
Scale-Free Coordinates for
Multi-Robot Systems with
Bearing-only Sensors

Alejandro Cornejo, Andrew J. Lynch, Elizabeth Fudge
Siegfried Bilstein, Majid Khabbazian, James McLurkin

Abstract We propose scale-free coordinates as an alternative coordinate sys-
tem for multi-robot systems with large robot populations. Scale-free coor-
dinates allow each robot to know, up to scaling, the relative position and
orientation of other robots in the network. We consider a weak sensing model
where each robot is only capable of measuring the angle, relative to its own
heading, to each of its neighbors. Our contributions are three-fold. First,
we derive a precise mathematical characterization of the computability of
scale-free coordinates using only bearing measurements, and we describe an
efficient algorithm to obtain them. Second, through simulations we show that
even in graphs with low average vertex degree, most robots are able to com-
pute the scale-free coordinates of their neighbors using only 2-hop bearing
measurements. Finally, we present an algorithm to compute scale-free co-
ordinates that is tailored to low-cost systems with limited communication
bandwidth and sensor resolution. Our algorithm mitigates the impact of sens-
ing errors through a simple yet effective noise sensitivity model. We validate
our implementation with real-world robot experiments using static accuracy
measurements and a simple scale-free motion controller.

1 Introduction
Large populations of robots can solve many challenging problems such as

mapping, exploration, search-and-rescue, and surveillance. All these appli-
cations require robots to have at least some information about the network
geometry : knowledge about other robots positions and orientations relative
to their own [1]. Different approaches to computing network geometry have
trade-offs between the amount of information recovered, the complexity of
the sensors, the amount of communications required and the cost. A GPS
system provides each robot with a global position, which can be used to
derive complete network geometry, but GPS is not available in many envi-
ronments: indoors, underwater, or on other planets. The cost and complexity
of most vision- and SLAM-based approaches makes them unsuitable for large
populations of simple robots.

This work proposes scale-free coordinates as a slightly weaker alternative to
the complete network geometry. We argue that scale-free coordinates provide

1

2 Cornejo et. al.

sufficient information to perform many canonical multi-robot applications,
while still being implementable using a weak sensing platform. Informally,
scale-free coordinates provide the complete network geometry information
up to an unknown scaling factor i.e. the robots can recover the shape of the
network, but not its scale.

Formally, the scale-free coordinates of a set of robots S is described by
a set of tuples {(xi, yi, θi) | i ∈ S}. The relative position of robot i ∈ S is
represented by the coordinates (xi, yi) which match are correct up to the
same (but unknown) multiplicative constant α. The relative orientation of
robot i ∈ S is represented by θi. Of particular interest to us are the local
scale-free coordinates of a robot, which are simply the scale-free coordinates
of itself and its neighbors, measured from its reference frame.

We consider a simple sensing model in which each robot can only measure
the angle, relative to its own heading, to neighboring robots. These sensors are
appropriate for low-cost robots that can be deployed in large populations [2].
Our approach allows each robot to use the bearing measurements available in
the network to determine the relative positions and orientations of any subset
of robots up to scaling. We remark that in this work we make no assumptions
on the relationship between the Euclidean distance between two robots and
presence of an edge in the communication graph between them. In particular,
we do not assume the communication graph is a unit disk graph, or any other
type of geometric graph.

Fig. 1: Two distinct Voronoi cells with the
same angle measurements. A robot cannot
distinguish these cells using only the angle
measurements to its neighbors.

With only local bearing measure-
ments, a robot has the capability
to execute a large number of algo-
rithms [3, 4, 5], but this informa-
tion is insufficient to directly com-
pute all the parameters of its net-
work geometry. For instance, con-
sider the canonical problem of con-
trolling a multi-robot system to a
centroidal Voronoi configuration [6].
This is straightforward to solve with
the complete network geometry, but
it is not possible to using only the bearing measurements to your neighbors.
Figure 1 shows two configurations with the same bearing measurements that
produce very different Voronoi cells (in this diagram we assume robots at the
center of adjacent Voronoi cells are neighbors in the communication graph).
Local scale-free coordinates are sufficient for each robot to compute the shape
of its Voronoi cell. However, since scale-free distances have no units, the
robot cannot distinguish between 3 m or 3 cm distance to the centroid. This
presents challenges to algorithms, in particular to motion control, which we
consider in our experiments in Section 5.3.

There are three main contributions in this work. Section 3 presents the
theoretical foundation for scale-free coordinates, and proves the necessary
and sufficient conditions required to compute scale-free coordinates for the
entire configuration of robots. We then generalize this approach to compute
the scale-free coordinates of any subset of the robots. Section 4 shows through
simulations, that in random configurations most robots are able to compute
their local scale-free coordinates in only 3 or 4 communication rounds, even

Scale-Free Coordinates for Multi-Robot Systems 3

in in networks with low average degree. Section 5 presents a simplified al-
gorithm, tailored for our low-cost multi-robot platform [7], to compute local
scale-free coordinates using information from the 2-hop neighborhood around
each robot. The 2-hop algorithm computes scale-free coordinates efficiently
with a running time that is linear in the number of angle measurements. Our
platform is equipped with sensors that only measure coarse bearing to neigh-
boring robots, we mitigate the effect of this errors through a noise sensitivity
model. We show accuracy data from static configurations, and implement
a simple controller to demonstrate the feasibility of using the technique for
motion control.

1.1 Related Work
Much of the previous work on computation of coordinates for multi-robot

systems focuses on computing coordinates for each robot using beacon or
anchor robots (or landmarks) with known coordinates [8, 9, 10]. There are
also distributed approaches, which do not require globally accessible bea-
con robots, but instead use multi-hop communication to spread the beacon
positions throughout the network [11]. Generally, these approaches do not
scale for large swarms of simple mobile robots. Moreover, these approaches
are generally based on some form of triangulation. In contrast, the approach
proposed in this paper can be used to compute the scale-free coordinates even
in graphs where there does not exist a single triangle.

