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Abstract. This paper develops a new 1/O automaton model called the
Clock General Timed Automaton (Clock GTA) model. The Clock GTA
is based on the General Timed Automaton (GTA) of Lynch and Vaan-
drager. The Clock GTA provides a systematic way of describing timing-
based systems in which there is a notion of “normal” timing behavior,
but that do not necessarily always exhibit this “normal” behavior. It can
be used for practical time performance analysis based on the stabilization
of the physical system.

We use the Clock GTA automaton to model, verify and analyze the
PAXOS algorithm. The PAXOs algorithm is an efficient and highly fault-
tolerant algorithm, devised by Lamport, for reaching consensus in a dis-
tributed system. Although it appears to be practical, it is not widely
known or understood. This paper contains a new presentation of the
PAXOS algorithm, based on a formal decomposition into several interact-
ing components. [t also contains a correctness proof and a time perfor-
mance and fault-tolerance analysis.
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1 Introduction

I/O automata are simple state machines with transitions labelled with named
actions. They are suitable for describing asynchronous and partially synchronous
distributed systems. The general timed automaton (GTA) model, introduced by
Lynch and Vaandrager [12, 13, 14], has formal mechanisms to represent the
passage of time and is suitable for modelling partially synchronous distributed
systems. In a partially synchronous distributed system, processes take actions
within ¢ time and messages are delivered within d time, for given constants /¢
and d. However these time bounds hold when the system exhibits a “normal”
timing behavior. Real distributed systems are subject to failures that may cause
a temporary abnormal timing behavior. Hence the above mentioned bounds of £
and d can be occasionally violated (timing failures). In this paper we develop an
I/0O automaton model, called the Clock GTA, which provides a systematic way of
describing both the normal and the abnormal timing behaviors of a distributed
system. The model is intended to be used for performance and fault-tolerance
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analysis of practical distributed systems based upon the stabilization of the
system. We use the Clock GTA to formally describe and analyze the PAXOS
algorithm, devised by Lamport [§] to solve the consensus problem.

Reaching consensus is a fundamental problem in distributed systems. Given
a distributed system in which each process starts with an initial value, to solve
a consensus problem means to give a distributed algorithm that enables each
process to eventually output a value of the same type as the input values, in
such a way that three conditions, called agreement, validity and termination,
hold. There are different definitions of the problem depending on what these
conditions require. Distributed consensus has been extensively studied. A good
survey of early results is provided in [7]. We refer the reader to [11] for a more
recent treatment of consensus problems.

Real distributed systems are often partially synchronous systems subject
to process, channel and timing failures and process recoveries. Any practical
consensus algorithm needs to consider the above practical setting. Moreover the
basic safety properties must not be affected by the occurrence of failures. Also,
the performance of the algorithm must be good when there are no failures, while
when failures occur, it is reasonable to not expect efficiency.

The PaAX0s algorithm meets these requirements. The model considered is a
partially synchronous distributed system where each process has a direct com-
munication channel with each other process. The failures allowed are timing
failures, loss, duplication and reordering of messages, and process stopping fail-
ures. Process recoveries are considered; some stable storage is needed. PAXO0S
is guaranteed to work safely, that is, to satisfy agreement and validity, regard-
less of process, channel and timing failures and process recoveries. When the
distributed system stabilizes, meaning that there are no failures, nor process re-
coveries, and a majority of the processes are not stopped, for a sufficiently long
time, termination is also achieved and the performance of the algorithm is good.
In [8] a variation of PAXOs that considers multiple concurrent runs of paxos for
reaching consensus on a sequence of values is also presented. We call this varia-
tion the MULTIPAXOS algorithm?. PAX0s has good fault-tolerance properties and
when the system is stable it combines those fault-tolerance properties with the
performance of an efficient algorithm, so that 1t can be useful in practice. In the
original paper [8], the PAX0s algorithm is described as the result of discoveries of
archaeological studies of an ancient Greek civilization. That paper contains also
a proof of correctness and a discussion of the performance analysis. The style
used for the description of the algorithm often diverts the reader’s attention.
Because of this, we found the paper hard to understand and we suspect that
others did as well. Indeed the PAX0s algorithm, even though it appears to be a
practical and elegant algorithm, seems not widely known or understood.

