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1 IntrodutionAhieving eÆient distributed solutions for spei� problems depends on our ability toe�etively exploit parallelism in a system onsisting of multiple proessors. This is oftenhallenging beause the set of proessors available to a omputation may dynamiallyhange. Suh hanges may our due to proessor failures or proessors beoming un-available during periods when they are required to perform other unrelated tasks, ordue to repaired or idle proessors joining the omputation already in progress. A ba-si problem that an readily bene�t from adaptively parallel solutions is the problem ofperforming a number of similar, independent and idempotent tasks. By the similarity oftasks we mean that the task exeutions onsume equal or omparable resoures. By theindependene of the tasks we mean that the ompletion of any task does not a�et anyother task. By the idempotene of the tasks we mean that eah task an be exeutedmultiple times or onurrently without negatively impating the �nal result. Examplesof suh problems are heking all the points in a large solution spae, trying to generatea witness or refute its existene, or simply performing a number of similar independentalulations.Here we onsider the abstrat problem of performing t tasks in a synhronous messagepassing distributed environment onsisting of p proessors, whih are subjet to failuresand restarts. Failures are rash failures, i.e., a faulty proessor stops and does notperform any further ations. Restarted proessors resume omputation in a prede�nedinitial state, i.e., no stable storage is assumed. We refer to suh a problem as the do-allproblem.Algorithmi solutions for the do-all problem in the message-passing models of om-putation an be evaluated aording to their omputational e�etiveness that measuresthe number of omputation steps taken in performing the tasks, and aording to theirommuniation eÆieny that measures the amount of ommuniation needed to performthe tasks. Dwork, Halpern and Waarts [6℄, the �rst to onsider the do-all problem,use a work measure de�ned as the number of tasks exeuted, ounting multipliities, toassess the omputational eÆieny. This work measure aounts only for steps taken byproessors while exeuting the tasks of the do-all problem; proessor steps taken foroordination or waiting for messages are not ounted. Another measure of work, theavailable proessor steps, de�ned by Kanellakis and Shvartsman [10℄, takes into aountall steps taken by the proessors, that is, both steps taken in exeuting the t tasks and anyother steps, inluding idling, taken by the available proessors. Thus the available pro-essor steps measure [10℄ is more onservative than the work measure of [6℄. Let W (t; p)be the work omplexity and S(t; p) be the available proessor steps omplexity of somedo-all algorithm in some failure model. It is always the ase that W (t; p) = O(S(t; p)),sine S(t; p) ounts the idle/wait steps, whih are not inluded in W (t; p). The equalityW (t; p) = S(t; p) an be ahieved, for example, by algorithms that perform at least onetask during any �xed time period. In our work we use the available proessor stepsmeasure. 1



Communiation eÆieny is gauged using the message omplexity that aounts forthe number of messages sent during the omputation, or, when the messages substantiallyvary in size, using the bit omplexity that aounts for the number of bits sent. Whenproessors ommuniate using broadasts (multiasts), it is possible to measure the om-muniation omplexity either in terms of the total number of broadast messages, or interms of the number of messages destined to all reipients targetted by the broadasts.In this work we use the more onservative ommuniation omplexity measure by takinginto aount all messages reated as the result of a broadast. For example, we ount asingle broadast to p proessors as p messages.Dwork et al. also use the e�ort omplexity, de�ned as the sum of the work andmessage omplexities. This approah makes sense for algorithms for whih the workand the message omplexities are similar. However, this makes it diÆult to omparerelative eÆieny of algorithms that exhibit varying trade-o�s between the work and theommuniation eÆienies. De Priso, Mayer and Yung [5℄ evaluate do-all algorithmsusing a \lexiographi" riterion: �rst evaluate an algorithm aording to its availableproessor steps and then aording to its message omplexity. This approah assumesthat optimization of the omputational steps is more important than that of the messageomplexity. In this paper we onsider the available proessor steps, denoted by S, andthe message omplexity, denoted by M , as two independent measures of eÆieny ofalgorithms.It is not diÆult to formulate trivial solutions to do-all in whih eah proessorperforms eah of the t tasks. Suh solutions have S = 
(t(p+ r)), where r is the numberof restarts, and they do not require any ommuniation. Solutions that ahieve bettereÆieny in S trade messages for omputation steps.Review of prior work. Algorithms solving the do-all problem have been provided byDwork, Halpern and Waarts [6℄, by De Priso, Mayer and Yung [5℄, and by Galil, Mayerand Yung [7℄. These deterministi algorithms are formulated for failure models thatallow proessor failures but disallow proessor restarts. The point-to-point messagingbetween non-faulty proessors is assumed to be reliable. In a synhronous system withthese assumptions proessor failures are detetable, for example using a timeout, andsuh proessors are modeled using the fail-stop proessor abstration of Shlihting andShneider [15℄.Dwork, Halpern and Waarts [6℄ developed the �rst algorithms for the do-all prob-lem. One algorithm presented in [6℄ (protool B) has e�ort O(t + ppp), with workontributing the ost O(t + p) towards the e�ort, and message omplexity ontributingthe ost O(ppp). The running time of the algorithm is O(t+ p). The algorithm uses thesynhrony of the system to detet failures by means of time-outs. In this algorithm thet tasks are divided into hunks and eah of these is divided into subhunks. Proessorshekpoint their progress by multiasting the ompletion information to subsets of pro-essors after performing a subhunk, and broadasting to all proessors after ompletinghunks of work. Another algorithm in [6℄ (protool C) has e�ort O(t + p log p). It hasoptimal work of O(t + p), message omplexity of O(p log p), and time O(p2(t + p)2t+p).2



Thus the redution in message omplexity is traded-o� for a signi�ant inrease in time.Yet another algorithm of [6℄ (protool D) obtains work optimality and is designed formaximum speed-up, whih is ahieved with a more aggressive hekpointing strategy,thus trading-o� time for messages. The message omplexity is quadrati in p for thefault-free ase, and in the presene of a failure pattern of f < p failures, the messageomplexity degrades to �(f p2).De Priso, Mayer and Yung [5℄ present an algorithm whih has the available proessorsteps O(t + (f + 1)p) and message omplexity O((f + 1)p). The available proessorsteps and ommuniation eÆieny approah requires keeping all the proessors busydoing tasks, simultaneously ontrolling the amount of ommuniation. Their algorithmoperates as follows. At eah step all the proessors have an overestimate of the setof all the available proessors. One proessor is designed to be the oordinator andis responsible for the progress of the omputation. It alloates the outstanding tasksaording to some alloation rule and waits for noti�ations of the tasks whih have beenperformed. The oordinator hanges over time. To avoid a quadrati upper bound for Ssubstantial proessor slakness (p� t) is assumed.Another eÆient algorithm was developed by Galil, Mayer and Yung [7℄. Working inthe ontext of Byzantine agreement with stop-failures (for whih they establish a message-optimal solution), they improved the message omplexity of [5℄ to O(fp" + minff +1; log pgp), for any positive ", while ahieving the available proessor steps omplexity ofO(t+ (f + 1)p).In [5℄ a lower bound of 
(t+(f +1)p) for algorithms that use the stage-hekpointingstrategy is proved, this bound being quadrati in p for f omparable with p. Howeverthere are algorithmi strategies that have the potential of irumventing the quadratibound. Consider the following senarios. In the �rst one we have t = o(p), f > p=2, andthe algorithm assigns all tasks to every proessor. Then S = O(pt) = o(t + (f + 1)p),beause fp = �(p2). This na��ve algorithm has a quadrati S for p = O(t). In theseond example assume that the three quantities p, t and f are of omparable magnitude.Consider the algorithm in whih all the proessors are oordinators, exeution of tasks isinterleaved with ommuniation, and the outstanding tasks are evenly alloated amongthe live proessors based on their identi�ers. The tasks alloation is done after eahround of exhanging messages about whih proessors are still available and whih taskshave been suessfully performed. One an show that S = O(p log p= log log p). Thisbound is o(t + (f + 1)p) for f > p=2 and t = p. Unfortunately the number of messagesexhanged is more than quadrati, and an be 
(p2 log p= log log p). These examplessuggest a possibility of performane better than S = O(t+(f +1)p), however the simplealgorithms disussed above have either the available proessor steps quadrati in p, orthe number of messages more than quadrati in p in the ase when p, t and f are ofthe same order. One interesting result of our paper is showing that an algorithm anbe developed whih has both the available proessor steps whih is always subquadrati,and the number of messages whih is quadrati only for f omparable to p, even withrestarts. 3