The literature presents multiple approaches to network geometry such
as pose in a shared external reference frame [12], pose in a local reference
frame [1], distance-only [13, 14, 15] bearing-only [16, 17, 18], sorted order of
bearing [19], or combinatorial visibility [20].

The closest in spirit to our work is the “robust quads” work of Moore
et. al. [13]. Using inter-robot distance information, they find robust quadri-
laterals in the network around each robot and combine them to recover the
positions of the robot’s neighbors. Our work is in the same vein, except that
we use inter-robot bearing information instead, which allows us to also re-
cover relative orientation. In the error-free case, we present localization suc-
cess rates which are comparable to the Moore results. However, our approach
has less requirements on the graph; scale-free coordinates can be extracted in
a graph formed by robust quadrilaterals, but there are graphs without even
a single robust quadrilateral where scale-free coordinates are computable.

From the computational geometry literature, the closest work to ours it
that of Whiteley [21], who studied directional graph rigidity using the tools
of matroid theory. This paper follows a simpler alternative algebraic charac-
terization that allows us to directly compute the scale-free coordinates of any
subset of robots. In addition, Bruck [22] addresses the problem of finding a
planar spanner of a unit disk graph by only using local angles. The Bruck
work is similar to our approach of forming a virtual coordinate system, but
their focus delves into routing schemes for sensor networks.

Bearing-only models are more limited than range-bearing models and the
type of problems to solve is reduced. In addition, the amount of inter-robot
communication often increases greatly. The inter-robot communication re-
quirement is often overlooked in the literature. However, algorithms that re-
quire large amounts of information from neighboring robots or many rounds
of message passing are impractical on systems with limited bandwidth. This

4 Cornejo et. al.

work uses the bearing-only sensor model with scale-free coordinates to bal-
ance the trade-off between cost, complexity, communications, and capability.

2 System Model and Definitions
We assume each robot is deployed at an arbitrary position in the Euclidean

plane and with an arbitrary orientation unit vector. The communication net-
work is modeled as an undirected graph, G = (V,E), where every vertex
in the graph represents a robot, and N(u) = {v | {u, v} ∈ E} denotes the
neighbors of robot u. We consider a synchronous network model, where the
execution progresses in synchronous lock-step rounds. During each round ev-
ery robot can send a message to its neighbors, and receive any messages
sent to it by its neighbors. Moreover we assume that when node u receives a
message from node v, it also measures the angle θ(u, v), relative to its own
orientation, from u to v. These assumption greatly simplifies the analysis,
and can be implemented easily in a physical system via synchronizers [1].

Fig. 2: The position of each robot is depicted
by a black disk, and the orientation by a thick
(blue) arc. Thin dotted lines connect neigh-
boring robots. Thin (red) arcs represent the
angle measurements.

We define the realization of graph
G as a function p : V (G)→ R2 that
maps each vertex of G to a point
in the Euclidean plane. We use p0
to denote the ground truth realiza-
tion of G, specifically p0(v) is the
position of robot v in a fixed global
coordinate system. The function φ :
V (G) → [0, 2π) maps each robot v
to its orientation φ(v), which is de-
fined as the counter-clockwise angle
between the x̂-axis of the global co-
ordinate system and v’s orientation
unit vector. For neighboring robots

{u, v} ∈ E(G) the angle measurement θ(u, v) from u to v is the counter-
clockwise angle between the orientation unit vector of u and the vector from
u to v (see Fig 2). We emphasize that at the beginning of the executions each
robot knows only its own unique identifier. We do not assume a global coor-
dinate system; the only way for robot u to sense other robots is by measuring
the angles θ(u, v) for each of its neighbors v ∈ N(u).

We define the function ψ(θ) := [cos θ sin θ]
T

that maps an angle θ to the
x̂-axis when anticlockwise rotated θ radians. Analogously ψ−1 receives a unit
vector and returns an angle via atan2 (i.e., ψ(ψ−1(n̂)) = n̂).

For each undirected edge we consider its two directed counterparts, specif-

ically we use
←→
E (G) = {(u, v), (v, u) | {u, v} ∈ E(G)} to denote the directed

edges present in G. The function ` :
←→
E (G)→ R+ represents a set of length-

constraints on the graph, and associates to each directed counterpart of every
edge {u, v} ∈ E(G) a “length” such that `(u, v) = `(v, u) (i.e. ` is symmet-

ric). Similarly, the function ω :
←→
E (G) → [0, 2π) represents a set of angle-

constraints on the graph, and associates to each directed counterpart of ev-
ery edge {u, v} ∈ E(G) an “angle” such that ω(u, v) = (ω(v, u)+π) mod 2π
(i.e., ω is antisymmetric, and this implies ψ(ω(u, v)) = −ψ(ω(v, u))). Ob-

Scale-Free Coordinates for Multi-Robot Systems 5

serve that if all the robots had the same orientation then the set of all angle
measurements would describe a set of angle-constraints on G.

We say p is a satisfying realization of (G, `) iff every edge (u, v) ∈
←→
E (G)

satisfies ‖p(v)− p(u)‖ = `(u, v). Realizations are length-equivalent if one
can be obtained from the other by a translation, rotation or reflection
(distances are invariant to these operations). A length-constrained graph
(G, `) has a unique realization if all its satisfying realizations are length-
equivalent. Similarly, we say p is a satisfying realization of (G,ω) iff every

edge (u, v) ∈
←→
E (G) satisfies p(v) − p(u) = ψ(ω(u, v)) ‖p(v)− p(u)‖. Re-

alizations are angle-equivalent if one can be obtained from the other by a
translation or uniform-scaling (angles are invariant to these operations). An
angle-constrained graph (G,ω) has a unique realization if all its satisfying
realizations are angle-equivalent.

