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1 Introdu
tionA
hieving eÆ
ient distributed solutions for spe
i�
 problems depends on our ability toe�e
tively exploit parallelism in a system 
onsisting of multiple pro
essors. This is often
hallenging be
ause the set of pro
essors available to a 
omputation may dynami
ally
hange. Su
h 
hanges may o

ur due to pro
essor failures or pro
essors be
oming un-available during periods when they are required to perform other unrelated tasks, ordue to repaired or idle pro
essors joining the 
omputation already in progress. A ba-si
 problem that 
an readily bene�t from adaptively parallel solutions is the problem ofperforming a number of similar, independent and idempotent tasks. By the similarity oftasks we mean that the task exe
utions 
onsume equal or 
omparable resour
es. By theindependen
e of the tasks we mean that the 
ompletion of any task does not a�e
t anyother task. By the idempoten
e of the tasks we mean that ea
h task 
an be exe
utedmultiple times or 
on
urrently without negatively impa
ting the �nal result. Examplesof su
h problems are 
he
king all the points in a large solution spa
e, trying to generatea witness or refute its existen
e, or simply performing a number of similar independent
al
ulations.Here we 
onsider the abstra
t problem of performing t tasks in a syn
hronous messagepassing distributed environment 
onsisting of p pro
essors, whi
h are subje
t to failuresand restarts. Failures are 
rash failures, i.e., a faulty pro
essor stops and does notperform any further a
tions. Restarted pro
essors resume 
omputation in a prede�nedinitial state, i.e., no stable storage is assumed. We refer to su
h a problem as the do-allproblem.Algorithmi
 solutions for the do-all problem in the message-passing models of 
om-putation 
an be evaluated a

ording to their 
omputational e�e
tiveness that measuresthe number of 
omputation steps taken in performing the tasks, and a

ording to their
ommuni
ation eÆ
ien
y that measures the amount of 
ommuni
ation needed to performthe tasks. Dwork, Halpern and Waarts [6℄, the �rst to 
onsider the do-all problem,use a work measure de�ned as the number of tasks exe
uted, 
ounting multipli
ities, toassess the 
omputational eÆ
ien
y. This work measure a

ounts only for steps taken bypro
essors while exe
uting the tasks of the do-all problem; pro
essor steps taken for
oordination or waiting for messages are not 
ounted. Another measure of work, theavailable pro
essor steps, de�ned by Kanellakis and Shvartsman [10℄, takes into a

ountall steps taken by the pro
essors, that is, both steps taken in exe
uting the t tasks and anyother steps, in
luding idling, taken by the available pro
essors. Thus the available pro-
essor steps measure [10℄ is more 
onservative than the work measure of [6℄. Let W (t; p)be the work 
omplexity and S(t; p) be the available pro
essor steps 
omplexity of somedo-all algorithm in some failure model. It is always the 
ase that W (t; p) = O(S(t; p)),sin
e S(t; p) 
ounts the idle/wait steps, whi
h are not in
luded in W (t; p). The equalityW (t; p) = S(t; p) 
an be a
hieved, for example, by algorithms that perform at least onetask during any �xed time period. In our work we use the available pro
essor stepsmeasure. 1



Communi
ation eÆ
ien
y is gauged using the message 
omplexity that a

ounts forthe number of messages sent during the 
omputation, or, when the messages substantiallyvary in size, using the bit 
omplexity that a

ounts for the number of bits sent. Whenpro
essors 
ommuni
ate using broad
asts (multi
asts), it is possible to measure the 
om-muni
ation 
omplexity either in terms of the total number of broad
ast messages, or interms of the number of messages destined to all re
ipients targetted by the broad
asts.In this work we use the more 
onservative 
ommuni
ation 
omplexity measure by takinginto a

ount all messages 
reated as the result of a broad
ast. For example, we 
ount asingle broad
ast to p pro
essors as p messages.Dwork et al. also use the e�ort 
omplexity, de�ned as the sum of the work andmessage 
omplexities. This approa
h makes sense for algorithms for whi
h the workand the message 
omplexities are similar. However, this makes it diÆ
ult to 
omparerelative eÆ
ien
y of algorithms that exhibit varying trade-o�s between the work and the
ommuni
ation eÆ
ien
ies. De Pris
o, Mayer and Yung [5℄ evaluate do-all algorithmsusing a \lexi
ographi
" 
riterion: �rst evaluate an algorithm a

ording to its availablepro
essor steps and then a

ording to its message 
omplexity. This approa
h assumesthat optimization of the 
omputational steps is more important than that of the message
omplexity. In this paper we 
onsider the available pro
essor steps, denoted by S, andthe message 
omplexity, denoted by M , as two independent measures of eÆ
ien
y ofalgorithms.It is not diÆ
ult to formulate trivial solutions to do-all in whi
h ea
h pro
essorperforms ea
h of the t tasks. Su
h solutions have S = 
(t(p+ r)), where r is the numberof restarts, and they do not require any 
ommuni
ation. Solutions that a
hieve bettereÆ
ien
y in S trade messages for 
omputation steps.Review of prior work. Algorithms solving the do-all problem have been provided byDwork, Halpern and Waarts [6℄, by De Pris
o, Mayer and Yung [5℄, and by Galil, Mayerand Yung [7℄. These deterministi
 algorithms are formulated for failure models thatallow pro
essor failures but disallow pro
essor restarts. The point-to-point messagingbetween non-faulty pro
essors is assumed to be reliable. In a syn
hronous system withthese assumptions pro
essor failures are dete
table, for example using a timeout, andsu
h pro
essors are modeled using the fail-stop pro
essor abstra
tion of S
hli
hting andS
hneider [15℄.Dwork, Halpern and Waarts [6℄ developed the �rst algorithms for the do-all prob-lem. One algorithm presented in [6℄ (proto
ol B) has e�ort O(t + ppp), with work
ontributing the 
ost O(t + p) towards the e�ort, and message 
omplexity 
ontributingthe 
ost O(ppp). The running time of the algorithm is O(t+ p). The algorithm uses thesyn
hrony of the system to dete
t failures by means of time-outs. In this algorithm thet tasks are divided into 
hunks and ea
h of these is divided into sub
hunks. Pro
essors
he
kpoint their progress by multi
asting the 
ompletion information to subsets of pro-
essors after performing a sub
hunk, and broad
asting to all pro
essors after 
ompleting
hunks of work. Another algorithm in [6℄ (proto
ol C) has e�ort O(t + p log p). It hasoptimal work of O(t + p), message 
omplexity of O(p log p), and time O(p2(t + p)2t+p).2



Thus the redu
tion in message 
omplexity is traded-o� for a signi�
ant in
rease in time.Yet another algorithm of [6℄ (proto
ol D) obtains work optimality and is designed formaximum speed-up, whi
h is a
hieved with a more aggressive 
he
kpointing strategy,thus trading-o� time for messages. The message 
omplexity is quadrati
 in p for thefault-free 
ase, and in the presen
e of a failure pattern of f < p failures, the message
omplexity degrades to �(f p2).De Pris
o, Mayer and Yung [5℄ present an algorithm whi
h has the available pro
essorsteps O(t + (f + 1)p) and message 
omplexity O((f + 1)p). The available pro
essorsteps and 
ommuni
ation eÆ
ien
y approa
h requires keeping all the pro
essors busydoing tasks, simultaneously 
ontrolling the amount of 
ommuni
ation. Their algorithmoperates as follows. At ea
h step all the pro
essors have an overestimate of the setof all the available pro
essors. One pro
essor is designed to be the 
oordinator andis responsible for the progress of the 
omputation. It allo
ates the outstanding tasksa

ording to some allo
ation rule and waits for noti�
ations of the tasks whi
h have beenperformed. The 
oordinator 
hanges over time. To avoid a quadrati
 upper bound for Ssubstantial pro
essor sla
kness (p� t) is assumed.Another eÆ
ient algorithm was developed by Galil, Mayer and Yung [7℄. Working inthe 
ontext of Byzantine agreement with stop-failures (for whi
h they establish a message-optimal solution), they improved the message 
omplexity of [5℄ to O(fp" + minff +1; log pgp), for any positive ", while a
hieving the available pro
essor steps 
omplexity ofO(t+ (f + 1)p).In [5℄ a lower bound of 
(t+(f +1)p) for algorithms that use the stage-
he
kpointingstrategy is proved, this bound being quadrati
 in p for f 
omparable with p. Howeverthere are algorithmi
 strategies that have the potential of 
ir
umventing the quadrati
bound. Consider the following s
enarios. In the �rst one we have t = o(p), f > p=2, andthe algorithm assigns all tasks to every pro
essor. Then S = O(pt) = o(t + (f + 1)p),be
ause fp = �(p2). This na��ve algorithm has a quadrati
 S for p = O(t). In these
ond example assume that the three quantities p, t and f are of 
omparable magnitude.Consider the algorithm in whi
h all the pro
essors are 
oordinators, exe
ution of tasks isinterleaved with 
ommuni
ation, and the outstanding tasks are evenly allo
ated amongthe live pro
essors based on their identi�ers. The tasks allo
ation is done after ea
hround of ex
hanging messages about whi
h pro
essors are still available and whi
h taskshave been su

essfully performed. One 
an show that S = O(p log p= log log p). Thisbound is o(t + (f + 1)p) for f > p=2 and t = p. Unfortunately the number of messagesex
hanged is more than quadrati
, and 
an be 
(p2 log p= log log p). These examplessuggest a possibility of performan
e better than S = O(t+(f +1)p), however the simplealgorithms dis
ussed above have either the available pro
essor steps quadrati
 in p, orthe number of messages more than quadrati
 in p in the 
ase when p, t and f are ofthe same order. One interesting result of our paper is showing that an algorithm 
anbe developed whi
h has both the available pro
essor steps whi
h is always subquadrati
,and the number of messages whi
h is quadrati
 only for f 
omparable to p, even withrestarts. 3