Previous deterministi algorithms are designed so that at eah step there is at mostone oordinator; if the urrent oordinator fails then the next available proessor takesover, aording to a time-out strategy. Having a single oordinator helps to bound thenumber of messages, but a drawbak of suh approah is that any protool with at mostone ative oordinator is bound to have S = 
(t + (f + 1)p). Namely, onsider thefollowing behavior of the adversary: while there is more than one operational proessor,the adversary stops eah oordinator immediately after it beomes one and before itsends any messages. This reates pauses of 
(1) steps, giving the 
((f + 1)p) part,where f is the number of stop-failures (f < p). Eventually there remains only oneproessor whih has to perform all the tasks, beause it has never reeived any messages,this gives the remaining 
(t) part. A lower-bound argument for stage-hekpointingstrategies is formally presented in [5℄. Moreover, when proessor restarts are allowed,any algorithm that relies on a single oordinator for information gathering might notterminate, beause the adversary an always kill the urrent oordinator, keeping aliveall the other proessors so that no progress is made.Summary of ontributions. All previous algorithms do not onsider the possibil-ity that a faulty proessor is repaired and reintegrated into the system. In this pa-per we present the �rst algorithm that solves the do-all problem allowing proessorrestarts. We introdue a new algorithmi tehnique based on an aggressive oordinationparadigm that permits multiple onurrent oordinators. This approah is suggestedby the earlier observation that algorithms with only one oordinator annot deal eÆ-iently with restarts. The number of oordinators is managed adaptively. When failuresof oordinators disrupt the progress of the omputation, the number of oordinators isinreased; when the failures subside, a single oordinator is appointed. En route to thesolution for restartable proessors we introdue a new algorithm for the do-all problemwithout restarts. This algorithm, that we all \algorithm AN" (Algorithm No-restart),is tolerant of f < p stop-failures. It has available proessor steps omplexity1 S =O((t+p log p= log log p) log f) and message omplexity M = O(t+p log p= log log p+fp).Algorithm AN is the basis for our seond algorithm, alled \algorithm AR" (Algorithmwith Restarts), whih tolerates stop-failures and restarts. Its available proessor stepsomplexity is S = O((t + p log p + f) �minflog p; log fg), and its message omplexity isM = O(t+ p log p+ fp), where f is the number of failures. The results are summarizedin Figure 1.Our algorithm AN is more eÆient in terms of S than the algorithms in [5℄ and [7℄when f , p and t are omparable; the algorithm also has eÆient message omplexity.Algorithms AN and algorithm AR ome within a log f (and log p) fator of the respetivelower bounds [10℄ proved in the ontext of the shared-memory model of omputation forany algorithms that balane loads of surviving proessors in eah onstant-time step.Our algorithms assume that the ommuniation is reliable. If a proessor sends amessage to another operational proessor and when the message arrives at the desti-nation the proessor is still operational, then the message is reeived. Moreover, if an1The expression \log f" stands for 1 when f < 2 and log2f otherwise; all logarithms are to the base 2.4



S: available proessor steps M : message omplexityNo [5℄ O(t+ (f + 1)p) O((f + 1)p)restarts [7℄ O(t+ (f + 1)p) O(fp" +minff + 1; log pgp)(f < p) AN O((t+ p log p= log log p) log f) O(t + p log p= log log p+ fp)Restarts(f < p+r) AR O((t+ p log p+ f) �minflog p; log fg) O(t + p log p+ fp)Figure 1: EÆieny of the solutions in [5, 7℄ and algorithms AN and AR (the solutionsin [6℄ onsider a di�erent notion of work omplexity and fous on evaluation of e�ort).operational proessor sends a multiast message and then fails, then either the messageis sent to all destinations or to none at all. Suh multiast is reeived by all operationalproessors. Prior solutions do not make this assumption, although they do not solve theproblem of proessor restarts. The availability of reliable multiast simpli�es solutions fornon-restartable proessors, but dealing with proessor restarts remains a hallenge evenwhen suh broadast is available. There are several reasons for onsidering solutions withsuh reliable multiast. First of all, in a distributed setting where proessors ooperatelosely, it beomes inreasingly important to assume the ability to perform eÆient andreliable broadast or multiast. This assumption might not hold for extant WANs, butbroadast LANs (e.g., Ethernet and bypass rings) have the property that if the sender istransmitting a multiast message, then the message is sent to all destination. Of oursethis does not guarantee that suh multiast will be reeived, however when a proessoris unable to reeive or proess a message, e.g., due to unavailable bu�er spae or failureof the network interfae hardware at the destination, this an be interpreted as a failureof the reeiver. From the standpoint of the sender, the availability of hardware-assistedbroadast makes the ommuniation ost of sending a broadast message omparable tothe ommuniation ost of sending a single point-to-point message. However, sine mul-tiple reeivers may have to proess the broadast message, we are using a onservativeost measure that assumes that the ommuniation ost of a multiast is proportionalto the number of reipients. Seondly, by separating the onerns between the reliabilityof proessors and the underlying ommuniation medium, we are able to formulate solu-tions at a higher level of modularity so that one an take advantage of eÆient reliablebroadast algorithms (f. [8℄) without altering the overall algorithmi approah. Lastly,our approah presents a new venue for optimizing do-all solutions and for beating the
(t + (f + 1)p) lower bound of stage-hekpointing algorithms [5℄.We onjeture that with minor modi�ations, our algorithms remain orret andeÆient even if worker-to-oordinator multiasts are not reliable. However oordinatorsstill need to use reliable broadast.For the fail-stop/restart models we assume that a proessor loses its state upon a fail-ure and that its state is reset to some known initial state upon a restart. Our algorithmsannot take diret advantage of suh a possibility, and it would be interesting to explore5



the bene�ts of having stable storage.We believe that it is important to onsider proessor restarts in general-purpose dis-tributed omputation. For example, important ommuniation servies suh as groupommuniation systems [4℄ are in part motivated by the need to re-integrate proessorsthat have either previously failed or were unable to ommuniate. In this work we makenew ontributions to the study of omplexity of doing work in the presene of failuresand restarts.Other related work. The do-all problem for the shared-memory model of omputa-tion, where it is alledwrite-all, was introdued and studied by Kanellakis and Shvarts-man [10, 11℄. Parallel omputation using the iterated do-all paradigm is the subjetof several subsequent papers, most notably the work of Kedem, Palem and Spirakis [12℄,Martel, Park and Subramonian [14℄ and Kedem, Palem, Rabin and Raghunathan [13℄.Kanellakis, Mihailidis and Shvartsman [9℄ developed a tehnique for ontrolling redun-dant onurrent aess to shared memory in algorithms with proessor stop-failures. Thisis done with the help of a struture they all proessor priority tree. In this work we usea similar struture in the qualitatively di�erent message-passing setting. Furthermore,we are able to use our struture with restartable proessors.Kanellakis and Shvartsman [11℄ give mathing lower and upper bounds on solving thedo-all problem for algorithms that are able to hoose the best possible assignment ofproessors to tasks, for example using an orale. These lower and upper bounds weredeveloped for the shared-memory model of omputation, however the bounds apply,verbatim, to the message-passing model (when the orale is omnisient). For the modelwith stop-failures, this bound is t+ p log p= log log p and for the model with restarts, thisbound is t + p log p. A omponent of the upper bound on work of our algorithms omeswithin a small multipliative fator of these bounds. For the algorithm AN this fator islog f , and for the algortihm AR this fator is minflog p; log fg.A randomized solution for the do-all problem is presented by Chlebus and Kowal-ski [3℄. Their work is for the model of faults in whih an adversary hooses at most  � pproessors prior to the start of the omputation, for a �xed onstant 0 <  < 1, and thenmay fail any of these proessors at any time, while the remaining proessors will stayoperational. The randomized algorithm has both the expeted available proessor stepsand message omplexity of O(t + p � (1 + log� p � log�(p=t))), where log� is the numberof times the log funtion has to be applied to its argument to yield the result that isno larger than 1. This is in ontrast with the lower bound 
(t + p � log t= log log t) onthe available proessor steps required in the worst ase by any deterministi algorithmin this setting.The struture of the rest of the paper is as follows. Setion 2 ontains de�nitions andgives a high-level view of the algorithms. Setion 3 inludes the presentation of algorithmAN with a proof of its orretness and an analysis. Setion 4 gives algorithm AR witha proof of its orretness and an analysis. Setion 5 onludes with remarks and futurework. 6