3 Theoretical Foundation for Scale-Free Coordinates
This section develops a mathematical framework that characterizes the

computability of scale-free coordinates and outlines an efficient procedure to
compute them. The full procedure derivation with proofs appears in a tech re-
port [23]. Here we omit some intermediate results and present a self-contained
summary. First all the robots in the network to agree on a common reference
orientation. In a connected graph this is accomplished by having each robot
propagating orientation offsets to the entire network with a broadcast tree.
As a side-effect of this procedure every robot can compute the relative orien-
tation of every other robot. The details of this distributed algorithm, along
with proofs of correctness, appear in [23]. In the rest of the paper we assume
that all angle measurements are taken with respect to a global x̂-axis and
therefore constitute a valid set of angle-constraints on the graph.

Given an angle-constrained graph, the task of computing scale-free coor-
dinates for every robot is equivalent to finding a unique satisfying realization
of the graph. If such a realization does not exist, then either there is no set of
scale-free coordinates consistent with the angle-measurements, (perhaps due
to measurement errors), or there are multiple distinct sets of scale-free coor-
dinates which produce the same angle measurements, and it is impossible to
know which one of them corresponds to the ground truth. We note that every
realization of a graph induces a unique set of length- and angle-constraints
which are simultaneously satisfied by that realization:

Proposition 1. A realization p of a graph G induces a unique set of length-
and angle-constraints `p and ωp which are simultaneously satisfied by p.

However, the converse does not hold, since there are length- and angle-
constraints that do not have a realization which satisfies them simultaneously.

The necessary and sufficient conditions that determine if a set of angle-
constraints have a satisfying realization are captured by the cycles of the
graph. In particular, given any realization p of G, traversing a directed cycle
C of G and returning to the starting vertex there will be no net change in
position or orientation. Formally:

6 Cornejo et. al.∑
(u,v)∈E(C)

(p(v)− p(u)) =
∑

(u,v)∈E(C)

`p(u, v)ψ(ωp(u, v)) = 0. (1)

Since by definition `p(u, v) = `p(v, u) and ψ(ωp(u, v)) = −ψ(ωp(v, u)) we
can verify that the direction in which we traverse an undirected cycle is not
relevant, since both directions produce the same equation. Since the terms
of the equations are two-dimensional vectors, each cycle generates two scalar
equations for the x- and y-component. If the realization p of G is unknown,
but we know both G and a set of angle-constraints ω of G, then equation 1
represents two linear restrictions on the length of the edges of any realization
p which satisfies (G,ω).

The number of cycles in a graph can be exponential, however we show
it suffices to consider only the cycles in a cycle basis of G. For a detailed
definition of a cycle basis we refer the interested reader to [24]. Briefly, a
cycle basis of a graph is a subset of the simple undirected cycles present
in a graph, and a connected graph on n vertices and m edges has a cycle
basis with exactly m − n + 1 cycles. A cycle basis of G can be constructed
in O(m · n) time by first constructing a spanning tree T of G. This leaves
m − n + 1 non-tree edges, each of which forms a unique simple cycle when
added to T . Let C = {C1, . . . , Cq} be any cycle basis of G.

It will be useful to represent the length of the edges of a realization as a
real vector. Let E = {e1, . . . , em} be any ordered set of directed edges that
cover all the undirected edges in E(G). Specifically for every undirected edge
in E(G) one of its directed counterparts (but not both) is present in E(G),
conversely if a directed edge is present in E(G) then its undirected version
is in E(G). Let x be an m× 1 column vector whose ith entry represents the
length of the directed edge ei ∈ E of any satisfying realization of (G,ω).

Applying equation 1 to a cycle basis of G results in the following:

e1 · · · em
C1

...
Cq

a11 . . . a1m
...

. . .
...

aq1 . . . aqm

︸ ︷︷ ︸

A(G,ω)

 `p(e1)
...

`p(em)

︸ ︷︷ ︸

x

= 0. (2)

Here A(G,ω) is a 2q × m matrix constructed using G, C and ω. Row i
corresponds to a cycle Ci ∈ C , and column j corresponds to an edge
(u, v) ∈ E . If (u, v) ∈ E(Ci) then aij = ψ(ω(u, v)), if (v, u) ∈ E(Ci) then
aij = −ψ(ω(u, v)) = ψ(ω(v, u)), otherwise aij = 0. Since these are vector
equations, there are two scalar rows in A(G,ω) for every cycle in C – one
equation for the x-components and one for the y-components of each cycle.

Equation 2 is a homogeneous system, therefore the solution space is pre-
cisely the null space of A(G,ω), denoted by null(A(G,ω)). Our main result re-
lates the null space of A(G,ω) to the space of satisfying realizations of (G,ω).

Let P(G,ω) be a set of realizations that satisfy (G,ω), where all equivalent
realizations are mapped to a single realization that “represents” its equiva-
lence class. We define the function fω : P(G,ω) → Rm that maps a realization
in P(G,ω) to a (positive) m-dimensional real vector which contains in its ith en-
try the length of the directed edge ei ∈ E . Therefore fω(p) is simply a vector

Scale-Free Coordinates for Multi-Robot Systems 7

representation of the set of length-constraints `p satisfied by p. Observe that
proposition 1 implies that when the domain of fω is restricted to P(G,ω) then

fω has an inverse f−1ω . We now state the main theorem of this section:

Theorem 2. p ∈ P(G,ω) if and only if fω(p) ∈ null(A(G,ω)).

This theorem implies each column in the null space basis of A(G,ω) corre-
sponds to a distinct satisfying realization of (G,ω), and therefore a distinct
set of scale-free coordinates. If the nullity of A(G,ω), the number of columns
of its null space basis, is zero no set of scale-free coordinates is consistent
with the angle-measurements. If the nullity is one, then there is a single set
of scale-free coordinates which are consistent with the angle-measurements.
If on the other hand the nullity of A(G,ω) is greater than one, then there are
multiple distinct sets of scale-free coordinates consistent with the angle mea-
surements and its impossible to know which one corresponds to the ground
truth. We summarize this in the following corollary.

