
Local Distributed Algorithms
for Multi-Robot Systems

by

Alejandro Cornejo
Submitted to the Department of Electrical Engineering and

Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 28, 2012

Certified by .
Nancy Lynch

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by. .
Leslie Kolodziejski

Chairman, Department Committee on Graduate Students

2

Local Distributed Algorithms
for Multi-Robot Systems

by
Alejandro Cornejo

Submitted to the Department of Electrical Engineering and Computer Science
on September 28, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
The field of swarm robotics focuses on controlling large populations of simple robots
to accomplish tasks more effectively than what is possible using a single robot. This
thesis develops distributed algorithms tailored for multi-robot systems with large
populations. Specifically we focus on local distributed algorithms since their perfor-
mance depends primarily on local parameters on the system and are guaranteed to
scale with the number of robots in the system.

The first part of this thesis considers and solves the problem of finding a trajectory
for each robot which is guaranteed to preserve the connectivity of the communication
graph, and when feasible it also guarantees the robots advance towards a goal defined
by an arbitrary motion planner. We also describe how to extend our proposed
approach to preserve the k-connectivity of the communication graph. Finally, we
show how our connectivity-preserving algorithm can be combined with standard
averaging procedures to yield a provably correct flocking algorithm.

The second part of this thesis considers and solves the problem of having each
robot localize an arbitrary subset of robots in a multi-robot system relying only on
sensors at each robot that measure the angle, relative to the orientation of each robot,
towards neighboring robots in the communication graph. We propose a distributed
localization algorithm that computes the relative orientations and relative positions,
up to scale, of an arbitrary subset of robots. For the case when the robots move in
between rounds we show how to use odometry information to compute at each robot
the relative positions complete with scale, of an arbitrary subset of robots. Finally
we describe how to use the proposed localization algorithm to design a variety of
multi-robot tasks.

Thesis Supervisor: Nancy Lynch
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First I would like to thank my advisor Nancy Lynch, for her support, advice, and
encouragement, not only during the writing of this thesis, but overall during my
time at MIT. From Nancy I have learned how to think as a researcher and how
to communicate ideas with clarity and precision. I would also like to thank Erik
Demaine, Leslie Kaelbling and Daniela Rus for sitting on my thesis committee and
providing valuable feedback on this work.

A lot of the work on this thesis was a result of different collaborations with Fabian
Kuhn, James McLurkin and Majid Khabbazian, whom I would like to thank as well.

I also thank Prasant Gopal and Mohsen Ghaffari, my current office mates, for
making my time at the office more pleasant and for being an endless source of con-
versations and discussions, both work and mostly non-work related.

Finally, I would like to dedicate this thesis to my wife, Patty, who has endured
with me this entire process and made me feel like its all worth it, and to my parents,
who have always supported me and encouraged me to pursue my dreams.

5

6

Contents

List of Figures 9

List of Algorithms 14

1 Introduction 17
1.1 Connectivity . 19

1.1.1 k-Connectivity . 22
1.1.2 Applications . 25

1.2 Localization . 26
1.2.1 Applications . 29

1.3 Additional Related Work . 30
1.3.1 Distributed Computing . 30
1.3.2 Multi-Robot Systems . 31

2 Model 33
2.1 Graph Theory Preliminaries . 33
2.2 Geometry Preliminaries . 34
2.3 Modeling a Multi-Robot System . 36

I Connectivity 39

3 Selecting Edges 43
3.1 The Edge Selection Problem . 44
3.2 Sparse Connectivity-Preserving Sets of Edges 45

3.2.1 Gabriel graph . 46
3.2.2 Relative Neighbor graph . 47
3.2.3 Cone-Based Topology Control graph 48
3.2.4 Local Minimum Spanning graph 50

7

3.2.5 Local Minimum Spanning Graphs With Few Edges 53
3.3 Optimal Local Minimum Spanning Graphs 55

4 Distributed Connectivity-Preserving Algorithm 57
4.1 The Connectivity-Preserving Problem 59
4.2 The Connectivity-Preserving Algorithm 62
4.3 Safety . 64
4.4 Progress . 66

4.4.1 Unconditional Progress . 67
4.4.2 Robust Progress . 68
4.4.3 Weak Progress . 69

4.5 Multi-Round Executions . 92

5 Preserving a k-Connected Graph 97
5.1 From 1-Connected to k-Connected 98
5.2 Preserving a k-Connected Graph . 99

6 Applications of Connectivity 101
6.1 What is flocking? . 101
6.2 Alignment and Agreement . 102
6.3 Flocking Algorithm . 105

II Localization 109

7 Relative Orientations 113
7.1 Defining Angle-Constraints . 114
7.2 Computing an Angle-Constraint . 116

8 Relative Positions 119
8.1 Defining Unique Realizations . 120
8.2 Satisfying Realizations . 123

8.2.1 Basic Facts . 124
8.2.2 Trees . 125
8.2.3 Facts about Cycles . 127
8.2.4 Graphs with Cycles . 128
8.2.5 Computing Satisfying Realizations 130

8.3 Unique Subset Realizations . 134

8

9 Distributed Localization Algorithm 137
9.1 Problem Statement . 138
9.2 Algorithm . 140
9.3 Correctness and Optimality . 142
9.4 Recovering Scale Through Odometry 144

10 Applications of Localization 151
10.1 Localization for Static Applications 152
10.2 Localization for Motion Control Applications 154

11 Conclusion 157
11.1 Connectivity . 157

11.1.1 Summary of Contributions . 157
11.1.2 Future Work and Open Questions 158

11.2 Localization . 159
11.2.1 Summary of Contributions . 160
11.2.2 Future Work and Open Questions 160

11.3 Other Future Work . 162

Index 163

9

10

List of Figures

2-1 The lens produced by the intersection of the red ball and the green
ball is colored in blue. The base of the lens is outlined by a black
dotted line. If the balls that produced the lens are three-dimensional
(left), the base of the lens is a two-dimensional ball (i.e., a disk). If
the balls that produce the lens are two-dimensional (right), then the
base of the lens is a one-dimensional ball (i.e., a line segment). 36

3-1 (a) p and q are GG-neighbors since there is no other point in their
GG-region. (b) p and q are not GG-neighbors since there is a point
in their GG-region. 46

3-2 (a) p and q are RN-neighbors since there is no other point in their
RN-region. (b) p and q are not RN-neighbors since there is a point
in their RN-region. 48

3-3 (a) p is α-safe with respect to q since there is a cone with apex at
p and aperture α containing q that does not contain a point that is
closer to p than q. (b) p is not α-safe with respect to q since there
does not exist a cone with apex at p of aperture α containing q that
does not contain another point closer to p. 49

3-4 (a) p is L-safe with respect to q since the Euclidean minimum spanning
tree of L(p) includes the edge between p and q. (b) p is not L-safe
with respect to q since the Euclidean minimum spanning tree of L(p)
does not include the edge between p and q. (c) p is L-safe with respect
to q since q is not contained in L(p). 51

11

4-1 A robot v can communicate by broadcasting a message m to its neigh-
bors through the bcast(m)v action, and receiving a message m from
a neighboring robot u through the recv(m,u)v action. The sensors
at robot v provide it with its own position %v (i.e., via GPS). The
connectivity-preserving module at robot v receives as input its own
position %v (output by its sensors) and a linear trajectory γv (out-
put by its motion planner module). The output of the connectivity-
preserving module is a linear trajectory γ′v, whose computation may
require some number of communication steps. The motion controller
receives as input the trajectory γ′v and controls the actuators of the
robot to execute the trajectory in the physical world. 59

4-2 A worst-case configuration of n robots. Except for robot v1 and robot
vn all other robots have an “empty” intersection region and have to
remain stationary. 72

4-3 If θ = arccos(d/2r) the target position of robot v1 lies exactly at its re-
gion boundary (and robot v1 makes full progress). If θ < arccos(d/2r)
the target position of robot v1 is contained inside or at its region
boundary (and robot v1 makes full progress). If θ > arccos(d/2r) the
target position of robot v1 is contained outside its region boundary
(and the progress of v1 depends on θ). 72

4-4 The four primitive operations that can be applied to robot vi. The
configuration before the operation is depicted in black, and the con-
figuration after the operation is depicted in red. To transform one
configuration to another we will describe a choreographed sequences
of these operations. 74

4-5 The target vector of robot vi is denoted by an arrow. The disks cen-
tered of radius r centered at %vi−1 , %vi+1 and %v′i+1

are outlined with a
black solid line. The triangle T formed by %vi−1 , %vi+1 and %v′i+1

is de-
noted in blue. The circumcircle of T is denoted with a dashed outline,
and the origin of the circumcircle o is depicted by a black square. . . 77

4-6 The first diagram shows a configuration where robot vi depends on
both of its neighbors. The thick blue line represents the possible places
occupied by %v′i+1

. The middle diagram shows a counter-clockwise ro-
tation of %vi+1 around τi. The last diagram shows a clockwise rotation
of %vi+1 around %vi . 79

4-7 A d-bounded, balanced, parallel and separated line configuration. . . 79
4-8 Inner robot vi. 80

12

4-10 For most of our proofs the exact shape of the progress function Γ will
not be important. Instead it will be sufficient for us to observe that Γ
is monotonically decreasing with respect to α and β. 81

4-11 The origin o is denoted by a black square. The disks centered of radius
r centered at %vi−1 , %vi+1 and %v′i+1

are outlined with a black solid line.
The regions Rvi and R′vi are shaded in light green and blue respectively. 86

4-12 A thick line delineates the boundary of a region defined by the inter-
section of four disks denoted with dashed lines. A point contained in
the region is either at the region boundary, or completely inside the
region. A point in the region boundary lies either at the intersection
of two circle arcs, or on the arc of a single circle. 89

4-13 A line configuration of n robots where all robots are balanced and
separated, the inner robots are ε-bounded and parallel, and the end
point robots have a zero target vector and are at distance r from their
neighbors’ target position. 95

5-1 A path from p ∈ P to q ∈ Q with a single gap g of 6 vertices. 99

7-1 Each robot is represented by a dot denoting its position and an arrow
denoting its heading. Thin (black) dotted lines connect neighboring
robots, thick (blue) arcs represent the orientations of the robots and
thin (red) arcs represent the angle measurements between neighboring
robots. 114

7-2 Robots are represented by a dot denoting their position and an arrow
denoting their orientation. A thin dotted line connects robot u and
v, and the angle measurements θ(u, v) and θ(v, u) are denoted with
dashed lines. The figure depicts three cases when θ(u, v) = θ(v, u). . . 115

8-1 Let G be a cycle graph on four vertices {u, v, w, z}. The left part of
the figure depicts the direction of the vectors between {u, v}, {v, w},
{w, z} and {z, u} for an angle-constraint that assigns ω(u, v) = 0,
ω(v, w) = π/6, ω(w, z) = π and ω(z, u) = 7π/6. The right part of
the figure shows two non-trivial satisfying realizations of the angle-
constrained graph where one cannot be obtained from the other by a
translation and a uniform-scaling operation (i.e. these realizations are
not angle-equivalent). 123

9-1 Local coordinate system of robots u and v. 139

13

9-2 Left: The motion vectors of robot u and robot v are denoted with
black arrows. The gray arrow denotes the motion vector −Tv. Red
arrows denote the vectors Tu − Tv and %v − %u. Right: The inner
angles of the triangle formed by %′v, %′u and %uv are denoted in blue.
The vectors outlining the sides of the triangle are labeled ~A, ~B and
~C, and the opposite angles are labeled α, β and γ, respectively. . . . 149

14

List of Algorithms

1 GG-EdgeSelect for robot at p. 47
2 RNG-EdgeSelect for robot at p. 48
3 CBTCα-EdgeSelect for robot at p. 50
4 Consistent CBTCα-EdgeSelect for robot at p. 50
5 LMSGLud-EdgeSelect for robot at p. 53
6 CP-Alg (r, %v, γv) at robot v . 63
7 AgreementUpdate at robot u . 103
8 AlignmentMotionPlanner at robot u 105
9 FlockAlgorithm at robot u . 106
10 ComputeAngleConstraint (G,ΘG, u) 117
11 RealizationToConstraints(G, p) 124
12 TreeConstraintToRealization(T, ω, `) 125
13 ConstraintToRealization(G,ω, `) 126
14 ComputeRealizations(G,ω) . 133
15 ComputeSubsetRealizations(G,ω, S) 135
16 SubsetLocalizek at robot u . 141
17 RecoverScale(X ′, X) at robot u 147
18 GenericEdgeSelect at robot u. 152
19 ScaleGabrielGraphEdgeSelect at robot u. 153
20 ScaledLocalization at robot u . 155

15

16

Chapter 1

Introduction

Many tasks that are suited for mobile robots can be accomplished far more effec-
tively with multi-robot systems, in particular systems with large numbers of robots.
Search and rescue, exploration and mapping, security and surveillance, and even con-
struction are all ideal potential applications for large multi-robot systems. Disaster
relief workers could use a swarm of robots to locate victims, biologists could use a
swarm to study an ecosystem, and the military could use a swarm for surveillance
and security.