2 Model and algorithmi preliminariesIn Setion 2.1 we desribe the distributed setting onsidered and in Setion 2.2 we intro-due the main ideas underlying our algorithms.2.1 Model of omputationDistributed setting. We onsider a distributed system onsisting of a set P of p pro-essors. We assume that the set P is �xed and is known to all proessors in P. Proessorshave unique identi�ers (PIDs) and the set of PIDs is totally ordered. Proessors om-muniate by message passing. The distributed system is synhronous and we assumethat the proessor loks are globally synhronized. Proessor ativities are struturedin terms of steps that have some �xed known onstant duration. In eah step a proessoran either reeive messages or perform some loal omputation or send messages to otherproessors.Messaging assumptions. We assume that the underlying network is fully onneted,that is, any proessor an send messages to any other proessor, and that messages arenot lost in transit or orrupted. Messages sent within one step are delivered before theend of the next step. Thus we also assume that there is a known upper bound on messagedelivery time. We assume that reliable multiast [8℄ is available. With reliable multiasta proessor q an send a message to any set P � P of proessors and all the proessorsin P that are alive during the entire following step reeive the message sent by q. Notethat in any step a proessor may reeive up to jPj messages (thus we assume that thetime needed to proess a reeived message is small ompared to the duration of the step).We are not onerned with the size of messages; however, using bit-string set enoding,eah message sent by our algorithms ontains O(maxft; pg) bits, where t is the numberof tasks.Tasks. We de�ne a task to be a omputation that an be performed by any proessor inone time step and its exeution is independent of the exeution of any of the other tasks.The tasks are also idempotent , i.e., exeuting a task many times and/or onurrently hasthe same e�et as exeuting the task one. Tasks are uniquely identi�ed by their taskidenti�ers (TIDs) and the set of TIDs is totally ordered. We denote by T the set of ttasks and we assume that T is known to all the proessors.Models of failure. We are using the fail-stop proessor model [15℄. This means thatthe proessors fail by stopping and that in our synhronous setting proessor failures anbe deteted using a timeout. We onsider both the ase when no restarts are allowed andthe ase when proessors restart after a failure. A proessor may stop at any momentduring the omputation. A failed proessor does not reeive any messages and does notperform any omputation. Messages delivered to a faulty proessor are lost. If restartsare allowed, a proessor an restart at any point after a failure. We assume that during7



a single step a faulty proessor an restart at most one (e.g., a proessor an restart inresponse to a lok tik). Upon a restart the state of the restarted proessor is reset to itsinitial state, but the proessor is aware of the restart. Sine an arbitrary time may elapsebetween the failure of a proessor to its restart, the knowledge of the restarted proessormay be arbitrarily out of date. Thus we assume a weak model where the proessors donot have stable storage that survives a failure. Stable storage ould help, for example, forproessors to make individual omputational progress when an adversary may ompletelyprevent proessors from ommuniating with eah other.It is obvious that if any pattern of failures is allowed, that is, if no restritions areimposed on the adversary that auses failures, then omputational progress an not beguaranteed. For example, if all the proessors fail then no progress is possible. Even ifproessors restart, progress an be prevented. For example, onsider the senario in whiha subset of the proessors is alive initially, these proessors perform some omputation,and then they all rash while the proessors in the remaining set restart without anypossibility of ommuniation between the two sets. Sine there is no stable storage, thisan be repeated forever without any progress in omputation.We will onsider two families of failure models, one that allows failures but no restarts,and another that allows restarts. The failure models impose some restrition on the failurepattern that the adversary an ause. The following de�nition is used to qualify ertainallowable failure patterns.De�nition 2.1 Let k be a positive integer. A failure pattern is said to be \k-restrited"if during any onseutive k steps i; i+ 1; : : : ; i+ k� 1 there is at least one proessor thatis alive during all steps i; i + 1; : : : ; i + k � 1.We now de�ne the failure models. Let F (k)FS be the failure model de�ned as the setof all failure patterns that are k-restrited, for k � 0, and have no proessor restarts.The family FS of fail-stop failure models inludes all F (k)FS for non-negative k. Notiethat F (0)FS imposes no restritions on the failure patterns, that is, all proessors an fail inthis model. Similarly we de�ne the failure model F (k)FSR as the set of all failure patternsthat are k-restrited, for k � 0, and that inlude proessor restarts. The family FSRof fail-stop/restart failure models inludes all F (k)FSR for non-negative k. Also for thefail-stop/restart failure models, F (0)FSR imposes no restritions on the failure patterns.With these de�nitions, we have that, for eah k, F (k)FS � F (k)FSR, F (k+1)FS � F (k)FS , andF (k+1)FSR � F (k)FSR. This is beause in eah ase any failure pattern in the subset modelis also a failure pattern for the respetive superset model, yet the superset models mayallow failure patterns not permitted by the respetive subsets.Given a failure pattern, we denote by f the number of failures and by r the number ofrestarts. For the family FS we have that f is bounded from above by p and r = 0, whilefor the family FSR we have that r � f < r + p. We de�ne the size of a failure patternF to be the number of proessor failures f , and we denote it by jF j. Our omplexity8



results depend on jF j, and sine it is always the ase that r � f , the main asymptotiresults will not involve r.The do-all problem and termination onditions. First we de�ne the problem.De�nition 2.2 Given a failure model, for any set T of tasks and the set P of proessors,the do-all problem is to perform all tasks in T .What we mean by performing all tasks is that a terminating algorithm that solvesthe do-all problem must exeute all tasks and at least one proessor is aware of thisfat. In the ontext of the model that has k-restrited failure patterns this means thatif an algorithm exists for this k, then the algorithm may terminate in step � when eahproessor that was ative and did not fail in steps ��k; : : : ; ��1; � knows that all taskshave been performed.As we have noted earlier, the do-all problem is not neessarily solvable in eahfailure model. Let us �rst look at the fail-stop models. In F (0)FS no solution is possible:indeed if all proessors fail before exeuting all the tasks in T , then the tasks an never beompleted. Clearly we would like to solve the problem as long as at least one proessor isalive, that is, as long as f < p. By the de�nition of F (1)FS we have that the failure patternsallowed by F (1)FS are exatly those failure patterns with f < p. There is a trivial solutionthat works for F (1)FS: eah proessors performs all the task in T . This solution, however isnot eÆient. We provide an eÆient algorithm that solves the do-all problem for F (1)FS.The algorithms in [5, 6, 7℄ also work for F (1)FS. Sine F (1)FS is a superset of F (k)FS , for anyk > 1, the solution for F (1)FS is also a solution for F (k)FS . (It an be shown that F (1)FS = F (k)FSfor any k > 1, thus no algorithmi advantage an be ahieved by inreasing k.)Next we look at the fail-stop/restart failure models. Sine F (0)FS is a subset of F (0)FSR,no solution is possible for F (0)FSR. It is not hard to see that no solution is possible alsofor F (1)FSR. Indeed a 1-restrited failure pattern requires that at least one proessor bealive during any step. However with a stop-failure/restart model this is not suÆient toguarantee progress. As we have remarked before, even if there is always one proessoralive progress an be prevented (the senario in whih half of the proessors fail whilethe other half of the proessors restart is an example). Hene the best we an hope foris to �nd a solution for F (2)FSR. We notie that in a k-restrited exeution, for k � 2, it isguaranteed that proessors' lifetimes have some overlap and the bigger is k the bigger isthe overlap. For k = 2 suh overlap an be as small as a single step. Hene in order tonot lose information about the ongoing omputation (suh loss, in the absene of stablestorage, prevents progress), it is neessary that proessors exhange state informationduring eah step. Thus a solution that works for a small k tends to have large messageomplexity. We provide an eÆient algorithm that solves the do-all problem for F (26)FSR.The onstant 26 depends on our implementation of the algorithm. With a modest e�ortthe onstant an be redued to 17, as we explain later. Note also that there is a qualitativedistintion between F (1)FSR and F (2)FSR: proessors' lifetimes may not overlap in the former9



while they must overlap in the latter. The di�erene between F (k)FSR and F (k+1)FSR whenk � 2 is quantitative: in the latter the overlap of proessors' lifetimes is one step longerthan in the former.Performane measures. To evaluate the performane of our algorithms we use avail-able proessor steps and ommuniation omplexity. The available proessor steps is thenumber of steps taken by all the proessors and the ommuniation omplexity is thenumber of point-to-point messages sent. More formally let F be the set of allowed failurepatterns, that is, the failure model onsidered. For a omputation subjet to a failurepattern F , F 2 F , denote by pi(F ) the number of live proessors exeuting step i and bymi(F ) the number of point-to-point messages sent during step i. For a given problem, ifthe omputation solves the problem by step � in the presene of the failure pattern F ,then the available proessor steps omplexity S is:Sp;f = maxF2F ; jF j�f 8<:Xi�� pi(F )9=; ;and the ommuniation omplexity M is:Mp;f = maxF2F ; jF j�f 8<:Xi�� mi(F )9=; :(Reall that in our de�nitions: (a) all steps of the operational proessors are ounted,inluding any idle/waiting time, and (b) a single multiast ounts for as many messagesas it has reipients.)2.2 Overview of algorithmi tehniquesBoth algorithms proeed in a loop whih is repeated until all the tasks are exeuted.A single iteration of the loop is alled a phase. A phase onsists of three onseutivestages. Eah stage onsists of three steps (thus a phase onsists of 9 steps). In eah stageproessors use the �rst step to reeive messages sent in the previous stage, the seondstep to perform loal omputation, and the third step to send messages. We refer tothese three step as the reeive substage, the ompute substage and the send substage.Coordinators and workers. A proessor an be a oordinator of a given phase. Allproessors (inluding oordinators) are workers in a given phase. Coordinators are re-sponsible for reording progress, while workers perform tasks and report on that to theoordinators. In the �rst phase one proessor ats as the oordinator. There may bemultiple oordinators in subsequent phases. The number of proessors that assume theoordinator role is determined by the martingale priniple: if none of the expeted oor-dinators survive through the entire phase, then the number of oordinators for the nextphase is doubled. Whenever at least one oordinator survives a given phase, the numberof oordinators for the next phase is redued to one.10



