idattempted [v:id] := attempted [v:id] [fpginput dvs-registerpE�: if current-viewid[p] 6= ? thenregistered [current-viewid[p]] :=registered [current-viewid[p]][fpginput dvs-gpsnd(m)pE�: if current-viewid[p] 6= ? thenappend m to pending [p; current-viewid[p]]

internal dvs-order(m; p; g)Pre: m is head of pending[p; g]E�: remove head of pending [p; g]append hm; pi to queue[g]output dvs-gprcv(m)p;q , choose gPre: g = current-viewid[q]queue[g](next[q; g]) = hm; piE�: next[q; g] := next[q; g] +1output dvs-safe(m)p;q , choose g; PPre: g = current-viewid[q]hg; P i 2 createdqueue[g](next-safe[q; g]) = hm; pifor all r 2 P :next[r; g] > next-safe[q; g]E�: next-safe[q; g] := next-safe[q; g] +1
Figure 5-1: The dvs service.

38

The dvs service informs its clients of view changes using dvs-newview(hg; P i)p actions; such anaction informs processor p that the view identi�er g is associated with membership set P and thatthe current group of processors connected to p is P . After any �nite execution, we de�ne the currentview at p to be the argument v in the last dvs-newview(v)p event, if any, otherwise it is the initial viewv0 for processors in P0 and is unde�ned for other processors. Even though views can be created outof view identi�er order, the noti�cation to each client is consistent with that order. Not every clientneeds to see every view. The variable attempted records, for each view, which processes have beennoti�ed of that view. Variable attempted is only used in proving the correctness of an implementationof dvs.With the dvs-registerp action, the client at p informs the service that it has obtained whateverinformation the application needs to begin operating in the new view v. For many applications, thiswill mean that p has received messages from every other member of view v, reporting its state at thestart of v. The variable registered records, for each view, which process have registered that view.Variable registered is only used in proving the correctness of an implementation of dvs.The dvs service allows a processor p to broadcast a message m using a dvs-gpsnd(m)p action, anddelivers the message to a processor q using a dvs-gprcv(m)p;q action. dvs also uses a dvs-safe(m)p;qaction to report to processor q that the earlier message m from p has been delivered to all membersof the current view of q. dvs guarantees that messages sent by a processor p when the current viewof p is v are delivered only within view v (i.e., only to processors in v :set whose current view is v).Moreover, each processor receives messages in the same order as other processor and without gapsin the sequence of received messages; however, a processor may receive only a pre�x of the sequenceof messages received by another processor. Variables queue; pending ;next and next-safe are used forhandling the messages. Their use should be clear from the code.There are four derived variables, Att, TotAtt, Reg and TotReg. Informally, a view belongs tothe set Att if it has been reported to at least one member of the view (we say that it is attempted).A view belongs to the set TotAtt if it has been reported to all members of the view (we say thatthe view is totally attempted). Similarly, a view belongs to the set Reg if at least one member ofthe view has registered the view (we say that it is registered) and belongs to the set TotReg, if allmembers of the view have registered the view (we say that the view is totally registered).We close this section with some invariants stating properties of dvs.Invariant 5.1.1 (dvs)In any reachable state, TotAtt � Att, TotReg � Reg, Reg � Att, and TotReg � TotAtt.Invariant 5.1.2 (dvs)In any reachable state if, p 2 attempted [g] then current-viewid [p] � g.39

Invariant 5.1.3 expresses the key intersection property guaranteed by dvs; this is weaker thanthe intersection property required by static de�nitions of primary views, which says that all primarycomponents must intersect. This invariant is our version of the correctness requirement for dynamicview services that two consecutive primary views intersect.Invariant 5.1.3 (dvs)In any reachable state, if v; w 2 created, v:id < w:id , and there is no x 2 TotReg such that v:id <x:id < w:id , then v:set \ w:set 6= ;.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state created = fv0g and thus the invariant isvacuously true.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0for any possible step (s; �; s0). The only steps that can change the hypothesis from false to true aredvs-createview(v) and dvs-createview(w). The preconditions of these actions show that the neededconclusion holds. No step changes the conclusion from true to false.Invariant 5.1.4 says that if a view w is totally attempted, then any earlier view v has a memberwhose current view is later than v.Invariant 5.1.4 (dvs)In any reachable state, if v 2 created, w 2 TotAtt, and v:id < w:id , then there exists p 2 v:set withcurrent-viewid [p] > v:id .Proof: Consider any particular reachable state. Assume that v 2 created , w 2 TotAtt, and v:id <w:id . Then let y be the view in TotAtt having the smallest viewid strictly greater than v:id. Thenthere is no x 2 TotAtt with v:id < x:id < y:id. Then Invariant 5.1.1 implies that there is nox 2 TotReg with v:id < x:id < y:id. Then Invariant 5.1.3 implies that v:set \ y:set 6= ;. Letp 2 v:set\y:set ; then p 2 attempted [y:id]. Then Invariant 5.1.2 implies that current-viewid [p] � y:id .This implies current-viewid [p] > v:id.5.2 An implementation of dvsWe now give an implementation of the dvs service which we call dvs-impl. In Section 5.2.1 we de-scribe dvs-impl, in Section 5.2.2 we provide some invariants of dvs-impl and �nally in Section 5.2.3we prove that dvs-impl implements dvs, in the sense of inclusion of sets of traces.
40

5.2.1 OverviewThe implementation uses as a building block the group communication service vs (see Chapter 4)and uses ideas from [88]. The overall system is the composition of an automaton vs-to-dvsp foreach p 2 P , and vs, with the external actions of vs hidden in the composition. This system is calleddvs-impl and is illustrated in Figure 5-2.
VS

DVS-IMPL

VS-TO-DVSVS-TO-DVS p q

Figure 5-2: The dvs-impl system.The automaton vs-to-dvsp is given in Figure 5-3. vs-to-dvsp uses special non-client messages,tagged either with \info" or \registered". Thus, we useM =Mc[f(\info"�V�2V)g[f\registered"g,whereMc is the set of all client messages andM is the universe of all messages. The attempted , reg ,and info-sent state variables are not needed for the algorithm, but only for the correctness proof.Automaton vs-to-dvsp acts as a \�lter", receiving vs-newview inputs from the underlying vsservice and deciding whether to accept the proposed views as primary views. If vs-to-dvsp decidesto accept some such view v, it \attempts" the view by performing a dvs-newview(v) output. Foreach v, we think of the dvs internal dvs-createview(v) action as occurring at the time of the �rstdvs-newview(v) event.According to the dvs speci�cation, the algorithm is supposed to guarantee nonempty intersec-tion of each newly-created primary view v with any previously-created view w having no interveningtotally registered view { a global condition involving nonempty intersection. The vs-to-dvsp pro-cessors, however, do not have accurate knowledge of which primary views have been created by otherprocessors, nor of which views are totally registered. Therefore, the processors employ a local checkof majority intersection with known views, rather than a global check of nonempty intersection withexisting views. Speci�cally, each vs-to-dvsp keeps track of an \active" view act , which is the latestview that it knows to be totally registered, plus a set of \ambiguous" views amb, which are all theviews that it knows have been attempted (i.e., have had a dvs-newview action performed someplace),and whose ids are greater than act :id . We de�ne use = factg [amb. When vs-to-dvsp receives avs-newview(v) input, it sends out \info" messages containing its current act and amb values to all theother processors in the new view, using the vs service, and then waits to receive corresponding \info"messages for view v from all the other processors in the view. After receiving this information (and41

vs-to-dvsSignature:Input: dvs-gpsnd(m)p, m 2 Mcdvs-registerpvs-newview(v)p , v 2 V, p 2 v:setvs-gprcv(m)q;p, m 2 M, q 2 Pvs-safe(m)q;p, m 2M, q 2 P Internal: dvs-garbage-collect(v)p, v 2 VOutput: vs-gpsnd(m)p , m 2Mdvs-newview(v)p , v 2 V, p 2 v:setdvs-gprcv(m)q;p, m 2Mc, q 2 Pdvs-safe(m)q;p, m 2 Mc, q 2 PState:cur 2 V?, init v0 if p 2 P0, ? elseclient-cur 2 V?, init v0 if p 2 P0, ? elseact 2 V, init v0amb 2 2V , init ;attempted 2 2V , init fv0g if p 2 P0,; elsefor each g 2 G, q 2 Pinfo-rcvd[q; g] 2 (V � 2V)?, init ?rcvd-rgst[q; g] a bool, init false for each g 2 Gmsgs-to-vs[g] 2 seqof (M), init �msgs-from-vs[g] 2 seqof (Mc � P), init �safe-from-vs[g] 2 seqof (Mc � P), init �reg[g] a bool, init true if p 2 P0 and g = g0, false elseinfo-sent[g] 2 (V � 2V)?, init ?Derived variables:Att 2 2V , de�ned as Att = fv 2 created j (9p 2 v:set)v 2 attemptedpg;Reg 2 2V , de�ned as Reg = fv 2 created j (9p 2 v:set)reg [v:id]p = trueg;TotAtt 2 2V , de�ned as TotAtt = fv 2 created j (8p 2 v:set)v 2 attemptedpg;TotReg 2 2V , de�ned as TotReg = fv 2 created j (8p 2 v:set)reg [v:id]p = trueg.use 2 2V , de�ned as use = factg [ambTransitions:input vs-newview(v)pE�: cur := vappend h\info"; act; ambi tomsgs-to-vs[cur :id]info-sent[cur :id] := hact ; ambiinput vs-gprcv(h\info"; v; V i)q;pE�: info-rcvd [q; cur :id] := hv; V iif v:id > act:id then act := vamb := fw 2 amb [V j w:id > act:idginput vs-safe(h\info"; v; V i)q;pE�: noneoutput dvs-newview(v)pPre: v = curv:id > client-cur :id8q 2 v:set; q 6= p : info-rcvd [q; v:id] 6= ?8w 2 use : jv:set \ w:setj > jw:setj=2E�: amb := amb [fvgattempted := attempted [fvgclient-cur := vinput dvs-registerpE�: if client-cur 6= ? thenreg[client-cur] := trueappend h\registered"i tomsgs-to-vs[client-cur :id]input vs-gprcv(h\registered"i)q;pE�: rcvd-rgst[cur :id; q] := true

input vs-safe(h\registered"i)q;pE�: noneinternal dvs-garbage-collect(v)pPre: 8q 2 v:set : rcvd-rgst[q; v:id] = truev:id > act:idE�: act := vamb := fw 2 amb j w:id > act:idginput dvs-gpsnd(m)pE�: if client-cur :idp 6= ? thenappend m to msgs-to-vs[client-cur :id]output vs-gpsnd(m)pPre: m is head of msgs-to-vs[cur.id]E�: remove head of msgs-to-vs[cur.id]input vs-gprcv(m)q;p, where m 2 McE�: append hm; qi to msgs-from-vs[cur.id]output dvs-gprcv(m)q;pPre: hm; qi is head of msgs-from-vs[client-cur.id]E�: remove head of msgs-from-vs[client-cur.id]input vs-safe(m)q;p, where m 2McE�: append hm; qi to safe-from-vs[cur.id]output dvs-safe(m)pPre: hm; qi is head of safe-from-vs[client-cur :id]E�: remove head of safe-from-vs[client-cur :id]Figure 5-3: The vs-to-dvsp code.
42

updating its own act and amb accordingly), vs-to-dvsp checks that v has a majority intersectionwith each view in use. If so, vs-to-dvsp performs a dvs-newviewp output.Then the clients can use the communication system to exchange state information as needed forprocessing in view v. When client at p has obtained enough information, it \registers" the view bymeans of action dvs-registerp, which causes processor p to send \registered" messages to the othermembers. When a processor receives \registered" messages for a view v from all members, it mayperform garbage collection by discarding information about views with ids smaller than that of v.vs-to-dvs uses vs to send and receive messages.The system dvs-impl is de�ned as composition of all the vs-to-dvsp automata and vs with allthe external actions of vs hidden.There are four derived variables for dvs-impl analogous to those of dvs, indicating the at-tempted, totally attempted, registered, and totally registered views, respectively. Another derivedvariable, usep is de�ned in the code.5.2.2 Invariants of dvs-implThis section contains invariants of dvs-impl needed for the proof that dvs-impl implements dvs inSection 5.2.3. The �rst invariants state simple facts about dvs.Invariant 5.2.1 (dvs-impl)In any reachable state, if curp 6= ? then current-viewid [p] = cur :idp.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Fix p. In the initial state we have that curp = ?.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0for any possible step (s; �; s0). Fix p. We prove the invariant considering each possible action �.1. � = vs-newview(v)p .By the code of � in vs, we have that current-viewid [p] = v:id. By the code of � in dvs-impl,we have that cur :idp = v:id.2. Other actions.Variables current-viewid [p] and cur :idp are not modi�ed. Hence the assertion cannot be madefalse.Invariant 5.2.2 (dvs-impl)In any reachable state, if v 2 attemptedp then client-cur :idp � v:id .43

Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Fix v; p. In the initial state we have that attemptedp = fv0g forp 2 P0 and attemptedp = ? for p 62 P0. So assume that v = v0 and p 2 P0. Then client-curp = v0.Hence the invariant is true.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0 forany possible step (s; �; s0). Fix v; p and assume that v 2 s0:attemptedp. We distinguish two possiblecases.1. v 2 s:attemptedp.By the inductive hypothesis we have that s:client-curp � v:id . By the monotonicity ofclient-curp we have that s0:client-curp � s:client-curp.2. v 62 s:attemptedp.Then it must be � =dvs-newview(v)p. The invariant follows from the code which sets client-curpto v.Invariant 5.2.3 (dvs-impl)In any reachable state, if v 2 info-sent [g]p = hx;Xi then cur :idp � g.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Fix v; p. In the initial state we have that info-sentp = ? andthus the invariant is vacuously true.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0 forany possible step (s; �; s0). Fix p; g; x;X and assume that s0:info-sent [g]p = hx;Xi. We distinguishtwo possible cases.1. s:info-sent [g]p = hx;XiBy the inductive hypothesis we have that s:curp � g. By the monotonicity of curp we havethat s0:curp � s:curp. Hence the invariant is true.2. s:info-sent [g]p 6= hx;XiThen it must be � =vs-newview(v)p and g = v:id = s0:act :idp. Action vs-newview(v)p sets s0:curto v, so s0:cur :id = g.Invariant 5.2.4 (dvs-impl)In any reachable state: 44

1. v0 2 TotReg.2. g0 � v:id for all v 2 created.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Part 1 is true because in then initial state every processorp 2 P0 has reg [g0] = true. Part 2 is true because the only view in created is v0.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0for any possible step (s; �; s0).Consider Part 1 �rst. No view is ever removed from TotReg. Hence no step can make the assertionfalse. Consider Part 2 now. Fix v and assume that v 2 s0:created . We distinguish two cases.1. v 2 s:created .Then the assertion follows from the inductive hypothesis.2. v 62 s:created .It must be �=vs-createview(v)p. By the precondition of this action we have that v:id > w:idfor all w 2 s:created . By the inductive hypothesis g0 � w:id for all w 2 s:created . Sinces0:created = s:created [fvg, it follows that g0 � w:id for all w 2 s0:created .Invariant 5.2.5 (dvs-impl)In any reachable state, if rcvd-rgst [q; v:id]p 6= ? then curp 6= ?.Proof: By induction on the length of the execution. The base case consists of proving that the invari-ant is true in the initial state. Fix p; q and v. In the initial state we have that rcvd-rgst [q; v:id]p = ?.Hence the invariant is vacuously true.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0for any possible step (s; �; s0). Fix p; q; v. We prove the invariant considering each possible action�. Assume that s0:rcvd-rgst [q; v:id]p 6= ?.1. � = vs-newview(v)p .Since s0:curp = v we have that s0:curp 6= ? (vs cannot deliver ?, it is not a view).2. � = vs-gprcv(h\registered 00i)p;q .By the precondition of � (see vs) we have that s:current-viewid [p] 6= ?. By Invariant 5.2.1 wehave s:cur :idp = s:current-viewid [p] 6= ?. Hence s0:cur :idp = s:cur :idp 6= ?.
45

3. Other actions.Variables rcvd-rgst [q; v:id]p and curp are not modi�ed. Hence the assertion cannot be madefalse.
Invariant 5.2.6 (dvs-impl)In any reachable state, if cur :idp = ? then actp = v0 and ambp = ;.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Fix p. In the initial state we have that actp = v0 and ambp = ;.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0for any possible step (s; �; s0). Fix p. We prove the invariant considering each possible action �.Assume that s0:curp = ?. Since no actions sets curp to ? it must be s:curp = ?.1. � = vs-gprcv(h\info00; v; V i)p;q .This cannot happen. Indeed by precondition of � (see vs) we have that s:current-viewid [p] 6= ?.By Invariant 5.2.1 we have s:cur :idp = s:vs:current-viewid [p] Hence s0:cur :idp = s:cur :idp 6=?. But we know that s0:cur :id = ?.2. � = dvs-newview(v)v.Cannot happen. Indeed the precondition of � says that v = s:curp. Since s:cur :id = ?, wehave v = ?. Thus the precondition v:id > client-cur :idp cannot be satis�ed (? cannot bestrictly greater than any view identi�er).3. � = dvs-garbage-collect(v).Cannot happen. Indeed by Invariant 5.2.5 we have that s:curp 6= ?. But we know thats:curp = ?.4. Other actions.Variables curp, actp and ambp are not modi�ed. Hence the assertion cannot be made false.The following invariant states that if an \info" message is in transit for view v or has beenreceived by some process q in view v then there exists a process p that has sent the \info" in viewv and such that its current view is either v or a later one.Invariant 5.2.7 (dvs-impl)In any reachable state, let C be the following condition:46

h\info00; x;Xi 2 msgs-to-vs[g]p or h\info00; x;Xi 2 pending [p; g] or hh\info00; x;Xi; pi 2queue[g] or info-rcvd [p; g]q = hx;Xi.If C is true then info-sent [g]p = hx;Xi and cur :idp � g.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Fix p; q; g; x and X . In the initial state msgs-to-vs[g]p = �,pending [p; g] = �, queue[g] = � and info-rcvd [p; g]q = ?. Hence, in the initial state, C is false andthe invariant is vacuously true.For the inductive step assume that the invariant is true in a reachable state s. We need to provethat it is true in state s0 for any possible step (s; �; s0) of the execution. Fix p; q; g; x, and X andassume that C is true in s0.1. � = vs-newview(v)p .By the code of �, s0:curp = v. Assume v:id 6= g. Then the code of � shows that none ofmsgs-to-vs[g]p, pending [p; g], queue[g] or info-rcvd [p; g]q is changed during this step. Thus Cis true also in s. By the inductive hypothesis we have s:info-sent [g]p = hx;Xi and cur :idp � g.Since we are considering the case v:id 6= g, we have that info-sent [g]p is not changed by �.Moreover the precondition of � (see vs) shows that s0:current-viewid [p] > s:current-viewid [p].By Invariant 5.2.1, cur :idp = current-viewid [p], so s0:cur :idp > s:cur :idp. This completesshowing the conclusion for the situation w:id 6= g.Assume now v:id = g. The code shows s0:cur :idp = g as required. It remains to show thathx;Xi 2 info-sent [g]p.Action � does not alter the values of pending [p; g], queue[g] and info-rcvd [p; g]q and ap-pends h\info00; s:actp; s:ambpi to msgs-to-vs[g]p. We claim that it must be x = s:actp andX = s:ambp. Indeed if it is not so, then condition C is true also in state s (for the givenp; q; g; x;X) and by the inductive hypothesis we have s:cur :idp � g = w:id . By Invariant 5.2.1,s:current-viewid [p] � w:id . But this contradicts the precondition of � (see vs).Thus x = s:actp and X = s:ambp. Then the code of � shows that hx;Xi 2 info-sent [g]p, asrequired.2. � = vs-gprcv(h\info00; v; V i)p;q .If g 6= cur :id q then since C is true in s0 it is true also in s (for the given p; q; g; x;X). Thusthe inductive hypothesis is true. Since the code does not change info-sent [g]p and cur :idp, theinvariant follows from the inductive hypothesis.Hence assume that g = cur :id q. First consider the case x = v and X = V . In this case, bythe precondition of � (see vs) we have that hh\info00; x;Xi; pi 2 queue[g]. Then the invariantfollows from the inductive hypothesis. 47

Consider now the case x 6= v orX 6= V . In this case, by the code, we have that s0:info-rcvd [p; g]q 6=hx;Xi. Since C is true in s0, it must be that h\info00; x;Xi 2 msgs-to-vs[g]p or h\info00; x;Xi 2pending [p; g] or hh\info00; x;Xi; pi 2 queue[g] is true in s0. Variablesmsgs-to-vs[g]p, pending [p; g]and queue[g] are not changed by �. Hence C is true in s. The invariant follows from the in-ductive hypothesis.3. � = vs-gpsnd(h\info00 ; v; V i)p.If g 6= client-cur :idp then since C is true in s0 it is true also in s (for the given p; q; g; x;X).Thus the inductive hypothesis is true. Since the code does not change info-sent [g]p and cur :idp,the invariant follows from the inductive hypothesis.Hence assume that g = client-cur :idp. First consider the case x = v and X = V . In this case,by the precondition of � (see dvs-impl) we have that hh\info00; x;Xi; pi 2 msgs-to-vs [g]. Thenthe invariant follows from the inductive hypothesis.Consider now the case x 6= v or X 6= V . Since C is true in s0 we have that C is true in s too.Indeed no h\info00; x;Xi message is deleted and info-rcvd [p; g]q is not changed. The invariantfollows from the inductive hypothesis.4. � = vs-order(h\info00 ; v; V i; p; g).First consider the case x = v and X = V . In this case, by the precondition of � we have thathh\info00; x;Xi; pi 2 pending [g]. Then the invariant follows from the inductive hypothesis.Consider now the case x 6= v or X 6= V . Since C is true in s0 we have that C is true in s too.Indeed no h\info00; x;Xi message is deleted and info-rcvd [p; g]q is not changed. The invariantfollows from the inductive hypothesis.5. Other actions.Condition C never changes from false to true and variables info-sent [g]p and cur :idp are notmodi�ed. Hence the assertion cannot be made false.The following invariant states that if a \registered" message for view v has been sent by processp then variable reg [v:id]p is set to true (that is, the view has been registered by the client at p).Invariant 5.2.8 (dvs-impl)In any reachable state, let C be the following condition:h\registered 00i 2 msgs-to-vs [g]p or h\registered 00i 2 pending [p; g] or h\registered 00; pi 2queue[g] or rcvd-rgst [p; g]q = true.If C is true then reg [g]p = true. 48

Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Fix p; g; q. In the initial state we have that msgs-to-vs [g]p = �,pending [p; g] = �, queue[g] = � and rcvd-rgst [p; g]q = false. Hence C is false in the initial stateand the invariant is vacuously true.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0for any possible step (s; �; s0). Fix p; g; q and assume that C is true in s0.1. � = dvs-registerp.If s:client-cur :idp 6= g then C is true also in s and the invariant follows from the inductivehypothesis. Hence assume s:client-cur :idp = g. By the code of � we have that we havereg [g]p = true.2. � = vs-gpsnd(h\registered 00i)p.If s:current-viewid [p] 6= g then C is true also in s and the invariant follows from the inductivehypothesis. Hence assume g = s:current-viewid [p]. By Invariant 5.2.1 we have that s:cur :idp =s:current-viewid [p]. Hence s:cur :idp = g. By the precondition of � (see dvs-impl) we havethat h\registered 00i 2 s:msgs-to-vs [g]p. Hence C is true in s and the invariant follows from theinductive hypothesis.3. � =vs-order(h\registered 00 ; p0; g0i).If p0 6= p or g0 6= g then C is true also in s and the invariant follows from the inductivehypothesis. Hence assume p0 = p and g0 = g. By the precondition of � we have thath\registered 00i 2 s:pending [p; g]. Hence C is true also in s and the invariant follows fromthe inductive hypothesis.4. Other actions.Condition C never changes from false to true and variable reg [g]p is not modi�ed. Hence theassertion cannot be made false.The following invariant states some facts about views in TotReg.Invariant 5.2.9 (dvs-impl)In any reachable state:1. actp 2 TotReg.2. If info-sent [g]p = hx;Xi then x 2 TotReg.3. usep \ TotReg 6= ;. 49

Proof: First notice that Part 3 follows easily from Part 1 and the fact that, by de�nition, actp 2 usep.Hence we only need to prove Parts 1 and 2.By induction on the length of the execution. The base case consists of proving that the invariantis true in the initial state. For Part 1, �x p. In the initial state actp = v0 and v0 is totally registeredby de�nition. For Part 2, �x p; g. In the initial state info-sent [g]p = ?. Hence the invariant isvacuously true.For the inductive step assume the invariant is true in s. We need to prove that it is true in s0 forany possible step (s; �; s0). Fix p, g, x and X . We prove the invariant by considering each possibleaction.1. � = vs-newview(v)p .Part 1 is still true in s0 because actp is not modi�ed (as well as TotReg).Consider Part 2 now. Assume that s0:info-sent [g]p = hx;Xi. If v:id 6= g then s:info-sent [g]p =hx;Xi then by the inductive hypothesis we have that x 2 s:TotReg. Since no view is everremoved from TotReg we have that x 2 s0:TotReg, as needed. Hence we can further assumethat v:id = g. Since s0:info-sent [g]p = hx;Xi and action � sets info-sent [g]p = hactp; ambpi itmust be that s:actp = x and s:ambp = X .By the inductive hypothesis, Part 1, we have that s:actp 2 s:TotReg. But x = s:actp and noview is removed from TotReg. Hence x 2 s0:TotReg. Thus Part 2 is still true in s0.2. � = vs-gprcv(h\info00; v; V i)p;q .Consider Part 1 �rst. If s0:actp = s:actp then Part 1 follows by the inductive hypothesis. Henceassume that s0:actp 6= s:actp. By the code we have that s0:actp = v. Thus we have to provethat v 2 TotReg. By the precondition of � (in vs) we have hh\info00; v; V i; qi 2 s:queue[cur :idp].Then Invariant 5.2.7 implies that s:info-sent [cur :idp]q = hv; V i. By the inductive hypothesis,Part 2, we have that v 2 s:TotReg, as needed.Part 2 is preserved because info-sent [g]p is not modi�ed.3. � = dvs-garbage-collect(v)p.Consider Part 1 �rst. If s0:actp = s:actp then Part 1 follows by the inductive hypothesis.Hence assume that s0:actp 6= s:actp. By the code we have that s0:actp = v. Hence we have toprove that v 2 TotReg. By the precondition of � we have that rcvd-rgst [q; v:id] = true for allq 2 v:set. Then Invariant 5.2.8 implies that v 2 TotReg.Part 2 is preserved because info-sent [g]p is not modi�ed.4. Other actions. 50

Variables actp, info-sent [g]p (as well as TotReg) are not modi�ed. Hence the assertions cannotbe made false.The following invariant states that if process q is in a view which has been attempted by process p(which may or may not be q itself) then the current view of q is either v or a later one.Invariant 5.2.10 (dvs-impl)In any reachable state, if v 2 attemptedp and q 2 v:set then cur :id q � v:id.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Fix p; v and suppose that v 2 attemptedp and q 2 v :set . Ifp 62 P0 then attemptedp = ;, a contradiction. On the other hand, if p 2 P0 then since v 2 attemptedp,it must be that v = v0. Moreover since q 2 v :set we have that q 2 P0. Hence curq = v0, socur :id q � v :id , as needed.For the inductive step assume the invariant is true in state s. We need to prove that it is true ins0 for any possible step (s; �; s0). Fix p and v and assume that v 2 s0:attemptedp and q 2 v :set . Wedistinguish two cases.1. v 2 s:attemptedp.By the inductive hypothesis we have that s:cur :id q � v :id . By the monotonicity of cur :id wehave that s0:cur :id q � s:cur :id q .2. v 62 s:attemptedp.It must be � = dvs-newview(v)p. We consider two possible cases: q = p and q 6= p.Assume that q = p. Then Invariant 5.2.2 implies that s0:client-curp � v:id . Since s0:cur :idp =s0:client-curp, we have that s0:cur :idp � v:id , as needed.Assume that q 6= p. Then the precondition of � says that s:info-rcvd [q; v:id] 6= ?. By Invariant5.2.7 (used with p and q interchanged) we have that cur :id q � v:id , as needed.The following invariant states properties of views in the use set.Invariant 5.2.11 (dvs-impl)In any reachable state:1. If curp 6= ? and w 2 usep, then w:id � cur :idp.2. If curp 6= ? and client-curp 6= curp and w 2 usep, then w:id < cur :idp.51

3. If info-sent [g]p = hx;Xi and w 2 fxg [X then w:id < g.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Consider Part 1 �rst. In the initial state we have that usep iseither empty or contains only v0. In the former case Part 1 is vacuously true. In the latter case wehave that w = v0 and the invariant follows from the fact that g0 is the minimum element of G. Parts2 and 3 are vacuously true. Indeed in the initial state client-curp = curp and info-sent [g]p = ?.For the inductive step assume the invariant is true in state s. We need to prove that it is true ins0 for any possible step (s; �; s0). Fix p; g; x;X and w.We prove that the invariant is still true in s0 by considering each possible action �.1. � = vs-newview(v)pFirst consider Part 1. Assume that s0:curp 6= ? and w 2 s0:usep. Then w 2 s:usep. Ifs:curp = ?, then, by Invariant 5.2.6, w = v0. Since v0:id is the minimum element of G,we have that w:id < s0:cur :idp. So assume that s:curp 6= ?. In this case, by the inductivehypothesis, Part 1, we have that w:id � s:cur :idp, which implies w:id < s0:cur :idp.Hence Part 1 is still true in s0. Since we actually proved that w:id < s0:cur :idp also Part 2 isstill true in s0.Now consider Part 3. Assume that s0:info-sent [g]p = hx;Xi and w 2 fxg[X . If g 6= v :id thenwe have that s:info-sent [g]p = hx;Xi. By the inductive hypothesis, Part 3, we have w:id < g,as needed. Hence assume g = v :id . By the code of �, we have that s:usep = fxg [X . Now ifs:curp = ?, then by Invariant 5.2.6, w = v0. Since v0:id is the minimum element of G, we havethat w:id < v:id = g, as needed. So assume further that s:curp 6= ?. In this case, the inductivehypothesis, Part 1, implies that w:id � s:cur :idp, which implies w:id < s0:cur :idp = v:id = g,as needed.2. � = dvs-newview(v)pConsider Part 1 �rst. The only possible new element added to usep is v. Since v = s0:cur :id ,Part 1 still holds in s0. Part 2 is vacuously true, because s0:client-curp = s0:curp. Part 3 ispreserved because info-sent [g]p is not modi�ed.3. � = dvs-garbage-collect(v)pConsider Part 1. Assume that s0:curp 6= ? and that w 2 s0:usep. By the code s0:curp = s:curp.If w 2 s:usep then by the inductive hypothesis Part 1 is true in s and thus it is still true in s0.Hence assume that w 62 s:usep. By the code, this cannot happen because no view is added tousep.Part 2 can be proved in a similar way. Part 3 is preserved because info-sent [g]p is not modi�ed.52

4. � = vs-gprcv(h\info00; x;Xi)q;pThe proof is exactly as in the previous case.5. Other actions.Variables usep, curp, client-curp and info-sent [g]p are not modi�ed. Hence none of the asser-tions can be made false.The following three invariants, say that certain views appear in use sets, or in \info" messages,unless they have been garbage-collected.Invariant 5.2.12 (dvs-impl)In any reachable state, if w 2 attemptedp then either w 2 usep or w:id < act :idp.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. Fix p; w and suppose that w 2 attemptedp. If p 62 P0 thenattemptedp = ;, a contradiction. On the other hand, if p 2 P0 then since w 2 attemptedp, it mustbe that w = v0. But in this case also actp = v0, so v0 2 usep, as needed.For the inductive step assume the invariant is true in state s. We need to prove that it is true ins0 for any possible step (s; �; s0). So �x w and p such that w 2 s0:attemptedp. We distinguish twopossible cases.1. w 2 s:attemptedp.By the inductive hypothesis we have that either w 2 s:usep or w:id < s:act :idp. In thelatter case, because of the monotonicity of act :idp, we have w:id < s0:act :idp. So assume thatw 2 s:usep. If w 2 s0:usep we are done, so assume further that w 62 s0:usep. Then it must bethat either � = dvs-garbage-collect(v)p or � = vs-gprcv(h\info00; x;Xi)r;p for some r. In eithercase, the code implies that s0:actp > w:id.2. w 62 s:attemptedp.It must be � = dvs-newview(v)p. By the code, view v is inserted into attemptedp, but also intoambp (and hence into usep). Thus the invariant is still true in s0.
Invariant 5.2.13 (dvs-impl)In any reachable state, if info-rcvd [q; g]p = hx;Xi and w 2 fxg [X, then either w 2 usep orw:id < act :idp. 53

Proof: By induction on the length of an execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state info-rcvd [q; g]p = ? for any p; q; g. Hencethe statement is vacuously true.For the inductive step assume the invariant is true in state s. We need to prove that it is true in s0for any possible step (s; �; s0). Fix p, q, g, x, X and w, and assume that s0:info-rcvd [q; g]p = hx;Xi,and w 2 fxg [X . We consider two cases:1. s:info-rcvd [q; g]p = hx;XiBy the statement applied to s, we obtain that either w 2 s:usep, or s:act :idp > w:id . In thelatter case, s0:act :idp > w:id , because of monotonicity of act :idp. So assume that w 2 s:usep.If w 2 s0:usep then we are done, so assume further that w =2 s0:usep. (That is, w is garbage-collected.)Then it must be that either � =dvs-garbage-collect(v)p or � = vs-gprcv(h\info00 ; x;Xi)r;p forsome r. In either case, the code implies that s0:actp > w:id.2. s:info-rcvd [q; g]p 6= hx;XiThen � = vs-gprcv(h\info00; x;Xi)q;p. If w 2 s0:usep then we are done. Hence assume thatw 62 s0:usep. By the code, we have that s0:actp > w:id (that is, w is garbage-collected).Invariant 5.2.14 (dvs-impl)In any reachable state, if info-sent [g]p = hx;Xi, w 2 attemptedp, and w:id < g, then either w 2fxg [X or w:id < x:id.Proof: By induction on the length of an execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, info-sent [g]p = ? for all g; p, so thestatement is vacuously true.For the inductive step assume the invariant is true in state s. We need to prove that it is true ins0 for any possible step (s; �; s0). Fix p, g, w, x, and X , and assume that s0:info-sent [g]p = hx;Xi,w 2 s0:attemptedp, and w:id < g. We consider four cases:1. s:info-sent [g]p = hx;Xi and w 2 s:attemptedp.Then the statement for s implies that either w 2 fxg [X or w:id < x:id . In either case thestatement is true in s0 also.2. s:info-sent [g]p 6= hx;Xi and w =2 s:attemptedp.This cannot happen because both conditions cannot become true in a single step: the �rst onlybecomes true by means of a vs-newview(v)p , for some view v, while the second only becomestrue by means of dvs-newview(w)p. 54

3. s:info-sent [g]p 6= hx;Xi and w 2 s:attemptedp.It must be � = vs-newview(v)p , for some v, x must be s:actp, and X must be s:ambp. In-variant 5.2.12 implies that either w 2 s:usep or w:id < s:act :idp. Now, s:usep = fs:actpg [s:ambp = fxg [X . So we have that either w 2 fxg [X or w:id < x:id , as needed.4. s:info-sent [g]p = hx;Xi and w =2 s:attemptedp.Then � must be dvs-newview(w)p. We claim that this cannot happen: Since s:info-sent [g]p =hx;Xi, by Invariant 5.2.3 we have s:cur :idp � g. Since g > w:id, we have s:curp > w:id. Butthe precondition of � requires that s:curp = w:id . Hence � is not enabled in state s.Invariant 5.2.15 says that two attempted views having no intervening totally registered view,and having a common member, q, that has attempted the �rst view, must intersect in a majorityof processors. This is because, under these circumstances, information must
ow from q to anyprocessor that attempts the second view.Invariant 5.2.15 (dvs-impl)In any reachable state, suppose that v 2 attemptedp, q 2 v:set, w 2 attempted q, w:id < v:id, andthere is no x 2 TotReg such that w:id < x:id < v:id. Then jv:set \ w:setj > jw:setj=2.Proof: By induction on the length of an execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, only v0 is attempted, so the hypothesescannot be satis�ed. Thus, the statement is vacuously true.For the inductive step assume the invariant is true in state s. We need to prove that it is true ins0 for any possible step (s; �; s0). Fix v, w, p, and q, and assume that v 2 s0:attemptedp, q 2 v:set,w 2 s0:attemptedq , w:id < v:id, and there is no x 2 s0:TotReg such that w:id < x:id < v:id. Thenalso there is no x 2 s:TotReg such that w:id < x:id < v:id. We consider four cases:1. v 2 s:attemptedp and w 2 s:attemptedq .Then the statement for s implies that jv:set \ w:setj > jw:setj=2, as needed.2. v =2 s:attemptedp and w =2 s:attemptedq .This cannot happen because we cannot have both v and w becoming attempted in a singlestep.3. v =2 s:attemptedp and w 2 s:attemptedq .Then � must be dvs-newview(v)p. Since q 2 v:set, by the precondition of � we have thats:info-rcvd [q; v:id]p = hx;Xi for some x andX . Then Invariant 5.2.7 implies that s:info-sent [v:id]q =hx;Xi. Then (since w:id < v:id), Invariant 5.2.14 implies that either w 2 fxg [X or55

w:id < x:id. If w:id < x:id, then we obtain a contradiction. Indeed by Invariant 5.2.9x 2 s:TotReg and by Invariant 5.2.11, Part 3 (used with w = x) we have x:id < v:id. Thiscontradicts the hypothesis. So w 2 fxg [X .Now by Invariant 5.2.13 we have that either w 2 s:usep or w:id < s:act :idp. In the formercase, by the precondition of �, we have jv:set\w:setj > jw:setj=2. In the latter case, we obtaina contradiction. Indeed by Invariant 5.2.9 we have s:actp 2 TotReg. Moreover by the precon-dition of �, s:curp cannot be ? and s:curp > s:client-curp and, by de�nition, s:actp 2 s:usep.Hence by Invariant 5.2.11, Part 2, we have s:act :idp < s:cur :idp = v:id . Thus we would havea totally registered view act such that w:id < act :is < c:id. This contradicts the inductivehypothesis.4. v 2 s:attemptedp and w =2 s:attemptedq .Then � must be dvs-newview(w)q . But this cannot happen. Indeed since v 2 s:attemptedpand q 2 v:set, Invariant 5.2.10 implies that s:cur :id q � v:id. Since v:id > w:id, we haves:cur :id q > w:id. But the precondition of action � requires s:cur :id q = w:id, so � is notenabled in s.Invariant 5.2.16 says that any attempted view v intersects the latest preceding totally registeredview w in a majority of members of w.Invariant 5.2.16 (dvs-impl)In any reachable state, suppose that v 2 Att, and w 2 TotReg, w:id < v:id , and there is no x 2 TotRegsuch that w:id < x:id < v:id . Then jv:set \ w:setj > jw:setj=2.Proof: By induction on the length of an execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, only v0 is attempted, so the hypothesescannot be satis�ed. Thus, the statement is vacuously true.For the inductive step assume the invariant is true in state s. We need to prove that it is true in s0for any possible step (s; �; s0). Fix v and w, and assume that v 2 s0:Att, w 2 s0:TotReg, w:id < v:id ,and there is no x 2 s0:TotReg such that w:id < x:id < v:id . We consider four cases:1. v 2 s:Att and w 2 s:TotReg.Then, from the inductive hypothesis we have jv:set \ w:setj > jw:setj=2.2. v =2 s:Att and w =2 s:TotReg.This cannot happen because we cannot have both v becoming attempted and w becomingtotally registered in a single step. 56