These applications have challenging requirements: the robots must be highly
mobile, they must maintain a communication network across a large geographical
area, they must estimate their own physical configuration (as well as properties of
the environment), and they must coordinate to make collective decisions. In order
for algorithms to achieve these requirements they must operate at the intersection
of physical mobility, communication networking, and distributed computation. In
this work we aim to develop robust and practical algorithms for large multi-robot
systems with a rigorous theoretical underpinning.

For an algorithm to become practical for multi-robot systems with large pop-
ulations it needs to overcome a number of challenges. First, to leverage the size
of the population, it becomes paramount to use decentralized strategies that allow
robots to operate (mostly) independently while collectively making progress towards
a global (task-dependent) goal. Second, since the expected number of failures grows
together with the size of the system, it is crucial for algorithms to be robust to
individual robot failures, and no single robot (or small group of robots) should be
critical to task performance. With this in mind in this work we focus our attention
on local distributed algorithms—distributed algorithms that run for a constant num-
ber of communication rounds—since their performance depends primarily on local

17

parameters and they are guaranteed to scale well with the size of the network.
This thesis will contain new algorithmic techniques for multi-robot systems that

combine aspects of distributed algorithms, computational geometry, graph theory
and robotics. We describe a model of computation at a level of abstraction that
is suitable to design provably correct distributed algorithms, and at the same time
accurately represents the physical world. Instead of designing algorithms for a par-
ticular application of multi-robot systems (i.e., search and rescue, construction, etc.),
this work focuses on providing solutions to general problems that form the base for
almost all canonical multi-robot system applications. In particular, we study the
problems of connectivity and localization, which we briefly motivate and sketch in
the paragraphs below.

Connectivity. The connectivity of the communication graph in a multi-robot sys-
tem is the property that enables coordination. This means that to successfully ex-
ecute a task that requires coordination, the robots must ensure the communication
graph is connected. Therefore, algorithm designers for large multi-robot platforms
often seek two seemingly contradicting properties. On one hand, to maximize the
parallelism and enhance the performance of the system, when a robot is performing
an individual task it should do so as independently from the rest of the multi-robot
system as possible. On the other hand, to ensure that tasks which require coordi-
nation are not stalled indefinitely thereby preventing completion, at all times robots
should make sure their motions do not disconnect the communication graph. This
work seeks to alleviate this tension by providing a local distributed algorithm that
mediates between the desired motion of the individual robots, and the requirement
of preserving connectivity of the communication graph.

Localization. Most tasks that are well suited for multi-robot systems rely on the
ability of the robots to control their motion in the environment and with respect to
each other. Therefore, it should not come as a surprise that to perform even the
most trivial of tasks, robots need some form of orientation and position informa-
tion. In the localization problem each robots seeks to use its sensors to estimate
some information about the orientation and position of close-by robots. The quality
and difficulty of obtaining these estimates critically depends on the specific sensors
available to the robots. For example, sensors such as dual antenna GPS can readily
provide accurate absolute estimates for both position and orientation. However GPS
is unavailable in many environments, including indoors, in urban canyons, under
heavy foliage, underwater or on other planets. As an alternative one could endow

18

robots with LIDAR∗ (or other sophisticated sensors), which despite being unable to
provide absolute positions, allow robots to recover accurate estimates of the rela-
tive orientation and position of close-by robots. Unfortunately, due to cost and size
concerns, these sensors are not a real alternative for multi-robot systems with large
populations. In this work we study a variant of the localization problem in which
robots have minimal sensing capabilities, namely we assume that robots can only
sense the angle (in their own private coordinate system) to neighboring robots. We
describe local distributed algorithms that rely on these minimal sensing capabilities
and allow a robot to recover the relative orientations and positions of other robots,
where the relative positions match the ground truth up to a uniform-scaling factor.

The problems of connectivity and localization are fundamentally different, and
therefore the techniques we will use to study them are also different in many respects.
However, perhaps surprisingly, we will use the same general approach to solve both
of these problems. Namely, we will first seek to cast them as graph theoretic and/or
geometric problems, and we will use the insights learned by solving these problems
to design efficient local distributed solutions.

In the next subsections we give a more detailed description of and motivation
for the aforementioned problems, we outline our approach and contributions, and we
briefly survey some related work. In the last subsection we list some additional results
on algorithms for multi-robot systems, which despite not being directly related to
the problems of connectivity or localization, are still relevant to our work.

1.1 Connectivity
Motivation. Designing efficient and robust algorithms for multi-robot systems can
be difficult due to the distributed nature of problems, even when communication is
performed through a infrastructure based (single-hop) wireless network. Relying on
an ad hoc network for communication only complicates things further—in order to
plan its trajectory a robot might need to communicate with other robots on the
system, and at the same time the resulting motion might change the topology of the
communication network. Since a connected communication graph is necessary to
enable coordination, algorithms for multi-robot systems must reconcile the interac-
tion between communication and motion planning in order to preserve a connected
graph.

Most existing distributed algorithms for mobile ad hoc networks typically sidestep

∗LIDAR stands for Light Detection and Ranging. In a typical LIDAR system a narrow laser
beam is used to map physical features with very high resolution.

19

the issue of connectivity by assuming it is ensured by other means. For example,
distributed algorithms for mobile ad hoc networks to solve routing [48, 75], leader
election [60], and mutual exclusion [93] assume that the control laws that determine
the motion of the robots are determined by a separate mobility layer. These algo-
rithms deal with connectivity by assuming the mobility layer takes care of ensuring
that every pair of nodes that need to exchange a message are connected at some
instant or transitively through time; otherwise they work on each independent con-
nected cluster. A similar situation is true in the control theory community. For
example, work to solve the problems of flocking [77, 40], pattern formation [33], and
leader following [13] provide control laws that determine how each robot will move.
However, these works sidestep the problem of connectivity by assuming coordination
runs atop a network layer that ensures it is always possible to exchange information
between every pair of agents (i.e., an infrastructure based wireless network).

In our work we develop a local distributed algorithm which acts as a middle-
man between these two incompatible approaches, potentially allowing us to execute
the flocking algorithm of [77] using the routing algorithm of [75], or running the
leader follower algorithm of [13] using the leader election service of [60], with the
formal guarantee that a connected communication graph is maintained throughout
the execution. Aided by the proposed distributed algorithm, algorithm designers for
multi-robot systems can focus on the problems which are specific to the application
(i.e., search and rescue, demining fields, exploration, etc.) without having to deal
with the additional problems that arise from the lack of a fixed communication infras-
tructure. We expect this modular approach to algorithm design will be instrumental
to develop scalable and provably correct algorithms for multi-robot systems.

Assumptions and Problem Statement. We assume a collection of robots de-
ployed in two-dimensional Euclidean space with arbitrary positions and orientations.
Associated with the multi-robot system there is an underlying communication graph
where two robots are considered neighbors if and only if they are at distance at most
r (in other words, the communication graph is a unit disk graph). We consider a
synchronous model of computation, where time progresses in synchronous lock-step
rounds and at each round robots that are neighbors in the communication graph
can reliably exchange messages. Finally, we also assume that each robot is able to
compute the relative orientation and the relative position of its neighbors in the
communication graph, and can query an internal motion planning module for the
immediate desired trajectory for the next time step.

Given the desired trajectory output by the motion planning module, the goal of
the connectivity problem is to find an alternative trajectory which gets the robot

20

as close as possible to the destination of the original trajectory, while at the same
time guaranteeing the communication graph remains connected. This allows us to
run standard configuration control algorithms (which provide the motion planning
module) together with our distributed connectivity algorithm. Since the connectivity
problem does not require any information about the long term motion plan, it can
be used together with online configuration control algorithms, where the trajectory
of the robots is the result of the interaction with other robots and the environment.
We describe in detail one such compositional result in Section 1.1.2.

Approach and Contributions. We split the connectivity problem in two sub-
problems. In the first subproblem each robot seeks to locally identify a subset of
edges that when preserved guarantee the communication graph remains connected;
we refer to such edges as connectivity-preserving edges. A conservative solution,
which is far from optimal, would be to identify all edges as connectivity-preserving
edges. Such a solution would prevent the multi-robot system from performing any
task that requires them to spread apart. Furthermore, in the course of the execu-
tion two robots which were initially not neighbors might become neighbors, and if
all edges are always preserved this could result in forcing all robots to cluster to-
gether. Therefore, we focus on solutions where robots (locally) find a “small” set
of connectivity-preserving edges. The challenge here is that connectivity is a global
property of the graph, and we seek solutions that rely only on local information.
We show how to adapt several known sparse graph constructions in geometric graph
theory to design simple local distributed algorithms that can identify a “small” (i.e.,
constant) set of connectivity-preserving edges. In the process of showing this we
describe how to simplify several existing results in the field of topology control [19].

For the second subproblem, we assume each robot has identified a set of edges
which it wants to preserve as well as a target position where it wants to move, and
the goal is to find a trajectory that preserves the selected edges and simultaneously
gets the robot “as close as possible” to its target position. For robustness purposes
we focus on strategies that guarantee preserving the selected edges even if robots
follow the prescribed trajectory at arbitrary speeds, or if robots suddenly halt after
traveling only a fraction of the prescribed trajectory (for example, because the robot
encountered an obstacle, it stopped to take a soil sample, its wheels slipped in a wet
environment, etc.). We describe a local distributed algorithm to solve this problem,
and we prove the trajectories produced by this algorithm are both safe (in that they
guarantee to preserve the selected edges) and robust (in the sense described above).

Next we turn our attention to analyzing the progress guarantees of our proposed
solution. Informally speaking, the progress of the algorithm measures how much

21

closer the robots get to their desired position. The progress is a function of both
the task being run by the robots (which controls the desired motion plan) as well
as the environment in which this task is executed (i.e., initial configuration of the
robots, placement of obstacles, etc.). Therefore, to prove a progress bound that is in-
dependent of the task and/or the environment, we need to make assumptions on the
resulting execution. Informally we assume that the robots do not want to perform
a motion that requires disconnecting the graph or breaking a global cycle (observe
that these assumptions are not necessary to prove the safety or robustness properties
of the algorithm). Under these assumptions, we show that the algorithm guarantees
progress at a rate of Ω(min(d, r)) units per round, where r is the communication
radius and d is the smallest (non-zero) distance from a robot to its target. Further-
more, we exhibit executions where no local algorithm can do better than this bound,
hence under these conditions the bound is tight and the algorithm is asymptotically
optimal. Using this result we then show that all robots get ε-close to their desired
target within O(D/r+ n2r/ε) rounds, where n is the total number of robots, and D
is the total initial distance from the robots to the final target. An early version of
this work appeared in [21] and [18].