Previous deterministi
 algorithms are designed so that at ea
h step there is at mostone 
oordinator; if the 
urrent 
oordinator fails then the next available pro
essor takesover, a

ording to a time-out strategy. Having a single 
oordinator helps to bound thenumber of messages, but a drawba
k of su
h approa
h is that any proto
ol with at mostone a
tive 
oordinator is bound to have S = 
(t + (f + 1)p). Namely, 
onsider thefollowing behavior of the adversary: while there is more than one operational pro
essor,the adversary stops ea
h 
oordinator immediately after it be
omes one and before itsends any messages. This 
reates pauses of 
(1) steps, giving the 
((f + 1)p) part,where f is the number of stop-failures (f < p). Eventually there remains only onepro
essor whi
h has to perform all the tasks, be
ause it has never re
eived any messages,this gives the remaining 
(t) part. A lower-bound argument for stage-
he
kpointingstrategies is formally presented in [5℄. Moreover, when pro
essor restarts are allowed,any algorithm that relies on a single 
oordinator for information gathering might notterminate, be
ause the adversary 
an always kill the 
urrent 
oordinator, keeping aliveall the other pro
essors so that no progress is made.Summary of 
ontributions. All previous algorithms do not 
onsider the possibil-ity that a faulty pro
essor is repaired and reintegrated into the system. In this pa-per we present the �rst algorithm that solves the do-all problem allowing pro
essorrestarts. We introdu
e a new algorithmi
 te
hnique based on an aggressive 
oordinationparadigm that permits multiple 
on
urrent 
oordinators. This approa
h is suggestedby the earlier observation that algorithms with only one 
oordinator 
annot deal eÆ-
iently with restarts. The number of 
oordinators is managed adaptively. When failuresof 
oordinators disrupt the progress of the 
omputation, the number of 
oordinators isin
reased; when the failures subside, a single 
oordinator is appointed. En route to thesolution for restartable pro
essors we introdu
e a new algorithm for the do-all problemwithout restarts. This algorithm, that we 
all \algorithm AN" (Algorithm No-restart),is tolerant of f < p stop-failures. It has available pro
essor steps 
omplexity1 S =O((t+p log p= log log p) log f) and message 
omplexity M = O(t+p log p= log log p+fp).Algorithm AN is the basis for our se
ond algorithm, 
alled \algorithm AR" (Algorithmwith Restarts), whi
h tolerates stop-failures and restarts. Its available pro
essor steps
omplexity is S = O((t + p log p + f) �minflog p; log fg), and its message 
omplexity isM = O(t+ p log p+ fp), where f is the number of failures. The results are summarizedin Figure 1.Our algorithm AN is more eÆ
ient in terms of S than the algorithms in [5℄ and [7℄when f , p and t are 
omparable; the algorithm also has eÆ
ient message 
omplexity.Algorithms AN and algorithm AR 
ome within a log f (and log p) fa
tor of the respe
tivelower bounds [10℄ proved in the 
ontext of the shared-memory model of 
omputation forany algorithms that balan
e loads of surviving pro
essors in ea
h 
onstant-time step.Our algorithms assume that the 
ommuni
ation is reliable. If a pro
essor sends amessage to another operational pro
essor and when the message arrives at the desti-nation the pro
essor is still operational, then the message is re
eived. Moreover, if an1The expression \log f" stands for 1 when f < 2 and log2f otherwise; all logarithms are to the base 2.4



S: available pro
essor steps M : message 
omplexityNo [5℄ O(t+ (f + 1)p) O((f + 1)p)restarts [7℄ O(t+ (f + 1)p) O(fp" +minff + 1; log pgp)(f < p) AN O((t+ p log p= log log p) log f) O(t + p log p= log log p+ fp)Restarts(f < p+r) AR O((t+ p log p+ f) �minflog p; log fg) O(t + p log p+ fp)Figure 1: EÆ
ien
y of the solutions in [5, 7℄ and algorithms AN and AR (the solutionsin [6℄ 
onsider a di�erent notion of work 
omplexity and fo
us on evaluation of e�ort).operational pro
essor sends a multi
ast message and then fails, then either the messageis sent to all destinations or to none at all. Su
h multi
ast is re
eived by all operationalpro
essors. Prior solutions do not make this assumption, although they do not solve theproblem of pro
essor restarts. The availability of reliable multi
ast simpli�es solutions fornon-restartable pro
essors, but dealing with pro
essor restarts remains a 
hallenge evenwhen su
h broad
ast is available. There are several reasons for 
onsidering solutions withsu
h reliable multi
ast. First of all, in a distributed setting where pro
essors 
ooperate
losely, it be
omes in
reasingly important to assume the ability to perform eÆ
ient andreliable broad
ast or multi
ast. This assumption might not hold for extant WANs, butbroad
ast LANs (e.g., Ethernet and bypass rings) have the property that if the sender istransmitting a multi
ast message, then the message is sent to all destination. Of 
oursethis does not guarantee that su
h multi
ast will be re
eived, however when a pro
essoris unable to re
eive or pro
ess a message, e.g., due to unavailable bu�er spa
e or failureof the network interfa
e hardware at the destination, this 
an be interpreted as a failureof the re
eiver. From the standpoint of the sender, the availability of hardware-assistedbroad
ast makes the 
ommuni
ation 
ost of sending a broad
ast message 
omparable tothe 
ommuni
ation 
ost of sending a single point-to-point message. However, sin
e mul-tiple re
eivers may have to pro
ess the broad
ast message, we are using a 
onservative
ost measure that assumes that the 
ommuni
ation 
ost of a multi
ast is proportionalto the number of re
ipients. Se
ondly, by separating the 
on
erns between the reliabilityof pro
essors and the underlying 
ommuni
ation medium, we are able to formulate solu-tions at a higher level of modularity so that one 
an take advantage of eÆ
ient reliablebroad
ast algorithms (
f. [8℄) without altering the overall algorithmi
 approa
h. Lastly,our approa
h presents a new venue for optimizing do-all solutions and for beating the
(t + (f + 1)p) lower bound of stage-
he
kpointing algorithms [5℄.We 
onje
ture that with minor modi�
ations, our algorithms remain 
orre
t andeÆ
ient even if worker-to-
oordinator multi
asts are not reliable. However 
oordinatorsstill need to use reliable broad
ast.For the fail-stop/restart models we assume that a pro
essor loses its state upon a fail-ure and that its state is reset to some known initial state upon a restart. Our algorithms
annot take dire
t advantage of su
h a possibility, and it would be interesting to explore5



the bene�ts of having stable storage.We believe that it is important to 
onsider pro
essor restarts in general-purpose dis-tributed 
omputation. For example, important 
ommuni
ation servi
es su
h as group
ommuni
ation systems [4℄ are in part motivated by the need to re-integrate pro
essorsthat have either previously failed or were unable to 
ommuni
ate. In this work we makenew 
ontributions to the study of 
omplexity of doing work in the presen
e of failuresand restarts.Other related work. The do-all problem for the shared-memory model of 
omputa-tion, where it is 
alledwrite-all, was introdu
ed and studied by Kanellakis and Shvarts-man [10, 11℄. Parallel 
omputation using the iterated do-all paradigm is the subje
tof several subsequent papers, most notably the work of Kedem, Palem and Spirakis [12℄,Martel, Park and Subramonian [14℄ and Kedem, Palem, Rabin and Raghunathan [13℄.Kanellakis, Mi
hailidis and Shvartsman [9℄ developed a te
hnique for 
ontrolling redun-dant 
on
urrent a

ess to shared memory in algorithms with pro
essor stop-failures. Thisis done with the help of a stru
ture they 
all pro
essor priority tree. In this work we usea similar stru
ture in the qualitatively di�erent message-passing setting. Furthermore,we are able to use our stru
ture with restartable pro
essors.Kanellakis and Shvartsman [11℄ give mat
hing lower and upper bounds on solving thedo-all problem for algorithms that are able to 
hoose the best possible assignment ofpro
essors to tasks, for example using an ora
le. These lower and upper bounds weredeveloped for the shared-memory model of 
omputation, however the bounds apply,verbatim, to the message-passing model (when the ora
le is omnis
ient). For the modelwith stop-failures, this bound is t+ p log p= log log p and for the model with restarts, thisbound is t + p log p. A 
omponent of the upper bound on work of our algorithms 
omeswithin a small multipli
ative fa
tor of these bounds. For the algorithm AN this fa
tor islog f , and for the algortihm AR this fa
tor is minflog p; log fg.A randomized solution for the do-all problem is presented by Chlebus and Kowal-ski [3℄. Their work is for the model of faults in whi
h an adversary 
hooses at most 
 � ppro
essors prior to the start of the 
omputation, for a �xed 
onstant 0 < 
 < 1, and thenmay fail any of these pro
essors at any time, while the remaining pro
essors will stayoperational. The randomized algorithm has both the expe
ted available pro
essor stepsand message 
omplexity of O(t + p � (1 + log� p � log�(p=t))), where log� is the numberof times the log fun
tion has to be applied to its argument to yield the result that isno larger than 1. This is in 
ontrast with the lower bound 
(t + p � log t= log log t) onthe available pro
essor steps required in the worst 
ase by any deterministi
 algorithmin this setting.The stru
ture of the rest of the paper is as follows. Se
tion 2 
ontains de�nitions andgives a high-level view of the algorithms. Se
tion 3 in
ludes the presentation of algorithmAN with a proof of its 
orre
tness and an analysis. Se
tion 4 gives algorithm AR witha proof of its 
orre
tness and an analysis. Se
tion 5 
on
ludes with remarks and futurework. 6



