Performing Tasks on Synchronous
Restartable Message-Passing Processors*

Bogdan S. Chlebus’ Roberto De Prisco? Alex A. Shvartsman®

September 15, 2000

Abstract

We consider the problem of performing ¢ tasks in a distributed system of p fault-
prone processors. This problem, called DO-ALL herein, was introduced by Dwork,
Halpern and Waarts. Our work deals with a synchronous message-passing dis-
tributed system with processor stop-failures and restarts. We present two new
algorithms based on a new aggressive coordination paradigm by which multiple
coordinators may be active as the result of failures. The first algorithm is tolerant
of f < p stop-failures and it does not allow restarts. It has available processor
steps (work) complexity S = O((t + plogp/loglog p) log f) and message complex-
ity M = O(t + plogp/loglogp + fp). Unlike prior solutions, our algorithm uses
redundant broadcasts when encountering failures and, for p = ¢ and large f, it
achieves better work complexity. This algorithm is used as the basis for another
algorithm that tolerates stop-failures and restarts. This new algorithm is the first
solution for the DO-ALL problem that efficiently deals with processor restarts. Its
available processor steps complexity is S = O((t + plogp + f) - min{logp,log f}),
and its message complexity is M = O(t+plogp+ fp), where f is the total number
of failures.

Keywords: fault-tolerance, distributed systems, load balancing, processor restarts,
work.

*A preliminary version of this work appeared as [2]. This work was supported by the following
contracts: ARPA N00014-92-J-4033 and F19628-95-C-0118, NSF 922124-CCR, ONR-AFOSR F49620-
94-1-01997, KBN 8 T11C 036 14, and DFG-Graduiertenkolleg “Parallele Rechnernetzwerke in der Pro-
duktionstechnik” ME 872/4-1, DFG-SFB 376 “Massive Parallelitat: Algorithmen, Entwurfsmethoden,
Anwendungen”. The research of the third author was supported in part by the NSF CAREER Award
CCR-9984778 and by the NSF Grant CCR-9988304. The research of the first and the third authors was
partly done while visiting Heinz Nixdorf Institut, Universitit-GH Paderborn.

Hnstytut Informatyki, Uniwersytet Warszawski, ul. Banacha 2, 02-097 Warszawa, Poland. E-mail:
chlebus@mimuw.edu.pl.

'Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square
NE43-368, Cambridge, MA 02139, USA and Dipartimento di Informatica ed Applicazioni, University of
Salerno, 84081 Baronissi (SA), Italy. E-mail: robdep@theory.lcs.mit.edu.

iDepartment of Computer Science and Engineering, University of Connecticut, 191 Auditorium
Road, U-155, Storrs, CT 06269, USA, and Laboratory for Computer Science, Massachusetts In-
stitute of Technology, 545 Technology Square NE43-316, Cambridge, MA 02139, USA. E-mail:
alex@theory.lcs.mit.edu.

1 Introduction

Achieving efficient distributed solutions for specific problems depends on our ability to
effectively exploit parallelism in a system consisting of multiple processors. This is often
challenging because the set of processors available to a computation may dynamically
change. Such changes may occur due to processor failures or processors becoming un-
available during periods when they are required to perform other unrelated tasks, or
due to repaired or idle processors joining the computation already in progress. A ba-
sic problem that can readily benefit from adaptively parallel solutions is the problem of
performing a number of similar, independent and idempotent tasks. By the similarity of
tasks we mean that the task executions consume equal or comparable resources. By the
independence of the tasks we mean that the completion of any task does not affect any
other task. By the idempotence of the tasks we mean that each task can be executed
multiple times or concurrently without negatively impacting the final result. Examples
of such problems are checking all the points in a large solution space, trying to generate
a witness or refute its existence, or simply performing a number of similar independent
calculations.

Here we consider the abstract problem of performing ¢ tasks in a synchronous message
passing distributed environment consisting of p processors, which are subject to failures
and restarts. Failures are crash failures, i.e., a faulty processor stops and does not
perform any further actions. Restarted processors resume computation in a predefined
initial state, i.e., no stable storage is assumed. We refer to such a problem as the DO-ALL
problem.

Algorithmic solutions for the DO-ALL problem in the message-passing models of com-
putation can be evaluated according to their computational effectiveness that measures
the number of computation steps taken in performing the tasks, and according to their
communication efficiency that measures the amount of communication needed to perform
the tasks. Dwork, Halpern and Waarts [6], the first to consider the DO-ALL problem,
use a work measure defined as the number of tasks executed, counting multiplicities, to
assess the computational efficiency. This work measure accounts only for steps taken by
processors while executing the tasks of the DO-ALL problem; processor steps taken for
coordination or waiting for messages are not counted. Another measure of work, the
available processor steps, defined by Kanellakis and Shvartsman [10], takes into account
all steps taken by the processors, that is, both steps taken in executing the ¢ tasks and any
other steps, including idling, taken by the available processors. Thus the available pro-
cessor steps measure [10] is more conservative than the work measure of [6]. Let W (¢, p)
be the work complexity and S(t,p) be the available processor steps complexity of some
DO-ALL algorithm in some failure model. It is always the case that W (¢,p) = O(S(t, p)),
since S(t,p) counts the idle/wait steps, which are not included in W (¢, p). The equality
W (t,p) = S(t,p) can be achieved, for example, by algorithms that perform at least one
task during any fixed time period. In our work we use the available processor steps
measure.

Communication efficiency is gauged using the message complexity that accounts for
the number of messages sent during the computation, or, when the messages substantially
vary in size, using the bit complexity that accounts for the number of bits sent. When
processors communicate using broadcasts (multicasts), it is possible to measure the com-
munication complexity either in terms of the total number of broadcast messages, or in
terms of the number of messages destined to all recipients targetted by the broadcasts.
In this work we use the more conservative communication complexity measure by taking
into account all messages created as the result of a broadcast. For example, we count a
single broadcast to p processors as p messages.

Dwork et al. also use the effort complexity, defined as the sum of the work and
message complexities. This approach makes sense for algorithms for which the work
and the message complexities are similar. However, this makes it difficult to compare
relative efficiency of algorithms that exhibit varying trade-offs between the work and the
communication efficiencies. De Prisco, Mayer and Yung [5] evaluate DO-ALL algorithms
using a “lexicographic” criterion: first evaluate an algorithm according to its available
processor steps and then according to its message complexity. This approach assumes
that optimization of the computational steps is more important than that of the message
complexity. In this paper we consider the available processor steps, denoted by S, and
the message complexity, denoted by M, as two independent measures of efficiency of
algorithms.

It is not difficult to formulate trivial solutions to DO-ALL in which each processor
performs each of the ¢ tasks. Such solutions have S = Q(¢(p+ 1)), where r is the number
of restarts, and they do not require any communication. Solutions that achieve better
efficiency in S trade messages for computation steps.

Review of prior work. Algorithms solving the DO-ALL problem have been provided by
Dwork, Halpern and Waarts [6], by De Prisco, Mayer and Yung [5], and by Galil, Mayer
and Yung [7]. These deterministic algorithms are formulated for failure models that
allow processor failures but disallow processor restarts. The point-to-point messaging
between non-faulty processors is assumed to be reliable. In a synchronous system with
these assumptions processor failures are detectable, for example using a timeout, and
such processors are modeled using the fail-stop processor abstraction of Schlichting and
Schneider [15].

Dwork, Halpern and Waarts [6] developed the first algorithms for the DO-ALL prob-
lem. One algorithm presented in [6] (protocol B) has effort O(t + p/p), with work
contributing the cost O(t + p) towards the effort, and message complexity contributing
the cost O(py/p). The running time of the algorithm is O(t + p). The algorithm uses the
synchrony of the system to detect failures by means of time-outs. In this algorithm the
t tasks are divided into chunks and each of these is divided into subchunks. Processors
checkpoint their progress by multicasting the completion information to subsets of pro-
cessors after performing a subchunk, and broadcasting to all processors after completing
chunks of work. Another algorithm in [6] (protocol C) has effort O(t + plogp). It has
optimal work of O(t + p), message complexity of O(plogp), and time O(p?(t + p)2'*7).

Thus the reduction in message complexity is traded-off for a significant increase in time.
Yet another algorithm of [6] (protocol D) obtains work optimality and is designed for
maximum speed-up, which is achieved with a more aggressive checkpointing strategy,
thus trading-off time for messages. The message complexity is quadratic in p for the
fault-free case, and in the presence of a failure pattern of f < p failures, the message
complexity degrades to O(f p?).

De Prisco, Mayer and Yung [5] present an algorithm which has the available processor
steps O(t + (f + 1)p) and message complexity O((f + 1)p). The available processor
steps and communication efficiency approach requires keeping all the processors busy
doing tasks, simultaneously controlling the amount of communication. Their algorithm
operates as follows. At each step all the processors have an overestimate of the set
of all the available processors. One processor is designed to be the coordinator and
is responsible for the progress of the computation. It allocates the outstanding tasks
according to some allocation rule and waits for notifications of the tasks which have been
performed. The coordinator changes over time. To avoid a quadratic upper bound for S
substantial processor slackness (p < t) is assumed.

Another efficient algorithm was developed by Galil, Mayer and Yung [7]. Working in
the context of Byzantine agreement with stop-failures (for which they establish a message-
optimal solution), they improved the message complexity of [5] to O(fp® + min{f +
1,logp}p), for any positive £, while achieving the available processor steps complexity of
Ot + (f+1)p).