Related work. The problem of preserving a connected communication graph while
controlling the motion of the robots has been addressed before, mainly in the control
theory community. Most proposed solutions are either centralized or are tailored to
preserve a connected graph only while performing specific tasks, for example moving
all robots so as to converge to a point. The work in [96] models connectivity as
a constrained optimization problem, but as a result the solution is centralized and
their approach cannot be translated easily to a distributed setting. Another central-
ized algorithm for second-order agents is proposed in [83], however it conservatively
preserves all edges in the graph. The problem of gathering (rendezvous) all agents
to a single point while preserving a connected communication graph is studied in
[2, 35, 39, 84]. In [53, 59] the authors study the problem of connected deployment,
however they evaluate the performance of their algorithms only through simulations,
and they do not prove under which conditions their algorithms solve the problem. In
contrast this work focuses on local distributed algorithms with rigorous mathematical
proofs of their guarantees.

1.1.1 k-Connectivity
Motivation. As we argued before, the size of the population of a multi-robot
system and the expected number of faults in the system grow at the same rate.

22

Therefore, fault-tolerance is an issue that needs to be tackled by any practical algo-
rithm for large multi-robot systems. The connectivity of a graph is a good estimate
of the fault-tolerance of the communication network, since higher connectivity means
more robots can fail without disrupting the communication among the rest of the
robots. Informally speaking, the connectivity of a graph G, denoted by κ(G), is the
size of the smallest set of vertices whose removal disconnects the graph. Although
a complete graph on n vertices cannot be disconnected by removing any subset of
vertices, by convention its connectivity is defined to be n− 1. We say a graph G is
k-connected if κ(G) ≥ k.

In the previous subsection we considered the problem of designing a local dis-
tributed algorithm that allows a multi-robot system to perform an arbitrary task
while guaranteeing the communication graph remains connected. Our proposed so-
lution tolerates some inaccuracy in the motion of the individual robots, as well as
unpredictable obstacles in the environment (as described by our robustness proper-
ties). However it does not provide any guarantees on the communication graph in the
event that a robot fails and stops sending/forwarding messages. Here we turn our at-
tention to the natural extension of this work to preserve a connected graph in spite of
any set of k robots failing. In other words, we describe a local distributed algorithm
that allows a multi-robot system to perform an arbitrary task while guaranteeing the
communication graph remains k-connected.

Approach and Contributions. In the same spirit as before, we split the problem
in two parts. The second half of the problem is exactly the same as it was before,
namely we assume each robot has identified a set of edges that it wants to preserve, as
well as a target position where it wants to move, and the goal is to find a trajectory
that preserves the selected edges and simultaneously gets the robot “as close as
possible” to its target position. For this we can reuse the solution we developed for the
original connectivity problem, obtaining the same safety and robustness guarantees.

The first part of the problem is slightly different. Specifically each robot seeks
to locally identify a set of edges that when preserved guarantee the communica-
tion graph remains k-connected, we refer to such edges as k-connectivity-preserving
edges. As before, we focus on solutions to this problem where the set of edges
identified is “small”. Unfortunately, existing sparse geometric graph constructions
cannot be readily adapted to identify k-connectivity-preserving edges as we did for
1-connectivity. We describe To solve the problem of finding a “small” subset of edges
that are guaranteed to be k-connectivity-preserving edges, we leverage some of our
previous results on local graph traits [20]. Below we informally sketch what are local
graph traits and what are the results which we extract from them.

23

By a standard locality argument it is possible to show that after running any
distributed algorithm for t communication rounds, the knowledge of a robot (aka.
process) is limited to learning about all robots at distance at most t, as well as
the communication links present between these robots (i.e., the t-neighborhood of a
robot). If we do not restrict either the amount of local computation or the message
size, it follows that after O(diameter(G)) rounds, every robot can acquire complete
knowledge of the communication graph and can compute any predicate about G,
for example all robots could determine if the graph is k-connected after running for
O(diameter(G)) communication rounds. However, local distributed algorithms can
only learn their local neighborhood and are therefore limited to observing local graph
traits.

Previously [20] we showed that there does not exist a local graph trait that
characterizes a k-connected graph. More precisely, we proved that for any constant
k > 0 there does not exist a local graph trait (t, T) such that a graph G satisfies
(t, T) if and only if G is k-connected. The same result holds even when considering
1-connected graphs, that is for any k > 1 there does not exist a local graph trait
(t, T) such that a 1-connected graph G satisfies satisfies (t, T) if and only if G is
k-connected. These results hold even in the case of unit disk graphs or weakly local
graph traits.

Since traits that are satisfied if and only if a graph is k-connected do not exist,
we instead look for traits that when satisfied imply k-connectivity. Specifically, in
[20] we described different local graph traits which when fulfilled by a 1-connected
graph imply that the graph is k-connected. We will use these results on local graph
traits to derive local distributed algorithms which allow a robot to identify a “small”
set of k-connectivity-preserving edges.

Finally, to preserve k-connectivity of a multi-robot system we describe how to
stitch an algorithm for selecting k-connectivity-preserving edges with our previous
connectivity preserving algorithms.

Related Work. Exploring the relationship between local and global graph prop-
erties has already been shown to be a fruitful research direction to prove upper and
lower bounds for distributed algorithms on various problems. As an example, the
seminal work of Linial [57] describes an elegant construction that uses properties
of local t-neighborhood graphs to prove that any distributed algorithm that finds
a maximal independent set in a cycle must take at at least Ω(log∗ n) rounds. The
study of the relationship of local and global graph properties dates further back. In
1983, Wigderson [95] showed that if a graph is locally k-chromatic, then it has a
chromatic number of O(

√
kn). Even earlier, in 1952, Dirac [26] proved that if G has

24

at least three vertices and all nodes have degree at least n/2, then G is Hamiltonian.
Most of the previous work on k-connectivity is in the field of topology control.

Jorgic et al. [49] reported the experimental results of three different distributed al-
gorithms to detect k-connectivity on random geometric graphs, but the work lacks
any formal guarantees. Czumaj and Zhao [24] presented a greedy centralized algo-
rithm to construct a k-connected t-spanner with runtime Õ(nk). Thurimella [88]
described a distributed algorithm to identify sparse k-connected subgraphs that runs
in O(diameter(G) +

√
n) time. Jia et al. [47] described a centralized algorithm to

approximate the minimum power assignment while preserving k-connectivity. Sim-
ilarly, Li and Hou [54] describe a distributed algorithm that given a k-connected
graph finds a k-connected spanner.

1.1.2 Applications
To validate the proposed solution to the connectivity problem, we study how to use
it to simplify the development of multi-robot tasks with formal guarantees. As an
example, we consider the problem of flocking.

Informally speaking, flocking (also known as swarming or schooling) is a form of
collective behavior where a large number of interacting agents move as a cohesive
group in the same general direction. This problem has received a lot of attention
studied in the robotics community, particularly in the context of control theory, we
refer the interested reader to [71] and references therein for a detailed survey of
related work.

One of the main challenges in designing flocking algorithms, is to get the robots
to agree on a direction of motion, while simultaneously guaranteeing cohesion. The
problem of agreement in a network of agents (also known as consensus in the control
theory community) has been studied extensively. For example the work of Jadbabaie
et al. [45], Mureau [67] and Ren and Beard [78], deals with agreement in networks of
agents with varying topology. Saber and Murray [80, 81] and Saber et al. [82] study
the problem of consensus in networks with time delays and varying topology. We will
show how these standard agreement procedures based on simple averaging [8], can
be used together with our proposed solution to the connectivity problem, to yield
flocking algorithms with the formal guarantee that both directional agreement and
cohesion are achieved.

25

1.2 Localization
Motivation. Its not hard to motivate the localization problem in multi-robot sys-
tems, since few are the tasks which can be performed effectively by robots without
position and orientation information. Accordingly, sensor-based robot localization
has been recognized as one of the fundamental problems in mobile robotics [36]. Nev-
ertheless, most existing work either addresses localization of a single robot, assumes
landmarks/anchors† on the environment, or requires the use of complex and expen-
sive sensors. Solutions relying on complex and expensive sensors are not feasible for
large multi-robot systems, and many environments (more details below) prevent the
use of approaches that rely on landmarks/anchors.

For slightly different reasons, localization is also particularly useful for sensor
networks. Sensor networks are used to track objects and people, as well as to monitor
a variety of ambient conditions, such as temperature, pressure, humidity, noise levels,
and so on. Sensor networks are a challenging platform since they are typically very
resource constrained, and are expected to operate for long stretches of time using a
limited power supply (i.e., batteries). Due to the nature of the applications of sensor
networks, the data collected is most useful when the sensor nodes are spatially aware.
It is believed [32] that the development of local distributed algorithms for coordinate
will enable sensor networks to revolutionize information gathering and processing,
both in urban environments and in inhospitable terrain.

GPS (Global Positioning System) was developed precisely to aid in the localiza-
tion problem, and is now widely used in many applications. However issues such
as limited precision, increased power consumption (especially relevant in sensor net-
works), and availability (due to signal obstruction and multi-path effects), prevent
GPS from being used in many relevant real-world applications (for example, any
application which requires working indoors or under foliage).

We have argued that in multi-robot systems and sensor network platforms it is
often crucial to learn the relative orientations and relative positions of other robots
in the network. This allows, for example, for neighboring robots to align themselves
or evenly spread out, or for robots (or sensor nodes) to route packets to their closest
neighbor, amongst various other things. Note that to perform the operations just
described (and many others) robots do not require absolute position and orientation
information. In fact, upon closer inspection we can verify these operations do not

†Landmark-based localization requires the environment to have a collection of landmarks (either
artificial or natural), with known positions and orientations, and which can be accurately sensed
by the robots. Sometimes a group of robots endowed with GPS, labelled anchor robots, play the
role of landmarks.

26

depend on the distances between robots, but just their ratio between them (i.e.,
robot u and v are at twice the distance than robot u and w). In the same spirit
as the work of O’Kane and LaValle [70, 69], this work describes a local distributed
algorithm that allows robots with minimal sensing capabilities to recover such in-
formation. Specifically, we consider a very weak sensing platform where robots are
only required to be able to measure the angle, with respect to their own orienta-
tion, to neighboring robots in the communication graph. Angle measurements can
be provided by simple and inexpensive sensors, and are readily available in low cost
multi-robot platforms [61, 43]. The cost of having such a weak sensing platform,
is that it becomes impossible to recover the actual distances (angles are invariant
to uniform-scaling), but still allows us to recover the relative orientations and the
relative positions up to some constant scaling factor.

Assumptions and Problem Statement. As before, we assume a collection of
robots deployed in two-dimensional Euclidean space with arbitrary (and unknown)
positions and orientations. Associated with the multi-robot system there is an un-
derlying communication graph which describes the neighbor relation between robots
(this graph need not be a unit disk graph, and can be an arbitrary undirected
graph). We consider a synchronous model of computation, where time progresses
in synchronous lock-step rounds and at each round robots which are neighbors in the
communication graph can reliably exchange messages. Finally, we also assume that
robots are equipped with sensors that enable them to measure the angle (with respect
to their own orientation) of every incoming message from a neighboring robots. We
remark these assumptions are compatible with what is available in several low-cost
multi-robot platforms [61, 43].

In this work we study a variation of the localization problem where each robot
seeks to compute the relative orientations and relative positions of a subset of the
robots (for example, its neighbors), where the relative positions are correct up to an
unknown positive uniform-scaling factor. Although the positions and orientations
recovered are not absolute, they are sufficient to compute many commonly used
geometric structures (i.e., shortest path between two robots, minimum spanning
tree, relative neighbor graphs, etc.). In Section 1.2.1 we outline some applications of
our proposed solution to the localization problem.