2 Model and algorithmi
 preliminariesIn Se
tion 2.1 we des
ribe the distributed setting 
onsidered and in Se
tion 2.2 we intro-du
e the main ideas underlying our algorithms.2.1 Model of 
omputationDistributed setting. We 
onsider a distributed system 
onsisting of a set P of p pro-
essors. We assume that the set P is �xed and is known to all pro
essors in P. Pro
essorshave unique identi�ers (PIDs) and the set of PIDs is totally ordered. Pro
essors 
om-muni
ate by message passing. The distributed system is syn
hronous and we assumethat the pro
essor 
lo
ks are globally syn
hronized. Pro
essor a
tivities are stru
turedin terms of steps that have some �xed known 
onstant duration. In ea
h step a pro
essor
an either re
eive messages or perform some lo
al 
omputation or send messages to otherpro
essors.Messaging assumptions. We assume that the underlying network is fully 
onne
ted,that is, any pro
essor 
an send messages to any other pro
essor, and that messages arenot lost in transit or 
orrupted. Messages sent within one step are delivered before theend of the next step. Thus we also assume that there is a known upper bound on messagedelivery time. We assume that reliable multi
ast [8℄ is available. With reliable multi
asta pro
essor q 
an send a message to any set P � P of pro
essors and all the pro
essorsin P that are alive during the entire following step re
eive the message sent by q. Notethat in any step a pro
essor may re
eive up to jPj messages (thus we assume that thetime needed to pro
ess a re
eived message is small 
ompared to the duration of the step).We are not 
on
erned with the size of messages; however, using bit-string set en
oding,ea
h message sent by our algorithms 
ontains O(maxft; pg) bits, where t is the numberof tasks.Tasks. We de�ne a task to be a 
omputation that 
an be performed by any pro
essor inone time step and its exe
ution is independent of the exe
ution of any of the other tasks.The tasks are also idempotent , i.e., exe
uting a task many times and/or 
on
urrently hasthe same e�e
t as exe
uting the task on
e. Tasks are uniquely identi�ed by their taskidenti�ers (TIDs) and the set of TIDs is totally ordered. We denote by T the set of ttasks and we assume that T is known to all the pro
essors.Models of failure. We are using the fail-stop pro
essor model [15℄. This means thatthe pro
essors fail by stopping and that in our syn
hronous setting pro
essor failures 
anbe dete
ted using a timeout. We 
onsider both the 
ase when no restarts are allowed andthe 
ase when pro
essors restart after a failure. A pro
essor may stop at any momentduring the 
omputation. A failed pro
essor does not re
eive any messages and does notperform any 
omputation. Messages delivered to a faulty pro
essor are lost. If restartsare allowed, a pro
essor 
an restart at any point after a failure. We assume that during7



a single step a faulty pro
essor 
an restart at most on
e (e.g., a pro
essor 
an restart inresponse to a 
lo
k ti
k). Upon a restart the state of the restarted pro
essor is reset to itsinitial state, but the pro
essor is aware of the restart. Sin
e an arbitrary time may elapsebetween the failure of a pro
essor to its restart, the knowledge of the restarted pro
essormay be arbitrarily out of date. Thus we assume a weak model where the pro
essors donot have stable storage that survives a failure. Stable storage 
ould help, for example, forpro
essors to make individual 
omputational progress when an adversary may 
ompletelyprevent pro
essors from 
ommuni
ating with ea
h other.It is obvious that if any pattern of failures is allowed, that is, if no restri
tions areimposed on the adversary that 
auses failures, then 
omputational progress 
an not beguaranteed. For example, if all the pro
essors fail then no progress is possible. Even ifpro
essors restart, progress 
an be prevented. For example, 
onsider the s
enario in whi
ha subset of the pro
essors is alive initially, these pro
essors perform some 
omputation,and then they all 
rash while the pro
essors in the remaining set restart without anypossibility of 
ommuni
ation between the two sets. Sin
e there is no stable storage, this
an be repeated forever without any progress in 
omputation.We will 
onsider two families of failure models, one that allows failures but no restarts,and another that allows restarts. The failure models impose some restri
tion on the failurepattern that the adversary 
an 
ause. The following de�nition is used to qualify 
ertainallowable failure patterns.De�nition 2.1 Let k be a positive integer. A failure pattern is said to be \k-restri
ted"if during any 
onse
utive k steps i; i+ 1; : : : ; i+ k� 1 there is at least one pro
essor thatis alive during all steps i; i + 1; : : : ; i + k � 1.We now de�ne the failure models. Let F (k)FS be the failure model de�ned as the setof all failure patterns that are k-restri
ted, for k � 0, and have no pro
essor restarts.The family FS of fail-stop failure models in
ludes all F (k)FS for non-negative k. Noti
ethat F (0)FS imposes no restri
tions on the failure patterns, that is, all pro
essors 
an fail inthis model. Similarly we de�ne the failure model F (k)FSR as the set of all failure patternsthat are k-restri
ted, for k � 0, and that in
lude pro
essor restarts. The family FSRof fail-stop/restart failure models in
ludes all F (k)FSR for non-negative k. Also for thefail-stop/restart failure models, F (0)FSR imposes no restri
tions on the failure patterns.With these de�nitions, we have that, for ea
h k, F (k)FS � F (k)FSR, F (k+1)FS � F (k)FS , andF (k+1)FSR � F (k)FSR. This is be
ause in ea
h 
ase any failure pattern in the subset modelis also a failure pattern for the respe
tive superset model, yet the superset models mayallow failure patterns not permitted by the respe
tive subsets.Given a failure pattern, we denote by f the number of failures and by r the number ofrestarts. For the family FS we have that f is bounded from above by p and r = 0, whilefor the family FSR we have that r � f < r + p. We de�ne the size of a failure patternF to be the number of pro
essor failures f , and we denote it by jF j. Our 
omplexity8



results depend on jF j, and sin
e it is always the 
ase that r � f , the main asymptoti
results will not involve r.The do-all problem and termination 
onditions. First we de�ne the problem.De�nition 2.2 Given a failure model, for any set T of tasks and the set P of pro
essors,the do-all problem is to perform all tasks in T .What we mean by performing all tasks is that a terminating algorithm that solvesthe do-all problem must exe
ute all tasks and at least one pro
essor is aware of thisfa
t. In the 
ontext of the model that has k-restri
ted failure patterns this means thatif an algorithm exists for this k, then the algorithm may terminate in step � when ea
hpro
essor that was a
tive and did not fail in steps ��k; : : : ; ��1; � knows that all taskshave been performed.As we have noted earlier, the do-all problem is not ne
essarily solvable in ea
hfailure model. Let us �rst look at the fail-stop models. In F (0)FS no solution is possible:indeed if all pro
essors fail before exe
uting all the tasks in T , then the tasks 
an never be
ompleted. Clearly we would like to solve the problem as long as at least one pro
essor isalive, that is, as long as f < p. By the de�nition of F (1)FS we have that the failure patternsallowed by F (1)FS are exa
tly those failure patterns with f < p. There is a trivial solutionthat works for F (1)FS: ea
h pro
essors performs all the task in T . This solution, however isnot eÆ
ient. We provide an eÆ
ient algorithm that solves the do-all problem for F (1)FS.The algorithms in [5, 6, 7℄ also work for F (1)FS. Sin
e F (1)FS is a superset of F (k)FS , for anyk > 1, the solution for F (1)FS is also a solution for F (k)FS . (It 
an be shown that F (1)FS = F (k)FSfor any k > 1, thus no algorithmi
 advantage 
an be a
hieved by in
reasing k.)Next we look at the fail-stop/restart failure models. Sin
e F (0)FS is a subset of F (0)FSR,no solution is possible for F (0)FSR. It is not hard to see that no solution is possible alsofor F (1)FSR. Indeed a 1-restri
ted failure pattern requires that at least one pro
essor bealive during any step. However with a stop-failure/restart model this is not suÆ
ient toguarantee progress. As we have remarked before, even if there is always one pro
essoralive progress 
an be prevented (the s
enario in whi
h half of the pro
essors fail whilethe other half of the pro
essors restart is an example). Hen
e the best we 
an hope foris to �nd a solution for F (2)FSR. We noti
e that in a k-restri
ted exe
ution, for k � 2, it isguaranteed that pro
essors' lifetimes have some overlap and the bigger is k the bigger isthe overlap. For k = 2 su
h overlap 
an be as small as a single step. Hen
e in order tonot lose information about the ongoing 
omputation (su
h loss, in the absen
e of stablestorage, prevents progress), it is ne
essary that pro
essors ex
hange state informationduring ea
h step. Thus a solution that works for a small k tends to have large message
omplexity. We provide an eÆ
ient algorithm that solves the do-all problem for F (26)FSR.The 
onstant 26 depends on our implementation of the algorithm. With a modest e�ortthe 
onstant 
an be redu
ed to 17, as we explain later. Note also that there is a qualitativedistin
tion between F (1)FSR and F (2)FSR: pro
essors' lifetimes may not overlap in the former9



