
Revisiting the Paxos algorithmRoberto De Prisco?, Butler Lampson, Nancy LynchMIT Laboratory for Computer Science545 Technology Square NE43, Cambridge, MA 02139, USA.Abstract. This paper develops a new I/O automaton model called theClock General Timed Automaton (Clock GTA) model. The Clock GTAis based on the General Timed Automaton (GTA) of Lynch and Vaan-drager. The Clock GTA provides a systematic way of describing timing-based systems in which there is a notion of \normal" timing behavior,but that do not necessarily always exhibit this \normal" behavior. It canbe used for practical time performance analysis based on the stabilizationof the physical system.We use the Clock GTA automaton to model, verify and analyze thepaxos algorithm. The paxos algorithm is an e�cient and highly fault-tolerant algorithm, devised by Lamport, for reaching consensus in a dis-tributed system. Although it appears to be practical, it is not widelyknown or understood. This paper contains a new presentation of thepaxos algorithm, based on a formal decomposition into several interact-ing components. It also contains a correctness proof and a time perfor-mance and fault-tolerance analysis.Keywords: I/O automata models, formal veri�cation, distributed con-sensus, partially synchronous systems, fault-tolerance1 IntroductionI/O automata are simple state machines with transitions labelled with namedactions. They are suitable for describing asynchronous and partially synchronousdistributed systems. The general timed automaton (GTA) model, introduced byLynch and Vaandrager [12, 13, 14], has formal mechanisms to represent thepassage of time and is suitable for modelling partially synchronous distributedsystems. In a partially synchronous distributed system, processes take actionswithin ` time and messages are delivered within d time, for given constants `and d. However these time bounds hold when the system exhibits a \normal"timing behavior. Real distributed systems are subject to failures that may causea temporary abnormal timing behavior. Hence the above mentioned bounds of `and d can be occasionally violated (timing failures). In this paper we develop anI/O automatonmodel, called the Clock GTA, which provides a systematic way ofdescribing both the normal and the abnormal timing behaviors of a distributedsystem. The model is intended to be used for performance and fault-tolerance? Contact author. E-mail: robdep@theory.lcs.mit.edu

analysis of practical distributed systems based upon the stabilization of thesystem. We use the Clock GTA to formally describe and analyze the paxosalgorithm, devised by Lamport [8] to solve the consensus problem.Reaching consensus is a fundamental problem in distributed systems. Givena distributed system in which each process starts with an initial value, to solvea consensus problem means to give a distributed algorithm that enables eachprocess to eventually output a value of the same type as the input values, insuch a way that three conditions, called agreement, validity and termination,hold. There are di�erent de�nitions of the problem depending on what theseconditions require. Distributed consensus has been extensively studied. A goodsurvey of early results is provided in [7]. We refer the reader to [11] for a morerecent treatment of consensus problems.Real distributed systems are often partially synchronous systems subjectto process, channel and timing failures and process recoveries. Any practicalconsensus algorithm needs to consider the above practical setting. Moreover thebasic safety properties must not be a�ected by the occurrence of failures. Also,the performance of the algorithmmust be good when there are no failures, whilewhen failures occur, it is reasonable to not expect e�ciency.The paxos algorithm meets these requirements. The model considered is apartially synchronous distributed system where each process has a direct com-munication channel with each other process. The failures allowed are timingfailures, loss, duplication and reordering of messages, and process stopping fail-ures. Process recoveries are considered; some stable storage is needed. paxosis guaranteed to work safely, that is, to satisfy agreement and validity, regard-less of process, channel and timing failures and process recoveries. When thedistributed system stabilizes, meaning that there are no failures, nor process re-coveries, and a majority of the processes are not stopped, for a su�ciently longtime, termination is also achieved and the performance of the algorithm is good.In [8] a variation of paxos that considers multiple concurrent runs of paxos forreaching consensus on a sequence of values is also presented. We call this varia-tion the multipaxos algorithm2. paxos has good fault-tolerance properties andwhen the system is stable it combines those fault-tolerance properties with theperformance of an e�cient algorithm, so that it can be useful in practice. In theoriginal paper [8], the paxos algorithm is described as the result of discoveries ofarchaeological studies of an ancient Greek civilization. That paper contains alsoa proof of correctness and a discussion of the performance analysis. The styleused for the description of the algorithm often diverts the reader's attention.Because of this, we found the paper hard to understand and we suspect thatothers did as well. Indeed the paxos algorithm, even though it appears to be apractical and elegant algorithm, seems not widely known or understood.2 paxos is the name of the ancient civilization studied in [8]. The actual algorithmis called the \single-decree synod" protocol and its variation for multiple consensusis called the \multi-decree parliament" protocol. We use the name paxos for thesingle-decree protocol and the name multipaxos for the multi-decree parliamentprotocol.