3. v =2 s:Att and w 2 s:TotReg.Then � must be dvs-newview(v)p for some p. The precondition of � implies that, for any viewy 2 s:usep, jv:set \ y:setj > jy:setj=2. Hence to prove the claim it is enough to prove thatw 2 s:usep. We proceed by contradiction assuming that w =2 s:usep.By Invariant 5.2.9, Part 3, s:usep \ s:TotReg 6= ;. Let m be the view in s:usep \ s:TotReghaving the biggest identi�er. We know that m 6= w because w =2 s:usep. Also, m 6= v, becausem 2 s:TotReg and v =2 s:TotReg. It follows that m:id 6= v:id .We claim that m:id < w:id . We have already shown that m:id 6= w:id . Suppose for the sakeof contradiction that m:id > w:id . From the precondition of action � we have that s:cur = vand hence s:cur 6= ?. Also from the precondition of � we have that s:client-curp < s:curp.Since m 2 s:usep, Invariant 5.2.11, Part 2, implies that m:id < s:cur :idp and since s:cur = vwe have we have m:id < v:id . So w:id < m:id < v:id . Since m 2 s0:TotReg, this contradictsthe hypothesis of the inductive step. Therefore, m:id < w:id .Let n be the view in s:TotReg that has the smallest id strictly greater than that ofm. Rememberthat w 2 s0:TotReg and since � =dvs-newview(v)p we have that w 2 s:TotReg; thus n exists and itholds m:id < n:id � w:id < v:id . Since m 2 s:usep, the precondition of � implies that jv:set\m:setj > jm:setj=2. By the statement applied to state s, jn:set \m:set j > jm:set j=2. Hencethere exists a processor q 2 v:set\n:set . By the precondition of �, s:info-rcvd [q; v:id]p = hx;Xifor some x;X . Then Invariant 5.2.7 implies that s:info-sent [v:id]q = hx;Xi. Then Invariant5.2.11, Part 3 (used with w = x), implies that x:id < v:id. Since n 2 s:TotReg, we have thatn 2 s:attempted q. Then Invariant 5.2.14 (used with w = n) implies that either n 2 fxg [Xor n:id < x:id . In either case, fxg [X contains a view y 2 s:TotReg (either n or x) such thatn:id � y:id < v:id. Then Invariant 5.2.13 implies that either y 2 s:usep or y:id < s:act :idp. ByInvariant 5.2.9, Part 1, s:actp 2 s:TotReg and by de�nition, s:actp 2 s:usep. So in either case,the hypothesis that m is the totally registered view with the largest id belonging to s:usep iscontradicted.4. v 2 s:Att and w =2 s:TotReg.Then � must be dvs-registerp for some p. Let m be the view in s:TotReg with the largest idthat is strictly less than w:id . By the statement for s, we know that jw:set\m:set j > jm:set j=2and jv:set \m:set j > jm:set j=2. Hence there is a processor q 2 w:set \ v:set .Since v 2 s:Att, there exists a processor r such that v 2 s:attemptedr. Thus also v 2s0:attemptedr: Since w 2 s0:TotReg, we have that w 2 s0:attemptedq. By assumption, thereis no view x 2 s0:TotReg such that w:id < x:id < v:id . By Invariant 5.2.15 applied to state s0(with p = r), we have that jv:set \ w:set j > jw:set j=2, as needed.57

The �nal invariant, a corollary to Invariant 5.2.16, is instrumental in proving that dvs-implimplements dvs.Invariant 5.2.17 (dvs-impl)In any reachable state, if v; w 2 Att, w:id < v:id, and there is no x 2 TotReg with w:id < x:id < v:id,then v:set \ w:set 6= ;.Proof: Suppose that v and w are as given. We consider two cases.1. w 2 TotReg.Since there is no x 2 TotReg, Invariant 5.2.16 implies that jv:set \ w:setj > jw:setj=2, whichimplies that v:set \ w:set 6= fg, as needed.2. w 62 TotReg.Then let Y = fyjy 2 TotReg; y:id < w:idg. We �rst show that Y is nonempty: Invariant 5.2.4implies that v0 2 TotReg and that v0:id � w:id . If v0:id = w:id , then by Invariant 4.1.1, wehave w = v0. But then w 2 TotReg, a contradiction to the de�nition of this case. So we musthave v0:id < w:id , which implies that v0 2 Y , so Y is nonempty.Now �x z to be the view in Y with the largest id. We have that there is no x 2 TotRegwith z:id < x:id < v:id. Then Invariant 5.2.16 implies that jw:set \ z:setj > jz:setj=2 andjv:set \ z:setj > jz:setj=2. Together, these two facts imply that v:set \ w:set 6= fg, as needed.
5.2.3 Proof that dvs-impl implements dvsWe prove that dvs-impl implements dvs by de�ning a function Fdvs that maps states of dvs-implto states of dvs and proving that this function is a abstraction function. Section 5.2.3 contains thede�nition of the function Fdvs and some auxiliary lemmas while Section 5.2.3 contains the proofthat Fdvs is an abstraction function.The abstraction function for dvs-impl.dvs-impl uses vs to send client messages and messages generated by the implementation (\info"and \registered" messages). The abstraction function discards the non-client messages. Thus, if qis a �nite sequence of client and non-client messages, we de�ne purge(q) to be the queue obtainedby deleting any \info" or \registered" messages from q, and purgesize(q) to be the number of \info"and \registered" messages in q. Figure 5-4 de�nes the abstraction function Fdvs.Next we give some simple consequences of the de�nition of Fdvs. They deal with the messagesdelivered by dvs-impl. They state that these messages are exactly the ones that dvs would deliverto the client. 58

Let s be a state of dvs-impl. The state t = Fdvs(s) of dvs is the following.� t:created = [p2Ps:attemptedp� for each p 2 P , t:current-viewid [p] = s:client-cur :idp� for each g 2 G, t:attempted [g] = fpjg = v:id; v 2 s:attemptedpg� for each g 2 G, t:registered [g] = fpjs:reg[g]pg� for each p 2 P , g 2 G, t:pending [p; g] = purge(s:pending [p; g])�purge(s:msgs-to-vs[g]p)� for each g 2 G, t:queue[g] = purge(s:queue[g])� for each p 2 P , g 2 G,t:next [p; g] = s:next [p; g]� purgesize(s:queue[g](1::next [p; g]� 1))� js:msgs-from-vs [g]pj� for each p 2 P , g 2 G, t:next-safe[p; g] =s:next-safe[p; g]� purgesize(s:queue[g](1::next-safe[p; g]� 1))� js:safe-from-vs [g]pjFigure 5-4: The abstraction function Fdvs.Invariant 5.2.18 (dvs-impl)In any reachable state s, if s:msgs-from-vs[g]p = hhm1; q1i; hm2; q2i; :::; hmk; qkii, then we have thatFdvs(s):queue[g](next [p; g]::next [p; g] + k � 1) = hhm1; q1i; hm2; q2i; :::; hmk; qkii.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state no message is in msgs-from-vs[g]p. Hence theinvariant is vacuously true.For the inductive step, assume that the invariant is true in state s. We need to prove that it istrue in state s0 for any possible step (s; �; s0). Fix p; g and m1; q1;m2; q2; :::;mk; qk and assume thats0:msgs-from-vs [g]p = hhm1; q1i; hm2; q2i; :::; hmk; qkii. We distinguish the following cases.1. s:msgs-from-vs[g]p = hhm1; q1i; :::; hmk�1; qk�1ii.It must be � =vs-gprcv(mk)qk ;p. By the inductive hypothesis we have thatFdvs(s):queue[g](next [p; g]::next[p; g] + k � 2) = hhm1; q1i; :::; hmk�1; qk�1ii.By the code in vs we have that next [p; g] is increased by one and by the code in dvs we have thatthe size of msgs-from-vs [g]p also increases by one. Hence by the de�nition of Fdvs, we havethat Fdvs(s0):next [p; g] = Fdvs(s):next [p; g]. Moreover Fdvs(s0):queue [g] = Fdvs(s):queue[g]and by the precondition of � we have that Fdvs(s):queue [g](s:next [p; g] + k � 1) = hmk; qki.Thus the invariant is still true in s0.2. s:msgs-from-vs[g]p = hhm; qi; hm1; q1i; hm2; q2i; :::; hmk ; qkii.Then � =dvs-gprcv(m)q;p. By the inductive hypothesis we have thatFdvs(s):queue[g](next [p; g]::next[p; g] + k) = hhm; qi; hm1; q1i; hm2; q2i; :::; hmk�1; qk�1ii.59

By the code we have that next [p; g] is incremented by one. Since Fdvs(s0):queue[g] = Fdvs(s):queue[g],the invariant is still true in s0.3. s:msgs-from-vs[g]p = s0:msgs-from-vs [g]pBy the inductive hypothesis the assertion is true in state s. For any possible action in thiscase Fdvs(s0):next [p; g] = Fdvs(s):next [p; g] and the portion of Fdvs(s):queue [g] involved in thestatement of the invariant never changes because messages are only appended to queue[g].Thus the assertion cannot be made false.4. Other cases.Not possible. Indeed msgs-from-vs [g]p either stay the same or is changed by appending amessage or deleting the head.The following invariant follows easily from the previous one. It just states that the next messagedelivered by dvs-impl to a processor p is the same one that dvs delivers.Invariant 5.2.19 (dvs-impl)In any reachable state s, if hm; qi is head of s:msgs-from-vs [g]p, then Fdvs(s):queue [g](next[p; g]) =hm; qi.Proof: Follows easily from previous one.Similar invariants hold for the delivery of safe messages.Invariant 5.2.20 (dvs-impl)In any reachable state s, we have that if s:safe-from-vs [g]p = hhm1; q1i; hm2; q2i; :::; hmk ; qkii, thenFdvs(s):queue[g](next-safe[p; g];next-safe[p; g] + k � 1) = hhm1; q1i; hm2; q2i; :::; hmk; qkii.Proof: The proof is as for msgs except that it uses the safe-from-vs queue instead of msgs-from-vsand the pointer next-safe instead of next.Invariant 5.2.21 (dvs-impl)In any reachable state s, if hm; qi is head of s:safe-from-vs [g]p, then Fdvs(s):queue [g](next-safe[p; g]) =hm; qi.Proof: Follows easily from previous one.Notice that v is totally registered in state s of dvs-impl if and only if it is totally registered in thestate of dvs that appears in state Fdvs(s) of dvs.60

Proof that Fdvs is abstraction an function.In order to prove that Fdvs is an abstraction function we need to prove that for any initial states of dvs-impl we have that Fdvs(s) is an initial state of dvs and that for any possible step � ofdvs-impl there exists a sequence of � of steps of dvs such that the trace of �, that is the externallyobservable behavior, is equal to the trace of �. Lemmas 5.2.22 and 5.2.23, prove the above.Lemma 5.2.22 If s is an initial state of dvs-impl then Fdvs(s) is an initial state of dvs.Proof: Let s0 be the unique initial state of dvs-impl and t0 the unique initial state of dvs.We have s0:attemptedp = fv0g for p 2 P0 and s0:attemptedp = ; for p 62 P0. By the de�nition ofFdvs and the fact that P0 6= ; (because all membership sets are de�ned to be nonempty), we haveFdvs(s0):created = fv0g. This is as in t0.We have s0:client-curp = fv0g for p 2 P0 and s0:client-curp = ? for p 62 P0. By the de�nitionof Fdvs we have Fdvs(s0):current-viewid [p] = g0 for p 2 P0 and Fdvs(s0):current-viewid [p] = ? forp 62 P0. This is as in t0.We have s0:attemptedp = fv0g for p 2 P0 and s0:attemptedp = ; for p 62 P0. By the de�nition ofFdvs we have Fdvs(s0):attempted [g0] = P0 and Fdvs(s0):attempted [g] = ; for g 6= g0. This is as in t0.Let g 2 G. We have that s0:reg [g]p is true if and only if p 2 P0 and g = g0. By the de�nition ofFdvs we have Fdvs(s0):registered [g0] = P0 and Fdvs(s0):registered [g] = ; for g 6= g0, as in t0.Let p 2 P . We have that s0:msgs-to-vs[g]p = � and s0:pending [p; g] = �. By the de�nition ofFdvs we have Fdvs(s0):pending [p; g] = �, as in t0.Let g 2 G. We have s0:queue[g] = �. By the de�nition of Fdvs we have Fdvs(s0):queue[g] = �,as in t0.Let p 2 P ; g 2 G. We have s0:next [p; g] = 1, purgesize(s:vs:queue[g]) = 0 and s0:msgs-from-vs [g]p =�. By the de�nition of Fdvs we have Fdvs(s0):next [p; g] = 1, as in t0. A similar argument holds fornext-safe.Thus Fdvs(s0) = t0, as needed.Lemma 5.2.23 Let s be a reachable state of dvs-impl, Fdvs(s) a reachable state of dvs-sys, and(s; �; s0) a step of dvs-impl. Then there is an execution fragment � of dvs-sys that goes fromFdvs(s) to Fdvs(s0), such that trace(�) = trace(�).Proof: By case analysis based on the type of the action �. (The only interesting case is where � =dvs-newview(v)p .) De�ne t = Fdvs(s) and t0 = Fdvs(s0).1. � = vs-createview(v)Then trace((s; �; s0)) = �. Action � modi�es created . The de�nition of Fdvs is not sensitiveto this change. Therefore, t = t0, and we set � = t.61

2. � = vs-newview(v)pThen trace((s; �; s0)) = �. Action � modi�es curp, info-sent [cur :id]p, and current-viewid [p],and adds an \info00 message to msgs-to-vs[cur :id]p. The de�nition of Fdvs is not sensitive toany of these changes. Therefore, t = t0, and we set � = t.3. � = vs-gpsnd(m)pThen trace((s; �; s0)) = �. Action � just moves a message from the queue msgs-to-vs[cur :id]pto the queue pending [p; current-viewid [p]]. The de�nition of Fdvs is not sensitive to this change.Therefore, t = t0, and we set � = t.4. � = vs-order(m; p; g)Then trace((s; �; s0)) = �. Action � moves a message from pending [p; g] to queue[g]. Weconsider two cases.(a) m 2 McThen we set � = (t; dvs-order(m; p; g); t0). We claim that dvs-order(m; p; g) is enabled in t:Since vs-order(m; p; g) is enabled in s, it follows that m is the head of s:pending [p; g]. Bythe de�nition of Fdvs, m is also the head of t:pending [p; g]. It follows that dvs-order(m; p; g)is enabled in t.By de�nition of Fdvs, t0 di�ers from t only in the fact that m is moved from pending [p; g]to queue[g]. This is the e�ect achieved by applying dvs-order(m; p; g) to t.(b) m =2 McThen the de�nition of Fdvs is not sensitive to this change. Therefore, t = t0, and we set� = t.5. � = vs-gprcv(h\info00; v; si)q;pThen trace((s; �; s0)) = �. This action can modify info-rcvd [cur :idp; q]p, actp and ambp (seecode of dvs) and causes next [p; cur :idp] to be incremented (see code of vs). The de�ni-tion of Fdvs is not sensitive to these changes. (The only interesting case is the de�nition oft:next[p; cur :idp], where the absolute values of the �rst two terms on the right-hand side areboth increased by 1, but they cancel each other out.) Therefore, t = t0, and we set � = t.6. � = vs-gprcv(\registered 00)pThen trace((s; �; s0) = �. This action can modify rcvd-rgst [cur :id ; q]p. It also causes thepointer next [p; cur :idp] to be incremented. The de�nition of Fdvs is not sensitive to thesechanges. (The only interesting case is the de�nition of t:next [p; cur :idp], where the absolutevalues of the �rst two terms on the right-hand side are both increased by 1, but they canceleach other out.) Therefore, t = t0, and we set � = t.62

7. � = vs-gprcv(m)p, m 2McThen trace((s; �; s0)) = �. This action copies a message from the sequence queue[cur :id]p tothe sequence msgs-from-vs[p; client-cur [p]], and causes next[p; cur :idp] to be incremented. Thede�nition of Fdvs is not sensitive to these changes. (The only interesting case is the de�nitionof t:next [p; cur :idp], where the absolute values of the �rst and third terms on the right-handside are both increased by 1, but they cancel each other out.) Therefore, t = t0, and we set� = t.8. � = vs-safe(hm; v; si)q;p, m 2 f\info00; \registered 00gThen trace((s; �; s0)) = �. Action � just causes next-safe[p; cur :idp] to be incremented. Thede�nition of Fdvs is not sensitive to this change. (The only interesting case is the de�nition oft:next-safe[p; cur :idp], where the absolute values of the �rst two terms on the right-hand sideare both increased by 1, but they cancel each other out.) Therefore, t = t0, and we set � = t.9. � = vs-safe(m)p, m 2 McThen trace((s; �; s0)) = �. Action � adds a message to safe-from-vs [cur :id]p and causes thepointer next-safe[p; cur :idp] to be incremented. The de�nition of Fdvs is not sensitive tothese changes. (The only interesting case is the de�nition of t:next-safe[p; cur :idp], where theabsolute values of the �rst and third terms on the right-hand side are both increased by 1, butthey cancel each other out.) Therefore, t = t0, and we set � = t.10. � = dvs-newview(v)pThen trace((s; �; s)) = �. In dvs-impl, this action modi�es only variables ambp, attemptedp,client-curp. We have s0:client-curp = v and s0:attemptedp = s:attemptedp [fvg. By de�nitionof Fdvs, we have that t0:current-viewid [p] = s0:client-cur :idp = v:id , t0:created = t:created[fvgand t0:attempted [v:id] = t:attempted [v:id][fpg, while all other state variables in t0 are as in t.We consider two cases:(a) v 2 t:created .In this case, we set � = (t; �0; t0), where �0 = dvs-newview(v)p. The code shows that �0brings dvs-sys from state t to state t0. It remains to prove that �0 is enabled in state t,that is, that v 2 t:created and v:id > t:current-viewid [p]. The �rst of these two conditionsis true because of the de�ning condition for this case. The second condition follows fromthe precondition of � in dvs-impl: this precondition implies that v:id > s:client-cur :idp,and by the de�nition of Fdvs we have t:current-viewid [p] = s:client-cur :idp.(b) v 62 t:created .In this case we set � = (t; �0; t00; �00; t0), where �0 = dvs-createview(v)p, �00 = dvs-newview(v)p , and t00 is the unique state that arises by running the e�ect of �0 from t.63

The code shows that � brings dvs-sys from state t to state t0. It remains to prove that�0 is enabled in t and that �00 is enabled in t00.The precondition of �0 requires that (i) 8w 2 t:created , v:id 6= w:id and (ii) 8w 2t:created , either 9x 2 s:TotAtt satisfying w:id < x:id < v:id or v:id < x:id < w:id, or elsev:set \ w:set 6= ;.To see requirement (i), suppose for the sake of contradiction that w 2 t:created and w:id =v:id . The precondition of � in dvs-impl implies that v = s:curp, which implies thatv 2 s:created . Since w 2 t:created , the de�nition of Fdvs implies that w 2 s:attemptedqfor some q. This implies that w 2 s:created . But then Invariant 4.1.1 implies that v = w.But this contradicts that fact that v =2 t:created and w 2 t:created .To see requirement (ii), suppose that w 2 t:created and there is no x 2 s:TotAtt satisfyingw:id < x:id < v:id or v:id < x:id < w:id. Since w 2 t:created , by de�nition of Fdvs,w 2 s:attempted q for some q. Clearly, w 2 s0:attemptedp. Therefore, w 2 s0:Att. By thecode of � we have that v 2 s0:attemptedq . Therefore we also have v 2 s0:Att. Moreover,there is no x 2 s0:TotAtt satisfying w:id < x:id < v:id or v:id < x:id < w:id. ThenInvariant 5.2.17 implies that v:set \w:set 6= ;, as needed to prove that �0 is enabled in t.We now prove that �00 is enabled in state t00. The precondition of �00 requires thatv 2 t00:created and v:id > t00:current-viewid [p]. The �rst condition is true because vis added to created by �0. The second condition follows from the precondition of � indvs-impl: The precondition of � implies that v:id > s:client-cur :idp. The de�nition ofFdvs implies that t:current-viewid [p] = s:client-cur :idp. Moreover, t00:current-viewid [p] =t:current-viewid [p]. It follows that v:id > t00:current-viewid [p]. Thus �00 is enabled instate t00.11. � =dvs-registerpThen trace((s; �; s0)) = �. Let g be s:client-cur :idp, which equals t:current-viewid [p] by theabstraction function. If g = ?, then � has no e�ect in dvs-impl, so s = s0; thus t = t0, asrequired to show that � brings dvs from t to t0. Otherwise, g 6= ?, so by the code in dvs-impl, this action sets reg [g]p to true and inserts a \registered" message into msgs-to-vs[g]p.By de�nition of Fdvs, t0 is the same as t except that t0:registered [g] = t:registered [g][fpg. Weset � = (t; dvs-registerp; t0). It is easy to check that dvs-registerp brings dvs-sys from t to t0.12. � =dvs-garbagecollect(v)pThen trace((s; �; s0)) = �. This action can modify actp and ambp. The de�nition of Fdvs isnot sensitive to these changes. Therefore, t = t0, and we set � = t.64

13. � =dvs-gpsnd(m)pThen trace((s; �; s0)) = �. We set � = (t; dvs-gpsnd(m)p; t0). We consider two cases:(a) s:client-cur :id = ?Then s = s0. In this case, the de�nition of Fdvs implies that also t:current-viewid [p] = ?,which implies that the action also has no e�ect in t, which su�ces.(b) s:client-cur :id 6= ?In this case, the action appends m to msgs-to-vs[g]p, where g = client-cur :idp. Hencewe have that s0:msgs-to-vs[g] = s:msgs-to-vs[g]�m. By the de�nition of Fdvs we get thatt0:pending [p; g] = t:pending [p; g]�m. This is the e�ect of the action in t (using the factthat t:current-viewid [p] 6= ?.)14. � = dvs-gprcv(m)pThen trace((s; �; s0)) = �. This action removes the head of msgs-from-vs [g]p, where g =cur :idp. We have that s:msgs-from-vs [g]p = m�s0:msgs-from-vs [g]p. Thus t0:next [p; g] =t:next[p; g] + 1. We set � = (t; dvs-gprcv(m)p; t0). It is easy to check that the step has therequired e�ect in dvs-sys. The fact that dvs-gprcv(m)p is enabled in t follows from Invari-ant 5.2.19.15. � = dvs-safe(m)pThen trace(�) = �. This action removes the head of the safe-from-vs [g]p, where g = cur :idp.We have that s:safe-from-vs [g]p = m�s0:safe-from-vs [g]p. Thus t0:next-safe[p; g] = t:next-safe[p; g]+1. We set � = (t; dvs-gprcv(m)p; t0). It is easy to check that the step has the required e�ect indvs-sys. The fact that dvs-gprcv(m)p is enabled in t follows from Invariant 5.2.21.
Lemmas 5.2.22 and 5.2.23 prove that Fdvs is an abstraction function from dvs-impl to dvs andthus the following theorem holds.Theorem 5.2.24 Every trace of dvs-impl is a trace of dvs-sys.5.3 An application of dvsIn this section we show how to use dvs to implement a totally ordered broadcast service, called to.In Section 5.3.1 we give the speci�cation of the totally ordered broadcast service to, in Section 5.3.2we describe the implementation, which we call to-impl, and in Section 5.3.3 we prove that to-impl,implements to. 65

5.3.1 The to serviceThe to service was originally de�ned in [41]. This service accepts messages from clients and deliversthem to all clients according to the same total order. This kind of service is a building block formany fault-tolerant distributed applications. The speci�cation is reproduced in Figure 5-5.The following is an informal description of the service. Processes can broadcast messages bymeans of actions bcast(a)p. Such a message a is appended to a queue local to process p, pending [p].The service establishes a totally order on the messages by means of action to-order(a; p), which takesa message from the local queue of a process and puts it into a global queue. The order establishedby this global queue is the one used to deliver messages. The pointer next [q] points to the nextmessage in the global queue to be delivered to process q by means of action brcv(a)p;q .toSignature:Input: bcast(a)p, a 2 A, p 2 PInternal: to-order(a; p), a 2 A, p 2 P Output: brcv(a)p;q , a 2 A, p; q 2 PState:queue 2 seqof (A �P), init � for each p 2 P : pending [p] 2 seqof (A), init �next[p] 2 N>0, init 1Transitions:input bcast(a)pE�: append a to pending [p]internal to-order(a; p)Pre: a is head of pending[p]E�: remove head of pending [p]append ha; pi to queue output brcv(a)p;qPre: queue(next[q]) = ha; piE�: next[q] := next[q] + 1
Figure 5-5: The to service.5.3.2 The implementation of toWe provide an implementation of to using dvs as a building block. The implementation, which wecall to-impl, consists of an automaton dvs-to-top for each p 2 P , and the dvs speci�cation.The implementation is similar to the to implementation provided in [41]. Both algorithms rely onprimary views to establish a total order of client messages. The main di�erence is that the algorithmin [41] uses a static notion of primary and the new one uses a dynamic notion. The algorithm of[41] is built upon a vs service that reports non-primary as well as primary views, and uses a simplelocal test to determine if the view is primary. That algorithm does some non-critical backgroundwork (gossiping information) in non-primary views. In contrast, the algorithm proposed here is builtupon the dvs service, which only reports primary views. Thus the new algorithm is simpler in thatit does not perform the local tests and does not carry out any processing in non-primary views. Onthe other hand, in the new algorithm, the application programs must perform dvs-register actions totell the dvs service when they have \established" new views. Although the new algorithm appears66

very similar to the one of [41], the fact that the dvs service provides weaker and more complicatedguarantees than the vs service makes the new algorithm harder to prove correct.The to-impl algorithm involves normal and recovery activity. Normal activity occurs while agroup view is not changing. Recovery activity begins when a new primary view is presented bydvs, and continues while the members combine information from their previous history, to providea consistent basis for ongoing normal activity.During normal activity, each client message received by to-impl is given a system-wide uniquelabel, which consists of a view identi�er (the one of the view in which the message is received), asequence number and the identi�er of the process receiving the message. The association betweenclient messages and their unique labels is recorded in a relation content and communicated to otherprocesses in the same view using dvs. When a message is received, the label is given an order , atentative position in the system-wide total order the service is to provide. When client messageshave been reported as delivered to all the members of the view, by the \safe" noti�cation of dvs,the label and its order may become con�rmed. The messages associated with con�rmed labels maybe released to the clients in the given order.The consistent sequence of message delivery within each view keeps this tentative order consistentat members of a given view, but it may be not consistent between nodes in di�erent views. To avoidinconsistencies processes need state exchange at the beginning of a new view.When a new primary view is reported by dvs, recovery activity occurs to integrate the knowledgeof di�erent members. First, each member of a new view sends a message, using dvs, that containsa summary of that node's state. The summary of a node's state contains the following information:the association of labels with client messages, stored in content , the order of client messages to bereported to the clients, stored in order , a pointer to the next client message to be con�rmed, storedin nextcon�rm and the view identi�er of the primary view with the highest view identi�er in whichthe order sequence has been modi�ed (stored in highprimary).Once a node has received all members' state summaries, it processes the information in oneatomic step, i.e., it establishes the new view. Once a node establishes a view, it informs dvs ofthat fact with a dvs-register action. The node processes state information as follows: it de�nesits con�rmed labels to be the longest pre�x of con�rmed labels known in any of the summaries;it determines the representatives as the members whose summary include the greatest highprimaryvalue; adopts as its new order the order of a \chosen" representative (the chosen representative isarbitrary but must be the same for all processes) extended with all other labels appearing in any ofthe received summaries, arranged in label order.Then recovery continues by collecting the dvs safe indications. Once the state exchange is safe,all labels used in the exchange are marked as safe and all associated messages are con�rmed just asin normal processing. 67

dvs-to-toSignature:Input: bcast(a)p, a 2 Advs-gprcv(m)q;p, q 2 P, m 2 C [Sdvs-safe(m)q;p , q 2 P, m 2 C [Sdvs-newview(v)p , v 2 V Output: dvs-registerpdvs-gpsnd(m)p , m 2 C [Sbrcv(a)q;p, a 2 A, q 2 PInternal: confirmpState:current 2 V?, init v0 if p 2 P0, ? elsestatus 2 fnormal ; send ; collectg, init normalcontent 2 2C , init ;nextseqno 2 N>0, init 1bu�er 2 seqof (L), init �safe-labels 2 2L, init ;order 2 seqof (L), init �nextcon�rm 2 N>0, init 1
nextreport 2 N>0, init 1highprimary 2 G, init g0 if p 2 P0, ? elsegotstate, a partial function from P to S, init ;safe-exch � P, init ;registered � G, init fg0g if p 2 P0, ; elsedelay 2 seqof (A), init �for each g 2 G,established [g], a bool, init true if g = g0; p 2 P0,false elseFigure 5-6: The dvs-to-top code.For the code, shown in Figures 5-6 and 5-7, we need the following de�nitions. L = G �N>0 �Pis the set of labels, with selectors l:id , l:seqno and l:origin . A is the set of messages that can besent by the clients of the to service. C = L � A is the set of possible associations between labelsand client messages. S = 2C � seqof(L) �N>0 � G is the set of summaries, with selectors x:con ,x:ord , x:next and x:high . Given x 2 S, x:con�rm is the pre�x of x:ord such that jx:con�rm j =min(x:next � 1; jx:ord j). If Y is a partial function from processor ids to summaries, then we de�ne:knowncontent(Y) = [q2dom(Y)Y (q):con ,maxprimary(Y) = maxq2dom(Y)fY (q):highg,maxnextcon�rm(Y) = maxq2dom(Y) Y (q):next ,reps(Y) = fq 2 dom(Y) : Y (q):high = maxprimaryg,chosenrep(Y) = some element in reps(Y),shortorder (Y) = Y (chosenrep(Y)):ord , andfullorder (Y) = shortorder (Y) followed by the remaining elements of dom(knowncontent(Y)), inlabel order.The system to-impl is the composition of all the dvs-to-top automata and dvs with all theexternal actions of dvs hidden.The allstate , allcontent and allcon�rm derived variables are de�ned for to-impl as follows (thisis as in [41]).We write allstate [p; g] to denote a set of summaries, de�ned so that x 2 allstate [p; g] if and onlyif at least one of the following hold:1. current:idp = g and x = hcontentp; orderp;nextcon�rmp; highprimarypi.2. x 2 pending [p; g].3. hx; pi 2 queue[g]. 68

dvs-to-to (cont'd)Transitions:input bcast(a)pE�: append a to delayinternal label(a)pPre: a is head of delaycurrent 6= ?E�: let l be hcurrent :id;nextseqno; picontent := content [fhl; aigappend l to bu�ernextseqno := nextseqno + 1delete head of delayoutput dvs-gpsnd(hl; ai)pPre: status = normall is head of bu�erhl; ai 2 contentE�: delete head of bu�erinput dvs-gprcv(hl; ai)q;pE�: content := content [fhl; aigorder := order�linput dvs-safe(hl; ai)q;pE�: safe-labels := safe-labels [flginternal confirmpPre: order(nextcon�rm) 2 safe-labelsE�: nextcon�rm := nextcon�rm + 1output brcv(a)q;pPre: nextreport < nextcon�rmhorder (nextreport); ai 2 contentq = order(nextreport):originE�: nextreport := nextreport + 1

input dvs-newview(v)pE�: current := vnextseqno := 1bu�er := �gotstate := ;safe-exch := ;safe-labels := ;status := sendoutput dvs-gpsnd(x)pPre: status = sendx = hcontent; order ;nextcon�rm; highprimaryiE�: status := collectinput dvs-gprcv(x)q;pE�: content := content [x:congotstate := gotstate � hq; xiif (dom(gotstate) = current :set) ^(status = collect) thennextcon�rm := maxnextcon�rm(gotstate)order := fullorder(gotstate)highprimary := current:idstatus := normalestablished [current:id] := trueoutput dvs-registerpPre: current 6= ?established [current:id]current:id 62 registeredE�: registered := registered [fcurrent :idginput dvs-safe(x)q;pE�: safe-exch := safe-exch [fqgif safe-exch = current:set thensafe-labels := safe-labels [range(fullorder(gotstate))Figure 5-7: The dvs-to-top code (cont'd).4. For some q, current :id q = g and x = gotstate(p)q .Thus, allstate [p; g] consists of all the summary information that is in the state of p if p's current view isg, plus all the summary information that has been sent out by p in state exchange messages in view gand is now remembered elsewhere among the state components of to-impl. Notice that allstate [p; g]consists only of summaries: an ordinary message hl; ai is never an element of allstate [p; g]. We writeallstate [g] to denote Sp2P allstate [p; g], and allstate to denote Sg2G allstate [g].We write allcontent for Sx2allstate x:con [fhl; ai : 9g; p : hhl; ai; pi 2 range(queue[g]) _ hl; ai 2range(pending [p; g])g. This represents all the information available anywhere that links a label witha corresponding data value.We write allcon�rm for lubx2allstate(x:con�rm).For every p 2 P , g 2 G, buildorder [p; g] is de�ned to be a sequence of labels, initially empty; thisvariable is maintained by following every statement of processor p that assigns to order with anotherstatement buildorder [p; current:idp] := order . It follows that if p establishes a view with id g, and69

later leaves view g for a view with a higher view identi�er, then forever afterwards, buildorder [p; g]remembers the value of orderp at the point where p left view g.5.3.3 Proof that to-impl implements toThe correctness proof for to-impl follows the outline of the one in [41]. The main di�erence is thatthe main invariant, which corresponds to Lemma 6.18 of [41], requires a di�erent, more subtle proof.We �rst provide some auxiliary invariants.Invariant 5.3.1 (to-impl)In any reachable state, if p 2 dvs:registered [g] then established [g]p.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, dvs:registered [g] is empty for all g exceptfor g = g0 for which dvs:registered [g0] = P0. So assume that g = g0 and p 2 P . In the initial stateestablished [g]p = true if g = g0 and p 2 p0. Hence the invariant is true.For the inductive step, assume that the invariant is true in a reachable state s. We need to provethat it is true in s0 for any possible step (s; �; s0). Fix g and p. The hypothesis changes from falseto true only in �=dvs-registerp and s:currentp = g, and the action's precondition (in dvs-to-to)shows the conclusion. The conclusion never changes from true to false.Invariant 5.3.2 says that any view that is known (anywhere in the system state) to be an estab-lished primary was in fact attempted by all its members.Invariant 5.3.2 (to-impl)In any reachable state, if x 2 allstate then there exists w 2 created such that x:high = w:id , and forall p 2 w:set, p 2 attempted [w:id].Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, the invariant follows from the de�nition ofallstate (set w = current :idp).For the inductive step, assume that the invariant is true in a reachable state s. We need to provethat it is true in s0 for any possible step (s; �; s0). The only step that we have to worry about iswhen a new summary is created. When a new summary x is created, x.high is set to the identi�erof the current view, and a message has been received from everyone in the membership.Invariant 5.3.3 says that if a view w is established, then no earlier view v can still be active.Invariant 5.3.3 (to-impl)In any reachable state, if v 2 created, x 2 allstate and x:high > v:id then there exists p 2 v:set withcurrent :idp > v:id. 70

Proof: Fix v, x as given. Lemma 5.3.2 shows the existence of w 2 created such that x:high = w:id ,and for all p 2 w:set , p 2 attempted [w:id]. Then Invariant 5.1.4 implies that there exists p 2 v:setwith current-viewid [p] > v:id . But current-viewid [p] = current :idp, which yields the result.Finally we provide the proof for the invariant corresponding to the invariant stated in Lemma6.18 of [41]. This invariant has a more subtle proof than the one given in Lemma 6.18 of [41]. Thatproof uses the strong intersection property among primary view membership (in the implementationof [41] each primary view intersects each other primary view). The proof in [41] does not work in thesetting of dvs because dvs guarantees a weaker intersection property (each primary view intersectsonly the primary views in between the preceding and the following totally registered primary views).The new proof also uses the fact about dvs that once a view is attempted at all processes in itsmembership set, no views with lower identi�ers can become established.Invariant 5.3.4 (to-impl)In any reachable state, suppose that v 2 created, � 2 seqof (L), and for every p 2 v:set, the followingis true: If current :idp > v:id then established [v:id]p and � � buildorder [p; v:id].Then for every x 2 allstate with x:high > v:id , we have that � � x:ord.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, the only created view is v0, and there is nox 2 allstate with x:high > g0. So the statement is vacuously true.For the inductive step, assume that the invariant is true in a reachable state s. We need to provethat it is true in s0 for any possible step (s; �; s0). So �x v 2 s0:created and �, and assume that forevery p 2 v:set , if s0:current :idp > v:id then s0:established [v:id]p and � � s0:buildorder [p; v:id].If v =2 s:created , then � must be createview(v). Then s0:established [v:id]p = false for all p. Fixx 2 s0:allstate and suppose that x:high > v:id . Then Invariant 5.3.3 applied to s0 implies that thereexists p 2 v:set with s0:current :idp > v:id ; �x such a p. Then the hypothesis part of the invariantfor s0 implies that s0:established [v:id]p = true, a contradiction. It follows that v 2 s:created .As usual, the interesting steps are those that convert the hypothesis from false to true, and thosethat keep the hypothesis true while converting the conclusion from true to false.In this case, there are no steps that convert the hypothesis from false to true: If there is somep 2 v:set for which s:current :idp > v:id and either s:established [v:id]p = false or � is not apre�x of s:buildorder [p; v:id], then also s0:current :idp > v:id (the id never decreases) and eithers0:established [v:id]p = false or � is not a pre�x of s0:buildorder [p; v:id]. (These two cases carry over,since s:current :idp > v:id implies that established [v:id]p and buildorder [p; v:id] cannot change.)So it remains to consider any steps that keep the hypothesis true while converting the conclusionfrom true to false. Thus, we assume that if s:current :idp > v:id then s:established [v:id]p and� � s:buildorder [p; v:id]. Suppose that x 2 s0:allstate and x:high > v:id . If also x 2 s:allstate then71

we can apply the inductive hypothesis, which implies that � � x:ord , as needed. So the only concernis with steps that produce a new summary.Any step that produces the new summary x by modifying an old summary x0 2 s:allstate , in sucha way that x0:ord � x:ord and x0:high = x:high , is easy to handle: For such a step, x0:high > v:idand so the inductive hypothesis implies that � � x0:ord � x:ord , as needed. So the only concern iswith gprcvp steps that produce a new summary x by delivering the last state-exchange message ofa view w to some processor p. Thus x:high = w:id . Let x0 be the summary of q0 = chosenrep ins0:gotstate. We claim x0:high � v:id .To prove the claim, we let v0 denote the unique element with highest viewid among the elementsof s0:created such that v0:id < w:id and s0:registered [v0:id] = v0:set . Let v00 denote either v0 or v,whichever has the higher viewid. Invariant 5.1.3 shows that w:set \ v00:set 6= ;, no matter whetherv00 is v or v0. Fix any element q00 in w:set \ v00:set .Recall that the condition for establishing a view shows that domain(s0:gotstatep) = w:set , so bythe code, either q00 2 domain(s:gotstatep) or else q00 is the sender of the message whose receipt isthe step we are examining. In the former case, let x00 be the summary s:gotstate(q00)p; in the latterlet x00 be the summary whose receipt is the event. In either case we have x00 2 s:allstate [q00; w:id].We now show that s:established [v00:id]q00 . We consider two cases:1. v00 = v0.Then q00 2 v0:set so by de�nition of v0, we obtain q00 2 s:registered [v0:id]; therefore, we havethat s:established [v0:id]q00 .2. v00 = v. Because s:allstate [q00; w:id] is non-empty, the analogue of Part 4 of Lemma 6.7 from[41] implies that s:current :id q00 � w:id . We have that x:high > v:id by assumption, andx:high = w:id by the code; therefore, w:id > v:id . So also s:current:id q00 > v:id . Recall thatwe are in the case where the hypothesis of this lemma is true. Therefore, by this hypothesis(uses q00 2 v:set), we obtain that s:established [v:id]q00By the analogue of Lemma 6.14 from [41], (applied with q00 replacing p) we obtain x00:high � v00:id .By the de�nition of q0 as a member that maximizes the high component in the summary recordedin s0:gotstate, we have x0:high � x00:high . Therefore x0:high � v00:id � v:id , completing our proof ofthe claim.If x0:high > v:id then we can apply the induction hypothesis to x0 and we are done, since x0:ord �x:ord . So suppose x0:high = v:id . Note that x0 2 s:allstate [q0; w:id]. By an analogue of Lemma6.16 from [41] there must exist1 q 2 v:set so that s:established [v:id]q , x0:ord = s:buildorder [q; v:id],and (either x0:high = w:id or s:current :id q > v:id). Since x0:high = v:id < x:high = w:id , the1Direct application of the lemma actually shows the existence of some v̂ and q 2 v̂:set, but since x0:high = v̂:idand also x0:high = v:id , uniqueness of viewids shows we may take v̂ to be v itself.72

last property can be simpli�ed to s:current :id q > v:id . By monotonicity of current, we haves0:currentq > v:id . The hypothesis of this lemma says that this forces � � s0:buildorder [q; v:id].Since x0:ord � x:ord by the code for this event, and x0:ord = s:buildorder [q; v:id] as shown above,and s:buildorder [q; v:id] = s0:buildorder [q; v:id] since q is not currently in view v, we get � � x:ord ,which is what we need.Let s be a state of to-impl. The state t = Fto(s) of to is the following.1. t:queue = applyall (hs:allcontent ; origini; s:allcon�rm),where the selector origin is regarded as a function from labels to processors.2. t:next [p] = s:next-reportp.3. t:pending [p] = applyall (s:allcontent ; b) � s:delayp where b is the sequence of labels such that(a) range(b) is the set of labels l such that l:origin = p, hl; ai 2 s:allcontent for some a,andl 62 range(s:allcon�rm).(b) b is ordered according to the label order.Figure 5-8: The abstraction function Fto.To complete the implementation proof, we de�ne a function from the reachable states of to-implto the states of to and prove that it is an abstraction function. This function is de�ned exactly asin [41]. Figure 5-8 shows the abstraction function Fto. The proof that Fto is an abstraction functionis as in [41]. Since Fto is an abstraction function we have the following theorem.Theorem 5.3.5 Every trace of to-impl is a trace of to.5.4 RemarksThe safe indications provided by the dvs service are crucial to the application: commitments aboutthe total order are made only when receiving safe noti�cations for particular messages. This is acommon point for any application that needs to preserve strong data coherence. For such appli-cations, no commitments about the shared data can be made before safe indications are delivered.However the application can still perform some useful work while waiting for a safe indication. Forexample, it can pre-compute the value of the shared data so that when the safe indications arrivelittle processing will be needed (of course such computation is wasted if the safe indication neverarrives); it can do optimistic updates to the shared data assuming that the safe indications willarrive (in this case roll back is required if the safe indications do not arrive).The total order service that we have developed in this chapter can be built also using a sequenceof executions of a consensus algorithms (e.g., the multipaxos algorithm of [61]2). The advantage2The name multipaxos is actually used in [29]. The original paper by Lamport [61] uses a di�erent name (multi-73

of the approach taken here is that we use a building block, the dvs group communication service,which may also be used for other applications. For example, in the next chapter, we will use avariant of dvs to build two applications on top of it, an atomic multi-reader multi-writer sharedregister and a dynamic version of the paxos algorithm.This work deals entirely with safety properties; it remains to consider performance and fault-tolerance properties as well. Future work also include investigation of other applications of our dvsspeci�cation, such as replicated data applications and load-balancing applications.Another interesting exploration direction considers variations on the dvs speci�cation, for ex-ample, one in which the state exchange at the beginning of a new view is supported by the dynamicview service. Also, one could provide variations on our speci�cations that are more speci�callytuned to systems like Isis and Ensemble. For example, a variation could require that processes thatmove together from one view to the next receive exactly the same messages in the �rst view. Thisguarantee is o�ered by Isis and Ensemble.In the next chapter we provide a generalization of the dvs service to con�gurations. Thisgeneralization will also include support for state transfer at the beginning of a new con�guration.