2 pAXOS is the name of the ancient civilization studied in [8]. The actual algorithm
is called the “single-decree synod” protocol and its variation for multiple consensus
is called the “multi-decree parliament” protocol. We use the name PAX0s for the
single-decree protocol and the name MULTIPAXOS for the multi-decree parliament
protocol.



This paper contains a new, detailed presentation of the paAxos algorithm,
based on a formal decomposition into several interacting components. It also
contains a correctness proof and a time performance and fault-tolerance analysis.
The MULTIPAXOS algorithm is also described together with an application to data
replication. The formal framework used for the presentation is provided by the

Clock GTA.

The correctness proof uses automaton composition and invariant assertion
methods. Composition is useful for representing a system using separate compo-
nents. We provide a modular presentation of the PAX0S algorithm, obtained by
decomposing it into several components. Each one of these components copes
with a specific aspect of the problem. The correctness of each piece is proved
by means of invariants, i.e., properties of system states that are always true in
an execution.

The time performance and fault-tolerance analysis 1s conditional on the sta-

bilization of the system behavior starting from some point in an execution. Using
the Clock GTA we prove that when the system stabilizes PAX0S reaches consen-
sus in 244 4+ 10nf 4 13d time and uses 10n messages, where n is the number of
processes. This performance is for a worst-case scenario. We also discuss the MUL-
TIPAXO0S protocol and provide a data replication algorithm using MULTIPAXOS.
With MULTIPAXOS the high availability of the replicated data is combined with
high fault tolerance.
Related work. The consensus algorithms of Dwork et al. [5] and of Chandra
and Toueg [2] bear some similarities with PAX0s. The algorithm of [5] also uses
rounds conducted by a leader, but the rounds are conducted sequentially, whereas
in PAXOS a leader can start a round at anytime and multiple leaders are allowed.
The strategy used in each round by the algorithm of [5] is different from the
one used by PAX0S. The time analysis provided in [5] is conditional on a “global
stabilization time” after which process response times and message delivery times
satisfy the time assumptions. This is similar to our stabilized analysis. A similar
time analysis, applied to the problem of reliable group communication, can be
found in [6].

The algorithm of Chandra and Toueg is based on the idea of an abstract fail-
ure detector. It turns out that failure detectors provide an abstract and modular
way of incorporating partial synchrony assumptions in the model of computa-
tion. One of the algorithmsin [2] uses the failure detector 8 which incorporates
the partial synchrony considered in this paper. That algorithm is based on the
rotating coordinator paradigm and as PAX0S uses majorities to achieve consis-
tency. The performances of the Toueg and Chandra algorithm and of the PAX0s
algorithm seem to be comparable.

Both the Chandra and Toueg algorithm and the Dwork et al. algorithm
consider a distributed setting that does not allow process restarts and channel
failures (however the Chandra and Toueg algorithm can be modified to work with
loss of messages). The PAXOs algorithm tolerates process restarts and channel
failures; this makes PAX0S more suitable in practice.

MULTIPAXOS can be easily used to implement a data replication algorithm.



In [10, 15] Liskov and Oki provide a data replication algorithm. It incorporates
ideas similar to the ones used in PAXOS.

PAXOS bears some similarities with the standard three-phase commit protocol
[17]. However the standard commit protocol requires a fixed leader while PAX0s
does not.

In [9] Lampson provides a brief overview of the PAX0s algorithm together
with key ideas for proving the correctness of the algorithm.

Cristian’s timed asynchronous model [3] is very similar to the distributed set-
ting considered in this paper. Our Clock GTA provides a formal way of modelling
the stability property of the timed asynchronous model.

In [16] Patt-Shamir introduces a special type of GTA used for the clock
synchronization problem. Our Clock GTA automaton considers only the local
time; our goal is to model good timing behavior starting from some point on
and thus we do not require synchronization of the local clocks.

2 Models

Our formal framework is provided by I/O automata models. I/O automata mod-
els are simple type of state machines suitable for describing asynchronous and
partially synchronous distributed systems. We use the general timed automaton
(GTA), model (see [11], Section 23.2). We introduce a new type of GTA, called
Clock GTA. We assume that the reader is familiar with the GTA model; briefly,
it is a labelled transition system model that includes a time-passage action v(¢)
that represents the passage of (real) time ¢.