Approach and Contributions. To tackle this problem we take our standard
modular approach. First we study the problem from a graph-theoretic/geometric
perspective, and then we use the solution to these problems to derive a local dis-
tributed algorithm.

27

We first develop an orientation agreement procedure which allows a robot to
compute the relative heading of any other robot in the network from which it has
received a message (either directly or indirectly). This procedure allows a robot to
compute the orientation of any other robot at a hop distance at most k using only k
communication rounds.

Next, we leverage the orientation agreement procedure to reduce the problem of
computing the relative positions of all robots, to that of finding a satisfying realization
of an angle-constrained graph. Informally speaking, an angle-constrained graph is an
undirected graph which has associated with each of its edges an angle (or direction).
A satisfying realization of an angle-constrained graph is a straight-line embedding of
this graph to the Euclidean plane, where the angles of the edges in the embedding
match those of the angle constraints. In the same spirit of the work in rigidity theory,
we describe a simple algebraic characterization of angle-constrained graphs. We
extend this characterization to consider satisfying realizations of angle-constrained
graphs which only pertain a subset of the robots in the system.

We leverage the algebraic characterization of angle-constrained graphs to develop
a local distributed algorithm that allows a robot to compute the relative positions
(up to a positive uniform-scaling) of any subset of robots. Moreover, we prove that
this algorithm is optimal in the sense that if it is unable to compute the relative
positions of a subset of robots, then no other algorithm which runs in the same
number of communication rounds can succeed.

Finally we discuss how, when available, odometry information at the robots can
be incorporated into the framework to easily obtain the scale of the relative positions.

Related Work. Angle sensors have been used together with other sensors to solve
the localization problem. For example, Basu et al. [6] studies the problem of lo-
calization assuming nodes have noisy length and angle measurements/constraints.
The work of Dogancay [27] studies localization with a static observer and a moving
target to which the observer can measure a angle, which is analogous to solving a
triangulation. In a similar vein, Niculescu and Nath [68] consider a system where
nodes can determine the angle to their neighbors, and a subset of the nodes have
global positioning capabilities, which is also a variant of triangulation. Approaches
relying only on distance information [12, 44, 1] to triangulate the positions have also
been proposed. We remark that in all the works above an additional source of length
or position information is required (on all or some of the nodes) for successful local-
ization, and therefore the problems they consider are fundamentally different from
the ones we study.

For a detailed history of the results in rigidity theory we refer the interested

28

reader to [94, 23, 3, 16] and references therein. The most relevant to our work is
the seminal work of Whiteley [94], who studied rigidity with directional constraints
(aka Parallel Drawings in the Plane) using the tools of matroid theory. Whiteley [94]
arrives at a characterization of rigidity through the analysis of statics and stresses
of bar frameworks, and then follows the more traditional rigidity theory approach
of first-order kinematics, which culminates showing the equivalence of 2-rigidty and
rigidity with directional constraints. Our work is complementary to this, and we
offer an alternative derivation to tackle the localization problem. Concretely, we
present a succinct and self-contained argument that precisely characterizes those
graphs with angle-constraints for which it is possible to solve the localization problem.
Our characterization relies only on simple observations regarding cycles on a graph
and basic graph theoretic and geometric arguments. Another distinction with the
traditional work in rigidity theory and localization, is that our end goal is to localize
only a subset of robots (which is possible even when its impossible to localize all
robots and the entire graph is not rigid).

1.2.1 Applications
In the motivation subsection we argued that most applications of multi-robot systems
necessitate that each robot has some form of information about the positions and
orientations of other robots in the system.

To validate our proposed solution to the localization problem, we describe various
natural multi-robot applications which can be implemented when the localization
information available to the robots is only correct up to a positive uniform-scaling.
These applications include things as simple as having each robot determine which of
its neighbors is closest to it, or as complex as having each robot compute the shape
of the Voronoi cell associated with its position (assuming the Voronoi tessellation
has been defined over the position of all the robots). Concretely, we describe how
to implement various of the distributed algorithms to compute structures such as
the Gabriel Graph, the Relative Neighbor Graph, the Cone-Based Topology Control
Graph and the Local Minimum Spanning Graph.

For multi-robot applications that involve motion, we describe how to leverage
the odometry information (when available) at each robot to compute the relative
positions of any subset of robots using only angle measuring sensors. This allows us
to implement any multi-robot task which requires the relative orientations and the
relative positions of a subset of robots. These tasks include, amongst others, flocking
and distributed coverage control.

29

1.3 Additional Related Work
In the previous subsections we mentioned a few works which were most directly
related to the problems of connectivity and localization. In this section we give a
wider overview of the previous work on large multi-robot systems, both from the
perspective of distributed algorithms, and from the robotics community, from which
we draw inspiration for this thesis.

1.3.1 Distributed Computing
During the last few years, the distributed computing community has proposed a
number of computation models for multi-robot systems [87, 86, 34, 15]. The primary
motivation has been to study the minimal set of capabilities required by a collection
of distributed robots to solve a certain task, and as such the robots considered are
relatively simple and weak. Specifically, the robots considered are assumed to be;
dimensionless, modeled as points which do not obstruct each others movements or
sensing; oblivious, unable to remember previous actions or store any state; anony-
mous, indistinguishable and unable to identify any other robots. Moreover, robots
are assumed to have no explicit means of communication. Instead, robots communi-
cate implicitly by observing the positions (in their private coordinate system) of all
robots in their visibility range, and controlling their own motion. It is assumed that
both the observation and motion are carried out with perfect precision. Each robot
executes the same algorithm in look-compute-move cycles, where each robot first
observes the positions of other robots within its visibility range, then it computes a
target position based solely on the observed positions (recall robots are oblivious),
and finally it moves to its target position.

Variants of this model have been considered which use different assumptions on
the synchronization of the look-compute-move cycles of different robots [85, 86, 34]
(namely, fully synchronous, semi synchronous or asynchronous), different visibility
assumptions (i.e., unlimited visibility vs visibility graph) and geometric assump-
tions [34, 29, 76] (i.e., share a compass, share the notion of unit distance, share
a coordinate system, etc.). The problems studied in these models include the for-
mation of pre-agreed geometric patterns [86], gathering and convergence [87] (also
known as rendezvous), following a pre-designated leader, the wakeup problem (where
one initially awake robot must wake up all others), and partitioning [30, 29] (where
robots must divide themselves into groups).

The models described above are especially well-suited to study the difficulties
that arise when trying to break the symmetry of a system under various synchrony

30

and geometric assumptions. However, they are less than ideal to design practical dis-
tributed algorithms for real multi-robot systems. On one hand these models impose
very stringent constraints on the robots, making it impossible for a robot to have a
name or unique identifier, to keep a single bit of state, or to communicate anything
besides its own position. On the other hand, on the most part, the algorithms de-
veloped in these models assume all robots are perfectly accurate and reliable, and
therefore ignore the possibility of robot crashing, having a motion error (perhaps due
to unknown obstacles or terrain features), or even having a limited sensing precision.
As it is observed by [30], a problem which can be shown to be unsolvable in this
model, can admit a trivial solution if we relax just one of these assumptions, for
example by allowing robots to have unique identifiers.

1.3.2 Multi-Robot Systems
As noted by Parker [72], the field of distributed robotics had its origins in the late
1980’s. Before then, robotics research had mostly concentrated on single robot sys-
tems. The term distributed robotics has been used to refer to a variety of problems
that arise in robotics, which includes work on coordination of multiple manipula-
tors, cellular/reconfigurable robot systems [37], etc. We refer the reader to [72] for
a detailed (but outdated) survey of the work distributed robot systems and an ap-
plication taxonomy. In this thesis we are only concerned with multi-robot systems
which involve large number of autonomous agents operating in two-dimensional en-
vironments that communication through a wireless ad hoc network, and we are only
concerned with applications which require some degree of cooperation between the
robots.

Several encouraging experimental results with large multi-robot systems have
been produced in recent years by the robotics community; the work in this the-
sis is inspired by them. Perhaps one the best examples is the work of McLurkin
[62], who successfully built a swarm of 100+ robots (aka. SwarmBots) and demon-
strated a wide range of behaviours in the lab. These behaviours included naviga-
tion, dispersion [64], follow-the-leader, gathering and physical sorting of the robots,
amongst other things. Although the flavor of that work was mostly experimental,
it relied extensively on strategies developed in the field of distributed computing to
implement behaviours that would scale well to large populations of robots. More
elaborate behaviours tested using the SwarmBot platform included a boundary de-
tection algorithm [63], which was inspired by the work of Edelsbrunner et al. [28] in
computational geometry.

Other examples of large multi-robot systems include the CentiBots developed

31

by Konolige et al. [52], the e-puck developed by Mondada et al. [65], the AmigaBot
developed by Howard et al. [42], amongst others. Each of these platforms was tailored
for different purposes, and each of the has been used to successfully demonstrate
different multi-robot behaviors in the lab.

More than 10 years ago [11] observed that there were few real-world applications
of cooperative multi-robot systems that had been reported, and supporting theory is
was still its formative stages. We remark that, despite the encouraging experimental
results mentioned above, and the fact that there is (and has been) a large pool of
potential applications for large multi-robot systems, for the most part the observa-
tions made by Cao et al. [11] are still valid today. This fact attests to the difficulty
of designing practical and robust algorithms for cooperative multi-robot systems.

Large cooperative multi-robot systems pose unique algorithmic and practical chal-
lenges, and we believe that in order to be able to use these systems for real-world
applications, it will be necessary to develop a toolbox of robust algorithms for multi-
robot systems with a rigorous theoretical underpinning.

32

Chapter 2

Model

This thesis is concerned with multi-robot systems with large populations of mobile
robots that communicate via a decentralized wireless network without any preexisting
infrastructure (known as a wireless ad hoc network). This chapter describes our
assumptions on the communication and the computation capabilities of the robots, as
well as our mathematical model for the multi-robot system. Specifically, the first two
sections present graph theoretic and geometric definitions that will be used in later
chapters. Whenever possible we adhered to the standard notation and terminology,
so a reader familiar with these concepts can safely skip the first two sections of this
chapter. The last section of this chapter describes the mathematical model we use
to model multi-robot systems.

2.1 Graph Theory Preliminaries
An undirected graph is represented by a tuple G = (V,E), where V is the set of
vertices and E is the set of edges, which are two-element subsets of V . To simplify
notation we will use VG to refer to the set of vertices of G, and EG to refer to the set
of edges of G. Whenever it is clear from context that v is a vertex and e is an edge,
we will simply use v ∈ G and e ∈ G to denote that v is contained in the vertex set
of G and e is contained in the edge set of G respectively. The neighbors of a vertex
u in G are the set of vertices that are connected to u through an edge in EG. We
use NG(u) = {v | {u, v} ∈ EG} to denote the neighbors of u in G. The number of
neighbors of a vertex u in G is its degree, denoted by dG(u) = |NG(u)|.

A graph H is spanning of G (alternatively we will sometimes say H spans G) if
VH = VG. If H spans G we define the intersection of H and G, denoted by H ∩ G,
as the graph with vertex set VH = VG and edge set EH ∩ EG. Similarly, we define

33

the union of H and G, denoted by H ∪G, as the graph with vertex set VH = VG and
edge set EH ∪ EG. A graph H is a subgraph of G (alternatively we will sometimes
say G contains H) if VH ⊆ VG and EH ⊆ EG, this is denoted by H ⊆ G. A subgraph
H of G is an induced subgraph of G if ∀u, v ∈ VH then {u, v} ∈ EH if and only if
{u, v} ∈ EG. We use 2G to denote the set of all subgraphs of G.