If at least one proessor ats as a oordinator during a phase and it ompletes thephase without failing, we say that the phase is attended , the phase is unattended other-wise.Loal views. Proessors assume the role of oordinator based on their loal knowledge.During the omputation eah proessor w maintains a list Lw = hq1; q2; :::; qki of supposedlive proessors. We all suh list a loal view . The proessors in Lw are partitioned intolayers onsisting of onseutive sublists of Lw: Lw = h�0;�1; :::;�ji2. The number ofproessors in layer �i+1, for i = 0; 1; :::; j � 1, is the double of the number of proessorsin layer �i. Layer �j may ontain less proessors. When �0 = hq1i the loal view anbe visualized as a binary tree rooted at proessor q1, where nodes are plaed from left toright with respet to the linear order given by Lw. Thus, in a tree-like loal view, layer �0onsists of proessor q1, layer �i onsists of 2i onseutive proessors starting at proessorq2i and ending at proessor q2i+1�1, with the exeption of the very last layer that mayontain a smaller number of proessors. Proessors in a loal view do not neessarilyappear in the order of proessor identi�ers (restarted proessors are appended at the endof the loal view).Example. Suppose that we have a system of p = 31 proessors. Assume that for a phase `all proessors are in the loal view of a worker w. in order of proessor identi�er, and that theview is a tree-like view (e.g., at the beginning of the omputation, for ` = 0). If in phase `proessors 1; 5; 7; 18; 20; 21; 22; 23; 24; 31 fail (hene phase ` is unattended) and in phase `+ 1,proessors 2; 9; 15; 25; 26; 27; 28; 29; 30 fail (phase ` + 1 is attended by proessor 3), then theview of proessor w for phase `+2 is the one in Figure 2. If in phase `+2 proessor 3 fails andproessors 5; 22; 29; 31 restart (phase `+2 is unattended) and in phase `+3 proessors 4; 6 failand proessors 1; 2; 9 restart (phase `+3 is unattended) then the view of proessor w for phase`+ 4 is the one in Figure 3. 34 610 12 13 1416 17 18 19 20Figure 2: A loal view for phase `+ 2.The loal view is used to implement the martingale priniple of appointing oordina-tors as follows. Let L`;w = h�0;�1; :::;�ji be the loal view of worker w at the beginningof phase `. Proessor w expets proessors in layer �0 to oordinate phase `; if no pro-essor in layer �0 ompletes phase `, then proessor w expets proessors in layer �1 tooordinate phase `+1; in general proessor w expets proessors in layer �i to oordinate2For sequenes L = he1; : : : ; eni and K = hd1; : : : ; dmi we de�ne hL;Ki to be the sequenehe1; : : : ; en; d1; : : : ; dmi. 11



10 12 13 1416 17 19 20 5 22 29 311 2 9Figure 3: A loal view for phase `+ 4.phase `+ i if proessors in all previous layers �k, ` � k < ` + i, did not omplete phase` + k. The loal view is updated at the end of eah phase (the update rule depends onthe algorithm).Phase struture and task alloation. The struture of a phase of the algorithms isas follows. Eah proessor w keeps its loal information about the set of tasks alreadyperformed, denoted Dw, and the set of live proessors, denoted Pw, as known by proessorw. Set Dw is always an underestimate of the set of tasks atually done and Pw is alwaysan overestimate of the set of proessors that are \available" from the start of the phase(here any proessors that restarted during the phase are not onsidered available, sinethey might not have up to date information about the omputation). We denote by Uwthe set of unaounted tasks, i.e., whose done status is unknown to w. Sets Uw and Dware related by Uw = T nDw, where T is the set of all the tasks. Given a phase ` we useP`;w, U`;w and D`;w to denote the values of the orresponding sets at the beginning ofphase `.Computation starts with phase 0 and any proessor q has all proessors in L0;q and hasD0;q empty. At the beginning of phase ` eah worker (that is, eah proessor) w performsone task aording to its loal view L`;w and its knowledge of the set U`;w of unaountedtasks, using the following load balaning rule. Worker w exeutes the task whose rankis (i mod jU`;wj)th in the set U`;w of unaounted tasks, where i is the rank of proessorw in the loal view L`;w. Then the worker reports the exeution of the task to all theproessors that, aording to the worker's loal view, are supposed to be oordinatorsof phase `. For simpliity we assume that a proessor sends a message to itself whenit is both worker and oordinator. Any proessor  that, aording to its loal view, issupposed to be oordinator, gathers reports from the workers, updates its informationabout P`; and U`; and broadasts this new information ausing the loal views to bereorganized. We will see that at the beginning of any phase ` all live proessors have thesame loal view L` and the same set U` of unaounted tasks and that aounted taskshave been atually exeuted. Restarted proessors are reintegrated in the loal views andare available for omputation in the subsequent phase. A new phase starts if U` is notempty.
12



3 Algorithm AN for the fail-stop modelIn this setion we present, prove orret and analyze algorithm AN whih solves thedo-all for the failure model F (1)FS.3.1 Algorithm ANThe algorithm follows the algorithm struture desribed in the previous setion. Theomputation starts with phase number 0 and proeeds in a loop until all tasks are knownto have been exeuted. The following is a detailed desription of a phase.Phase ` of algorithm AN:stage 1. The reeive substage is not used. In the ompute substage, anyproessor w performs a spei� task z aording to the load balaningrule. In the send substage proessor w sends a report(z) to any oordi-nator, that is, to any proessor in the �rst layer of the loal view L`;w.stage 2. In the reeive substage the oordinators gather report messages.For any oordinator , let z 1 ; : : : ; z k be the set of TIDs reeived. In theompute substage  sets D  D[Ski=1fz ig, and P to the set of proes-sors from whih  reeived report messages. In the send substage, o-ordinator  multiasts the message summary(D; P) to proessors in P.stage 3. During the reeive substage summary messages are reeived by liveproessors. For any proessor w, let (D1w; P 1w); : : : ; (Dkww ; P kww ) be thesets reeived in summary messages3. In the ompute substage w setsDw  Diw and Pw  P iw for an arbitrary i 2 f1; : : : ; kwg and updatesits loal view Lw as desribed below. The send substage is not used.Loal view update rule. In phase 0 the loal view L0;w of any proessor w is a tree-likeview ontaining all the proessors in P ordered by their PIDs. Let L`;w = h�0;�1; :::;�jibe the loal view of proessor w for phase `. We distinguish two possible ases.Case 1. Phase ` is unattended. Then the loal view of proessor w for phase ` + 1is L`+1;w = h�1; :::;�ji.Case 2. Phase ` is attended. Then proessor w reeives summary messages fromsome oordinator in �0. Proessor w omputes its set Pw as desribed in stage 3 (we willsee that all proessors ompute the same set Pw). The loal view L`+1;w of w for phase`+ 1 is a tree-like loal view ontaining the proessors in Pw ordered by their PIDs.Figure 4 in Setion 4 provides a graphial desription of a phase of algorithm AN(ignore the messages and steps of restarted proessors).3As we will see in Setion 3.2, these messages are in fat idential.13