In [5] a lower bound of Q(¢+ (f 4 1)p) for algorithms that use the stage-checkpointing
strategy is proved, this bound being quadratic in p for f comparable with p. However
there are algorithmic strategies that have the potential of circumventing the quadratic
bound. Consider the following scenarios. In the first one we have ¢ = o(p), f > p/2, and
the algorithm assigns all tasks to every processor. Then S = O(pt) = o(t + (f + 1)p),
because fp = O(p?). This naive algorithm has a quadratic S for p = O(¢). In the
second example assume that the three quantities p, t and f are of comparable magnitude.
Consider the algorithm in which all the processors are coordinators, execution of tasks is
interleaved with communication, and the outstanding tasks are evenly allocated among
the live processors based on their identifiers. The tasks allocation is done after each
round of exchanging messages about which processors are still available and which tasks
have been successfully performed. One can show that S = O(plogp/loglogp). This
bound is o(t + (f + 1)p) for f > p/2 and ¢t = p. Unfortunately the number of messages
exchanged is more than quadratic, and can be Q(p?logp/loglogp). These examples
suggest a possibility of performance better than S = O(t+ (f + 1)p), however the simple
algorithms discussed above have either the available processor steps quadratic in p, or
the number of messages more than quadratic in p in the case when p, ¢t and f are of
the same order. One interesting result of our paper is showing that an algorithm can
be developed which has both the available processor steps which is always subquadratic,
and the number of messages which is quadratic only for f comparable to p, even with
restarts.

Previous deterministic algorithms are designed so that at each step there is at most
one coordinator; if the current coordinator fails then the next available processor takes
over, according to a time-out strategy. Having a single coordinator helps to bound the
number of messages, but a drawback of such approach is that any protocol with at most
one active coordinator is bound to have S = Q(¢t + (f + 1)p). Namely, consider the
following behavior of the adversary: while there is more than one operational processor,
the adversary stops each coordinator immediately after it becomes one and before it
sends any messages. This creates pauses of Q(1) steps, giving the Q((f + 1)p) part,
where f is the number of stop-failures (f < p). Eventually there remains only one
processor which has to perform all the tasks, because it has never received any messages,
this gives the remaining Q(¢) part. A lower-bound argument for stage-checkpointing
strategies is formally presented in [5]. Moreover, when processor restarts are allowed,
any algorithm that relies on a single coordinator for information gathering might not
terminate, because the adversary can always kill the current coordinator, keeping alive
all the other processors so that no progress is made.

Summary of contributions. All previous algorithms do not consider the possibil-
ity that a faulty processor is repaired and reintegrated into the system. In this pa-
per we present the first algorithm that solves the DO-ALL problem allowing processor
restarts. We introduce a new algorithmic technique based on an aggressive coordination
paradigm that permits multiple concurrent coordinators. This approach is suggested
by the earlier observation that algorithms with only one coordinator cannot deal effi-
ciently with restarts. The number of coordinators is managed adaptively. When failures
of coordinators disrupt the progress of the computation, the number of coordinators is
increased; when the failures subside, a single coordinator is appointed. En route to the
solution for restartable processors we introduce a new algorithm for the DO-ALL problem
without restarts. This algorithm, that we call “algorithm AN” (Algorithm No-restart),
is tolerant of f < p stop-failures. It has available processor steps complexity! S =
O((t+plogp/loglogp)log f) and message complexity M = O(t+ plogp/loglogp+ fp).
Algorithm AN is the basis for our second algorithm, called “algorithm AR” (Algorithm
with Restarts), which tolerates stop-failures and restarts. Its available processor steps
complexity is S = O((t + plogp + f) - min{logp,log f}), and its message complexity is
M = O(t + plogp + fp), where f is the number of failures. The results are summarized
in Figure 1.

Our algorithm AN is more efficient in terms of S than the algorithms in [5] and [7]
when f, p and ¢ are comparable; the algorithm also has efficient message complexity.
Algorithms AN and algorithm AR come within a log f (and log p) factor of the respective
lower bounds [10] proved in the context of the shared-memory model of computation for
any algorithms that balance loads of surviving processors in each constant-time step.

Our algorithms assume that the communication is reliable. If a processor sends a
message to another operational processor and when the message arrives at the desti-
nation the processor is still operational, then the message is received. Moreover, if an

!The expression “log f” stands for 1 when f < 2 and log, f otherwise; all logarithms are to the base 2.

4

S: available processor steps M: message complexity
No 5] O(t+(f+1)p) O((f+1)p)
restarts | [7] O(t+(f+1)p) O(fp® + min{f +1,logp}p)
(f <p) | AN O((t + plogp/loglogp) log f) O(t 4+ plogp/loglogp + fp)
Restarts | AR | O((t + plogp + f) - min{log p, log f}) O(t +plogp + fp)
(f <p+r)

Figure 1: Efficiency of the solutions in [5, 7] and algorithms AN and AR (the solutions
in [6] consider a different notion of work complexity and focus on evaluation of effort).

operational processor sends a multicast message and then fails, then either the message
is sent to all destinations or to none at all. Such multicast is received by all operational
processors. Prior solutions do not make this assumption, although they do not solve the
problem of processor restarts. The availability of reliable multicast simplifies solutions for
non-restartable processors, but dealing with processor restarts remains a challenge even
when such broadcast is available. There are several reasons for considering solutions with
such reliable multicast. First of all, in a distributed setting where processors cooperate
closely, it becomes increasingly important to assume the ability to perform efficient and
reliable broadcast or multicast. This assumption might not hold for extant WANSs, but
broadcast LANSs (e.g., Ethernet and bypass rings) have the property that if the sender is
transmitting a multicast message, then the message is sent to all destination. Of course
this does not guarantee that such multicast will be received, however when a processor
is unable to receive or process a message, e.g., due to unavailable buffer space or failure
of the network interface hardware at the destination, this can be interpreted as a failure
of the receiver. From the standpoint of the sender, the availability of hardware-assisted
broadcast makes the communication cost of sending a broadcast message comparable to
the communication cost of sending a single point-to-point message. However, since mul-
tiple receivers may have to process the broadcast message, we are using a conservative
cost measure that assumes that the communication cost of a multicast is proportional
to the number of recipients. Secondly, by separating the concerns between the reliability
of processors and the underlying communication medium, we are able to formulate solu-
tions at a higher level of modularity so that one can take advantage of efficient reliable
broadcast algorithms (cf. [8]) without altering the overall algorithmic approach. Lastly,
our approach presents a new venue for optimizing DO-ALL solutions and for beating the
Q(t + (f + 1)p) lower bound of stage-checkpointing algorithms [5].

We conjecture that with minor modifications, our algorithms remain correct and
efficient even if worker-to-coordinator multicasts are not reliable. However coordinators
still need to use reliable broadcast.

For the fail-stop/restart models we assume that a processor loses its state upon a fail-
ure and that its state is reset to some known initial state upon a restart. Our algorithms
cannot take direct advantage of such a possibility, and it would be interesting to explore

the benefits of having stable storage.

We believe that it is important to consider processor restarts in general-purpose dis-
tributed computation. For example, important communication services such as group
communication systems [4] are in part motivated by the need to re-integrate processors
that have either previously failed or were unable to communicate. In this work we make
new contributions to the study of complexity of doing work in the presence of failures
and restarts.

Other related work. The DO-ALL problem for the shared-memory model of computa-
tion, where it is called WRITE-ALL, was introduced and studied by Kanellakis and Shvarts-
man [10, 11]. Parallel computation using the iterated DO-ALL paradigm is the subject
of several subsequent papers, most notably the work of Kedem, Palem and Spirakis [12],
Martel, Park and Subramonian [14] and Kedem, Palem, Rabin and Raghunathan [13].
Kanellakis, Michailidis and Shvartsman [9] developed a technique for controlling redun-
dant concurrent access to shared memory in algorithms with processor stop-failures. This
is done with the help of a structure they call processor priority tree. In this work we use
a similar structure in the qualitatively different message-passing setting. Furthermore,
we are able to use our structure with restartable processors.

Kanellakis and Shvartsman [11] give matching lower and upper bounds on solving the
DO-ALL problem for algorithms that are able to choose the best possible assignment of
processors to tasks, for example using an oracle. These lower and upper bounds were
developed for the shared-memory model of computation, however the bounds apply,
verbatim, to the message-passing model (when the oracle is omniscient). For the model
with stop-failures, this bound is ¢ + plog p/ loglog p and for the model with restarts, this
bound is t + plogp. A component of the upper bound on work of our algorithms comes
within a small multiplicative factor of these bounds. For the algorithm AN this factor is
log f, and for the algortihm AR this factor is min{logp,log f}.

A randomized solution for the DO-ALL problem is presented by Chlebus and Kowal-
ski [3]. Their work is for the model of faults in which an adversary chooses at most ¢ - p
processors prior to the start of the computation, for a fixed constant 0 < ¢ < 1, and then
may fail any of these processors at any time, while the remaining processors will stay
operational. The randomized algorithm has both the expected available processor steps
and message complexity of O(t + p- (1 +log" p — log*(p/t))), where log" is the number
of times the log function has to be applied to its argument to yield the result that is
no larger than 1. This is in contrast with the lower bound Q(t + p - logt/loglogt) on
the available processor steps required in the worst case by any deterministic algorithm
in this setting.