A graph P is a path if it has a vertex set VP = {v1, v2, . . . , vk} and edge set EP =
{{v1, v2} , {v2, v3} , . . . , {vk−1, vk}}, where the vi are all distinct (in the literature that
allows for paths with repeated vertices, our definition is sometimes referred to as a
simple path). The vertices v1 and vk are the end points of P , and the vertices
v2, . . . , vk−1 are the inner vertices of P . The number of edges in a path is its length.
A cycle is a path graph with at least three vertices plus an edge between its end
points.

A graph is connected if it contains a path between every pair of vertices, otherwise
it is disconnected. A maximal connected subgraph of G is called a component of G.
The distance between u and v in G, denoted by dG(u, v), is defined as the length
of the shortest path between u and v contained in G; if no such path exists then
dG(u, v) =∞. The diameter of a graph G, denoted by diamG, is the greatest distance
between any two vertices in G.

A graph without cycles is a forest, and a connected forest is a tree.
A vertex cut of a graph is a set of vertices whose removal renders the graph

disconnected. The size of a vertex cut is the number of vertices it contains. A vertex
cut is a minimum vertex cut if it is a vertex cut of smallest size. The connectivity
of a graph G, denoted by κG, is the size of a minimum vertex cut of G. A complete
graph on n vertices has no cuts at all, but by convention its connectivity is n − 1.
We say a graph G is k-connected if κG ≥ k.

2.2 Geometry Preliminaries
We will be interested exclusively in Euclidean geometry, which is defined mathemat-
ically as a real vector space equipped with an inner product. For a positive integer
n we use Rn to denote the n-dimensional real vector space. We use bold lowercase
letters to denote elements of a vector space, and lowercase letters to denote real
scalars. A vector p ∈ Rn is described by an n-tuple (p1, p2, . . . , pn) of real numbers.
We define the standard vector space operations and the inner product on Rn:

34

p± q = (p1 ± q1, p2 ± q2, . . . , pn ± qn)
αp = (αp1, αp2, . . . , αpn)

p · q =
n∑
i=1

piqi.

The inner product allows us to define the norm (or length) of a vector p ∈ Rn as
‖p‖ = √p · p. We highlight that this norm satisfies the triangle inequality, namely
∀p,q ∈ Rn we have ‖p + q‖ ≤ ‖p‖+ ‖q‖.

Using the norm we can define the distance between two points p,q ∈ Rn as
d(p,q) = ‖p− q‖. We define the interior angle between three points p,q, r ∈ Rn

as ∠pqr = cos−1
(

(p−q)·(r−q)
‖p−q‖‖r−q‖

)
.

Consider two points p,q ∈ Rn, the line that passes through these points is defined
as line(p,q) = {(1− t)p + tq | t ∈ R}, the ray with origin at p that passes through
q is defined as ray(p,q) = {(1− t)p + tq | t ∈ R≥0}, and the line segment between
p and q is defined as seg(p,q) = {(1− t)p + tq|t ∈ [0, 1]}.

A hyperplane is a flat subset of Rn of dimension n−1 that separates the space into
two half-spaces. Specifically, the hyperplane with a normal n ∈ Rn that contains
a point p ∈ Rn is defined as hyperplane(n,p) = {q ∈ Rn | n · (q − p) = 0}. The
reflection of a point on a hyperplane maps the point to its “mirror image” in the
hyperplane. Formally the reflection of a point q ∈ Rn in hyperplane(n,p) is defined
as Refln,p(q) = q − 2 n

‖n‖2 (n · (q − p)).
A sphere of radius r centered at q ∈ Rn is the set of points at distance r from q,

denoted by Sr(q) = {p ∈ Rn | ‖p− q‖ = r}. A ball is the space enclosed by a sphere,
the ball is closed if it includes the sphere and the ball is open if it does not include
the sphere. Formally, a closed ball of radius r centered at q ∈ Rn is the set of points
at distance less or equal than r from q, denoted by Br[q] = {p ∈ Rn | ‖p− q‖ ≤ r}.
An open ball of radius r centered at q ∈ Rn is the set of points at distance less than
r from q, denoted by Br(q) = {p ∈ Rn | ‖p− q‖ < r}.

For succinctness we use the term ball to mean a closed ball, and when denot-
ing a unit sphere or a unit ball we omit the r subscript. Moreover, we use the
term disk to refer to a two-dimensional ball, and the term circle to refer to a two-
dimensional sphere. Similarly a one-dimensional ball is simply a line segment, and a
one-dimensional sphere is simply two points (i.e., the endpoints of a line segment).

The intersection (if any) of two n-dimensional spheres is an (n− 1)-dimensional
sphere (and therefore lies in a hyperplane in Rn). The intersection (if any) of two
n-dimensional balls is an n-dimensional lens. If two balls have the same radius

35

the lens produced by their intersection is a symmetric lens. The base of the lens
produced by the intersection of two balls Br[p] and Br′ [q] is the space enclosed by
the intersection of the spheres Sr(p) and Sr′(q). Since by definition the intersection of
two n-dimensional spheres is an (n− 1)-dimensional sphere, and the space enclosed
by a sphere is a ball, then it follows that the base of an n-dimensional lens is an
(n− 1)-dimensional ball.

Figure 2-1: The lens produced by the intersection of the red ball and the green ball
is colored in blue. The base of the lens is outlined by a black dotted line. If the balls
that produced the lens are three-dimensional (left), the base of the lens is a two-
dimensional ball (i.e., a disk). If the balls that produce the lens are two-dimensional
(right), then the base of the lens is a one-dimensional ball (i.e., a line segment).

A cone in Rn is the union of all rays that originate at the apex ∈ Rn and pass
through a base ⊆ Rn. The axis of a cone is the ray (if any) that originates at the
apex, goes through the base, and about which the cone has rotational symmetry.
The aperture of a cone is the maximum angle between two rays of the cone which
originate at its apex. A right circular cone in Rn is a cone whose base is an (n− 1)-
dimensional ball and whose axis passes at a right angle through the center of the
base. All cones considered in this thesis are right circular, and in a slight abuse of
notation we use the term cone to mean right circular cone.

A set of points is convex if and only if it contains the line segment between every
pair of points inside it, formally a set S ⊆ Rn is convex if and only if ∀p,q ∈
S, seg(p,q) ⊆ S. A useful property of convex sets is that they are closed under
intersection, in other words the intersection of an arbitrary collection of convex sets
is also a convex set.

2.3 Modeling a Multi-Robot System
In this thesis we deal exclusively with mobile robots deployed in planar environments,
and the model described in this section reflects this restriction. In practice this

36

assumption is reasonable for most multi-robot systems composed of ground vehicles.
Nevertheless we remark that most of the algorithms and results presented in this
thesis have natural extensions to three-dimensional space. In the pertinent sections
we outline how each result can be extended to handle three-dimensional Euclidean
space, or what are the obstacles that prevent a natural extension.

Loosely speaking, each robot is modeled by its state in the physical world and a
program which controls its behavior. In the following paragraphs we formalize these
concepts.

We denote by R the set of robot identifiers. To model the program which con-
trols the behavior of each robot we use the TIOA framework [51]. Specifically, we
suppose there is a function prog which maps each robot identifier in R to a timed
I/O automaton which controls its behavior.

The position of robot v ∈ R is described by the function %v : R≥0 → R2 which
associates with robot v a two-dimensional coordinate in a global coordinate system at
every time point. We assume that two distinct robots are never mapped to the same
position at the same time. The orientation (often called heading or bearing) of robot
v ∈ R is described by the function φv : R≥0 → [0, 2π) which associates with robot v
its counter-clockwise angle from the x-axis of the global coordinate system at each
time point. Therefore a robot with an orientation of 0 radians points in the direction
of the x-axis and a robot with an orientation of π

2 radians points in the direction of
the y-axis. Finally the pose or kinematic state of a robot v ∈ R at time t ∈ R≥0 is
described by its position and orientation at time t, that is posev(t) = [%v(t), φv(t)].

The communication between the robots of the multi-robot system is modeled
as an undirected graph where each vertex is occupied by a robot. Specifically the
communication graph at time t ∈ R≥0 is denoted by Gt, and is an undirected graph
with a vertex set V and an edge set which (potentially) depends on t. When executing
a communication step at time t, a robot v ∈ V first broadcasts a message m which is
delivered to its neighbors in Gt and then receives the messages which were broadcast
by its neighbors in Gt. We remark that in reality the communication occurs via
a wireless ad hoc network and, depending on the physical characteristics of the
communication medium and the communication devices, directed links might exist
between some robots (i.e., a robot u can receive a message sent by robot v, but not
vice versa). However for simplicity we assume no such links exist, which in practice
can be accomplished by adding a preprocessing stage that detects and removes them.

We consider a round based model where time progresses in synchronous lock-step
rounds of a fixed length. For simplicity and without loss of generality, we assume that
rounds occur at integer time points {0, 1, 2, . . .}. At the beginning of every round the
following actions occur at each robot automaton instantaneously: i) An input action

37

is received from its sensors (if any). This action usually contains some information
about the physical state (for example, the position of neighboring robots). ii) A
constant number ` of communication steps are executed. iii) An output action is
produced which includes a motion trajectory. In the remainder of each round, the
state of the world is updated and the pose of each robot in the system is evolved
using the trajectory output by its automaton.

In reality the actions executed by a robot automaton at the beginning of each
round may not occur instantaneously. The amount of time required to execute
them depends on the number ` of communication steps per round, as well as the
processing speed and communication bandwidth available to the robots. Since the
last two quantities are generally large when compared to the physical speed of the
robots, even for moderately large values of ` it is reasonable to assume the robots
remain static for the duration of a round. Moreover, even in systems where this is
not the case (either due to severe communication or computational constraints, or
due to arbitrarily large values of `), it is possible to artificially limit the physical
speed of the robots so as to preserve the above guarantees.

When no confusion can arise, we will drop the reference to time from our notation
and we use G to denote the current communication graph of the multi-robot system,
and for v ∈ R we use %v, φv and posev to refer to the current position, the current
orientation and the current pose of robot v.

In the model presented so far we have not specified what is the initial knowledge
of the robots, what sensors are available to the robots to perceive the world and each
other, and what is the relationship between the edges present in the communication
graph and the position of the robots. These details are specified in the chapters
that require them, and for now we can consider that robots initially know nothing
(not even their own identifiers or the size of the multi-robot system), they have no
sensors, and the relationship between the communication graph and the position of
the robots is arbitrary.

The model described above to be simple enough to allow us to state and prove
correctness theorems about a multi-robot system, and at the same time general
enough to capture the reality of multi-robot platforms for large populations [43, 61,
65].

38

Part I

Connectivity

39

Designing distributed configuration control algorithms for multi-robot systems is
a difficult task, even when dealing with a single hop network. When communicating
through a wireless ad hoc network the problem is further complicated by the need
to ensure connectivity as the robots move and the communication graph changes. In
this setting, there is a complex interplay between mobility and communication. On
one hand the robots need to communicate in order to coordinate and decide where to
move, and on the other hand every time a robot moves the communication network
is subject to change (sometimes drastically). An additional consideration is that for
an algorithm that controls the motion of the robots to be of any practical use, it
must tolerate uncertainties in the motion of the robots. For example, differences in
the actuators might cause the robots to travel at different speeds, unexpected ob-
stacles might cause a robot to stop abruptly before reaching its target, etc. These
difficulties might explain why most existing configuration control algorithms pro-
vide coordination but typically sidestep the challenge of ensuring the graph remains
connected.