decree parliament protocol). 74

Chapter 6
The dc serviceIn this chapter we generalize the notion of dynamic primary view to that of dynamic primary con�g-uration. We present dc, a speci�cation for a dynamic primary con�guration group communicationservice. Section 6.1 provides the dc speci�cation, Section 6.4 provides an implementation of dc,and �nally Section 6.5 describes an application that uses dc as a building block.6.1 OverviewThe dc speci�cation is similar to the dvs speci�cation; the di�erence is that it provides the clientswith con�gurations instead of views. Like dvs, the dc speci�cation is dynamic and provides primarycon�gurations. The main di�culty here is that a notion of dynamic primary con�guration needs tobe developed (the notion of dynamic primary view has been studied in several papers, e.g. [55, 89]).In this chapter we develop such a notion and we de�ne the dc service, which provides dynamicprimary con�gurations to its clients.Primary con�gurations must satisfy certain intersection properties with previous primary con-�gurations. The type of con�gurations that we consider in this chapter is the read-write-quorumcon�gurations (see Section 3.1.2). The intersection property that we require is that that the mem-bership set of a new primary con�guration must include the members of at least one read quorumand one write quorum of the previous primary con�guration. The dc speci�cation provides to theclient only con�gurations satisfying this property.Change of con�gurations might be driven either by change in the underlying physical distributedsystem or by the applications running on top of the system (e.g., a new quorum system could beinstalled on the same membership set).An important feature of the dc speci�cation is that it incorporates a state-exchange at thebeginning of a new primary con�guration. State-exchange at the beginning of a new con�guration isrequired by most applications. When a new con�guration is issued each member of the con�guration75

is supposed to submit its current state to the service. Once having obtained the state from allthe members of the con�guration, the dc service computes the most up to date state over allthe members, called the starting state. The starting state is then delivered to each member ofthe con�guration. This way, each member begins regular computation in the new con�gurationknowing the starting state. We remark that this is di�erent from the approach used by the dvsservice which lets the members of the con�guration compute the starting state. Some existinggroup communication services also integrate state-exchange within the service, e.g., [82, 19, 86],some others do not, e.g., [33, 73, 38, 41]. The Transis system [33] can be augmented with a layerproviding state-exchange [5].The dc speci�cation o�ers a broadcast/convergecast communication mechanism. This mecha-nism involves all the members of a quorum, and uses a condenser function to process the informationgathered from the quorum [66]. More speci�cally, a client that wants to send a message to the mem-bers of its current con�guration submits the message together with a condenser function to theservice; then the dc service broadcasts the message to all the members of the con�guration andwaits for a response from a quorum (the type of the quorum, read or write, is also speci�ed by theclient); once answers are received from a quorum, the dc service applies the condenser function tothese answers in order to compute a response to give back to the client that sent the message. Sucha series of actions should be seen as performing an operation requested by the client; executing theoperation requires the participation of a quorum of the processes.We remark that this kind of communication is di�erent from those of the vs service [41] andthe dvs service. Instead, it is like the one used in [66]. We integrate it into dc because we wantto develop a particular application that bene�ts from this particular communication service (aread/write register as is done in [66]).6.2 The dc speci�cationPrior to providing the code for the dc speci�cation, we need some notation and de�nitions, whichwe introduce in the following.Let OID be a set of operation identi�ers, partitioned into sets OIDp, p 2 P . We denote byMc �M the set of messages that clients may use for communication.Let A be a set of \acknowledgment" values and let R be a set of \response" values. A condenserfunction is a function from (P ! A?) to R. Let � be the set of all condenser functions. Let Sbe the set of all possible states of the clients (a state of S does not need to be the entire client'sstate, but it may contain only the relevant information in order for the application to work). Thedc speci�cation uses a condenser function also to compute the starting state of a new con�guration;hence we assume that S � A and also S � R. Given a function f : P ! D from the set of processes76

P to some domain D and given a subset P � P , we write f jP to denote the function f 0 : P ! D,de�ned as f 0(p) = f(p) for p 2 P .The following data type is used to describe operations: D =M��� f\read"; \write"g � 2P �(P ! A?) � Bool and we let O = OID ! D?. Given an operation descriptor, selectors for thecomponents are msg , cnd , sel , dlv , ack , and rsp.The code of the dc speci�cation is given in Figure 6-1.Next we provide remarks and an informal description of this code. We start with the derivedvariables.A con�guration c 2 Att is said to be attempted. For an attempted con�guration c there exists atleast one process p that has executed action newconf(c)p and thus we have that p 2 attempted [c:id];when this holds we say that c is attempted at p or that p has attempted c. A con�guration c 2 TotAttis said to be totally attempted. A totally attempted con�guration is a con�guration that is attemptedat all members of the con�guration.A con�guration c 2 Est is said to be established. For an established con�guration c there exists atleast one process p that has executed action newstate(s)p and thus we have that p 2 state-dlv [c:id];when this holds we say that c is established at p or that p has established c. A con�gurationc 2 TotEst is said to be totally established. A totally established con�guration is a con�guration thatis established at all members of the con�guration.A dead con�guration c is a con�guration for which a member process p went on to newer con�g-urations, that is, it executed action newconf(c0)p with c0:id > c:id, before receiving the noti�cation,that is the newconf(c)p event, for con�guration c.Now we comment on the transitions.Action createconf(c) creates a new con�guration c. The �rst precondition simply requires thisnew con�guration to have a brand new identi�er. The second precondition of this action is the keyto our speci�cation. It states that when a con�guration c is created it must either be already dead orfor any other con�guration w such that there are no intervening totally established con�gurations,the earlier con�guration (i.e., the one with smaller identi�er) has at least one read quorum and onewrite quorum that are subsets of the membership set of the later con�guration (i.e., the one withbigger identi�er).Action newconf(c)p delivers a created con�guration c to the client process p. The preconditionof this action makes sure that con�gurations are delivered in order of con�guration identi�ers. Wenotice that because of this precondition, when a con�guration c is dead because a process q went onto newer con�gurations, we have that process q can no longer execute action newconf(c)q.Once a con�guration c has been delivered to a client process p, the client process p is supposedto submit its current state s and a condenser function �, by means of action submit-state(s; �)p. Onceall the processes have submitted their current states, the condenser function � is used to compute77

dcSignature:Input: submit(m;�; b; i)p, m 2 Mc, � 2 �,b 2 f\read"; \write"g, p 2 P,i 2 OIDpackdlvr(a; i)p, a 2 A, i 2 OID, p 2 Psubmit-state(s; �)p, s 2 S, � 2 � Internal: createconf(c), c 2 COutput: newconf(c)p, c 2 C, p 2 c:setnewstate(s)p, s 2 Srespond(a; i)p, a 2 A, i 2 OIDp, p 2 Pdeliver(m; i)p, m 2 Mc, i 2 OID, p 2 PState:created 2 2C, init fc0gfor each p 2 P:cur-cid[p] 2 G?, init g0 if p 2 P0, ? elsefor each g 2 G:attempted [g] 2 2P , init P0 if g = g0, fg else for each g 2 G:got-state[g] 2 P ! S?, init everywhere ?condenser [g] 2 �?, init everywhere ?state-dlv [g] 2 2P , init P0 if g = g0, fg elsepending [g] 2 O, init everywhere ?Derived variables:Att 2 2C, de�ned as fc 2 created jattempted[c:id] 6= ;gEst 2 2C, de�ned as fc 2 created jstate-dlv[c:id] 6= ;g TotAtt 2 2C , de�ned as fc 2 created jc:set � attempted [c:id]gTotEst 2 2C , de�ned as fc 2 created jc:set � state-dlv[c:id]gdead 2 2C de�ned as dead = fc 2 Cj9p 2 c:set : cur-cidp > c:id and p =2 attempted [c:id]g.Actions:internal createconf(c)Pre: 8w 2 created : c:id 6= w:idif c 62 dead then8w 2 created ; w:id < c:id:w 2 dead or(9x 2 TotEst: w:id < x:id < c:id) or(9R 2 w:rqrms; 9W 2 w:wqrms:R [W � c:set)8w 2 created ; w:id > c:idw 2 dead or(9x 2 TotEst: c:id < x:id < w:id) or(9R 2 c:rqrms; 9W 2 c:wqrms:R [W � w:set)E�: created := created [fcgoutput newconf(c)p, p 2 c:setPre: c 2 createdc:id > cur-cid[p]E�: cur-cid[p] := c:idattempted [c:id] := attempted [c:id][fpginput submit-state(s; �)pE�: if cur-cid[p] 6= ? andgot-state[cur-cid[p]](p) = ? thengot-state[cur-cid[p]](p) := scondenser [cur-cid[p]](p) := �output newstate(s)p choose cPre: c:id = cur-cid[p]c 2 created8q 2 c:set, got-state[c:id](q) 6= ?let f = condenser [c:id](p)jc:sets = f(got-state[c:id])p =2 state-dlv[c:id]E�: state-dlv[c:id] := state-dlv[c:id] [fpg

input submit(m;�; b; i)pE�: if cur-cid[p] 6= ? thenpending[cur-cid[p]](i):= (m;�; b; ;; �(x) : x! ?;false)output deliver(m; i)p choose gPre: g = cur-cid[p]p =2 pending[g](i):dlvpending [g](i):msg = mE�: pending [g](i):dlv := pending [g](i):dlv [fpginput ackdlvr(a; i)pE�: if cur-cid[p] 6= ? andpending[cur-cid[p]](i):ack(p) 6= ? thenpending[cur-cid[p]](i):ack(p) := aoutput respond(r; i)p choose c;QPre: c:id = cur-cid[p]c 2 createdi 2 OIDppending [c:id](i):rsp = falseif pending[c:id]:sel = \read"then Q 2 c:rqrmselse Q 2 c:wqrmslet f = pending [c:id](i):ack8q 2 Q : f(q) 6= ?r = pending [c:id](i):cnd(f jQ)E�: pending [c:id](i):rsp := true
Figure 6-1: The dc speci�cation

78

the starting state of con�guration c for process p. The code of this action just memorizes the states and the condenser function � for the current con�guration of process p.Action newstate(s)p computes the starting state for a con�guration c. The precondition of thisaction requires that all processes q in the membership of con�guration c have submitted their statefor con�guration c. The starting state s of con�guration c for process p is then computed by applyingthe condenser function that process p has submitted to the service with action submit-state(s; �)p.Variable state-dlv [c:d] records the fact that p has received the starting state for con�gurationWe remark that for a dead con�guration c there is at least one process that does not executeaction newconf(c)p and thus does not submit its state for c with action submit-state(s; �)p. This impliesthat action newstate(s)q cannot be executed for any process q. This is why such con�gurations arecalled \dead".The remaining actions are used to handle the requests of clients. We refer to the process of han-dling such a request, which involves the participation of a quorum of processes, as an \operation".To request the execution of an operation a client process p uses action submit(m;�; b; i)p. The param-eters of this actions are as follows: m is a message describing the operation that p needs to perform(e.g., read a register, write a register); � is a condenser function to be used to compute a responsevalue for p when a quorum of processes have provided acknowledgment values to p's message m; b isjust a selector indicating whether to wait for acknowledgment values from a write quorum or from aread quorum; i is an operation identi�er needed to distinguish operations (every requested operationhas a unique operation identi�er). We say \operation i" to indicate the operation requested withaction submit(m;�; b; i)p. For con�guration c and operation i, the variable pending [c:id](i) containsan operation descriptor; The code of action submit(m;�; b; i)p sets to a default value this operationdescriptor.We now provide an explanation for each component of an operation descriptor. Let d be anoperation descriptor for operation i requested by p in con�guration c. d:msg is the message thatdescribes the request of p; such a message will be delivered to all members of the con�gurationc. d:cnd is the condenser function that will be used to compute the response for the operationonce a quorum of processes has provided acknowledgment values. d:sel is the selector that speci�eswhether to use a read or a write quorum. d:dlv is the set of processes to which the message d:msghas been delivered; initially this is set to an empty set by action submit(m;�; b; i)p. d:ack containsthe acknowledgment values received; initially this is a vector of ? values. Finally, d:rsp is a
agindicating whether or not the client p, which requested the operation, has received a response forthe operation.Action deliver(m; i)p delivers the message m of operation i to process p. The code of this actionupdates the operation descriptor d for operation i by adding process p to the set d:dlv .Processes that receive the message m for an operation i are supposed to provide an acknowledg-79

ment value a with action ackdlvr(a; i)p. The code of this action records the acknowledgment value aof process p into the vector d:ack , where d is the operation descriptor for operation i.Finally, action respond(r; i) provides a response r to process p for the operation i previously sub-mitted by p. The precondition of this action requires that a quorum Q has provided acknowledgmentvalues (the type of the quorum depends on the selector provided at the time of the operation sub-mission). Then the value r is computed by applying the condenser function provided by p at thetime of the submission, to the acknowledgment values of processes in Q. At this point the operationhas been serviced and the rsp component is set to true.6.3 Invariants of dcIn this section we provide invariants of dc. These invariants are used to prove the correctness of theapplication that we build on top of dc.Invariant 6.3.1 In any reachable state of dc, the following is true. Let c1; c2 2 created ndead, withc1:id < c2:id . Then either exists w 2 TotEst; c1:id < w:id < c2:id , or else there exist R, W, quorumsof c1 such that R [W � c2:set.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state the invariant is vacuously true because thereare no two con�gurations c1; c2 2 created such that c1:id < c2:id.For the inductive step assume that the invariant is true in a state s. We need to prove thatthe invariant is true in s0 for any step (s; �; s0). The only action that we need to worry about iscreateconf(c), where c = c1 or c = c2, because it creates a new con�guration (otherwise the invariantis true in s0 by the inductive hypothesis). So assume that � =createconf(c). The invariant followseasily from the precondition of �.We remark that the intersection property stated in the above invariant may not hold for deadcon�gurations. However, in a dead con�guration is not possible to make progress because for sucha con�guration there is at least one process that will not participate and thus the con�guration willnever become established.The need for considering dead con�gurations comes from the implementation of the speci�cationthat we provide. It is possible to give a stronger version of dc by requiring that the intersectionproperty in the precondition of action createconf holds also for dead con�gurations. We do notknow if this stronger version is implementable.Invariant 6.3.2 In any reachable state of dc, the following is true. If p 2 attempted [g] thencur-cid [p] � g. 80

Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state we have that attempted [g] is P0 if g = g0 and; otherwise. Moreover for each p 2 P0 we have that cur-cid [p] = g0. Hence the invariant is true.For the inductive step �x g and p and assume that the invariant is true in a state s. We need toprove that the invariant is true in s0 for any step (s; �; s0). The actions that can make the invariantfalse are those that either put p into attempted [g] or modify cur-cid [p]. Hence we need only toworry about action newconf(c). So assume that �=newconf(c). The invariant follows easily from theprecondition of �.Invariant 6.3.3 In any reachable state of dc, the following is true. If c 2 createdndead , w 2 TotAtt,and w:id > c:id , then there exists R 2 c:rqrms such that for all p 2 R, cur-cid [p] > c:id .Proof: Consider any particular reachable state. Assume that c 2 created n dead , w 2 TotAtt, andw:id > c:id. Then let y be the con�guration in TotAtt having the smallest identi�er strictly greaterthan c:id. Note that y =2 dead , since a dead con�guration cannot be totally attempted. Then thereis no x 2 TotEst with c:id < x:id < y:id. Then Invariant 6.3.1 implies that for some R 2 c:rqrms ,R � y:set. Let p be any element of R. Since y 2 TotAtt we have that p 2 attempted [y:id]. ByInvariant 6.3.2 we have cur-cid [p] � y:id . Since y:id > c:id we have cur-cid [p] > c:id.6.4 An implementation of dcIn this section we provide an algorithm that implements, in the sense of trace inclusion, the dcspeci�cation. The algorithm is built on top of the cs service and uses ideas from [88].6.4.1 OverviewThe implementation of dc that we provide in this section is similar to the implementation of dvsprovided in Chapter 5. However, there is a key di�erence in the implementation of dc compared tothat of dvs. This di�erence provides new insights for the dvs speci�cation and implementation, aswe explain below.The dvs speci�cation requires a global intersection property which is the following: given twoprimary views w and v with no intervening totally established view1, we must have that w:set [v:set 6= ;. The dvs implementation, when delivering a new view v, checks a stronger property locally1\Established" views are called \registered" views in Chapter 5. This is due to the fact that the dvs speci�cationrequires client processes to \register" a new view when they have obtained enough information to begin regularcomputation; in the dc service this is handled by the service itself. However the meaning of \established" is the sameas that of \registered", that is, a client process has got the information needed to proceed with regular computation.We use a di�erent name just to emphasize the fact that in dvs clients need to \register" views while in dc con�gurationsbecome \established" under the control of the service. 81

to the processes, which requires that jv:set [w:setj � jw:setj=2 for all the views w, w:id < v:id,known by the process performing the check.The dc speci�cation requires a global intersection property which is the following: given twoprimary con�gurations, both of which are not dead, with no intervening totally established con�gu-rations, then there must exist a read and a write quorum of the con�guration with a smaller identi�erwhich are included in the membership set of the con�guration with bigger identi�er. The dc imple-mentation checks the same property locally to each process. The intuitive reason why by checkinglocally the same property we can prove it also globally is that we exclude dead con�gurations. Thissuggests that also for dvs we can prove the stronger intersection property (the one checked locally)or we can use a weaker local check (the intersection required globally) if we do exclude dead views.The dc speci�cation is built upon a static con�guration service, called cs. This service is basicallythe vs service adapted to handle con�gurations (see Section 4.2).The automaton cs-to-dcp is given in Figures 6-2 and 6-3. The overall system dc-impl is de�nedas the composition of cs and cs-to-dcp, for p 2 P .Automaton cs-to-dcp uses special messages, tagged either with \info", used to send informa-tion about the active and ambiguous con�gurations, or with \got-state", used to send the statesubmitted by a process to all the members of the con�guration. The former information is neededto check the intersection property that new primary con�gurations have to satisfy according to thedc speci�cation. The latter information is needed in order to compute the starting state for a newcon�guration. Thus, we useM =Mc [f(\info"�V � 2V)g [f\got-state"g, whereMc is the set ofall client messages and M is the universe of all messages.The major problem is that the dc speci�cation requires a global intersection property (i.e., aproperty that can be checked only by someone that knows the entire system state), while each singleprocess has a local knowledge of the system. So, in order to guarantee that a new con�gurationsatis�es the requirement of dc, each single process needs information from other processes membersof the con�guration.Informally, the �ltering of con�gurations works as follows. Each process keeps track of the latesttotally established con�guration, called the \active" con�guration, recorded into variable act , anda set of \ambiguous" con�gurations, recorded into variable amb, which are those con�gurationsthat were noti�ed after the active con�guration but did not become established yet. We de�neuse = act [amb. When cs provides a new con�guration to process p by means of action cs-newconf(c)p, process p sends out an \info" message containing its current actp and ambp values to allother processes in the new con�guration, using the cs service, and waits to receive the corresponding\info" messages for con�guration c from all the other members of c. After receiving this information(and updating its own actp and ambp accordingly), process p checks whether c has the requiredintersection property with each view in the usep set. If so, con�guration c is given in output to the82

client at p by means of action newconf(c)p.When a new primary con�guration c has been given in output to process p by means of actionnewconf(c)p, the client at p submits its current state together with a condenser function to be usedto compute the starting state when all other members have submitted their state (such a condenserfunction depends on the application). Clearly the state of p is needed by other processes in thecon�guration while p needs the state of the other processes. Hence when a submit-state(s; �)p isexecuted at p, the state s submitted by process p is sent out with a got-state message to all othermembers of the con�guration, using the cs service. Upon receiving the state of all other processes,cs-to-dcp uses the condenser function � provided by the client at p in order to compute the startingstate to be output, by means of action newstate(s)p, to the client at p.The communication mechanism of dc is quite di�erent from that o�ered by cs: dc o�ers abroadcast/convergecast communication mechanism, while cs o�ers point-to-point communicationchannels. However it is not di�cult to implement the former by using the communication service ofthe latter. The relevant code is in Figure 6-3. When a message m is submitted by means of actionsubmit(m;�; b; i)p, together with a condenser function �, a quorum-type b 2 f\read"; \write"g, andan operation identi�er i, message m, tagged with i, is sent to all the members of the con�gurationusing the cs service, and an operation descriptor for i is initialized. When another process q receivesthe message m of operation i, it delivers it to its client by means of action deliver(m; i)q . At thispoint the client at q is expected to supply an acknowledgment value a for operation i by means ofaction ackdlvr(a; i)q. This value is sent back to p using the cs service. When p receives this value itupdates the descriptor of operation i with the value obtained from q. If there are acknowledgmentvalues from a quorum of the type speci�ed by b, then the condenser function � is applied to theacknowledgment values of this quorum in order to compute a response to the message m submittedby p. Such a response is given to p by means of action respond(m; i)p.There are �ve derived variables for dvs-impl. Four of them are analogous to those of dvs,indicating the attempted, totally attempted, established, and totally established views, respectively.A �fth one, usep, keeps track of the set of con�gurations used to check the intersection propertybefore attempting a new con�guration.6.4.2 Invariants of dc-implThis section contains invariants of dc-impl needed for the proof that dc-impl implements dc inSection 6.4.3. The proofs of these invariants are similar to those of the corresponding invariants ofthe dvs implementation (see Section 5.2.2). This is because the implementation of dc is similar tothe implementation of dvs, thus many basic invariants are the same. For these basic invariant weprovide an operational proof (i.e., a proof that does not rely exclusively on the state previous to theone for which the invariant states a property) for each of the invariants.83

cs-to-dcSignature:Input: cs-newconf(c)p, c 2 C, p 2 c:setcs-gprcv(m)q;p, m 2 M, q 2 Pcs-safe(m)q;p , m 2 M, q 2 Psubmit-state(s; �)p, s 2 S, � 2 �submit(m;�; b; i)p, m 2 Mc, � 2 �,b 2 f\read"; \write"g, p 2 P, i 2 OIDpackdlvr(a; i)p, a 2 A, i 2 OID, p 2 P Internal: garbage-collect(c)p, c 2 COutput: cs-gpsnd(m)p , m 2 Mdc-newconf(c)p, c 2 V, p 2 c:setdc-newstate(s)p, s 2 Sdeliver(m; i)p, m 2Mc, i 2 OID, p 2 Prespond(a; i)p, a 2 A, i 2 OIDp, p 2 PState:cur 2 C?, init c0 if p 2 P0, ? elseclient-cur 2 C?, init c0 if p 2 P0, ? elseact 2 C, init c0amb 2 2C, init ;attempted 2 2C , init fc0g if p 2 P0, ; elsefor each g 2 G, q 2 Pinfo-rcvd[q; g] 2 (C � 2C)?, init ?rcvd-estb[q; g] 2 (C � 2C)?, init ?
for each g 2 Gto-cs[g] 2 seqof (M), init �info-sent[g] 2 (C � 2C)?, init ?dlv-queue[g] 2 seqof (M), init �cond [g] 2 �?, init ?pend [g] 2 O, init ?msg-dlvd [g] = OID ! ftrue; falsegstate-got[g] = P ! S?, init ?estb[g] a bool, init true if p 2 P0 and g = g0,false elseDerived variables:Att 2 2C, de�ned as Att = fc 2 created j (9p 2 c:set)c 2 attemptedpg;Est 2 2C, de�ned as Est = fc 2 created j (9p 2 c:set)estb[c:id]p = trueg;TotAtt 2 2C, de�ned as TotAtt = fc 2 created j (8p 2 c:set)c 2 attemptedpg;TotEst 2 2C, de�ned as TotEst = fc 2 created j (8p 2 c:set)estb[c:id]p = trueg.use 2 2C , de�ned as use = factg [ambTransitions:input cs-newconf(c)pE�: cur := cappend h\info"; act; ambi to to-cs[cur :id]info-sent[cur :id] := hact ; ambiinput cs-gprcv(h\info"; c; Ci)q;pE�: info-rcvd [q; cur :id] := hc;Ciif c:id > act:id then act := camb := fw 2 amb [C j w:id > act:idginput cs-safe(h\info"; c; Ci)q;pE�: noneoutput newconf(c)pPre: c = curc:id > client-cur :id8q 2 c:set; q 6= p : info-rcvd[q; c:id] 6= ?8w 2 use : 9R 2 w:rqrms; R 2 c:set8w 2 use : 9W 2 w:wqrms;W 2 c:setE�: amb := amb [fcgattempted := attempted [fcgclient-cur := cinput submit-state(s; �)pE�: g = client-cur :idif g 6= ? thenstate-got[g](p) := scond [g] := �append h\state-got"; si to to-cs[g]

input cs-gprcv(h\state-got"; si)q;pE�: state-got[cur :id](q) := sinput cs-safe(h\state-got"; si)q;pE�: noneoutput newstate(s)pPre: g = cur :idg 6= ?8q 2 c:set, state-got[g](q) 6= ?s = cond [g](state-got[g]jcur:set)estb[g] = falseE�: estb[g] := trueappend \established" to to-cs[g]input cs-gprcv(\established")q;pE�: rcvd-estb[q; cur :id] := trueinput cs-safe(\established")q;pE�: noneinternal garbage-collect(c)pPre: 8q 2 c:set; rcvd-estb[q; c:id] = truec:id > act:idE�: act := curamb := fw 2 amb j w:id > act:idgoutput cs-gpsnd(m)pPre: m is head of to-cs[cur.id]E�: remove head of to-cs[cur.id]Figure 6-2: cs-to-dcp84

cs-to-dc (transitions cont'd)input submit(m;�; b; i)pE�: g = client-cur :idif g 6= ? thenpend [g](i) := (m; �; b; ;; �(x) : x!?;false)append hm; ii to to-cs[g]input cs-gprcv(hm; ii)q;pE�: append hm; ii to dlv-queue[cur :id]input cs-safe(hm; ii)q;pE�: noneoutput deliver(m; i)pPre: hm; ii = head(dlv-queue[cur :id])msg-dlvd [cur :id](i) = falseE�: dlv-queue[cur :id] = tail(dlv-queue[cur :id])msg-dlvd [cur :id](i) := true

input ackdlvr(a; i)pE�: append ha; ii to to-cs[client-cur :id]input cs-gprcv(ha; ii)q;pE�: if i 2 OIDp thenpend [i]:ack(q) := ainput cs-safe(ha; ii)q;pE�: noneoutput respond(r; i)p choose QPre: g = cur :idg 6= ?i 2 OIDppend [g](i):rsp = falseif pend [g]:sel = \read"then Q 2 cur :rqrmselse Q 2 cur :wqrmslet f = pend [g](i):ack8q 2 Q : f(q) 6= ?r = pend [g](i):cnd(f jQ)E�: pend [g](i):rsp := trueFigure 6-3: cs-to-dcp (transitions cont'd)Invariant 6.4.1 (dc-impl)In any reachable state if h\info"; x;Xi 2 to-cs [g]p or h\info"; x;Xi 2 pending [p; g] or hh\info"; x;Xi; pi 2queue[g] or info-rcvd [p; g]q = hx;Xi, then info-sent [g]p = hx;Xi and cur :idp � g.Proof Sketch: This invariant is true because whenever process p puts the message h\info"; x;Xiinto to-cs[g]p in action cs-newconf(c), where c:id = g, it sets info-sent [g]p := hx;Xi. Moreover atthat moment it also sets cur := c. From that moment on, because con�guration identi�ers providedby cs only increase, we have that cur :idp � g. Clearly this continues to be true when the \info"message goes through pending [p; g], queue[g] and �nally gets to q and is recorded into info-rcvd [p; g]q.Invariant 6.4.2 (dc-impl)In any reachable state, if info-sent [g]p = hx;Xi, w 2 attemptedp, and w:id < g, then either w 2fxg [X or w:id < x:id.Proof Sketch: If process p sent an \info" message for con�guration g and has also attempted aprevious con�guration w, then either process p has already garbage-collected con�guration w (ifa con�guration with identi�er bigger than w:id has been totally established) which implies thatw:id < x:id or w is still in the use set of p, which implies that w 2 fxg [X .Invariant 6.4.3 (dc-impl)In any reachable state: 85

1. actp 2 TotEst.2. If info-sent [g]p = hx;Xi then x 2 TotEst.3. usep \ TotEst 6= ;.Proof Sketch: Variable actp is initially a totally established con�guration and is updated alwaysto a totally established con�guration (see action garbage-collect). Hence Part 1 follows. Part 2follows from the fact that if info-sent [g]p = hx;Xi then value of x is the value of the variable actpat the time when info-sent [g]p is written, and thus by Part 1 is totally established. Part 3 followsfrom Part 1 and the de�nition of usep.Invariant 6.4.4 (dc-impl)In any reachable state:1. If curp 6= ? and w 2 usep, then w:id � cur :idp.2. If curp 6= ? and client-curp 6= curp and w 2 usep, then w:id < cur :idp.3. If info-sent [g]p = hx;Xi and w 2 fxg [X then w:id < g.Proof Sketch: The only action that adds a new con�guration c to the usep is action newconf(c)p.The precondition of this action requires that curp = c which implies cur :id = c:id. The conclusionfollows from the property of cs that con�gurations identi�er are released in increasing order. Thisproves Part 1.Part 2 follows by observing that when curp 6= ? and client-curp 6= curp a new con�guration hasbeen provided by cs but it has not been attempted yet. This implies that the current con�gurationcurp cannot be in the usep set. Combining this with the conclusion of Part 1, we have that for anyw 2 usep, w:id < cur :idp.Finally Part 3 follows form the fact that process p sends information for a new con�guration whichhas not been attempted yet. Once again, implies that the current con�guration curp cannot be inthe usep set and we conclude as for Part 2.Invariant 6.4.5 (dc-impl)In any reachable state, if info-rcvd [q; g]p = hx;Xi and w 2 fxg [X, then either w 2 usep orw:id < act :idp.Proof Sketch: Since info-rcvd [q; g]p = hx;Xi we have that process p has received hx;Xi fromprocess q. When receiving this information (action cs-gprcv(h\info"; x;Xi)) process p updates its usepand act :idp sets. The conclusion follows from the code of cs-gprcv(h\info"; x;Xi).86

Invariant 6.4.6 (dc-impl)In any reachable state, if c 2 attemptedp and q 2 c:set then cur :id q � c:id.Proof Sketch: Since c 2 attemptedp we have that there has been a step newconf(c)p. By theprecondition of this action, since q 2 c:set we have that process p received information from q forcon�guration c, that is, info-sent [c:id]q = hx;Xi. By Invariant 6.4.1 we have that cur :id q � c:id.The following invariant states a simple fact about dc-impl. This invariant does not have acorresponding one in dvs. However, since the statement of this invariant is simple, also for thisinvariant we provide an operational proof.Invariant 6.4.7 (dc-impl)In any reachable state, if hm; ii 2 dlv-queue [g]q then pend [g](i):msgp = m, where p is such thati 2 OIDp.Proof Sketch: This is true because if hm; ii 2 dlv-queue [g]q we have that process q received themessage hm; ii from a process p, with i 2 OIDp. Moreover process p sent the message hm; ii inaction submit(m;�; b; i)p and this action sets pend [g](i):msgp = m.Next we provide the main invariants that are needed in the proof of the simulation relation.Invariant 6.4.8 states that if a con�guration c has been attempted by a process p and its mem-bership contains a process q which has attempted a con�guration w previous to c and there is nototally established con�guration between w and c then c contains a read and a write quorum ofw. Intuitively this is true because when p attempts c it must have received information from allthe members of c, thus also from q; since q attempted w and w has not been garbage collected,because there are no totally established con�gurations in between w and c, process q includes win the information it sends to p for con�guration c. Invariant 6.4.9 generalizes Invariant 6.4.8 byclaiming that the intersection property holds for any con�gurations w and c such that there is nototally established con�guration x with w:id < x:id < c:id:Finally Invariant 6.4.10 provides an intersection property crucial to the simulation relation. Thislast invariant is the one where dead con�gurations are needed.Invariant 6.4.8 (dc-impl)In any reachable state, suppose that c 2 attemptedp, q 2 c:set, w 2 attempted q, w:id < c:id, andthere is no x 2 TotEst such that w:id < x:id < c:id. Then there exist R 2 w:rqrms and W 2 w:wqrmssuch that R [W � c:set.Proof: By induction on the length of an execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, only c0 is attempted, so the hypothesescannot be satis�ed. Thus, the statement is vacuously true.87

For the inductive step assume the invariant is true in state s. We need to prove that it is true ins0 for any possible step (s; �; s0). Fix c, w, p, and q, and assume that c 2 s0:attemptedp, q 2 c:set,w 2 s0:attempted q , w:id < c:id, and there is no x 2 s0:TotEst such that w:id < x:id < c:id. Then alsothere is no x 2 s:TotEst such that w:id < x:id < c:id. We consider four cases:1. c 2 s:attemptedp and w 2 s:attempted q .Then by the inductive hypothesis we have that in state s there exist R 2 w:rqrms and W 2w:wqrms such that R[W � c:set. Clearly this remains true in s0 too (it remains true forever).2. c =2 s:attemptedp and w =2 s:attempted q .This cannot happen because we cannot have both c and w becoming attempted in a singlestep.3. c =2 s:attemptedp and w 2 s:attempted q .Then � must be newconf(c)p. Since q 2 c:set, by the precondition of � we have that s:info-rcvd [q; c:id]p =hx;Xi for some x and X . Then Invariant 6.4.1 implies that s:info-sent [c:id]q = hx;Xi. Then,since w:id < c:id , Invariant 6.4.2 implies that either w 2 fxg [X or w:id < x:id. We claimthat it must be w 2 fxg[X . Indeed if w:id < x:id, by Invariant 6.4.3 we have that x 2 s:TotEstand by Invariant 6.4.4, Part 3 (used with w = x) we have x:id < c:id; thus we would have atotally established con�guration x such that w:id < x:id < c:id. This contradicts the inductivehypothesis. So it must be w 2 fxg [X .By Invariant 6.4.5 we have that either w 2 s:usep or w:id < s:act :idp. In the former case, bythe precondition of �, we have the needed conclusion. In the latter case, we obtain a contra-diction. Indeed by Invariant 6.4.3 we have s:actp 2 TotEst. Moreover by the precondition of�, s:curp cannot be ? and s:curp > s:client-curp and, by de�nition, s:actp 2 s:usep. Henceby Invariant 6.4.4, Part 2, we have s:act :idp < s:cur :idp = c:id . Thus we would have a totallyestablished con�guration act such that w:id < act :id < c:id. This contradicts the inductivehypothesis.4. c 2 s:attemptedp and w =2 s:attempted q .Then � must be newconf(w)q . But this cannot happen. Indeed since c 2 s:attemptedp andq 2 c:set, Invariant 6.4.6 implies that s:cur :id q � c:id. Since c:id > w:id, we have s:cur :id q >w:id. But the precondition of action � requires s:cur :id q = w:id, so � is not enabled in s.
Invariant 6.4.9 (dc-impl)In any reachable state, suppose that c 2 Att, and w 2 TotEst, w:id < c:id , and there is no x 2 TotEst88

such that w:id < x:id < c:id . Then there exist R 2 w:rqrms and W 2 w:wqrms such that R [W �c:set.Proof: By induction on the length of an execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, only c0 is attempted, so the hypothesescannot be satis�ed. Thus, the statement is vacuously true.For the inductive step assume the invariant is true in state s. We need to prove that it is true ins0 for any possible step (s; �; s0). Fix c and w, and assume that c 2 s0:Att, w 2 s0:TotEst, w:id < c:id ,and there is no x 2 s0:TotEst such that w:id < x:id < c:id . We consider four cases:1. c 2 s:Att and w 2 s:TotEst.The invariant follows from the inductive hypothesis.2. c =2 s:Att and w =2 s:TotEst.This cannot happen because we cannot have both c becoming attempted and w becomingtotally established in a single step.3. c =2 s:Att and w 2 s:TotEst.Then � must be newconf(c)p for some p. The precondition of � implies that, for any con�gura-tion y 2 s:usep, there exist R 2 y:rqrms and W 2 y:wqrms such that R[W � c:set. Hence toprove the claim it is enough to prove that w 2 s:usep. We proceed by contradiction assumingthat w =2 s:usep.By Invariant 6.4.3, Part 3, s:usep\s:TotEst 6= ;. Let m be the con�guration in s:usep\s:TotEsthaving the biggest identi�er. We know that m 6= w because w =2 s:usep. Also, m 6= c, becausem 2 s:TotEst and c =2 s:TotEst. It follows that m:id 6= w:id and m:id 6= c:id .We claim that m:id < w:id . We have already shown that m:id 6= w:id . Suppose for the sakeof contradiction that m:id > w:id . From the precondition of action � we have that s:curp = cand hence s:curp 6= ?. Also from the precondition of � we have that s:client-curp < s:curp.Since m 2 s:usep, Invariant 6.4.4, Part 2, implies that m:id < s:cur :idp and since s:cur = cwe have that m:id < c:id . So w:id < m:id < c:id . Since m 2 s0:TotEst, this contradicts thehypothesis of the inductive step. Therefore, m:id < w:id .Let n be the con�guration in s:TotEst that has the smallest identi�er strictly greater than thatof m. Remember that w 2 s0:TotEst and since � =newconf(c)p we have that w 2 s:TotEst andthus such an n exists and satis�es m:id < n:id � w:id . Since m 2 s:usep, the precondition of� implies that there exist R 2 m:rqrms and W 2 m:wqrms such that R[W � c:set . Since byinductive hypothesis the invariant is true in state s, we have that there exist R0 2 m:rqrms andW 0 2 m:wqrms such that R0 [W 0 � n:set . By the properties of quorums we have that there89

exists one process q 2 (R [W) \ (R0 [W 0) and thus we have that q 2 n:set \ c:set . By theprecondition of �, s:info-rcvd [q; c:id]p = hx;Xi for some x;X . Then Invariant 6.4.1 impliesthat s:info-sent [c:id]q = hx;Xi and Invariant 6.4.3 says that x 2 s:TotEst. Then Invariant6.4.4, Part 3 (used with w = x), implies that x:id < c:id. Since n 2 s:TotEst, we have thatn 2 s:attemptedq . Then Invariant 6.4.2 (used with w = n) implies that either n 2 fxg [X orn:id < x:id . In either case, fxg [X contains a con�guration y 2 s:TotEst (either n or x) suchthat n:id � y:id < c:id. Then Invariant 6.4.5 implies that either y 2 s:usep or y:id < s:act :idp.By Invariant 6.4.3, Part 1, s:actp 2 s:TotEst and by de�nition, s:actp 2 s:usep. So in eithercase, the hypothesis that m is the totally established con�guration with the largest identi�erbelonging to s:usep is contradicted.4. c 2 s:Att and w =2 s:TotEst.Then � must be newstate(�)p for some p. Let m be the con�guration in s:TotEst with the largestidenti�er that is strictly less than w:id . By the statement for s, we know that there existR0 2 m:rqrms and W 0 2 m:wqrms such that R0 [W 0 2 w:set and there exist R00 2 m:rqrmsand W 00 2 m:wqrms such that R00 [W 00 2 c:set . Hence, by the properties of quorums, thereis a process q 2 w:set \ c:set .Since c 2 s:Att, there exists a process r such that c 2 s:attemptedr. Thus also c 2 s0:attemptedr:Since w 2 s0:TotEst, we have that w 2 s0:attempted q . By assumption, there is no con�gurationx 2 s0:TotEst such that w:id < x:id < c:id . By Invariant 6.4.8 applied to state s0 (with p = r),we have that there exist R 2 w:rqrms and W 2 m:wqrms such that R [W 2 c:set , as needed.So far, the proof that dc-impl implements dc has been very similar to the proof that dvs-impl implements dvs. The following invariant is di�erent from the corresponding one in the dvsimplementation, Invariant 5.2.17. Here is where dead con�gurations are needed.Invariant 6.4.10 (dc-impl)In any reachable state, if c; w 2 Att, w:id < c:id, con�guration w is not dead and there is nox 2 TotEst with w:id < x:id < c:id, then there exist R 2 w:rqrms and W 2 w:wqrms such thatR [W � c:set.Proof: By induction on the length of an execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state, only c0 is attempted, so the hypothesescannot be satis�ed. Thus, the statement is vacuously true.For the inductive step assume the invariant is true in state s. We need to prove that it is true ins0 for any possible step (s; �; s0). Fix c and w, and assume that c 2 s0:Att, w 2 s0:Att, w:id < c:id ,w 62 s0:dead , and there is no x 2 s0:TotEst such that w:id < x:id < c:id . We consider four cases:90