The structure of the rest of the paper is as follows. Section 2 contains definitions and
gives a high-level view of the algorithms. Section 3 includes the presentation of algorithm
AN with a proof of its correctness and an analysis. Section 4 gives algorithm AR with
a proof of its correctness and an analysis. Section 5 concludes with remarks and future
work.

2 Model and algorithmic preliminaries

In Section 2.1 we describe the distributed setting considered and in Section 2.2 we intro-
duce the main ideas underlying our algorithms.

2.1 Model of computation

Distributed setting. We consider a distributed system consisting of a set P of p pro-
cessors. We assume that the set P is fixed and is known to all processors in P. Processors
have unique identifiers (PIDs) and the set of PIDs is totally ordered. Processors com-
municate by message passing. The distributed system is synchronous and we assume
that the processor clocks are globally synchronized. Processor activities are structured
in terms of steps that have some fixed known constant duration. In each step a processor
can either receive messages or perform some local computation or send messages to other
processors.

Messaging assumptions. We assume that the underlying network is fully connected,
that is, any processor can send messages to any other processor, and that messages are
not lost in transit or corrupted. Messages sent within one step are delivered before the
end of the next step. Thus we also assume that there is a known upper bound on message
delivery time. We assume that reliable multicast [8] is available. With reliable multicast
a processor ¢ can send a message to any set P C P of processors and all the processors
in P that are alive during the entire following step receive the message sent by ¢. Note
that in any step a processor may receive up to |P| messages (thus we assume that the
time needed to process a received message is small compared to the duration of the step).
We are not concerned with the size of messages; however, using bit-string set encoding,
each message sent by our algorithms contains O(max{t, p}) bits, where ¢ is the number
of tasks.

Tasks. We define a task to be a computation that can be performed by any processor in
one time step and its execution is independent of the execution of any of the other tasks.
The tasks are also idempotent, i.e., executing a task many times and/or concurrently has
the same effect as executing the task once. Tasks are uniquely identified by their task
identifiers (TIDs) and the set of TIDs is totally ordered. We denote by T the set of ¢
tasks and we assume that 7 is known to all the processors.

Models of failure. We are using the fail-stop processor model [15]. This means that
the processors fail by stopping and that in our synchronous setting processor failures can
be detected using a timeout. We consider both the case when no restarts are allowed and
the case when processors restart after a failure. A processor may stop at any moment
during the computation. A failed processor does not receive any messages and does not
perform any computation. Messages delivered to a faulty processor are lost. If restarts
are allowed, a processor can restart at any point after a failure. We assume that during

a single step a faulty processor can restart at most once (e.g., a processor can restart in
response to a clock tick). Upon a restart the state of the restarted processor is reset to its
initial state, but the processor is aware of the restart. Since an arbitrary time may elapse
between the failure of a processor to its restart, the knowledge of the restarted processor
may be arbitrarily out of date. Thus we assume a weak model where the processors do
not have stable storage that survives a failure. Stable storage could help, for example, for
processors to make individual computational progress when an adversary may completely
prevent processors from communicating with each other.

It is obvious that if any pattern of failures is allowed, that is, if no restrictions are
imposed on the adversary that causes failures, then computational progress can not be
guaranteed. For example, if all the processors fail then no progress is possible. Even if
processors restart, progress can be prevented. For example, consider the scenario in which
a subset of the processors is alive initially, these processors perform some computation,
and then they all crash while the processors in the remaining set restart without any
possibility of communication between the two sets. Since there is no stable storage, this
can be repeated forever without any progress in computation.

We will consider two families of failure models, one that allows failures but no restarts,
and another that allows restarts. The failure models impose some restriction on the failure
pattern that the adversary can cause. The following definition is used to qualify certain
allowable failure patterns.

Definition 2.1 Let k be a positive integer. A failure pattern is said to be “k-restricted”
if during any consecutive k steps 1,1+ 1,...,14+k — 1 there is at least one processor that
15 alive during all steps 1,2+ 1,...,1+k — 1.

We now define the failure models. Let fl(;ks) be the failure model defined as the set
of all failure patterns that are k-restricted, for £ > 0, and have no processor restarts.
The family FS of fail-stop failure models includes all ‘7_—1(?195) for non-negative k. Notice
that .7:1(;05) imposes no restrictions on the failure patterns, that is, all processors can fail in
this model. Similarly we define the failure model]—'%R as the set of all failure patterns
that are k-restricted, for £ > 0, and that include processor restarts. The family FSR
of fail-stop/restart failure models includes all f}kS)R for non-negative k. Also for the

fail-stop/restart failure models,]:I(vos)vR imposes no restrictions on the failure patterns.

With these definitions, we have that, for each £, fl(;ks) C]:I(vks)vR, .7:1(;]?1) C f}ks), and
fl(pk;Rl) C f}’“g,{. This is because in each case any failure pattern in the subset model
is also a failure pattern for the respective superset model, yet the superset models may

allow failure patterns not permitted by the respective subsets.

Given a failure pattern, we denote by f the number of failures and by r the number of
restarts. For the family FS we have that f is bounded from above by p and r = 0, while
for the family FSR we have that r < f < r + p. We define the size of a failure pattern
F to be the number of processor failures f, and we denote it by |F|. Our complexity

results depend on |F|, and since it is always the case that r < f, the main asymptotic
results will not involve 7.

The DO-ALL problem and termination conditions. First we define the problem.

Definition 2.2 Given a failure model, for any set T of tasks and the set P of processors,
the DO-ALL problem is to perform all tasks in T .

What we mean by performing all tasks is that a terminating algorithm that solves
the DO-ALL problem must execute all tasks and at least one processor is aware of this
fact. In the context of the model that has k-restricted failure patterns this means that
if an algorithm exists for this k£, then the algorithm may terminate in step 7 when each
processor that was active and did not fail in steps 7—k, ..., 7—1, 7 knows that all tasks
have been performed.

As we have noted earlier, the DO-ALL problem is not necessarily solvable in each
failure model. Let us first look at the fail-stop models. In }",(;Ug no solution is possible:
indeed if all processors fail before executing all the tasks in 7, then the tasks can never be
completed. Clearly we would like to solve the problem as long as at least one processor is
alive, that is, as long as f < p. By the definition of .7:[(;% we have that the failure patterns
allowed by .7:1(71; are exactly those failure patterns with f < p. There is a trivial solution
that works for fﬁ;: each processors performs all the task in 7. This solution, however is
not efficient. We provide an efficient algorithm that solves the DO-ALL problem for]:)(glg.
The algorithms in [5, 6, 7] also work for .7:1(71;. Since .7:1(71; is a superset of _7-"1(?’“5),, for any
k > 1, the solution for .7:1(71; is also a solution for _7-"1(?’“5),, (It can be shown that .7:1(;15) = fl(;ks)
for any k£ > 1, thus no algorithmic advantage can be achieved by increasing k.)

Next we look at the fail-stop/restart failure models. Since J:}Og is a subset of]:t(vong,
no solution is possible for]:I(vong. It is not hard to see that no solution is possible also
for }"%R. Indeed a 1-restricted failure pattern requires that at least one processor be
alive during any step. However with a stop-failure/restart model this is not sufficient to
guarantee progress. As we have remarked before, even if there is always one processor
alive progress can be prevented (the scenario in which half of the processors fail while
the other half of the processors restart is an example). Hence the best we can hope for
is to find a solution for }"%R. We notice that in a k-restricted execution, for k > 2, it is
guaranteed that processors’ lifetimes have some overlap and the bigger is k£ the bigger is
the overlap. For k£ = 2 such overlap can be as small as a single step. Hence in order to
not lose information about the ongoing computation (such loss, in the absence of stable
storage, prevents progress), it is necessary that processors exchange state information
during each step. Thus a solution that works for a small £ tends to have large message
complexity. We provide an efficient algorithm that solves the DO-ALL problem for }"%SR.
The constant 26 depends on our implementation of the algorithm. With a modest effort
the constant can be reduced to 17, as we explain later. Note also that there is a qualitative
distinction between fl(mls)R and f}ZS)R: processors’ lifetimes may not overlap in the former

while they must overlap in the latter. The difference between }",(;kgR and]:l(pk;Rl) when

k > 2 is quantitative: in the latter the overlap of processors’ lifetimes is one step longer
than in the former.

Performance measures. To evaluate the performance of our algorithms we use avail-
able processor steps and communication complexity. The available processor steps is the
number of steps taken by all the processors and the communication complexity is the
number of point-to-point messages sent. More formally let F be the set of allowed failure
patterns, that is, the failure model considered. For a computation subject to a failure
pattern F', F' € F, denote by p;(F') the number of live processors executing step 7 and by
m;(F') the number of point-to-point messages sent during step i. For a given problem, if
the computation solves the problem by step 7 in the presence of the failure pattern F,
then the available processor steps complexity S is:

S !

FeF, |FI<f | &

and the communication complexity M is:

My = ehax {Z mi(F)} '

1<T

(Recall that in our definitions: (a) all steps of the operational processors are counted,
including any idle/waiting time, and (b) a single multicast counts for as many messages
as it has recipients.)