while they must overlap in the latter. The di�eren
e between F (k)FSR and F (k+1)FSR whenk � 2 is quantitative: in the latter the overlap of pro
essors' lifetimes is one step longerthan in the former.Performan
e measures. To evaluate the performan
e of our algorithms we use avail-able pro
essor steps and 
ommuni
ation 
omplexity. The available pro
essor steps is thenumber of steps taken by all the pro
essors and the 
ommuni
ation 
omplexity is thenumber of point-to-point messages sent. More formally let F be the set of allowed failurepatterns, that is, the failure model 
onsidered. For a 
omputation subje
t to a failurepattern F , F 2 F , denote by pi(F ) the number of live pro
essors exe
uting step i and bymi(F ) the number of point-to-point messages sent during step i. For a given problem, ifthe 
omputation solves the problem by step � in the presen
e of the failure pattern F ,then the available pro
essor steps 
omplexity S is:Sp;f = maxF2F ; jF j�f 8<:Xi�� pi(F )9=; ;and the 
ommuni
ation 
omplexity M is:Mp;f = maxF2F ; jF j�f 8<:Xi�� mi(F )9=; :(Re
all that in our de�nitions: (a) all steps of the operational pro
essors are 
ounted,in
luding any idle/waiting time, and (b) a single multi
ast 
ounts for as many messagesas it has re
ipients.)2.2 Overview of algorithmi
 te
hniquesBoth algorithms pro
eed in a loop whi
h is repeated until all the tasks are exe
uted.A single iteration of the loop is 
alled a phase. A phase 
onsists of three 
onse
utivestages. Ea
h stage 
onsists of three steps (thus a phase 
onsists of 9 steps). In ea
h stagepro
essors use the �rst step to re
eive messages sent in the previous stage, the se
ondstep to perform lo
al 
omputation, and the third step to send messages. We refer tothese three step as the re
eive substage, the 
ompute substage and the send substage.Coordinators and workers. A pro
essor 
an be a 
oordinator of a given phase. Allpro
essors (in
luding 
oordinators) are workers in a given phase. Coordinators are re-sponsible for re
ording progress, while workers perform tasks and report on that to the
oordinators. In the �rst phase one pro
essor a
ts as the 
oordinator. There may bemultiple 
oordinators in subsequent phases. The number of pro
essors that assume the
oordinator role is determined by the martingale prin
iple: if none of the expe
ted 
oor-dinators survive through the entire phase, then the number of 
oordinators for the nextphase is doubled. Whenever at least one 
oordinator survives a given phase, the numberof 
oordinators for the next phase is redu
ed to one.10



If at least one pro
essor a
ts as a 
oordinator during a phase and it 
ompletes thephase without failing, we say that the phase is attended , the phase is unattended other-wise.Lo
al views. Pro
essors assume the role of 
oordinator based on their lo
al knowledge.During the 
omputation ea
h pro
essor w maintains a list Lw = hq1; q2; :::; qki of supposedlive pro
essors. We 
all su
h list a lo
al view . The pro
essors in Lw are partitioned intolayers 
onsisting of 
onse
utive sublists of Lw: Lw = h�0;�1; :::;�ji2. The number ofpro
essors in layer �i+1, for i = 0; 1; :::; j � 1, is the double of the number of pro
essorsin layer �i. Layer �j may 
ontain less pro
essors. When �0 = hq1i the lo
al view 
anbe visualized as a binary tree rooted at pro
essor q1, where nodes are pla
ed from left toright with respe
t to the linear order given by Lw. Thus, in a tree-like lo
al view, layer �0
onsists of pro
essor q1, layer �i 
onsists of 2i 
onse
utive pro
essors starting at pro
essorq2i and ending at pro
essor q2i+1�1, with the ex
eption of the very last layer that may
ontain a smaller number of pro
essors. Pro
essors in a lo
al view do not ne
essarilyappear in the order of pro
essor identi�ers (restarted pro
essors are appended at the endof the lo
al view).Example. Suppose that we have a system of p = 31 pro
essors. Assume that for a phase `all pro
essors are in the lo
al view of a worker w. in order of pro
essor identi�er, and that theview is a tree-like view (e.g., at the beginning of the 
omputation, for ` = 0). If in phase `pro
essors 1; 5; 7; 18; 20; 21; 22; 23; 24; 31 fail (hen
e phase ` is unattended) and in phase `+ 1,pro
essors 2; 9; 15; 25; 26; 27; 28; 29; 30 fail (phase ` + 1 is attended by pro
essor 3), then theview of pro
essor w for phase `+2 is the one in Figure 2. If in phase `+2 pro
essor 3 fails andpro
essors 5; 22; 29; 31 restart (phase `+2 is unattended) and in phase `+3 pro
essors 4; 6 failand pro
essors 1; 2; 9 restart (phase `+3 is unattended) then the view of pro
essor w for phase`+ 4 is the one in Figure 3. 34 610 12 13 1416 17 18 19 20Figure 2: A lo
al view for phase `+ 2.The lo
al view is used to implement the martingale prin
iple of appointing 
oordina-tors as follows. Let L`;w = h�0;�1; :::;�ji be the lo
al view of worker w at the beginningof phase `. Pro
essor w expe
ts pro
essors in layer �0 to 
oordinate phase `; if no pro-
essor in layer �0 
ompletes phase `, then pro
essor w expe
ts pro
essors in layer �1 to
oordinate phase `+1; in general pro
essor w expe
ts pro
essors in layer �i to 
oordinate2For sequen
es L = he1; : : : ; eni and K = hd1; : : : ; dmi we de�ne hL;Ki to be the sequen
ehe1; : : : ; en; d1; : : : ; dmi. 11



10 12 13 1416 17 19 20 5 22 29 311 2 9Figure 3: A lo
al view for phase `+ 4.phase `+ i if pro
essors in all previous layers �k, ` � k < ` + i, did not 
omplete phase` + k. The lo
al view is updated at the end of ea
h phase (the update rule depends onthe algorithm).Phase stru
ture and task allo
ation. The stru
ture of a phase of the algorithms isas follows. Ea
h pro
essor w keeps its lo
al information about the set of tasks alreadyperformed, denoted Dw, and the set of live pro
essors, denoted Pw, as known by pro
essorw. Set Dw is always an underestimate of the set of tasks a
tually done and Pw is alwaysan overestimate of the set of pro
essors that are \available" from the start of the phase(here any pro
essors that restarted during the phase are not 
onsidered available, sin
ethey might not have up to date information about the 
omputation). We denote by Uwthe set of una

ounted tasks, i.e., whose done status is unknown to w. Sets Uw and Dware related by Uw = T nDw, where T is the set of all the tasks. Given a phase ` we useP`;w, U`;w and D`;w to denote the values of the 
orresponding sets at the beginning ofphase `.Computation starts with phase 0 and any pro
essor q has all pro
essors in L0;q and hasD0;q empty. At the beginning of phase ` ea
h worker (that is, ea
h pro
essor) w performsone task a

ording to its lo
al view L`;w and its knowledge of the set U`;w of una

ountedtasks, using the following load balan
ing rule. Worker w exe
utes the task whose rankis (i mod jU`;wj)th in the set U`;w of una

ounted tasks, where i is the rank of pro
essorw in the lo
al view L`;w. Then the worker reports the exe
ution of the task to all thepro
essors that, a

ording to the worker's lo
al view, are supposed to be 
oordinatorsof phase `. For simpli
ity we assume that a pro
essor sends a message to itself whenit is both worker and 
oordinator. Any pro
essor 
 that, a

ording to its lo
al view, issupposed to be 
oordinator, gathers reports from the workers, updates its informationabout P`;
 and U`;
 and broad
asts this new information 
ausing the lo
al views to bereorganized. We will see that at the beginning of any phase ` all live pro
essors have thesame lo
al view L` and the same set U` of una

ounted tasks and that a

ounted taskshave been a
tually exe
uted. Restarted pro
essors are reintegrated in the lo
al views andare available for 
omputation in the subsequent phase. A new phase starts if U` is notempty.
12



3 Algorithm AN for the fail-stop modelIn this se
tion we present, prove 
orre
t and analyze algorithm AN whi
h solves thedo-all for the failure model F (1)FS.3.1 Algorithm ANThe algorithm follows the algorithm stru
ture des
ribed in the previous se
tion. The
omputation starts with phase number 0 and pro
eeds in a loop until all tasks are knownto have been exe
uted. The following is a detailed des
ription of a phase.Phase ` of algorithm AN:stage 1. The re
eive substage is not used. In the 
ompute substage, anypro
essor w performs a spe
i�
 task z a

ording to the load balan
ingrule. In the send substage pro
essor w sends a report(z) to any 
oordi-nator, that is, to any pro
essor in the �rst layer of the lo
al view L`;w.stage 2. In the re
eive substage the 
oordinators gather report messages.For any 
oordinator 
, let z 1
 ; : : : ; z k

 be the set of TIDs re
eived. In the
ompute substage 
 sets D
  D
[Sk
i=1fz i
g, and P
 to the set of pro
es-sors from whi
h 
 re
eived report messages. In the send substage, 
o-ordinator 
 multi
asts the message summary(D
; P
) to pro
essors in P
.stage 3. During the re
eive substage summary messages are re
eived by livepro
essors. For any pro
essor w, let (D1w; P 1w); : : : ; (Dkww ; P kww ) be thesets re
eived in summary messages3. In the 
ompute substage w setsDw  Diw and Pw  P iw for an arbitrary i 2 f1; : : : ; kwg and updatesits lo
al view Lw as des
ribed below. The send substage is not used.Lo
al view update rule. In phase 0 the lo
al view L0;w of any pro
essor w is a tree-likeview 
ontaining all the pro
essors in P ordered by their PIDs. Let L`;w = h�0;�1; :::;�jibe the lo
al view of pro
essor w for phase `. We distinguish two possible 
ases.Case 1. Phase ` is unattended. Then the lo
al view of pro
essor w for phase ` + 1is L`+1;w = h�1; :::;�ji.Case 2. Phase ` is attended. Then pro
essor w re
eives summary messages fromsome 
oordinator in �0. Pro
essor w 
omputes its set Pw as des
ribed in stage 3 (we willsee that all pro
essors 
ompute the same set Pw). The lo
al view L`+1;w of w for phase`+ 1 is a tree-like lo
al view 
ontaining the pro
essors in Pw ordered by their PIDs.Figure 4 in Se
tion 4 provides a graphi
al des
ription of a phase of algorithm AN(ignore the messages and steps of restarted pro
essors).3As we will see in Se
tion 3.2, these messages are in fa
t identi
al.13