This paper contains a new, detailed presentation of the paxos algorithm,based on a formal decomposition into several interacting components. It alsocontains a correctness proof and a time performance and fault-tolerance analysis.The multipaxos algorithm is also described together with an application to datareplication. The formal framework used for the presentation is provided by theClock GTA.The correctness proof uses automaton composition and invariant assertionmethods. Composition is useful for representing a system using separate compo-nents. We provide a modular presentation of the paxos algorithm, obtained bydecomposing it into several components. Each one of these components copeswith a speci�c aspect of the problem. The correctness of each piece is provedby means of invariants, i.e., properties of system states that are always true inan execution.The time performance and fault-tolerance analysis is conditional on the sta-bilization of the system behavior starting from some point in an execution. Usingthe Clock GTA we prove that when the system stabilizes paxos reaches consen-sus in 24`+ 10n` + 13d time and uses 10n messages, where n is the number ofprocesses. This performance is for a worst-case scenario. We also discuss the mul-tipaxos protocol and provide a data replication algorithm using multipaxos.With multipaxos the high availability of the replicated data is combined withhigh fault tolerance.Related work. The consensus algorithms of Dwork et al. [5] and of Chandraand Toueg [2] bear some similarities with paxos. The algorithm of [5] also usesrounds conducted by a leader, but the rounds are conducted sequentially, whereasin paxos a leader can start a round at anytime and multiple leaders are allowed.The strategy used in each round by the algorithm of [5] is di�erent from theone used by paxos. The time analysis provided in [5] is conditional on a \globalstabilization time" after which process response times and message delivery timessatisfy the time assumptions. This is similar to our stabilized analysis. A similartime analysis, applied to the problem of reliable group communication, can befound in [6].The algorithm of Chandra and Toueg is based on the idea of an abstract fail-ure detector. It turns out that failure detectors provide an abstract and modularway of incorporating partial synchrony assumptions in the model of computa-tion. One of the algorithms in [2] uses the failure detector �S which incorporatesthe partial synchrony considered in this paper. That algorithm is based on therotating coordinator paradigm and as paxos uses majorities to achieve consis-tency. The performances of the Toueg and Chandra algorithm and of the paxosalgorithm seem to be comparable.Both the Chandra and Toueg algorithm and the Dwork et al. algorithmconsider a distributed setting that does not allow process restarts and channelfailures (however the Chandra and Toueg algorithm can be modi�ed to work withloss of messages). The paxos algorithm tolerates process restarts and channelfailures; this makes paxos more suitable in practice.multipaxos can be easily used to implement a data replication algorithm.

In [10, 15] Liskov and Oki provide a data replication algorithm. It incorporatesideas similar to the ones used in paxos.paxos bears some similarities with the standard three-phase commit protocol[17]. However the standard commit protocol requires a �xed leader while paxosdoes not.In [9] Lampson provides a brief overview of the paxos algorithm togetherwith key ideas for proving the correctness of the algorithm.Cristian's timed asynchronous model [3] is very similar to the distributed set-ting considered in this paper. Our Clock GTA provides a formal way of modellingthe stability property of the timed asynchronous model.In [16] Patt-Shamir introduces a special type of GTA used for the clocksynchronization problem. Our Clock GTA automaton considers only the localtime; our goal is to model good timing behavior starting from some point onand thus we do not require synchronization of the local clocks.2 ModelsOur formal framework is provided by I/O automata models. I/O automata mod-els are simple type of state machines suitable for describing asynchronous andpartially synchronous distributed systems. We use the general timed automaton(GTA), model (see [11], Section 23.2). We introduce a new type of GTA, calledClock GTA. We assume that the reader is familiar with the GTA model; briey,it is a labelled transition system model that includes a time-passage action �(t)that represents the passage of (real) time t.2.1 The Clock GTA modelThe Clock GTAmodel provides a systematic way of describing systems that mayexhibit timing failures for portions of their executions, but may behave nicelyfor other portions. The ability to talk about such changing is crucial for realisticperformance fault-tolerance analysis of practical algorithms.A Clock GTA is a GTA with a special component included in the state; thisspecial variable is called Clock and it assumes values in the set of real numbers.The purpose of Clock is to model the local clock of the process. The only actionsthat are allowed to modifyClock are the time-passage actions �(t). When a time-passage action �(t) is executed, the Clock is incremented by an amount of timet0 � 0 independent of the amount t of time speci�ed by the time-passage action.Since the occurrence of the time-passage action �(t) represents the passage of(real) time by the amount t, by incrementing the local variable Clock by anyamount t0 we are able to model the passage of (local) time by the amount t0. Asa special case, we have that t0 = t; in this case the local clock of the process isrunning at the speed of real time.In the following and in the rest of the paper, we use the notation s:x to denotethe value of state component x in state s.De�nition1. A time-passage step (sk�1; �(t); sk) of a Clock GTA is called reg-ular if sk:Clock� sk�1:Clock = t; it is called irregular if it is not regular.