2.2 Overview of algorithmic techniques

Both algorithms proceed in a loop which is repeated until all the tasks are executed.
A single iteration of the loop is called a phase. A phase consists of three consecutive
stages. Each stage consists of three steps (thus a phase consists of 9 steps). In each stage
processors use the first step to receive messages sent in the previous stage, the second
step to perform local computation, and the third step to send messages. We refer to
these three step as the receive substage, the compute substage and the send substage.

Coordinators and workers. A processor can be a coordinator of a given phase. All
processors (including coordinators) are workers in a given phase. Coordinators are re-
sponsible for recording progress, while workers perform tasks and report on that to the
coordinators. In the first phase one processor acts as the coordinator. There may be
multiple coordinators in subsequent phases. The number of processors that assume the
coordinator role is determined by the martingale principle: if none of the expected coor-
dinators survive through the entire phase, then the number of coordinators for the next
phase is doubled. Whenever at least one coordinator survives a given phase, the number
of coordinators for the next phase is reduced to one.

10

If at least one processor acts as a coordinator during a phase and it completes the
phase without failing, we say that the phase is attended, the phase is unattended other-
wise.

Local views. Processors assume the role of coordinator based on their local knowledge.
During the computation each processor w maintains a list L,, = (g1, g2, ..., qx) of supposed
live processors. We call such list a local view. The processors in L,, are partitioned into
layers consisting of consecutive sublists of L,: L, = (A°, A',...,A7)2. The number of
processors in layer A*! for i = 0,1,...,5 — 1, is the double of the number of processors
in layer A’. Layer A7 may contain less processors. When A° = (g;) the local view can
be visualized as a binary tree rooted at processor ¢;, where nodes are placed from left to
right with respect to the linear order given by L,,. Thus, in a tree-like local view, layer A°
consists of processor ¢, layer A consists of 2 consecutive processors starting at processor
g2 and ending at processor ¢yi+1_1, with the exception of the very last layer that may
contain a smaller number of processors. Processors in a local view do not necessarily
appear in the order of processor identifiers (restarted processors are appended at the end
of the local view).

Example. Suppose that we have a system of p = 31 processors. Assume that for a phase ¢
all processors are in the local view of a worker w. in order of processor identifier, and that the
view is a tree-like view (e.g., at the beginning of the computation, for £ = 0). If in phase £
processors 1,5, 7,18, 20, 21,22, 23,24, 31 fail (hence phase £ is unattended) and in phase £ + 1,
processors 2,9, 15,25, 26,27, 28,29, 30 fail (phase ¢ 4+ 1 is attended by processor 3), then the
view of processor w for phase £+ 2 is the one in Figure 2. If in phase ¢+ 2 processor 3 fails and
processors 5,22, 29, 31 restart (phase £+ 2 is unattended) and in phase £ + 3 processors 4, 6 fail
and processors 1,2, 9 restart (phase £+ 3 is unattended) then the view of processor w for phase
¢+ 4 is the one in Figure 3.

———

Figure 2: A local view for phase £ 4 2.

The local view is used to implement the martingale principle of appointing coordina-
tors as follows. Let Ly, = (A% A", ..., A7) be the local view of worker w at the beginning
of phase . Processor w expects processors in layer A° to coordinate phase ¢; if no pro-
cessor in layer A° completes phase ¢, then processor w expects processors in layer Al to
coordinate phase /4 1; in general processor w expects processors in layer A’ to coordinate

2For sequences L = (ey,...,e,) and K = (dy,...,d,) we define (L,K) to be the sequence
<elz---:€n7d1:---7dm>-

11

——

__

Figure 3: A local view for phase £ + 4.

phase ¢ + i if processors in all previous layers A¥, ¢ < k < ¢ + i, did not complete phase
¢+ k. The local view is updated at the end of each phase (the update rule depends on
the algorithm).

Phase structure and task allocation. The structure of a phase of the algorithms is
as follows. Each processor w keeps its local information about the set of tasks already
performed, denoted D,,, and the set of live processors, denoted P,,, as known by processor
w. Set D, is always an underestimate of the set of tasks actually done and P, is always
an overestimate of the set of processors that are “available” from the start of the phase
(here any processors that restarted during the phase are not considered available, since
they might not have up to date information about the computation). We denote by U,
the set of unaccounted tasks, i.e., whose done status is unknown to w. Sets U, and D,
are related by U,, = T \ D,,, where T is the set of all the tasks. Given a phase ¢ we use
Py, Uy and Dy,, to denote the values of the corresponding sets at the beginning of
phase /.

Computation starts with phase 0 and any processor ¢ has all processors in L , and has
Dy, empty. At the beginning of phase ¢ each worker (that is, each processor) w performs
one task according to its local view L,,, and its knowledge of the set U, ,, of unaccounted
tasks, using the following load balancing rule. Worker w executes the task whose rank
is (i mod |Up,|)™ in the set Uy, of unaccounted tasks, where i is the rank of processor
w in the local view L;,. Then the worker reports the execution of the task to all the
processors that, according to the worker’s local view, are supposed to be coordinators
of phase ¢. For simplicity we assume that a processor sends a message to itself when
it is both worker and coordinator. Any processor ¢ that, according to its local view, is
supposed to be coordinator, gathers reports from the workers, updates its information
about P, and Uy, and broadcasts this new information causing the local views to be
reorganized. We will see that at the beginning of any phase ¢ all live processors have the
same local view L, and the same set U, of unaccounted tasks and that accounted tasks
have been actually executed. Restarted processors are reintegrated in the local views and
are available for computation in the subsequent phase. A new phase starts if U, is not
empty.

12

3 Algorithm AN for the fail-stop model

In this section we present, prove correct and analyze algorithm AN which solves the
DO-ALL for the failure model fﬁ}g.

3.1 Algorithm AN

The algorithm follows the algorithm structure described in the previous section. The
computation starts with phase number 0 and proceeds in a loop until all tasks are known
to have been executed. The following is a detailed description of a phase.

Phase / of algorithm AN:

STAGE 1. The receive substage is not used. In the compute substage, any
processor w performs a specific task z according to the load balancing
rule. In the send substage processor w sends a report(z) to any coordi-
nator, that is, to any processor in the first layer of the local view Ly ,,.

STAGE 2. In the receive substage the coordinators gather report messages.
For any coordinator ¢, let 2}, ..., zckc be the set of TIDs received. In the
compute substage ¢ sets D, < DCUUfgl{z(f}, and P, to the set of proces-
sors from which ¢ received report messages. In the send substage, co-
ordinator ¢ multicasts the message summary(D,, P.) to processors in P,.

STAGE 3. During the receive substage summary messages are received by live
processors. For any processor w, let (DL, PL), ... (Dkw Pk) be the
sets received in summary messages®. In the compute substage w sets
D, < D! and P, < P! for an arbitrary i € {1,...,k,} and updates
its local view L,, as described below. The send substage is not used.

Local view update rule. In phase 0 the local view L, of any processor w is a tree-like
view containing all the processors in P ordered by their PIDs. Let Ly, = (A% A', ..., A7)
be the local view of processor w for phase ¢. We distinguish two possible cases.

CAsSE 1. Phase / is unattended. Then the local view of processor w for phase ¢ + 1
iS Lf+1,u} - <A1, ceny AJ>

CASE 2. Phase /¢ is attended. Then processor w receives summary messages from
some coordinator in A”. Processor w computes its set P, as described in stage 3 (we will
see that all processors compute the same set P,). The local view L1, of w for phase
¢+ 1 is a tree-like local view containing the processors in P, ordered by their PIDs.

Figure 4 in Section 4 provides a graphical description of a phase of algorithm AN
(ignore the messages and steps of restarted processors).

3As we will see in Section 3.2, these messages are in fact identical.

13

3.2 Correctness of algorithm AN

In this section we show that algorithm AN solves the DO-ALL problem for the failure
model]—"fvl;. Given an execution of the algorithm we say that the execution is good if it
is an execution allowed by]—"gg. Hence we have to prove that the algorithm solves the
problem for any good execution.

Given an execution of the algorithm, we enumerate the phases. We denote the at-
tended phases of the execution by «q,as,..., etc. We denote by m; the sequence of
unattended phases between the attended phases «; and ;. We refer to m; as the
i (unattended) period; an unattended period can be empty. Hence the computation
proceeds as follows: unattended period 7y, attended phase a4, unattended period my, at-
tended phase as, and so on. We will show that after a finite number of attended phases
the algorithm terminates. If the algorithm correctly solves the problem, it must be the
case that there are no tasks left unaccounted after a certain phase «..

Next we show that at the beginning of each phase every live processor has consistent
knowledge of the ongoing computation. Then we prove safety (accurate processor and
task accounting) and progress (task execution) properties, which imply the correctness
of the algorithm.

Lemma 3.1 In any execution of algorithm AN, for any two processors w,v alive at the
beginning of phase ¢, we have that Ly, = Ly, and that Up,, = Uy,.

Proof: By induction on the number of phases. For the base case we need to prove that
the lemma is true for the first phase. Initially we have that Lg, = Lo, = (P) and
U, = U, = T. Hence the base case is true.

Assume that the lemma is true for phase £. We need to prove that it is true for phase
¢+ 1. Let w and v be two processors alive at the beginning of phase ¢ + 1. Since there
are no restarts, processors w and v are alive also at the beginning of phase /. By the
inductive hypothesis we have that L;,, = Ly, and Uy, = Uy,. We now distinguish two
possible cases: phase / is unattended and phase £ is attended.