3.2 Corre
tness of algorithm ANIn this se
tion we show that algorithm AN solves the do-all problem for the failuremodel F (1)FS. Given an exe
ution of the algorithm we say that the exe
ution is good if itis an exe
ution allowed by F (1)FS. Hen
e we have to prove that the algorithm solves theproblem for any good exe
ution.Given an exe
ution of the algorithm, we enumerate the phases. We denote the at-tended phases of the exe
ution by �1; �2; : : : ; et
. We denote by �i the sequen
e ofunattended phases between the attended phases �i and �i+1. We refer to �i as theith (unattended) period; an unattended period 
an be empty. Hen
e the 
omputationpro
eeds as follows: unattended period �0, attended phase �1, unattended period �1, at-tended phase �2, and so on. We will show that after a �nite number of attended phasesthe algorithm terminates. If the algorithm 
orre
tly solves the problem, it must be the
ase that there are no tasks left una

ounted after a 
ertain phase �� .Next we show that at the beginning of ea
h phase every live pro
essor has 
onsistentknowledge of the ongoing 
omputation. Then we prove safety (a

urate pro
essor andtask a

ounting) and progress (task exe
ution) properties, whi
h imply the 
orre
tnessof the algorithm.Lemma 3.1 In any exe
ution of algorithm AN, for any two pro
essors w; v alive at thebeginning of phase `, we have that L`;w = L`;v and that U`;w = U`;v.Proof: By indu
tion on the number of phases. For the base 
ase we need to prove thatthe lemma is true for the �rst phase. Initially we have that L0;w = L0;v = hPi andUw = Uv = T . Hen
e the base 
ase is true.Assume that the lemma is true for phase `. We need to prove that it is true for phase` + 1. Let w and v be two pro
essors alive at the beginning of phase ` + 1. Sin
e thereare no restarts, pro
essors w and v are alive also at the beginning of phase `. By theindu
tive hypothesis we have that L`;w = L`;v and U`;w = U`;v. We now distinguish twopossible 
ases: phase ` is unattended and phase ` is attended.Case 1. Phase ` is unattended. Then there are no 
oordinators and no summarymessagesare re
eived by w and v during phase `. Thus the sets Uw and Uv are not modi�ed duringphase `. Moreover pro
essors w and v use the same rule to update the lo
al view (
ase 1of the lo
al view update rule). Hen
e L`+1;w = L`+1;v and U`+1;w = U`+1;v.Case 2. Phase ` is attended. Sin
e L`;w = L`;v all the workers send report messagesto some 
oordinators 
1; :::; 
k. Sin
e we have reliable multi
ast, the report message ofea
h worker rea
hes all the 
oordinators if the worker is alive, or no one if it failed. Thussummary messages sent by the 
oordinators are all equal. Let summary(D;P ) be onesu
h a message. Sin
e the phase is attended and broad
ast is reliable both pro
essorsw and v re
eive the summary(D;P ) message from at least one 
oordinator. Hen
e instage 3 of phase `, workers w and v set D`+1;w = D`+1;v = D and 
onsequently we haveU`+1;w = U`+1;v. They also set P`+1;w = P`+1;v = P and use the same rule (
ase 2 of thelo
al view update rule) to update the lo
al view. Hen
e L`+1;w = L`+1;v. 214



Be
ause of Lemma 3.1, we 
an de�ne L` = L`;w for any live pro
essor w as the viewat the beginning of phase `, P` = P`;w as the set of live pro
essors, D` = D`;w as the setof done tasks and U` = U`;w as the set of una

ounted tasks at the beginning of phase `.We denote by p` the 
ardinality of the set of live pro
essors 
omputed for phase `,i.e., p` = jP`j, and by u` the 
ardinality of the set of una

ounted tasks for phase `, i.e.,u` = jU`j. We have p1 = p and u0 = t.Lemma 3.2 In any exe
ution of algorithm AN, if a pro
essor w is alive during the �rsttwo stages of phase ` then pro
essor w belongs to P`.Proof: Let w be a pro
essor alive at the beginning of phase `. Pro
essor w (whether itis a 
oordinator or not) is taken out of the set P` only if a 
oordinator does not re
eivea report message from w in phase `� 1. If w is a 
oordinator and all 
oordinators aredead, then w would be removed by the lo
al view update rule. This is possible only if wfails during phase ` � 1. Sin
e w is alive at the beginning of phase `, pro
essor w doesnot fail in phase `� 1. 2Lemma 3.3 In any good exe
ution of algorithm AN, if a task z does not belong to U`then it has been exe
uted in one of the phases 1; 2; :::; `� 1.Proof: Task z is taken out of the set U` by a 
oordinator 
 when 
 re
eives a report(z)message in a phase prior to `. However a worker sends su
h a message only after exe
utingtask z. Task z is taken out of the set U` by a worker w when w re
eives a summary(D
; P
)message from some 
oordinator 
 in phase prior to `, and z 2 D
. Again this means thatz must have been reported as done to 
. 2Lemma 3.4 In any good exe
ution of algorithm AN, for any phase ` we have that u`+1 �u`.Proof: By the 
ode of the algorithm, no task is added to U`. 2Lemma 3.5 In any good exe
ution of algorithm AN, for any attended phase ` we havethat u`+1 < u`.Proof: Sin
e phase ` is attended, there is at least one 
oordinator 
 alive in phase `. ByLemma 3.2 pro
essor 
 belongs to P` and thus it exe
utes one task. Hen
e at least onetask is exe
uted and 
onsequently at least one task is taken out of U`. By Lemma 3.4,no task is added to U` during phase `. 2Lemma 3.6 In a good exe
ution of algorithm AN, any unattended period 
onsists of atmost log f phases. 15



Proof: Consider the unattended period �i and let ` be its �rst phase. First we 
laimthat the �rst layer of view L` 
onsists of a single pro
essor. This is so be
ause (a) eitheri = 0 and ` = 0, in whi
h 
ase L0 is the initial lo
al view, or (b) i > 0 and �i is pre
ededby attended phase �i, in whi
h 
ase L` is 
onstru
ted by the lo
al update rule to havea single pro
essor in its �rst layer. By Lemma 3.2 any pro
essor alive at the beginningof phase ` belongs to P` and thus to L`. By the lo
al view update rule for unattendedphases, we have that eventually all pro
essors in L` are supposed to be 
oordinators.Sin
e f < p, at least one pro
essor is alive and thus eventually there is an attendedphase. The log f upper bound follows from the the martingale prin
iple governing thesizes of 
onse
utive layers of view. The number of pro
essors a

ommodated in the layersof the view doubles for ea
h su

essive layer. Hen
e, denoting by fi the number of failuresin �i, we have that the number of phases in �i is at most log fi. Obviously fi < f . 2Finally we show the 
orre
tness of algorithm AN.Theorem 3.7 In a good exe
ution of algorithm AN, the algorithm terminates with alltasks performed.Proof: By Lemma 3.2 no live pro
essor leaves the 
omputation and sin
e f < p the
omputation ends only when U` is empty. By Lemma 3.3, when the 
omputation ends,all tasks are performed. It remains to prove that the algorithm a
tually terminates. ByLemma 3.6 for every 1 + log f phases there is at least one attended phase. Hen
e, byLemmas 3.4 and 3.5, the number of una

ounted tasks de
reases by at least one in every1 + log f phases. Thus, the algorithm terminates after at most O(t log f) phases. 2Sin
e the algorithm terminates after a �nite number of attended phases with all tasksperformed, we let � be su
h that U��+1 = �, and 
onsequently u��+1 = 0.3.3 Analysis of ANWe now analyze the performan
e of algorithm AN in terms of the available pro
essorsteps S and the number of messages M .To assess S we 
onsider separately all the attended phases and all the unattendedphases of the exe
ution. Let Sa be the part of S spent during all the attended phases andSu be the part of S spent during all the unattended phases. Hen
e we have S = Sa+Su.The following lemma uses the 
onstru
tion by Martel, as it is presented in Lemma 3.3.4in [10℄.Lemma 3.8 In any good exe
ution of algorithm ANwe have Sa = O(t+p log p= log log p).16



Proof: We 
onsider all the attended phases �1; �2; :::; �� by subdividing them into two
ases.Case 1: All attended phases �i su
h that p�i � u�i . The load balan
ing rule assuresthat at most one pro
essor is assigned to a task. Hen
e the available pro
essor steps usedin this 
ase 
an be 
harged to the number of tasks exe
uted whi
h is at most t+f � t+p.Hen
e S1 = O(t+ p).Case 2: All attended phases in whi
h p�i > u�i. We let d(p) stand for log p= log log p.We 
onsider the following two sub
ases.Sub
ase 2.1: All attended phases �i after whi
h u�i+1 < u�i=d(p). Sin
e u�i+1 < u�i <p�i < p and phase �� is the last phase for whi
h u� > 0, it follows that sub
ase 2.1o

urs O(logd(p) p) times. The quantity O(logd(p) p) is O(d(p)) be
ause d(p)d(p) = �(p).No more than p pro
essors 
omplete su
h phases, therefore the part S2:1 of Sa spent inthis 
ase is S2:1 = O  p log plog log p! :Sub
ase 2.2: All attended phases �i after whi
h u�i+1 � u�i=d(p). Consider a parti
ularphase �i. Sin
e in this 
ase p�i > u�i, by the load balan
ing rule at least b p�iu�i 
 but nomore than d p�iu�i e pro
essors are assigned to ea
h of the u�i una

ounted tasks. Sin
e u�i+1tasks remain una

ounted after phase �i, the number of pro
essors that failed during thisphase is at least u�i+1 $p�iu�i % � u�id(p) � p�i2u�i= p�i2d(p) :Hen
e, the number of pro
essors that pro
eed to phase �i+1 is no more thanp�i � p�i2d(p) = p�i(1� 12d(p)) :Let �i0 ; �i1; :::; �ik be the attended phases in this sub
ase. Sin
e the number of pro
essorin phase �i0 is at most p, the number of pro
essors alive in phase �ij for j > 0 is at mostp(1� 12d(p))j. Therefore the part S2:2 of Sa spent in this 
ase is bounded as follows:S2:2 � kXj=0 p 1� 12d(p)!j� p1� (1� 12d(p))= p � 2d(p)= O(p � d(p)) :17