2.1 The Clock GTA model

The Clock GTA model provides a systematic way of describing systems that may
exhibit timing failures for portions of their executions, but may behave nicely
for other portions. The ability to talk about such changing is crucial for realistic
performance fault-tolerance analysis of practical algorithms.

A Clock GTA 1s a GTA with a special component included in the state; this
special variable is called Clock and it assumes values in the set of real numbers.
The purpose of Clock is to model the local clock of the process. The only actions
that are allowed to modify Clock are the time-passage actions v(t). When a time-
passage action v(t) is executed, the Clock is incremented by an amount of time
t’ > 0 independent of the amount ¢ of time specified by the time-passage action.
Since the occurrence of the time-passage action v(t) represents the passage of
(real) time by the amount ¢, by incrementing the local variable Clock by any
amount ¢ we are able to model the passage of (local) time by the amount ¢’. As
a special case, we have that ¢ = ¢; in this case the local clock of the process is
running at the speed of real time.

In the following and in the rest of the paper, we use the notation s.z to denote
the value of state component z in state s.

Definition1. A time-passage step (si_1,v(¢), sg) of a Clock GTA is called reg-
ular if sp.Clock — sp_1.Clock = t; 1t 1s called irreqular if 1t is not regular.



Definition2. A timed execution fragment « of a Clock GTA is called regular
if all the time-passage steps of a are regular. It is called irregular if 1t is not
regular, 1.e., if at least one of its time-passage steps is irregular.

2.2 The distributed setting

We consider a complete network of n processes communicating by exchange
of messages in a partially synchronous setting. Each process of the system is
uniquely identified by its identifier ¢ € 7, where 7 1s a totally ordered finite set
of n identifiers, known by all processes. Each process of the system has a local
clock. Local clocks may run at different speeds (though in general we expect
them to run at the same speed as real time). We assume that a local clock
is available also for channels; though this may seem somewhat strange, it is
just a formal way to express the fact that a channel is able to deliver a given
message within a fixed amount of time, by relying on some timing mechanism
(which we model with the local clock). We use Clock GT automata to model
both processes and channels. We assume that processes take actions within /¢
time and that messages are delivered within d time, for given constants ¢ and
d. A timing failure is a violation of these time bounds. A timing failure can be
modelled with an irregular time-passage step.

Processes. We allow process stopping failures and recoveries and timing failures.
To formally model process stops and recoveries we model process ¢ with a Clock
GTA that has a special state component called Status; and two input actions
Stop; and Recover;. The state variable Status; reflects the current condition of
process ¢ and can be either stopped or alive. It is updated by actions Stop;
and Recover;. A process i is alive (resp. stopped) in a given state if in that state
we have Status; = alive (resp. Status; = stopped). A process i is alive (resp.
stopped) in a given execution fragment, if it is alive (resp. stopped) in all the
states of the execution fragment.

Between a failure and a recovery a process does not lose its state. We remark
that PAX0S needs only a small amount of stable storage; however, for simplicity,
we assume that the entire state of a process is in a stable storage.

Channels. We consider unreliable channels that can lose and duplicate messages.
Reordering of messages is allowed and it is not considered a failure. Timing
failures are possible. Figure 1 shows the signature® of a Clock GT automaton
CHANNEL; ; which models the channel from process ¢ to process j. Channel
failures are formally modelled as input actions Lose; ; (which deletes one of the
message currently in the channel), and Duplicate; ; (which duplicates one of the
message currently in the channel).
System stabilization. In the introduction we have pointed out that PAX0S satis-
fies termination when the system stabilizes. The definition of “nice” execution
fragment given below captures the requirements needed to guarantee termina-
tion.
% The code of this automaton, as well as the code of the other automata we will see
later, are omitted from this extended abstract and are deferred to the full paper.

The full code can be found in [4].



Signature of CHANNEL; ;

Input: Send(m); ;, Lose; ;, Duplicate; ;
Output: Receive(m); ;

Time-passage:  v(t)

Fig.1. Automaton CHANNEL; ;. The code is deferred to the full paper.

Definition 3. Given a distributed system, we say that an execution fragment o
is stable if every process is either alive or stopped in a, no Lose; ; and Duplicate; ;
actions occur in « and « 1s regular.

Definition4. Given a distributed system, we say that an execution fragment
a is nice if « 1s a stable execution fragment and a majority of the processes are
alive in a.