This first half of the thesis is devoted to tackling this problem. We propose
a connectivity-preserving algorithm that can be used to maintain a connected (or,
more generally, k-connected) communication graph while simultaneously advancing
towards a goal defined by an arbitrary motion planner. The distributed algorithm
we describe is modular in that it makes no assumptions about the motion-planning
mechanism, local in that each robot communicates only with nearby robots and
doesn’t require any network routing infrastructure, and memoryless in that the out-
put at each round does not depend on what happened on previous rounds.

Problem Formulation. At its core, the problem of moving while maintaining a
connected graph deals with the interplay between the position of the robots and the
connectivity of the communication graph. Therefore we first make the relationship
between the positions of the robots and the presence of edges in the communication
graph explicit. Concretely, we assume the communication graph is a unit disk graph
of radius r, which means there is an edge between robot u and robot v if and only if
d(%u, %v) ≤ r. As their name suggests, traditionally unit disk graphs have a radius
of one. We keep the radius r as a variable in order to make the relationship between
the communication radius and the other parameters of the system explicit. The
algorithms we describe operate correctly in a slightly more general class of communi-
cation graph. In particular it suffices for the communication graph to contain a unit
disk graph of radius r. In other words, if d(%u, %v) ≤ r then there is an edge between
robot u and v, but if d(%u, %v) > r then the edge between robot u and v might or
might not exist. The key property leveraged by the algorithms, is that if two robots

40

are at distance at most r then they are guaranteed to be directly connected in the
communication graph.

Informally, in the connectivity-preserving problem each robot starts with a de-
sired trajectory (produced by a motion planner) and the goal is to find for each robot
a new trajectory such that the following properties are satisfied: 1) ε-progress, indi-
vidually each robot does not move away from its desired position and collectively the
system moves ε closer to its desired configuration, and 2) robust safety, the connec-
tivity of the graph is preserved regardless of the speed at which each robot follows
the trajectory prescribed to it. We highlight that the progress guarantees we will
describe depend on various properties of the desired trajectories, while the safety
guarantees will require no assumptions on the desired trajectories.

Outline. We take a two step approach to tackle this problem. In Chapter 3 we
determine which edges in the communication graph are sufficient to guarantee con-
nectivity (we extend this to k-connectivity in Chapter 5). In Chapter 4 we describe
how to find a trajectory which preserves the selected edges while maximizing the
progress towards a predefined target position. Our approach is modular enough to
allow Chapters 3 and 4 to be read in either order.

41

42

Chapter 3

Selecting Edges

Ultimately our goal is to design a local distributed algorithm which allows each robot
to move closer to its desired target position while guaranteeing that the communi-
cation graph remains connected. As a first step, this chapter asks and answers the
following question (stated informally).

If robots want to preserve the connectivity of the communication graph,
to which of its neighbors should each robot remain connected?

Clearly it suffices for each robot to preserve connectivity to all its neighbors, but this
would hinder progress since each robot will be very constrained when deciding where
to move. This chapter describes various techniques that allow each robot to select a
“good” subset of its neighbors to which to preserve connectivity. We guide this search
by the following premises: 1) the fewer neighbors a robot is required to preserve, the
less constraints it has when finding a trajectory that preserves them, and 2) when
finding a trajectory that preserves connectivity to a set of robots, close-by robots
represent lesser constraints than robots which are farther away.

Roadmap. Section 3.1 introduces some definitions that allow us to ask (and an-
swer) the previous question formally. Section 3.2 surveys various existing techniques
that can be easily adapted for our purposes. Finally Section 3.3 proves the optimality
of one of the proposed techniques.

43

3.1 The Edge Selection Problem
Given a connected graph G = (V,E) a set S ⊆ E of edges is connectivity-preserving
if and only if the graph H = (V, S) is connected.

An edge-selection distributed algorithm locally selects at each robot v a subset
S(v) ⊆ NG(v) of its neighbors. We say an edge is selected if either of its end points
locally selects the other; otherwise the edge is said to be unselected. We further
partition the set of selected edges into consistently selected edges, those edges that
are locally selected by their two endpoints; and inconsistently selected edges, those
edges that are locally selected by exactly one of their endpoints.

We emphasize that at the expense of an additional communication step, any edge-
selection distributed algorithm can be modified to guarantee that all edges which were
originally inconsistently selected become unselected or consistently selected.

Therefore our goal is to design an edge-selection distributed algorithm that con-
sistently selects a “good” set of connectivity-preserving edges, formalized next. First,
since it is desirable to have fewer neighbors we are looking for the sparsest possi-
ble set of connectivity-preserving edges, or in other words a spanning tree of the
communication graph. Second, since requiring being connected to close-by robots is
preferable to requiring being connected to farther-away robots, then assuming the
length of an edge is equal to the distance between its endpoints, we want a spanning
tree that minimizes the maximum length of the edges (another reasonable goal would
be a spanning tree that minimizes the total length of the edges). In other words, ide-
ally we would like to design an edge-selection distributed algorithm that consistently
selects the edges of a minimum spanning tree (defined next) and no other edges.

A minimum spanning tree of a weighted graph is defined as a spanning tree with
minimum total weight. A minimum spanning tree can be shown to be a connected
spanning subgraph that minimizes the maximum weight of the edges. In general, a
weighted graph may have multiple distinct minimum spanning trees, but a graph with
unique edge weights is guaranteed to have a unique minimum spanning tree. Unique
edge weights are not a serious restriction since they can be simulated by leveraging
the unique identifiers available to the robots. Namely, if a weighted graph associates
with each edge {u, v} the weight w{u,v}, then we associate with each edge {u, v}
the weight tuple (w{u,v},min(id(u), id(v)),max(id(u), id(v))). When computing the
minimum spanning tree, instead of comparing the weights of two edges directly, we
compare their weight tuples lexicographically. By definition, the weight tuples are
unique, and the (unique) minimum spanning tree computed using these weight tuples
corresponds to a minimum spanning tree using the original edge weights. Therefore,
without loss of generality, in this chapter whenever we consider a minimum spanning

44

tree of a graph we assume it is unique. Specifically given a weighted graph G we use
MST (G) to denote the unique minimum spanning tree of G, breaking ties as defined
above.

However, with or without unique edge weights, and even when allowing messages
of unbounded size and unbounded computational resources to each process, it is
known that distributed computation of a minimum spanning tree (or any spanning
tree for that matter) requires time proportional to the diameter of the graph [74]. In
fact, it has been shown that finding any connected spanning subgraph that approx-
imates the weight of the minimum spanning tree is a task that cannot be performed
locally [31]. Hence, instead of trying to find a connected spanning subgraph that
approximates the weight of the minimum spanning tree, our aim will be to find a
subgraph that contains the minimum spanning tree. The fewer the edges in the
subgraph, the better the solution.

Definition 3.1. An edge-selection distributed algorithm solves the MST-containing
problem if it consistently selects a subgraph which contains the minimum spanning
tree.

3.2 Sparse Connectivity-Preserving Sets of Edges
This section considers geometric graphs defined over a point set. In a complete
Euclidean graph the vertex set is a point set in the Euclidean plane and there is an
edge between every pair of points with an associated weight equal to the Euclidean
distance between its end points. A geometric graph is simply a subgraph of the
complete Euclidean graph.

The unit disk graph of a point set P , denoted by UDG(P), is a subgraph of the
complete Euclidean graph with only the edges of weight less or equal than one (or
more generally less than some radius r). For a point set P and a point p ∈ P we
define P [p] as the set that consists of p and its neighbors in UDG(P). Formally we
let P [p] = P ∩B[p] where B[p] denotes a closed unit ball around p.

The Euclidean minimum spanning tree of a point set P , denoted by EMST (P),
is the minimum spanning tree of the complete Euclidean graph, where ties are broken
using unique identifiers as described in Section 3.1.

We start this section by describing various geometric graphs. Specifically we
describe the Gabriel graph, the Relative Neighbor graph, the Cone-Based Topology
Control graph, and the Local Minimum Spanning graph. We also describe simple
edge-selection distributed algorithms that consistently select the edges that belong
to the intersection of each of these graphs with the unit disk graph. Moreover, we

45

show that the Local Minimum Spanning graph contains the Euclidean minimum
spanning tree, and is therefore a solution to the MST-containing problem. Later, we
leverage this result to show that the Gabriel graph, the Relative Neighbor graph, and
the Cone-Based Topology Control graph are also solutions to the MST-containing
problem, but the Local Minimum Spanning graph has the fewest edges.

Later in Section 3.3 we will show that no edge-selection distributed algorithm can
solve the MST-containing problem and have fewer edges than the Local Minimum
Spanning graph.

3.2.1 Gabriel graph
One of the earliest constructions for sparse connected spanning subgraphs is the
Gabriel graph, which was described and proved to be connected by by K.R. Gabriel
et al. [38] in 1969. The GG-region between two points p and q in the Euclidean
plane is the closed disk with the line segment seg(p,q) as its diameter. The points
p,q ∈ P are GG-neighbors in P if and only if the GG-region between p and q
contains no other point in P (see Figure 3-1).

(a) (b)

Figure 3-1: (a) p and q are GG-neighbors since there is no other point in their GG-
region. (b) p and q are not GG-neighbors since there is a point in their GG-region.

Definition 3.2. The Gabriel graph of a point set P , denoted by GG(P), has P as
its vertex set and all pairs of GG-neighbors in P as its edge set.

The next claim follows directly from the definition of a GG-neighbor/region.

Claim 3.3. Fix a point set P , and two points p ∈ P and q ∈ P [p] \ {p}. Then p,q
are GG-neighbors in P if and only if p,q are GG-neighbors in P [p].

This claim allows us to use the following straightforward edge-selection dis-
tributed algorithm to consistently select the edges present in the unit disk graph
and the Gabriel graph.

The following proposition is an immediate consequence of Claim 3.3.

46

Algorithm 1 GG-EdgeSelect for robot at p.
1: broadcast p, and let X = {p} ∪ {q | q was received}
2: locally select {q | q ∈ X \ {p} and p,q are GG-neighbors in X}

Proposition 3.4. Let P be a point set and let H(P) be the graph induced by the edges
which are consistently selected by the GG-EdgeSelect algorithm. Then H(P) =
GG(P) ∩ UDG(P).

Proof. First we claim that X = P [p]. This follows by the assumption that the
communication graph is a unit disk graph and that (at line 1) each robot broadcasts
its own position and subsequently receives the positions of all its unit disk graph
neighbors.

Therefore, (at line 2) the robot at p locally selects a robot at q if and only if
q is its unit disk graph neighbors and p,q are GG-neighbors in P [p]. Finally, by
Claim 3.3 this is equivalent to selecting all its unit disk graph neighbors in P that
are also its GG-neighbors in P and the statement follows.

Moreover, observe that since the GG-neighbor relation is symmetric then it fol-
lows that no edge is inconsistently selected.

3.2.2 Relative Neighbor graph
In 1980 Godfried Toussaint [89] defined the Relative Neighbor graph as a sparser
cousin of the Gabriel graph. The RN-region between two points p and q is the lens
produced by the intersection of two open disks of radius ‖p− q‖ centered at p and q
respectively. The points p,q ∈ P are RN-neighbors in P if and only if the RN-region
between p and q contains no other point in P (see Figure 3-2).

Definition 3.5. The Relative Neighbor graph of a point set P , denoted by RNG(P),
has P as its vertex set and all pairs of RN-neighbors in P as its edge set.

Toussaint [89] showed the following relation between the Relative Neighbor graph
and the Gabriel graph.

Proposition 3.6. Let P be a point set. Then RNG(P) ⊆ GG(P).

Proof. To prove the statement it suffices to show that if an edge is present inRNG(P)
then it is also present in GG(P). We prove the contrapositive of this.

Let e be an edge with endpoints p,q ∈ P that is not present in GG(P). Then by
definition of the Gabriel graph there exists a point w ∈ P in the GG-region between

47

(a) (b)

Figure 3-2: (a) p and q are RN-neighbors since there is no other point in their RN-
region. (b) p and q are not RN-neighbors since there is a point in their RN-region.

p and q. This implies that w is also contained in the RN-region between p and q,
and by definition of the Relative Neighbor graph, e is not present in RNG(P).