Summing up the 
ontributions of all the 
ases 
onsidered we get Sa:Sa = S1 + S2:1 + S2:2 = O  t + p log plog log p! : 2Lemma 3.9 In any good exe
ution of algorithm AN we have Su = O(Sa log f).Proof: The number of pro
essors alive in a phase of the unattended period �i is at mostp�i , that is the number of pro
essors alive in the attended phase immediately pre
eding�i. To 
over the 
ase when �0 is not empty, we let �0 = 0 and p�0 = jPj = p. ByLemma 3.6 the number of phases in period �i is at most log f . Hen
e the part of Suspent in period �i is at most p�i log f . We haveSu � �Xi=0(p�i log f)= log f � �Xi=1 p�i� (p+ Sa) log f = O(Sa log f) : 2Theorem 3.10 In any good exe
ution of algorithm AN the available pro
essor steps isS = O(log f(t+ p log p= log log p)).Proof: The total available pro
essor steps S is given by S = Sa + Su. The theoremfollows from Lemmas 3.8 and 3.9. 2Remark. A lower bound of 
(t + p log p= log log p) [10℄ (Theorem 4.2.4) is known forany algorithm that performs tasks by balan
ing loads of surviving pro
essors in ea
htime step. Although that lower bound was derived for the shared-memory model of
omputation, the result does not use any arguments involving shared-memory. The workof algorithm AN 
omes within a fa
tor of log f (and thus also log p) relative to that lowerbound. This suggests that improving the work result is diÆ
ult and that better solutionsmay have to involve a trade-o� between the work and message 
omplexities. 2We now assess the message 
omplexity. First remember that the 
omputation pro-
eeds as follows: �0; �1; �1; �2; :::; ���1; �� . In order to 
ount the total number of messageswe distinguish between the attended phases pre
eded by a nonempty unattended periodand the attended phases whi
h are not pre
eded by unattended periods. Formally, we letMu be the number of messages sent in �i�1�i, for all those i's su
h that �i�1 is nonemptyand we let Ma be the number of messages sent in �i�1�i, for all those i's su
h that �i�1is empty (
learly in these 
ases we have �i�1�i = �i). Next we estimate Ma and Mu andthus the message 
omplexity M of algorithm AN.18



Lemma 3.11 In any exe
ution of algorithm AN we have Ma = O(t+ p log p= log log p).Proof: First noti
e that in a phase ` where there is a unique 
oordinator the numberof messages sent is 2p`. By the de�nition of Ma, messages 
ounted in Ma are messagessent in a phase �i su
h that �i�1 is empty. This means that the phase previous to �i is�i�1 whi
h, by de�nition, is attended. Hen
e by the lo
al view update rule of attendedphases we have that �i has a unique 
oordinator. Thus phase �i gives a 
ontributionof at most 2p�i messages to Ma. It is possible that some of the attended phases do not
ontribute to Ma, however 
ounting all the attended phases as 
ontributing to Ma wehave that Ma � P�i=1 2p�i = 2Sa. The lemma follows from Lemma 3.8. 2Lemma 3.12 In any good exe
ution of algorithm AN we have Mu = O(fp).Proof: First we noti
e that in any phase the number of messages sent is O(
p) where 
is the number of 
oordinators for that phase. Hen
e to estimate Mu we simple 
ount allthe supposed 
oordinators in the phases in
luded in �i�1�i, where �i�1 is nonempty.Let i be su
h that �i�1 is not empty. Sin
e the number of pro
essors doubles in ea
h
onse
utive layer of the lo
al view a

ording to the martingale prin
iple, we have that thetotal number of supposed 
oordinators in all the phases of �i�1�i is 2fi�1 +1 = O(fi�1),where fi�1 is the number of failures during �i�1. Hen
e the total number of supposed
oordinators, in all of the phases 
ontributing to Mu, is P�i=1O(fi�1) = O(f).Hen
e the total number of messages 
ounted in Mu is O(fp). 2Theorem 3.13 In any good exe
ution of algorithm AN the number of messages sent isM = O(t+ p log p= log log p+ fp).Proof: The total number of messages sent is M = Ma +Mu. The theorem follows fromLemmas 3.11 and 3.12. 24 Algorithm AR for the fail-stop/restart modelIn this se
tion we present, prove 
orre
t and analyze algorithm AR whi
h solves thedo-all for the failure model F (26)FSR.4.1 Algorithm ARAlgorithm AR is similar to algorithm AN; the di�eren
e is that there are added messagesto handle the restart of pro
essors. After the restart, pro
essor q broad
asts restart(q)messages in ea
h step until it re
eives a response. Pro
essors re
eiving su
h messages,19



ignore them if these messages are not re
eived in the re
eive substage of stage 2 ofa phase. Thus we 
an imagine that a restarted pro
essor q broad
asts a restart(q)in the send substage of stage 1 of a phase ` (however we will 
ount all the restartmessages in the message 
omplexity). This message is then re
eived by all the live andrestarted pro
essors of that phase, and, as we will see shortly, pro
essor q is re-integratedin the view for phase ` + 1. Pro
essor q needs to be informed about the status of theongoing 
omputation. Hen
e pro
essors that have this information send the info(U`; L`)messages to pro
essor q with the set U` of una

ounted tasks and the lo
al view L`. Nextwe provide the detailed des
ription for ea
h phase. The parts that are new or that aredi�erent in algorithm AR as 
ompared to algorithm AN are itali
ized .Phase ` of algorithm AR:stage 1. The re
eive substage is not used. In the 
ompute substage anypro
essor w performs a spe
i�
 task z a

ording to the load balan
ingrule. In the send substage w sends a report(z) to any 
oordinator, thatis, to any pro
essor in the �rst layer of L`;w. Any restarted pro
essorq broad
asts the restart(q) message informing all live pro
essors of itsrestart.stage 2. In the re
eive substage the 
oordinators gather report messagesand all pro
essors gather restart messages. Let R be the set of pro
es-sors that sent a restart message. For any 
oordinator 
, let z1
 ; :::; zk

be the set of TIDs re
eived in report messages. In the 
ompute sub-stage 
 sets D
  D
 [ Sk
i=1fzi
g and P
 to the set of pro
essors fromwhi
h 
 re
eived report messages. In the send substage, 
oordinator 
multi
asts the message summary(D
; P
) to the pro
essors in P
 and R.Any pro
essor in P
 sends the message info(U`; L`) to pro
essors in R.stage 3. In the re
eive substage pro
essors in R re
eive info(U`; L`) mes-sages and pro
essors in P
 and R re
eive summary(D
; P
) messages.In the 
ompute substage, a restarted pro
essor q sets L`;q  L` andU`;q  U`. Let (D1w; P 1w); :::; (Dkww ; P kww ) be the sets re
eived in summarymessages by pro
essor w. Pro
essor w sets Dw  Diw and Pw  P iwfor an arbitrary i 2 1; :::; kw and updates its lo
al view L`;w as des
ribedbelow. The send substage is not used.Loal view update rule. In phase 0 the lo
al view L0;w of any pro
essor w 
ontainsall the pro
essors in P ordered by their PIDs, and the �rst layer is a singleton set. LetL`;w = h�0;�1; :::;�ji be the lo
al view of pro
essor w for phase `. We distinguish twopossible 
ases.Case 1. Phase ` is unattended. Let R` be the set of restarted pro
essors whi
h sendrestart messages. Let R0 be the set of pro
essors of R` that are not already in the lo
alview L`;w. Let hR0i be the pro
essors in R0 ordered a

ording to their PIDs. The lo
al20



CoordinatorWorkerknows L,P,U,DRestarted
�� RR

Stage 2Stage 1 Stage 3Performone task re
eivereport updateD,P summaryupdateR re
eivesummary updateD,P,Lreport re
eiverestart inforestart re
eiverestart updateR re
eiveinfosummary updateD,P,LN
Figure 4: A phase of algorithm AR (for algorithm AN ignore the bottom line, whi
h representsrestarted pro
essors, and all the messages referring to it).view for the next phase is L`+1;w = h�1; :::;�ji � hR0i. The operator � pla
es pro
essorsof R0, in the order hR0i, into the last layer �j till this layer 
ontains exa
tly the doubleof the pro
essors of layer �j�1 and possibly adds a new layer �j+1 to a

ommodate theremaining pro
essors of hR0i. That is, newly restarted pro
essors whi
h are not yet in theview, are appended at the end of the old view. Noti
e that restarted pro
essors, whi
hre
eive info messages, know the old view L`.Case 2. Phase ` is attended. Let R` be the set of restarted pro
essors. Sin
e thephase is attended summary messages are re
eived by all the live pro
essors (in
ludingthe restarted ones). Any pro
essor w updates Pw as des
ribed in stage 3. Pro
essor wknows the set R`. The lo
al view L`+1;w for the next phase is stru
tured a

ording tothe martingale prin
iple and 
ontains all the pro
essors in Pw [R` ordered a

ording totheir PIDs.If there are no restarts, algorithm AR behaves as algorithm AN. Figure 4 provides agraphi
al des
ription of both algorithms.4.2 Corre
tness of ARIn this se
tion we show that algorithm AN solves the do-all problem for the failuremodel F (26)FSR. Given an exe
ution of the algorithm we say that the exe
ution is good if itis an exe
ution allowed by F (26)FSR. Hen
e we have to prove that the algorithm solves theproblem for any good exe
ution.A restarted pro
essor has no information about the ongoing 
omputation, and thus
annot a
tively parti
ipate in the 
omputation, until it gets a 
han
e to 
ommuni
atewith other pro
essors. Moreover, if a pro
essors 
ompletes two 
onse
utive phases it isable to a
quire information about the 
omputation in the �rst of the two phases and to21