CASE 1. Phase £ is unattended. Then there are no coordinators and no summary messages
are received by w and v during phase ¢. Thus the sets U, and U, are not modified during
phase £. Moreover processors w and v use the same rule to update the local view (case 1
of the local view update rule). Hence L1 = Liy1, and Uppqw = Uppq .

CASE 2. Phase ¢ is attended. Since L;,, = L, all the workers send report messages
to some coordinators ¢y, ..., cx. Since we have reliable multicast, the report message of
each worker reaches all the coordinators if the worker is alive, or no one if it failed. Thus
summary messages sent by the coordinators are all equal. Let summary(D, P) be one
such a message. Since the phase is attended and broadcast is reliable both processors
w and v receive the summary(D, P) message from at least one coordinator. Hence in
stage 3 of phase ¢, workers w and v set Dy;1, = D41, = D and consequently we have
Upi1w = Ups1,0. They also set Ppiy,, = Ppiy,, = P and use the same rule (case 2 of the
local view update rule) to update the local view. Hence Lyy1 = Ly - O

14

Because of Lemma 3.1, we can define L, = Ly, for any live processor w as the view
at the beginning of phase ¢, Py = Py, as the set of live processors, Dy = D,,, as the set
of done tasks and U, = Uy, as the set of unaccounted tasks at the beginning of phase /.

We denote by p, the cardinality of the set of live processors computed for phase /,
i.e., py = |Py|, and by u, the cardinality of the set of unaccounted tasks for phase ¢, i.e.,
ug = |Ug|. We have p; = p and ug = t.

Lemma 3.2 In any execution of algorithm AN, if a processor w is alive during the first
two stages of phase € then processor w belongs to Py.

Proof: Let w be a processor alive at the beginning of phase ¢. Processor w (whether it
is a coordinator or not) is taken out of the set P, only if a coordinator does not receive
a report message from w in phase ¢ — 1. If w is a coordinator and all coordinators are
dead, then w would be removed by the local view update rule. This is possible only if w
fails during phase ¢ — 1. Since w is alive at the beginning of phase ¢, processor w does
not fail in phase ¢ — 1. O

Lemma 3.3 In any good execution of algorithm AN, if a task z does not belong to U,
then it has been executed in one of the phases 1,2,..., 0 — 1.

Proof: Task z is taken out of the set U, by a coordinator ¢ when ¢ receives a report(z)
message in a phase prior to £. However a worker sends such a message only after executing
task z. Task z is taken out of the set U, by a worker w when w receives a summary(D,., P.)
message from some coordinator ¢ in phase prior to £, and z € D.. Again this means that
z must have been reported as done to c. O

Lemma 3.4 In any good execution of algorithm AN, for any phase ¢ we have that uy 1 <
Uyp.

Proof: By the code of the algorithm, no task is added to Uj. 0O
Lemma 3.5 In any good execution of algorithm AN, for any attended phase ¢ we have
that wpy 1 < ug.

Proof: Since phase £ is attended, there is at least one coordinator ¢ alive in phase ¢. By
Lemma 3.2 processor ¢ belongs to Py and thus it executes one task. Hence at least one
task is executed and consequently at least one task is taken out of U,. By Lemma 3.4,
no task is added to U, during phase /. O

Lemma 3.6 In a good execution of algorithm AN, any unattended period consists of at
most log f phases.

15

Proof: Consider the unattended period 7; and let £ be its first phase. First we claim
that the first layer of view L, consists of a single processor. This is so because (a) either
i =0 and ¢ = 0, in which case Ly is the initial local view, or (b) i > 0 and =; is preceded
by attended phase «;, in which case L, is constructed by the local update rule to have
a single processor in its first layer. By Lemma 3.2 any processor alive at the beginning
of phase ¢ belongs to P, and thus to L;,. By the local view update rule for unattended
phases, we have that eventually all processors in L, are supposed to be coordinators.
Since f < p, at least one processor is alive and thus eventually there is an attended
phase. The log f upper bound follows from the the martingale principle governing the
sizes of consecutive layers of view. The number of processors accommodated in the layers
of the view doubles for each successive layer. Hence, denoting by f; the number of failures
in 7m;, we have that the number of phases in 7; is at most log f;. Obviously f; < f. a

Finally we show the correctness of algorithm AN.

Theorem 3.7 In a good execution of algorithm AN, the algorithm terminates with all
tasks performed.

Proof: By Lemma 3.2 no live processor leaves the computation and since f < p the
computation ends only when U, is empty. By Lemma 3.3, when the computation ends,
all tasks are performed. It remains to prove that the algorithm actually terminates. By
Lemma 3.6 for every 1 + log f phases there is at least one attended phase. Hence, by
Lemmas 3.4 and 3.5, the number of unaccounted tasks decreases by at least one in every
1 + log f phases. Thus, the algorithm terminates after at most O(tlog f) phases. O

Since the algorithm terminates after a finite number of attended phases with all tasks
performed, we let 7 be such that U, ., = ¢, and consequently u,, ., = 0.

3.3 Analysis of AN

We now analyze the performance of algorithm AN in terms of the available processor
steps S and the number of messages M.

To assess S we consider separately all the attended phases and all the unattended
phases of the execution. Let S, be the part of S spent during all the attended phases and
Su be the part of S spent during all the unattended phases. Hence we have S = S, 4+ S,.

The following lemma uses the construction by Martel, as it is presented in Lemma 3.3.4
in [10].

Lemma 3.8 In any good execution of algorithm ANwe have S, = O(t+plogp/loglogp).

16

Proof: We consider all the attended phases ay, as, ..., @, by subdividing them into two
cases.

CAse 1: All attended phases «; such that p,, < u,,. The load balancing rule assures
that at most one processor is assigned to a task. Hence the available processor steps used

in this case can be charged to the number of tasks executed which is at most t+ f < t+p.
Hence S; = O(t + p).

CAse 2: All attended phases in which p,, > u,,. We let d(p) stand for logp/loglog p.
We consider the following two subcases.

SuBcAsE 2.1: All attended phases «; after which uq, , < uq,/d(p). Since uq,,, < g, <
Pa; < p and phase a, is the last phase for which u, > 0, it follows that subcase 2.1
occurs O(logy, p) times. The quantity O(log,,, p) is O(d(p)) because d(p)™®) = O(p).
No more than p processors complete such phases, therefore the part Sy, of S, spent in

this case is |
0
Sy =0 p& _
loglogp

SUBCASE 2.2: All attended phases «; after which u,,,, > u,,/d(p). Consider a particular

phase ;. Since in this case po, > uq,, by the load balancing rule at least [£*] but no

more than [Zi} processors are assigned to each of the u,; unaccounted tasks. Since u,,,,
g

tasks remain unaccounted after phase «;, the number of processors that failed during this
phase is at least

W |Pe] S te P
T lug, | T dlp) 2ug,
_ Da
2d(p)

Hence, the number of processors that proceed to phase «;,1 is no more than

Da; 1
) -

“ad) U)

Let oy, oy, ..., o, be the attended phases in this subcase. Since the number of processor
in phase a;, is at most p, the number of processors alive in phase a;; for j > 0 is at most
p(1— Ttp))j' Therefore the part Sy of S, spent in this case is bounded as follows:

p

S - -
[p—

Pa;

Summing up the contributions of all the cases considered we get S,:

1
Su=S1+ S +5=0 <t+pﬂ> .
loglogp

Lemma 3.9 In any good execution of algorithm AN we have S, = O(S, log f).

Proof: The number of processors alive in a phase of the unattended period 7; is at most
Pa;, that is the number of processors alive in the attended phase immediately preceding
m;. To cover the case when m, is not empty, we let g = 0 and p,, = |P| = p. By
Lemma 3.6 the number of phases in period 7; is at most log f. Hence the part of S,
spent in period 7; is at most p,, log f. We have

T

Su < Y (pa;l0g f)

1=0
= lng Zpai
i=1
< (p+Su)log f=O(S,log f) .

Theorem 3.10 In any good execution of algorithm AN the available processor steps is
S = O(log f(t + plogp/loglogp)).

Proof: The total available processor steps S is given by S = S, + S,. The theorem
follows from Lemmas 3.8 and 3.9. O

Remark. A lower bound of Q(t + plogp/loglogp) [10] (Theorem 4.2.4) is known for
any algorithm that performs tasks by balancing loads of surviving processors in each
time step. Although that lower bound was derived for the shared-memory model of
computation, the result does not use any arguments involving shared-memory. The work
of algorithm AN comes within a factor of log f (and thus also log p) relative to that lower
bound. This suggests that improving the work result is difficult and that better solutions
may have to involve a trade-off between the work and message complexities. O

We now assess the message complexity. First remember that the computation pro-
ceeds as follows: mg, oy, 71, Qa, ..., 71, . In order to count the total number of messages
we distinguish between the attended phases preceded by a nonempty unattended period
and the attended phases which are not preceded by unattended periods. Formally, we let
M, be the number of messages sent in 7, _jq;, for all those ¢’s such that m; | is nonempty
and we let M, be the number of messages sent in 7;_;q;, for all those ¢’s such that m;_;
is empty (clearly in these cases we have m; _j0; = ;). Next we estimate M, and M, and
thus the message complexity M of algorithm AN.

18

Lemma 3.11 In any ezecution of algorithm AN we have M, = O(t + plogp/loglogp).