De�nition2. A timed execution fragment � of a Clock GTA is called regularif all the time-passage steps of � are regular. It is called irregular if it is notregular, i.e., if at least one of its time-passage steps is irregular.2.2 The distributed settingWe consider a complete network of n processes communicating by exchangeof messages in a partially synchronous setting. Each process of the system isuniquely identi�ed by its identi�er i 2 I, where I is a totally ordered �nite setof n identi�ers, known by all processes. Each process of the system has a localclock. Local clocks may run at di�erent speeds (though in general we expectthem to run at the same speed as real time). We assume that a local clockis available also for channels; though this may seem somewhat strange, it isjust a formal way to express the fact that a channel is able to deliver a givenmessage within a �xed amount of time, by relying on some timing mechanism(which we model with the local clock). We use Clock GT automata to modelboth processes and channels. We assume that processes take actions within `time and that messages are delivered within d time, for given constants ` andd. A timing failure is a violation of these time bounds. A timing failure can bemodelled with an irregular time-passage step.Processes. We allow process stopping failures and recoveries and timing failures.To formally model process stops and recoveries we model process i with a ClockGTA that has a special state component called Statusi and two input actionsStopi and Recoveri. The state variable Statusi reects the current condition ofprocess i and can be either stopped or alive. It is updated by actions Stopiand Recoveri. A process i is alive (resp. stopped) in a given state if in that statewe have Statusi = alive (resp. Statusi = stopped). A process i is alive (resp.stopped) in a given execution fragment, if it is alive (resp. stopped) in all thestates of the execution fragment.Between a failure and a recovery a process does not lose its state. We remarkthat paxos needs only a small amount of stable storage; however, for simplicity,we assume that the entire state of a process is in a stable storage.Channels. We consider unreliable channels that can lose and duplicate messages.Reordering of messages is allowed and it is not considered a failure. Timingfailures are possible. Figure 1 shows the signature3 of a Clock GT automatonchanneli;j which models the channel from process i to process j. Channelfailures are formally modelled as input actions Losei;j (which deletes one of themessage currently in the channel), and Duplicatei;j (which duplicates one of themessage currently in the channel).System stabilization. In the introduction we have pointed out that paxos satis-�es termination when the system stabilizes. The de�nition of \nice" executionfragment given below captures the requirements needed to guarantee termina-tion.3 The code of this automaton, as well as the code of the other automata we will seelater, are omitted from this extended abstract and are deferred to the full paper.The full code can be found in [4].

Signature of channeli;jInput: Send(m)i;j , Losei;j , Duplicatei;jOutput: Receive(m)i;jTime-passage: �(t)Fig. 1. Automaton channeli;j . The code is deferred to the full paper.De�nition3. Given a distributed system, we say that an execution fragment �is stable if every process is either alive or stopped in �, no Losei;j and Duplicatei;jactions occur in � and � is regular.De�nition4. Given a distributed system, we say that an execution fragment� is nice if � is a stable execution fragment and a majority of the processes arealive in �.The next lemma provides a basic property of channeli;j.Lemma5. In a stable execution fragment � of channeli;j beginning in a reach-able state s and lasting for more than d time, we have that (i) all messages thatin state s are in the channel are delivered by time d, and (ii) any message sentin � is delivered within time d of the sending, provided that � lasts for morethan d time from the sending of the message.3 The consensus problemIn this section we formally de�ne the consensus problem (we remark that severalvariations of the de�nition of the consensus problem have been considered in theliterature). Each process i in the network receives as input an initial value v,provided by an external agent by means of an action Init(v)i. We denote by Vthe set of possible initial values and, given a particular execution �, we denoteby V� the subset of V consisting of those values actually used as initial valuesin �, that is, those values provided by Init(v)i actions.To solve the consensus problem means to give an algorithm that, for anyexecution �, satis�es{ Agreement: No two processes output di�erent values in �.{ Validity: Any output value in � belongs to V�.and, for any admissible in�nite execution �, satis�es{ Termination: If � = � and is a nice execution fragment and for eachprocess i alive in an Init(v)i action occurred in �, then any process alivein eventually outputs a value.The paxos algorithm solves the consensus problem de�ned above.4 A failure detector and a leader electorIn this section we provide a failure detector algorithm and then we use it toimplement a leader election algorithm.The failure detector and the leader elector