3.2 Corretness of algorithm ANIn this setion we show that algorithm AN solves the do-all problem for the failuremodel F (1)FS. Given an exeution of the algorithm we say that the exeution is good if itis an exeution allowed by F (1)FS. Hene we have to prove that the algorithm solves theproblem for any good exeution.Given an exeution of the algorithm, we enumerate the phases. We denote the at-tended phases of the exeution by �1; �2; : : : ; et. We denote by �i the sequene ofunattended phases between the attended phases �i and �i+1. We refer to �i as theith (unattended) period; an unattended period an be empty. Hene the omputationproeeds as follows: unattended period �0, attended phase �1, unattended period �1, at-tended phase �2, and so on. We will show that after a �nite number of attended phasesthe algorithm terminates. If the algorithm orretly solves the problem, it must be thease that there are no tasks left unaounted after a ertain phase �� .Next we show that at the beginning of eah phase every live proessor has onsistentknowledge of the ongoing omputation. Then we prove safety (aurate proessor andtask aounting) and progress (task exeution) properties, whih imply the orretnessof the algorithm.Lemma 3.1 In any exeution of algorithm AN, for any two proessors w; v alive at thebeginning of phase `, we have that L`;w = L`;v and that U`;w = U`;v.Proof: By indution on the number of phases. For the base ase we need to prove thatthe lemma is true for the �rst phase. Initially we have that L0;w = L0;v = hPi andUw = Uv = T . Hene the base ase is true.Assume that the lemma is true for phase `. We need to prove that it is true for phase` + 1. Let w and v be two proessors alive at the beginning of phase ` + 1. Sine thereare no restarts, proessors w and v are alive also at the beginning of phase `. By theindutive hypothesis we have that L`;w = L`;v and U`;w = U`;v. We now distinguish twopossible ases: phase ` is unattended and phase ` is attended.Case 1. Phase ` is unattended. Then there are no oordinators and no summarymessagesare reeived by w and v during phase `. Thus the sets Uw and Uv are not modi�ed duringphase `. Moreover proessors w and v use the same rule to update the loal view (ase 1of the loal view update rule). Hene L`+1;w = L`+1;v and U`+1;w = U`+1;v.Case 2. Phase ` is attended. Sine L`;w = L`;v all the workers send report messagesto some oordinators 1; :::; k. Sine we have reliable multiast, the report message ofeah worker reahes all the oordinators if the worker is alive, or no one if it failed. Thussummary messages sent by the oordinators are all equal. Let summary(D;P ) be onesuh a message. Sine the phase is attended and broadast is reliable both proessorsw and v reeive the summary(D;P ) message from at least one oordinator. Hene instage 3 of phase `, workers w and v set D`+1;w = D`+1;v = D and onsequently we haveU`+1;w = U`+1;v. They also set P`+1;w = P`+1;v = P and use the same rule (ase 2 of theloal view update rule) to update the loal view. Hene L`+1;w = L`+1;v. 214



Beause of Lemma 3.1, we an de�ne L` = L`;w for any live proessor w as the viewat the beginning of phase `, P` = P`;w as the set of live proessors, D` = D`;w as the setof done tasks and U` = U`;w as the set of unaounted tasks at the beginning of phase `.We denote by p` the ardinality of the set of live proessors omputed for phase `,i.e., p` = jP`j, and by u` the ardinality of the set of unaounted tasks for phase `, i.e.,u` = jU`j. We have p1 = p and u0 = t.Lemma 3.2 In any exeution of algorithm AN, if a proessor w is alive during the �rsttwo stages of phase ` then proessor w belongs to P`.Proof: Let w be a proessor alive at the beginning of phase `. Proessor w (whether itis a oordinator or not) is taken out of the set P` only if a oordinator does not reeivea report message from w in phase `� 1. If w is a oordinator and all oordinators aredead, then w would be removed by the loal view update rule. This is possible only if wfails during phase ` � 1. Sine w is alive at the beginning of phase `, proessor w doesnot fail in phase `� 1. 2Lemma 3.3 In any good exeution of algorithm AN, if a task z does not belong to U`then it has been exeuted in one of the phases 1; 2; :::; `� 1.Proof: Task z is taken out of the set U` by a oordinator  when  reeives a report(z)message in a phase prior to `. However a worker sends suh a message only after exeutingtask z. Task z is taken out of the set U` by a worker w when w reeives a summary(D; P)message from some oordinator  in phase prior to `, and z 2 D. Again this means thatz must have been reported as done to . 2Lemma 3.4 In any good exeution of algorithm AN, for any phase ` we have that u`+1 �u`.Proof: By the ode of the algorithm, no task is added to U`. 2Lemma 3.5 In any good exeution of algorithm AN, for any attended phase ` we havethat u`+1 < u`.Proof: Sine phase ` is attended, there is at least one oordinator  alive in phase `. ByLemma 3.2 proessor  belongs to P` and thus it exeutes one task. Hene at least onetask is exeuted and onsequently at least one task is taken out of U`. By Lemma 3.4,no task is added to U` during phase `. 2Lemma 3.6 In a good exeution of algorithm AN, any unattended period onsists of atmost log f phases. 15



Proof: Consider the unattended period �i and let ` be its �rst phase. First we laimthat the �rst layer of view L` onsists of a single proessor. This is so beause (a) eitheri = 0 and ` = 0, in whih ase L0 is the initial loal view, or (b) i > 0 and �i is preededby attended phase �i, in whih ase L` is onstruted by the loal update rule to havea single proessor in its �rst layer. By Lemma 3.2 any proessor alive at the beginningof phase ` belongs to P` and thus to L`. By the loal view update rule for unattendedphases, we have that eventually all proessors in L` are supposed to be oordinators.Sine f < p, at least one proessor is alive and thus eventually there is an attendedphase. The log f upper bound follows from the the martingale priniple governing thesizes of onseutive layers of view. The number of proessors aommodated in the layersof the view doubles for eah suessive layer. Hene, denoting by fi the number of failuresin �i, we have that the number of phases in �i is at most log fi. Obviously fi < f . 2Finally we show the orretness of algorithm AN.Theorem 3.7 In a good exeution of algorithm AN, the algorithm terminates with alltasks performed.Proof: By Lemma 3.2 no live proessor leaves the omputation and sine f < p theomputation ends only when U` is empty. By Lemma 3.3, when the omputation ends,all tasks are performed. It remains to prove that the algorithm atually terminates. ByLemma 3.6 for every 1 + log f phases there is at least one attended phase. Hene, byLemmas 3.4 and 3.5, the number of unaounted tasks dereases by at least one in every1 + log f phases. Thus, the algorithm terminates after at most O(t log f) phases. 2Sine the algorithm terminates after a �nite number of attended phases with all tasksperformed, we let � be suh that U��+1 = �, and onsequently u��+1 = 0.3.3 Analysis of ANWe now analyze the performane of algorithm AN in terms of the available proessorsteps S and the number of messages M .To assess S we onsider separately all the attended phases and all the unattendedphases of the exeution. Let Sa be the part of S spent during all the attended phases andSu be the part of S spent during all the unattended phases. Hene we have S = Sa+Su.The following lemma uses the onstrution by Martel, as it is presented in Lemma 3.3.4in [10℄.Lemma 3.8 In any good exeution of algorithm ANwe have Sa = O(t+p log p= log log p).16



Proof: We onsider all the attended phases �1; �2; :::; �� by subdividing them into twoases.Case 1: All attended phases �i suh that p�i � u�i . The load balaning rule assuresthat at most one proessor is assigned to a task. Hene the available proessor steps usedin this ase an be harged to the number of tasks exeuted whih is at most t+f � t+p.Hene S1 = O(t+ p).Case 2: All attended phases in whih p�i > u�i. We let d(p) stand for log p= log log p.We onsider the following two subases.Subase 2.1: All attended phases �i after whih u�i+1 < u�i=d(p). Sine u�i+1 < u�i <p�i < p and phase �� is the last phase for whih u� > 0, it follows that subase 2.1ours O(logd(p) p) times. The quantity O(logd(p) p) is O(d(p)) beause d(p)d(p) = �(p).No more than p proessors omplete suh phases, therefore the part S2:1 of Sa spent inthis ase is S2:1 = O  p log plog log p! :Subase 2.2: All attended phases �i after whih u�i+1 � u�i=d(p). Consider a partiularphase �i. Sine in this ase p�i > u�i, by the load balaning rule at least b p�iu�i  but nomore than d p�iu�i e proessors are assigned to eah of the u�i unaounted tasks. Sine u�i+1tasks remain unaounted after phase �i, the number of proessors that failed during thisphase is at least u�i+1 $p�iu�i % � u�id(p) � p�i2u�i= p�i2d(p) :Hene, the number of proessors that proeed to phase �i+1 is no more thanp�i � p�i2d(p) = p�i(1� 12d(p)) :Let �i0 ; �i1; :::; �ik be the attended phases in this subase. Sine the number of proessorin phase �i0 is at most p, the number of proessors alive in phase �ij for j > 0 is at mostp(1� 12d(p))j. Therefore the part S2:2 of Sa spent in this ase is bounded as follows:S2:2 � kXj=0 p 1� 12d(p)!j� p1� (1� 12d(p))= p � 2d(p)= O(p � d(p)) :17