1. w 2 s:Att and c 2 s:Att. Then the invariant is true by the inductive hypothesis.2. w 62 s:Att and c 62 s:Att. This is not possible because a single action cannot make both w andc attempted.3. w 62 s:Att and c 2 s:Att. Then it must be that �=newconf(w)p0 for some process p0 thatattempts w. Since c 2 s:Att we have that c 2 s0:Att. Hence there exists p such that c 2s0:attemptedp.Now we claim that there must exist a process q 2 c:set \ w:set.Clearly we have that w 62 TotEst. Let Y = fyjy 2 TotEst; y:id < w:idg. We �rst show thatY is nonempty: The initial con�guration is totally established, thus c0 2 TotEst; moreoverc0:id � w:id. If c0:id = w:id, then we have w = c0. But then w 2 TotEst, a contradiction tothe de�nition of this case. So we must have c0:id < w:id, which implies that c0 2 Y , so Y isnonempty.Now �x z to be the con�guration in Y with the largest id. We have that there is no x 2 TotEstwith z:id < x:id < c:id. Then Invariant 6.4.9 implies that there exist R 2 z:rqrms and W 2z:wqrms such that R [W 2 w:set and also that there exist R0 2 z:rqrms and W 0 2 z:wqrmssuch that R[W 2 c:set. By the properties of quorums we have that (R[W)\ (R0[W 0) 6= fg.Hence we have that there exists q such that q 2 c:set \ w:set.Now we claim that w 2 s0:attemptedq . By contradiction assume that w 62 s0:attemptedq .Since c 2 s0:attemptedp and q 2 c:set we have that s0:info-rcvd [q; c:id]p = hx;Xi for some xand X . By Invariant 6.4.1 we have that s0:cur :idq � c:id > w:id. Since we assumed thatw 62 s0:attemptedq , by de�nition of dead con�guration we have that w is dead. But thiscontradicts the hypothesis of the invariant, which states that w is not dead. Hence it must bethat w 2 s0:attemptedq.Hence we have that c 2 s0:attemptedp, q 2 c:set, w 2 s0:attemptedq , w:id < c:id and there areno x 2 s0:TotEst such that w:id < x:id < c:id. By Invariant 6.4.8 we have that there existR 2 w:rqrms and W 2 w:wqrms such that R [W � c:set.4. w 2 s:Att and c 62 s:Att. Then it must be that �=newconf(c)p for some process p that attemptsc. We have that s0:attemptedp.The rest of the proof is as in the previous case: it claims that there exists q 2 c:set \ w:set,that w 2 s0:attemptedq and then uses Invariant 6.4.8 to get the needed conclusion.
91

6.4.3 Proof that dc-impl implements dcWe are now ready to prove that dc-impl implements dc. We �rst provide a function mapping statesof dc-impl to states of dc. Then we will prove that this function is an abstraction function.The abstraction function is given in Figure 6-4.Let s be a state of to-impl. The state t = Fdc(s) of to is the following.1. t:created = [p2Ps:attemptedp2. for each p 2 P , t:cur-cid [p] = s:client-cur :idp3. for each g 2 G, t:attempted [g] = fpjg = c:id; c 2 s:attemptedpg4. for each g 2 G, t:state-dlv [g] = fpjs:estb[g]pg5. for each g 2 G, t:got-state[g](p) = s:state-got [g](p)p6. for each g 2 G, t:condenser [g](p) = s:cond [g]p7. for each g 2 G and i 2 OIDp, t:pending [g](i) = ? if s:pend [g](i)p = ?, otherwise is de�nedby:� msg = s:pend [g](i):msgp� cnd = s:pend [g](i):cndp� sel = s:pend [g](i):selp� dlv = fqjs:msg-dlvd [g](i) = trueg� ack = fqjha; ii 2 s:to-csq or ha; ii 2 s:cs:pending [q; g] or s:pend [g](i):ack (q)p = ag� rsp = s:pend [g](i):rsppFigure 6-4: The abstraction function Fdc.In order to prove that Fdc is an abstraction function we need to prove that for any initial state sof dc-impl we have that Fdc(s) is an initial state of dc and that for any possible step � of dc-implthere exists a sequence of � of steps of dc such that the trace of �, that is the externally observablebehavior, is equal to the trace of �. Lemmas 6.4.11 and 6.4.12, prove the above. The proof of theselemmas is similar to the corresponding ones of dvs. The key di�erence is in the supporting invariantused in the proof, Invariant 6.4.10, which is crucial in proving the simulation relation for the casewhen the implementation executes action � =newconf(c)p, for some con�guration c and some processp.Lemma 6.4.11 If s is an initial state of dc-impl then Fdc(s) is an initial state of dc.Proof: Let s be the initial state of dc-impl. We have that s:attemptedp is fc0g for p2P0 and ; forp =2 P0. Hence, by de�nition of Fdc we have that t:created = fc0g which is as in the initial state ofdc.We have that s:client-cur :idp is fg0g for p2P0 and ? for p =2 P0. Hence, by de�nition of Fdc wehave that t:cur-cid is fg0g for p2P0 and ? for p =2 P0. This is as in the initial state of dc.92

We have that s:estb[g]p is true for p2P0; g = g0 and false otherwise. Hence we have thatt:state-dlv [g] is P0 if g = g0 and ; if g 6= g0. This is as in the initial state of dc.We have that s:cond [g]p = ? for all g and p. Hence t:condenser [g](p) = ? for all g and p, which isas in the initial state of dc.We have that pend [g](i) = ? for all g and i. Hence t:pending [g](i) = ? everywhere, which is as inthe initial state of dc.Hence if s is an initial state of dc-impl, we have that Fdc(s) is an initial state of dc.Lemma 6.4.12 Let s be a reachable state of dc-impl, Fdc(s) a reachable state of dc, and (s; �; s0)a step of dc-impl. Then there is an execution fragment � of dc that goes from Fdc(s) to Fdc(s0),such that trace(�) = trace(�).Proof: By case analysis based on the type of the action �. (The only interesting case is where � =newconf(v)p.) De�ne t = Fdc(s) and t0 = Fdc(s0).1. � = cs-createconf(c)Then trace((s; �; s0)) = �. Action � modi�es created . The de�nition of Fdc is not sensitive tothis change. Therefore, t = t0, and we set � = t.2. � = cs-newconf(c)pThen trace((s; �; s0)) = �. Action � modi�es current-con�d [p], curp and info-sent [cur :id]p,and adds an \info" message to to-cs[cur :id]p. The de�nition of Fdc is not sensitive to any ofthese changes. Therefore, t = t0, and we set � = t.3. � = cs-gpsnd(m)pThen trace((s; �; s0)) = �. Action � just moves a message from the queue to-cs [cur :id]p to thequeue cs:pending [p; current-con�d [p]]. The de�nition of Fdc is not sensitive to this change.Therefore, t = t0, and we set � = t.4. � = cs-order(m; p; g)Then trace((s; �; s0)) = �. Action � moves a message from cs:pending [p; g] to cs:queue[g].The de�nition of Fdc is not sensitive to this change. Therefore, t = t0, and we set � = t.5. � = cs-gprcv(h\info"; c; Ci)q;pThen trace((s; �; s0)) = �. Action � increments the next pointer in cs, and may modify actand amb in cs-to-dc. The de�nition of Fdc is not sensitive to this change. Therefore, t = t0,and we set � = t.6. � = cs-safe(h\info"; c; Ci)q;p 93

Then trace((s; �; s0)) = �. Action � increments the next-safe pointer in cs. The de�nition ofFdc is not sensitive to this change. Therefore, t = t0, and we set � = t.7. � = newconf(c)pThen trace((s; �; s)) = �. In dc-impl, this action modi�es only variables ambp, attemptedp,client-curp. We have s0:client-curp = c and s0:attemptedp = s:attemptedp [fcg. By de�nitionof Fdc, we have that t0:cur-cid [p] = s0:client-cur :idp, t0:created = [p2Ps0:attemptedp andt0:attempted [c:id] = fpjc 2 s0:attemptedpg. Hence we have that t0:cur-cid [p] = c:id , t0:created =t:created [fcg and t0:attempted [c:id] = t:attempted [c:id] [fpg, while all other state variablesin t0 are as in t.We consider two cases:(a) c 2 t:created .In this case, we set � = (t; �0; t0), where �0 = newconf(c)p. The code shows that �0 bringsdc from state t to state t0. It remains to prove that �0 is enabled in state t, that is, thatc 2 t:created and c:id > t:cur-cid [p]. The �rst of these two conditions is true because ofthe de�ning condition for this case. The second condition follows from the precondition of� in dc-impl: this precondition implies that c:id > s:client-cur :idp, and by the de�nitionof Fdc we have t:cur-cid [p] = s:client-cur :idp.(b) c 62 t:created . In this case we set � = (t; �0; t00; �00; t0), where �0 =createconf(c)p, �00 =newconf(c)p,and t00 is the unique state that arises by running the e�ect of �0 from t. The code showsthat � brings dc from state t to state t0. It remains to prove that �0 is enabled in t andthat �00 is enabled in t00.� Action �0. We start by proving that �0 is enabled in t.The precondition of �0 requires that (i) 8w 2 t:created , c:id 6= w:id and (ii) if c is notdead, the following two conditions, C1 and C2, are true.C1: 8w 2 t:created , w:id < c:id, either w is dead or 9x 2 t:TotEst satisfying w:id <x:id < c:id or there exist R 2 w:rqrms and W 2 w:wqrms such that R [W � c:set ;C2: 8w 2 t:created , c:id < w:id, either w is dead or 9x 2 t:TotEst satisfying c:id <x:id < w:id or there exist R 2 c:rqrms and W 2 c:wqrms such that R [W � w:set .{ requirement (i). To see requirement (i), suppose for the sake of contradictionthat there exists w 2 t:created such that w:id = c:id . The precondition of �in dc-impl implies that c = s:curp, which implies that c 2 s:cs:created . Sincew 2 t:created , the de�nition of Fdc implies that w 2 s:attemptedq for some q. Thisimplies that w 2 s:cs:created . Hence both c and w are created, that is, belong tot:created and since w:id = c:id we have that c = w. But this is impossible sincec =2 t:created and w 2 t:created .94

{ requirement (ii). If c is dead, then requirement (ii) is trivially satis�ed. Henceassume that c is not dead. We have to show that both C1 and C2 are true.Let us start with C1. Assume that there exists w 2 t:created such that w:id <c:id, that w is not dead and that there is no x 2 t:TotEst satisfying w:id < x:id <c:id (otherwise C1 is true and we are done). Since w 2 t:created , by de�nitionof Fdc, w 2 s:attemptedq for some q. Clearly, w 2 s0:attemptedq . Therefore,w 2 s0:Att. By the code of � we have that c 2 s0:attemptedp. Therefore we alsohave c 2 s0:Att. Moreover, there is no x 2 s0:TotEst satisfying w:id < x:id < c:id(this is true in t and thus, by de�nition of Fdc, is true in s and, because �0 doesnot establish any con�guration, it stays true in s0). By Invariant 6.4.10 we havethat there exist R 2 w:rqrms and W 2 w:wqrms such that R [W � c:set, asneeded to prove C1.We look now at C2. Assume that there exists w 2 t:created such that c:id < w:id,and that there is no x 2 t:TotEst satisfying c:id < x:id < w:id. We already knowthat c is not dead. Since w 2 t:created , by de�nition of Fdc, w 2 s:attempted q forsome q. Clearly, w 2 s0:attemptedq . Therefore, w 2 s0:Att. By the code of � wehave that c 2 s0:attemptedp. Therefore we also have c 2 s0:Att. Moreover, thereis no x 2 s0:TotEst satisfying c:id < x:id < w:id. By Invariant 6.4.10 we havethat exist R 2 c:rqrms and W 2 c:wqrms such that R[W � w:set, as needed toprove C2.This proves that �0 is enabled in t.� Action �00. Now we prove that �00 is enabled in state t00.The precondition of �00 requires that c 2 t00:created and c:id > t00:cur-cid [p]. The �rstcondition is true because c is added to created by �0. The second condition followsfrom the precondition of � in dc-impl: The precondition of � implies that c:id >s:client-cur :idp. The de�nition of Fdc implies that t:cur-cid [p] = s:client-cur :idp.Moreover, t00:cur-cid [p] = t:cur-cid [p]. It follows that c:id > t00:cur-cid [p]. Thus �00is enabled in state t00.8. � = submit-state(o; �)pThen trace((s; �; s)) = �. This action sets state-got [g](p)p := o, cond [g]p := � and appendsh\state-got"; oi to to-cs [g]p, where g = client-curp. By the de�nition of Fdc we have thatt0:got-state[g](p) = o and t0:condenser [g](p) = �, while all other state variables are as in t. Weset � = (t; �; t0). The code shows that � actually brings dc from t to t0. Moreover � is aninput action, so it is always enabled.9. � = cs-gprcv(h\state-got"; oi)q;p 95

Then trace((s; �; s0)) = �. Action � sets state-got [g](q)p := o. The de�nition of Fdc is notsensitive to this change. Therefore, t = t0, and we set � = t.10. � = cs-safe(h\state-got"; oi)q;pThen trace((s; �; s0)) = �. Action � increments the next-safe pointer in cs. The de�nition ofFdc is not sensitive to this change. Therefore, t = t0, and we set � = t.11. � = newstate(o)pThen trace((s; �; s)) = �. This action sets estb[g] := true and appends the message \established"to to-cs [g], where g = cur :idp. By de�nition ofFdc we have that t0:state-dlv [g] = t:state-dlv [g][fpg and this is the only di�erence between t0 and t. We set � = (t; �; t0). The code shows that� actually brings dc from t to t0. It remains to prove that � is enabled in t. The preconditionof � in dc-impl are the same as those in dc. Thus � is enabled in dc because it is enabled indc-impl.12. � = cs-gprcv(\established")pThen trace((s; �; s0)) = �. Action � sets rcvd-estb[q; cur :idp]p := true. The de�nition of Fdcis not sensitive to this change. Therefore, t = t0, and we set � = t.13. � = cs-safe(\established")pThen trace((s; �; s0)) = �. Action � increments the next-safe pointer in cs. The de�nition ofFdc is not sensitive to this change. Therefore, t = t0, and we set � = t.14. � = garbage-collect(c)pThen trace((s; �; s0)) = �. This action can modify actp and ambp. The de�nition of Fdc is notsensitive to these changes. Therefore, t = t0, and we set � = t.15. � = submit(m;�; b; i)pThen trace((s; �; s)) = �. This action sets pend [g] := hm;�; b; ;;?; falsei and appends hm; iito to-cs [g], where g = client-cur :idp 6= ?. The de�nition of Fdc shows that this changes thequeue of pending operations pending so that t0:pending [g](i) = hm;�; b; ;;?; falsei and thisis the only di�erence between t and t0. We set � = (t; �; t0). The code shows that � actuallybrings dc from t to t0. Moreover � is an input action, so it is always enabled.16. � = cs-gprcv(m; i)pThen trace((s; �; s0)) = �. Action � appends hm; ii to dlv-queue [cur :idp]p. The de�nition ofFdc is not sensitive to this change. Therefore, t = t0, and we set � = t.17. � = cs-safe(m; i)p 96

Then trace((s; �; s0)) = �. Action � increments the next-safe pointer in cs. The de�nition ofFdc is not sensitive to this change. Therefore, t = t0, and we set � = t.18. � = deliver(m; i)pThen trace((s; �; s)) = �. This action deletes the head of dlv-queue [g]p and setsmsg-dlvd [g](i) :=true, where g = cur :idp. By the de�nition of Fdc we have that the only thing that changesfrom t to t' is pending [g](i):dlv , that is t0:pending [g](i):dlv = t:pending [g](i):dlv [fpg. We set� = (t; �; t0). The code shows that � actually brings dc from t to t0. It remains to prove that� is enabled in t. From the precondition of � we have that s:msg-dlvd [g](i)p = false and thuswe have that p =2 t:pending [g](i):dlv . From the precondition of � we have that hm; ii is thehead of dlv-queue [g]p. By Invariant 6.4.7 we have that t:pending [g](i):msgp = m. Hence � isenabled in state t of dc.19. � = ack-dlvr(a; i)pThen trace((s; �; s)) = �. This action appends ha; ii to to-cs [g]p where g = client-cur :idp. Bythe de�nition of Fdc we have that the only thing that changes from t to t' is pending [g](i):ack ,that is t0:pending [g](i):ack = t:pending [g](i):ack [fpg. We set � = (t; �; t0). The code showsthat � actually brings dc from t to t0. Moreover � is enabled in t because it is an input action.20. � = cs-gprcv(a; i)pThen trace((s; �; s0)) = �. Action � sets hm; ii to dlv-queue[cur :idp]p. The de�nition of Fdc isnot sensitive to this change. Therefore, t = t0, and we set � = t.21. � = cs-safe(a; i)pThen trace((s; �; s0)) = �. Action � increments the next-safe pointer in cs. The de�nition ofFdc is not sensitive to this change. Therefore, t = t0, and we set � = t.22. � = respond(r; i)pThen trace((s; �; s)) = �. This action sets pend [g](i):rsp := true. By the de�nition of Fdc wehave that t0:pending [g](i):rsp = true. We set � = (t; �; t0). The code shows that � actuallybrings dc from t to t0. It remains to prove that � is enabled in t. The precondition of � indc-impl is as the precondition of � in dc. Hence � is enabled in dc because it is enabled indc-impl.Lemmas 6.4.11 and 6.4.12 prove that Fdc is an abstraction function from dc-impl to dc and thusthe following theorem holds.Theorem 6.4.13 Every trace of dc-impl is a trace of dc.97

6.5 An application of dcIn this section we show how to use dc to implement an atomic multi-writer multi-reader sharedregister. The algorithm is an extension of the single-writer multi-reader atomic register of Attiya,Bar-Noy and Dolev [12]. A similar extension was provided in [66].6.5.1 OverviewIn this section we provide a description of the algorithm and the code. We start with the descriptionof the algorithm.Each process keeps a copy of the shared register, in variable val paired with a tag, in variabletag . Tags are used to establish the time when values are written: a value paired with a bigger taghas been written after a value paired with a smaller tag. Tags consists of pairs hj; pi where j is asequence number (a non negative integer) and p is a process identi�er. Tags are ordered accordingto their sequence numbers with processes identi�ers breaking ties. Given a tag hj; pi the notationt:seq denotes the sequence number j.The algorithm has two modes of operation: a normal mode and a recon�guration mode. The latteris used to establish a new con�guration. It is entered when a new con�guration is announced (actionnewconf) and is left when the con�guration becomes established (action newstate). The former isthe mode where read and write operations are performed and it is entered when a con�guration isestablished and is left when a new con�guration is announced. During the recon�guration modepending operations are delayed until the normal mode is restored. Variable conf-status is used tokeep track of the mode (values exch-ready ; exch-wait are for the recon�guration mode).Clients of the service can request read and write operations by means of actions readp andwrite(x)p. We assume that each client does not invoke a new operation request before receiving theresponse for the previous request. Both type of requests (read and write) are handled in a similarway: there is a query phase and a subsequent propagate phase. During the query phase the serverreceiving the request \queries" a read-quorum in order to get the value of the shared register andthe corresponding tag for each of the members of the read-quorum. From these it selects the valuex corresponding to the max tag t. This concludes the query phase. In the propagation phase theserver sends a new value and a new tag (which are (x; t) for the case of a readp operation and(y; ht:seq + 1; pi) for a write(y)p operation) to the members of a write quorum. These processesupdate their own copy of the register if the tag received is greater than their current tag; then theysend back an acknowledgment to the server p. When p gets the acknowledgment message from themembers of a write quorum, the propagate phase is completed. At this point the server can respondto the client that issued the operation with either the value read, in the case of a read operation, orwith just a con�rmation, in the case of a write operation.98

We remark that when a con�guration change happens during the execution of a requested oper-ation, the completion of the operation is delayed until the normal mode is restored. However if thequery phase has already been completed it is not necessary to repeat it in the new con�guration.We denote by T = fhj; pijj 2 N; p 2 Pg the set of tags. This set is ordered according to the �rstcomponent, with the process identi�ers breaking ties. We denote by X the set of values that theshared register can assume. We assume that there is a default value x0 2 X . Initially all membersof c0 have the shared copy of the register set to x0.All other data types used in the code are as de�ned for dc.Figures 6-5 and 6-6 provide the code of abd-codep; in this code code, we use the followingcondenser functions:- �maxtag which computes the value and the tag of the max tag register copy. Formally thisfunction takes a collection of tuples Z = f(\query-ack"; v; t; h)g, with t 2 T and returns onesuch quadruple which has a maximum tag t among the elements of Z together with the set Qof processes that submitted the tuples; formally it returns a tuple (\query-ack"; v; t; h;Q).- �ack which returns an acknowledgment. Formally this function takes a collection of pairsZ = f(\prop"; t)g, all of which have the same value t 2 T , and returns (\prop-ack"; t; Q),where Q is the set of processes that submitted the pairs.- �state which computes the up to date state for a new con�guration. Formally it takes acollection of triples Z = f(x; t; h)g where x is a value, t a tag and h a con�guration identi�er,considers the subset Z 0 of the triples of z with maximum h and returns the �rst two componentsof a triple of Z 0 which has the maximum t in Z 0. Such a triple can be picked by default, choosinge.g., the one that came from the process with the smallest identi�er.abd-code (signature and state)Signature:Input: readp, p 2 Pwrite(x)p, x 2 X , p 2 Pdeliver(m; i)p, m 2M, i 2 OID, p 2 Prespond(a; i)p, a 2 A, i 2 OIDp, p 2 Pnewconf(c)p, c 2 C, p 2 c:setnewstate(s)p, s 2 S, Output: submit(m;�; b; i)p, m 2 M, � 2 �,b 2 f\r"; \w"g, p 2 P, i 2 OIDpackdlvr(a; i)p, a 2 A, i 2 OID, p 2 Pread-confirm(x)p, x 2 X, p 2 Pwrite-confirmp, p 2 Psubmit-state(s; �)p, s 2 S, � 2 �,State:current 2 C? init co if p 2 P0 else ?high 2 G?, init g0 if p 2 P0 else ?val 2 X , initially x0tag 2 T , initially h0; piprop-val 2 X , initially x0prop-tag 2 T , initially h0; pi conf-status 2 fnormal ; exch-ready; exch-waitg, init normalstatus 2 fquery-ready; query-wait; prop-ready ,prop-wait ; prop-doneg, init query-readyrequest 2 f\read"; (\write"; x);?g, init ?ack-q, seqof(A�OID), init �Figure 6-5: The abd interface and state.We de�ne the system abd-sys as the composition of dc and abd-codep for each p 2 P .99

abd-code (transitions)Actions:input readpE�: request := \read"input write(x)pE�: request := (\write"; x)output submit(\query"; �maxtag ; \r"; i)pPre: current 6= ?i =2 used-idsconf-status = normalstatus = query-readyrequest 6= ?E�: used-ids := used-ids [figstatus := query-waitinput respond((\query-ack"; x; t; h;Q); i)pE�: if request = \read" thenprop-tag := tprop-val := xif request = (\write"; y) thenprop-tag := (t:seq + 1; p)prop-val := ystatus := prop-readyoutput submit((\prop"; x; t), �ack ; \w"; i)pPre: current 6= ?i =2 used-idsconf-status = normalstatus = prop-readyx = prop-valt = prop-tagE�: status := prop-waitinput respond((\prop-ack"; t; Q); i)pE�: status := prop-doneoutput read-confirm(x)pPre: conf-status = normalstatus = prop-donerequest = \read"x = prop-valE�: request := ?status := query-ready

output write-confirmp choose xPre: conf-status = normalstatus = prop-donerequest = (\write"; x)E�: request := ?status := query-readyinput deliver(\query"; i)pE�: append ((\query-ack"; val ; tag; high); i) to ack-qinput deliver((\prop"; x; t); i)pE�: if t > tag thenval := xtag := tappend ((\prop-ack"; t); i) to ack-qoutput ackdlvr(a; i)pPre: head(ack-q) = (a; i)E�: ack-q := tail(ack-q)input newconf(c)pE�: current := cconf-status := exch-readyif status = query-wait thenstatus := query-readyif status = prop-wait thenstatus := prop-readyack-q := �output submit-state((x; t; h); �state)pPre: conf-status = exch-readyx = valt = tagh = highE�: conf-status := exch-waitinput newstate(x; t)pE�: conf-status := normalif t > tag thenval := xtag := thigh := currentFigure 6-6: The abd-code transitions.
100

6.5.2 Proof that abd-sys is an atomic registerIn this section we prove that abd-sys implements an atomic read/write shared register. This proofuses an approach similar to that used in Chapter 5 and in [41] to prove the correctness of applicationsbuilt on top of dvs and vs, respectively.We need the following history variables.For a process p and a con�guration identi�er g variable buildtag [p; g] 2 T? is de�ned as follows:� If current:idp = g then buildtag [p; g] = tagp;� If current :idp > g then buildtag [p; g] is the value of tagp at the moment when process p leavescon�guration g;� If current:idp < g then buildtag [p; g] = ?.Informally this buildtag [p; g] records the value of the latest tag, if any, used in con�guration g byprocess p.The value of buildtag [p; g] can be easily computed by following the statement that modi�es tagp inactions deliver and newstate, with another statement buildtag [p; current :idp] := tagp. It should beclear that (i) when p is in con�guration g we have that buildtag [p; g] = tagp and (ii) after p leavescon�guration g forever afterwards, buildtag [p; g] contains the value of tagp at the point when p leftcon�guration g.We also need history variables to record the beginning and the end of query and propagatephases of each operation, the con�gurations where the phases are executed, the quorum of precessesinvolved, as well as the tags returned by the query phases and the ones written by propagate phases.We de�ne the following history variables:� query-begin[i] 2 ftrue; falseg, initially false for all i 2 OID . This variable is set to truewhen action submit(\query"; �maxtag ; \r"; i)p is executed by some process p. Informally, whenquery-begin[i] = true the query phase of operation i has started.� query-end [i] 2 ftrue; falseg, initially false for all i 2 OID . This variable is set to truewhen action respond((\query-ack"; x; t; h;Q); i)p is executed by some process p and for any valueof x; t; h and Q. Informally, when query-end [i] = true the query phase of operation i has beencompleted.� query-quorum[i] 2 2P?, initially ? for all i 2 OID . This variable is set to Q when actionrespond((\query-ack"; x; t; h;Q); i)p is executed by some process p and for any value of x; t and h.Informally, query-quorum[i] records the read quorum used by the query phase of operation i.� query-conf [i] 2 C?, initially ? for all i 2 OID . This variable is set to c when actionrespond((\query-ack"; x; t; h;Q); i)p is executed by some process p when currentp = c, and for101

any value of x; t; h and Q. Informally, variable query-conf [i] records the con�guration in whichthe query phase of operation i is performed.� query-tag [i] 2 T?, initially? for all i 2 OID . This variable is set to twhen action respond((\query-ack"; x; h; t; Q); i)pis executed by some process p and for any value of x; h and Q. Informally, variable query-tag [i]records the tag returned by the query phase of operation i.� prop-begin [i] 2 ftrue; falseg, initially false for all i 2 OID . This variable is set to truewhen action submit((\prop"; x; t); �ack ; \w"; i)p is executed by some process p and for any valueof x and t. Informally, when prop-begin [i] = true the propagation phase of operation i hasstarted.� prop-end [i] 2 ftrue; falseg, initially false for all i 2 OID . This variable is set to true whenaction respond((\prop-ack"; t; Q); i)p is executed by some process p and for any value of t and Q.Informally, when prop-end [i] = true the propagation phase of operation i has been completed.� prop-quorum[i] 2 2P?, initially ? for all i 2 OID . This variable is set to Q when actionrespond((\prop-ack"; t; Q); i)p is executed by some process p and for any value of t. Informally,prop-quorum[i] records the write quorum used by the propagate phase of operation i.� prop-conf [i] 2 C?, initially? for all i 2 OID . This variable is set to cwhen action respond((\prop-ack"; t; Q); i)pis executed by some process p when currentp = c and for any value of t and Q. Informally,variable prop-conf [i] records the con�guration in which the propagate phase of operation i isperformed.� prop-tag [i] 2 T?, initially? for all i 2 OID . This variable is set to twhen action respond((\prop-ack"; t; Q); i)pis executed by some process p for any value of Q. Informally, variable prop-tag [i] records thetag written during the propagate phase of operation i; this is also the tag associated withoperation i.We de�ne the set of summaries as the set Sum = fhx; t; gijx 2 X ; t 2 T ; g 2 Gg. Given asummary y 2 Sum, y = hx; t; gi selectors for the components are y:value = x, y:tag = t andy:high = g.Informally a summary y = hx; t; gi is used to record that some process p has been into a state inwhich valp = x; tagp = t and highp = g.We write allstate [p; g] to denote a set of summaries de�ned so that hx; t; hi 2 allstate [p; g] if oneof the following holds.1. currentp = g and valp = x,tagp = t and highp = h.2. got-state[g](p) = (x; t; h) 102

3. Message (\query-ack"; x; t; h) is somewhere in message mechanism of dc, more formally:� h(\query-ack"; x; t; h); ii 2 ack-qp, for some operation identi�er i;� pending [g](i):ack (p) = (\query-ack"; x; t; h), for some operation identi�er i.4. pending [g](i):msgp = (\prop"; x; t; h), for some operation identi�er i.We write allstate [g] to denote Sp2P allstate [p; g], and allstate to denote Sg2G allstate [g].If Y is a partial function from process identi�ers to summaries, then we de�ne: maxprimary(Y) =maxq2dom(Y)fY (q):highg, reps(Y) = fq 2 dom(Y) : Y (q):high = maxprimaryg and chosenrep(Y)denotes some element q0 in reps(Y) that maximizes Y (q0):tag.Next we provide some preliminary invariants. Since these invariants state simple facts and alsosome of them are very similar to the ones used in [41], we provide operational proofs instead offormal assertional proofs.Invariant 6.5.1 (abd-sys)In any reachable state, we have that current :idp = cur-cidp.Proof: Both variables are initially g0 for p 2 P0 and ? for p =2 P0. Both variables are set to c:idwhen action newconf(c)p is executed.Invariant 6.5.2 (abd-sys)In any reachable state, if query-end [i] = true or prop-end [i] = true, then we have that prop-conf [i] 2created n dead .Proof: By de�nition of prop-conf ; query-end and prop-end we have that if query-end [i] = true orprop-end [i] = true, then prop-conf [i] 6= ?. Let c = prop-conf [i]. Clearly c must be created.The query phase and the propagate phase are executed in normal processing, that is when conf-status =normal for each process involved. Thus processes participating in the query or in the propagate phasehave executed action newstate for con�guration c. Such an action is executed only when all membersof c have submitted their state to the dc service. In order to submit their state for con�guration c,each member must have executed action newconf(c). Hence c is not dead.Invariant 6.5.3 (abd-sys)In any reachable state the following are true.1. highp 2 TotAtt2. If y 2 allstate then y:high 2 TotAtt. 103

Proof Sketch: For any summary y con�guration y:high is a con�guration which has been the highpfor some process p. Hence it su�ces to prove Part 1. Variable highp is set only by action newstate(�)p.This action is executed only if all the members of the con�guration have submitted their state tothe dc service. This implies that all the members of the con�guration have attempted highp.Invariant 6.5.4 (abd-sys)In any reachable state:1. highp =2 dead2. If y 2 allstate then y:high =2 dead .Proof Sketch: This invariant follows easily from the previous one since a totally attempted con�g-uration cannot be dead.Invariant 6.5.5 (abd-sys)In any reachable state, the following is true: If c 2 created n dead and 9y 2 allstate such thaty:high > c:id then there exists R 2 c:rqrms such that for all p 2 R, current :idp > c:id.Proof: Let con�guration c and y 2 allstate be such that c 2 created n dead and y:high > c:id.By Invariant 6.5.3 we have that y:high 2 TotAtt. Then By Invariant 6.3.3, we have that thereexists R 2 c:rqrms such that for all p 2 R, cur-cidp > c:id. By Invariant 6.5.1 we have thatcurrentp = cur-cidp. It follows that there exists R 2 c:rqrms such that for all p 2 R, currentp > c:id.Invariant 6.5.6 (abd-sys)In any reachable state, the following is true. Let c; w be two con�gurations such that c:id < w:idand t 2 T . Let p 2 c:set \ w:set and let y = got-state[w:id](p). If buildtag [p; c:id] � t, y 6= ? andy:high � c:id, then y:tag � t.Proof Sketch: Since y = got-state[w:id](p) 6= ? we have that current:idp � w:id > c:id. Sincey:high � c:id we have that y:tag � buildtag [p; c:id]. By assumption buildtag [p; c:id] � t. Hence wehave that y:tag � t.The following invariant is the analog of Invariant 6.13 of [41].Invariant 6.5.7 (abd-sys)In any reachable state, for any p, for any summary y and for all c; w 2 created we have that: Ifstate-dlv [p; c:id] 6= ?, c:id < w:id and y 2 allstate [p; w:id] then y:high � c:id.104

Proof Sketch: Assume that p; y; c and w satisfy the hypothesis. Since state-dlv [p; c:id] 6= ?, wehave that process p has executed action newstate(�)p for con�guration c. When executing this actionit sets highp := c. Hence any summary due to p for a later con�guration has the high componentwhich is at least c:id. This is true also for y which is a summary due to p for con�guration w, sincew:id > c:id.Invariant 6.5.8 (abd-sys)In any reachable state, if got-state[g](p) 6= ? then current :idp � g.Proof Sketch: Since got-state[g](p) 6= ? we have that p submitted its state to dc. In order forprocess p to submit its state for con�guration g it must be that currentp = c, where c:id = g.Afterwards, by monotonicity of con�guration identi�ers, we have that current :idp � g.Next we provide a sequence of invariants which leads to the proof that abd-sys implements anatomic read/write shared register.Invariant 6.5.9 (abd-sys)In any reachable state, the following is true. Let c 2 created n dead , W 2 c:wqrms and let t 2 T . Iffor every r 2 W such that current :idr > c:id it holds that estb[c:id]r = true and buildtag [r; c:id] � t,then we have that every summary y 2 allstate with y:high > c:id satis�es y:tag � t.Proof: By induction on the length of the execution. In the initial state, the only created con�gu-ration is c0, and there are no summaries y with y:high > g0. So the invariant is vacuously true andthe base case is proved.For the inductive step assume that the invariant is true in a state s. We need to prove thatthe invariant is true in s0 for any step (s; �; s0). To prove that the invariant is true in s0 we �xc 2 s0:createdns0:dead ,W 2 c:wqrms , and t 2 T , and assume that for every r 2 W , if s0:current :id r >c:id then s0:estb[c:id]r and s0:build-tag [r; c:id] � t. To prove the invariant we need to prove thefollowing conclusion: for any summary y 2 s0:allstate such that y:high > c:id, we have that y:tag � t.Let us �rst consider the case when c =2 s:created . Since c 2 s0:created , action � must becreateconf(c). We consider two subcases.1. 9r 2 c:set : s:current:id r > c:id .Fix such a process r. Since c has just been created, r has not attempted c in s so c 2 s:dead ,which implies c 2 s0:dead . This contradicts the assumption that c 2 s0:created n s0:dead . Sothis case is not possible.2. 6 9r 2 c:set : s:current :idr > c:id . 105

In this case, we claim that the invariant is true because there is no y in s0:allstate withy:high > c:id . By contradiction, �x a y 2 s0:allstate such that y:high > c:id . By Invari-ant 6.5.4 con�guration y:high is not dead. Then Invariant 6.5.5 applied to s0 implies that thereexists R 2 c:rqrms such that for all q 2 R, s0:current :id q > c:id . Fix some q 2 R. Sinces:current:id q = s0:current:id q , it follows that s:current :id q > c:id . But q 2 c:set and thus wehave a contradiction of the de�ning condition for this case.Hence in the case when c 2 s:created the invariant is true. For the rest of the proof we assumethat c 2 s:created . Since c =2 s0:dead we have that c =2 s:dead .As usual, the interesting steps are those that convert the hypothesis from false to true, and thosethat keep the hypothesis true while converting the conclusion from true to false. There are no stepsthat convert the hypothesis from false to true. So it remains to consider any steps that keep thehypothesis true while converting the conclusion from true to false. Thus, we assume that, for everyr 2 W , if s:current :idr > c:id then s:estb[c:id]r = true and s:buildtag [r; c:id] � t. The only stepsthat can convert the conclusion from true to false are steps that produce a new summary (because ifa summary y 2 s:allstate has y:high > c:id, then by the inductive hypothesis we have that y:tag � tand we are done.)Any step that produces a summary y by modifying an old summary y0 2 s:allstate , in such away that y0:tag � y:tag and y0:high = y:high , is easy to handle: For such a step, y0:high > c:id andso the inductive hypothesis implies that t � y0:tag � y:tag , as needed. So the only concern is witha newstate action for some con�guration w.Hence we assume that � =newstate(hx̂; t̂; ĥi)p for some process p such that s:currentp = w.Action � produces the following new summary y = hs0:valp; s0:tagp; s0:highpi and since, by the codeof �, s0:high = w:id we have y:high = w:id . Assume that y:high > c:id (otherwise we are done). Inorder to prove the invariant we have to prove that y:tag � t.Since y:high > c:id and y:high = w:id , we have that w:id > c:id . We also notice that con-�guration w is not dead in s. Indeed by the code of � we have that s0:highp = s0:currentp andsince s0:currentp = s:currentp = w we have that w = s0:highp. By Invariant 6.5.4 we have thatw =2 s0:dead . Clearly w =2 s:dead .Let Y = s:got-state[w:id] and let p0 = chosenrep(Y). Let y0 be the summary y0 = s:got-state[w:id](p0).Before proving that y:tag � t we prove two claims that are needed for the proof.� Claim 1. y0:high � c:id .Let c0 denote the con�guration which has the highest identi�er in the set of con�gurationsfc00jc00 2 s0:TotEst; c00:id < w:idg.Remember that w =2 dead and that c:id < w:id.We consider two possible cases: 106