The next lemma provides a basic property of CHANNEL; ;.

Lemma5. In a stable execution fragment o of CHANNEL; ; beginning in a reach-
able state s and lasting for more than d time, we have that (i) all messages that
in state s are in the channel are delivered by time d, and (ii) any message sent
m o 1s delivered within time d of the sending, provided that o lasts for more
than d time from the sending of the message.

3 The consensus problem

In this section we formally define the consensus problem (we remark that several
variations of the definition of the consensus problem have been considered in the
literature). Each process i in the network receives as input an initial value v,
provided by an external agent by means of an action Init(v);. We denote by V
the set of possible initial values and, given a particular execution «, we denote
by V, the subset of V' consisting of those values actually used as initial values
in «, that is, those values provided by Init(v); actions.

To solve the consensus problem means to give an algorithm that, for any
execution a, satisfies

— Agreement: No two processes output different values in «.
— Validity: Any output value in a belongs to V.
and, for any admissible infinite execution «, satisfies

— Termination: If & = 8y and 4 is a nice execution fragment and for each
process ¢ alive in vy an Init(v); action occurred in «, then any process alive
in v eventually outputs a value.

The PAX0s algorithm solves the consensus problem defined above.
4 A failure detector and a leader elector

In this section we provide a failure detector algorithm and then we use it to
implement a leader election algorithm. The failure detector and the leader elector



we implement here are both sloppy, meaning that they are guaranteed to give
reliable information on the system only in a stable execution. However, this is
enough for implementing PAX0s.

Signature of DETECTOR;

Input: Receive(m);,i, Stop;, Recover;
Internal: Check(j);
Output: InformStopped(7)i, InformAlive(s):, Send(m);

Time-passage:  v(t)

Fig. 2. Automaton DETECTOR for process i. The code is deferred to the full paper.

A failure detector. Figure 2 shows the signature of Clock GTA DETECTOR;,
which detects failures. Automaton DETECTOR,; works by having each process con-
stantly sending “Alive” messages to each other process and checking that such
messages are received from other processes. The strategy used by DETECTOR; 1s a
straightforward one. For this reason it is very easy to implement. The failure de-
tector so obtained is not reliable in the presence of failures (Stop;, Lose; ;, irregu-
lar executions). However, in a stable execution fragment, automaton DETECTOR;
is guaranteed to provide reliable information on stopped and alive processes.

A leader elector. It 1s easy to use a failure detector to elect a leader: actions
InformStopped(j); and InformAlive(j); are used to update the current set of alive
processes and a common rule to elect the leader is used (the alive process with the
biggest identifier is elected leader). Figure 3 shows the signature of automaton
LEADERELECTOR;. We denote with S;ga the system consisting of DETECTOR;
and LEADERELECTOR,; automata for each process ¢ € 7 and CHANNEL; ; for each
1,j € T. Processes have a state variable Leader that contains the identifier of the
current leader. Formally we consider a process i to be leader if Leader; = i. This
definition allows multiple or no leaders. In a state s, there is a unique leader if
and only if there exist an alive process ¢ such that s.Leader; = 7 and for all other
alive processes j # ¢ it holds that s.Leader; = i. The following lemma holds.

Signature of LEADERELECTOR;

Input: InformStopped(7):, InformAlive(y5)i, Stop;, Recover;
Output: Leader;, NotLeader;

Fig.3. Automaton LEADERELECTOR for process ¢. The code is deferred to the full
paper.

The following lemma holds.
Lemma6. If an execution fragment o of Syga, starting in a reachable state
and lasting for more than 40+ 2d, is stable, then by time 40+ 2d, there is a state
occurrence s such that in state s and in all the states after s there is a unique
leader.



5 The paX0s algorithm

PAX0S was devised a very long time ago (the most accurate information dates it
back to the beginning of this millennium) but its discovery, due to Lamport, dates
back only to 1989 [8]. In this section we provide a new and detailed description
of PAXOS.