Summing up the ontributions of all the ases onsidered we get Sa:Sa = S1 + S2:1 + S2:2 = O  t + p log plog log p! : 2Lemma 3.9 In any good exeution of algorithm AN we have Su = O(Sa log f).Proof: The number of proessors alive in a phase of the unattended period �i is at mostp�i , that is the number of proessors alive in the attended phase immediately preeding�i. To over the ase when �0 is not empty, we let �0 = 0 and p�0 = jPj = p. ByLemma 3.6 the number of phases in period �i is at most log f . Hene the part of Suspent in period �i is at most p�i log f . We haveSu � �Xi=0(p�i log f)= log f � �Xi=1 p�i� (p+ Sa) log f = O(Sa log f) : 2Theorem 3.10 In any good exeution of algorithm AN the available proessor steps isS = O(log f(t+ p log p= log log p)).Proof: The total available proessor steps S is given by S = Sa + Su. The theoremfollows from Lemmas 3.8 and 3.9. 2Remark. A lower bound of 
(t + p log p= log log p) [10℄ (Theorem 4.2.4) is known forany algorithm that performs tasks by balaning loads of surviving proessors in eahtime step. Although that lower bound was derived for the shared-memory model ofomputation, the result does not use any arguments involving shared-memory. The workof algorithm AN omes within a fator of log f (and thus also log p) relative to that lowerbound. This suggests that improving the work result is diÆult and that better solutionsmay have to involve a trade-o� between the work and message omplexities. 2We now assess the message omplexity. First remember that the omputation pro-eeds as follows: �0; �1; �1; �2; :::; ���1; �� . In order to ount the total number of messageswe distinguish between the attended phases preeded by a nonempty unattended periodand the attended phases whih are not preeded by unattended periods. Formally, we letMu be the number of messages sent in �i�1�i, for all those i's suh that �i�1 is nonemptyand we let Ma be the number of messages sent in �i�1�i, for all those i's suh that �i�1is empty (learly in these ases we have �i�1�i = �i). Next we estimate Ma and Mu andthus the message omplexity M of algorithm AN.18



Lemma 3.11 In any exeution of algorithm AN we have Ma = O(t+ p log p= log log p).Proof: First notie that in a phase ` where there is a unique oordinator the numberof messages sent is 2p`. By the de�nition of Ma, messages ounted in Ma are messagessent in a phase �i suh that �i�1 is empty. This means that the phase previous to �i is�i�1 whih, by de�nition, is attended. Hene by the loal view update rule of attendedphases we have that �i has a unique oordinator. Thus phase �i gives a ontributionof at most 2p�i messages to Ma. It is possible that some of the attended phases do notontribute to Ma, however ounting all the attended phases as ontributing to Ma wehave that Ma � P�i=1 2p�i = 2Sa. The lemma follows from Lemma 3.8. 2Lemma 3.12 In any good exeution of algorithm AN we have Mu = O(fp).Proof: First we notie that in any phase the number of messages sent is O(p) where is the number of oordinators for that phase. Hene to estimate Mu we simple ount allthe supposed oordinators in the phases inluded in �i�1�i, where �i�1 is nonempty.Let i be suh that �i�1 is not empty. Sine the number of proessors doubles in eahonseutive layer of the loal view aording to the martingale priniple, we have that thetotal number of supposed oordinators in all the phases of �i�1�i is 2fi�1 +1 = O(fi�1),where fi�1 is the number of failures during �i�1. Hene the total number of supposedoordinators, in all of the phases ontributing to Mu, is P�i=1O(fi�1) = O(f).Hene the total number of messages ounted in Mu is O(fp). 2Theorem 3.13 In any good exeution of algorithm AN the number of messages sent isM = O(t+ p log p= log log p+ fp).Proof: The total number of messages sent is M = Ma +Mu. The theorem follows fromLemmas 3.11 and 3.12. 24 Algorithm AR for the fail-stop/restart modelIn this setion we present, prove orret and analyze algorithm AR whih solves thedo-all for the failure model F (26)FSR.4.1 Algorithm ARAlgorithm AR is similar to algorithm AN; the di�erene is that there are added messagesto handle the restart of proessors. After the restart, proessor q broadasts restart(q)messages in eah step until it reeives a response. Proessors reeiving suh messages,19



ignore them if these messages are not reeived in the reeive substage of stage 2 ofa phase. Thus we an imagine that a restarted proessor q broadasts a restart(q)in the send substage of stage 1 of a phase ` (however we will ount all the restartmessages in the message omplexity). This message is then reeived by all the live andrestarted proessors of that phase, and, as we will see shortly, proessor q is re-integratedin the view for phase ` + 1. Proessor q needs to be informed about the status of theongoing omputation. Hene proessors that have this information send the info(U`; L`)messages to proessor q with the set U` of unaounted tasks and the loal view L`. Nextwe provide the detailed desription for eah phase. The parts that are new or that aredi�erent in algorithm AR as ompared to algorithm AN are italiized .Phase ` of algorithm AR:stage 1. The reeive substage is not used. In the ompute substage anyproessor w performs a spei� task z aording to the load balaningrule. In the send substage w sends a report(z) to any oordinator, thatis, to any proessor in the �rst layer of L`;w. Any restarted proessorq broadasts the restart(q) message informing all live proessors of itsrestart.stage 2. In the reeive substage the oordinators gather report messagesand all proessors gather restart messages. Let R be the set of proes-sors that sent a restart message. For any oordinator , let z1 ; :::; zkbe the set of TIDs reeived in report messages. In the ompute sub-stage  sets D  D [ Ski=1fzig and P to the set of proessors fromwhih  reeived report messages. In the send substage, oordinator multiasts the message summary(D; P) to the proessors in P and R.Any proessor in P sends the message info(U`; L`) to proessors in R.stage 3. In the reeive substage proessors in R reeive info(U`; L`) mes-sages and proessors in P and R reeive summary(D; P) messages.In the ompute substage, a restarted proessor q sets L`;q  L` andU`;q  U`. Let (D1w; P 1w); :::; (Dkww ; P kww ) be the sets reeived in summarymessages by proessor w. Proessor w sets Dw  Diw and Pw  P iwfor an arbitrary i 2 1; :::; kw and updates its loal view L`;w as desribedbelow. The send substage is not used.Loal view update rule. In phase 0 the loal view L0;w of any proessor w ontainsall the proessors in P ordered by their PIDs, and the �rst layer is a singleton set. LetL`;w = h�0;�1; :::;�ji be the loal view of proessor w for phase `. We distinguish twopossible ases.Case 1. Phase ` is unattended. Let R` be the set of restarted proessors whih sendrestart messages. Let R0 be the set of proessors of R` that are not already in the loalview L`;w. Let hR0i be the proessors in R0 ordered aording to their PIDs. The loal20
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Figure 4: A phase of algorithm AR (for algorithm AN ignore the bottom line, whih representsrestarted proessors, and all the messages referring to it).view for the next phase is L`+1;w = h�1; :::;�ji � hR0i. The operator � plaes proessorsof R0, in the order hR0i, into the last layer �j till this layer ontains exatly the doubleof the proessors of layer �j�1 and possibly adds a new layer �j+1 to aommodate theremaining proessors of hR0i. That is, newly restarted proessors whih are not yet in theview, are appended at the end of the old view. Notie that restarted proessors, whihreeive info messages, know the old view L`.Case 2. Phase ` is attended. Let R` be the set of restarted proessors. Sine thephase is attended summary messages are reeived by all the live proessors (inludingthe restarted ones). Any proessor w updates Pw as desribed in stage 3. Proessor wknows the set R`. The loal view L`+1;w for the next phase is strutured aording tothe martingale priniple and ontains all the proessors in Pw [R` ordered aording totheir PIDs.If there are no restarts, algorithm AR behaves as algorithm AN. Figure 4 provides agraphial desription of both algorithms.4.2 Corretness of ARIn this setion we show that algorithm AN solves the do-all problem for the failuremodel F (26)FSR. Given an exeution of the algorithm we say that the exeution is good if itis an exeution allowed by F (26)FSR. Hene we have to prove that the algorithm solves theproblem for any good exeution.A restarted proessor has no information about the ongoing omputation, and thusannot atively partiipate in the omputation, until it gets a hane to ommuniatewith other proessors. Moreover, if a proessors ompletes two onseutive phases it isable to aquire information about the omputation in the �rst of the two phases and to21