The next claim follows directly from the definition of a RN-neighbor/region.

Claim 3.7. Fix a point set P , and two points p ∈ P and q ∈ P [p] \ {p}. Then p,q
are RN-neighbors in P if and only if p,q are RN-neighbors in P [p].

Essentially the same edge-selection distributed algorithm (and proof) we used for
Gabriel graphs can be used to consistently select the edges present in the unit disk
graph and the Relative Neighbor graph.

Algorithm 2 RNG-EdgeSelect for robot at p.
1: broadcast p, and let X = {p} ∪ {q | q was received}
2: locally select {q | q ∈ X \ p and p,q are RN-neighbors in X}

Proposition 3.8. Let P be a point set and let H(P) be the graph induced by the
edges which are consistently selected by the RNG-EdgeSelect algorithm. Then
H(P) = RNG(P) ∩ UDG(P).

As before, since the RNG-neighbor relation is symmetric then it follows that no
edge is inconsistently selected.

3.2.3 Cone-Based Topology Control graph
Topology control is a technique used in wireless networks to save energy by reducing
the number of active links in the network. The construction described here was

48

originally proposed for topology control by Bahl et al. [5]. For a point set P , an
α ∈ [0, 2π], and two points p,q ∈ P , we say p is α-safe in P with respect to q if and
only if there exists a (right circular) cone with apex at p and aperture α that contains
q and does not contain a point of P that is closer to p than q (see Figure 3-3). The
points p,q ∈ P are α-neighbors in P if and only if p is α-safe in P with respect to
q and vice versa.

(a) (b)

Figure 3-3: (a) p is α-safe with respect to q since there is a cone with apex at p and
aperture α containing q that does not contain a point that is closer to p than q. (b)
p is not α-safe with respect to q since there does not exist a cone with apex at p of
aperture α containing q that does not contain another point closer to p.

Definition 3.9. The Cone-Based Topology Control graph of a point set P and an
angle α ∈ [0, 2π], denoted by CBTCα(P), has P as its vertex set and all pairs of
α-neighbors in P as its edge set.

The parameter α controls the number of edges in the resulting Cone-Based Topol-
ogy Control graph. For example, consider a point set where no three points are
collinear and all edges have distinct lengths. At one extreme if we let α → 0 the
resulting Cone-Based Topology Control graph contains all edges. At the other ex-
treme if we let α→ 2π then the edges included in the resulting Cone-Based Topology
Control graph are a subset of the edges in the Euclidean minimum spanning tree.

Bahl et al. [5] proved that if α ≤ 2π/3 then CBTCα(P) is connected. A shorter
proof of this fact appeared in [19], which in addition showed that if α ≤ 2π/3
then CBTCα(P) contains the minimum spanning tree. We generalize this in Theo-
rem 3.17, using a proof that follows the same spirit as the proof in [19].

The next claim follows directly from the definition of α-safe.

Claim 3.10. Fix a point set P , and two points p ∈ P and q ∈ P [p] \ {p}. Then p
is α-safe in P with respect to q if and only if p is α-safe in P [p] with respect to q.

49

We leverage this claim to design the following distributed algorithm.

Algorithm 3 CBTCα-EdgeSelect for robot at p.
1: broadcast p, and let X = {p} ∪ {q | q was received}
2: locally select {q | q ∈ X \ {p} and p is α-safe in X with respect to q}

The following proposition is a consequence of Claim 3.10.

Proposition 3.11. Let P be a point set and let H(P) be the graph induced by the
edges which are consistently selected by the CBTCα-EdgeSelect algorithm. Then
H(P) = CBTCα(P) ∩ UDG(P).

We remark that since the α-safe relation is not symmetric, the previous algorithm
might select some edges inconsistently. However, as mentioned in the beginning of
this chapter, at the expense of one additional communication step this algorithm can
be easily modified to unselect all inconsistently selected edges. For completeness we
illustrate this with the next algorithm.

Algorithm 4 Consistent CBTCα-EdgeSelect for robot at p.
1: broadcast p, and let X = {p} ∪ {q | q was received}
2: let Q = {q | q ∈ X \ {p} and p is α-safe in X with respect to q}
3: broadcast the set Q, and let Qq be the set received from q
4: locally select {q | q ∈ Q and p ∈ Qq}

3.2.4 Local Minimum Spanning graph
Here we describe a generalization of a topology control algorithm first described by
Li et al. [55]. For a point set P , a function L : P → 2P is a local-region function on
P if it maps every point in P to a subset of P which contains said point. Formally
L is a local-region function on P if ∀p ∈ P we have p ∈ L(p) and L(p) ⊆ P . Some
examples of local-region functions, include L(p) = {p}, L(p) = P [p] and L(p) = P .

For a point set P , a local-region function L, and two points p,q ∈ P we say p is
L-safe in P with respect to q if and only if either q /∈ L(p) or the Euclidean minimum
spanning tree of L(p)∩ P contains the edge between p and q (see Figure 3-4). Two
points p,q ∈ P are L-neighbors in P if and only if p is L-safe in P with respect to
q and vice versa.

50

(a) (b) (c)

Figure 3-4: (a) p is L-safe with respect to q since the Euclidean minimum spanning
tree of L(p) includes the edge between p and q. (b) p is not L-safe with respect
to q since the Euclidean minimum spanning tree of L(p) does not include the edge
between p and q. (c) p is L-safe with respect to q since q is not contained in L(p).

Definition 3.12. The Local Minimum Spanning graph of a point set P and a local-
region function L on P , denoted by LMSGL(P), has P as its vertex set and all pairs
of L-neighbors in P as its edge set.

The local-region function controls the number of edges in the resulting Local
Minimum Spanning graph. For example, if we take the local-region function to be
L(p) = {p} then the resulting Local Minimum Spanning graph contains all edges.
At the other extreme, if we let L(p) = P then the resulting Local Minimum Spanning
graph is exactly the Euclidean minimum spanning tree of P .

Next we show that regardless of what local-region function is used, the Local
Minimum Spanning graph contains the Euclidean minimum spanning tree.

We start by proving the following lemma, which is a minor generalization of the
well known cycle property of minimum spanning trees. We remark that this lemma
holds for weighted graphs, and is not tied to Euclidean geometry in any way.

Lemma 3.13 (Cycle property). Let G be a graph with unique edge weights, and let
T be its minimum spanning tree. An edge e is not present in T if and only if G
contains a cycle where e is the edge of maximum weight.

Proof. We prove each direction separately.

• ⇐ Suppose by contradiction that there is an edge e in T and G contains a cycle
C where e is the edge of maximum weight.
The graph H = T \ {e} produced by removing the edge e = {u, v} from T has
exactly two connected components S and R, where u ∈ VS and v ∈ VR. The
cycle C minus the edge e describes a path from u to v. If we start at vertex

51

u ∈ S we can follow this path and eventually we will use some edge e′ 6= e
which crosses from component S to component R. Let T ′ = H ∪ {e′} be the
tree resulting from joining components S and R with edge e′. Since both edge
e and e′ belong to a cycle C, then by assumption the weight of e is strictly
greater than the weight of e′, and thus the weight of T ′ is strictly smaller than
the weight of T – a contradiction.

• ⇒ Suppose by contradiction that there is an edge e not present in T and G
has no cycle where e is the edge of maximum weight.
The graph H = T ∪ {e} produced by adding the edge e to the tree T contain
a single cycle C, and this cycle uses edge e. Let e′ be the edge with the largest
weight in C, and observe that by assumption e 6= e′. Let T ′ = H \ e′ be the
tree that results from removing the edge e′ from the newly produced cycle C
in H. Since both edge e and e′ belong to a cycle C, then by assumption the
weight of e is strictly smaller than the weight of e′, and thus the weight of T ′
is strictly smaller than the weight of T – a contradiction.

We can now use this lemma to show that the Local Minimum Spanning graph
always contains the Euclidean minimum spanning tree.

Theorem 3.14. Let P be a point set and L be a local-region function on P . Then
EMST (P) ⊆ LMSGL(P).

Proof. To prove the theorem it suffices to show that if an edge is not contained in
the Local Minimum Spanning graph of P then this edge is not contained in the
Euclidean minimum spanning tree of P .

Suppose that the graph LMSGL(P) does not contain the edge between p and
q. By definition it follows that either p is not L-safe with respect to q or vice versa,
without loss of generality assume p is not L-safe with respect to q.

Since p is not L-safe with respect to q then L(p) contains p and q but the
Euclidean minimum spanning tree of L(p) does not contain the edge between p and
q. Lemma 3.13 (the ⇒ direction) implies that L(p) contains a cycle C where the
edge between p and q has the largest weight. Since L(p) ⊆ P then the cycle C is
also present in P , and Lemma 3.13 (the ⇐ direction) implies that the edge between
p and q is not included in the Euclidean minimum spanning tree of P .

52

3.2.5 Local Minimum Spanning Graphs With Few Edges
We have showed that regardless of the local-region function used the resulting Local
Minimum Spanning graph contains the Euclidean minimum spanning tree. In this
subsection we propose a local-region function which is appropriate for distributed
computation, and we prove that its resulting Local Minimum Spanning graph has
fewer edges than any of the other graphs we have considered so far.

When doing distributed computation on unit disk graphs, a natural choice for
the local-region function of a point set is precisely the unit disk around each point.
We define the unit-local-region function Lud of a point set P as Lud(p) = P [p] for all
p ∈ P . The next claim follows from the definition of Lud-safe.

Claim 3.15. Fix a point set P and two points p ∈ P and q ∈ P [p] \ {p}. Then p
is Lud-safe in P with respect to q if and only if p is Lud-safe in P [p] with respect to
q.

Proof. By definition of Lud we have Lud(p) ∩ P = Lud(p) = Lud(p) ∩ P [p] and the
claim follows.

We leverage Claim 3.15 claim to design the following distributed algorithm.

Algorithm 5 LMSGLud-EdgeSelect for robot at p.
1: broadcast p, and let X = {p} ∪ {q | q was received}
2: locally select {q | q ∈ X \ {p} and p is Lud-safe in X with respect to q}

The following proposition follows from the algorithm definition and Claim 3.15.

Proposition 3.16. Let P be a point set and let H(P) be the graph induced by
the edges which are consistently selected by the LMSGLud-EdgeSelect algorithm.
Then H(P) = LMSGLud(P) ∩ UDG(P).

Next we show that for the unit-local-region function the resulting graph is con-
tained in the Gabriel Graph, the Relative Neighbor graph, and the Cone-Based
Topology Control graph.

Theorem 3.17. Let P be a point set. Then LMSGLud(P) ∩ UDG(P) is contained
in GG(P) ∩ UDG(P), RNG(P) ∩ UDG(P) and CBTC2π/3(P).

Proof. Fix an edge e in UDG(P) with endpoints p and q.
We claim that if e is not in GG(P), or not in RNG(P), or not in CBTC 2π

3
(P),

there is a point w which is strictly closer to p than q and strictly closer to q than

53

p. This claim implies that Lud(p) contains a cycle between p,q and w where the
weight of the edge between p and q is largest. This together with Lemma 3.13 (the
⇐ direction) implies that e is not in LMSGLud(P), which completes the theorem.

We prove the previous claim by cases.

1. If e is not in GG(P) then there is a point w ∈ P inside the GG-region between
p and q. However, by the definition of the GG-region this implies w is strictly
closer to p than q, and strictly closer to q than p.

2. If e is not in RNG(P) then there is a point w ∈ P inside the RN-region between
p and q. However, by the definition of the RN-region this implies w is strictly
closer to p than q, and strictly closer to q than p.