we implement here are both sloppy, meaning that they are guaranteed to givereliable information on the system only in a stable execution. However, this isenough for implementing paxos.Signature of detectoriInput: Receive(m)j;i, Stopi, RecoveriInternal: Check(j)iOutput: InformStopped(j)i, InformAlive(j)i, Send(m)i;jTime-passage: �(t)Fig. 2. Automaton detector for process i. The code is deferred to the full paper.A failure detector. Figure 2 shows the signature of Clock GTA detectori,which detects failures. Automaton detectori works by having each process con-stantly sending \Alive" messages to each other process and checking that suchmessages are received from other processes. The strategy used by detectori is astraightforward one. For this reason it is very easy to implement. The failure de-tector so obtained is not reliable in the presence of failures (Stopi, Losei;j, irregu-lar executions). However, in a stable execution fragment, automaton detectoriis guaranteed to provide reliable information on stopped and alive processes.A leader elector. It is easy to use a failure detector to elect a leader: actionsInformStopped(j)i and InformAlive(j)i are used to update the current set of aliveprocesses and a common rule to elect the leader is used (the alive process with thebiggest identi�er is elected leader). Figure 3 shows the signature of automatonleaderelectori. We denote with Slea the system consisting of detectoriand leaderelectori automata for each process i 2 I and channeli;j for eachi; j 2 I. Processes have a state variable Leader that contains the identi�er of thecurrent leader. Formally we consider a process i to be leader if Leaderi = i. Thisde�nition allows multiple or no leaders. In a state s, there is a unique leader ifand only if there exist an alive process i such that s:Leaderi = i and for all otheralive processes j 6= i it holds that s:Leaderj = i. The following lemma holds.Signature of leaderelectoriInput: InformStopped(j)i, InformAlive(j)i, Stopi, RecoveriOutput: Leaderi, NotLeaderiFig. 3. Automaton leaderelector for process i. The code is deferred to the fullpaper.The following lemma holds.Lemma6. If an execution fragment � of Slea, starting in a reachable stateand lasting for more than 4`+2d, is stable, then by time 4`+2d, there is a stateoccurrence s such that in state s and in all the states after s there is a uniqueleader.

5 The paxos algorithmpaxos was devised a very long time ago (the most accurate information dates itback to the beginning of this millennium) but its discovery, due to Lamport, datesback only to 1989 [8]. In this section we provide a new and detailed descriptionof paxos.The core part of the algorithm is basicpaxosi. In basicpaxosi processes tryto reach a decision by leading what we call a round. A process leading a roundis the leader of that round. detectori and leaderelectori are used to electleaders. starteralgi makes the current leader start new rounds if necessary.The description of basicpaxosi is further subdivided into three components,namely bpleaderi, bpagenti and bpsuccessi. We will prove (Theorem 13)that the system Spax ensures agreement and validity, and (Theorem 18) thatSpax guarantees also termination within 24` + 10n` + 13d, when the systemexecutes a nice execution fragment. It is worth to remark that some automataneed to be able to measure the passage of time, while others do not. For thelatter, time bounds are used only for the analysis.5.1 Automaton basicpaxosWe begin with an overview, then provide the code and the analysis.Overview. The basic idea, which is the heart of the algorithm, is to proposevalues until one of them is accepted by a majority of the processes; that value isthe �nal output value. Any process may propose a value by initiating a round forthat value. The process initiating a round is said to be the leader of that roundwhile all processes (including the leader itself) are said to be agents for thatround. Since di�erent rounds may be carried out concurrently (several leadersmay concurrently initiate rounds), we need to distinguish them. Every roundhas a unique identi�er. A round number is a pair (x; i) where x is a nonnegativeinteger and i is a process identi�er. The set of round numbers is denoted by R.A total order on elements of R is de�ned by (x; i) < (y; j) i� x < y or, x = yand i < j. If r < r0 we say that round r precedes round r0. We remark that theordering on the round numbers is not related to the actual time when roundsare started, i.e., a round with a bigger round number can be conducted before around with a smaller round number.Informally, the steps for a round are the following.1. To initiate a round, the leader sends a \Collect" message to all agents4.2. An agent that receives a message sent in step 1 from the leader of the round,responds with a \Last" message giving its own information about roundspreviously conducted. It also commits to not accept any previous round. Ifthe agents is already committed for a round with a bigger round numberthen it just sends an \OldRound" message.4 Thus it sends a message also to itself. This helps in that we do not have to specifydi�erent behaviors for a process according to the fact that it is both leader and agentor just an agent. We just need to specify the leader behavior and the agent behavior.