1. c0:id � c:idSince c0 2 s0:TotEst, we have that c0 =2 s0:dead (and thus c0 =2 s:dead). Also w =2 s0:dead .By de�nition of c0, we have that there are no totally established con�gurations in betweenc0 and w. Then Invariant 6.3.1 shows that there exists R 2 c0:rqrms such that R � w:set .Fix any q 2 R. Since c0 2 s0:TotEst we have that s:state-dlv [q; c0:id] 6= ?. Let y00 =s:got-state[w:id](q). By Invariant 6.5.7, we obtain that y00:high � c0:id . By the de�nitionof p0 as a member that maximizes the high component in the summary recorded ingot-state, we have y0:high � y00:high . Therefore y0:high � c0:id � c:id , completing ourproof of the claim for this case.2. c0:id < c:idBy assumption, c =2 dead . We have observed above that w =2 dead . By de�nition ofc0, we have that there are no totally established con�gurations in between c0 and w andsince c0:id < c:id < w:id it follows that there are no totally established con�gurations inbetween c and w. Then Invariant 6.3.1 shows that there exists R 2 c:rqrms such thatR � w:set . We have that R \W 6= ;. Let q be any element of R \W . Since R � w:set ,we have that q 2 w:set . Because s:got-state[w:id](q) 6= ?, Invariant 6.5.8 implies thats:current :id q � w:id . Since w:id > c:id we have that s:current :id q > c:id .Recall that we have assumed that for every r 2 W , if s:current :idr > c:id then s:estb[c:id]r =true and s:buildtag [r; c:id] � t. Therefore, since q 2W and s:current :id q > c:id , we havethat s:estb[c:id]q = true and thus s:state-dlv [q; c:id] 6= ?.Let y00 = s:got-state[w:id](q); thus y00 2 s:allstate [q; w:id]. By Invariant 6.5.7, we obtainthat y00:high � c:id . By the de�nition of p0 as a member that maximizes the high compo-nent in the summaries recorded in got-state[w:id], we have y0:high � y00:high . Thereforey0:high � c:id , completing our proof of the claim for this case.Thus we have proved that y0:high � c:id .� Claim 2. If y0:high = c:id , then in s0 there is no totally established con�guration w0 such thatc:id < w0:id < w:id .To see this, consider again the totally established con�guration c0 with the largest identi�erless than w:id . By the de�nition of c0 it su�ces to prove that c0:id � c:id.Neither c0 nor w are dead. Since there are no totally established con�guration in between c0and w, Invariant 6.3.1 implies that w:set contains a read-quorum of c0, and thus an element ofc0:set . That is, there exists q 2 c0:set \w:set . Consider the summary y00 = s:got-state[w:id](q).By the precondition of � we have y00 6= ? and thus we have that y00 2 s:allstate [q; w:id]. Byde�nition of c0 as the totally established con�guration with the largest identi�er less than w:id ,we have that c0:id < w:id and that state-dlv [q; c0:id] 6= ?. Then Invariant 6.5.7 shows that107

y00:high � c0:id . The de�nition of p0 as a member that maximizes the high component amongthe summaries recorded in s:got-state[w:id], shows that y0:high � y00:high � c0:id . But theclaim is conditional to the hypothesis that y0:high = c:id . So if y0:high = c:id we have thatc:id � c0:id , which gives the claim.Hence we have proved that if y0:high = c:id in s0 there is no totally established con�gurationw0 such that c:id < w0:id < w:id .We are now ready to prove that y:tag � t. By Claim 1, we have that y0:high � c:id.If y0:high > c:id , by the inductive hypothesis we have that y0:tag � t and since y:tag � y0:tag ,we have that y:tag � t, as needed.So suppose y0:high = c:id . By Claim 2, in s0 there is no totally established con�guration w0 suchthat c:id < w0:id < w:id .We know that c =2 s:dead and that w =2 s:dead . Thus by Invariant 6.3.1 we have that thereexists R 2 c:rqrms such that R � w:set ; therefore, since R \W 6= ;, there exists q 2 W \ w:set .By the precondition of �, using the fact that q 2 w:set , we have s:got-state[w:id](q) 6= ? and thuss:currentq � w:id > c:id . Thus also s0:currentq > c:id . We have that q 2 W and s0:currentq > c:id ;for such a process we have that s0:buildtag [q; c:id] � t and s0:estb[c:id]q = true. Since action �does not modify these variables we have that s:buildtag [q; c:id] � t and s:estb[c:id]q = true. Theprecondition of � shows that s:got-state[w:id](q) 6= ?. Let summary y00 = s:got-state[w:id](q).Thus y00 2 allstate [q; w:id]. Since s:estb[c:id]q = true we have that state-dlv [q; c:id] 6= ?. ByInvariant 6.5.7, we have that y00:high � c:id . By Invariant 6.5.6 we have that y00:tag � t. Recallthat y0:high = c:id and by de�nition y0 is a summary with maximal high . Since y00:high � c:id itmust be that y00:high = c:id , and so the summary y00 from q is among those with maximal high ins:got-state[w:id]. By the de�nition of p0 as a member that maximizes the tag component, we havethat y0:tag � y00:tag , so y0:tag � t. Since by the code y:tag = y0:tag , we have that y:tag � t, asneeded.The next invariant states that when a completed propagate phase performed in a con�guration chas propagate a tag t, all summaries whose high component is greater than c:id have a tag componentwhich is greater than or equal to t.Invariant 6.5.10 (abd-sys)In any reachable state, if prop-end [i] = true, prop-tag [i] = t, c = prop-conf [i] and y 2 allstate is asummary with y:high > c:id, then y:tag � t.Proof: Since prop-end [i] = true, by Invariant 6.5.2 we have that c 2 created n dead .Let W = prop-quorum[i] (this is the write quorum used in the propagate phase of operationi). Since prop-conf [i] = c, for all p 2 W , we have that estb[c:id]p = true (because process p is108

involved in the propagate phase of operation i, so it must have established c). This implies also thatcurrent :idp � c:id . Moreover since prop-tag [i] = t, if a processor p 2 W has current :idp > c:id ,by monotonicity of the tag, we have that buildtag [p; c:id] � t (because process p is involved in thepropagate phase of operation i and hence knows tag t; when it leaves con�guration c, buildtag [p; c:id]must be at least t).By Invariant 6.5.9 we have that y:tag � t.The next lemma states a property of any execution of abd-sys. Namely, if a completed propagatephase propagates a tag t, any subsequent query phase that totally follows the propagate phase (thatis, begins after the propagate phase has ended), gets a tag which is greater than or equal to t.Lemma 6.5.11 (abd-sys)In any execution, if the completed propagate phase of an operation i totally precedes the completedquery phase of an operation j, then query-tag [j] � prop-tag [i] in any state where both are not ?.Proof: Let s be any state where query-tag [j] and prop-tag [i] are not ?, that is both the propagatephase of operation i and the query phase of operation j have been completed. Then we haves:prop-end [i] = true and s:query-end [j] = true. Clearly we also have s:query-begin[j] = true. Let(s0; �; s1) be the step when prop-end [i] is set to true, let (s00; �; s2) be the step when query-begin [j]is set to true and let (s000; �; s3) be the step when query-end [j] is set to true. We must have thats1 precedes s00, s2 precedes s000 and s3 precedes s in the execution.Let t = s:prop-tag [i]. We need to prove that s:query-tag [j] � t.Let W = s:prop-quorum [i] (this is the write quorum used by the propagate phase of operationi) and let R = s:query-quorum[j] (this is the read quorum used by the query phase of operation j).Let c1 = s:prop-conf [i] and c2 = s:query-conf [j]. We have W 2 c1:wqrms and R 2 c2:rqrms .Since s:prop-end [i] = true and s:query-end [j] = true, by Invariant 6.5.2 we have that c1; c2 2created n dead in state s.We consider three cases:1. c1:id = c2:idSince c1 = c2 we have that R \W 6= ;. Let q 2 R \W . Process q submits to the condenserfunction �maxtag of operation j a tag which is greater than or equal to t. By de�nition of�maxtag we have that s:query-tag [j] � t, which gives the claim.2. c1:id < c2:idLet p be any process of R. By the code we have that variable highp is changed only whenaction newstatep is executed, and is set to current :idp. Since p participates in the query phaseof operation j there must be a state ŝ in between s00 and s3 such that that ŝ0:high:idp =109

ŝ0:current :idp = c2:id. By monotonicity of con�guration identi�ers we have that s:high:id p �ŝ0:high:id p and since c1:id < c2:id we have that s:high:id p > c1:id.Now, let yp be the summary due to the acknowledgment value sent by p for the query phaseof operation j. Notice that the tag yp:tag is used by the condenser function �maxtag for thequery phase of operation j.By Invariant 6.5.10, applied to state s using c = c1, we have that yp:tag � t. By de�nition of�maxtag we have that query-tag [j] � t.3. c1:id > c2:idWe show that this cannot happen. There are two possible cases:(a) 6 9x 2 s00:TotEst such that c2:id < x; id < c1:id.By Invariant 6.3.1 applied to state s00, there exists W 0 2 c2:wqrms such that W 0 � c1:set .We have that R \W 0 6= ;. Let p 2 R \W 0. We have that p 2 c1:set .In state s1 the propagate phase of operation i ends. It must be the case that everymember of c1 has s1:current :id � c1:id and also that every member of c1 has submittedits state for c1 prior to the beginning of the query phase of operation j. Since p 2 c1:set ,there must exist a state ŝ preceding s1 such that ŝ:currentp = c1.Since p 2 R there must exist a state ŝ0 in between s00 and s3 such that ŝ0:currentp = c2.Since s1 precedes s00, we have that ŝ precedes ŝ0. By monotonicity of con�guration iden-ti�ers we must have ŝ:current :idp � ŝ0:current :idp, that is c1:id � c2:id. This contradictsthe hypothesis that c1:id > c2:id.(b) 9x 2 s00:TotEst such that c2:id < x:id < c1:id.Let c0 be the totally established con�guration with the smallest identi�er interveningbetween c2 and c1 in s00. By de�nition of c0 we have that c0:id > c2:id.By Invariant 6.3.1 applied to state s00, there exists W 0 2 c2:wqrms such that W 0 � c0:set .We have that R \W 0 6= ;. Let p 2 R \W 0. Since c0 2 s00:TotEst and p 2 c0:set we havethat s00:current :idp � c0:id.Since p 2 R, there must exist a state ŝ between s00 and s3 such that ŝ:currentp = c2.By monotonicity of con�guration identi�ers, since s00 precedes ŝ we have that ŝ:current :idp �s00:current :idp. This implies that c2:id � c0:id > c2:id, which is impossible.In order to prove that the system implements an atomic object we use the following lemma from[65] (Lemma 13.16, page 435). 110

Lemma 6.5.12 Let � be a (�nite or in�nite) sequence of actions of a read/write atomic objectexternal interface. Suppose that � is well-formed, and contains no incomplete operations. Let � bethe set of all operations in �.Suppose that � is an irre
exive partial ordering of all the operations in �, satisfying the followingproperties:1. For any operation i 2 �, there are only �nitely many operations j such that j � i.2. If the response event for operation i precedes the invocation event for operation j in �, then itcannot be the case that j � i.3. If i is a write operation in � and j is any operation in �, then either i � j or j � i.4. The value returned by each read operation is the value written by the last preceding writeoperation according to � (or a �xed initial value, if there is no such write).Then � satis�es the atomicity property.We can use the above lemma to prove the following result. By Lemma 13.10 of [65] (page 419)we can restrict our attention to executions with no incomplete operationsTheorem 6.5.13 abd-sys implements an atomic read/write object.Proof: In order to show that the system implements an atomic object we need to provide a partialorder that satis�es Lemma 6.5.12. Let use de�ne the order � as follows. First de�ne the tag of anoperation i as tag(i) = prop-tag [i], that is, the tag written in the propagate phase. Order all writesoperation in order of tag and place each read operation after the write operation with the same tagand before any other write operation (order of read operations in between two consecutive writeoperations is irrelevant). Place all reads for which there is no write operation with the same tag,before the �rst write operation.Next we prove that � satis�es Lemma 6.5.12. Let us start with Point 1. Any operation j � imusthave tag(j) < tag(i). The number of write operations that precede i is bounded by the number oftags which are strictly smaller than tag(i). This is a �nite number. The number of reads which havea tag smaller than tag(i) is bounded by the number of read operations completed before operationi is completed. This is also a �nite number.Now consider Point 2. Assume that the response event for an operation i precedes the invocationevent for an operation j. Then we have that the propagate phase of operation i precedes the queryphase of operation j and by Invariant 6.5.11 we have that the tag returned by the query phaseof operation j is greater than or equal to the tag written by the propagate phase of operation i.Since the latter is equal to tag(i) and since the former is less or equal than tag(j) we have thattag(i) � tag(j). Thus it cannot be that j � i because this means that tag(j) < tag(i).111

Consider now Point 3. Assume that i is a write operation and that j is any other operation.Assume by contradiction than neither i � j nor j � i. Then we have that tag(i) = tag(j) andthat j is also a write operation (a read operation with the same tag of i is such that i � j). Sincetag(i) = tag(j) and since the process identi�er is part of the tag, it must be the case that bothoperations are requested by the same process. Hence it must be the case that one of the operation,say i, is completed before the other, operation j, is requested. Thus the (completed) propagatephase of operation i precedes the query phase of operation j. Hence by Invariant 6.5.11 we havethat the tag returned by the query phase of operation j is greater than or equal to the tag writtenby the propagate phase of operation i. The latter is equal to tag(i) and the former, by the code,is strictly less than tag(j). Hence we have that tag(i) < tag(j), which contradicts the fact thattag(i) = tag(j).Finally consider Point 4. Since each read is ordered right after the write with the same tag itis enough to show that a read operation i gets the value written by a write operation j such thattag(j) = tag(i). So let i be a read operation and let j be a write operation with tag(j) = tag(i). Itfollows by the code that the value returned by operation i is the one written by operation j (becausetag and value are updated simultaneously).6.6 RemarksWe remark that the intersection property of dc, namely that there exist a read quorum R and a writequorum W of a previous primary con�guration both belonging to the next primary con�gurationcomes from the particular application that we have developed. For other applications one mighthave di�erent (maybe weaker) intersection properties. For example, one might require that thenew primary con�guration contains a read quorum of the previous one (and not necessarily a writequorum). In our case, we must require both a read quorum and a write quorum in the new primary.If we do not require a read quorum to be in the new con�guration but only require a write quorumto be in the new con�guration, since write quorums may not intersect, two non-intersecting writequorums might concurrently proceed to two primary con�gurations, violating the uniqueness of aprimary con�guration. The same situation can happen if we do not require a write quorum tobe in the new con�guration but only a read quorum to be in the new con�guration, because tworead quorums may not intersect. In this latter case it is also possible for a read quorum in an oldcon�guration to read obsolete values; indeed processes in a read quorum can be left behind if newercon�gurations are established but since they form a read quorum of the con�guration they are in,they will be able to read whatever (obsolete) value they have.It is possible to optimize the state transfer at the beginning of a new con�guration. The goal ofthe state transfer is to obtain all information from previous con�guration. Clearly process that join112

the system have no information about previous con�gurations. Hence it is useless to wait for themto submit their state before computing the new up to date state.We remark that the choice of integrating the state transfer into the service has been made becausemost applications have to perform such state exchange and thus it seems reasonable to do it withinthe service in order to free the application from the details of such a computation. We did notchange the dvs service to also o�er integrated state exchange because some applications may notrequire submission of the current state from every member of a new view or con�guration. So itmay be useful also to leave to the application control of the state exchange computation.The above remark is connected to the question: does dc supersede dvs? On one hand dc ismore general than dvs because it provides a group communication service that handles con�gurationsinstead of views and con�gurations carry more information than views. On the other hand there aresome di�erences between dc and dvs. We already talked about the di�erence in the state exchangemechanism. Another di�erence is in the communication mechanism used by the two services: dvsuses a point-to-point communication mechanism, while dc use a broadcast/convergecast mechanisminvolving a quorum of processes. Because of these di�erences we have kept the two services asdi�erent services.The dc service requires every process of a new con�guration to submit its state. This is a strongrequirement for applications that use quorums to improve availability. However it provides a strongservice. It is possible to specify a weaker version of the dc service that requires only a read quorumto submit the state before computing the starting state of a new con�guration. We believe that theto algorithm we have developed in this chapter would still work with this weaker service.The abd algorithm does not use the pre�x property of message delivery guaranteed by the csspeci�cation. Hence one could use a weaker speci�cation instead of cs to implement dc.The implementation of dc performs garbage collection when a view becomes totally established(any previous view is discarded and no intersection checks are made with these discarded views).Yeger Lotem et al. [89] perform garbage collection when a view becomes established (the processthat establishes a view discards all previous ambiguous views). Our garbage collection mechanism,though less e�cient than that of [89], allows an easier proof of correctness.

113

Chapter 7
Dynamic AlgorithmsIn this chapter we apply the ideas about dynamic con�gurations developed in Chapter 6 to designa dynamic version of the paxos algorithm [61], called dpaxos, and a dynamic primary copy datareplication algorithm implementing an atomic object, called rab.Both algorithms are built upon an underlying group communication service; this service, calleddlc, is a variation of the dc service (see Chapter 6) which uses \leader con�gurations" (see Chap-ter 3) and augments the service with point-to-point communication.We start the chapter with the dlc service. Section 7.2 provides the dpaxos algorithm. InSection 7.3 we sketch the rab algorithm. Finally Section 7.4 contains concluding remarks.7.1 The dlc speci�cationIn this section we provide a dynamic primary con�guration group communication service. Thisservice, which we call dlc, is similar to the dc service; the di�erences are: (i) dlc handles leadercon�gurations instead of read-write quorum con�gurations (see Chapter 3) and (ii) dlc providespoint-to-point channels too.The dlc service is similar to the dc service. The code is provided in Figure 7-1. In Section 7.1.1we explain the di�erences between dlc and dc. We also provide a full description of dlc inSection 7.1.2; however the reader who comes from Chapter 6 and reads Section 7.1.1 can safely skipSection 7.1.2.7.1.1 Di�erences with dcThere are basically two di�erences between dc and dlc. The �rst di�erence is due to the kind ofcon�gurations considered: leader con�gurations instead of read-write quorum con�gurations. Asa result, the key intersection property becomes the following: for any two created and non dead114

dlcSignature:Input: submit(m;�; i)p, m 2 M, � 2 �, p 2 P,i 2 OIDpackdlvr(a; i)p, a 2 A, i 2 OID, p 2 Psubmit-state(s; �)p, s 2 S, � 2 �, p 2 Pp2p-recv(m)q;p , m 2 M, q; p 2 PInternal: createconf(c), c 2 C Output: newconf(c)p, c 2 C, p 2 c:setnewstate(s)p, s 2 S, p 2 Prespond(a; i)p, a 2 A, i 2 OIDp, p 2 Pdeliver(m; i)p, m 2 M, i 2 OID, p 2 Pp2p-send(m)p;q , m 2 M, q; p 2 P,State:created 2 2C, init fc0gfor each p 2 P:cur-cid[p] 2 G?, init g0 if p 2 P0, ? elsefor each p; q 2 P; g 2 G:p2p-msgs[p; g; q]seqof (M), initially ;p2p-next[p; g; q] 2 N>0, initially 1 for each g 2 G:got-state[g] = P ! S?, init everywhere ?condenser [g] = P ! �?, init everywhere ?state-dlv [g] 2 2P , init P0 if g = g0, fg elsepending [g] 2 O, init everywhere ?attempted [g] 2 2P , init P0 if g = g0, fg elseDerived variables:Att 2 2C, de�ned as fc 2 created jattempted[c:id] 6= ;gEst 2 2C, de�ned as fc 2 created jstate-dlv[c:id] 6= ;g TotAtt 2 2C , de�ned as fc 2 created jc:set � attempted [c:id]gTotEst 2 2C , de�ned as fc 2 created jc:set � state-dlv[c:id]gdead 2 2C de�ned as dead = fc 2 Cj9p 2 c:set : cur-cidp > c:id and p =2 attempted [c:id]g.Actions:internal createconf(c)Pre: 8w 2 created : c:id 6= w:idif c 62 dead then8w 2 created ; w:id < c:id:w 2 dead or(9x 2 TotEst: w:id < x:id < c:id) or(9Q 2 w:qrms: Q � c:set)8w 2 created ; w:id > c:idw 2 dead or(9x 2 TotEst: c:id < x:id < w:id) or(9Q 2 c:qrms: Q � w:set)E�: created := created [fcgoutput newconf(c)p, p 2 c:setPre: c 2 createdc:id > cur-cid[p]E�: cur-cid[p] := c:idattempted [c:id] := attempted [c:id][fpginput submit-state(s; �)pE�: if cur-cid[p] 6= ? andgot-state[cur-cid[p]](p) = ? thengot-state[cur-cid[p]](p) := scondenser [cur-cid[p]](p) := �output newstate(s)p choose cPre: c:id = cur-cid[p]c 2 created8q 2 c:set, got-state[c:id](q) 6= ?let f = condenser [c:id](p)jc:sets = f(got-state[c:id])p =2 state-dlv[c:id]E�: state-dlv[c:id] := state-dlv[c:id] [fpg

input submit(m;�; i)pE�: if cur-cid[p] 6= ? thenpending[cur-cid[p]](i):= (m;�; ;; �(x) : x!?;false)output deliver(m; i)p choose gPre: g = cur-cid[p]p =2 pending[g](i):dlvpending [g](i):msg = mE�: pending [g](i):dlv := pending [g](i):dlv [fpginput ackdlvr(a; i)pE�: if cur-cid[p] 6= ? andpending[cur-cid[p]](i):ack(p) 6= ? thenpending[cur-cid[p]](i):ack(p) := aoutput respond(r; i)p choose c;QPre: c:id = cur-cid[p]c 2 createdi 2 OIDppending [c:id](i):rsp = falseQ 2 c:qrmslet f = pending [c:id](i):ack8q 2 Q : f(q) 6= ?r = pending [c:id](i):cnd(f jQ)E�: pending [c:id](i):rsp := trueinput p2p-send(m)p;qE�: if cur-cid[p] 6= ? thenappend m to p2p-msgs [p; cur-cid[p]; q]output p2p-recv(m)p;q , choose gPre: g = cur-cid[q]mp2p-msgs [p; g; q](p2p-next[p; g; q])E�: p2p-next[p; g; q] := p2p-next [p; g; q] + 1Figure 7-1: The dlc speci�cation
115

con�gurations c1 and c2, with c1:id < c2:id, either there exists an intervening totally establishedcon�guration or a quorum of c1 is included in the membership set of c2. Invariant 7.1.1 formalizesthe above key property (this invariant is given in Section 7.1.3).The second di�erence is that dlc o�ers also point-to-point communication. That is, a process pcan send a message m to another process q, provided that both p and q are in the same con�gura-tion. Actions p2p-send(m)p;q and p2p-recv(m)p;q of dlc implement the point-to-point communicationmechanism (this portion of the code is not present in dc).The rest of the dlc speci�cation is the same as the dc speci�cation.7.1.2 Full description of dlcIn this section we provide a full description of dlc. The reader who comes from Chapter 6 andhas read Section 7.1.1 can safely skip this section. The description we provide here is similar to thedescription of the dc service provided in Section 6.2.Prior to providing the code for the dc speci�cation, we need some notation and de�nitions, whichwe introduce in the following.Let OID be a set of operation identi�ers, partitioned into sets OIDp, p 2 P . We denote byMc �M the set of messages that clients may use for communication.Let A be a set of \acknowledgment" values and let R be a set of \response" values. A condenserfunction is a function from (P ! A?) to R. Let � be the set of all condenser functions. Let Sbe the set of all possible states of the clients (a state of S does not need to be the entire client'sstate, but it may contain only the relevant information in order for the application to work). Thedc speci�cation uses a condenser function also to compute the starting state of a new con�guration;hence we assume that S � A and also S � R. Given a function f : P ! D from the set of processesP to some domain D and given a subset P � P , we write f jP to denote the function f 0 : P ! D,de�ned as f 0(p) = f(p) for p 2 P .The following data type is used to describe operations: D = M� � � 2P � (P ! A?) � Booland we let O = OID ! D?. Given an operation descriptor, selectors for the components are msg ,cnd , dlv , ack , and rsp.Next we provide remarks and an informal description of this code. We start with the derivedvariables.A con�guration c 2 Att is said to be attempted. For an attempted con�guration c there exists atleast one process p that has executed action newconf(c)p and thus we have that p 2 attempted [c:id];when this holds we say that c is attempted at p or that p has attempted c. A con�guration c 2 TotAttis said to be totally attempted. A totally attempted con�guration is a con�guration that is attemptedat all members of the con�guration.A con�guration c 2 Est is said to be established. For an established con�guration c there exists at116

least one process p that has executed action newstate(s)p and thus we have that p 2 state-dlv [c:id];when this holds we say that c is established at p or that p has established c. A con�gurationc 2 TotEst is said to be totally established. A totally established con�guration is a con�guration thatis established at all members of the con�guration.A dead con�guration c is a con�guration for which a member process p went on to newer con�g-urations, that is, it executed action newconf(c0)p with c0:id > c:id, before receiving the noti�cation,that is the newconf(c)p event, for con�guration c.Now we comment on the transitions.Action createconf(c) creates a new con�guration c. The �rst precondition simply requires thisnew con�guration to have a brand new identi�er. The second precondition of this action is the keyto our speci�cation. It states that when a con�guration c is created it must either be already dead orfor any other con�guration w such that there are no intervening totally established con�gurations,the earlier con�guration (i.e., the one with smaller identi�er) has at least one quorum included inthe membership set of the later con�guration (i.e., the one with bigger identi�er).Action newconf(c)p delivers a created con�guration c to the client process p. The preconditionof this action makes sure that con�gurations are delivered in order of con�guration identi�ers. Wenotice that because of this precondition, when a con�guration c is dead because a process q went onto newer con�gurations, we have that process q can no longer execute action newconf(c)q.Once a con�guration c has been delivered to a client process p, the client process p is supposedto submit its current state s and a condenser function �, by means of action submit-state(s; �)p. Onceall the processes have submitted their current states, the condenser function � is used to computethe starting state of con�guration c for process p. The code of this action just memorizes the states and the condenser function � for the current con�guration of process p.Action newstate(s)p computes the starting state for a con�guration c. The precondition of thisaction requires that all processes q in the membership of con�guration c have submitted their statefor con�guration c. The starting state s of con�guration c for process p is then computed by applyingthe condenser function that process p has submitted to the service with action submit-state(s; �)p.Variable state-dlv [c:id] records the fact that p has received the starting state for con�guration c.We remark that for a dead con�guration c there is at least one process that does not executeaction newconf(c)p and thus does not submit its state for c with action submit-state(s; �)p. This impliesthat action newstate(s)q cannot be executed for any process q. This is why such con�gurations arecalled \dead".The remaining actions are used to handle the requests of clients. We refer to the process ofhandling such a request, which involves the participation of a quorum of processes, as an \operation".To request the execution of an operation a client process p uses action submit(m;�; i)p. The parametersof this actions are as follows: m is a message describing the operation that p needs to perform; � is117

a condenser function to be used to compute a response value for p when a quorum of processes haveprovided acknowledgment values to p's message m; i is an operation identi�er needed to distinguishoperations (every requested operation has a unique operation identi�er). We say \operation i" toindicate the operation requested with action submit(m;�; i)p. For con�guration c and operation i,the variable pending [c:id](i) contains an operation descriptor. The code of action submit(m;�; i)p setsthis operation descriptor to a default value.We now provide an explanation for each component of an operation descriptor. Let d be anoperation descriptor for operation i requested by p in con�guration c. d:msg is the message thatdescribes the request of p; such a message will be delivered to all members of the con�guration c.d:cnd is the condenser function that will be used to compute the response for the operation oncea quorum of processes has provided acknowledgment values. d:dlv is the set of processes to whichthe message d:msg has been delivered; initially this is set to an empty set by action submit(m;�; i)p.d:ack contains the acknowledgment values received; initially this is a vector of ? values. Finally,d:rsp is a
ag indicating whether or not the client p that requested the operation has received aresponse for the operation.Action deliver(m; i)p delivers the message m of operation i to process p. The code of this actionupdates the operation descriptor d for operation i by adding process p to the set d:dlv .Processes that receive the message m for an operation i are supposed to provide an acknowledg-ment value a with action ackdlvr(a; i)p. The code of this action records the acknowledgment value aof process p into the vector d:ack , where d is the operation descriptor for operation i.Action respond(r; i) provides a response r to process p for the operation i previously submitted byp. The precondition of this action requires that a quorum Q has provided acknowledgment values.Then the value r is computed by applying the condenser function provided by p at the time of thesubmission, to the acknowledgment values of processes in Q. At this point the operation has beenserviced and the rsp component is set to true.The code that handles point-to-point communication, is provided by actions p2p-send(m)p;q andp2p-recv(m)p;q . State variable p2p-msgs [p; g; q] is used to record the messages sent. When action p2p-send(m)p;q is executed in a con�guration whose identi�er is g, messagem is added to p2p-msgs [p; g; q]which contains a queue of messages sent by p to q in con�guration g. Action p2p-recv(m)q;p deliversmessage m to q.7.1.3 Invariant of dlcIn this section we provide a key invariant of dlc. The property stated by this invariant is used toprove correct the applications that we build on top of dlc.The second precondition of createconf(c) is the key to our speci�cation. It states that when acon�guration c is created it must either be already dead or for any other con�guration w such that118

there are no intervening totally established con�gurations, the earlier con�guration (i.e., the onewith smaller identi�er) has one quorum whose members are included in the membership set of thelater con�guration (i.e., the one with bigger identi�er). The above precondition enables us to provethe following key invariant:Invariant 7.1.1 In any reachable state of dlc, the following is true. Let c1; c2 2 created n dead ,with c1:id < c2:id . Then either there exists w 2 TotEst; c1:id < w:id < c2:id , or else there exists aquorum Q 2 c1:qrms such that Q � c2:set.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state the invariant is vacuously true because thereare no two con�gurations c1; c2 2 created such that c1:id < c2:id.For the inductive step assume that the invariant is true in a state s. We need to prove thatthe invariant is true in s0 for any step (s; �; s0). The only action that we need to worry about iscreateconf(c), where c = c1 or c = c2, because it creates a new con�guration (otherwise the invariantis true in s0 by the inductive hypothesis). So assume that � =createconf(c). The invariant followseasily from the precondition of �.7.2 Dynamic paxos algorithmIn this section we present dpaxos, an algorithm that solves the consensus problem and that adaptswell to dynamic distributed systems. The dpaxos algorithm is derived from Lamport's paxosalgorithm because it uses the same strategy. We refer the reader to the paper by Lamport [61] for acomplete and colorful presentation of the paxos algorithm; the papers [29, 30] provide a less colorfuldescription of the paxos algorithm using the I/O automaton model. For the sake of completeness,in this section we provide a brief description of the paxos algorithm.We �rst provide a formal de�nition of the consensus problem in Section 7.2.1. Then in Sec-tion 7.2.2 we recall the original paxos algorithm. Section 7.2.3 provides the dpaxos algorithm andSection 7.2.4 the proof of correctness.7.2.1 Distributed ConsensusDistributed consensus is a fundamental problem in distributed computation. Roughly speakingthe problem is the one of reaching agreement among the members of a distributed system; suchagreement is often necessary for distributed applications (e.g., data replication, airline reservationsystem, distributed transactions).Next we give a formal de�nition of the consensus problem that we consider in this paper. Processp starts the computation with an input value vp 2 X , where X is the set of all possible initial values.119

Given a particular execution �, we denote by X� � X the set of the initial values of processes in �.Each process has a state variable called decision which is a write-once variable initially notwritten. Processes have to write their decision variable in such a way that three conditions aresatis�ed:� Agreement: All the written decision variables are set to the same value.� Validity: Any written decision variable is set to a value in X�.Since the termination condition is a liveness issue and we don't address liveness, we don't providea formal de�nition. Informally, the termination condition requires that if in a given state s acon�guration c is totally established, c is the con�guration with the biggest identi�er in s:created ,no other con�gurations are created after s, all processes of c are alive in state s, and no failureshappen after s, then all processes that are members of c eventually write the decision variable,provided that the execution is a fair execution.7.2.2 The original paxos algorithmThe paxos algorithm does not use a group communication service, so there are no views or con�gu-rations; it relies on an external leader elector module which provides (unreliable) information aboutthe current status of the underlying distributed system, i.e., tells the current membership and theleader, to each process. Termination is guaranteed only when there are no failures, and the externalleader elector provides reliable information on the system, for a su�ciently long time.The basic idea is to have processes propose values until one of them is accepted by a majority ofthe processes; that value is the �nal output value. Any process may propose a value by initiating around for that value. The process initiating a round is said to be the leader of that round while allprocesses, including the leader itself, are said to be agents for that round.Since di�erent rounds may be carried out concurrently (the leader elector is not reliable henceseveral processes may concurrently consider themselves leaders), we need to distinguish them. Everyround has a unique identi�er. Next we formally de�ne these round identi�ers. A round number is apair (x; i) where x is a nonnegative integer and i is a process identi�er. The set of round numbersis denoted by R. A total order on elements of R is de�ned by (x; i) < (y; j) i� x < y or, x = y andi < j.We say that round r precedes round r0 if r < r0. If round r precedes round r0 then we also saythat r is a previous round, with respect to round r0. We remark that the ordering of rounds is notrelated to the actual time the rounds are conducted. It is possible that a round r0 is started at somepoint in time and a previous round r, that is, one with r < r0, is started later on.Every round in the algorithm is tagged with a unique round number. Every message sent by theleader or by an agent for a round (with round number) r 2 R, carries the round number r so that120

no confusion among messages belonging to di�erent rounds is possible.Informally, the steps for a round are the following.1. To initiate a round, the leader sends a \Collect" message to all agents announcing that itwants to start a new round with round number r and at the same time asking for informationabout previous rounds in which agents may have been involved.2. An agent that receives a message sent in step 1 from the leader of the round, responds witha \Last" message giving its own information about rounds previously conducted, namely thelast round r0 for which the agent made a commitment and the value v of that round. Withthis, the agent makes a kind of commitment for this particular round that may prevent it fromaccepting (in step 4) the value proposed in some other round. If the agent is already committedfor a round with a bigger round number then it informs the leader of its commitment with an\OldRound" message.3. Once the leader has gathered information about previous rounds from a majority of agents, itdecides, according to some rules, the value to propose for its round and sends to all agents a\Begin" message announcing the value v for round r and asking them to accept it. In orderfor the leader to be able to choose a value for the round it is necessary that initial valuesbe provided. If no initial value is provided, the leader must wait for an initial value beforeproceeding with step 3. The set of processes from which the leader gathers information iscalled the info-quorum of the round.4. An agent that receives a message from the leader of the round sent in step 3, responds withan \Accept" message by accepting the value proposed in the current round r, unless it iscommitted for a later round and thus must reject the value proposed in the current round. Inthe latter case the agent sends an \OldRound" message to the leader indicating the round r0for which it is committed.5. If the leader gets \Accept" messages from a majority of agents, then the leader sets its ownoutput value to the value proposed in the round. At this point the round is successful. Theset of agents that accept the value proposed by the leader is called the accepting-quorum.Since a successful round implies that the leader of the round reaches a decision, after a successfulround the leader still needs to do something, namely to broadcast the decision. Thus, once theleader has made a decision it broadcasts a \Success" message announcing the value for which it hasdecided. An agent that receives a \Success" message from the leader makes its decision choosingthe value of the successful round. We use also an \Ack" message sent from the agent to the leader,so that the leader can make sure that everyone knows the outcome.121

The most important issue is about the values that leaders propose for their rounds. Indeed,since the value of a successful round is the output value of some processes, we must guaranteethat the values of successful rounds are all equal in order to satisfy the agreement condition ofthe consensus problem. This is the tricky part of the algorithm and basically all the di�cultiesderive from solving this problem. Consistency is guaranteed by choosing the values of new roundsexploiting the information about previous rounds from at least a majority of the agents so that, forany two rounds, there is at least one process that participated in both rounds.In more detail, the leader of a round chooses the value for the round in the following way. Instep 1, the leader asks for information and in step 2 an agent responds with the number of the latestround in which it accepted the value and with the accepted value or with round number (0; j) and? if the agent has not yet accepted a value. Once the leader gets such information from a majorityof the agents (which is the info-quorum of the round), it chooses the value for its round to be equalto the value of the latest round among all those it has heard from the agents in the info-quorum orequal to its initial value if all agents in the info-quorum were not involved in any previous round.Moreover, in order to keep consistency, if an agent tells the leader of a round r that the last round inwhich it accepted a value is round r0, r0 < r, then implicitly the agent commits itself not to acceptany value proposed in any other round r00, r0 < r00 < r.Given the above setting, if r0 is the round from which the leader of round r gets the value forits round, then, when a value for round r has been chosen, any round r00, r0 < r00 < r, cannot besuccessful; indeed at least a majority of the processes are committed for round r, which impliesthat at least a majority of the processes are rejecting round r00. This, along with the fact thatinfo-quorums and accepting-quorums are majorities, implies that if a round r is successful, thenany round with a bigger round number ~r > r is for the same value. Indeed the information sentby processes in the info-quorum of round ~r is used to choose the value for the round, but sinceinfo-quorums and accepting-quorums share at least one process, at least one of the processes in theinfo-quorum of round r0 is also in the accepting-quorum of round r. Indeed, since the round issuccessful, the accepting-quorum is a majority. This implies that the value of any round ~r > r mustbe equal to the value of round r, which, in turn, implies agreement.Instead of majorities for info-quorums and accepting-quorums, any quorum system can be used(dpaxos uses the quorum system of the con�guration). Indeed the only property that is required isthat there be a process in the intersection of any info-quorum with any accepting-quorum.To end up with a decision value, rounds must be started until at least one is successful.7.2.3 The dpaxos algorithmThe dpaxos algorithm borrows the basic ideas of the paxos algorithm, but it is built upon thedlc group communication service. Thus it exploits the properties guaranteed by such a service. A122

round of the dpaxos algorithm is similar to that of the paxos algorithm with the following majordi�erences: (i) since any time that the leader changes the dlc service provides a new con�guration,we have that at most one round is conducted in each con�guration (hence we do not distinguishrounds and con�gurations); (ii) the �rst part of a round, whose purpose is to �nd a value thatthe leader proposes in the round, is no longer necessary, because the group communication serviceprovides, with the starting state of a new con�guration, a value that can be safely proposed by theleader. Thus in dpaxos the leader needs only to send \Begin" messages and collect the \Accept"messages.Because of (i) we no longer need to worry about processes committing to reject rounds or tomake sure that messages belonging to di�erent rounds do not interfere: by the properties of the dlcgroup communication service we have that processes receive and send messages only in the currentcon�guration. Since in each con�guration only one round is conducted, no interferences are possibleand older rounds are automatically rejected. Con�guration identi�ers can be used as round numbers(and viceversa). Because of (ii) a round of dpaxos is shorter than a round of paxos (the �rst partof the round is basically done while establishing the new con�guration).As a result of the above, the code of dpaxos is simpler and much shorter than the code of paxosas implemented in [29, 30].Since in each con�guration only one round is run, round numbers in dpaxos are con�gurationidenti�ers. Hence the set of round numbers is R = G. We say that round r precedes round r0 ifr < r0. If round r precedes round r0 then we also say that r is a previous round, with respect toround r0.For the dpaxos algorithm, the set S consists of pairs hr; vi, where r 2 G and v 2 X .The code, dlc-to-paxosp, is shown in Figure 7-2. The overall system dpaxos consists of thecomposition of dlc and automaton dlc-to-paxosp for each p 2 P .Next we provide an informal description of the code.We start by describing the state variables. Variable currentp contains the current con�gurationfor process p; if process p runs a round, then the round number is given by current :idp. Variablernd-valp contains the value that process p proposes in the current round. Variable decisionp containsthe decision of process p. Variable used-idsp � OIDp is a set of identi�ers used to distinguishoperations that process p submits to the dlc service. Variable last-rndp contains the last round forwhich process p has accepted the value. Variable last-val contains the value of round last-rnd .The dlc-to-paxosp has a recon�guration phase, which starts when process p is noti�ed of a newcon�guration and ends when process p is given the starting state for the new con�guration. Whennot in recon�guration phase process p performs normal processing. Variable statusp is used to switchfrom recon�guration phase to normal processing. For normal processing we have statusp = normal .Variable modep is used by the leader to go through the steps of a round.123

dlc-to-paxosSignature:Input: newconf(c)p, c 2 C, p 2 c:setnewstate(s)p, s 2 S, p 2 Pdeliver(m; i)p, m 2M, i 2 OID, p 2 Prespond(a; i)p, a 2 A, i 2 OIDp, p 2 Pp2p-recv(m)q;p , m 2 M, q; p 2 P Internal: newroundp, p 2 POutput: submit(m;�; i)p, m 2M, � 2 �, p 2 P, i 2 OIDpackdlvr(a; i)p, a 2 A, i 2 OID, p 2 Psubmit-state(s; �)p, s 2 S, � 2 �, p 2 Pp2p-send(m)p;q , m 2 M, q; p 2 PState:current 2 C? init co if p 2 P0, else ?rnd-val 2 X , initially vpdecision 2 X , initially ?used-ids � OID, initially ;ack-q, seqof (A�OID), init �ack-d , either \ack" or ?, init ? last-rnd 2 G, initially g0 if p 2 P0, else ?last-val 2 X , initially vpstatus 2 fnormal ; exch-ready ; exch-waitg, init normalmode 2 fwait ;newround ; collect ; begincast ; decidedg,init newround for p = c0:ldr , wait elseack-success(q), a boolean, initially false for all q 2 PActions:input newconf(c)pE�: current := cstatus := exch-readyack-q := �if p = c:ldr and mode 6= decided thenmode := newroundoutput submit-state(hr; vi; �state)pPre: status = exch-readyr = last-rndv = last-valE�: status := exch-waitinput newstate(hr; vi)pE�: status := normallast-rnd := current:idlast-val := vrnd-value := vHfrom(current :id) = rHvalue(current :id) = vinternal newroundpPre: mode = newroundstatus = normalE�: mode := begincastoutput submit(h\begin"; vi; �begin ; i)pPre: current 6= ?i =2 used-idsstatus = normalv = rnd-valuemode = begincastE�: used-ids := used-ids [figmode := wait

input deliver(h\begin"; vi; i)pE�: append (h\accept"i; i) to ack-qlast-rnd := current:idlast-val := voutput ackdlvr(a; i)pPre: head(ack-q) = (a; i)E�: ack-q := tail(ack-q)input respond(h\begin";Qi; i)pE�: decision := rnd-valuemode := decidedHaccquo(current :id) := Qoutput p2p-send(v)p;qPre: mode = decidedv = decisionack-success(q) = falseE�: noneinput p2p-recv(v)q;pE�: decision := vmode := decidedack-d := \ack"output p2p-send(\ack")p;qPre: ack-d = \ack"E�: ack-d := ?input p2p-recv(\ack")q;pE�: ack-success(q) := trueFigure 7-2: The dlc-to-paxos code.
124