Corollary 1. (G,ω) has a unique satisfying realization ⇐⇒ the nullity
of A(G,ω) is one ⇐⇒ the scale-free coordinates of every robot in G are
computable.

3.1 Local Scale-Free Coordinates
This subsection describes a procedure that uses the null space basis of

A(G,ω) to compute the scale-free coordinates of any subset of robots. Of
particular interest to us is computing the scale-free coordinate of a specific
robot and its neighbors (i.e., its local scale-free coordinates). From corollary 1
it follows that if the null space basis of A(G,ω) has a single column, then
we can compute the scale-free coordinates of any subset of robots, since we
can compute scale-free coordinates for all robots simultaneously. However,
it might be the case that the null space basis of A(G,ω) has more than one
column, but it is still possible to compute the scale-free coordinates of some
subset of the robots.

For a set S ⊆ V (G) of vertices, let G[S] be the subgraph of G induced by S,
and let `[S] and ω[S] be the length- and angle-constraints that correspond to
the edges in G[S]. We say an angle-constrained (G,ω) has a unique S-subset
realization iff when restricted to the vertices of S all realizations of (G,ω)
projected to the vertices in S are equivalent. From this definition we can see
that the scale-free coordinates of the subset of robots in S are computable
iff (G,ω) has a unique S-subset realization. Using these definitions we can
prove the following.

Lemma 3. The angle-constrained graph (G,ω) has a unique S-subset real-
ization iff there is a superset S′ ⊇ S such that (G[S′], ω[S′]) has a unique
realization.

The FixedTree algorithm leverages this lemma to compute scale-free
coordinates for any subset of robots. The FixedTree algorithm receives as
input a graph G, a subset of vertices S ⊆ V (G), and a null space basis N of
A(G,ω). If there exists a superset S′ ⊇ S such that (G[S′], ω[S′]) has a unique
realization it will return this set. From corollary 1 it follows that we can
use this set S′ and the null space basis N to compute the unique satisfying
realization, and therefore the scale-free coordinates, of S′ ⊇ S.

8 Cornejo et. al.

Algorithm 1 FixedTree(G,S,N)

Pick w ∈ S arbitrarily.
for each {w, v} ∈ E(G) where {w, v} is not degenerate in N do
N ′ ← Fix edge {w, v} in N
T ← BFS traversal of G rooted at w using only edges fixed in N ′.
if T spans all vertices in S then

return (N , T)
end for
return NoSolution

Recall that each row in the null space basis N corresponds to an edge of
G, we define a labeling of the edges in G using N . Fix an edge e ∈ G and
let j be the row in N that corresponds to e, (1) if there are both zero and
non-zero entries in row j then e is degenerate, (2) if all entries in row j are
the same then e is fixed, (3) otherwise e is flexible.

The Fix transformation –which relies on elementary column operations–
receives an edge e and a null space basis N where e is labeled as flexible, and
returns a null space basis N ′ where edge e is labeled as fixed. Specifically
to Fix an edge e, which corresponds to a row j in a null space basis N , it
suffices to multiply each column i of N by the reciprocal of element nij in
that column.

The algorithm uses the Fix transformation to finds a tree in G (if it exists)
that spans the vertices in S and whose edges can be simultaneously fixed in
the null space basis N . In other words, the Fix algorithm finds a projection
of the null space basis N which is of rank 1 and spans all the vertices in S.
The proof of correctness algorithm follows from lemma 3 and theorem 2.

4 Simulation
Here we show that in the robots are deployed in random positions, it

is feasible for each robot to compute the local scale-free coordinates of its
neighbors using only the angle-measurements taken by other near-by robots.
The simulation uses the FixedTree algorithm presented in the previous
section. We use Gk

u to denote the k-neighborhood of robot u, which is the
set of nodes at k or less hops away from u and the edges between these
nodes. In practice to obtain its k-neighborhood Gk

u and the corresponding
angle measurements, robot u will need k + 1 communication rounds, using
messages of size at most O(∆k) where ∆ is the maximum degree of the
graph. To compute the local scale-free coordinates for robot u using only
its k-neighborhood we let G = Gk

u, S = {u} ∪ N(u) and N be the null
space basis of A(Gk

u,ω). In other words, we use only the null space of the
matrix associated with the k-neighborhood of each node and not the entire
graph. The computational complexity of the whole procedure is dominated
by computing the null space basis. This was implemented using singular value
decomposition requiring O(m3) time where m is the number of edges in Gk

u.
We ran simulations to determine how useful the algorithm would be in

random graphs of various average degrees. Each robot is modeled as a disk
with a 10 cm diameter and a communication range of 1 m. For each trial, we
consider a circular environment with a 4 m diameter. We assume lossless bidi-
rectional communication and noiseless bearing-only sensors. To be consistent
with our hardware platform, we used the same sensing range as the com-
munication range. We considered stationary configurations, but the results

Scale-Free Coordinates for Multi-Robot Systems 9

3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Percent of Rigid Robots vs. Average Degree of Graph

Average Degree of Graph

Pe
rc

en
t o

f R
ig

id
 R

ob
ot

s

k = 1
k = 2
k = 3
k = 4
k = 1 MWA
k = 2 MWA
k = 3 MWA
k = 4 MWA

(a) All Graphs

3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Degree of Graph

Pe
rc

en
t o

f R
ig

id
 R

ob
ot

s

Percent of Rigid Robots (k = 1)

k = 1
k = 1 MWA

(b) Data for k = 1

Fig. 3: Simulation data from 500 random graphs. a: Percentage of robots with scale-free
coordinates vs. average degree of graph. A moving window average for each communication
depth is overlaid on the plot. b: A closer look at k = 1 data in all generated graphs. The
shaded area represents one standard deviation away from the moving window average.

presented are applicable while the system is in motion as long as the physi-
cal speed of the robots is negligible compared to the speed of communication
and computation [1]. Random connected geometric graphs were generated by
placing robots uniformly at random in the environment and discarding dis-
connected graphs. The parameters in the experiments are the population size
and the communication depth k (or hop count). The population size controls
the density of the graph and the communication depth controls the amount
of information available to each robot. In real systems the communication
depth will be limited by bandwidth constraints.