3. Once the leader has gathered more than n=2 \Last" messages, it decides,according to some rules, the value to propose for its round and sends toall agents a \Begin" message. The set of processes from which the leadergathers information is called the info-quorum of the round. In order for theleader to be able to choose a value for the round it is necessary that initialvalues be provided. If no initial value is provided the leader must wait foran initial value before proceeding with step 3.4. An agent that receives a message sent in step 3 from the leader of the round,responds with an \Accept" message by accepting the value proposed in thecurrent round. If the agent is committed for a round with a bigger numberthen it just sends an \OldRound" message.5. If the leader gets \Accept" messages from a majority of agents, then theround is successful and the leader sets its own output value to the valueproposed in the round. The set of agents that accepts the value proposed bythe leader is called the accepting-quorum.Since a successful round implies that the leader of the round reaches a deci-sion, after a successful round the leader needs to broadcast the reached decision.The most important issue is about the values that leaders propose for theirrounds. Indeed, since the value of a successful round is the output value of someprocesses, we must guarantee that the values of successful rounds are all equalin order to satisfy the agreement condition of the consensus problem. Agreementis guaranteed by choosing the values of new rounds exploiting the informationabout previous rounds from at least a majority of the processes so that, for anytwo rounds there is at least one process that participated in both rounds. In moredetail, the leader of a round chooses the value for the round in the following way.In step 1, the leader asks for information and in step 2 every agent responds withthe number of the latest round in which it accepted the value and the acceptedvalue (or with nil if the agent has not yet accepted a value). Once the leadergets such information from a majority of the processes, which is the info-quorumof the round, it chooses the value for its round to be equal to the value of thelatest round among all those it has heard from the agents in the info-quorumor with its initial value if all processes in the info-quorum were not involvedin any previous round. Moreover, in order to keep consistency, if an agent tellsthe leader of a round r that the last accepted round is round r0, r0 < r, thenimplicitly the agent commits itself to not accept any other round r00, r0 < r00 < r.To end up with a decision value, rounds must be started until at least one issuccessful. basicpaxosi guarantees agreement and validity, however, it is nec-essary to make basicpaxosi start rounds to get termination. We deal with thisproblem in section 5.3.The code. In order to describe basicpaxosi we provide three automata. One iscalled bpleaderi and models the \leader" behavior of the process, another oneis called bpagenti and models the \agent" behavior of the process and the thirdone is called bpsuccessi and it simply broadcasts a reached decision (this canbe thought of as part of the leader behavior, though we have separated it sinceit is not part of a round). Automaton basicpaxosi is simply the composition of

Signature of bpleaderiInput: Receive(m)j;i , m 2 f\Last", \Accept", \Success", \OldRound"gInit(v)i, NewRoundi, Stopi, Recoveri, Leaderi, NotLeaderiInternal: Collecti , GatherLasti , Continuei GatherAccepti, GatherOldRoundiOutput: Send(m)i;j , m 2 f\Collect", \Begin"gBeginCasti , RndSuccess(v)iFig. 4. Automaton basicpaxos for process i. The code is deferred to the full paper.bpleaderi, bpagenti and bpsuccessi. Our code is \tuned" to work e�cientlywhen there are no failures. Indeed messages for a given round are sent only once,that is, no attempt is made to try to cope with loss of messages and responsesare expected to be received within given time bounds (we actual deal with thisin Section 5.3). Other strategies to try to conduct a successful round even inthe presence of some failures could be used. For example, messages could besent more than once (to cope with the loss of some messages) or a leader couldwait more than the minimum required time before starting a new round andabandoning the current one (starting rounds is dealt with in Section 5.3). Weremark that in practice it is e�cient to cope with some failures by, for example,re-sending messages.Signature of bpagentiInput: Receive(m)j;i , m 2 f\Collect", \Begin"gInit(v)i, Stopi, RecoveriInternal: LastAccepti, AcceptiOutput: Send(m)i;j , m 2 f\Last", \Accept", \OldRound"gFig. 5. Automaton bpagent for process i. The code is deferred to the full paper.Figures 4 and 5 show the signature of, respectively, bpleaderi and bpagenti.We remark that bpsuccessi simply takes care of broadcasting a reached deci-sion.Messages. In this paragraph we describe the messages used for communicationbetween the leader and the agents. The description assumes that i is the leader.1. \Collect" messages, m = (r;\Collect")i;j. Starts round r.2. \Last" messages, m = (r;\Last",r0; v)j;i. Provides the last round r0 acceptedby the agent, and its value v. If the agent did not accept any previous round,then v is either nil or the initial value of the agent and r0 is (0; j).3. \Begin" messages, m = (r;\Begin",v)i;j. Announces the value v of round r.4. \Accept" messages, m = (r;\Accept")j;i. The agent accepts the value andcommits for round r.5. \Success" messages, m = (\Success",v)i;j . Announces the decision v.6. \Ack" messages, m =(\Ack")j;i. The agent received the decision.