Variable ack-qp is a queue of acknowledgment values to be sent to the dlc service. Variableack-dp is used to send back to the leader an acknowledgment for the decision. Variable success-ackpis used by the leader to record those processes that have sent an acknowledgment for the decision.Next we describe the transitions. We start with the transitions for the recon�guration phase.Action newconf(c)p noti�es process p of a new con�guration c. Process p enters the recon�gurationphase by changing its status to exch-ready . It also resets queue ack-q in order to stop sendingacknowledgments for older rounds. Moreover if process p is the leader of the new con�guration andit has not yet reached a decision, then it prepares itself, by setting modep to newround , to start anew round when the normal processing mode will be re-entered.With action submit-state(hr; vi; �state)p process p submits its current state to the dlc service.The relevant information submitted to the service consists of the last round r for which processp has accepted a value (i.e., has sent an \accept" message) and the value v of that round. Thecondenser function �state collects all the states submitted by processes in the current con�gurationand computes the value to propose in the current round. Formally it is a function that takes a setof pairs W = fhr; vijr 2 G; v 2 Xg and returns a pair hr0; v0i 2 W where r0 is such that r0 � r forall hr; vi 2 W . At this point process p has to wait for the dlc service to deliver the starting state.Hence it sets statusp to exch-wait .Action newstate(hr; vi)p delivers to process p the starting state for p's current con�guration. Thisstarting state contains the value v to propose in the round for the current con�guration. Normalprocessing is re-entered by setting statusp = normal .Next we describe the transitions for normal processing, where rounds are run.Action newroundp starts a new round; in order to do this, the leader of the current con�guration,say process p, must be ready to start a new round, that is modep must be equal to newround . Thee�ect is just to change the modep to begincast . Process p is now ready to send a begin message forthe current round.Action submit(h\begin"; vi; �begin ; i)p takes care of sending the beginmessage through the dlc service.The condenser function �begin is a function that takes a set of acknowledgment values fh\accept"; iiq jq 2Qg for some set of processes Q � P and returns h\begin"; Qi. After the execution of this actionprocess p has modep = wait because it needs to wait for acknowledgment values.Action deliver(h\begin"; vi; i)p is an input action from the dlc service, which delivers the beginmes-sage from another process. The e�ect of this action is to put the acknowledgment value h\accept"; iiinto the queue ack-qp, from which it will be sent back to the dlc service by action ackdlvr(a; i)p.Action respond(h\begin"; Qi; i)p is an input action from the dlc service which provides the responseto the \begin" message previously sent with action submit(h\begin"; vi; �begin ; i)p. This action tells theleader that processes in the quorum Q have accepted the current round. At this point the leadercan make a decision and thus sets the decisionp variable to the value rnd-valuep proposed in the125

current round.The remaining actions are used to spread a decision to all members of the current con�gurationonce the leader has reached a decision. Action p2p-send(v)p;q is used by the leader p to send thedecision v = decisionp to a process q that does not know yet the decision. Action p2p-recv(v)p;q isexecuted by process q when it receives a decision v from the leader p; process q sets its decisionqvariable and sets its modeq to decided . Then, process q sends an acknowledgment back to theleader with action p2p-send(\ack")q;p and this acknowledgment is received by the leader with actionp2p-recv(\ack")q;p.We augment the code with the following history variables:� Hvalue(r)p 2 X [?, initially vp for r = g0 and p = c0:ldr and ? elsewhere. This variablerecords the value for round/con�guration r.� Hfrom(r)p 2 R[?, initially ? for all r; p. This variable records the round/con�guration fromwhich Hvalue(r) is taken.� Haccquo(r)p, a subset of P or ?, initially ? for all r; p. This variable records the accepting-quorum of round r.We conclude with a few remarks. Submitting the state for a new con�guration correspondsto sending a \Last" message in the original paxos algorithm. Notice that there is no need tocommit to reject older rounds, because this is automatically guaranteed by the con�guration orientedcommunication of the dlc service. Submitting the begin message to the dlc service corresponds tobroadcasting a \Begin" message in the original paxos algorithm. Sending the acknowledgment valueh\accept"; ii for a \begin" operation, corresponds to sending an \Accept" message in the originalpaxos algorithm.Finally we remark that the dlc service encapsulates in the state-exchange mechanism part ofthe paxos algorithm. This is done by means of the condenser function �state which computes thevalue of the latest con�guration for which processes member of the new con�guration have accepteda value. This computation is a key point in the original paxos algorithm.7.2.4 Proof of correctness for dpaxosIn this section, we prove the correctness of dpaxos. We recall that since at most one round is run ina con�guration, we use con�guration identi�ers as round numbers (round numbers are elements ofthe set G). Also, we say that a con�guration c is successful in a state s when s:Haccquo(c:id) 6= ?;informally this means that the round conducted in the con�guration is successful, and a decision ismade by the leader.Next we provide invariants needed to prove agreement. We start with some basic invariants.126

Invariant 7.2.1 (dpaxos)In any reachable state the following is true. Let c be a con�guration established at a process p andsuch that c:id > g0. Then Hvalue(c:id)p 6= ?.Proof: Since con�guration c is established at p and c:id > g0, we have that action newstate(r; v)pfor some r 2 G and v 2 X , with v 6= ?, has been executed (this is not true for c = c0). By the codeof this action we have that Hvalue(c:id)p = v.Invariant 7.2.2 (dpaxos)In any reachable state the following is true. Let c be a successful con�guration and let p = c:ldr .Then Haccquo(c:id)p 6= ? and c is established at Haccquo(c:id)p and at p.Proof: In order for a con�guration c to be successful, the leader p = c:ldr must propose a value.Clearly it must be that c is established at p. In order for a con�guration c to be successful, the leaderp must execute action respond(h\begin";Qi; i)p which sets Haccquo(c:id)p to Q. Clearly any process ofQ must have established c.Invariant 7.2.3 (dpaxos)In any reachable state the following is true. Let c be an established con�guration such that g0 < c:id.Then for any two processes p; q that have established c, we have Hvalue(c:id)p = Hvalue(c:id)q .Proof: Process q sets the Hvalue(c:id)q to v when newstate(hr; vi)q for con�guration c is executed.Process p sets the Hvalue(c:id)p to v0 when newstate(hr0; v0i)p for con�guration c is executed. By thecode of the dlc service, every process gets the same state for con�guration c, that is r0 = r andv0 = v.The following invariant states that when a con�guration c is successful, any other con�gurationup to (and including) the next totally established con�guration is for the same value as c.Invariant 7.2.4 (dpaxos)In any reachable state the following is true. Let c be a successful con�guration. Then for anycon�guration c0 established at a process q, with c:id < c0:id and such that there are no totallyestablished con�gurations in between c and c0, we have that Hvalue(c0:id)q = Hvalue(c:id)c:ldr 6= ?.Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state the invariant is vacuously true because thereis no successful con�guration.For the inductive step assume that the invariant is true in a state s. We need to prove that theinvariant is true in s0 for any step (s; �; s0). Consider s0 and �x c and c0 as required by the statementin s0. Let p = c:ldr . By Invariant 7.2.2, in state s con�guration c is established at p and at the127

accepting-quorum Haccquo(c:id)p = Q 2 c:qrms . So we have that Q � s:state-dlv [c:id].Now we distinguish two cases: (i) con�guration c0 is established at q in state s, (ii) con�guration c0is not established at q in state s. In the former case the invariant follows by the inductive hypothesis.We need to consider the latter case. Since c0 is not established at q in s and is established at q in s0it must be the case that � =newstate(hr; vi)q for some r 2 G and v 2 X . Con�gurations c and c0 arenot dead in s0, as well as in s, because they are established in s0; moreover, by assumption, we havethat in s0 there is no totally established con�guration between c and c0. Hence, by Invariant 7.1.1,there exists a quorum Q0 2 c:qrms such that Q0 � c0:set . By the properties of quorums, thereexists a process q0 2 Q \ Q0. For such a process we have that q0 2 c0:set and q0 2 s:state-dlv [c:id].Let s00 be the state in which process q0 executes action submit-state(hr0; v0i) that submits the stateof q0 to the condenser function �state for c0; since q0 2 s:state-dlv [c:id] and in state s00 we havethat currentq0 = c0:id, it must be the case that q0 2 s00:state-dlv [c:id] (because q0 will not executeany other action for con�guration c once its current con�guration is c0). Hence the pair hr0; v0ithat q0 submits to the condenser function �state for c0 is such that r0 � c:id. By the de�nition of�state we have that the pair hr; vi returned by action � is such that r � c:id. Hence we have thats0:Hfrom(c0:id)q � c:id.Let q00 be the process from which the �state function takes the pair hr; vi returned with action �; thusv = s0:Hvalue(r)q00 . By the code we have that s0:Hfrom(c0:id)q = r and that s0:Hvalue(c0:id)q = v.Hence s0:Hvalue(c0:id)q = s0:Hvalue(r)q00 .If r = c:id then we consider two cases.Case (i): r = g0. Then we claim that q00 = p. Indeed if the con�guration with the biggest identi�eramong those submitted to the condenser function for c0 is c0, this means all members of c0, whenthey submit their state to the condenser function, have not established any other con�gurations withidenti�er greater than g0. This implies that all processes except p submit h?; �i to the condenserfunction �state and p submits hg0; vpi. Hence p is selected by the condenser function �state . Thuswe have s0:Hvalue(c0:id)q = s0:Hvalue(c:id)p, as needed.Case (ii): r > g0. Obviously we have that s0:Hvalue(c0:id)q = s0:Hvalue(c:id)q00 . By Invariant 7.2.3we have that s0:Hvalue(c:id)q00 = s0:Hvalue(c:id)p, and the invariant holds in this case.It remains to consider the case r > c:id. By the inductive hypothesis applied to c, r and q00 we havethat s0:Hvalue(r)q00 = s0:Hvalue(c:id)p. Hence we conclude that s0:Hvalue(c0:id)q = s0:Hvalue(c:id)p,as needed.The following invariant is similar to the previous one, but considers totally established con�gu-rations instead of successful ones. It states that when a con�guration c is totally established, anyother con�guration up to (and including) the next totally established con�guration is such that itsHvalue is the same as that of c. First we give an auxiliary invariant.128

Invariant 7.2.5 (dpaxos)In any reachable state the following is true. Let c be a totally established con�guration such thatg0 < c:id. Then for any con�guration c0 established at a process q, with c:id < c0:id and such thatthere are no totally established con�gurations in between c and c0, we have that Hvalue(c0:id)q =Hvalue(c:id)c:ldr .Proof: By induction on the length of the execution. The base case consists of proving that theinvariant is true in the initial state. In the initial state the invariant is vacuously true because thereis no established con�guration c such that g0 < c:id.For the inductive step assume that the invariant is true in a state s. We need to prove that theinvariant is true in s0 for any step (s; �; s0). Consider state s0 and let c and c0 be as required by thestatement in state s0. Let p = c:ldr . We distinguish four possible cases.case 1: c 2 s:TotEst and c0 is established at q in s. Then we can apply the inductive hypothesis.case 2: c 2 s:TotEst and c0 is not established at q in s. Then it must be the case that� =newstate(hr; vi)q . This action sets Hvalue(c0:id)q = v.Since c0 is established in s0 it is also not dead. Clearly also c is not dead in s0. By Invariant 7.1.1we have that there is a quorum Q of c such that Q 2 c0:set. Let q0 2 Q. For such a process we havethat q0 2 s0:state-dlv [c:id], q0 2 c0:set.Let s00 be the state in which process q0 executes action submit-state(hr0; v0i) that submits the stateof q0 to the condenser function �state for c0; since q0 2 s:state-dlv [c:id] and in state s00 we have thatcurrentq = c0:id it must be the case that q0 2 s00:state-dlv [c:id] (because q0 will not execute any otheraction for con�guration c once its current con�guration is c0). Hence the pair hr0; v0i that q0 submitsto the condenser function �state for c0 is such that r0 � c:id. By the de�nition of �state we have thatthe pair hr; vi returned by action � is such that r � c:id. Hence we have that s0:Hfrom(c0:id)q � c:id.Let q00 be the process from which the �state function takes the pair hr; vi returned with action �; thusv = s0:Hvalue(r)q00 . By the code we have that s0:Hfrom(c0:id)q = r and that s0:Hvalue(c0:id)q = v.Hence s0:Hvalue(c0:id)q = s0:Hvalue(r)q00 .If r = c:id then, we have that s0:Hvalue(c0:id)q = s0:Hvalue(c:id)q00 . By Invariant 7.2.3 we havethat s0:Hvalue(c:id)q00 = s0:Hvalue(c:id)p and thus the invariant holds. So consider the case r > c:id.By the inductive hypothesis applied to c and r and q00 we have that s0:Hvalue(r)q00 = s0:Hvalue(c:id)p.Hence we conclude that s0:Hvalue(c0:id)q = s0:Hvalue(c:id)p.case 3: c 62 s:TotEst, c0 is established at q in s. Then it must be the case that � =newstate(hr; vi)p0for some process p0 that totally establishes con�guration c. Con�gurations c and c0 are not dead ins0. By Invariant 7.1.1 we have that there is a quorum Q of c such that Q 2 c0:set. Let q0 2 Q. Forsuch a process we have that q0 2 s0:state-dlv [c:id], q0 2 c0:set.The proof proceeds as in the previous case: Let s00 be the state in which process q0 executes actionsubmit-state(hr0; v0i) which submits the state of q0 to the condenser function �state for c0; etc. (as done129

in the previous case).case 4: c 62 s:TotEst, c0 not established at q in s. This is not possible because a single actioncannot make both c totally established and c0 established.The following invariant follows easily from the previous one.Invariant 7.2.6 (dpaxos)In any reachable state the following is true. Let c be a totally established con�guration such thatg0 < c:id. Then for any con�guration c0 established at c0:ldr , with c:id < c0:id, we have thatHvalue(c0:id)c0:ldr = Hvalue(c:id)c:ldr .Proof: Let c and c0 be as required by the statement. Let c1; c2; :::; ck be the sequence in orderof con�guration identi�ers of the totally established con�gurations properly between c and c0. ByInvariant 7.2.5 we have that Hvalue(c1:id)c1:ldr = Hvalue(c:id)c:ldr ; by the same invariant we haveHvalue(c2:id)c2:ldr = Hvalue(c1:id)c1:ldr and so on up to Hvalue(c0:id)c0:ldr = Hvalue(ck:id)ck:ldr .Thus we have that Hvalue(c0:id)c0:ldr = Hvalue(c:id)c:ldr .The following invariant is crucial to proving agreement.Invariant 7.2.7 (dpaxos)In any reachable state the following is true. Let c be a successful con�guration. Then for any con�g-uration c0 established at c0:ldr , with c:id < c0:id, we have that Hvalue(c0:id)c0:ldr = Hvalue(c:id)c:ldr .Proof: If there are no totally established con�gurations between c and c0 then the invariant followsdirectly from Invariant 7.2.4. So assume that there exists at least one totally established withidenti�er strictly greater than c:id and strictly smaller than c0:id. Let c� be the totally establishedcon�guration having the smallest identi�er strictly greater than c:id and let q be c�:ldr . Clearly wehave that c� is established at q. By de�nition of c� there are no totally established con�gurationsbetween c and c�. By Invariant 7.2.4 we have that Hvalue(c�:id)q = Hvalue(c:id)c:ldr .Since c:id � g0, we have c�:id > g0. Hence by Invariant 7.2.6 we have that Hvalue(c0:id)c0:ldr =Hvalue(c�:id)q . Hence Hvalue(c0:id)c0:ldr = Hvalue(c:id)c:ldr , as needed.We are now ready to prove agreement.Theorem 7.2.8 In any execution of the system dpaxos, agreement is satis�ed.Proof: In order to prove agreement we need to show that all the decision variables are set tothe same value. By the code it is immediate that decision variables are always set to be equalto Hvalue(c:id)c:ldr for some successful con�guration c. Hence it is enough to prove that any twosuccessful con�gurations c and c0 are such that s:Hvalue(c:id)c:ldr = s:Hvalue(c0:id)c0:ldr .Let p = c:ldr and p0 = c0:ldr and without loss of generality assume that c:id < c0:id. ByInvariant 7.2.7 we have that s:Hvalue(c:id)p = s:Hvalue(c0:id)p0 .130

Validity is easier to prove since the value proposed in any round comes either from an initialvalue or from a previous round.Invariant 7.2.9 (dpaxos)In any reachable state of an execution �, for any round r such that Hvalue(r)r:ldr 6= ?, we have thatHvalue(r)r:ldr 2 X�.Proof: By induction on the length of the execution �. The base case consists of proving that theinvariant is true in the initial state. In the initial state Hvalue(r)p is not ? only for r = g0 andp = r:ldr . Moreover Hvalue(g0)p is equal to the initial value of p. Hence the assertion is true.For the inductive step assume that the invariant is true in a reachable state s. We need to provethat the invariant is still true in s0 for any possible step (s; �; s0).Clearly the only actions that can make the assertion false are those that set Hvalue(r)p for someround r and p = r:ldr . The only action that sets Hvalue(r)p is action � =newstate(hr0; vi)p for roundr. Action � sets Hvalue(r)p to v. We need to prove that v 2 X�. This follows from the de�nition of�state and the fact that the values submitted to �state are the last-val q variables which, in turn, areeither the initial value vq of q or the value Hvalue(r0)r0:ldr of a previous round r0; by the inductivehypothesis we have that Hvalue(r0)r0:ldr belongs to X�.Theorem 7.2.10 In any execution of the system dpaxos, validity is satis�ed.Proof: Let � be an execution of dpaxos. A variable decision is always set to be equal to someHvalue(r)p 6= ? for some r and p = r:ldr or to some other decision variable. By Invariant 7.2.9 wehave that Hvalue(r)p belongs to X�. Hence validity is satis�edFinally we claim, informally, that termination is satis�ed. We remark that we are making theassumption that any failure in the system is detected by the group communication service whichchanges the con�guration in order to re
ect the new status of the underlying distributed system.Consider an execution of the system such that there exists a state s in which a con�guration cbecomes totally established. Let t the point in time at which the system enters state s. Assume thatthere are no failures after time t. There is nothing that can prevent the round run in con�gurationc from success. Thus the leader of con�guration c eventually writes its own decision variable. Oncehaving done that, the leader keeps sending (see code) the value of its decision variable to any otherprocess member of the con�guration until it receives an acknowledgment. Since there are no failuresevery member of the con�guration c will eventually receive the message from the leader and writethe decision variable.
131

7.2.5 RemarksWe remark that the point-to-point communication mechanism of dlc is used by dlc-to-paxos justto spread a reached decision to all members of the current con�guration. Though it is �ne to usecon�guration synchronous point-to-point messages, there is no need to require that messages used tospread the decision be con�guration synchronous. A regular point-to-point channel which deliversmessages regardless of the con�gurations in which the sender or the receiver are works �ne too.Hence for the dpaxos algorithm we could use a weaker version of the dlc service which providespoint-to-point messages without con�guration synchrony. We have used this stronger version becausethe algorithm that we present in the next section needs con�guration synchronous point-to-pointmessages.The original paxos algorithm [61] is designed to work with majorities or with more generalquorums of a static universe of processes. Using quorums is good for handling transient failures of asystem. However it does not work well for permanent failures. The usefulness of building paxos overthe dlc group communication service is that it can adapt also to permanent failures by changingthe con�guration of the system.It would be useful to compare the performance of the paxos algorithm built on top of dlc withthat of the original paxos algorithm. Since our work has not addressed performance issues we leavethis as future work.The same technique that we have used to build paxos on top of dlc could be used to buildmultipaxos on top of dlc. The multipaxos algorithm [61]1 is basically a sequence of instancesof the paxos algorithm that run together and optimize the number of messages needed in the �rstpart of the round. The optimization is achieved by sending a unique message that works for all theinstances of paxos. By using the dlc service such an optimization would be obtained by runningmultiple instance of paxos in the same con�guration; the state exchange needs to be done only oncefor all the instances.7.3 A Replicated Atomic Object AlgorithmIn this section we develop a data replication algorithm that implements a replicated atomic objectwith arbitrary operations (not necessarily just read and write, though in practice these are the mostcommon type of operations used). The algorithm, called rab (Replicated Atomic oBject), is builtupon the dlc service and uses a primary site to handle access to the object.We start with an informal description of the algorithm, then we provide the formal code and�nally we provide key arguments for its correctness. Providing a formal proof of correctness is left1The name multipaxos is actually used in [29]. The original paper by Lamport [61] uses a di�erent name (multi-decree parliament protocol). 132

as future work.7.3.1 Description of rabOperations are centralized at the leader of the current con�guration; the leader requires the collab-oration of at least a quorum of processes in order to handle requests.Clients of the service request to perform operations on the data. Each process accepts requestsfrom its client and places them in a local order. Then each of the received requests is sent tothe leader who is responsible for building a global order for all the client's requests. For each ofthese requests the leader makes sure that at least a quorum of processes know the request beforeproviding an answer to the process that originates the request. Once such an answer is provided tothe originator process, a response can be given back to the client.When a con�guration change happens all the members submit their knowledge about the requestsperformed so far and a new common state is computed from the local knowledge of the processes.In particular, each process submits its own information about the global order of operations plusall the local requests that are still pending, that is, have been submitted to the leader but have notreceived a response. The global orders submitted by each member of the new con�guration are usedto compute the most up to date global order, while the information about pending requests is usedto locate those operations that must be resubmitted to the leader.7.3.2 The code of dlc-to-rabIn this section we provide the code of algorithm dlc-to-rab. We �rst de�ne some data types. Wedenote by X the set of values that the shared data can assume and by v0 2 X a prede�ned value.The set T is a set of types of operations (e.g., read, write operations).The set D of \operation descriptors" is de�ned as D = fhp; t; w; iijp 2 P ; t 2 T ; w 2 X ; i 2 N>0g.Operation descriptors are used to describe both the requests from the clients and the correspondingresponses. For an element y = hp; t; w; ii of D we use the following selectors to extract the singlecomponents: y:origin = p, y:type = t, y:param = w and y:local-rank = i. Component y:originrecords the client at which the request has originated. Component y:type speci�es the type ofoperation. For example, if we want a read-write register, types could be T = f\read"; \write"g.Component y:param provides possible parameters that need to be passed along with the requestor with the corresponding response. Considering again the case of a read-write register, a writeneeds to pass the value to be written and the response to a read needs to pass the value read. Forsimplicity we assume that only one value needs to be passed and this value is an element of X (thisis so in the case of a read-write register).The set of messages that can be sent over the point to point channels and through the dlc serviceis de�ned as M = D [(f\req"; \ans"g � D). The set of operation identi�ers is OID = N>0 � P .133

The set S is de�ned as S = fho; d; a; hijo 2 arrayof (D); d 2 arrayof (bool); a 2 arrayof (bool); h 2 Gg.We remind the reader that the notation arrayof (D) indicates an array whose elements are eitherelements of D or ?. The set of acknowledgment values is A = f\ack"g [S. The set of responsevalues is R = f\done"g [fho; d; aijo 2 arrayof (D); d 2 arrayof (bool); a 2 arrayof (bool)g.The dlc-to-rab algorithm uses two condenser functions that we de�ne in the following:� �done: This condenser function takes a set of acknowledgment values \ack" and returns thestring \done". This function is used by the leader to make sure that a quorum of processeshave received information about a particular operation.� �rabstate: Let c be the con�guration for which this condenser function is to be used. Thecondenser function takes a collection S � S of tuples, one for each member of c, and returnsa triple ho; d; ai 2 R, de�ned as follows:{ o is de�ned as follows: Let R be the set of tuples of S that have the maximum highcomponent. For any i 2 N>0 such that there exists at least one element x 2 R withx:order (i) 6= ?, �x any such element x and set o(i) := x:order (i). For any i for which nosuch element exists set o(i) := ?.{ d is de�ned as the \or" of the req-done components in R.{ a is de�ned as the \or" of the req-answrd components in R.The code of dlc-to-rab is provided in Figure 7-3; we describe it next. We start with thedescription of the state variables.Variable currentp contains the current con�guration of process p and variable highp contains thelatest established con�guration of process p. Variable local-reqp is the sequence of requests that theclient submits at process p; variable local-ansp contains the answers for all of the requests. Variablenextp is a pointer used to insert new requests from the client into local-reqp. Variable orderp containsthe sequence of all requests as known by process p. Variable statusp contains the status of processp; it is used when a new con�guration is announced; for regular computation this variable is set tonormal .The remaining state variables are
ags used to record that some particular actions have happened.Variable req-sent(j)p is set to true when the jth request of the client at p, that is local-req(j)p,is sent to the leader of the current con�guration. Such a request, when received by the leaderis placed in the global sequence of request order into some available position, say i. Variablereq-sbmttd(i)p is set to true when the leader p has submitted the request via the dlc servicewith action submit(m;�done; hi; pi). Variable req-acked(i)p is set to true when process p has sent anacknowledgment for the ith request. Variable req-done(i)p is set to true when the leader p receivesthe response from the dlc service for the ith request with action respond(\done"; hi; pi). Variable134

dlc-to-rabSignature:Input: read(desc; param)p, desc 2 D; param 2 X ; p 2 Pp2p-recv(m)p, m 2M, p 2 Pdeliver(m; i)p, m 2M, i 2 OID, p 2 Prespond(a; i)p, a 2 A, i 2 OIDp, p 2 Pnewconf(c)p, c 2 C, p 2 c:setnewstate(s)p, s 2 S, p 2 P Output: confirm(param)p, param 2 X , p 2 Pp2p-send(m)p , m 2 M, p 2 Psubmit(m;�; i)p, m 2 M, � 2 �,p 2 P, i 2 OIDpackdlvr(a; i)p, a 2 A, i 2 OID, p 2 Psubmit-state(s; �)p, s 2 S, � 2 �, p 2 PState:current 2 C? initially co if p 2 P0, else ?high 2 C? initially ?local-req 2 arrayof (D), initially ? everywherelocal-ans 2 arrayof (D), initially ? everywherenext 2 N, initially 1order 2 arrayof (D), initially ? everywherestatus 2 fnormal ; exch-ready; exch-waitg, initially normal req-sent 2 seqof (bool), initially false everywherereq-sbmttd 2 seqof (bool), initially false everywherereq-acked 2 seqof (bool), initially false everywherereq-done 2 seqof (bool), initially false everywherereq-answrd 2 seqof (bool), initially false everywherereq-cnfrmd 2 seqof (bool), initially false everywhereDerived variable:apply-all(i)p is de�ned as follows:if for all k � i, order (k)p 6= ? thenapply-all(i)p = hq; t; w; ji, where q = order(i)p:origin, t = order(i)p:type,w is the value obtained by applying operations order(1; ::; i)p to the initial value v0 in order,and j = order (i)p:local-rank ;elseapply-all(i)p = ?.Actions:input request(type; param)pE�: local-req(next) := hp; type; param ;nextinext := next + 1output confirm(param)pPre: local-ans(i) = hp; type; param ; ii8j � i, req-cnfrmd(j) = truereq-cnfrmd(i) = falseE�: req-cnfrmd(i) := trueoutput p2p-send(h\req";mi)p;q choose jPre: current 6= ?q = current:ldrm = local-req(j)m:local-rank = jreq-sent(j) = falsestatus = normalE�: req-sent(j) := trueinput p2p-recv(h\req";mi)q;pE�: Let i be such that8k < i, order(k) 6= ?order(i) = ?order(i) := moutput submit(m;�done; hi; pi)pPre: current 6= ?p = current:ldrorder(i) = mm 6= ?req-sbmttd(i) = falsestatus = normalE�: req-sbmttd(i) := true

input deliver(m; hi; ri)pE�: order(i) := mreq-acked(i) := falseoutput ackdlvr(\ack"; hi; ri)pPre: r = current:ldr8j � i, order(j) 6= ?req-acked(i) = falsestatus = normalE�: req-acked(i) := trueinput respond(\done"; hi; pi)pE�: req-done(i) := trueoutput p2p-send(h\ans"; ai)p;q choose iPre: p = current:ldrorder(i) = hm; ji for some mreq-answrd(i) = falsereq-done(i) = true8k � i, order(k) 6= ?8k < i, req-answrd(k) = trueq = order(i):origina = apply-all(i)status = normalE�: req-answrd(i) := trueinput p2p-recv(h\ans"; ai)q;pE�: j := a:local-ranklocal-ans(j) := a
Figure 7-3: The dlc-to-rab code.135

dlc-to-rabinput newconf(c)pE�: current := cstatus := exch-ready8i, order (i) 6= ? and req-acked(i) = falsereq-acked(i) := trueoutput submit-state(ho; d; a; gi; �rabstate)pPre: status = exch-readyo = orderd = req-donea = req-answrdg = prev :idE�: status := exch-wait
input newstate(ho; d; ai)pE�: status := normalhigh := currentorder := oreq-done := dreq-answrd := a8j; local-req(j) 6= ?if 6 9i such thatorder(i):origin = p andorder(i):local-rank = j thenreq-sent(j) := false8i; order(i) 6= ?if req-done = false thenreq-submttd(i) := falseelsereq-submttd(i) := trueFigure 7-4: The dlc-to-rab code (cont'd).req-answrd(i)p is set to true when the leader p has sent an answer for the ith request to theoriginator process of that request. Variable req-cnfrmd(j)p is set to true when process p has giventhe client a response for the jth request submitted at p.Next we describe the transitions.Action request(type; param)p records a new request from the client at process p in the sequence oflocal requests local-reqp. Pointer nextp always points to the �rst available location in the sequencelocal-reqp.Action confirm(param)p provides the response to the requests of the client. Such responses aregiven in the same order as they are received. This is accomplished by using variable req-cnfrmdp; theresponse to the jth (local) request is given back to the client after all responses for the previous re-quests have been provided, and, of course, when the response is available, that is, when local-ans(j)phas been set.Action p2p-send(h\req";mi)p;q is used by process p to send the request m to the leader. Such arequest is received by the leader with action p2p-recv(h\req";mi)q;p. The leader inserts request m intothe global order of requests orderp in the next available position.Once the leader p has placed a request in the ith position of orderp, it executes action submit(m;�done; hi; pi)p,where m = order (i)p. The leader needs to make sure that at least a quorum of processes learn aboutthe request.A requestm submitted by process q is delivered to process p by the dlc service by means of actiondeliver(m; hi; ri)p. Upon receiving such a request process p simply updates its own order by placingthe request m into order (i)p. We remark that the code allows for overwriting a previous value;however it is never the case that a process p overwrites an old value of order (i) with somethingdi�erent received with action deliver(m; hi; ri)p. Flag req-acked(i)p is set to false so that actionackdlvr will send an acknowledgment. 136

Action ackdlvr(\ack"; hi; ri)p sends back to the dlc service an acknowledgment for the ith operationand sets req-acked(i)p to true.Once a quorum of processes has sent acknowledgments for a particular request, the dlc servicenoti�es the leader with action respond(\done"; hi; pi)p. The leader simply sets the
ag req-done(i) totrue to record the fact that now request i is known by a quorum of processes.Once all the requests up to the ith one are known to a quorum of the processes, the leader cansend an answer to the originator of the request. This is done in action p2p-send(h\ans"; vali)p;q . Thecode of this action uses the derived variable apply-all (i) which applies all operations up to the ithand returns a tuple a 2 D that contains the response for operation i (a:param is the value of theshared data after the ith operation). We remark that, of course, a real implementation will onlykeep the current value; it would apply operations in order and provide an answer to operation i rightafter applying it and before applying operation i+ 1.When process p receives the answer for a request previously sent to the leader it just records theanswer into local-ansp. This is done in action p2p-recv(h\ans"; ai)q;p .Finally we describe the actions used for the state exchange. When a new con�guration is an-nounced with action newconf(c)p process p sets its current con�guration to c and goes into recon�gu-ration mode by setting statusp to exch-ready . It also sets req-ackedp to true for all those operationsthat have pending acknowledgments to be sent; since the old con�guration has been left, such anacknowledgment must not be sent anymore and setting the
ag req-ackedp to true has this e�ect.Indeed in the new con�guration process p has not yet received any message from the leader so it isincorrect to acknowledge a message.Then process p submits to the dlc service its orderp, req-donep, req-answrdp and highp, whichconstitute the relevant part of the state that has to be exchanged.When all the processes have submitted their states, the dlc service is able to compute the startingstate of the new con�guration by using the �rabstate condenser function. Then it gives this state toprocess p by means of action newstate(ho; d; ai)p. When this action is executed, process p updatesits orderp, req-donep and req-answrdp state components. It also adjusts the values of req-sentp andreq-submittedp to take care of two problems that arise in establishing a new con�guration, as weexplain below.The �rst problem is that any process p has to check whether all of its local requests are inthe global order o returned by newstate(ho; d; ai)p; for any local request not included in the order o,process p has to send that local request to the leader because the leader of the new con�gurationdoes not know about such a request. This is done by setting req-sent(j) to false for those localoperations that the leader does not know about.The other problem regards operations that are included in the order o returned by newstate(ho; d; ai)p,but for which req-done is still false. For such operations the leader cannot be sure that a quorum137

of processes have them in their global order and thus cannot provide an answer for such operations.The leader needs to resubmit such operations to the dlc service in order to make sure that a quorumof processes learn about them, before giving an answer to the originator of the request.A simple scenario that illustrates this problem is the following. Assume that quorums are justmajorities, the initial con�guration has membership fp1; p2; p3; p4; p5; p6g, the leader is p6 and theidenti�er of the con�guration is 1. Process p6 receives a request op1 from its client, puts it intoits local requests list and sends it to the leader (which in this case is itself). Then process p6,upon receiving its own request, puts op1 into the �rst position of the global order. Process p6submits the request to the dlc service, but before any other process gets its message, a con�gurationchange happens. A new process p7 joins the system and con�guration 2, whose membership set isfp1; p2; p3; p4; p5; p6; p7g, is created. The leader of this con�guration is p7. Every member submitsits state. Only p6 has something in its global order (namely op1 in position 1) and thus the newglobal order computed by �rabstate for con�guration 2 just contains op1 in position 1. Moreover wehave that req-done for this operation is false because the previous leader did not succeed in havinga quorum learn about such a request. Assume that the global order for con�guration 2 is deliveredonly to processes p6 and p7, but not to the other members. The leader p7 cannot yet give back aresponse to p6 for the request op1; indeed if the leader does so it allows process p6 to give an answerback to its client and an inconsistency may arise as we show next. Assume that con�guration 3 isestablished. This new con�guration has membership set fp1; p2; p3; p4; p5g and leader p1. No onein con�guration 3 knows that op1 has even been submitted. The global order conveyed by actionnewstate(o; d; a) is empty. A new operation op2 comes in, say from process p2, the leader p1 receivesit, puts it into the �rst position of the global order, submits it through the dlc service and receivesacknowledgments from a quorum and gives an answer back to process p2. We have an inconsistency:process p2 told its client that op2 is the �rst operation applied to the shared object while process p6told its client that operation op1 is the �rst operation applied to the shared object. Hence, beforegiving a response, the leader of a new con�guration needs to submit to the dlc service operationsthat have not successfully gone to a quorum through the dlc service.Thus for any i such that order(i)p 6= ? and req-done(i) = false, that is, for any operation inorder for which the leader cannot be sure that a quorum of processes know about that operation,the
ag req-submitted(i) is set to false so that the operation will be submitted to the dlc service.Another way to get around the problemmentioned above, is to delay the response for an operationi, for which the leader does not know that the operation has been spread to a quorum, until a lateroperation j, j > i, is spread to a quorum in the same con�guration. When operation j is knownto a quorum Q, we have that also operation i is known to a quorum because each of the processesin Q has to establish the con�guration and thus knows operation i. The rab algorithm adopts thesolution of submitting operation i to the dlc service to make sure a quorum knows it.138

7.3.3 Sketch of proof of correctnessIn this section we present the key arguments for a correctness proof for the rab algorithm.The overall algorithm rab consists of the composition of dlc and automaton dlc-to-rabpfor each p 2 P . We claim that the rab algorithm implements an atomic shared object. Anatomic shared object is an object that can be accessed concurrently by several processes that issueinvocations (requests) and receive responses for those requests in such a way that it is possible toinsert serialization points that make the responses consistent with all previous (with respect to theserialization points) events. In the rab algorithm invocation events are the actions requestp andresponse events are the actions confirmp. We refer the reader to Chapter 13 of [65] for a formalde�nition of atomic object.We de�ne the history variable build-order (g; i)p 2 D? for each process p 2 P , each con�gurationidenti�er g 2 G and i 2 N>0. Such a variable is ? if process p has not established g, otherwise isde�ned as follows: if current :idp > g then build-order (g; i)p is equal to the value order(i)p when pleft con�guration g; if current :idp = g then build-order (g; i)p = order (i)p.Next we provide key invariants that will be used to prove that rab implements an atomicobject. Remember that variable state-dlv [c:id] contains the set of processes that have establishedcon�guration c.Invariant 7.3.1 In any reachable state the following is true. Let c be a con�guration such thatc:ldr =2 state-dlv [c:id]. Then for any p; q 2 state-dlv [c:id] and any i 2 N>0, we have that build-order (c:id; i)p =build-order (c:id; i)q.Proof:When a con�guration is established at a member p, process p executes action newstate(ho; d; ai)pand sets orderp := o. The tuple ho; d; ai is the same for every member of the con�guration. So ini-tially every member has the same value of order . Within the con�guration a member p updatesorder (i)p to a particular value m only when the leader r executes action deliver(m; hi; ri)p; but sincethe leader has not established c, such an action cannot be executed.Invariant 7.3.2 In any reachable state the following is true. Let c be a con�guration such thatc:ldr 2 state-dlv [c:id]. Then for any p 2 state-dlv [c:id] and any i 2 N>0, we have that if build-order (c:id; i)p 6=? then build-order (c:id; i)p = build-order (c:id; i)c:ldr .Proof:When a con�guration is established at a member p, process p executes action newstate(ho; d; ai)pand sets orderp := o. The tuple ho; d; ai is the same for every p member of the con�guration. Soinitially every member has the same value of orderp. Within the con�guration a member p updatesorder (i)p to a particular value m only when executing action deliver(m; hi; ri)p; but in this case wehave that the leader of the con�guration is r and order (i)r = m.139