The core part of the algorithm is BASICPAX0S;. In BASICPAXO0S; processes try
to reach a decision by leading what we call a round. A process leading a round
1s the leader of that round. DETECTOR; and LEADERELECTOR; are used to elect
leaders. STARTERALG; makes the current leader start new rounds if necessary.
The description of BASICPAXO0S; is further subdivided into three components,
namely BPLEADER;, BPAGENT; and BPSUCCESS;. We will prove (Theorem 13)
that the system Spax ensures agreement and validity, and (Theorem 18) that
Spax guarantees also termination within 24¢ 4+ 10nf + 13d, when the system
executes a nice execution fragment. It is worth to remark that some automata
need to be able to measure the passage of time, while others do not. For the
latter, time bounds are used only for the analysis.

5.1 Automaton BASICPAXOS

We begin with an overview, then provide the code and the analysis.

Overview. The basic idea, which is the heart of the algorithm, is to propose
values until one of them is accepted by a majority of the processes; that value is
the final output value. Any process may propose a value by initiating a round for
that value. The process initiating a round is said to be the leader of that round
while all processes (including the leader itself) are said to be agents for that
round. Since different rounds may be carried out concurrently (several leaders
may concurrently initiate rounds), we need to distinguish them. Every round
has a unique identifier. A round number is a pair (x,4) where x is a nonnegative
integer and ¢ is a process identifier. The set of round numbers is denoted by R.
A total order on elements of R is defined by (z,i) < (y,j) iff z < yor,z =y
and ¢ < j. If » < v’ we say that round r precedes round r’. We remark that the
ordering on the round numbers is not related to the actual time when rounds
are started, i.e.; a round with a bigger round number can be conducted before a
round with a smaller round number.
Informally, the steps for a round are the following.

1. To initiate a round, the leader sends a “Collect” message to all agents®.

2. An agent that receives a message sent in step 1 from the leader of the round,
responds with a “Last” message giving its own information about rounds
previously conducted. It also commits to not accept any previous round. If
the agents is already committed for a round with a bigger round number
then it just sends an “OldRound” message.

* Thus it sends a message also to itself. This helps in that we do not have to specify
different behaviors for a process according to the fact that it is both leader and agent
or just an agent. We just need to specify the leader behavior and the agent behavior.



3. Once the leader has gathered more than n/2 “Last” messages, it decides,
according to some rules, the value to propose for its round and sends to
all agents a “Begin” message. The set of processes from which the leader
gathers information is called the info-quorum of the round. In order for the
leader to be able to choose a value for the round it is necessary that initial
values be provided. If no initial value is provided the leader must wait for
an initial value before proceeding with step 3.

4. An agent that receives a message sent in step 3 from the leader of the round,
responds with an “Accept” message by accepting the value proposed in the
current round. If the agent is committed for a round with a bigger number
then it just sends an “OldRound” message.

5. If the leader gets “Accept” messages from a majority of agents, then the
round is successful and the leader sets its own output value to the value
proposed in the round. The set of agents that accepts the value proposed by
the leader is called the accepting-quorum.

Since a successful round implies that the leader of the round reaches a deci-
sion, after a successful round the leader needs to broadcast the reached decision.

The most important issue 1s about the values that leaders propose for their
rounds. Indeed, since the value of a successful round is the output value of some
processes, we must guarantee that the values of successful rounds are all equal
in order to satisfy the agreement condition of the consensus problem. Agreement
is guaranteed by choosing the values of new rounds exploiting the information
about previous rounds from at least a majority of the processes so that, for any
two rounds there is at least one process that participated in both rounds. In more
detail, the leader of a round chooses the value for the round in the following way.
In step 1, the leader asks for information and in step 2 every agent responds with
the number of the latest round in which 1t accepted the value and the accepted
value (or with nil if the agent has not yet accepted a value). Once the leader
gets such information from a majority of the processes, which is the info-quorum
of the round, it chooses the value for its round to be equal to the value of the
latest round among all those it has heard from the agents in the info-quorum
or with its initial value if all processes in the info-quorum were not involved
in any previous round. Moreover, in order to keep consistency, if an agent tells
the leader of a round r that the last accepted round is round 7/, ' < r, then
implicitly the agent commits itself to not accept any other round v, r’ < v < r.

To end up with a decision value, rounds must be started until at least one is
successful. BASICPAXOS; guarantees agreement and validity, however, 1t is nec-
essary to make BASICPAXOS; start rounds to get termination. We deal with this
problem in section 5.3.