7. \OldRound" messages, m = (r,\OldRound",r0). The agent is committed forround r0 > r.Partial Correctness. Let us de�ne the system Sbpx to be the compositionof system Slea and an automaton basicpaxosi for each process i 2 I. In thissection we prove the partial correctness of Sbpx: in any execution of the systemSbpx agreement and validity are guaranteed. For these proofs, we augment thealgorithm with a collection H of history variables. Each variable in H is an arrayindexed by the round number. For every round number r a history variablecontains some information about round r. In particular the set H consists of:Hleader(r) 2 I [nil, initially nil (the leader of round r).Hvalue(r) 2 V [nil, initially nil (the value for round r).Hfrom(r) 2 R [nil, initially nil (the round from which Hvalue(r) is taken).Hinfquo(r), subset of I, initially fg (the info-quorum of round r).Haccquo(r), subset of I, initially fg (the accepting-quorum of round r).Hreject(r), subset of I, initially fg (processes committed to reject round r).Next we give some de�nitions that we use in the proofs.De�nition7. In any state of the system Sbpx, a round r is said to be dead ifjHreject(r)j � n=2.That is, a round r is dead if at least n=2 of the processes are rejecting it. Thisimplies that if a round r is dead, there cannot be a majority of the processesaccepting it, thus round r cannot be successful. We denote by RV the set ofrounds for which the value has been chosen. Next we formally de�ne the conceptof anchored round which is crucial to the proofs.De�nition8. A round r 2 RV is said to be anchored if for every round r0 2 RV ,such that r0 < r, either round r0 is dead or Hvalue(r0) = Hvalue(r).Next we prove that Sbpx guarantees agreement. The key invariant used inthe proof is the following.Invariant9. In any state of an execution of Sbpx , any non-dead round r 2 RVis anchored.To prove it we use a sequence of auxiliary invariants. In the following weprovide the crucial ones.Invariant10. In any state s of an execution of Sbpx, if message (r;\Last",r00; v)j;iis in channelj;i, then j 2 Hreject(r0), for all r0 such that r00 < r0 < r.Invariant11. In any state of an execution of Sbpx , if j 2 Hinfquo(r) then 8r0such that Hfrom(r) < r0 < r, we have that j 2 Hreject(r0).Validity is easier to prove since values for new rounds come from either initialvalues or values of previous rounds.Invariant12. In any state of an execution � of Sbpx, for any r 2 RV we havethat Hvalue(r) 2 V�.The next theorem follows from Invariants 9 and 12.Theorem13. In any execution of the system Sbpx , agreement and validity aresatis�ed.

5.2 AnalysisIn this section we analyze the performance of Sbpx . Before turning our attentionto the time analysis, let us give the following lemma which provides a bound onthe number of messages sent in any round.Lemma14. If an execution fragment of the system Sbpx , starting in a reach-able state, is stable then at most 4n messages are sent in a round.Next we consider the time analysis. We remark that in order for the leaderto execute step 3, i.e., action BeginCasti, it is necessary that an initial value beprovided. If the leader does not have an initial value and no agent sends a valuein a \Last" message, the leader needs to wait for the execution of the Init(v)ito set a value to propose in the round. Clearly the time analysis depends on thetime of occurrence of the Init(v)i. For simplicity we assume that an initial valueis provided to every process at the beginning of the computation.We remark that a leader reaches a decision when it conducts a successfulround. Formally, a round is successful when action RndSuccessi is executed.Lemma15. Suppose that for an execution fragment � of the system Sbpx ,starting in a reachable state s in which no decision has been reached yet, itholds that: (i) � is stable; (ii) in � there exists a unique leader, say process i;(iii) � lasts for more than 7`+4n`+4d time; (iv) process i is conducting roundr, for some round number r; (v) round r is successful. Then we have that actionRndSuccessi is performed by time 7`+ 4n` + 4d from the beginning of �.Lemma16. If an execution fragment � of the system Sbpx, starting in a reach-able state and lasting for more than 3` + 2n` + 2d time, is stable and thereis a unique leader which has decided before the beginning of �, then by time3`+ 2n`+ 2d, every alive process has decided, the leader knows that every aliveprocess has decided and at most 2n messages are sent.Lemmas 14,15 and 16, state that if in a stable execution a successful round isconducted, then it takes a linear amount of time and a linear number of messagesto reach consensus. However it is possible that, due to committed agents, evenif the system executes nicely from some point in time on, no successful roundis conducted and to have a successful round a new round must be started. Wetake care of this problem in the next section.5.3 Starting roundsFigure 6 shows the signature of Clock GT automaton starteralgi. This au-tomaton checks if an ongoing round has been successful within the expectedtime bound. By Lemma 15, if action RndSuccessi does not happen within time7`+4n`+4d from the start of the round, then the round may not achieve successand a new round has to be started. This is done by action CheckRndSuccessi .When, in a nice execution fragment, a second round has been started, there isnothing that can prevent the success of the new round. Indeed in the newlystarted round processes are not committed for higher numbered rounds sinceduring the �rst round they inform the leader of the round number for whichthey are committed and the leader, when starting a new round, always uses around number greater than any round number ever seen.