We remark that the knowledge of order may diverge for those processes that remain in obsoletecon�gurations. For example if a process p updates order (i)p to m because it receives such an m fromthe leader of a con�guration c1, but a new con�guration c2 is established before any other processupdates order(i), then the only two processes to have order (i) = m might be p and c1:ldr . Assumethat neither p or c1:ldr is a member of c2. Then the leader of c2 can write something di�erent fromm into order (i). The above scenario is possible because m is not known to enough processes.Given an index i, an m 2 D and a con�guration c we say that the triple (i;m; c) is goodin a state s if there exists a quorum Q 2 c:qrms such that for every process p 2 Q we haves:build-order (c:id; i)p = m.We also say that (i;m) is good if there exists a con�guration c such that (i;m; c) is good andthat an index i is good if there exists m such that (i;m) is good.The de�nition of a good index admits the possibility that in a given state there exist m and m0such that (i;m) and (i;m0) are both good; however, as we will see later, this never happens in thealgorithm. Indeed the notion of good index is intended to capture the fact that an operation m hasbeen assigned to the ith position of order . In the following we will prove that operations assignedto good indexes are propagated to newer con�gurations.Invariant 7.3.3 In any reachable state the following is true. Suppose that w 2 Est and c 2 Estsuch that w:id < c:id, and there are no totally established con�gurations x with w:id < x:id < c:id.Suppose (i;m;w) is good. Then order(i)p = m for every p 2 state-dlv [c:id].Proof: We prove the invariant by induction on the length of the execution. The base case isvacuously satis�ed.For the inductive step, let s be a reachable state and assume that the invariant is true in allstates previous to s. We need to prove that the invariant is true in s.Let w and c be con�gurations satisfying the assumption of the statement. Let (i;m;w) be goodin s. Since (i;m;w) is good in s, there exists a quorum Q 2 w:qrms of processes such that for eachr 2 Q we have s:build-order (w:id; i)r = m. For the rest of the proof we �x such a Q.We need to prove that any process p 2 s:state-dlv [c:id] has s:order (i)p = m. Processes thatestablish c set their order variables to the value computed by the condenser function �rabstate forcon�guration c. Hence we need to look at the inputs that the condenser function �rabstate forcon�guration c receives from the members of c.Since c is established, all members of c submit their state to the condenser function �rabstate forcon�guration c. Partition c:set into three subsets S1; S2 and S3, as follows: S1 contains the processesthat had high < w:id at the moment they submitted the state to �rabstate for con�guration c; S2contains the processes that had high = w:id at the moment they submitted the state to �rabstate forcon�guration c; S3 contains the processes that had high > w:id at the moment they submitted thestate to �rabstate for con�guration c. 140

In the following we provide three claims that will be used to complete the proof.Claim 1: S2 [S3 6= ;.Proof of Claim 1: By Invariant 7.1.1, a quorum Q0 2 w:qrms is included in c:set .Let r be a process in Q \ Q0. Such a process exists because Q and Q0 are quorums ofw. Clearly r 2 c:set . Since process r 2 Q we have that s:build-order (w:id; i)r = m. Byde�nition of build-order we have that process r has established w in state s. Process rhas to establish w before submitting its state for c, because it does not take any actionfor w after participating in c. Hence at the moment r submits its state for c we havethat highr � w:id. Therefore r 2 S2 [S3. Thus S2 [S3 6= ;.Claim 2: If q 2 S2[S3 then q submits either m or ? as order (i) to the condenser function �rabstatefor con�guration c.Proof of Claim 2: Fix any q 2 S2 [S3. Let s0 be the state in which process qsubmits its state for the condenser function �rabstate for con�guration c. We need toprove that s0:build-order (w0:id; i)q = m, where w0 is the con�guration that q establishesbefore joining c. (Con�guration w0 is equal to w for q 2 S2 and is a later one for q 2 S3.)We consider two cases: q 2 S2 and q 2 S3.Case 1: q 2 S2. In this case w0 = w so we need to prove that s0:build-order (w:id; i)q iseither m or ?.We �rst notice that state s0 precedes state s.We consider two cases: (i) q 2 Q, and (ii) q =2 Q.Case 1.1: q 2 Q. Since in s0 process q already participates in c and c:id > w:idwe have that after s0 process q does not execute any action for con�guration wand thus build-order (w:id; i)q does not change after s0. Since q 2 Q, we havethat s:build-order (w:id; i)q = m. Since build-order (w:id; i)q does not changeafter s0, we must have s0:build-order (w:id; i)q = m.Case 1.2: q =2 Q. We �rst notice that since q 2 S2 we have that thatq 2 s0:state-dlv [w:id]. This implies that q 2 s:state-dlv [w:id].If s:build-order (w:id; i)q = ?, since process q has already left con�guration wby state s0, we have that s0:build-order (w:id; i)q = ?, as needed. Hence assumethat s:build-order (w:id; i)q 6= ?.By Invariant 7.1.1, a quorum Q00 2 w:qrms is included in c:set . Since Q andQ00 are quorums of w, there exists a process r 2 Q \Q00. Clearly r 2 c:set .Since r 2 Q we have that s:build-order (w:id; i)r = m.141

Next we prove that s:build-order (w:id; i)q = m.If w is not established at w:ldr in s, by Invariant 7.3.1 we have that s:build-order (w:id; i)q =s:build-order (w:id; i)r = m.If w is established at w:ldr in s, by Invariant 7.3.2 we have that s:build-order (w:id; i)w:ldr =s:build-order (w:id; i)r = m. By the same invariant, since s:build-order (w:id; i)q 6=?, we have that s:build-order (w:id; i)q = s:build-order (w:id; i)w:ldr = m; hencealso in this case s:build-order (w:id; i)q = m.Thus we have that s:build-order (w:id; i)q = m.Since in state s0 process q has already left con�guration w, we have that after s0process q does not change build-order (w:id; i)q . Since s:build-order (w:id; i)q =m we have that s0:build-order (w:id; i)q = m, as needed.Case 2: q 2 S3. This process arrives in con�guration c from a con�guration w0 suchthat w:id < w0:id < c:id. We need to prove that s0:build-order (w0:id; i)q = m.By the inductive hypothesis we have that the statement is true in s0. By applying theinductive hypothesis to state s0 with c = w0 we have that s0:order (i)q = m. By de�nitionof build-order we have that s0:build-order (w0:id; i)q = m, as needed.Claim 3: At least one process in S2 [S3 submits m as order (i) to the condenser function �rabstatefor con�guration c.Proof of Claim 3: By Invariant 7.1.1, a quorum Q000 2 w:qrms is included in c:set .Since Q and Q000 are quorums of w, there exists a process r 2 Q \Q000. Clearly r 2 c:setand also r 2 S2 [S3. Since r 2 Q we have that s:build-order (w:id; i)r = m.If r arrives to con�guration c directly from w, then since s:build-order (w:id; i)r = m,process r submits m to the condenser function �rabstate for con�guration c.Thus consider the case when r arrives to con�guration c from w0, w:id < w0:id < c:id.Let s0 be the state in which process r submits its state to the �rabstate function forcon�guration c. By applying the inductive hypothesis to state s0 with c = w0 we have thats0:order (i)q = m. By de�nition of build-order we have that s0:build-order (w0:id; i)q = m.Hence, also in this case, process r submits m to the condenser function �rabstate forcon�guration c.We are now ready to conclude the proof.By Claim 1, we have that S2 [S3 contains at least one process. Thus, by de�nition of thecondenser function �rabstate, we have that the states of processes in S1 are ignored by �rabstate. Sowe only need to worry about what processes in S2 [S3 submit to the state condenser function for142

con�guration c. By Claim 2, we have that processes in S2 and S3 submit either m or ? as the ithentry of order to the state condenser function for con�guration c. By Claim 3, at least one processin S2 and S3 submits m.Hence �rabstate computes an order o for con�guration c such that o(i) = m.Every process p that establishes con�guration c sets orderp := o when executing action newstate(ho; d; ai)pfor con�guration c. Thus, for such a process, we have that order (i)p = m when it establishes con-�guration c. Within con�guration c, process p modi�es orderp only when receiving a message fromthe leader. However the leader also has order (i)c:ldr = m. So orderp does not change.Hence we conclude that if p 2 s:state-dlv [c:id], then s:order (i)p = m.The next invariant is similar to the previous one, but removes the requirement that there be nototally established con�gurations between w and c.Invariant 7.3.4 In any reachable state the following is true. Let w 2 Est and c 2 Est such thatw:id < c:id. Let (i;m;w) be good. Then order (i)p = m for every p 2 state-dlv [c:id].Proof: Let s be any reachable state and let w and c be as required by the statement. Let (i;m;w)be good in s. Let p 2 state-dlv [c:id]. We need to prove that s:order (i)p = mLet x1; x2; :::xk be the sequence, in order of con�guration identi�er, of totally established con�g-urations between w and c. Since (i;m;w) is good, by Invariant 7.3.3 we have that s:order (i)q = mfor any process q such that q 2 state-dlv [x1:id]. Con�guration x1 is totally established, hence for anyq 2 x1:set we have s:order (i)q = m. Hence we have s:build-order (x1:id; i)q = m for each member ofx1. It follows that (i;m; x1) is good. Thus by Invariant 7.3.3, used with w = x1, we have thats:order (i)q = m for any process q such that q 2 state-dlv [x2:id]. Con�guration x2 is totally estab-lished, hence for any q 2 x2:set we have s:order(i)q = m. Hence we have s:build-order (x2:id; i)q = mfor each member of x2.It follows that (i;m; x2) is good. We can iterate this reasoning for x3; :::; xk and obtain thats:order (i)q = m for any process q such that q 2 state-dlv [c:id], as needed.Next we show that in a given state no two operations can be good for a particular index i.Lemma 7.3.5 In any reachable state, given an index i, there exists at most one operation m suchthat (i;m) is good.Proof: Fix any reachable state s. By contradiction assume that there exist m and m0 such that(i;m) and (i;m0) are good in s and such that m 6= m0.By de�nition of good we have that there exists at least one con�guration w0 such that (i;m;w0)is good in s. Let w1 be the con�guration with the smallest identi�er among the con�gurations w0for which (i;m;w0) is good. Of course (i;m;w1) is good in s.143

Similarly, by de�nition of good we have that there exists at least one con�guration w0 suchthat (i;m0; w0) is good in s. Let w2 be the con�guration with the smallest identi�er among thecon�gurations w0 for which (i;m0; w0) is good. Of course (i;m0; w2) is good in s.Without loss of generality assume that w1:id < w2:id.We now distinguish two possible cases.Case 1: There exists c 2 s:Est such that w2:id < c:id. Fix p 2 s:state-dlv [c:id]. By Invari-ant 7.3.4, applied with w = w1, since (i;m;w1) is good, we have that s:order (i)p = m.By the same invariant, applied with w = w2, since (i;m0; w2) is good, we have that s:order (i)p =m0. This is a contradiction since m 6= m0.Case 2: There is no c 2 s:Est such that w2:id < c:id. Since (i;m0; w2) is good in s we have thatthere exists a quorum Q 2 c:set such that s:build-order (w2:id; i) = m0 for all members of Q. Fixp 2 Q. We have s:build-order (w2:id; i)p = m0. Since there is no c 2 s:Est such that w2:id < c:id, wehave that w2 is the latest con�guration established by p. Hence we have that s:order (i)p = m0.By Invariant 7.3.4, applied with w = w1, we have that s:order(i)p = m. This is a contradictionsince m 6= m0.The following lemma generalizes the previous one by claiming that, even across an entire exe-cution and not just in single state, we cannot have two di�erent elements of D being stable at thesame index.Lemma 7.3.6 Let � be an execution. Let s and s0 be two states of � and let m;m0 2 D be suchthat m 6= m0. Then it cannot be that (i;m) is good in s and (i;m0) is good in s0.Proof: By de�nition of good we have that if (i;m) is good in a state s then (i;m) is good in anysubsequent state s0. Then the lemma follows easily by Lemma 7.3.5.The following lemma states that an index i for which an answer has been computed is good.Lemma 7.3.7 In any reachable state we have that if req-answrd(i)p = true for some process p theni is good.Proof: Let s be a reachable state and assume that s:req-answrd(i)p = true.Variable req-answrd(i)p is set to true by process p either when providing the answer for op-eration i with action p2p-send(h\ans"; ai)p;q or when establishing a new con�guration with actionnewstate(ho; d; ai)p.In the former case process p is the leader of some con�guration c in which the answer for operationi is computed. Process p computes such an answer only after informing a quorum Q 2 c:qrms, bymeans of the underlying dlc service, about order (i)p. Hence i is good in s.In the latter case process p sets req-answrdp := a. So req-answrd(i)p is true only if a(i) istrue. But a(i) is true only if the leader p0 of some previous con�guration has computed an answer144

for operation i and thus has executed action p2p-send(h\ans"; ai) for i. Let s0 be the state when p0computed the answer for operation i. Clearly i is good in s0. But once i is good in a state it staysgood in all subsequent states. Hence i is good in s.In order to prove that the system implements an atomic object we use the following lemma, whichis a version of Lemma 13.16 of [65] (page 435) that considers general operations instead of speci�cread/write operations.Lemma 7.3.8 Let � be a (�nite or in�nite) sequence of actions of an atomic object external inter-face. Suppose that � is well-formed, and contains no incomplete operations. Let � be the set of alloperations in �. Suppose that � is an irre
exive total ordering of the operations in �, satisfying thefollowing properties:1. For any operation A 2 �, there are only �nitely many operations B such that B � A.2. If the response event for operation A precedes the invocation event for operation B in �, thenA � B.3. The response for any operation A 2 � is the result of applying all the operations that precedeA, including A itself, in the order �.Then � satis�es the atomicity property.Finally we can give the following claim.Claim 7.3.9 The system rab implements an atomic object.Proof: By Lemma 13.10 of [65] (page 419) we can restrict our attention to executions with onlycomplete operations. Fix such an execution �. Remember that � is the set of operations of �.In order to show that the system implements an atomic object we need to provide a total order �on � that satis�es Lemma 7.3.8. Let us de�ne the order � as follows.Let A be an operation in �. By de�nition of � we have that A gets completed. In order for Ato complete there must be a leader that stores A in some position i and computes an answer for Asetting req-answrd(i) to true. So there exists a state s of � such that s:req-answrd(i)p = true forsome p. By Lemma 7.3.7 we have that (i; A) is good in s. Denote by tag(A) the index i. This iswell de�ned because of Lemma 7.3.6. Note that no two operations A and B can get the same tag i,because we would have that both (i; A) and (i; B) are good in some state contradicting Lemma 7.3.6.Order all operations in � in order of tag .Next we prove that � satis�es the hypothesis of Lemma 7.3.8.Let us start with Point 1. Fix A 2 �. Any operation B � A must have tag(B) < tag(A). Thenumber of such operations is bounded by tag(A).145

Now consider Point 2. Fix A;B 2 � and assume that the response event for operation A precedesthe invocation event for operation B.Since A;B 2 � there exists a state s of � and two indexes i; j such that (i; A) and (j; B) aregood in s. By de�nition of tag we have that i = tag(A) and j = tag(B). Hence we need to provethat i < j.Let s0 be the state when B gets invoked. Since the response event of A precedes the invocationevent of B, we have that the response event of A precedes s0.Since A received a response before state s0, we have that there exists a state s00 preceding s0 suchthat s00:req-answrd(i)p = true for some process2 p. By the code (see action p2p-send(h\ans"; ai)p;q),we have that s00:req-answrd(k)p = true for any k < i. By Lemma 7.3.7 we have that in state s00 allindexes k � i are good in s00. Since s00 precedes s0, indexes k � i are good in s0 too.This implies that for each index k � i there exists an operation Ak such that (k;Ak) is good ins0. Moreover none of these operations Ak can be equal to B because B is invoked in state s0 andthus cannot be good in state s0.Remember that (j; B) is good in s. By Lemma 7.3.6 it cannot be that j � i because for anyindex k � i there exists an operation Ak 6= B such that (k;Ak) is good in s0.Hence it must be that i < j, as needed to prove Point 2.Finally consider Point 3. This condition is true because responses are given in order of tag andby Lemma 7.3.6 this order is consistent for all operations in �.7.4 RemarksThe rab algorithm implements an atomic shared object. As a particular case we may have a read-write register. In Chapter 6 the algorithm abd also implements an atomic shared read-write register.The latter is built upon the dc service while the former is built upon the dlc service which is avariation of the dc service that de�nes a leader within each con�guration. The two algorithms aresimilar (indeed they use similar services as building block): both rely on spreading each operationto a quorum of processes in order to keep data consistency. The main di�erence is that the rabalgorithm uses the leader of the current con�guration in order to centralize the handling of therequests from the clients; within each con�guration, the leader of the con�guration is responsible forproviding answers to the requests. With such an approach only the leader needs to have the most upto date information and thus, when the system is stable, this approach is more e�cient. In the abdalgorithm at any time there is a quorum of processes which have the most up to date information.2This process p is the leader of the con�guration in which the answer to operation A is computed. However thisis not important for this proof. 146

As the Liskov-Oki algorithm [76], the rab algorithm uses a centralized approach where a distin-guished process is responsible to perform requested operations; however, such a process needs thecooperation of a quorum of other processes in order to provide answers to the requested operations.Our algorithm is dynamic and does allow change in the universe of processes while the Liskov-Okialgorithm assumes a �xed universe of processes. The rab algorithm uses a more conservative ap-proach in providing answers to requested operations: the leader does not respond to a requestedoperation until it knows that a quorum of processes have recorded that operation. In the Liskov-Okiapproach the leader immediately respond to requested operations; this is more e�cient when thereare no failures, but in case of failures it is less e�cient (roll back might be necessary).The multipaxos algorithm [61] can also be used to implement a replicated atomic object. Indeedprocessors can agree on the sequence of operations to perform on the shared object by running asequence of instances of a consensus algorithm. The usefulness of developing the rab algorithm isthat we use a building block which provides a powerful service and thus much of the computationthat needs to be done is delegated to the dlc building block. This results in a simpler algorithm.The overall algorithm is similar to an algorithm that would use the multipaxos approach; howeverthe philosophy underlying the building blocks approach is that building blocks are built once andthen can be used by many applications which can take advantage of powerful properties o�ered bythe building block. With such a perspective designing rab is easier than designing a replicatedatomic object based on multipaxos (the interested reader can compare the code of multipaxosprovided in [29] with the code of rab).

147

Chapter 8
ConclusionsIn this thesis we have provided a set of group communication speci�cations. We have also givenimplementations of the speci�cations and we have constructed applications on top of the speci�ca-tions.The main theme has been that of providing \dynamic" group communication speci�cations,that is, speci�cations for group communication services that adapt well to dynamic changes of theunderlying distributed system. This is crucial in systems where processes can join or leave thesystem routinely because of process or link failures.In such settings, it is possible that the underlying system su�ers partitions. In the presenceof partitions two approaches can be followed: one is to allow every component of the partition toproceed independently; another one is to select a unique \primary" component of the partition andallow progress only in that component. The former approach improves availability at the expenseof shared data coherence. The latter is to be used when replicated data needs to be maintainedcoherently. Most group communication services and speci�cations take the �rst approach: they arepartitionable.When applications require a primary component but run over a partitionable group commu-nication service, it is the responsibility of the application to �gure out whether it is in a primarycomponent or not. Establishing whether the current component is primary or not is clearly indepen-dent of the particular application. Thus it would be better to move this problem from the applicationto a lower level layer. One possibility is to use a primary component group communication serviceas building block.In Chapter 5 we have considered the extension of existing partitionable group communicationservices to primary ones. We have provided a speci�cation for a dynamic primary view groupcommunication service called dvs. The communication tools provided by dvs are those typical of agroup communication service; the membership service provides the client with primary views.148

We have also shown that the dvs service is implementable. Our implementation is based on the vsservice of Fekete, Lynch and Shvartsman [41] and uses ideas from the dynamic membership algorithmof Yeger Lotem, Keidar and Dolev [89]. The implementation �lters the views provided by the vsservice in order to establish whether the systems has partitioned and in such a case to report to theclients only views satisfying particular intersection properties with previous views. Such views arethe primary components of the partition. By reporting to the clients only these primary views, theservice enforces that computation proceed only in the primary component.In order to show the usefulness of the dvs speci�cation we have developed an application on topof it. The application we have developed provides a totally ordered broadcast service: clients areallowed to broadcast messages to all other members of the system and the service guarantees thateach member of the systems receives the messages in the same order. This is a very powerful serviceto develop replicated data algorithms or any other application that necessitates data coherence.In Chapter 6 we tackled the problem of extending dynamic primary view services to dynamic\con�guration" services. A con�guration is a view with a quorum system de�ned on the membershipset of the view. The use of quorums is a well-known technique to improve availability and e�ciencyin a distributed system. With quorums usually a client request is serviced by a quorum of the setof all the members of the system (as opposed to the whole set of members). Our goal has been thatof integrating the use of quorums in a group communication system. In particular we extended thedvs service to handle con�gurations. The result has been a speci�cation for a primary con�gurationgroup communication service, called dc. The main di�culty in developing dc has been that ofde�ning a dynamic primary con�guration. The notion of dynamic primary view has been wellstudied (e.g., [55, 89]). As far as we know, there was no corresponding notion for con�gurations.We have developed such a notion and used it to specify the dc service.As for the dvs service, we have proved that dc is implementable and useful. The implementation isvery similar to that of dvs. It uses a static service internally, which provides any new con�gurations.Then it �lters these con�gurations to �nd those that satisfy certain intersection properties. Thesecon�gurations are the primary con�gurations which are given to the clients of the service.The application we have developed on top of dc is a multi-writer/multi-reader atomic register.This application is based on the work of Attiya, Bar-Noy and Dolev [12] and that of Lynch andShvartsman [66]. The algorithm exploits the quorum-oriented framework provided by the dc service.Finally in Chapter 7 we have explored the use of the techniques deployed in the developmentof dvs and dc to the design of dynamic algorithms, i.e., algorithms that work well in dynamicdistributed settings.Lamport's paxos algorithm uses quorums to solve the consensus problem; however it is designed for
149

a static settings. We have used the dc service1 in order to design a dynamic version of the paxosalgorithm, a version that adapts well to system changes, even permanent ones.We also have provided a dynamic primary copy data replication algorithm. As the dpaxos algo-rithm, also this algorithm uses (a variant of) the dc service as a building block. We have sketchedthe proof of correctness of this algorithm (the formal proof is left as future work.)Applications developed on top of powerful building blocks are easier to build than those builtfrom scratch, because such applications can bene�t from the guarantees provided by the buildingblocks. We have shown that our group communication building blocks are powerful enough tobuild interesting applications. We think that other applications can be built on top of the groupcommunication services (or variations of them) provided in this thesis.An interesting feature of the dc speci�cation is that it integrates a state exchange mechanismwithin the service. When a new con�guration is delivered to the client, the client is supposed tosubmit its current state to the service. Once the service receives the state from all the members ofthe con�guration, it computes a new up-to-date state and delivers this state to each member of thecon�guration. In this way the state transfer is relegated to the dc service.The dc service requires all members of the con�guration to submit the state before computing a newup-to-date state. It would be interesting to explore the possibility of computing the new up-to-datestate when only a quorum of the processes have submitted their state. Clearly the resulting servicewould be weaker, but it is possible that useful applications can still be constructed on top of thisweaker service. The advantage would be a more available service.One of the major goal of the current research in this area is to provide simple, universally acceptedspeci�cations that describe the semantics of the existing group communication services already inuse in real-world application. Probably it is not possible to give a unique speci�cation good for allapplications: di�erent applications will require di�erent group communication services, which willbe tailored to the applications. Another approach consists of de�ning independent protocol layersthat implement di�erent service levels and semantics (e.g., as is done for example in Horus andEnsemble). The application developer can use any combination of these layers building the rightsemantics for the needed group communication service.Though much work has been focused in providing speci�cations for group communication services(we refer the reader to Chapter 2 for pointers to the literature or to [87] for a survey), the overall goalhas not been achieved yet. It would be good to provide a set of universally accepted speci�cationsfor group communication services that cover all possible needs of applications. System implementors1We actually have used a variant of the dc tailored to the particular application that we have developed. SeeChapter 7 for more details. 150

could then concentrate on e�cient implementations of such speci�cations and application developerscould build their applications on top of the guarantees provided by the speci�cations.In this perspective, the contribution of this thesis is that of having provided formal speci�cationsfor two particular group communication services tailored to applications that run in dynamic systemsand that require primary views and con�gurations.Possible future work that follows the direction of this thesis may include the following.One could provide performance and fault-tolerance analysis of the algorithms presented in thethesis. We have focused our attention on the safety properties; though our algorithms are notnaive2, we have not proved any performance property. Such a performance analysis could be basedon assumptions on the underlying physical distributed system (as it is done in [41]). Moreover sincewe were concerned only with safety our algorithms are not tuned for optimal performance.Hence one could optimize the algorithms presented in the thesis and compare them with otheralgorithms. In particular it would be interesting to provide a dynamic version of the multipaxosalgorithm built upon the dlc group communication service. In Chapter 7 we have provided adynamic version of the paxos algorithm but not a dynamic version of the multipaxos algorithm.One could provide such a dynamic version of multipaxos and compare its performance with that ofthe original multipaxos algorithm (see [61, 29]). We have provided two algorithms that implementatomic objects: the abd-sys algorithm, which is based on a decentralized approach, and the rabalgorithm, which is based on a centralized approach. We have not tuned the code of these algorithmsfor e�ciency. It would be interesting to provide optimized code and compare the performance ofthese algorithms with others that solve similar problems (e.g., the Liskov-Oki algorithm [76]).Another possibility is to provide variations of the group communication services presented inthis thesis. An interesting one is that of weakening the dc speci�cation presented in Chapter 6 inorder to allow the computation of the starting state for a new con�guration as soon as the processesin a quorum of the con�guration have submitted their state (the version we have used requires allthe members of the con�guration to submit their state). We believe that this weaker version is stillpowerful enough to build useful applications.More generally it would be interesting to build other algorithms on top of the group communica-tion service building blocks provided in this thesis and also to provide new building blocks tailoredto other applications.
2An algorithm that does nothing is a safe algorithm. 151

Part II
Distributed k-set Consensus

152

Chapter 9
Distributed k-set Consensus:OverviewThe problem of reaching consensus in a distributed system arises in many forms and various contexts,such as, for example, distributed data replication, distributed databases,
ight control systems. Datareplication is used in practice to provide high availability: having more than one copy of the dataallows easier access to the data, i.e., the nearest copy of the data can be used. However, consistencyamong the copies must be maintained. A consensus algorithm can be used to maintain consistency.Another practical example of the use of data replication is an airline reservation system. The dataconsists of the current booking information for the
ights and it can be replicated at agencies spreadover the world. The current booking information can be accessed at any of the replicas. Reservationsor cancellations must be agreed upon by all the copies.Distributed consensus has been extensively studied; a good survey of early results is provided in[42]. We refer the reader to [65] for a more up-to-date treatment of consensus problems.One of the most celebrated results about distributed consensus is the impossibility result ofFischer, Lynch and Paterson [43]. This impossibility result, popularly known as FLP, states thatit is impossible to achieve distributed consensus in asynchronous systems even if only one stopfailures is possible. This surprising result sparkled various directions of research aimed to solve theproblem by either restricting the asynchrony of the computation model [31, 35], or using randomizedprotocols [18, 21, 80], or weakening the problem de�nition [24, 32, 39, 40].The last of these three directions of research falls in the more general research area of demarcat-ing what is deterministically computable and what is deterministically impossible in asynchronousdistributed systems in the presence of failures. The FLP impossibility seemed to suggest that nonontrivial problem could be solved deterministically and asynchronously in the presence of faults.Attiya, Bar-Noy, Dolev, Peleg and Reischuk [13] showed that the renaming problem can be solved in153

a deterministic way in asynchronous system in the presence of failures. Informally, in the renamingproblem processors start the computation with a \name" taken from some unbounded ordered namespace and have to \rename" themselves with names chosen from a new small name space. This resultrevived the research trend of exploring computable and impossible in deterministic asynchronousdistributed systems subject to failures. Following this direction, Chaudhuri [24] de�ned the k-setconsensus (or k-consensus for short) problem, which is a natural generalization of the consensusproblem obtained by allowing processes to decide on k di�erent values, instead of requiring them toagree on a single value. The 1-consensus problem is the classical consensus problem.Chaudhuri provided an algorithm to solve the k-consensus problem that tolerates up to a thresh-old t of process failures strictly smaller than k. This result proved that the k-consensus problem,for k � 2, allows more resilience than the 1-consensus problem. Chaudhuri conjectured that thek-consensus problem was impossible to solve while tolerating k or more failures. This conjecture wasproven true by three independent research teams: Borowsky and Gafni [20], Herlihy and Shavit [52]and Saks and Zaharoglou [84]. Attiya [11] provided an alternative proof of the same result.The results of [24, 20, 52, 84] completely characterize the k-consensus problem in asynchronoussystems with stop failures. In such a model the k-consensus problem is solvable if and only if t < k.The formal de�nition of the k-consensus problem requires three conditions to be satis�ed: agree-ment , termination and validity. The agreement condition requires that each process decide on avalue in such a way that the set of decided values has cardinality at most k. The termination con-dition simply requires that each (correct) process decide. For what concern the validity condition,several variants have been considered in the literature. The validity condition used in [24, 20, 52, 84]requires that each of the decision be equal to some input value.An alternative de�nition of the validity condition considered for the 1-consensus problem withstop failures requires that if all the inputs to the processes of the systems are equal then any decisionmust be equal to the input (see, for example [65, Ch. 6]). This condition is the one considered forthe k-consensus problem.In a Byzantine environment faulty processes can \mask" their inputs. Hence a more suitablevalidity condition considered for the 1-consensus problem with Byzantine failures requires that if allthe correct processes have the same input then any decision be the input of a correct process [62, 78].In this thesis we explore the solvability of the k-set consensus problem in asynchronous messagepassing models in which processes fail by stopping or fail arbitrarily (Byzantine failures). The maintheme is that the validity condition has a profound impact on when the problem is solvable. Weconsider six di�erent validity conditions and use these conditions to demarcate when k-set consensusis solvable for each system model. In several cases we completely characterize solvability. In somewe characterize solvability with very little uncertainty (i.e., a small gap between computable andimpossible) and in a few cases we leave a substantial gap.154

More in details, we start from the validity condition used by Chaudhuri, which we call the\regular" validity condition (the decision of any correct process is the input of some process) anddenote by rv1, and consider a weakened version (if there are no failures then every decision is theinput of some process), denoted with wv1, and a strengthened version (the decision of any correctprocess is the input of some correct process), denoted by sv1. For each of these three validitycondition we consider a corresponding weakened version obtained by requiring the condition onlyif all the processes start with the same input value. We denote these validity conditions with sv2(if all correct processes start with v the correct processes decide v), rv2 (if all processes start withv then correct processes decide v) and wv2 (if there are no failures and all processes start with v,then any decision is equal to v).For the crash failures model we completely characterize the line that separates possible fromimpossible for each of the above six validity conditions, with the exception of validity sv2 where atiny gap is left open.For the Byzantine failures model we characterize the line line that separates possible from im-possible leaving a tine gap for sv2, rv2 and wv2, and a substantial gap for wv1.The rest of this part is structured as follows. In Chapter 10 we give the formal de�nition ofthe k-consensus problem. We study the k-set consensus problem for crash failure in Chapter 11.Chapter 12 presents the results for Byzantine failures.

155

Chapter 10
The problemWe consider a distributed system consisting of n processes denoted by p1; p2; :::; pn. A process thatfollows its algorithmic speci�cation throughout an execution is said to be correct, and a processthat departs from its speci�cation is said to be faulty. In a fail-stop model (also known as a crashmodel), faulty processes are allowed to prematurely halt execution only. In a Byzantine model, afaulty process can deviate from its speci�cation arbitrarily. We assume that at most t processes fail,where t � 1 is a known, positive integer.We assume that the system is asynchronous. Processes communicate by sending messages overa network. We are not concerned with the particular topology of the network. Since we considerasynchronous systems, messages can take arbitrarily long time to reach their destination. We onlyassume that the network of processes is connected, that is, any process can send a message to anyother process. Moreover, messages are not altered, lost or duplicated while in transit on the network.For any k, 1 � k � n, we denote a k-set consensus problem by KC(k) or simply KC when k isnot relevant. The KC(k) problem is de�ned as follows. Each process pi starts the computation withan input value vi. Each correct process has to irreversibly \decide" on a value in such a way thatthree conditions, called termination, agreement and validity, hold. These conditions are:Termination: Every correct process eventually decides.Agreement: The set of values decided by correct processes has size at most k.Validity: One of the following conditions.sv1 (strong v1): The decision of any correct process is equal to the input of somecorrect process.sv2 (strong v2): If all correct processes start with v then correct processes decide v.rv1 (regular v1): The decision of any correct process is equal to the input of someprocess. 156

rv2 (regular v2): If all processes start with v then correct processes decide v.wv1 (weak v1): If there are no failures, then the decision of any process is equal tothe input of some process.wv2 (weak v2): If there are no failures and all processes start with v, then thedecision of any process is equal to v.Given a validity condition C, we denote by KC(k,C) the KC(k) problem de�ned with validity C.We also use the notation KC(C) if k is not relevant. We use the notation KC(k,t) to denote a KC(k)consensus problem with at most t failures allowed. The notation KC(k,t,C) denotes KC(k,t) withvalidity C.We de�ne a partial order on the KC problems based on the strength of the validity conditions.We say that KC(C) is weaker than KC(D) if any algorithm for solving KC(D) can be used to solveKC(C) in a given model. Clearly KC(C) is weaker than KC(D) if any impossibility result that holdsfor KC(C) holds also for KC(D). Conversely, we say that KC(C) is stronger than KC(D) if KC(D) isweaker than KC(C). Figure 10-1 shows the \weaker than" relation between the validity conditions.
RV1

RV2

SV2

SV1

WV2

WV1Figure 10-1: Validity conditions. An arrow from a validity condition C to a validity condition D meansthat KC(C) is weaker than KC(D) (and that KC(D) is stronger than KC(C)).KC(k,rv1) is the consensus problem as considered by Chaudhuri [24]. KC(1,rv1) and KC(1,rv2)are classical consensus problems (see, e.g., [65, Ch. 6]). KC(1,sv2) has been considered in theByzantine setting [62, 78]. KC(1,wv2) is weak Byzantine agreement [60].It is well known that the case k = 1 cannot be solved for any nontrivial validity condition and,in particular, for any of the validity conditions that we consider here, for any t � 1 [43]. On theother hand, if k = n then KC(k) is trivially solvable (each process decides its own value), even inthe Byzantine setting, for any t and with the strongest validity condition we are considering, thatis, validity sv1. Thus, we will henceforth be concerned only for the cases 2 � k � n� 1. Since theproblem is easily solvable for t = 0 we also assume that t � 1.157

Chapter 11
Crash failuresIn this section we consider the crash failures model. In Section 11.1 we recall known results. InSections 11.2 and 11.3, we provide further impossibility results and protocols, respectively. Figure 11-1 shows a graphical representation of the results provided in this section.11.1 Known resultsAs noted in Section 9, for the crash failure models we already know the line between computableand impossible for KC(k, t,rv1):Lemma 11.1.1 ([24]) In the crash model, there is a protocol for KC(k,t,rv1), for t < k.Lemma 11.1.2 ([20, 52, 84]) In the crash model, there is no protocol for KC(k,t,rv1), for t � k.By Lemma 11.1.1, we have that KC(k,t,rv2), KC(k,t,wv1) and KC(k,t,wv2) are solvable fort < k because rv2, wv1 and wv2 are weaker than rv1. By Lemma 11.1.2, KC(k,t,sv1) cannot besolved for t � k because sv1 is stronger than rv1.11.2 ImpossibilitiesIn this section we provide impossibility results for the crash model. An ingredient in most of ourimpossibility results is the fact that in any protocol tolerating t failures, a process must be ableto decide after communicating with at most n � t processes (including itself). Indeed, if a processwaited to communicate with more than n� t processes, termination could not be achieved: the runsin which there were exactly t faulty processes that do not send any messages, would not terminate.Lemma 11.2.1 In the crash model, there is no protocol for KC(k,t,wv2), for t � (k�1)n+1k .158

n/2

n/2 n-1

n/2

n/2 n-1

n/2

n/2 n-1

n/2

n/2 n-1

n/2

n/2 n-1

n/2

n/2 n-1

RV1

WV1

SV1SV2

RV2

WV2

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

t

k

n

1
2

t

k

n

1
2

t

k

n

1
2

t

k

n

1
2

t

k

n

1
2

t

k

n

1
2

Lemma 11.2.6

Lemma 11.2.8

Lemma 11.2.5

Lemma 11.2.7

Lemma 11.2.7

Lemma 11.2.3

Lemma 11.2.4

Lemma 11.1.1

Lemma 11.1.2

Lemma 11.1.1

Lemma 11.2.3

Figure 11-1: Crash model. Regions �lled in brick pattern indicate impossibility. Regions �lled in honeycombpattern indicate solvability. Un�lled regions indicate open problems. Figures are drawn to scale n = 64.
159