Proof: First notice that in a phase ¢ where there is a unique coordinator the number
of messages sent is 2p,. By the definition of M,, messages counted in M, are messages
sent in a phase «; such that m; | is empty. This means that the phase previous to «; is
«;_1 which, by definition, is attended. Hence by the local view update rule of attended
phases we have that «; has a unique coordinator. Thus phase a; gives a contribution
of at most 2p,, messages to M,. It is possible that some of the attended phases do not
contribute to M,, however counting all the attended phases as contributing to M, we
have that M, <37, 2p,, = 2S,. The lemma follows from Lemma 3.8. O

Lemma 3.12 In any good ezxecution of algorithm AN we have M, = O(fp).

Proof: First we notice that in any phase the number of messages sent is O(cp) where ¢
is the number of coordinators for that phase. Hence to estimate M, we simple count all
the supposed coordinators in the phases included in m; _;q;, where m; _; is nonempty.

Let 7 be such that m;_; is not empty. Since the number of processors doubles in each
consecutive layer of the local view according to the martingale principle, we have that the
total number of supposed coordinators in all the phases of m; 1, is 2f; 1 +1 = O(f;_1),
where f; 1 is the number of failures during m; ;. Hence the total number of supposed
coordinators, in all of the phases contributing to M, is >.7_; O(fi_1) = O(f).

Hence the total number of messages counted in M, is O(fp). O

Theorem 3.13 In any good execution of algorithm AN the number of messages sent is
M = O(t + plogp/loglogp + fp).

Proof: The total number of messages sent is M = M, + M,. The theorem follows from
Lemmas 3.11 and 3.12. O

4 Algorithm AR for the fail-stop/restart model

In this section we present, prove correct and analyze algorithm AR which solves the
DO-ALL for the failure model }"%63{.

4.1 Algorithm AR

Algorithm AR is similar to algorithm AN; the difference is that there are added messages
to handle the restart of processors. After the restart, processor ¢ broadcasts restart(q)
messages in each step until it receives a response. Processors receiving such messages,

19

ignore them if these messages are not received in the receive substage of stage 2 of
a phase. Thus we can imagine that a restarted processor ¢ broadcasts a restart(q)
in the send substage of stage 1 of a phase ¢ (however we will count all the restart
messages in the message complexity). This message is then received by all the live and
restarted processors of that phase, and, as we will see shortly, processor ¢ is re-integrated
in the view for phase £ 4+ 1. Processor ¢ needs to be informed about the status of the
ongoing computation. Hence processors that have this information send the info(U,, L)
messages to processor ¢ with the set U, of unaccounted tasks and the local view L,. Next
we provide the detailed description for each phase. The parts that are new or that are
different in algorithm AR as compared to algorithm AN are italicized.

Phase ¢ of algorithm AR:

STAGE 1. The receive substage is not used. In the compute substage any
processor w performs a specific task z according to the load balancing
rule. In the send substage w sends a report(z) to any coordinator, that
is, to any processor in the first layer of L;,,. Any restarted processor
q broadcasts the restart(q) message informing all live processors of its
restart.

STAGE 2. In the receive substage the coordinators gather report messages
and all processors gather restart messages. Let R be the set of proces-
sors that sent a restart message. For any coordinator ¢, let 2!, ..., 2k
be the set of TIDs received in report messages. In the compute sub-
stage ¢ sets D, < D, U U {2’} and P, to the set of processors from
which ¢ received report messages. In the send substage, coordinator ¢
multicasts the message summary(D,, P.) to the processors in P, and R.

Any processor in P. sends the message info (Uy, L) to processors in R.

STAGE 3. In the receive substage processors in R receive info (U, Ly) mes-
sages and processors in P, and R receive summary(D,., P.) messages.
In the compute substage, a restarted processor q sets Ly, < Ly and
Uy < Up. Let (D), PL), ..., (D Pkw) he the sets received in summary
messages by processor w. Processor w sets D, < D! and P, + P!
for an arbitrary ¢ € 1, ..., k,, and updates its local view L, ,, as described
below. The send substage is not used.

Loal view update rule. In phase 0 the local view L, of any processor w contains
all the processors in P ordered by their PIDs, and the first layer is a singleton set. Let
Ly = (A% A" ..., A7) be the local view of processor w for phase . We distinguish two
possible cases.

CASE 1. Phase ¢ is unattended. Let R’ be the set of restarted processors which send
restart messages. Let R’ be the set of processors of R’ that are not already in the local
view Lg,. Let (R') be the processors in R ordered according to their PIDs. The local

20

T Stage 1 T Stage 2 T Stage 3 1
: : summary : :
I I I I
: | receive update : :
Coordinator i . . i report DP ! . . i
| 1 1 1 1 | 1 1 |
! Perform ! update ! receive update !
Work ! one task ! R ! summary D,P,L. !
OorKer
knows L,P,U,D 1 TEPOTL 1 receive inN !
1 I restart 1 1
| I I I I I I I |
J. ! ! H ! ! l R 1 1 l
Restarted receive update receive update
restart R info D,P,LL

summary
restart

Figure 4: A phase of algorithm AR (for algorithm AN ignore the bottom line, which represents
restarted processors, and all the messages referring to it).

view for the next phase is Ly 1, = (A',..., A7) & (R'). The operator & places processors
of R', in the order (R'), into the last layer A’ till this layer contains exactly the double
of the processors of layer A7~! and possibly adds a new layer A7*! to accommodate the
remaining processors of (R'). That is, newly restarted processors which are not yet in the
view, are appended at the end of the old view. Notice that restarted processors, which
receive info messages, know the old view L.

CASE 2. Phase ¢ is attended. Let R’ be the set of restarted processors. Since the
phase is attended summary messages are received by all the live processors (including
the restarted ones). Any processor w updates P, as described in stage 3. Processor w
knows the set R’. The local view Lyy1, for the next phase is structured according to
the martingale principle and contains all the processors in P,, U R ordered according to
their PIDs.

If there are no restarts, algorithm AR behaves as algorithm AN. Figure 4 provides a
graphical description of both algorithms.

4.2 Correctness of AR

In this section we show that algorithm AN solves the DO-ALL problem for the failure
model }"%63{. Given an execution of the algorithm we say that the execution is good if it
is an execution allowed by }"ggiz. Hence we have to prove that the algorithm solves the
problem for any good execution.

A restarted processor has no information about the ongoing computation, and thus
cannot actively participate in the computation, until it gets a chance to communicate
with other processors. Moreover, if a processors completes two consecutive phases it is
able to acquire information about the computation in the first of the two phases and to

21

transfer it to other processors in the second of the two phases. We will show that having,
at any point during any execution, a processor that is operational for 26 consecutive
steps is sufficient for our algorithm. This allows for the largest number of steps, 8, that
may be “wasted” because this is just short of the 9 steps that constitute a phase, plus
two complete phases, i.e., 18 steps, as described above. This intuition is made formal in
the proofs in this section.

Formally we use the following definitions.

Definition 4.1 A live processor is said to be “fully active” at a particular time t during
phase 0, if it stays alive from the start of phase ¢ — 1 through time t.

Definition 4.2 A live processor is said to be a “witness” for phase € if it stays alive for
the duration of phases £ — 1 and ¥.

We remark that the difference between a processor fully active in phase £ and a witness
of phase / is that the witness is guaranteed, by definition, to survive the entire phase /,
while the fully active processor may fail before the end of phase £. Hence a fully active
processor cannot guarantee transfer of state information while the witness can.

Lemma 4.1 In a good execution, there is a witness for any phase.

Proof: A good execution has a 26-restricted failure pattern. Thus for any step ¢, there
is at least one processor that stays alive for the next 26 steps. Notice that 8 of these
step may be spent waiting for the beginning of the next phase (if the processor has just
restarted in step 7). However the remaining 18 steps are enough to guarantee that the
processor stays alive for the next two phases, since each phase consists of 9 steps. O

The witness of phase £ is always a processor fully active in phase £. Next we show that
at the beginning of each phase every fully active processor has consistent knowledge of
the ongoing computation.

Lemma 4.2 In a good execution of algorithm AR, for any two processors w, v fully active
at the beginning of phase ¢, we have that Ly, = L, and that Uy, = Uy,.

Proof: By induction on the number of phases. For the base case we need to prove that
the lemma is true for the first phase. Initially we have that Ly, = Ly, = (P) and
U, = U, = T. Hence the base case is true.

Assume that the lemma is true for phase £. We need to prove that it is true for phase
¢+ 1. Let w and v be two processors fully active at the beginning of phase ¢ + 1.

First we claim that at the beginning of stage 3 of phase ¢, we have L;,, = L,, and
Urw = Uy Indeed, if w and v are fully active also at the beginning of phase /¢, then the
claim follows by the inductive hypothesis. If processor w (resp. v) has just restarted and

22

is not yet fully active in phase /¢, then it sends a restart message in stage 1 of phase
¢. By Lemma 4.1, there is a witness for phase ¢. Hence processor w (resp. v) receives
a info message from the witness and thus at the beginning of stage 3 of phase /¢ it has
Upw = Uy (resp. Upy = Uy) and Ly, = Ly (vesp. Ly, = Ly).

We now distinguish two cases: phase £ is attended and phase ¢ is unattended.