We carried out simulations using populations of 20, 30, 40, and 50 robots,
running 100 experiments for each population size. Our results show that in
43% of these graphs all robots can successfully compute scale-free coordinates
for every other robot, if they use a communication depth k = diam(G), i.e.
Gk

u = G. Since in practice bandwidth will be limited we are more interested
in the percentage of robots which were able to compute local scale-free coor-
dinates using small constant communication depths.

Our results shown in Figure 3a are encouraging; even for graphs with an
average degree as low as 4, we can expect at least half of robots to successfully
compute their local scale-free coordinates. For more typical graphs with an
average degree of 6-7, on average 90% of robots can compute their local scale-
free coordinates with a communication depth of only k = 1. The k = 1 depth
is the most practical in our experimental platform, because only two com-
munication rounds are required with messages of size O(∆). Figure 3b shows
a closer look at the data of Figure 3a for k = 1. For graphs of degree 6, ap-
proximately 80% of the robots can compute their local scale-free coordinates
using k = 1, indicating that this is a feasible technique for bandwidth-limited
platforms.

Figure 3b also allows for a direct comparison to the robust quad results of
Moore [13]. Our localization success rates are somewhat better than robust
quad results, with the same communication depth k = 1, around 10% more

10 Cornejo et. al.

(a) r-one robot (b) IR regions (c) APRIL tags

Fig. 4: a: The r-one robot for multi-robot research was designed by MRSL group at Rice
University. b: Top view of the r-one’s IR receiver detection regions. Each receiver detects
an overlapping 68◦, allowing a robot to determine the neighbor angle within 22.5◦. c: An
image from the overhead camera from our data collection system. The robots are outfitted
with APRIL tags for detection of ground-truth 2D position and orientation.

nodes with low degree can localize using our algorithm with bearing-only
measurements than the robust-quads algorithm with distance-only measure-
ments. In addition, increasing communication depth from k = 1 to k = 2
increases likelihood of a given robot being able to compute its local scale-free
coordinates. Subsequent increases in k have diminishing returns.

5 Hardware Experiments
For our experiments, we use the r-one robot shown in Figure 4a [2]. It is a

11 cm robot with a 32-bit ARM-based microcontroller running at 50 mhz with
no floating point unit. The local IR communication system is used for inter-
robot communication and localization. Each robot has eight IR transmitters
and eight receivers. The transmitters broadcast in unison and emit a radially
uniform energy pattern. The robot’s eight IR receivers are radially spaced to
produce 16 distinct detection regions (shown in Figure 4b). By monitoring
the overlapping regions, the bearing of neighbors can be estimated to within
≈ π/8. The IR receivers have a maximum bit rate of 1250bps. Each robot
transmits (∆+1) 4-byte messages during each round, one a system announce
message, and the others contain the bearing measurements to that robot’s
neighbors. The system supports a maximum ∆ = 8, and we used a ∆ = 4 for
the motion experiments. A round period of 2500 ms was used to minimize
the number of message collisions.

The APRIL tags software system [25] (shown in Figure 4c) is used to
provide ground-truth pose information. The system provides a mean position
error of 6.56mm and mean angular error of 9.6mrad, which we accept as
ground truth.

5.1 TwoHop Scale-Free Algorithm
Given the computational and bandwidth constraints of our platform, it

is unfeasible to compute in real-time the null space of the system of cycle
equations described in Section 4. However, our simulation results show that
a system that uses only 2-hop angle measurements should work reasonably
well in practice. In this section we describe a simple distributed algorithm that
computes local scale-free coordinates using only 2-hop angle measurements,
and which can be implemented easily and efficiently in hardware without a
floating point unit (this corresponds to k = 1 in our simulation experiments,
but as we mentioned earlier, this requires two communication rounds and

Scale-Free Coordinates for Multi-Robot Systems 11

angle measurements from 2-hops, hence the name). Later we describe how to
modify the algorithm to deal with sensing errors.

The main insight behind our algorithm is that instead of considering an
arbitrary cycle-basis, when restricted to a 2-hop neighborhood of u we can
always restrict ourselves to a cycle-basis composed solely of triangles of which
node u is a part of. This is a consequence of the following lemma.

Theorem 4. Robot u can compute its local scale-free coordinates using 2-hop
angle measurements if and only if the graph induced by the vertices in N(u)
is connected.

The basic idea behind the TwoHop Scale-Free algorithm is to traverse
a tree of triangles, computing the lengths of the edges of the triangles using
the SineLaw . Specifically, SineLaw receives a triangle (u, z, w) in in the
2-hop neighborhood of u. It assumes the length `z of the edge (u, z) is known
(up to scale), and uses the inner angles ψz = θ(z, u) − θ(z, w) and ψw =
θ(w, z)− θ(w, u) to return the length (up to scale) of edge (u, v).

SineLaw(u, z, w) = `z

∣∣∣∣ sin(θ(z, u)− θ(z, w))

sin(θ(w, z)− θ(w, u))

∣∣∣∣
The following algorithm has a running time which is linear in the number

of angle measurements in the 2-hop neighborhood of u.