Proof: For a contradiction, assume that such a protocol A exists. In the rest of the proof we usethe notation KCP (k; t; C) to explicitly state the set P of processes among which k-set consensus isto be solved. Denoting by P the set of all processes, we have that A solves KCP(k; t;wv2).Since t � ((k � 1)n + 1)=k implies n � k(n � t) + 1, we can partition the n processes into kgroups g1; g2; :::; gk of disjoint processes with g1; ; :::; gk�1 containing exactly n� t processes and gkcontaining at least n� t + 1 processes. If t = n we let g1; g2; :::; gk�1 be singleton sets of processesand we let gk contain at least two processes (this is possible because we only consider k < n).First we claim that there is a run of A where only processes in gk take steps and such that twovalues are decided. To see why, assume that all the runs involving only processes of gk are suchthat only one value is decided. Then we could use A to solve KCgk (1; 1;wv2): gk contains at leastn� t+1 processes, so that even if one of them is faulty we still have at least n� t correct processesin gk and hence the protocol has to terminate. However, this contradicts [43], since no such protocolexists. Hence there is a run �k in which only processes in gk take steps and they decide on at leasttwo di�erent values, say vk; vk+1. Let v1; :::; vk�1 be k � 1 values di�erent from vk; vk+1.Fix i, i 2 f1; 2; :::; k � 1g and consider the following run �i: all processes are correct, all startwith vi and all messages sent to processes in gj , j = 1; 2; ::::; k by processes not in gj are delayeduntil all processes in gj make a decision. We can use A to solve KCP(k; t;wv2) and by validity wv2we have that all processes, in particular those in group gi, decide vi.Now consider the following run �. All processes are correct, for each i, i = 1; 2; :::; k � 1, eachprocess in gi starts with vi and processes in gk start with the same values they start in �k. Moreoverfor each i, i = 1; 2; :::; k, all messages sent to processes in group gi by processes not in gi are delayeduntil all processes in gi have decided. We can use A to solve KCP(k; t;wv2) in �. However, for eachi, i = 1; 2; :::; k, processes in gi cannot distinguish between run �i and run �. Indeed in both runsthey only communicate with processes in gi before making a decision and in both runs processes ingi start with the same value. Since, for i = 1; 2; :::; k � 1, in run �i processes in gi decide vi, theymust decide vi also in �. Since in run �k processes in gk decide on vk and vk+1, they must decide vkand vk+1 also in �. Hence we have that k+1 values are decided in �. Thus the agreement conditionis violated and this contradicts the hypothesis that A solves KCP(k; t;wv2).Lemma 11.2.2 In the crash model, there is no protocol for KC(k,t,wv1), for t � k.Proof: For a contradiction assume that there exists such a protocol A. We claim that A can beused to solve KC(k,t,rv1) for t � k. To see why, consider any run � in which f � t processes arefaulty and let g be the set of correct processes and g0 be the set of faulty processes. Now considera run �0 that is identical to � except that all processes are correct and any message sent by anyp 2 g0 in �0 after the time that p failed in � is delayed until after all processes in g decide. Thatis, for each pi 2 g and each pj 2 g0, pi receives a message from pj at time T in �0 i� pi receives the160

same message at time T from pj in �. By the validity condition wv1, each process decides on someprocess' input in �0. Clearly, processes in g cannot distinguish between � and �0. Hence, processesin g decide the same value in � as they decide in �0, and so validity rv1 is satis�ed in �. In otherwords, protocol A solves KC(k,t,rv1) for t � k, contradicting Lemma 11.1.2.Lemma 11.2.3 In the crash model, there is no protocol for KC(k,t,sv1).Proof: For a contradiction assume that there exists such a protocol A. Let � be an execution of Ain which all processes are correct and they all start with di�erent values. Let v a decision made byat least two processes (there is always such a decision since k < n). Because of validity sv1, v is theinput of some process pi and since all inputs are di�erent only pi has v as input. Now consider therun �0 that is the same as � except that process pi fails right after sending its last message. Clearly� and �0 are indistinguishable and thus each process (maybe with the exception of pi) makes thesame decision in both runs. Hence in �0 value v is decided by at least one process pj , j 6= i. Butonly pi has v as input and pi is not correct in �0, and so validity sv1 is violated.Lemma 11.2.4 In the crash model, there is no protocol for KC(k,t,sv2), for t � k2k+1n.Proof: For a contradiction assume that there exists such a protocol A. Consider �rst the caset � n2 . Partition the system into two non-intersecting sets of processes, g, g0, each containing atleast n � t processes (e.g., jgj = jg0j = n=2). This is always possible because t � n=2. Let � be arun of A in which all processes are correct, all start with di�erent initial values denoted v1; v2; :::; vn,and all communication between g and g0 is delayed until after the decisions are made. We claimthat n values are decided in �. To see this, �x any process pi 2 g, and consider the following run�i. The processes in g start with the same values as in �, and all except pi crash after pi reaches adecision. All the processes in g0 start with vi but communication between g and g0 is delayed untilafter pi makes a decision. By sv2, pi must decide vi in �i, and by indistinguishability of � from �i,pi must decide vi in �. Similarly, runs �0i can be constructed for every process p0i 2 g0, and henceall processes must decide their own values in �. This contradicts the hypothesis that A solves theproblem (for k < n).Now consider the case t < n2 . In this case, n� 2t > 0 and the condition t � n k2k+1 is equivalentto k � n�tn�2t � 1. Let g be a subset of the system containing n � t processes, and let g1; :::; gb n�tn�2t cbe a partition of g into disjoint sets of size at least n� 2t each. Let � be a run of A in which all theprocesses are correct, communication between g and the rest of the system is delayed until after allprocesses have decided and, for each i, processes in gi start with a distinct value vi. Fix i, and letpi 2 gi be some process. Consider a run �i of A as follows: Processes in gi are correct, all processesin g n gi are faulty, and crash after pi decides. All communication between g and the rest of thesystem is delayed until after pi decides. By sv2, pi must decide vi, but since � is indistinguishable161

to pi from �i, pi must decide vi in �. Therefore, in �, at least b n�tn�2tc di�erent values are decidedon. This contradicts the hypothesis that A solves the problem since k � n�tn�2t � 1 < b n�tn�2tc.11.3 ProtocolsIn this section we provide two protocols for the crash model.protocol a: Each process broadcasts its input and waits for n� t messages. If all n� tmessages contain the same value v, then the process decides v, else it decides a defaultvalue v0.Lemma 11.3.1 protocol a solves KC(k,t,rv2) in the crash model for t < k�1k n.Proof: We start by proving termination. The number of actual failures is less or equal to t. Hencethere are at least n� t correct processes. Thus each correct process eventually receives at least n� tmessages and is able to make a decision.Now we prove agreement. By the sake of contradiction assume that k + 1 values are decided.One of them could be the default value, but at least k values, di�erent from the default value, aredecided. By the protocol it is necessary that there be k disjoint sets g1; g2; :::; gk, each consisting ofat least n� t processes such that each process in gi sends a value vi (with vi 6= vj for i 6= j). Hencethere must be at least k(n � t) processes. However since t < k�1k n we have that n � t > n=k andthat k(n� t) > n, which implies that there must be more than n processes. This is impossible sincewe have n processes.Finally we prove validity. Assume that all processes start with value v. Clearly a process cannotreceive two di�erent values since v is the only value being sent. Hence by the protocol each processthat makes a decision, decides v.protocol b: Each process broadcasts its input and waits for n � t messages. One ofthese n � t messages is the process' own message. If n � 2t messages contain the samevalue as its own, say v, the process decides v, else it decides a default value v0.Lemma 11.3.2 protocol b solves KC(k,t,sv2) in the crash model for t < k�12k n.Proof: We start by proving termination. The number of actual failures is less or equal to t. Hencethere are at least n� t correct processes. Thus each correct process eventually receives at least n� tmessages and is able to make a decision.Now we prove agreement. By the sake of contradiction assume that k + 1 values are decided.One of them could be the default value, but at least k values, di�erent from the default value, aredecided. By the protocol it is necessary that there be k disjoint sets g1; g2; :::; gk, each consisting of162

at least n� 2t processes such that each process in gi sends a value vi (with vi 6= vj for i 6= j). Hencethere must be at least k(n�2t) processes. However since t < k�12k n we have that k(n�2t) > n, whichimplies that there must be more than n processes. This is impossible since we have n processes.Finally we prove validity. Assume that all correct processes start with value v. We have to provethat a correct process decides v. Let p be a correct process. First we observe that since p startswith v it decides v or v0. Hence it su�ces to prove that p receives at least n � 2t messages withv. Among the n� t messages p receives at least n� 2t are from correct processes. Hence process preceives at least n� 2t messages with v.11.4 RemarksFor KC(rv2) and KC(wv2), there is a very tiny gap between our possibility and impossibility results(Lemmas 11.2.1 and 11.3.1), formed by the cases where n is a multiple of k. These are isolated pointson the line that separates possible from impossible. Since for all other points on this line the problemis not solvable it would be very surprising if for those isolated points the problem is solvable. ForKC(sv2) there is also small gap between our possibility and impossibility results (Lemmas 11.2.4and 11.3.2).

163

Chapter 12
Byzantine failuresIn this section we consider the Byzantine failures model. In Section 12.1 we are concerned withimpossibilities and in Section 12.2 we provide protocols. Figure 12-1 shows a graphical representationof the results.12.1 ImpossibilitiesIn this section we provide impossibility results for the Byzantine model. Clearly the impossibilitiesproved for the crash model still hold. In particular the impossibilities for KC(sv1) and KC(wv1)are directly derived from the corresponding ones for the crash model. Next we provide additionalimpossibilities.Lemma 12.1.1 In the Byzantine model, there is no protocol that solves KC(k,t,wv2), for t � k2k+1nand t � k.Proof: For a contradiction assume that such a protocol A exists. We distinguish two cases: (i)t � n=2 and (ii) t < n=2.Consider case (i). Let v1; v2; :::; vt+1 be t + 1 di�erent values. Let � be the following run of A.The number of actual failures in � is f = n � t � 1. Let F be the set of faulty processes and letp1; :::pt+1 be the correct processes. Process pi has input vi, for i = 1; 2; :::; t+ 1. Messages betweenany two correct processes are delayed until all correct processes decide, that is, correct processescommunicate only with processes in F .We now show that at least k+1 values are decided in �, which contradicts the hypothesis that Asolves the problem. For each i = 1; 2; :::; t+1 consider the following run �i. All processes are correct,all have input vi, messages between processes not belonging to F are delayed until all processes notin F decide. By validity wv2, we have that in �i all processes must decide vi. Process pi, fori = 1; 2; :::; t+ 1, cannot distinguish between � and �i, if in �, the members of F behave as if they164

n/2

n/2 n-1

t

k

n

1
2

n/2

n/2 n-1

t

k

n

1
2

n/2

n/2 n-1

n/2

n/2 n-1

n/2

n/2 n-1

n/2

n/2 n-1

SV2

RV2

WV2

SV1

RV1

WV1

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

t

k

n

1
2

t

k

n

1
2

t

k

n

1
2

C(1)

C(2)

C(3)

C(1)

C(2)

C(3)

t

k

n

1
2

Lemma 12.1.2

Lemma 12.1.4

Lemma 12.1.8

Lemma 12.1.1

Lemma 12.1.4

Lemma 12.1.3

Lemma 12.1.7

Lemma 12.1.3

Lemma 12.1.7

Lemma 12.1.5

Lemma 12.1.2

Figure 12-1: Byzantine model. Regions �lled in brick pattern indicate impossibility. Regions �lled inhoneycomb pattern indicate solvability. Un�lled regions indicate open problems. Figures are drawn to scalen = 64.
165

were correct and had vi initially. Hence pi has to decide the same value in both runs. We havethat process pi decides vi also in �. Since v1; v2; :::; vt+1 are di�erent, we have that t+ 1 values aredecided in �. But t � k, hence at least k + 1 values are decided in �.Consider case (ii). Since t < n=2 we have that n � 2t > 0 and thus the condition t � k2k+1nis equivalent to n�tn�2t � k + 1. Then, we can partition the processes into k + 2 groups, the �rstk + 1 of which, denoted g1; g2; :::; gk+1, each consists of at least n � 2t processes, and the last ofwhich, denoted F , consists of t processes. Let � be the following run of A. Let v1; v2; :::; vk+1 bek + 1 di�erent values. Processes in gi start with vi, for i = 1; 2; :::; k + 1, and processes in F arefaulty. Processes in group gi communicate only within gi and with processes in F . For each groupgi processes in F behave as correct processes with input vi.We now show that at least k+1 values are decided in �, which contradicts the hypothesis that Asolves the problem. For each i = 1; 2; :::; k+1 consider the following run �i. All processes are correct,all have input vi, processes in group gi communicate only within gi and with processes in F . Byvalidity wv2, we have that in �i all processes must decide vi. Processes in gi, for i = 1; 2; :::; k + 1,cannot distinguish between � and �i. Hence they have to decide the same value in both runs, andso processes in gi decide vi also in �. Since v1; v2; :::; vk+1 are di�erent, we have that k + 1 valuesare decided in �.Lemma 12.1.2 In the Byzantine model, there is no protocol that solves KC(k,t,rv1).Proof: For a contradiction assume that such a protocol A exists. Let �1 be a run of A in which allprocesses are correct and each start with a di�erent input value. Let v1; :::; vz be the set of valuesdecided by correct processes. Because A satis�es validity rv1, each of the vi is the input of someprocess. Since z � k < n, we have that there exists a value vi, 1 � i � z, decided by at least twoprocesses, say p1 and p2.Let process q be the process whose input in �1 is vi for some i 2 f1; :::; zg. Use A in the run �2in which q is faulty but behaves as in �1, claiming that vi is its input, but it has v0i as its input,with v0i di�erent from vi and also from any other input. Since correct processes cannot distinguishbetween �1 and �2 they have to decide on the same value. We now distinguish three possible cases:(1) q is di�erent from both p1 and p2, (2) q is p1 and (3) q is p2. If q is di�erent from both p1 and p2then both p1 and p2 are correct and thus they decide on vi in �2. However vi is not an input valuein �2. Hence validity is violated. If q is p1 (resp. p2) then p2 (resp. p1) is correct and thus decidesvi in �2. However vi is not an input value in �2. Hence validity rv1 is violated. This contradictsthe hypothesis that A solves KC(k,t,rv1).Lemma 12.1.3 In the Byzantine model, there is no protocol for KC(k,t,rv2), for t � k2(k+1)n.166

Proof: The proof is similar to that for Lemma 11.2.4. For a contradiction assume that such aprotocol A exists. We distinguish two cases: (i) t < n=2 and (ii) t � n=2. Consider case (i). Sincet < n=2 we have that n� 2t > 0 and thus the condition t � k2(k+1)n is equivalent to nn�2t � k + 1.Then, we can partition the processes in k + 1 groups each consisting of at least n � 2t processes.Consider case (ii). In this case we partition the processes in k+1 groups each consisting of at leastone process.In both cases, let g1; g2; :::; gk; gk+1 be the k + 1 groups of processes. Let v1; :::vk+1 be k + 1di�erent values and consider the following run �. All processes are correct, processes in group gistart with vi. For each group gi, there is a set of t processes not belonging to gi, call it Fi, suchthat, for each i, communication is allowed only among processes in gi and Fi until all processes havedecided. Notice that the cardinality of gi [Fi is at least n� t in both cases.We now show that k+1 values are decided in �, which contradicts the hypothesis that A solvesthe problem. Fix i, 1 � i � k+1, and consider run �i. There are exactly t faulty processes and theseprocesses are those in Fi. Processes in gi are correct. All processes start with vi. Faulty processesbehave exactly as they do in run �. Processes in gi communicate only with other processes in gi andFi. We can use A to solve KC(k,t,rv2), and by the validity rv2 we have that all correct processes,and in particular those in gi decide vi. Processes in gi cannot distinguish run � and run �i. Hence,since they decide vi in �i they have to decide vi also in �. It follows that k + 1 values are decidedin �.12.2 ProtocolsIn this section we provide protocols for the Byzantine model. We start by observing that proto-col a, used for the crash model, solves KC(wv2) also in the Byzantine model, though only for arestricted range of values of k and t.Lemma 12.2.1 protocol a solves KC(k,t,wv2) in the Byzantine model for t < n=2 and k �n�tn�2t + 1.Proof: We start by proving termination. Since there are at most t failures, correct processes areguaranteed to receive at least n� t messages and thus they decide.Next we prove agreement. To have a bound on the number of possible decisions we look athow many values di�erent from the default value can be decided. Let f be the number of actualfailures. We have that any group of n� t � f correct processes that start with the same value canbe forced by the f faulty processes to decide that value. Notice that since f � t < n=2 we havethat n� t� f � 1. Hence the number of decisions can be as big as the number of possible disjointgroups of n � t � f correct processes, plus one to take into account the default value. There can167

be at most (n � f)=(n � t � f) such groups. This function is an increasing function of f and thusit achieves its maximum value for f = t. Hence the number of di�erent decisions we can have is atmost (n� t)=(n� 2t) + 1. Since k � (n� t)=(n� 2t) + 1 agreement is satis�ed.Finally we prove validity. Assume that all processes are correct and start with v. Then clearlyv is the only decision.Lemma 12.2.2 protocol a solves KC(k,t,wv2) in the Byzantine model for t � n=2 and k � t+1.Proof: Termination and validity are as in the previous lemma. Next we prove agreement. Let f bethe number of actual failures. We distinguish two cases: (i) f � n � t � 2 and (ii) f > n � t � 2.In case (i) we have that for any n� t messages received by a process, at least two of them are sentby correct processes. Hence for each di�erent value v 6= v0 decided by some process at least twocorrect processes have sent that value. Hence no more than n=2 values di�erent from the defaultvalue v0 can be decided. Hence at most n=2 + 1 di�erent values can be decided in case (i). In case(ii) the number of correct processes is strictly less than t+2. Hence we cannot have more than t+1di�erent decisions. Putting together the two cases, we have that the number of di�erent decisionsis at most maxfn=2 + 1; t+ 1g = t+ 1 � k.Next we provide a generalized version of the \echo" protocol of Bracha and Toueg [22], which wecall `-echo, where ` � 2. (The 1-echo protocol is Bracha and Toueg's echo protocol.) The `-echoprotocols will be used to provide a family of protocols for KC(sv2).`-echo protocol: To `-echo broadcast a message m, the sender s sends the messagehinit,s,mi to all other processes. When a process p receives the �rst hinit,s,mi from s,it sends the message hecho,s,mi to all other processes. Subsequent init messages froms are ignored. If process p receives message hecho ,s,mi from more than (n+ `t)=(`+1)processes, then process p accepts message m as sent by the sender process s.Lemma 12.2.3 In a system with t < `n=(2`+ 1), if a sender s uses the `-echo protocol to send amessage m then:(i) Correct processes accept at most ` di�erent messages.(ii) If s is correct, every correct process accepts m.Proof: First we prove (i). By sake of contradiction assume that correct processes accept ` + 1di�erent messages m1;m2; :::;m`+1. Then there must be `+ 1 correct processes, say p1; p2; :::; p`+1,such that process pi receives more than (n+`t)=(`+1) echos with mi, for each i = 1; 2; :::; `+1. Thusthere must be a total of more than n+ `t echos sent for the messages m1;m2; :::;m`+1. Let f be theactual number of faulty processes. Since a faulty process can send `+1 di�erent echos (it can echom1168

to p1, m2 to p2 and so on) we have that strictly more than n+`t�(`+1)f � n+`f�(`+1)f = n�fechos are sent by correct processes. This implies that at least one correct process sent two di�erentechos, which is not possible.Now we prove (ii). If the sender is correct, then it sends an init message for m to all otherprocesses. Any correct process will receive this and broadcast an echo message for m. Because thereare at most t � (n+ `t)=(`+1) faulty processes, no correct process accepts any message other thanm. Since there are at least n� t correct processes, it is su�cient that n� t be strictly greater than(n+ `t)=(`+ 1) in order to guarantee that any correct process receives enough echo messages to beable to accept m. Since t < `n=(2`+ 1) we have that n� t > (n+ `t)=(`+ 1).The `-echo protocol is used to de�ne a family of protocols for KC(k; t,sv2) as follows.protocol c(`): Each process broadcasts its input using the `-echo protocol and waitsfor n� t messages to be accepted, where one of these n� t messages is the process' ownmessage. If n� 2t messages contain the same value v, then the process decides v, else itdecides a default value v0.Lemma 12.2.4 protocol c(`) solves KC(k,t,sv2) in the Byzantine model for t < k�12k+`�1n andt < `2`+1n.Proof: We start by proving termination. Since there are at least n�t correct processes, each correctprocess eventually accepts at least n�t messages broadcast by `-echo and is able to make a decision.Now we prove agreement. For a contradiction assume that k+1 values are decided. One of themcould be the default value, but at least k values, di�erent from the default value, are decided. By theprotocol it is necessary that there be k sets g1; g2; :::; gk, each consisting of at least n� 2t processes,such that some correct process accepts a value vi from each process in gi (with vi 6= vj for i 6= j).Hence correct processes accept at least k(n�2t) values broadcast by `-echo. Each faulty process cancontribute ` di�erent values, and so the number of di�erent senders is at least k(n� 2t)� (`� 1)t.However since t < k�12k+`�1n, we have that k > n+(`�1)tn�2t and thus k(n � 2t) � (` � 1)t > n, whichimplies that there must be more than n processes, a contradiction.Finally we prove validity. Assume that all correct processes start with value v. We have to provethat a correct process decides v. Let p be a correct process. First we observe that since p starts withv it either decides v or v0. Hence it su�ces to prove that p receives at least n � 2t messages withv. Among the n� t messages p receives at least n� 2t are from correct processes. Hence process preceives at least n� 2t messages with v.Finally we provide a protocol for KC(wv1).protocol d: Processes p1; p2; :::; pt+1 each broadcasts its input value. A process thatreceives a value vi from pi, i 2 f1; 2; :::; t+ 1g, broadcasts an hecho,vi,pii message and169

never echos a value for pi again. Processes p1; p2; :::; pk each decides on its own value.Every other process decides the �rst value vi, i 2 f1; : : : ; t + 1g, for which it receivesidentical echos hecho,vi,pii from n� t processes.In protocol d, we say that a process accepts a value vi from pi if it receives identical echos for vifrom at least n� t processes. We de�ne the following functionsV (n; t; f) = (n� f if n� t� f � 0t+ 1� f + fb n�fn�t�f c if n� t� f > 0and Z(n; t) = max0�f�tfminfV (n; t; f); n� fgg:Lemma 12.2.5 protocol d solves KC(k,t,wv1) in the Byzantine model for k � Z(n; t).Proof: We start by proving termination. At least one process among p1; :::; pt+1 is correct, and atleast n� t receive its value and echo it. Hence it is guaranteed that each correct process receives atleast one set of identical n� t echo messages and thus is able to decide.Next we prove validity. Assume that there are no failures. Then all processes are correct andthus the values accepted by any process are input values. All decisions are one of the acceptedvalues. Hence validity wv1 is satis�ed.Finally we prove agreement. We compute an upper bound on the number of di�erent decisionsfor each possible value of f , that is the number of actual failures. By de�nition, 0 � f � t. Wedistinguish two cases: (i) n � t � f � 0 and (ii) n � t � f > 0. In case (i) a correct process maybe forced to communicate only with faulty processes. In this case we simply bound the number ofdecisions with the number of correct processes, that is n� f . In case (ii) the total number of valuesthat correct processes accept from one faulty process is bounded by b n�fn�t�f c. Indeed, a correctprocess accepts a value when receiving at least n � t echos, at least n � t � f of which are fromcorrect processes. Thus the total number of values from p1; :::; pt+1 accepted by correct processesis at most (t + 1 � f) + fb n�fn�t�f c, that is the number of values sent by correct processes plus thenumber of values that correct processes may be forced to accept because of the Byzantine behaviorof faulty processes. Hence the number of di�erent decisions that we can have is t+1�f+fb n�fn�t�f c.It is possible that this bound is bigger than n � f . In such a case, we can bound the number ofdi�erent decisions by n � f . Summarizing the two cases we have that for any f , we bound thenumber of decisions by n�f if n� t�f � 0 and by minft+1�f+fb n�fn�t�f c; n�fg if n� t�f > 0.The maximum over all possible values of f is given by Z(n; t). Hence we have that the number ofdecisions is always at most Z(n; t), as required. 170

We note that when t < n3 , b n�fn�t�f c = 1 for all 0 � f � t, and therefore, the protocol aboveguarantees agreement for any k > t (see Figure 12-1).12.3 RemarksFor the Byzantine model, the impossibility results and protocols we have provided in this sectionleave a small gap for the KC problem de�ned with validities wv2, rv2 and sv2 and a substantialgap for KC(wv1). An interesting open problem is to �ll in this gap.

171

Chapter 13
ConclusionsThe k-set consensus problem is an abstraction of many coordination problems in a distributed systemthat can su�er process failures. In this thesis we have investigated the k-set consensus problem inasynchronous message passing distributed systems. We have extended previous work by exploringseveral variations of the problem de�nition and model, including for the �rst time investigation ofByzantine failures. We have shown that the precise de�nition of the validity requirement, whichcharacterizes what decision values are allowed as a function of the input values and whether failuresoccur, is crucial to the solvability of the problem. For example, we show that allowing defaultdecisions in case of failures makes the problem solvable for most values of k in face of minority-failure, even in face of the most severe type of failures (Byzantine). We have introduced six validityconditions for this problem (all considered in various contexts in the literature), and demarcate theline between possible and impossible for each case. In many cases this line is di�erent from the oneof the originally studied k-set consensus problem.In this thesis we have considered asynchronous systems. A natural question to ask is: whathappens in synchronous systems? Clearly any algorithm that works in asynchronous systems worksalso in synchronous systems.Let us �rst consider the case of stop failures. The FloodSet algorithm (see for example [65, Ch.7]) solves the KC problem in synchronous systems with stop failures. It tolerates any number offailures, that is, it works for any t � n. The validity condition considered is validity rv1. Hence thisalgorithm works also for validities rv2, wv1 and wv2. The impossibility proof for KC validity sv1that we have provided for asynchronous systems works also for synchronous systems. Hence there isno KC protocol for validity sv1, synchronous systems, stop failures. The above cover pretty muchall the cases we have considered. The only open case is validity sv2: we can use the algorithm forasynchronous system that solves the problem for t < n=4 when k = and for t < n=3 for k � 3. Forother cases we don't know. 172

For the Byzantine case there is no work on KC for synchronous system. It is known thatKC(1,sv2) can be solved if and only if t < n=3 [78, 62]. The EIGbyz algorithm (see [65]) pro-vides a solution KC(1,sv2) when t < n=3. Lamport [60] proved that also KC(1,t,wv2) can be solvedif and only if t < n=3. Clearly EIGbyz solves also KC(1,wv2). No results for KC(k), k � 2, areknown for synchronous systems with Byzantine failures. Obviously one can use the algorithm pro-vided in this thesis for asynchronous system. However this still leaves large gaps for the values of kand t for which we don't know if the problem is solvable or not.Another natural question to ask is what happens in shared memory systems. Algorithms thatwork for message passing systems work also for shared memory system because a channel can besimulated with shared memory. The FLP impossibility proof can be generalized to shared memory([64]). The impossibility result of [20, 52, 84] works also for shared memory. In some of theimpossibility proofs we provided in this thesis we used the fact that the system is message-passing;hence we do not know whether the impossibility results still hold in the shared memory settings.We conjecture that the techniques used in this thesis can be used to provide a similar analysis forthe shared memory models.

173

Bibliography[1] ACM. Communications of the ACM 39(4), special issue on Group Communications Systems, April1996.[2] D. Agrawal and A. El Abbadi. An e�cient and fault-tolerant solution for distributed mutual exclusion.ACM Transactions on Computer Systems, 9(1):1{20, 1991.[3] Ehab S Al-Shaer, Hussein Abdel-Wahab, and Kurt Maly. HiFi: A new monitoring architecture fordistributed system management. In 19th International Conference on Distributed Computing Systems(ICDCS), pages 171{178, June 1999.[4] Y. Amir, D. Breitgand, G. Chockler, and D. Dolev. Group communication as an infrastructure for dis-tributed system management. In 3rd International Workshop on Services in Distributed and NetworkedEnvironment (SDNE), pages 84{91, June 1996.[5] Y. Amir, G. V. Chokler, D. Dolev, and R. Vitenberg. E�cient state transfer in partitionable environ-ments. In 2nd European Research Seminar on Advances in Distributed Systems (ERSADS'97), pages183{192. BROADCAST (ESPRIT WG 22455), Operating Systems Laboratory, Swiss Federal Instituteof Technology, Lausanne, March 1997. Full version available as Technical Report CS98-12, Institute ofComputer Science, The Hebrew University, Jerusalem, Israel.[6] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A Communication Sub-System for High Avail-ability. In 22nd IEEE Fault-Tolerant Computing Symposium (FTCS), July 1992.[7] Y. Amir, D. Dolev, P. Melliar-Smith, and L. Moser. Robust and e�cient replication using group com-munication. Technical Report CS94-20, Institute of Computer Science, Hebrew University, Jerusalem,Israel, 1994.[8] Y. Amir and A. Wool. Optimal availability quorum systems: Theory and practice. Information Pro-cessing Letters, 65:223{228, 1998.[9] T. Anker, G. Chockler, I. Keidar, M. Rozman, and J. Wexler. Exploiting group communication forhighly available video-on-demand services. In Proceedings of the IEEE 13th International Conferenceon Advanced Science and Technology (ICAST 97) and the 2nd International Conference on MultimediaInformation Systems (ICMIS 97), pages 265{270, April 1997.[10] T. Anker, D. Dolev, and I. Keidar. Fault tolerant video-on-demand services. In 19th InternationalConference on Distributed Computing Systems (ICDCS), pages 244{252, June 1999.174

[11] H. Attiya. A direct proof of the asynchronous lower bound for k-set consensus. In Proceedings ofthe 17th ACM Symposium on Principle of Distributed Computing (PODC), page 314. Puerto Vallarta,Mexico, 1998.[12] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems. Commu-nications of the ACM, 42(1):124{142, 1995.[13] H. Attiya, A. Bar-Noy, D. Dolev, and D. Peleg. Renaming in an asynchronous environment. Journalof the ACM, 37(3):524{548, July 1990.[14] �O. Babao�glu, R. Davoli, L. Giachini, and M. Baker. Relacs: A communication infrastructure forconstructing reliable applications in large-scale distributed systems. TR UBLCS94-15, Department ofComputer Science, University of Bologna, 1994.[15] �O. Babao�glu, R. Davoli, L. Giachini, and P. Sabattini. The inherent cost of strong-partial view syn-chronous communication. In Proceedings of Workshop on Distributed Algorithms on Graphs, pages72{86, 1995.[16] �O. Babao�glu, R. Davoli, and A. Montresor. Failure detectors, group membership and view-synchronouscommunication in partitionable asynchronous systems. TR UBLCS95-18, Department of ComputerScience, University of Bologna, 1995.[17] �O. Babao�glu, R. Davoli, and A. Montresor. Partitionable Group Membership: Speci�cation and Algo-rithms. TR UBLCS97-1, Department of Computer Science, University of Bologna, January 1997.[18] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols. InProceedings of the 2nd ACM Symposium on Principle of Distributed Computing (PODC), pages 27{30.Montreal, Canada, 1983.[19] K.P. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit. IEEE ComputerSociety Press, Los Alamitos, CA, 1994.[20] E. Borowsky and E. Gafni. Generalized
p impossibility result for t-resilient asynchronous computations.In Proceedings of the 25th ACM Symposium on Theory of Computing (STOC), pages 91{100, 1993.[21] G. Bracha. An o(n log n) expected rounds randomized byzantine generals algorithm. In Proceedings ofthe 4th ACM Symposium on Principle of Distributed Computing (PODC), 1985.[22] G. Bracha and S. Toueg. Resilient consensus protocols. In Proceedings of the 2nd ACM Symposium onPrinciple of Distributed Computing (PODC), pages 12{26, 1983.[23] T.D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group member-ship. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,pages 322{330, Philadelphia, Pennsylvania, May 1996.[24] S. Chaudhuri. Set consensus problems in totally asynchronous systems. Information and Computation,105(1), July 1993.[25] F. Cristian. Reaching agreement on processor group membership in synchronous distributed systems.Distributed Computing, 4(4), 1991. 175

[26] F. Cristian. Group, majority and strict agreement in timed asynchronous distributed systems. InProceedings of the 26th Conference on Fault-Tolerant Computer Systems, pages 178{187, 1996.[27] F. Cristian and F. Schmuck. Agreeing on processor group membership in asynchronous distributedsystems. Technical Report CSE95-428, University of California-San Diego, La Jolla, CA 92093-0114,1995.[28] D. Davcev and W. Buckhard. Consistency and recovery control for replicated �les. In ACM Symp. onOperating Systems Principles, volume 10, pages 87{96, 1985.[29] R. De Prisco. Revisiting the Paxos algorithm. Master's thesis, Department of Electrical Engineeringand Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, June 1997. AlsoMIT/LCS/TR-717.[30] R. De Prisco, B. Lampson, and N. Lynch. Revisiting the Paxos algorithm. In Proceedings of the 11thWorkshop on Distributed Algorithms (WDAG), volume 1320 of Lecture Notes in Computer Science,pages 111{125. Springer-Verlag, 1997. Will appear in Theoretical Computer Science.[31] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal syncrhony needed for distributed consensus.Journal of the ACM, 34(1):77{97, January 1987.[32] D. Dolev, N. Lynch, S.S. Pinter, E.W. Stark, and W.E. Weihl. Reaching approximate agreement in thepresence of faults. Journal of the ACM, 33(3):499{516, July 1986.[33] D. Dolev and D. Malkhi. The transis approach to high availability cluster communications. Communi-cations of the ACM, 39(4):64{70, 1996.[34] D. Dolev, D. Malkhi, and R. Strong. A framework for partitionable membership service. TechnicalReport TR95-4, Institute of Computer Science, Hebrew University, Jerusalem, Israel, March 1995.[35] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal ofthe ACM, 35(2):288{323, April 1988.[36] A. El Abbadi and S. Dani. A dynamic accessibility protocol for replicated databases. Data and knowledgeengineering, 6:319{332, 1991.[37] A. El Abbadi and S. Toueg. Maintaining availability in partitioned replicated databases. ACM Trans-actions on Database Systems, 14(2):264{290, 1989.[38] P. D. Ezhilchelvan, A. Macedo, and S. K. Shrivastava. Newtop: a fault tolerant group communicationprotocol. In 15th International Conference on Distributed Computing Systems (ICDCS), June 1995.[39] A. Fekete. Asymptotically optimal algorithms for approximate agreement. Distributed Computing,4(1):9{29, March 1990.[40] A. Fekete. Asynchronous approximate agreement. Information and Computation, 115(1):95{124,November 15 1994.[41] A. Fekete, N. Lynch, and A.A. Shvartsman. Specifying and using a partitionable group communicationservice. In Proceedings of the 16th ACM Symposium on Principle of Distributed Computing (PODC),pages 53{62, Santa Barbara, CA, August 1997.176

[42] M.J. Fischer. The consensus problem in unreliable distributed systems (a brief survey). Research ReportYALEU/DCS/RR-273, Yale University, Department of Computer Science, New Haven, CT 06520, June1983.[43] M.J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty process.Journal of the ACM, 32(2):374{382, April 1985.[44] R. Friedman and R. van Renesse. Strong and weak virtual synchrony in Horus. Technical ReportTR95-1537, Department of Computer Science, Cornell University, Ithaca, NY, 1995.[45] R. Friedman and A. Vaysburg. Fast replicated state machines over partitionable networks. In 16thIEEE International Symposium on Reliable Distributed Systems (SRDS), October 1997.[46] R. Friedman and A. Vaysburg. High-performance replicated distributed objects in partitionable envi-ronments. Technical Report 97-1639, Dept. of Computer Science, Cornell University, Ithaca, NY 14850,USA, July 1997.[47] D. Gi�ord. Weighted voting for replicated data. In Proceedings of the ACM Symposium on OperatingSystems Principles, pages 150{162, 1979.[48] R. Guerraoui and A. Schiper. Transaction model vs virtual synchrony model: bridging the gap. InTheory and Practice in Distributed Systems, LNCS 938, pages 121{132. Springer-Verlag, September1995.[49] Mark Hayden. Ensemble Reference Manual. Cornell University, 1996.[50] M. Herlihy. A quorum-consensus replication method for abstract data types. ACM Transactions onComputer Systems, 4(1):32{53, 1986.[51] M. Herlihy. Dynamic quorum adjustment for partitioned data. ACM Transactions on Database Systems,12(2):170{194, June 1987.[52] M. Herlihy. The asynchronous computability theorem for t-resilient tasks. In Proceedings of the 25thACM Symposium on Theory of Computing (STOC), pages 111{120, 1993.[53] M. Hiltunen and R. Schlichting. Properties of membership services. In Proceedings of the 2nd Interna-tional Symposium on Autonomous Decentralized Systems, pages 200{207, 1995.[54] F. Jahanian, S. Fakhouri, and R. Rajkumar. Processor group membership protocols: Speci�cation, de-sign and implementation. In Proceedings of the 12th IEEE Symposium on Reliable Distributed Systems,pages 2{11, 1993.[55] S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining the consistency of a replicateddatabase. ACM Trans. Database Systems, 15(2):230{280, 1990.[56] I. Keidar. A Highly Available Paradigm for Consistent Object Replication. Master's thesis, Instituteof Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel, 1994. Also Institute ofComputer Science, The Hebrew University of Jerusalem Technical Report CS95-5, and available from:http://www.cs.huji.ac.il/�transis/publications.html.[57] I. Keidar and D. Dolev. E�cient message ordering in dynamic networks. In Proceedings of the 15thACM Symposium on Principle of Distributed Computing (PODC), pages 68{76, May 1996.177

[58] Roger Khazan. Group communication as a base for a load-balancing, replicated data service. Mas-ter's thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute ofTechnology, Cambridge, MA 02139, June 1998.[59] Roger Khazan, Alan Fekete, and Nancy Lynch. Multicast group communication as a base for a load-balancing replicated data service. In 12th International Symposium on Distributed Computing, pages258{272, Andros, Greece, September 1998.[60] L. Lamport. The weak byzantine generals problem. Journal of the ACM, 30(3):254{280, 1983.[61] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133{169, May1998. Also Research Report 49, DEC SRC, Palo Alto, CA, 1989.[62] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Transactions onProgramming Languages and Systems, 4(3):382{401, July 1982.[63] N. Lesley and A. Fekete. Providing virtual synchrony for group communication services. Preprint, 1997.[64] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asynchronousprocesses. In Parallel and Distributed Computing, pages 163{183. JAI Press, Greenwich CT, 1987.Volume of Advances in Computing Research.[65] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo, CA, March 1996.[66] N. Lynch and A.A. Shvartsman. Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts. In Proceedings of the 27th Annual International Symposium on Fault-TolerantComputing (FTCS), pages 272{281, Seattle, Washington, USA, June 1997. IEEE.[67] N. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3):219{246,September 1989. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands. TechnicalMemo MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute of Technology,Cambridge, MA 02139, November 1988.[68] D. Malkhi and M.K. Reiter. Byzantine quorum systems. Distributed Computing, 11:203{13, 1998.[69] D. Malkhi, M.K. Reiter, and A. Wool. The load and availability of byzantine quorum systems. InProceedings of the 16th ACM Symposium on Principle of Distributed Computing (PODC), pages 249{257, August 1997.[70] D. Malkhi, M.K. Reiter, and R. Wright. Probabilistic quorum systems. In Proceedings of the 16th ACMSymposium on Principle of Distributed Computing (PODC), pages 267{273, August 1997.[71] C. Malloth and A. Schiper. View synchronous communication in large scale networks. In 2nd OpenWorkshop of the ESPRIT project BROADCAST (Number 6360), July 1995 (also available as a TechnicalReport Nr. 94/84 at Ecole Polytechnique F�ed�erale de Lausanne (Switzerland), October 1994).[72] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agrawal. Extended virtual synchrony. In Proceedings of the14th IEEE International Conference on Distributed Computing Systems, pages 56{65, Poznan, Poland,June 1994. Full version appears in TR ECE93-22, Dept. of Electrical and Computer Engineering,University of California, Santa Barbara, CA.178

[73] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos.Totem: A fault-tolerant multicast group communication system. Communications of the ACM, 39(4),April 1996.[74] M. Naor and A. Wool. The load, capacity and availability of quorum systems. SIAM Journal onComputing, 27(2):423{447, April 1998.[75] G. Neiger. A new look at membership services. In Proceedings of the 15th Annual ACM Symposium onPrinciples of Distributed Computing, pages 331{340, Philadelphia, Pennsylvania, May 1996.[76] B. Oki and B. Liskov. Viewstamped replication: A general primary copy method to support highly avail-able distributed systems. In Proceedings of the Seventh ACM Symposium on Principles of DistributedComputing, pages 8{17, Toronto, Ontario, Canada, August 1988.[77] J. Paris and D. Long. E�cient dynamic voting algorithms. In Proceedings of the 13th InternationalConference on Very Large Data Base, pages 268{275, 1988.[78] M. Pease, R. Shostak, and L. Lamport. Reaching agreeement in the presence of faults. Journal of theACM, 27(2):228{234, April 1980.[79] D. Peleg and A. Wool. The availability of quorum systems. Information and Computation, 123(2):210{223, 1995.[80] M. Rabin. Randomized byzantine generals. In Proceedings of the 15th ACM Symposium on Theory ofComputing (STOC), pages 403{409, 1983.[81] A. Ricciardi. The group membership problem in asynchronous systems. Technical Report TR92-1313,Department of Computer Science, Cornell University, Ithaca, NY, 1992.[82] A. Ricciardi and K.P. Birman. Using process groups to implement failure detection in asynchronousenvironments. In Proceedings of the 10th ACM Symposium on Principle of Distributed Computing(PODC), pages 341{352, August 1991.[83] A. Ricciardi, A. Schiper, and K.P. Birman. Understanding partitions and the \no partitions" assump-tion. Technical Report TR93-1355, Department of Computer Science, Cornell University, Ithaca, NY,1993.[84] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public knowledge.In Proceedings of the 25th ACM Symposium on Theory of Computing (STOC), pages 101{110, 1993.[85] A. Schiper and M. Raynal. From group communication to transactions in distributed systems. Com-munications of the ACM, 39(4):84{87, April 1996.[86] R. van Renesse, K.P. Birman, and S. Ma�eis. Horus: A
exible group communication system. Com-munications of the ACM, 39(4):76{83, 1996.[87] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev. Group Communication Speci�cations: AComprehensive Study. Technical report, Institute of Computer Science, The Hebrew University ofJerusalem, Jerusalem, Israel, September 1999. Also Technical Report MIT-LCS-TR-790, MassachusettsInstitute of Technology, Laboratory for Computer Science and Technical Report CS0964, ComputerScience Department, the Technion, Haifa, Israel.179

[88] E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary components. InProceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pages63{71, Santa Barbara, CA, August 1997.[89] E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary components. InProceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pages63{71, Santa Barbara, CA, August 1997.

180