CASE 1. Phase ¢ is not attended. Then no summary messages are received by w and v
and in stage 3 of phase ¢ they do not modify their sets Uy ,, and U,. The local view of
both processors is modified in the same way (case 1 of the local view update). Hence we
have that Upy1 = Upy1p and Lpgy . = Liti .

CASE 2. Phase ¢ is attended. Then there is at least one coordinator completing the
phase. Let ¢y, ..., ¢x be the coordinators for phase £. Since we have reliable multicast, the
report message of each worker reaches all coordinators that are alive. Thus the summary
messages sent by coordinators are all equal. Let summary(D, P) one such a message. Since
we have reliable multicast, both processors w and v receive summary (D, P) messages from
the coordinators. Hence in stage 3 of phase ¢ processors w and v set Dy, = Dyy1, = D
and thus we have Uy, = Upti1,. Processors w and v also set Pyyy ., = Ppy1, = P and
use the same rule (case 2 of the local view update rule) to update the local view. Hence
we have Ly = Lot . O

Because of the previous lemma we can define the view L, = L;,, the set of available
processors Py = Py,,, the set of done tasks D, = D;,, and the set of unaccounted tasks
Ui = Uy, all of them referred to the beginning of phase ¢, where w is any fully ac-
tive processor. Notice that restarted (non-fully-active) processors may have inconsistent
knowledge of these quantities.

Remember that we denote by p, the cardinality of the set of live processors for phase
, i.e., p, = | Py, and by u, the cardinality of the set of unaccounted tasks for phase ¢,
i.e., Uy = |Ug‘

In the following lemmas we prove safety (no live processor or undone task is forgotten)
and progress (tasks execution) properties, which imply the correctness of the algorithm.

Lemma 4.3 In any execution of algorithm AR, a processor fully active at the beginning
of phase £ belongs to P,.

Proof: If processor w is fully active at the beginning of phase /—1, then by the inductive
hypothesis it belongs to P,_;. Processor w is taken out of the set P, only if a coordinator
does not receive a report message from w in phase ¢ — 1. Since processor w survives
phase £ — 1 then it sends the report message in phase ¢/ — 1. Hence it belongs to F;.

If processor w is not fully active at the beginning of phase ¢ — 1, then it restarted in
phase £ —1. Thus at the end of phase £ — 1 processor w is re-integrated in the local views
of phase ¢. Hence it belongs to F;. O

Lemma 4.4 In any execution of algorithm AR, if a task z does not belong to U, then it
has been executed in phases 1,2,...,0 — 1.

23

Proof: The proof is the same as the proof of Lemma 3.3. O

Lemma 4.5 In a good execution of algorithm AR, for any phase ¢ we have that usy 1 <
Uyp.

Proof: Consider phase £. If there are no restarts, then, by the code, no task is added
to the set of undone tasks. If there are restarts, a restarted processor w has Uy, = T.
By Lemma 4.1, there is a processor v which is a witness for phase ¢. Then processor w
receives the info(Uy, Ly) message from processor v and hence sets Uy, = Uy. Hence also
when processors restart no task is added to the set of undone tasks. O

Lemma 4.6 In any good execution of algorithm AR, for any attended phase ¢ we have
that Up1 < Uyg.

Proof: Since phase ¢ is attended, there is at least one coordinator ¢ alive in phase /.
A coordinator must be a fully active processor (a restarted processor needs to complete
a phase in order to known the current view and become coordinator). By Lemma 4.3
processor ¢ belongs to P, and thus it executes one task. Hence at least one task is
executed and consequently at least one task is taken out of U;. By Lemma 4.5, no task
is added to U, during phase /. O

As for algorithm AN, given a particular execution, we denote by a;, as, ..., o, the
attended phases and by 7; the unattended period in between phases «; and ;.

Lemma 4.7 In a good execution of algorithm AR any unattended period consists of at
most min{log p,log f} phases.

Proof: Consider the unattended period 7;. As argued in Lemma 3.6 the views at the
beginning of ; is a tree-like view.

By Lemma 4.3 and by the local view update rule for unattended phases, any processor
fully active at the beginning of a phase ¢ of 7; belongs to P, and thus to L,. By the
local view update rule for unattended phases, we have that eventually there is a phase
¢" such that all fully active processors are supposed to be coordinators of phase ¢ (that
is, the first layer of L, contains all the processors fully active at the beginning of phase
¢"). By Lemma 4.1, phase ¢’ has a witness. The witness is a fully active processor and
by definition it survives the entire phase. Hence, phase ¢’ is attended.

The upper bounds on the number of phases follow from the tree-like structure of the
views. With the same argument used in Lemma 3.6 we have that the number of phases
of m; is at most log f. The logp bound follows from the fact that by doubling the
number of expected coordinators for each unattended phase, after at most logp phases
all processors are expected to be coordinators and thus at least one of them (the witness)
survives the phase. O

24

Theorem 4.8 In a good execution of algorithm AR the algorithm terminates and all the
units of work are performed.

Proof: By Lemma 4.3 fully active processors are always part of the computation, so
the computation never ends if there are fully active processors and Uy is not empty. By
Lemma 4.1 any phase has a witness which is a fully active processor. The local knowledge
about the outstanding tasks is sound, by Lemma 4.4. For every 1 + log p phases there is
at least one attended phase, by Lemma 4.7. Hence, by Lemmas 4.5 and 4.6, the number
of unaccounted tasks decreases by at least one in every 1 + logp phases. Thus after
at most O(tlogp) phases all the tasks have been performed. During the next attended
phase this information is disseminated and the algorithm terminates. O

4.3 Analysis of AR

We next analyze the performance of algorithm AR in terms of the available processor
steps S used and the number M of messages sent. To assess S we partition it into S, spent
during the attended phases and S, spent during the unattended phases. So S = S, + S,.
In the following lemmas we assess the available processor steps of algorithm AR.

Recall that good executions are those executions whose failure pattern is allowed
by .7:1(@2532. We also recall that aq, as,...,a, denote the attended phases, m; denote the
unattended period in between phases «; and «;; and that p, and u, denote, respectively,
the size of the set P, of fully active processors for phase ¢ and the size of the set U, of
undone tasks for phase /.

Lemma 4.9 In a good execution of algorithm AR we have S, = O(t + plogp + f).

Proof: By Theorem 4.8 the algorithm terminates.

We first account for all those steps spent by a processor after a restarts and before the
processor either fails again or becomes fully active, that is, it is included in the set P, for
a phase £, and thus is counted for in p,. The number of such steps spent for each restart
is bounded by a constant. Hence the available processor steps spent is O(r), which is
o(f).

Next we account for all the remaining part of S, by distinguishing two possible cases:

CAsSE 1. All attended phases oy, such that p,, < u,,. The load balancing rule assures
that at most one processor is assigned to a task. Hence the available processor steps used
in this case can be charged to the number of tasks executed, which is at most ¢ + f.

CAseE 2. All attended phases such that p,, > wu,,. We arrange the tasks that were
executed and accounted for during such phases in the order by the phase in which they
are performed (for tasks executed in the same phase the order does not matter). Let
(b1, bg,...,by) be such a list. Notice that m < p because u,, < po, < p, and once

25

the inequality u,, < p starts to hold, it remains true in phases «a; for i > k. We then
partition these tasks into disjoint adjacent segments Z;:

Zi:{bk:,igm—k+1<1—?}.
141 1

By the load balancing rule, at most

b p
m-—k+1 "

I
=i+1

processors are assigned to each task in Z;, because when a processor is assigned for the
last time to task by, there are at least m — k 4+ 1 unaccounted tasks. The size of Z; can
be estimated as follows:

p
1+ 1

p
i(i+1)

| Zi]

VAN
EN k-]

IN
i

Hence the available processor steps used is less than

p . 1
— . (Z + 1) < p -
1<i2<mz(z+1) 15iep |
= O(plogp) .
Combining all the cases we obtain S, = O(t + plogp + f). O

Lemma 4.10 In a good execution of algorithm AR we have S, = O(S,+f)-min{log p,log f}).

Proof: Consider the unattended period m;. At the beginning of this period there are p;
available processors. By Lemma 4.7, for each of these processors we need to account for
min{log p, log f} steps spent in period i. Summing up over all attended phases, we have
that the part of S, for these processors is

min{logp,log f} - pa, = S, - min{logp, log f}.
i=1

Each restart can contribute additionally at most min{log p, log f} processor steps because
if the processor stays alive past phase «;1, its contribution is already accounted for. Since
the number of restarts r is r < f, the bound follows. O

Theorem 4.11 In a good execution of algorithm AR the available processor steps is
S=0O((t +plogp + f) - min{logp, log f}).

26

Proof: The available processor steps S of algorithm AR is given by S = S, +S,. The
theorem follows from Lemmas 4.10 and 4.9. a

Remark. A lower bound of Q(t + plogp) [1] is known for any algorithm that performs
tasks by balancing loads of surviving processors in each time step. Although that lower
bound was derived for the shared-memory model of computation, the result does not
use any arguments involving shared-memory. The work of algorithm AR includes a
contribution that comes within a factor of min{log p, log f} relative to that lower bound.
As we have similarly remarked for algorithm AN, this suggests that improving the work
result is difficult and that better solutions may have to involve a trade-off between the
work and message complexities. O

We now assess the message complexity. The analysis is similar to the one done
for algorithm AN. The difference is that we need to account also for messages sent by
restarted processors. However the approach used to analyze the message complexity of
algorithm AN works also for algorithm AR.