Algorithm 2 TwoHop Scale-Free algorithm running at node u

1: Fix v ∈ N(u)
2: mark v and set `v ← 1
3: Q← queue(v)
4: while Q 6= ∅ do
5: z ← Q.pop()
6: for each unmarked w ∈ N(z) ∩N(u) do
7: mark w and set `w ← SineLaw (u, z, w)
8: Q.push(w)
9: end for

10: end while

Noise Sensitivity. To deal with coarse sensor measurements while preserv-
ing the computational efficiency (and simplicity) of the algorithm we intro-
duce the concept of noise sensitivity. Informally, the noise sensitivity of a
triangle captures the expected error of the lengths of a triangle when its an-
gles are subject to small changes. For example, observe that given a triangle
(u, v, z), as ψz gets closer to zero, the output of the SineLaw becomes more
“sensitive to noise”, since a small change in the angle measurements used
to compute ψz translate to a potentially very large change in the computed
length. Formally, the noise sensitivity of each triangle can be defined as a
function of the magnitude of the vector gradient of SineLaw(u, v, z). This
provides us with an approximation of the expected error in the computed
length when using a particular triangle.

Hence, to reduce the effect of noisy measurements in the computed scale-
free coordinates it suffices to find a spanning tree of triangles that has the
smallest total noise sensitivity. This can be achieved by any standard min-
imum spanning tree algorithm at minimal additional computational cost.
Specifically in our setting a minimum spanning tree of triangles can be found

12 Cornejo et. al.

(a) (b) (c) (d)

0 20 40 60 80 100
0

5

10

15

20

25

30

Nu
mb

er
 of

 S
am

ple
s

Edge Error %

Static Error−Unweighted
Static Error−Weighted

(e)

Fig. 5: Scale-free coordinates plot as red nodes and ground-truth data as grey nodes. The
IR communication links plot as black edges between grey nodes. The red lines depict the
measured bearing between each robot, the block lines are the edges from the ground-truth
positions. Four cases are presented: a: Accurate scale-free coordinates. b: Configuration
with a bearing error to robot 1. c: Scale-free edge length error to robot 5. d: Scale-free
edge length corrected with noise sensitivity. e: Edge error histograms with and without
noise sensitivity for 28 robot configurations and 140 edges.

in O(m logm) time, where m is the number of angle measurements in the
2-hop neighborhood of u.

5.2 Static Evaluation
We generated 32 random configurations of six r-one robots. Four trials

failed due to lost messages between robots, we discarded them and analyze
the 28 successful trials. The configurations shown in Figure 5 illustrate some
typical errors and the overall accuracy of our experiments. Ideally, the red
nodes and edges will directly cover the black edges and grey nodes. The low
resolution of the r-one localization system is the largest source of error. Lost
messages between robots would occasionally remove edges from the local
network, resulting in missing triangles.

To analyze each static configuration, we needed a way to compare scale-
free edge lengths to ground-truth edge lengths. For each configuration, we
computed an αopt scaling factor that minimized the total edge length er-
ror when compared to ground truth. An example of a bearing inaccuracy is
shown in Figure 5b for robot 1 to robot 0. Despite this error, our algorithm
still effectively computes the edge coefficient. Bearing measurement errors
cause the most significant problems in our scale-free coordinates. However,
the majority of the bearing errors are still within the 22.5◦designed tolerance
of the robot. Figure 5c illustrates a scale-free edge length error to robot 5. In
this case, the error was caused by a poor selection of triangles. We handled
this scenario with noise sensitivity to select a better set of triangles. The cor-
rected position of robot 5 is shown in Figure 5d. The summary error statistics
are shown in Figure 5e. Running the algorithm without error sensitivity pro-
duced a mean error of 23.4%, and with sensitivity produced a mean error of
19.4%. Given our coarse bearing measurements, these results are reasonable,
and are adequate for motion control.

5.3 Dynamic Evaluation: Real-time Centroid Behavior
This experiment measures the ability of the robot to move to a position

specified by local scale-free coordinates, in this case, the centroid of a group of
robots. Our controller is basic, it computes the centroid, rotates, and moves
a fixed distance. This is intentional — the aim of these experiments is to
illustrate the performance of scale-free coordinates algorithm, so we use un-

Scale-Free Coordinates for Multi-Robot Systems 13

filtered data. We also avoided using any odometry information to improve
performance. Since our neighbor round is a (very long) 2500 ms, measuring
neighbor bearings while moving can introduce errors, therefore robots remain
stationary when measuring the neighbor bearings.

59

(a) Centroid convergence.

0 0.1 0.2 0.3
0

200

400

600

800

1000

1200

sa
m

pl
es

centroid error (m)

(b) Convergence error.

Figure 6.4: Motion Control Experiment - a: Four static robots shown as blue dots were placed

in an arbitrary polygon. The motion robot was placed in random locations shown

as colored circles outside the polygon. Convergence trajectories of the motion robot

moving toward a centroid are shown by the different colored lines. The motion

robot uses the 2-Hop Scale-Free algorithm to compute local scale-free coordinates.

b: Corresponding error histogram between motion robot position and the centroid

from the different trajectories shown in (a). The errors outside the polygon are not

included to demonstrate the error inside the polygon. The robot oscillates around

the centroid as a function of the maximum step distance of dstep = 11cm. The mean

error of this plot is 14.03 cm.

a larger data set, the diameter of the convergence region does not always describe the

motion profile of the robot trajectories. However, a histogram of robot distance to the

centroid shown in Figure 6.4(b) provides a mean error of 14.03 cm which is well within

the 2dstep = 22cm convergence circle diameter.

The second centroid experiment shows the moving robot tracking the stationary robots

in two different positions. The stationary robots start in the blue positions, then were

shifted to the red positions. The trajectory shown in Figure 6.5(a) show the moving robot

successfully converging to the new position, and the size of the convergence region in

Figure 6.5(b) is within dstep radius of the convergence circle.