The code. In order to describe BASICPAXO0S; we provide three automata. One is
called BPLEADER; and models the “leader” behavior of the process, another one
is called BPAGENT; and models the “agent” behavior of the process and the third
one is called BPSUCCEsS; and it simply broadcasts a reached decision (this can
be thought of as part of the leader behavior, though we have separated it since
it is not part of a round). Automaton BASICPAXO0S; is simply the composition of



Signature of BPLEADER;
Input: Receive(m);,;, m € {“Last”, “Accept”, “Success”, “OldRound”}
Init(v);, NewRound;, Stop;, Recover;, Leader;, NotLeader;
Internal:  Collect;, GatherLast;, Continue; GatherAccept;, GatherOldRound;
Output:  Send(m); j, m € {“Collect”, “Begin”}
BeginCast;, RndSuccess(v);

Fig.4. Automaton BASICPAXOS for process i. The code is deferred to the full paper.

BPLEADER;, BPAGENT; and BPSUCCESS;. Our code 1s “tuned” to work efficiently
when there are no failures. Indeed messages for a given round are sent only once,
that is, no attempt is made to try to cope with loss of messages and responses
are expected to be received within given time bounds (we actual deal with this
in Section 5.3). Other strategies to try to conduct a successful round even in
the presence of some failures could be used. For example, messages could be
sent more than once (to cope with the loss of some messages) or a leader could
wait more than the minimum required time before starting a new round and
abandoning the current one (starting rounds is dealt with in Section 5.3). We
remark that in practice it is efficient to cope with some failures by, for example,
re-sending messages.

Signature of BPAGENT;
Input: Receive(m);,i, m € {“Collect”, “Begin”}
Init(v):, Stopi, Recover;
Internal:  LastAccept;, Accept;
Output:  Send(m); j, m € {“Last”, “Accept”, “OldRound”}

Fig. 5. Automaton BPAGENT for process i. The code is deferred to the full paper.

Figures 4 and 5 show the signature of, respectively, BPLEADER; and BPAGENT;.
We remark that BPSUCCESS; simply takes care of broadcasting a reached deci-
sion.

Messages. In this paragraph we describe the messages used for communication
between the leader and the agents. The description assumes that ¢ 1s the leader.

1. “Collect” messages, m = (r,“Collect”); ;. Starts round r.

2. “Last” messages, m = (r,“Last” ,r’, v); ;. Provides the last round 7’ accepted
by the agent, and its value v. If the agent did not accept any previous round,
then v is either nil or the initial value of the agent and ' is (0, 7).

3. “Begin” messages, m = (r,“Begin”,v); ;. Announces the value v of round r.

4. “Accept” messages, m = (r,“Accept”); ;. The agent accepts the value and
commits for round r.

5. “Success” messages, m = (“Success”,v); ;. Announces the decision v.

6. “Ack” messages, m =(“Ack”); ;. The agent received the decision.



7. “OldRound” messages, m = (r,“OldRound” ,»’). The agent is committed for
round 7’ > r.

Partial Correctness. Let us define the system Sgpx to be the composition
of system Spga and an automaton BASICPAXOS; for each process ¢ € Z. In this
section we prove the partial correctness of Sgpx: in any execution of the system
Sppx agreement and validity are guaranteed. For these proofs, we augment the
algorithm with a collection H of history variables. Each variable in H is an array
indexed by the round number. For every round number 7 a history variable
contains some information about round r. In particular the set H consists of:

Hleader(r) € Z Unil, initially nil (the leader of round r).

Hvalue(r) € ¥V Unil, initially nil (the value for round r).

Hfrom(r) € R Unil, initially nil (the round from which Hvalue(r) is taken).
Hinfquo(r), subset of Z, initially {} (the info-quorum of round r).
Haccquo(r), subset of Z, initially {} (the accepting-quorum of round ).
Hreject(r), subset of Z, initially {} (processes committed to reject round r).

Next we give some definitions that we use in the proofs.

Definition 7. In any state of the system Sgpyx, a round r is said to be dead if
[Hreject(r)| > n/2.

That is, a round r is dead if at least n/2 of the processes are rejecting it. This
implies that if a round r is dead, there cannot be a majority of the processes
accepting it, thus round r cannot be successful. We denote by Ry the set of
rounds for which the value has been chosen. Next we formally define the concept
of anchored round which is crucial to the proofs.