We distinguish between the attended phases preceded by a nonempty unattended
period and the attended phases not preceded by unattended periods. We let M, be the
number of messages sent in 7;_jq;, for all those ’s such that m; ; is nonempty and we
let M, be the number of messages sent in m; _;«;, for all those ¢’s such that m; ;| is empty
(clearly in these cases we have m;_ja; = a;). Next we estimate M, and M, and thus the
message complexity M of algorithm AR.

Lemma 4.12 In a good execution of algorithm AR we have M, = O(t+plogp/ loglog p+
f).

Proof: We first account for messages sent by restarted processors and responses to
those messages. For each restart the number of restart messages sent is bounded by
a constant and one info and one summary message are sent to a restarted processor
before it becomes fully active. Hence the total number of messages sent due to restarts

is O(r) = O(f).

The remaining messages can be estimated as in Lemma 3.11. In a phase ¢ where
there is a unique coordinator the number of messages sent is 2p,. By the definition of
M,, messages counted in M, are messages sent in a phase «; such that m; ; is empty.
This means that the phase previous to «; is «a;_; which, by definition, is attended.
Hence by the local view update rule of attended phases we have that «; has a unique
coordinator. Thus phase a; gives a contribution of at most 2p,, messages to M,. Hence
M, <37 1 2pa, = 25,. The lemma follows from Lemma 4.9. O

Lemma 4.13 In any good execution of algorithm AR we have M, = O(fp).

27

Proof: We first account for messages sent by restarted processors and responses to those
messages. The argument is the same as in Lemma 4.12. The total number of messages
sent because of restarts is O(f).

Next we estimate the remaining messages as done in Lemma 3.12. First we notice that
in any phase the number of messages sent is O(cp) where ¢ is the number of coordinators
for that phase. Hence to estimate M, we simple count all the supposed coordinators in
the phases included in m; _;q;, where m; _; is nonempty.

Let i be such that 7;_; is not empty. Because of the structure of the local view, we have
that the total number of supposed coordinators in all the phases of m; 1, is 2f; 1 +1 =
O(fi—1) where f; 1 is the number of failures during m; ;. Hence the total number of
supposed coordinators, in all of the phases contributing to M,, is >7_, O(fi_1) = O(f).
Thus M, is O(fp). O

Theorem 4.14 In a good execution of algorithm AR the number of messages sent is
M = O(t+plogp+ fp).

Proof: The total number of messages sent is M = M, + M,. The theorem follows from
Lemmas 4.12 and 4.13. O

5 Discussion

We have considered the DO-ALL problem which consists of performing ¢ tasks on a dis-
tributed system of p fault-prone synchronous processors. We presented the first algorithm
for the model with processor failures and restarts. Previous algorithms do not allow pro-
cessor restarts. Prior algorithmic approaches relied on the single coordinator paradigm
in which the coordinator is elected for the time during which the progress of the compu-
tation depends on it. However this approach is not effective in the general model with
processor restarts: an omniscient adversary can always stop the single coordinator while
keeping alive all other processors thus preventing any global progress. In this paper
we have used a novel multi-coordinator paradigm in which the number of simultaneous
coordinators increases exponentially in response to coordinator failures. This approach
enables effective DO-ALL solutions that accommodate processor restarts. Moreover, when
there are no restarts, the performance of the algorithm is comparable to that of previous
algorithms.

There are two areas where improvements can be sought. It appears not difficult
to show that in our algorithms worker-to-coordinator multicasts need not be reliable. A
worthwhile research direction is to design algorithms which use our aggressive coordinator
paradigm and unreliable coordinator-to-worker communication. It is also interesting to

28

consider the models where processors have some stable storage. This may help reduce
the reliance on broadcasts as the sole means for information propagation.

For the fail-stop/restart model we developed an algorithm which tolerates failure /restart
patterns that are 26-restricted; a 26-restricted failure pattern is one such that for any 26
consecutive steps of the algorithm there is at least one processor alive in all the 26 steps.
The constant 26 depends on the algorithm. We conjecture that our algorithm can be
easily modified by “squeezing” the phase into two stages, instead of the three used in the
presentation for the sake of clarity. With this modification 17-restricted failure patterns
can be tolerated. A different approach may solve the problem for k-restricted executions
with a smaller k. However the problem is not solvable for 1-restricted executions and,
as remarked in Section 2, there is a qualitative difference between 1-restricted executions
and k-restricted executions, with k£ > 2. It is also clear that in order to achieve solutions
that work for k-restricted executions for small k it is necessary to use more messages. For
example for 2-restricted executions there must be transfer of state information in each
step.

Finally, it is also interesting to consider the failure models where k-restriction is
imposed not on at least one processor as we have done, but on at least ¢ processors,
where ¢ is a failure model parameter. Such definition yields families of failure models
]:I(vkéq) and f}ks’g, and more efficient algorithms could be sought for these models. This
is because the failure models are more benign, i.e., f}ks’l))]:I(vkéq) and f}’“gﬁ D) f}’“g‘ﬁ for
qg>1.

Acknowledgments: We thank Moti Yung for several discussions of processor restart
issues and for encouraging this direction of research. We thank Greg Malewicz for several
helpful observations. Finally, we thank the anonymous referees for many comments that
had enabled us to improve the quality of the presentation.

References

[1] J. Buss, P.C. Kanellakis, P. Ragde, A.A. Shvartsman, “Parallel algorithms with processor
failures and delays”, Journal of Algorithms, vol. 20, pp. 45-86, 1996.

[2] B.S. Chlebus, R. De Prisco, and A.A. Shvartsman, “Performing Tasks on Restartable
Message-Passing Processors”, in Proc. 11th International Workshop on Distributed Algo-
rithms, Saarbrucken, Germany, Springer Lecture Notes in Computer Science 1320, pp.
96 110, 1997.

[3] B.S. Chlebus, and D.R. Kowalski, Randomization Helps to Perform Tasks on Processors
Prone to Failures, in Proc. 13th International Symp. on Distributed Computing, Bratislava,
Slovakia, Springer Lecture Notes in Comp. Sci., 1999.

[4] Communications of the ACM, Special Issue on Group Communication Services, vol. 39,
no. 4, 1996.

29

[5]

[15]

R. De Prisco, A. Mayer, and M. Yung, “Time-Optimal Message-Efficient Work Perfor-
mance in the Presence of Faults,” in Proc. 13th ACM Symposium on Principles of Dis-
tributed Computing, 1994, pp. 161-172.

C. Dwork, J. Halpern, O. Waarts, “Performing Work Efficiently in the Presence of Faults”,
SIAM J. on Computing, vol. 27(5), pp. 1457 - 1491, 1998. (Preliminary version appears
as “Accomplishing Work in the Presence of Failures” in Proc. of the 11" ACM Symp. on
Principles of Distr. Comp., pp. 91-102, 1992.)

7. Galil, A. Mayer, and M. Yung, “Resolving Message Complexity of Byzantine Agreement
and Beyond,” in Proc. 36th IEEE Symposium on Foundations of Computer Science, pp.
724-733, 1995.

V. Hadzilacos and S. Toueg, “Fault-Tolerant Broadcasts and Related Problems,” in Dis-
tributed Systems, 2nd Ed., S. Mullender, Ed., Addison-Wesley and ACM Press, 1993.

P.C. Kanellakis, D. Michailidis, A.A. Shvartsman, “Controlling Memory Access Concur-
rency in Efficient Fault-Tolerant Parallel Algorithms”, Nordic Journal of Computing, vol. 2,
pp. 146-180, 1995. (Prelimanry version in Proc. 7th International Workshop on Distributed
Algorithms, pp. 99-114, 1993.)

P.C. Kanellakis and A.A. Shvartsman, “Efficient Parallel Algorithms Can Be Made Ro-
bust,” Distributed Computing, vol. 5, pp. 201-217, 1992. (Prel. version in Proc. of the 8th
ACM Symp. on Principles of Distributed Computing, 1989, pp. 211 222.)

P.C. Kanellakis and A.A. Shvartsman, Fault- Tolerant Parallel Computation, ISBN 0-7923-
9922-6, Kluwer Academic Publishers, 1997.

Z.M. Kedem, K.V. Palem, and P. Spirakis, “Efficient Robust Parallel Computations,” in
Proc. 22nd ACM Symp. on Theory of Computing, pp. 138-148, 1990.

Z.M. Kedem, K.V. Palem, M.O. Rabin, A. Raghunathan, “Efficient Program Transforma-
tions for Resilient Parallel Computation via Randomization,” in Proc. 24th ACM Symp.
on Theory of Comp., pp. 306-318, 1992.

C. Martel, A. Park, and R. Subramonian, Work-Optimal Asynchronous Algorithms for
Shared Memory Parallel Computers, STAM J. Comput., 21 (1992) 1070-1099. (Prel. version
appears as C. Martel, R. Subramonian, and A. Park, “Asynchronous PRAMs are (Almost)
as Good as Synchronous PRAMs,” in Proc. 32d IEEE Symposium on Foundations of
Computer Science, pp. 590-599, 1990.)

R.D. Schlichting and F.B. Schneider “Fail-stop processors: An approach to designing fault-
tolerant computing systems”, TOCS 1, 3 (August 1983), 222-238.

30