transfer it to other pro
essors in the se
ond of the two phases. We will show that having,at any point during any exe
ution, a pro
essor that is operational for 26 
onse
utivesteps is suÆ
ient for our algorithm. This allows for the largest number of steps, 8, thatmay be \wasted" be
ause this is just short of the 9 steps that 
onstitute a phase, plustwo 
omplete phases, i.e., 18 steps, as des
ribed above. This intuition is made formal inthe proofs in this se
tion.Formally we use the following de�nitions.De�nition 4.1 A live pro
essor is said to be \fully a
tive" at a parti
ular time t duringphase `, if it stays alive from the start of phase `� 1 through time t.De�nition 4.2 A live pro
essor is said to be a \witness" for phase ` if it stays alive forthe duration of phases `� 1 and `.We remark that the di�eren
e between a pro
essor fully a
tive in phase ` and a witnessof phase ` is that the witness is guaranteed, by de�nition, to survive the entire phase `,while the fully a
tive pro
essor may fail before the end of phase `. Hen
e a fully a
tivepro
essor 
annot guarantee transfer of state information while the witness 
an.Lemma 4.1 In a good exe
ution, there is a witness for any phase.Proof: A good exe
ution has a 26-restri
ted failure pattern. Thus for any step i, thereis at least one pro
essor that stays alive for the next 26 steps. Noti
e that 8 of thesestep may be spent waiting for the beginning of the next phase (if the pro
essor has justrestarted in step i). However the remaining 18 steps are enough to guarantee that thepro
essor stays alive for the next two phases, sin
e ea
h phase 
onsists of 9 steps. 2The witness of phase ` is always a pro
essor fully a
tive in phase `. Next we show thatat the beginning of ea
h phase every fully a
tive pro
essor has 
onsistent knowledge ofthe ongoing 
omputation.Lemma 4.2 In a good exe
ution of algorithm AR, for any two pro
essors w; v fully a
tiveat the beginning of phase `, we have that L`;w = L`;v and that U`;w = U`;v.Proof: By indu
tion on the number of phases. For the base 
ase we need to prove thatthe lemma is true for the �rst phase. Initially we have that L0;w = L0;v = hPi andUw = Uv = T . Hen
e the base 
ase is true.Assume that the lemma is true for phase `. We need to prove that it is true for phase`+ 1. Let w and v be two pro
essors fully a
tive at the beginning of phase `+ 1.First we 
laim that at the beginning of stage 3 of phase `, we have L`;w = L`;v andU`;w = U`;v. Indeed, if w and v are fully a
tive also at the beginning of phase `, then the
laim follows by the indu
tive hypothesis. If pro
essor w (resp. v) has just restarted and22



is not yet fully a
tive in phase `, then it sends a restart message in stage 1 of phase`. By Lemma 4.1, there is a witness for phase `. Hen
e pro
essor w (resp. v) re
eivesa info message from the witness and thus at the beginning of stage 3 of phase ` it hasU`;w = U` (resp. U`;v = U`) and L`;w = L` (resp. L`;v = L`).We now distinguish two 
ases: phase ` is attended and phase ` is unattended.Case 1. Phase ` is not attended. Then no summary messages are re
eived by w and vand in stage 3 of phase ` they do not modify their sets U`;w and U`;v. The lo
al view ofboth pro
essors is modi�ed in the same way (
ase 1 of the lo
al view update). Hen
e wehave that U`+1;w = U`+1;v and L`+1;w = L`+1;v.Case 2. Phase ` is attended. Then there is at least one 
oordinator 
ompleting thephase. Let 
1; :::; 
k be the 
oordinators for phase `. Sin
e we have reliable multi
ast, thereport message of ea
h worker rea
hes all 
oordinators that are alive. Thus the summarymessages sent by 
oordinators are all equal. Let summary(D;P ) one su
h a message. Sin
ewe have reliable multi
ast, both pro
essors w and v re
eive summary(D;P ) messages fromthe 
oordinators. Hen
e in stage 3 of phase ` pro
essors w and v set D`+1;w = D`+1;v = Dand thus we have U`+1;w = U`+1;v. Pro
essors w and v also set P`+1;w = P`+1;v = P anduse the same rule (
ase 2 of the lo
al view update rule) to update the lo
al view. Hen
ewe have L`+1;w = L`+1;v. 2Be
ause of the previous lemma we 
an de�ne the view L` = L`;w, the set of availablepro
essors P` = P`;w, the set of done tasks D` = D`;w and the set of una

ounted tasksU` = U`;w, all of them referred to the beginning of phase `, where w is any fully a
-tive pro
essor. Noti
e that restarted (non-fully-a
tive) pro
essors may have in
onsistentknowledge of these quantities.Remember that we denote by p` the 
ardinality of the set of live pro
essors for phase`, i.e., p` = jP`j, and by u` the 
ardinality of the set of una

ounted tasks for phase `,i.e., u` = jU`j.In the following lemmas we prove safety (no live pro
essor or undone task is forgotten)and progress (tasks exe
ution) properties, whi
h imply the 
orre
tness of the algorithm.Lemma 4.3 In any exe
ution of algorithm AR, a pro
essor fully a
tive at the beginningof phase ` belongs to P`.Proof: If pro
essor w is fully a
tive at the beginning of phase `�1, then by the indu
tivehypothesis it belongs to P`�1. Pro
essor w is taken out of the set P` only if a 
oordinatordoes not re
eive a report message from w in phase ` � 1. Sin
e pro
essor w survivesphase `� 1 then it sends the report message in phase `� 1. Hen
e it belongs to P`.If pro
essor w is not fully a
tive at the beginning of phase ` � 1, then it restarted inphase `�1. Thus at the end of phase `�1 pro
essor w is re-integrated in the lo
al viewsof phase `. Hen
e it belongs to P`. 2Lemma 4.4 In any exe
ution of algorithm AR, if a task z does not belong to U` then ithas been exe
uted in phases 1; 2; :::; `� 1. 23



Proof: The proof is the same as the proof of Lemma 3.3. 2Lemma 4.5 In a good exe
ution of algorithm AR, for any phase ` we have that u`+1 �u`.Proof: Consider phase `. If there are no restarts, then, by the 
ode, no task is addedto the set of undone tasks. If there are restarts, a restarted pro
essor w has U`;w = T .By Lemma 4.1, there is a pro
essor v whi
h is a witness for phase `. Then pro
essor wre
eives the info(U`; L`) message from pro
essor v and hen
e sets U`;w = U`. Hen
e alsowhen pro
essors restart no task is added to the set of undone tasks. 2Lemma 4.6 In any good exe
ution of algorithm AR, for any attended phase ` we havethat u`+1 < u`.Proof: Sin
e phase ` is attended, there is at least one 
oordinator 
 alive in phase `.A 
oordinator must be a fully a
tive pro
essor (a restarted pro
essor needs to 
ompletea phase in order to known the 
urrent view and be
ome 
oordinator). By Lemma 4.3pro
essor 
 belongs to P` and thus it exe
utes one task. Hen
e at least one task isexe
uted and 
onsequently at least one task is taken out of U`. By Lemma 4.5, no taskis added to U` during phase `. 2As for algorithm AN, given a parti
ular exe
ution, we denote by �1; �2; :::; �� theattended phases and by �i the unattended period in between phases �i and �i+1.Lemma 4.7 In a good exe
ution of algorithm AR any unattended period 
onsists of atmost minflog p; log fg phases.Proof: Consider the unattended period �i. As argued in Lemma 3.6 the views at thebeginning of �i is a tree-like view.By Lemma 4.3 and by the lo
al view update rule for unattended phases, any pro
essorfully a
tive at the beginning of a phase ` of �i belongs to P` and thus to L`. By thelo
al view update rule for unattended phases, we have that eventually there is a phase`0 su
h that all fully a
tive pro
essors are supposed to be 
oordinators of phase `0 (thatis, the �rst layer of L`0 
ontains all the pro
essors fully a
tive at the beginning of phase`0). By Lemma 4.1, phase `0 has a witness. The witness is a fully a
tive pro
essor andby de�nition it survives the entire phase. Hen
e, phase `0 is attended.The upper bounds on the number of phases follow from the tree-like stru
ture of theviews. With the same argument used in Lemma 3.6 we have that the number of phasesof �i is at most log f . The log p bound follows from the fa
t that by doubling thenumber of expe
ted 
oordinators for ea
h unattended phase, after at most log p phasesall pro
essors are expe
ted to be 
oordinators and thus at least one of them (the witness)survives the phase. 224