Fig. 6: Four static robots (blue dots)
were placed in an arbitrary polygon. A
mobile robot was placed in random lo-
cations outside the polygon (colored cir-
cles). Trajectories of the robot moving
toward the centroid are represented by
the different colored lines. The robot
quickly reaches the centroid, but then
oscillates because is does not know how
far the goal is from its current position.

For the first experiment, four stationary robots were arranged in an ar-
bitrary polygon and one moving robot is placed at random initial positions
outside the polygon. At each iteration of the algorithm, the moving robot
moves a distance of (dstep) towards the centroid. For this experiment, we
used the robot diameter of 11 cm for (dstep). The trajectories of the moving
robot converging to the centroid are shown in Figure 6. The robot contin-
ues to move around the centroid without settling because without knowing
the distance to the centroid, the robot cannot know when to stop. We ex-
pect the diameter of the convergence region around the centroid to have a
mean diameter of approximately dstep = 0.11 m, which is consistent with our
measurement of 0.14 m.

The second experiment looks at the controller’s response to a change in
the goal position. The stationary robots start in the blue positions, then were
moved to the red positions halfway through the experiment. The trajectory

60

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

m
et
er
s

meters

(a) Centroid shift.

0 200 400 600
0

0.2

0.4

0.6

0.8

1

1.2

ce
nt

ro
id

 e
rr

or
 (

m
)

time (sec)

(b) Centroid shift error.

Figure 6.5: a: This experiment moves a group of robots to demonstrate a large shift in the

centroid denoted by the blue plus sign. The four blue dots are the initial polygon

of static robots. The red dots represent the shifted group of robots. The black line

trajectory shows the trajectory of the motion robot searching for the centroid. The

red and blue circles represent the convergence of a fixed step size with a radius of

11cm. The robot is expected to oscillate within this circle. b: Corresponding error

vs. time of the trajectory shown in Sub-figure (a) between the motion robot position

and the centroid. The robot begins at the black circle with significant error and then

oscillates less than dstep radius around centroid. When the group is shifted the error

spikes again and settles to another oscillation around the new centroid.

6.3 Dynamic Evaluation: Tracking Motion

This experiment set out to track motion trajectory of the moving robot using scale-free

coordinates on the stationary robots. Analyzing scale-free coordinates between multiple

robots increases the volume of data to process. The experiment consisted of five stationary

robots in a connected graph configuration. A motion robot traversed this network with a

pre-defined straight line motion. The stationary robots produced an estimated position of

the motion robot with with scale-free coordinates and a α scaling factor. When combined

together at each time instance, this trajectory provides a reasonable estimate of the motion

(a) Centroid shift.

60

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

m
et
er
s

meters

(a) Centroid shift.

0 200 400 600
0

0.2

0.4

0.6

0.8

1

1.2

ce
nt

ro
id

 e
rr

or
 (

m
)

time (sec)

(b) Centroid shift error.

Figure 6.5: a: This experiment moves a group of robots to demonstrate a large shift in the

centroid denoted by the blue plus sign. The four blue dots are the initial polygon

of static robots. The red dots represent the shifted group of robots. The black line

trajectory shows the trajectory of the motion robot searching for the centroid. The

red and blue circles represent the convergence of a fixed step size with a radius of

11cm. The robot is expected to oscillate within this circle. b: Corresponding error

vs. time of the trajectory shown in Sub-figure (a) between the motion robot position

and the centroid. The robot begins at the black circle with significant error and then

oscillates less than dstep radius around centroid. When the group is shifted the error

spikes again and settles to another oscillation around the new centroid.

6.3 Dynamic Evaluation: Tracking Motion

This experiment set out to track motion trajectory of the moving robot using scale-free

coordinates on the stationary robots. Analyzing scale-free coordinates between multiple

robots increases the volume of data to process. The experiment consisted of five stationary

robots in a connected graph configuration. A motion robot traversed this network with a

pre-defined straight line motion. The stationary robots produced an estimated position of

the motion robot with with scale-free coordinates and a α scaling factor. When combined

together at each time instance, this trajectory provides a reasonable estimate of the motion

(b) Centroid shift error.

Fig. 7: a: This experiment shifts a group of robots to demonstrate a large shift in the
centroid denoted by the blue plus sign. The four blue dots represent the initial polygon of
static robots. The red dots represent the shifted group of robots. The black line trajectory
shows the trajectory of the motion robot searching for the centroid. b: Corresponding error
vs. time of trajectory shown in (a) between the motion robot position and the centroid.
The robot begins at the black circle with significant error and then oscillates less than
2dstep around centroid. When the group is shifted the error spikes again and settles to
another oscillation around the shifted centroid.

14 Cornejo et. al.

shown in Figure 7a show the moving robot successfully converging to the
new position, and the size of the convergence region in Figure 7b is again
around dstep, and mostly bounded by 2dstep, which is shown as the circles in
Figure 7a and the horizontal line in Figure 7b.

While the size of the convergence region is set by the step size, the time of
convergence is limited by the communications bandwidth — more bandwidth
can allow shorter rounds. This blurs the distinction between sensing and
communication, but is consistent with the robot speed ratio [26].

6 Conclusion and Future Work
This paper presents local scale-free coordinates as an alternative coordi-

nate system of intermediate power. Our noise sensitivity provided a compu-
tationally simple way to deal with sensor errors. However, in future work we
will incorporate a full error model to provide superior performance.

In a separate project, we are studying the accuracy of a particle filter to
estimate range using odometry and the bearing sensors [27]. This approach
uses less communications and provides metrical estimates of range, but re-
quires the robots to be moving, and remain neighbors long enough for the
estimate to converge. On the other hand, the approach presented in this pa-
per can be applied even if the robots are static (or to sensor networks). It
is unclear which of these two approaches is the most powerful, in the sense
proposed by O’Kane [28], which is an interesting question. We believe that
for many applications, scale-free coordinates are a viable alternative for rel-
ative localization in multi-robot platforms with large populations of simple,
low-cost robots.