transfer it to other proessors in the seond of the two phases. We will show that having,at any point during any exeution, a proessor that is operational for 26 onseutivesteps is suÆient for our algorithm. This allows for the largest number of steps, 8, thatmay be \wasted" beause this is just short of the 9 steps that onstitute a phase, plustwo omplete phases, i.e., 18 steps, as desribed above. This intuition is made formal inthe proofs in this setion.Formally we use the following de�nitions.De�nition 4.1 A live proessor is said to be \fully ative" at a partiular time t duringphase `, if it stays alive from the start of phase `� 1 through time t.De�nition 4.2 A live proessor is said to be a \witness" for phase ` if it stays alive forthe duration of phases `� 1 and `.We remark that the di�erene between a proessor fully ative in phase ` and a witnessof phase ` is that the witness is guaranteed, by de�nition, to survive the entire phase `,while the fully ative proessor may fail before the end of phase `. Hene a fully ativeproessor annot guarantee transfer of state information while the witness an.Lemma 4.1 In a good exeution, there is a witness for any phase.Proof: A good exeution has a 26-restrited failure pattern. Thus for any step i, thereis at least one proessor that stays alive for the next 26 steps. Notie that 8 of thesestep may be spent waiting for the beginning of the next phase (if the proessor has justrestarted in step i). However the remaining 18 steps are enough to guarantee that theproessor stays alive for the next two phases, sine eah phase onsists of 9 steps. 2The witness of phase ` is always a proessor fully ative in phase `. Next we show thatat the beginning of eah phase every fully ative proessor has onsistent knowledge ofthe ongoing omputation.Lemma 4.2 In a good exeution of algorithm AR, for any two proessors w; v fully ativeat the beginning of phase `, we have that L`;w = L`;v and that U`;w = U`;v.Proof: By indution on the number of phases. For the base ase we need to prove thatthe lemma is true for the �rst phase. Initially we have that L0;w = L0;v = hPi andUw = Uv = T . Hene the base ase is true.Assume that the lemma is true for phase `. We need to prove that it is true for phase`+ 1. Let w and v be two proessors fully ative at the beginning of phase `+ 1.First we laim that at the beginning of stage 3 of phase `, we have L`;w = L`;v andU`;w = U`;v. Indeed, if w and v are fully ative also at the beginning of phase `, then thelaim follows by the indutive hypothesis. If proessor w (resp. v) has just restarted and22



is not yet fully ative in phase `, then it sends a restart message in stage 1 of phase`. By Lemma 4.1, there is a witness for phase `. Hene proessor w (resp. v) reeivesa info message from the witness and thus at the beginning of stage 3 of phase ` it hasU`;w = U` (resp. U`;v = U`) and L`;w = L` (resp. L`;v = L`).We now distinguish two ases: phase ` is attended and phase ` is unattended.Case 1. Phase ` is not attended. Then no summary messages are reeived by w and vand in stage 3 of phase ` they do not modify their sets U`;w and U`;v. The loal view ofboth proessors is modi�ed in the same way (ase 1 of the loal view update). Hene wehave that U`+1;w = U`+1;v and L`+1;w = L`+1;v.Case 2. Phase ` is attended. Then there is at least one oordinator ompleting thephase. Let 1; :::; k be the oordinators for phase `. Sine we have reliable multiast, thereport message of eah worker reahes all oordinators that are alive. Thus the summarymessages sent by oordinators are all equal. Let summary(D;P ) one suh a message. Sinewe have reliable multiast, both proessors w and v reeive summary(D;P ) messages fromthe oordinators. Hene in stage 3 of phase ` proessors w and v set D`+1;w = D`+1;v = Dand thus we have U`+1;w = U`+1;v. Proessors w and v also set P`+1;w = P`+1;v = P anduse the same rule (ase 2 of the loal view update rule) to update the loal view. Henewe have L`+1;w = L`+1;v. 2Beause of the previous lemma we an de�ne the view L` = L`;w, the set of availableproessors P` = P`;w, the set of done tasks D` = D`;w and the set of unaounted tasksU` = U`;w, all of them referred to the beginning of phase `, where w is any fully a-tive proessor. Notie that restarted (non-fully-ative) proessors may have inonsistentknowledge of these quantities.Remember that we denote by p` the ardinality of the set of live proessors for phase`, i.e., p` = jP`j, and by u` the ardinality of the set of unaounted tasks for phase `,i.e., u` = jU`j.In the following lemmas we prove safety (no live proessor or undone task is forgotten)and progress (tasks exeution) properties, whih imply the orretness of the algorithm.Lemma 4.3 In any exeution of algorithm AR, a proessor fully ative at the beginningof phase ` belongs to P`.Proof: If proessor w is fully ative at the beginning of phase `�1, then by the indutivehypothesis it belongs to P`�1. Proessor w is taken out of the set P` only if a oordinatordoes not reeive a report message from w in phase ` � 1. Sine proessor w survivesphase `� 1 then it sends the report message in phase `� 1. Hene it belongs to P`.If proessor w is not fully ative at the beginning of phase ` � 1, then it restarted inphase `�1. Thus at the end of phase `�1 proessor w is re-integrated in the loal viewsof phase `. Hene it belongs to P`. 2Lemma 4.4 In any exeution of algorithm AR, if a task z does not belong to U` then ithas been exeuted in phases 1; 2; :::; `� 1. 23



Proof: The proof is the same as the proof of Lemma 3.3. 2Lemma 4.5 In a good exeution of algorithm AR, for any phase ` we have that u`+1 �u`.Proof: Consider phase `. If there are no restarts, then, by the ode, no task is addedto the set of undone tasks. If there are restarts, a restarted proessor w has U`;w = T .By Lemma 4.1, there is a proessor v whih is a witness for phase `. Then proessor wreeives the info(U`; L`) message from proessor v and hene sets U`;w = U`. Hene alsowhen proessors restart no task is added to the set of undone tasks. 2Lemma 4.6 In any good exeution of algorithm AR, for any attended phase ` we havethat u`+1 < u`.Proof: Sine phase ` is attended, there is at least one oordinator  alive in phase `.A oordinator must be a fully ative proessor (a restarted proessor needs to ompletea phase in order to known the urrent view and beome oordinator). By Lemma 4.3proessor  belongs to P` and thus it exeutes one task. Hene at least one task isexeuted and onsequently at least one task is taken out of U`. By Lemma 4.5, no taskis added to U` during phase `. 2As for algorithm AN, given a partiular exeution, we denote by �1; �2; :::; �� theattended phases and by �i the unattended period in between phases �i and �i+1.Lemma 4.7 In a good exeution of algorithm AR any unattended period onsists of atmost minflog p; log fg phases.Proof: Consider the unattended period �i. As argued in Lemma 3.6 the views at thebeginning of �i is a tree-like view.By Lemma 4.3 and by the loal view update rule for unattended phases, any proessorfully ative at the beginning of a phase ` of �i belongs to P` and thus to L`. By theloal view update rule for unattended phases, we have that eventually there is a phase`0 suh that all fully ative proessors are supposed to be oordinators of phase `0 (thatis, the �rst layer of L`0 ontains all the proessors fully ative at the beginning of phase`0). By Lemma 4.1, phase `0 has a witness. The witness is a fully ative proessor andby de�nition it survives the entire phase. Hene, phase `0 is attended.The upper bounds on the number of phases follow from the tree-like struture of theviews. With the same argument used in Lemma 3.6 we have that the number of phasesof �i is at most log f . The log p bound follows from the fat that by doubling thenumber of expeted oordinators for eah unattended phase, after at most log p phasesall proessors are expeted to be oordinators and thus at least one of them (the witness)survives the phase. 224



Theorem 4.8 In a good exeution of algorithm AR the algorithm terminates and all theunits of work are performed.Proof: By Lemma 4.3 fully ative proessors are always part of the omputation, sothe omputation never ends if there are fully ative proessors and U` is not empty. ByLemma 4.1 any phase has a witness whih is a fully ative proessor. The loal knowledgeabout the outstanding tasks is sound, by Lemma 4.4. For every 1 + log p phases there isat least one attended phase, by Lemma 4.7. Hene, by Lemmas 4.5 and 4.6, the numberof unaounted tasks dereases by at least one in every 1 + log p phases. Thus afterat most O(t log p) phases all the tasks have been performed. During the next attendedphase this information is disseminated and the algorithm terminates. 24.3 Analysis of ARWe next analyze the performane of algorithm AR in terms of the available proessorsteps S used and the numberM of messages sent. To assess S we partition it into Sa spentduring the attended phases and Su spent during the unattended phases. So S = Sa+Su.In the following lemmas we assess the available proessor steps of algorithm AR.Reall that good exeutions are those exeutions whose failure pattern is allowedby F (26)FSR. We also reall that �1; �2; :::; �� denote the attended phases, �i denote theunattended period in between phases �i and �i+1 and that p` and u` denote, respetively,the size of the set P` of fully ative proessors for phase ` and the size of the set U` ofundone tasks for phase `.Lemma 4.9 In a good exeution of algorithm AR we have Sa = O(t+ p log p+ f).Proof: By Theorem 4.8 the algorithm terminates.We �rst aount for all those steps spent by a proessor after a restarts and before theproessor either fails again or beomes fully ative, that is, it is inluded in the set P` fora phase `, and thus is ounted for in p`. The number of suh steps spent for eah restartis bounded by a onstant. Hene the available proessor steps spent is O(r), whih isO(f).Next we aount for all the remaining part of Sa by distinguishing two possible ases:Case 1. All attended phases �k suh that p�k � u�k . The load balaning rule assuresthat at most one proessor is assigned to a task. Hene the available proessor steps usedin this ase an be harged to the number of tasks exeuted, whih is at most t+ f .Case 2. All attended phases suh that p�k > u�k . We arrange the tasks that wereexeuted and aounted for during suh phases in the order by the phase in whih theyare performed (for tasks exeuted in the same phase the order does not matter). Lethb1; b2; : : : ; bmi be suh a list. Notie that m � p beause u�k < p�k � p, and one25