Signature of starteralgiInput: Leaderi, NotLeaderi, BeginCasti , RndSuccessi , Stopi, RecoveriInternal: CheckRndSuccessiOutput: NewRoundiTime-passage: �(t)Fig. 6. Automaton starteralg for process i. The code is deferred to the full paper.Correctness and analysis. Let Spax be the system obtained by composingsystem Sbpx with one automaton starteralgi for each process i 2 I. Since thissystem contains as a subsystem the system Sbpx then it guarantees agreementand correctness. However, in a long enough nice execution of Spax terminationis achieved, too.Lemma17. Suppose that for an execution fragment � of Spax , starting in areachable state s, it holds that (i) � is nice; (ii) there is a unique leader, sayprocess i; (iii) � lasts for more than 16` + 8n` + 9d time. Then by time 16` +8n`+ 9d the leader i has reached a decision.Notice that if the execution is stable for enough time, then the leader electionwill eventually come up with only one leader (see Lemma 6). Thus we have thefollowing theorem.Theorem18. Let � be a nice execution fragment of Spax starting in a reachablestate and lasting for more than 24` + 10n` + 13d. Then the leader i executesDecide(v0)i by time 21` + 8n` + 11d from the beginning of � and at most 8nmessages are sent. Moreover by time 24` + 10n` + 13d from the beginning of �any alive process j executes Decide(v0)j and at most 2n additional messages aresent.A recover may cause a delay. Indeed if the recovered process becomes leader,it will start new rounds, possibly preventing the old round from success.6 The multipaxos algorithmThe paxos algorithm allows processes to reach consensus on one value. Weconsider now the situation in which consensus has to be reached on a sequenceof values; more precisely, for each integer k, processes need to reach consensus onthe k-th value (as long as there are initial values for the k-th consensus problem).Clearly we can use an instance of paxos for each integer k, so that thek-th instance is used to agree on the k-th value. Few modi�cations to thecode provided in the previous section are needed. Since we need an instanceof paxos to agree on the k-th value, we need for each integer k an instanceof the basicpaxosi and starteralgi automata. To distinguish instances ofbasicpaxosi we use an additional parameter that speci�es the ordinal numberof the instance. So, we have basicpaxos(1)i, basicpaxos(2)i, basicpaxos(3)i,etc., where basicpaxos(k)i is used to agree on the k-th value. This additionalparameter will be present in each action. For instance, the Init(v)i action be-comes Init(k; v)i in basicpaxos(k)i . Similar modi�cations are needed for all the

other actions. The starteralgi automaton has to be modi�ed in a similar way.Theorem 18 can be restated for each instance of paxos.Application to data replication. Providing distributed and concurrent access todata objects is an important issue in distributed computing. The simplest imple-mentation maintains the object at a single process which is accessed by multipleclients. However this approach does not scale well as the number of clients in-creases and it is not fault-tolerant. Data replication allows faster access andprovides fault tolerance by replicating the data object at several processes.It is possible to use multipaxos to design a data replication algorithm thatguarantees sequential consistency and provides the same fault tolerance proper-ties of multipaxos. The resulting algorithm lies between the majority votingand the primary copy replication techniques. It is similar to voting schemessince it uses majorities to achieve consistency and it is similar to primary copytechniques since a unique leader is required to achieve termination. Using mul-tipaxos gives much exibility. For instance, it is not a disaster when there aretwo or more \primary" copies. This can only slow down the computation, butnever results in inconsistencies. The high fault tolerance of multipaxos resultsin a highly fault tolerant data replication algorithm, i.e., process stop and recov-ery, loss, duplication and reordering of messages, timing failures are tolerated.However liveness is not guaranteed: it is possible that a requested operation isnever installed.We can use multipaxos in the following way. Each process in