Definition 8. A round r € Ry is said to be anchored if for every round 7’ € Ry,
such that »' < r, either round v’ is dead or Hvalue(s') = Hvalue(r).

Next we prove that Sgpx guarantees agreement. The key invariant used in
the proof is the following.

Invariant 9. In any state of an execution of Sgpx, any non-dead round r € Ry
s anchored.

To prove it we use a sequence of auxiliary invariants. In the following we
provide the crucial ones.

Invariant 10. In any state s of an execution of Sppx , if message (r, “Last”,r" v); ;
is in CHANNEL; ;, then j € Hreject(r'), for all v' such that v < v’ < r.
Invariant 11. In any state of an execution of Sppx, if j € Hinfquo(r) then Vr’/
such that Hfrom(r) < v’ < r, we have that j € Hreject(r').

Validity is easier to prove since values for new rounds come from either initial
values or values of previous rounds.

Invariant 12. In any state of an execution « of Sgpx, for any r € Ry we have
that Hvalue(r) € V,.

The next theorem follows from Invariants 9 and 12.

Theorem 13. In any execution of the system Sgpx, agreement and validity are
satisfied.



5.2 Analysis

In this section we analyze the performance of Sgpx . Before turning our attention
to the time analysis, let us give the following lemma which provides a bound on
the number of messages sent in any round.

Lemma 14. If an execution fragment of the system Sgpx, starting in a reach-
able state, is stable then at most 4n messages are sent in a round.

Next we consider the time analysis. We remark that in order for the leader
to execute step 3, 1.e., action BeginCast,, it is necessary that an initial value be
provided. If the leader does not have an initial value and no agent sends a value
in a “Last” message, the leader needs to wait for the execution of the Init(v);
to set a value to propose in the round. Clearly the time analysis depends on the
time of occurrence of the Init(v);. For simplicity we assume that an initial value
is provided to every process at the beginning of the computation.

We remark that a leader reaches a decision when it conducts a successful
round. Formally, a round is successful when action RndSuccess; is executed.

Lemma 15. Suppose that for an execution fragment o of the system Sppx,
starting wn a reachable state s in which no decision has been reached yet, it
holds that: (i) « is stable; (it) in « there exists a unique leader, say process i;
(#4i) « lasts for more than 7L+ 4nl+4d time; (iv) process i is conducting round
r, for some round number r; (v) round r is successful. Then we have that action
RndSuccess; 1s performed by time T¢ + 4nfl + 4d from the beginning of a.

Lemma 16. If an execution fragment o of the system Sgpx, starting in a reach-
able state and lasting for more than 3¢ 4 2nf + 2d time, is stable and there
15 a unique leader which has decided before the beginning of «, then by time
30+ 2nl 4 2d, every alive process has decided, the leader knows that every alive
process has decided and at most 2n messages are sent.

Lemmas 14,15 and 16, state that if in a stable execution a successful round is
conducted, then it takes a linear amount of time and a linear number of messages
to reach consensus. However it is possible that, due to committed agents, even
if the system executes nicely from some point in time on, no successful round
is conducted and to have a successful round a new round must be started. We
take care of this problem in the next section.

5.3 Starting rounds

Figure 6 shows the signature of Clock GT automaton STARTERALG;. This au-
tomaton checks if an ongoing round has been successful within the expected
time bound. By Lemma 15, if action RndSuccess; does not happen within time
70+ 4nf+4d from the start of the round, then the round may not achieve success
and a new round has to be started. This is done by action CheckRndSuccess; .
When, in a nice execution fragment, a second round has been started, there is
nothing that can prevent the success of the new round. Indeed in the newly
started round processes are not committed for higher numbered rounds since
during the first round they inform the leader of the round number for which
they are committed and the leader, when starting a new round, always uses a
round number greater than any round number ever seen.



Signature of STARTERALG;

Input: Leader;, NotLeader;, BeginCast;, RndSuccess;, Stop;, Recover;
Internal: CheckRndSuccess;
Output: NewRound;

Time-passage:  v(t)

Fig. 6. Automaton STARTERALG for process 1. The code is deferred to the full paper.

Correctness and analysis. Let Spax be the system obtained by composing
system Sgpx with one automaton STARTERALG; for each process ¢ € 7. Since this
system contains as a subsystem the system Sgpx then it guarantees agreement
and correctness. However, in a long enough nice execution of Spyx termination
is achieved, too.