the inequality u�k � p starts to hold, it remains true in phases �i for i � k. We thenpartition these tasks into disjoint adjaent segments Zi:Zi = �bk : pi+ 1 � m� k + 1 < pi� :By the load balaning rule, at mostpm� k + 1 � pi + 1p = i + 1proessors are assigned to eah task in Zi, beause when a proessor is assigned for thelast time to task bk, there are at least m � k + 1 unaounted tasks. The size of Zi anbe estimated as follows: jZij � pi � pi+ 1� p�1i � 1i+ 1�= pi(i + 1) :Hene the available proessor steps used is less thanX1�i�m pi(i + 1) � (i+ 1) � p X1�i�p 1i= O(p log p) :Combining all the ases we obtain Sa = O(t + p log p+ f). 2Lemma 4.10 In a good exeution of algorithm AR we have Su = O(Sa+f)�minflog p; log fg).Proof: Consider the unattended period �i. At the beginning of this period there are piavailable proessors. By Lemma 4.7, for eah of these proessors we need to aount forminflog p; log fg steps spent in period i. Summing up over all attended phases, we havethat the part of Su for these proessors isminflog p; log fg � �Xi=1 p�i = Sa �minflog p; log fg:Eah restart an ontribute additionally at most minflog p; log fg proessor steps beauseif the proessor stays alive past phase �i+1, its ontribution is already aounted for. Sinethe number of restarts r is r � f , the bound follows. 2Theorem 4.11 In a good exeution of algorithm AR the available proessor steps isS = O((t+ p log p+ f) �minflog p; log fg).26



Proof: The available proessor steps S of algorithm AR is given by S = Sa + Su. Thetheorem follows from Lemmas 4.10 and 4.9. 2Remark. A lower bound of 
(t + p log p) [1℄ is known for any algorithm that performstasks by balaning loads of surviving proessors in eah time step. Although that lowerbound was derived for the shared-memory model of omputation, the result does notuse any arguments involving shared-memory. The work of algorithm AR inludes aontribution that omes within a fator of minflog p; log fg relative to that lower bound.As we have similarly remarked for algorithm AN, this suggests that improving the workresult is diÆult and that better solutions may have to involve a trade-o� between thework and message omplexities. 2We now assess the message omplexity. The analysis is similar to the one donefor algorithm AN. The di�erene is that we need to aount also for messages sent byrestarted proessors. However the approah used to analyze the message omplexity ofalgorithm AN works also for algorithm AR.We distinguish between the attended phases preeded by a nonempty unattendedperiod and the attended phases not preeded by unattended periods. We let Mu be thenumber of messages sent in �i�1�i, for all those i's suh that �i�1 is nonempty and welet Ma be the number of messages sent in �i�1�i, for all those i's suh that �i�1 is empty(learly in these ases we have �i�1�i = �i). Next we estimate Ma and Mu and thus themessage omplexity M of algorithm AR.Lemma 4.12 In a good exeution of algorithm AR we haveMa = O(t+p log p= log log p+f).Proof: We �rst aount for messages sent by restarted proessors and responses tothose messages. For eah restart the number of restart messages sent is bounded bya onstant and one info and one summary message are sent to a restarted proessorbefore it beomes fully ative. Hene the total number of messages sent due to restartsis O(r) = O(f).The remaining messages an be estimated as in Lemma 3.11. In a phase ` wherethere is a unique oordinator the number of messages sent is 2p`. By the de�nition ofMa, messages ounted in Ma are messages sent in a phase �i suh that �i�1 is empty.This means that the phase previous to �i is �i�1 whih, by de�nition, is attended.Hene by the loal view update rule of attended phases we have that �i has a uniqueoordinator. Thus phase �i gives a ontribution of at most 2p�i messages to Ma. HeneMa � P�i=1 2p�i = 2Sa. The lemma follows from Lemma 4.9. 2Lemma 4.13 In any good exeution of algorithm AR we have Mu = O(fp).27



Proof: We �rst aount for messages sent by restarted proessors and responses to thosemessages. The argument is the same as in Lemma 4.12. The total number of messagessent beause of restarts is O(f).Next we estimate the remaining messages as done in Lemma 3.12. First we notie thatin any phase the number of messages sent is O(p) where  is the number of oordinatorsfor that phase. Hene to estimate Mu we simple ount all the supposed oordinators inthe phases inluded in �i�1�i, where �i�1 is nonempty.Let i be suh that �i�1 is not empty. Beause of the struture of the loal view, we havethat the total number of supposed oordinators in all the phases of �i�1�i is 2fi�1 + 1 =O(fi�1) where fi�1 is the number of failures during �i�1. Hene the total number ofsupposed oordinators, in all of the phases ontributing to Mu, is P�i=1O(fi�1) = O(f).Thus Mu is O(fp). 2Theorem 4.14 In a good exeution of algorithm AR the number of messages sent isM = O(t+ p log p+ fp).Proof: The total number of messages sent is M = Ma +Mu. The theorem follows fromLemmas 4.12 and 4.13. 25 DisussionWe have onsidered the do-all problem whih onsists of performing t tasks on a dis-tributed system of p fault-prone synhronous proessors. We presented the �rst algorithmfor the model with proessor failures and restarts. Previous algorithms do not allow pro-essor restarts. Prior algorithmi approahes relied on the single oordinator paradigmin whih the oordinator is eleted for the time during whih the progress of the ompu-tation depends on it. However this approah is not e�etive in the general model withproessor restarts: an omnisient adversary an always stop the single oordinator whilekeeping alive all other proessors thus preventing any global progress. In this paperwe have used a novel multi-oordinator paradigm in whih the number of simultaneousoordinators inreases exponentially in response to oordinator failures. This approahenables e�etive do-all solutions that aommodate proessor restarts. Moreover, whenthere are no restarts, the performane of the algorithm is omparable to that of previousalgorithms.There are two areas where improvements an be sought. It appears not diÆultto show that in our algorithms worker-to-oordinator multiasts need not be reliable. Aworthwhile researh diretion is to design algorithms whih use our aggressive oordinatorparadigm and unreliable oordinator-to-worker ommuniation. It is also interesting to28



onsider the models where proessors have some stable storage. This may help reduethe reliane on broadasts as the sole means for information propagation.For the fail-stop/restart model we developed an algorithmwhih tolerates failure/restartpatterns that are 26-restrited; a 26-restrited failure pattern is one suh that for any 26onseutive steps of the algorithm there is at least one proessor alive in all the 26 steps.The onstant 26 depends on the algorithm. We onjeture that our algorithm an beeasily modi�ed by \squeezing" the phase into two stages, instead of the three used in thepresentation for the sake of larity. With this modi�ation 17-restrited failure patternsan be tolerated. A di�erent approah may solve the problem for k-restrited exeutionswith a smaller k. However the problem is not solvable for 1-restrited exeutions and,as remarked in Setion 2, there is a qualitative di�erene between 1-restrited exeutionsand k-restrited exeutions, with k � 2. It is also lear that in order to ahieve solutionsthat work for k-restrited exeutions for small k it is neessary to use more messages. Forexample for 2-restrited exeutions there must be transfer of state information in eahstep.Finally, it is also interesting to onsider the failure models where k-restrition isimposed not on at least one proessor as we have done, but on at least q proessors,where q is a failure model parameter. Suh de�nition yields families of failure modelsF (k;q)FS and F (k;q)FSR, and more eÆient algorithms ould be sought for these models. Thisis beause the failure models are more benign, i.e., F (k;1)FS � F (k;q)FS and F (k;1)FSR � F (k;q)FSR forq > 1.Aknowledgments: We thank Moti Yung for several disussions of proessor restartissues and for enouraging this diretion of researh. We thank Greg Malewiz for severalhelpful observations. Finally, we thank the anonymous referees for many omments thathad enabled us to improve the quality of the presentation.Referenes[1℄ J. Buss, P.C. Kanellakis, P. Ragde, A.A. Shvartsman, \Parallel algorithms with proessorfailures and delays", Journal of Algorithms, vol. 20, pp. 45-86, 1996.[2℄ B.S. Chlebus, R. De Priso, and A.A. Shvartsman, \Performing Tasks on RestartableMessage-Passing Proessors", in Pro. 11th International Workshop on Distributed Algo-rithms, Saarbr�uken, Germany, Springer Leture Notes in Computer Siene 1320, pp.96{110, 1997.[3℄ B.S. Chlebus, and D.R. Kowalski, Randomization Helps to Perform Tasks on ProessorsProne to Failures, in Pro. 13th International Symp. on Distributed Computing, Bratislava,Slovakia, Springer Leture Notes in Comp. Si., 1999.[4℄ Communiations of the ACM, Speial Issue on Group Communiation Servies, vol. 39,no. 4, 1996. 29
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