the systemmaintains a copy of the data object. When client i requests an update operation,process i proposes that operation in an instance ofmultipaxos. When an updateoperation is the output value of an instance of multipaxos and the previousupdate has been applied, a process updates its local copy and the process thatreceived the request for the update gives back a report to its client. A readrequest can be immediately satis�ed returning the current state of the localcopy.7 Concluding remarksThis paper introduces a special type of general timed automaton, called the ClockGTA, suitable for describing partially synchronous systems subject to timingfailures. It can be used for practical time performance analysis based on thestabilization of the physical system. Using the Clock GTA, Lamport's paxosalgorithm is modelled, veri�ed and analyzed. Future work may encompass onone hand the use of the Clock GTA for modelling other algorithms that work inpartially synchronous systems subject to timing failures, and on the other handimprovements and implementation of paxos.References1. T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solvingconsensus, in Proceedings of the 11th Annual ACM Symposium on Principles of

Distributed Computing, pages 147{158, Vancouver, British Columbia, Canada,August 1992.2. T.D. Chandra, S. Toueg, Unreliable failure detector for asynchronous distributedsystems, Journal of the ACM, Vol. 43 (2), pp. 225{267. A preliminary versionappeared in the Proceedings of the 10th Annual ACM Symposium on Principlesof Distributed Computing, pages 325{340, August 1991.3. F. Cristian and C. Fetzer, The timed asynchronous system model, Dept. of Com-puter Science, UCSD, La Jolla, CA. Technical Report CSE97-519.4. R. De Prisco, Revisiting the Paxos algorithm, M.S. Thesis, Massachusetts In-stitute of Technology, Laboratory for Computer Science, Cambridge, MA, June1997. Technical Report MIT-LCS-TR-717, Lab. for Computer Science, MIT,Cambridge, MA, USA, June 1997.5. C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial syn-chrony, J. of the ACM, vol. 35 (2), pp. 288{323, April 1988.6. A. Fekete, N. Lynch, A. Shvartsman, Specifying and using a partitionable groupcommunication service, to appear in Proceedings of the 16th Annual ACM Sym-posium on Principles of Distributed Computing, August 1997.7. M.J. Fischer, The consensus problem in unreliable distributed systems (a briefsurvey). Rep. YALEU/DSC/RR-273. Dept. of Computer Science, Yale Univ.,New Have, Conn., June 1983.8. L. Lamport, The part-time parliament, Research Report 49, Digital EquipmentCorporation Systems Research Center, Palo Alto, CA, September 1989.9. B. Lampson, How to build a highly available system using consensus, in Proceed-ings of the 10th International Workshop on Distributed Algorithms WDAG 96,Bologna, Italy, pages 1{15, 1996.10. B. Liskov, B. Oki, Viewstamped replication: A new primary copy method to sup-port highly-available distributed systems, in Proceedings of the 7th Annual ACMSymposium on Principles of Distributed Computing, pages 8{17, August 1988.11. N. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Francisco,1996.12. N. Lynch, F. Vaandrager, Forward and backward simulations for timing-basedsystems. in Real-Time: Theory in Practice, Vol. 600 of Lecture Notes in ComputerScience, Springer-Verlag, pp. 397{446, 1992.13. N. Lynch, F. Vaandrager, Forward and backward simulations|Part II: Timing-based systems. Technical Memo MIT-LCS-TM-487.b, Lab. for Computer Science,MIT, Cambridge, MA, USA, April 1993.14. N. Lynch, F. Vaandrager. Actions transducers and timed automata. TechnicalMemo MIT-LCS-TM-480.b, Lab. for Computer Science, MIT, Cambridge, MA,USA, October 1994.15. B. Oki, Viewstamped replication for highly-available distributed systems, Ph.D.Thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,Cambridge, MA 02139, 1988.16. B. Patt-Shamir, A theory of clock synchronization, Ph.D. Thesis, Laboratory forComputer Science, Massachusetts Institute of Technology, Cambridge, MA 02139,October 1994.17. D. Skeen, Nonblocking Commit Protocols, Proceedings of the ACM SIGMODInternational Conference on Management of Data, pp. 133{142, May 1981.This article was processed using the LATEX macro package with LLNCS style