References
1. James McLurkin. Analysis and Implementation of Distributed Algorithms for Multi-

Robot Systems. Ph.D. thesis, Massachusetts Institute of Technology, 2008.
2. James McLurkin, Andrew J. Lynch, Scott Rixner, Thomas W. Barr, Alvin Chou,

Kathleen Foster, and Siegfried Bilstein. A low-cost multi-robot system for research,
teaching, and outreach. Proc. of the Tenth Int. Symp. on Distributed Autonomous
Robotic Systems DARS-10, October, 2010.

3. Ran Wei, R. Mahony, and D. Austin. A bearing-only control law for stable docking of
unicycles. In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, volume 4, pages 3793–3798 vol.3, 2003.

4. T. Lemaire, S. Lacroix, and J. Sola. A practical 3D bearing-only SLAM algorithm. In
Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on, pages 2449–2454, 2005.

5. S. Scheding, G. Dissanayake, E.M. Nebot, and H. Durrant-Whyte. An experiment in
autonomous navigation of an underground mining vehicle. Robotics and Automation,
IEEE Transactions on, 15(1):85–95, 1999.

6. J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing
networks. In Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE Interna-
tional Conference on, volume 2, pages 1327–1332, 2002.

7. J. McLurkin, A. Lynch, S. Rixner, T. Barr, A. Chou, K. Foster, and S. Bilstein. A
low-cost multi-robot system for research, teaching, and outreach. Proc. of the Tenth
Int. Symp. on Distributed Autonomous Robotic Systems DARS-10, November, page
200, 2010.

8. B. Hendrickson. The molecule problem: Exploiting structure in global optimization.
SIAM Journal on Optimization, 5(4):835–857, 1995.

9. T. Eren, D.K. Goldenberg, W. Whiteley, Y.R. Yang, A.S. Morse, B.D.O. Anderson, and
P.N. Belhumeur. Rigidity, computation, and randomization in network localization. In
Proc. 23rd IEEE Conference on Computer Communications, volume 4, pages 2673–
2684, 2004.

Scale-Free Coordinates for Multi-Robot Systems 15

10. Kostas E. Bekris, A. A. Argyros, and L. E. Kavraki. Angle-based methods for mobile
robot navigation: Reaching the entire plane. In Proc. EEE International Conference
on Robotics and Automation (ICRA), pages 2373–2378, 2004.

11. R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from
local information on an ad hoc sensor network. Proc. of Information Processing in
Sensor Networks (IPSN), 2003.

12. Pradeep Ranganathan, Ryan Morton, Andrew Richardson, Johannes Strom, Robert
Goeddel, Mihai Bulic, and Edwin Olson. Coordinating a team of robots for urban
reconnaisance. In Proceedings of the Land Warfare Conference (LWC), November
2010.

13. D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization
with noisy range measurements. In In Proc. 2nd international conference on Embedded
networked sensor systems, pages 50–61, 2004.

14. Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket
location-support system. In Proceedings of the 6th annual international conference
on Mobile computing and networking, pages 32–43, Boston, Massachusetts, United
States, 2000. ACM.

15. Sooyong Lee, Nancy M. Amato, and James Fellers. Localization based on visibility
sectors using range sensors. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages
3505–3511, 2000.

16. B. Sundaram, M. Palaniswami, S. Reddy, and M. Sinickas. Radar localization with
multiple unmanned aerial vehicles using support vector regression. In Intelligent Sens-
ing and Information Processing, 2005. ICISIP 2005. Third International Conference
on, pages 232 –237, 2005.

17. L. Montesano, J. Gaspar, J. Santos-Victor, and L. Montano. Cooperative localization
by fusing vision-based bearing measurements and motion. In Intelligent Robots and
Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pages
2333 – 2338, August 2005.

18. S.G. Loizou and V. Kumar. Biologically inspired bearing-only navigation and tracking.
In Decision and Control, 2007 46th IEEE Conference on, pages 1386 –1391, 2007.

19. Robert Ghrist, David Lipsky, Sameera Poduri, and Gaurav S. Sukhatme. Surrounding
nodes in coordinate-free networks. In Workshop on the Algorithmic Foundations of
Robotics, 2006.

20. Davide Bil, Yann Disser, Mat Mihalk, Subhash Suri, Elias Vicari, and Peter Widmayer.
Reconstructing visibility graphs with simple robots. In Structural Information and
Communication Complexity, pages 87–99, 2010.

21. W. Whiteley. Matroids from Discrete Geometry. AMS Contemporary Mathematics,
197:171–312, 1996.

22. Jehoshua Bruck, Jie Gao, and Anxiao (Andrew) Jiang. Localization and routing in
sensor networks by local angle information. ACM Transactions on Sensor Networks,
5(1):7:1–7:11, February 2009.

23. A. Cornejo, M. Khabbazian, and J. McLurkin. Theory of scale-free coor-
dinates for multi-robot system with bearing-only sensors. Technical Report,
http://mrsl.rice.edu/publications, 2011.

24. J. D. Horton. A Polynomial-Time algorithm to find the shortest cycle basis of a graph.
SIAM Journal on Computing, 16(2):358, 1987.

25. Edwin Olson. Apriltag: A robust and flexible multi-purpose fiducial system. Technical
report, University of Michigan APRIL Laboratory, May 2010.

26. J. McLurkin. Measuring the accuracy of distributed algorithms on Multi-Robot sys-
tems with dynamic network topologies. 9th International Symposium on Distributed
Autonomous Robotic Systems (DARS), 2008.

27. J. B. Rykowski. Pose Estimation With Low-Resolution Bearing-Only Sensors. M.S.
thesis, Rice University, 2011.

28. J. M. O’Kane and S. M. LaValle. Comparing the power of robots. The International
Journal of Robotics Research, 27(1):5, 2008.