Theorem 4.8 In a good exe
ution of algorithm AR the algorithm terminates and all theunits of work are performed.Proof: By Lemma 4.3 fully a
tive pro
essors are always part of the 
omputation, sothe 
omputation never ends if there are fully a
tive pro
essors and U` is not empty. ByLemma 4.1 any phase has a witness whi
h is a fully a
tive pro
essor. The lo
al knowledgeabout the outstanding tasks is sound, by Lemma 4.4. For every 1 + log p phases there isat least one attended phase, by Lemma 4.7. Hen
e, by Lemmas 4.5 and 4.6, the numberof una

ounted tasks de
reases by at least one in every 1 + log p phases. Thus afterat most O(t log p) phases all the tasks have been performed. During the next attendedphase this information is disseminated and the algorithm terminates. 24.3 Analysis of ARWe next analyze the performan
e of algorithm AR in terms of the available pro
essorsteps S used and the numberM of messages sent. To assess S we partition it into Sa spentduring the attended phases and Su spent during the unattended phases. So S = Sa+Su.In the following lemmas we assess the available pro
essor steps of algorithm AR.Re
all that good exe
utions are those exe
utions whose failure pattern is allowedby F (26)FSR. We also re
all that �1; �2; :::; �� denote the attended phases, �i denote theunattended period in between phases �i and �i+1 and that p` and u` denote, respe
tively,the size of the set P` of fully a
tive pro
essors for phase ` and the size of the set U` ofundone tasks for phase `.Lemma 4.9 In a good exe
ution of algorithm AR we have Sa = O(t+ p log p+ f).Proof: By Theorem 4.8 the algorithm terminates.We �rst a

ount for all those steps spent by a pro
essor after a restarts and before thepro
essor either fails again or be
omes fully a
tive, that is, it is in
luded in the set P` fora phase `, and thus is 
ounted for in p`. The number of su
h steps spent for ea
h restartis bounded by a 
onstant. Hen
e the available pro
essor steps spent is O(r), whi
h isO(f).Next we a

ount for all the remaining part of Sa by distinguishing two possible 
ases:Case 1. All attended phases �k su
h that p�k � u�k . The load balan
ing rule assuresthat at most one pro
essor is assigned to a task. Hen
e the available pro
essor steps usedin this 
ase 
an be 
harged to the number of tasks exe
uted, whi
h is at most t+ f .Case 2. All attended phases su
h that p�k > u�k . We arrange the tasks that wereexe
uted and a

ounted for during su
h phases in the order by the phase in whi
h theyare performed (for tasks exe
uted in the same phase the order does not matter). Lethb1; b2; : : : ; bmi be su
h a list. Noti
e that m � p be
ause u�k < p�k � p, and on
e25



the inequality u�k � p starts to hold, it remains true in phases �i for i � k. We thenpartition these tasks into disjoint adja
ent segments Zi:Zi = �bk : pi+ 1 � m� k + 1 < pi� :By the load balan
ing rule, at mostpm� k + 1 � pi + 1p = i + 1pro
essors are assigned to ea
h task in Zi, be
ause when a pro
essor is assigned for thelast time to task bk, there are at least m � k + 1 una

ounted tasks. The size of Zi 
anbe estimated as follows: jZij � pi � pi+ 1� p�1i � 1i+ 1�= pi(i + 1) :Hen
e the available pro
essor steps used is less thanX1�i�m pi(i + 1) � (i+ 1) � p X1�i�p 1i= O(p log p) :Combining all the 
ases we obtain Sa = O(t + p log p+ f). 2Lemma 4.10 In a good exe
ution of algorithm AR we have Su = O(Sa+f)�minflog p; log fg).Proof: Consider the unattended period �i. At the beginning of this period there are piavailable pro
essors. By Lemma 4.7, for ea
h of these pro
essors we need to a

ount forminflog p; log fg steps spent in period i. Summing up over all attended phases, we havethat the part of Su for these pro
essors isminflog p; log fg � �Xi=1 p�i = Sa �minflog p; log fg:Ea
h restart 
an 
ontribute additionally at most minflog p; log fg pro
essor steps be
auseif the pro
essor stays alive past phase �i+1, its 
ontribution is already a

ounted for. Sin
ethe number of restarts r is r � f , the bound follows. 2Theorem 4.11 In a good exe
ution of algorithm AR the available pro
essor steps isS = O((t+ p log p+ f) �minflog p; log fg).26



Proof: The available pro
essor steps S of algorithm AR is given by S = Sa + Su. Thetheorem follows from Lemmas 4.10 and 4.9. 2Remark. A lower bound of 
(t + p log p) [1℄ is known for any algorithm that performstasks by balan
ing loads of surviving pro
essors in ea
h time step. Although that lowerbound was derived for the shared-memory model of 
omputation, the result does notuse any arguments involving shared-memory. The work of algorithm AR in
ludes a
ontribution that 
omes within a fa
tor of minflog p; log fg relative to that lower bound.As we have similarly remarked for algorithm AN, this suggests that improving the workresult is diÆ
ult and that better solutions may have to involve a trade-o� between thework and message 
omplexities. 2We now assess the message 
omplexity. The analysis is similar to the one donefor algorithm AN. The di�eren
e is that we need to a

ount also for messages sent byrestarted pro
essors. However the approa
h used to analyze the message 
omplexity ofalgorithm AN works also for algorithm AR.We distinguish between the attended phases pre
eded by a nonempty unattendedperiod and the attended phases not pre
eded by unattended periods. We let Mu be thenumber of messages sent in �i�1�i, for all those i's su
h that �i�1 is nonempty and welet Ma be the number of messages sent in �i�1�i, for all those i's su
h that �i�1 is empty(
learly in these 
ases we have �i�1�i = �i). Next we estimate Ma and Mu and thus themessage 
omplexity M of algorithm AR.Lemma 4.12 In a good exe
ution of algorithm AR we haveMa = O(t+p log p= log log p+f).Proof: We �rst a

ount for messages sent by restarted pro
essors and responses tothose messages. For ea
h restart the number of restart messages sent is bounded bya 
onstant and one info and one summary message are sent to a restarted pro
essorbefore it be
omes fully a
tive. Hen
e the total number of messages sent due to restartsis O(r) = O(f).The remaining messages 
an be estimated as in Lemma 3.11. In a phase ` wherethere is a unique 
oordinator the number of messages sent is 2p`. By the de�nition ofMa, messages 
ounted in Ma are messages sent in a phase �i su
h that �i�1 is empty.This means that the phase previous to �i is �i�1 whi
h, by de�nition, is attended.Hen
e by the lo
al view update rule of attended phases we have that �i has a unique
oordinator. Thus phase �i gives a 
ontribution of at most 2p�i messages to Ma. Hen
eMa � P�i=1 2p�i = 2Sa. The lemma follows from Lemma 4.9. 2Lemma 4.13 In any good exe
ution of algorithm AR we have Mu = O(fp).27



Proof: We �rst a

ount for messages sent by restarted pro
essors and responses to thosemessages. The argument is the same as in Lemma 4.12. The total number of messagessent be
ause of restarts is O(f).Next we estimate the remaining messages as done in Lemma 3.12. First we noti
e thatin any phase the number of messages sent is O(
p) where 
 is the number of 
oordinatorsfor that phase. Hen
e to estimate Mu we simple 
ount all the supposed 
oordinators inthe phases in
luded in �i�1�i, where �i�1 is nonempty.Let i be su
h that �i�1 is not empty. Be
ause of the stru
ture of the lo
al view, we havethat the total number of supposed 
oordinators in all the phases of �i�1�i is 2fi�1 + 1 =O(fi�1) where fi�1 is the number of failures during �i�1. Hen
e the total number ofsupposed 
oordinators, in all of the phases 
ontributing to Mu, is P�i=1O(fi�1) = O(f).Thus Mu is O(fp). 2Theorem 4.14 In a good exe
ution of algorithm AR the number of messages sent isM = O(t+ p log p+ fp).Proof: The total number of messages sent is M = Ma +Mu. The theorem follows fromLemmas 4.12 and 4.13. 25 Dis
ussionWe have 
onsidered the do-all problem whi
h 
onsists of performing t tasks on a dis-tributed system of p fault-prone syn
hronous pro
essors. We presented the �rst algorithmfor the model with pro
essor failures and restarts. Previous algorithms do not allow pro-
essor restarts. Prior algorithmi
 approa
hes relied on the single 
oordinator paradigmin whi
h the 
oordinator is ele
ted for the time during whi
h the progress of the 
ompu-tation depends on it. However this approa
h is not e�e
tive in the general model withpro
essor restarts: an omnis
ient adversary 
an always stop the single 
oordinator whilekeeping alive all other pro
essors thus preventing any global progress. In this paperwe have used a novel multi-
oordinator paradigm in whi
h the number of simultaneous
oordinators in
reases exponentially in response to 
oordinator failures. This approa
henables e�e
tive do-all solutions that a

ommodate pro
essor restarts. Moreover, whenthere are no restarts, the performan
e of the algorithm is 
omparable to that of previousalgorithms.There are two areas where improvements 
an be sought. It appears not diÆ
ultto show that in our algorithms worker-to-
oordinator multi
asts need not be reliable. Aworthwhile resear
h dire
tion is to design algorithms whi
h use our aggressive 
oordinatorparadigm and unreliable 
oordinator-to-worker 
ommuni
ation. It is also interesting to28




onsider the models where pro
essors have some stable storage. This may help redu
ethe relian
e on broad
asts as the sole means for information propagation.For the fail-stop/restart model we developed an algorithmwhi
h tolerates failure/restartpatterns that are 26-restri
ted; a 26-restri
ted failure pattern is one su
h that for any 26
onse
utive steps of the algorithm there is at least one pro
essor alive in all the 26 steps.The 
onstant 26 depends on the algorithm. We 
onje
ture that our algorithm 
an beeasily modi�ed by \squeezing" the phase into two stages, instead of the three used in thepresentation for the sake of 
larity. With this modi�
ation 17-restri
ted failure patterns
an be tolerated. A di�erent approa
h may solve the problem for k-restri
ted exe
utionswith a smaller k. However the problem is not solvable for 1-restri
ted exe
utions and,as remarked in Se
tion 2, there is a qualitative di�eren
e between 1-restri
ted exe
utionsand k-restri
ted exe
utions, with k � 2. It is also 
lear that in order to a
hieve solutionsthat work for k-restri
ted exe
utions for small k it is ne
essary to use more messages. Forexample for 2-restri
ted exe
utions there must be transfer of state information in ea
hstep.Finally, it is also interesting to 
onsider the failure models where k-restri
tion isimposed not on at least one pro
essor as we have done, but on at least q pro
essors,where q is a failure model parameter. Su
h de�nition yields families of failure modelsF (k;q)FS and F (k;q)FSR, and more eÆ
ient algorithms 
ould be sought for these models. Thisis be
ause the failure models are more benign, i.e., F (k;1)FS � F (k;q)FS and F (k;1)FSR � F (k;q)FSR forq > 1.A
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