Lemma17. Suppose that for an evecution fragment « of Spax, starting in a
reachable state s, it holds that (1) « is nice; (i) there is a unique leader, say
process 1; (#i1) « lasts for more than 16£ + 8nf + 9d time. Then by time 16{ +
8nl + 9d the leader i has reached a decision.

Notice that if the execution is stable for enough time, then the leader election
will eventually come up with only one leader (see Lemma 6). Thus we have the
following theorem.

Theorem 18. Let « be a nice execution fragment of Spax starting in a reachable
state and lasting for more than 240 4+ 10nf + 13d. Then the leader 1 executes
Decide(v'); by time 214 + 8nf + 11d from the beginning of o and at most 8n
messages are sent. Moreover by time 240 + 10nf 4 13d from the beginning of «
any alive process j executes Decide(v'); and at most 2n additional messages are
sent.

A recover may cause a delay. Indeed if the recovered process becomes leader,
it will start new rounds, possibly preventing the old round from success.

6 The MULTIPAXOS algorithm

The Paxos algorithm allows processes to reach consensus on one value. We
consider now the situation in which consensus has to be reached on a sequence
of values; more precisely, for each integer k, processes need to reach consensus on
the k-th value (as long as there are initial values for the k-th consensus problem).

Clearly we can use an instance of pPAX0S for each integer k, so that the
k-th instance 1s used to agree on the k-th value. Few modifications to the
code provided in the previous section are needed. Since we need an instance
of PAX0S to agree on the k-th value, we need for each integer & an instance
of the BASICPAXOS; and STARTERALG; automata. To distinguish instances of
BASICPAXOS; we use an additional parameter that specifies the ordinal number
of the instance. So, we have BAsICPAXOS(1);, BASICPAX0S(2);, BASICPAXOS(3);,
etc., where BASICPAXOS(k); is used to agree on the k-th value. This additional
parameter will be present in each action. For instance, the Init(v); action be-
comes Init(k, v); in BASICPAX0S(k);. Similar modifications are needed for all the



other actions. The STARTERALG; automaton has to be modified in a similar way.
Theorem 18 can be restated for each instance of PAXO0s.

Application to data replication. Providing distributed and concurrent access to
data objects is an important issue in distributed computing. The simplest imple-
mentation maintains the object at a single process which is accessed by multiple
clients. However this approach does not scale well as the number of clients in-
creases and 1t is not fault-tolerant. Data replication allows faster access and
provides fault tolerance by replicating the data object at several processes.

It is possible to use MULTIPAXOS to design a data replication algorithm that
guarantees sequential consistency and provides the same fault tolerance proper-
ties of MULTIPAXO0S. The resulting algorithm lies between the majority voting
and the primary copy replication techniques. It is similar to voting schemes
since it uses majorities to achieve consistency and it is similar to primary copy
techniques since a unique leader is required to achieve termination. Using MUL-
TIPAXO0S gives much flexibility. For instance, it is not a disaster when there are
two or more “primary” copies. This can only slow down the computation, but
never results in inconsistencies. The high fault tolerance of MULTIPAXOS results
in a highly fault tolerant data replication algorithm, i.e., process stop and recov-
ery, loss, duplication and reordering of messages, timing failures are tolerated.
However liveness is not guaranteed: it is possible that a requested operation is
never installed.

We can use MULTIPAXOS 1n the following way. Each process in the system
maintains a copy of the data object. When client i requests an update operation,
process ¢ proposes that operation in an instance of MULTIPAX0S. When an update
operation is the output value of an instance of MULTIPAXOS and the previous
update has been applied, a process updates its local copy and the process that
received the request for the update gives back a report to its client. A read
request can be immediately satisfied returning the current state of the local

copy.
7 Concluding remarks

This paper introduces a special type of general timed automaton, called the Clock
G'TA, suitable for describing partially synchronous systems subject to timing
failures. It can be used for practical time performance analysis based on the
stabilization of the physical system. Using the Clock GTA, Lamport’s PAX0S
algorithm is modelled, verified and analyzed. Future work may encompass on
one hand the use of the Clock GTA for modelling other algorithms that work in
partially synchronous systems subject to timing failures, and on the other hand
improvements and implementation of PAX0s.
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