3. If e is not in CBTC 2π
3

(P) then without loss of generality we can assume p is
not 2π

3 -safe with respect to q. This means that all cones with apex at p and
aperture 2π

3 that contain q also contain a point of P which is strictly closer to
p than q. In particular the cone with apex at p and aperture 2π

3 with its axis
going through q contains a point w ∈ P which is strictly closer to p than q.
In other words we have shown that ‖p− w‖ < ‖p− q‖, and to complete the
claim it suffices to show that ‖q − w‖ < ‖p− q‖.
The existence of the previous cone implies there exists a (thinner) cone with
apex at p and aperture at most π

3 which contains both q and w. Applying
the cosine law to the triangle formed by p,q and w we have that ‖q − w‖2 =
‖p− q‖2 + ‖p− w‖2 − 2 ‖p− q‖ ‖p− w‖ cos θ where θ is the angle formed by
∠wpq and therefore θ ∈ [0, π3]. Finally, from this it follows that cos θ ≥ 1

2 and
since we had already shown that ‖p− w‖ < ‖p− q‖ we have:

‖q − w‖2 = ‖p− q‖2 + ‖p− w‖2 − 2 ‖p− q‖ ‖p− w‖ cos θ

< ‖p− q‖2 + ‖p− w‖2 − 2 ‖p− w‖2 1
2 = ‖p− q‖2

‖q − w‖ < ‖p− q‖ .

This theorem implies that when using the unit-local-region function the resulting
Local Minimum Spanning graph has fewer edges than any of the previously described
graphs. Moreover, since Theorem 3.14 showed that the Local Minimum Spanning
graph contains the Euclidean minimum spanning tree we have the following corollary.

54

Corollary 3.18. The GG/RNG/CBTC 2π
3
/LMSGLud-edge-selection algorithms solve

the MST-containing problem.

Informally speaking, in the next section we show that there is no distributed so-
lution to the MST-containing problem that has fewer edges than the graph produced
using the Local Minimum Spanning graph strategy.

3.3 Optimal Local Minimum Spanning Graphs
The definition of a Local Minimum Spanning graph is not tied to the complete geom-
etry of a point set (or on the unit disk graph assumption), and it can be generalized
to any weighted graph (where the weights need not satisfy the triangle inequality).
We state our optimality claims for this generalization of Local Minimum Spanning
graphs.

For a weighted graph G a function L : VG → 2G is a local-region function on G
if it maps every vertex v in G to a subgraph of G which contains v. A vertex u is
L-safe with respect to v if and only if {u, v} /∈ L(u) or the minimum spanning tree
of L(u) contains the edge {u, v}. Two neighbors {u, v} ∈ E(G) are L-neighbors in G
if and only if u is L-safe with respect to v and vice versa.

Definition 3.19. The Local Minimum Spanning graph of a weighted graph G and
local-region function L on G, denoted by LMSGL(G), has VG as its vertex set and
all pairs of L-neighbors in G as its edge set.

Given a point set P , Definition 3.12 is recovered from Definition 3.19 by con-
sidering G to be a complete weighted graph over P where the weight of each edge
is equal to the Euclidean distance between its end points. The same proof used to
demonstrate Theorem 3.14 can be used to yield the following generalization.

Theorem 3.20. Let G be a weighted graph and let L a local-region function on G,
then MST (G) ⊆ LMSGL(G).

Before we can state the optimality result, we need some additional definitions.
For a weighted graph G and a positive integer t ∈ Z+ let Gt[v] be the t-neighborhood
of v in G (i.e., the largest weighted subgraph of G that a robot v can learn after
t communication steps of a full-information protocol). Observe that when dealing
with geometric graphs, including unit disk graphs, Gt[v] includes the positions of
the reachable vertices. Moreover, regardless of G, v or t, v is included in Gt[v] by
definition.

55

The next theorem shows that if for a graph G we let L(v) = Gt[v], then it is
impossible for a deterministic distributed algorithm that solves the MST-containing
problem and runs for t communication steps to consistently select fewer edges than
those in LMSGL(G).

Theorem 3.21. Let A be a deterministic edge-selection distributed algorithm that
runs for t communication steps and solves the MST-containing problem. If we let
L(v) = Gt[v] then the graph LMSGL(G) is contained in the edges consistently se-
lected by A when run in G.

The proof idea is very simple. First observe that if Gt[v] = H t[v] then by defi-
nition for a robot at v the graphs G and H are indistinguishable when running for
less than or equal to t communication steps. To prove the theorem we show that
given a graph G and a vertex v ∈ G, it is possible to construct a graph H, where
Gt[v] = H t[v], and the minimum spanning tree of H is guaranteed to contain all the
edges present in the minimum spanning tree of H t[v].

Proof. Let A be any edge-selection deterministic distributed algorithm that runs in
t communication steps and solves the MST-containing problem. Suppose by contra-
diction that there is a graph G where A does not consistently select an edge {u, v}
and {u, v} ∈ LMSGL(G).

Since {u, v} is not consistently selected when running A in G, we can assume
that when running A in G the robot at u does not locally select v.

Consider the communication graph H = Gt[u] and observe that by the definition
of Gt[u] = H t[u]. Therefore, any deterministic procedure running at u which runs
for less or equal than t communication steps will produce the same outcome in G
and H. Since by assumption robot u does not locally select v when running A in G,
then it also does not locally select v when running A in H. This implies the edge
{u, v} is not consistently selected by A when running in H.

However since {u, v} ∈ LMSGL(G) by assumption, then by the definition of the
Local Minimum Spanning graph it must be that the edge {u, v} is present in the
minimum spanning tree of Gt[u] = H t[u] = H. But since we have argued that the
edge {u, v} is not consistently selected when running A in H, this contradicts the
assumption that A solves the MST-containing problem.

56

Chapter 4

Distributed
Connectivity-Preserving
Algorithm

Paraphrasing the informal description of the connectivity-preserving problem given
at the beginning of Part I— at each round a motion planner produces a set of desired
trajectories (one for each robot), and the goal of the connectivity-preserving problem
is to produce another set of trajectories which satisfy the ε-progress and robust safety
properties. The different components and their interactions are outlined in Figure 4-
1, the detailed inputs and outputs of each component appear in Section 4.1.

Our approach to the connectivity-preserving problem is to subdivide the problem
in two parts. In the first part, the goal is to find, for each robot, a set of neighbors
such that preserving connectivity to these neighbors is sufficient for the communi-
cation graph to remain connected. The fewer neighbors a robot has to preserve,
the greater freedom it has to compute a trajectory that remains connected to these
neighbors. Moreover, remaining connected to close-by robots is less of a restriction
than remaining connected to robots that are farther away. This problem was tackled
in Chapter 3.

The second part of the problem is concerned with agreeing on a set of linear
trajectories (one for each robot), so as to maximize the progress each robot makes
with respect to its original trajectory (controlled by the motion planner). The only
constraint when finding such trajectories is that each robot should remain robustly-
connected to each of the neighbors which were identified as being sufficient for pre-
serving connectivity in the first part. This is the problem tackled in the present
chapter.

57

Roadmap. In Section 4.1 we introduce the definitions necessary to formalize the
connectivity-preserving problem. In Section 4.2 we describe the connectivity-preserving
algorithm CP-Alg . In Section 4.3 we prove that at each round the trajectories out-
put by the algorithm CP-Alg satisfy the robust safety property. In Section 4.4 we
argue that the algorithm CP-Alg guarantees that no robot will move away from its
desired target position. We also demonstrate that, without additional assumptions,
it is impossible for any algorithm to simultaneously guarantee that the graph remains
connected and that the robots collectively move strictly closer to their desired target
positions. We then show that under some reasonable assumptions on the trajectories
produced by the motion planner module, the proposed algorithm guarantees that
the robots collectively move closer to their desired target positions at each round. In
Section 4.5 we describe how the progress arguments can be extended to analyze an
execution through multiple communication rounds.

58

4.1 The Connectivity-Preserving Problem

Comm Device
(i.e., Radio) Motion Controller Sensor

(i.e., GPS)

Connectivity-Preserving
Algorithm

Motion Planner

Environment

Comm Device
(i.e., Radio) Motion Controller Sensor

(i.e., GPS)

Connectivity-Preserving
Algorithm

Motion Planner

Robot-System Components and their Interactions

Figure 4-1: A robot v can communicate by broadcasting a messagem to its neighbors
through the bcast(m)v action, and receiving a message m from a neighboring robot
u through the recv(m,u)v action. The sensors at robot v provide it with its own
position %v (i.e., via GPS). The connectivity-preserving module at robot v receives
as input its own position %v (output by its sensors) and a linear trajectory γv (output
by its motion planner module). The output of the connectivity-preserving module is a
linear trajectory γ′v, whose computation may require some number of communication
steps. The motion controller receives as input the trajectory γ′v and controls the
actuators of the robot to execute the trajectory in the physical world.

A trajectory is the path that a moving object follows through space as a function
of time. In particular the linear trajectory between a ∈ R2 and b ∈ R2 is described
by the function f(t) = (1− t)a + tb where t ∈ [0, 1]. We denote by γv : [0, 1]→ R2

the trajectory produced by the motion planner module at robot v, and by γ′v :
[0, 1] → R2 the trajectory output by the connectivity-preserving module at robot
v. For simplicity we restrict γv and γ′v to be linear trajectories. We emphasize that
this does not prevent the trajectory observed by a robot, considered over a series of
rounds, from being non-linear. The starting point of a trajectory for a robot must
be equal to the position of the robot at the beginning of the round. Therefore we
have γv(0) = γ′v(0) = %v, where %v denotes the position of robot v at the beginning
of the round.

We define the configuration of the current round as the collection of robots V

59

together with their positions at the beginning of the round (%v, v ∈ V) and their
trajectories produced by the motion planner at the beginning of the round (γv, v ∈
V). For a robot v ∈ V in a configuration we define its target vector as γv(1)− γv(0).

The progress made by a robot v following trajectory γ′v with respect to the orig-
inal trajectory γv, is measured by the distance robot v advances towards the orig-
inal destination γv(1) when it reaches the new destination γ′v(1). Formally, the
progress of robot v following γ′v with respect to the original trajectory γv is defined
as δv = ‖γv(0)− γv(1)‖−‖γv(1)− γ′v(1)‖. We highlight that if robot v moves farther
away from its desired target position γv(1) when following the trajectory γ′v, then its
progress will be negative. Observe that the progress of a robot is a property of “what
happens” during the round, but since our system model does not include any sources
of uncertainty, the progress is simply a function of the configuration. The progress
of a configuration is the sum of the progress of the individual robots, δV = ∑

v∈V δv.
Informally speaking, the ε-progress property guarantees that individually no

robot moves farther away from its desired target, and collectively the robots get
ε closer to their desired positions.

Definition 4.1. A configuration satisfies the ε-progress property if δV ≥ ε and δv ≥ 0
for every v ∈ V .

Informally speaking, we say the trajectories of a pair of robots are robustly-
connected if, regardless of the speed at which the robots follow these trajectories,
they remain within distance r throughout the motion. This definition is motivated
by the requirement for robots to remain connected, despite the fact that they might
be traveling at different speeds, or that they might encounter unexpected obstacles
which force them to halt in the middle of a trajectory.

Definition 4.2. The trajectories γu and γv are robustly-connected if ‖γu(s)− γv(t)‖ ≤
r for ∀s, t ∈ [0, 1].

We also consider a weaker notion of connectivity which only requires the robots
to be connected when both robots follow their respective trajectories using the same
speed. More precisely, the trajectories of a pair of robots are weakly-connected if
when both robots travel at the same speed, and each of them follows faithfully the
trajectory prescribed to it from beginning to end, then at every instant they remain
within distance r of each other.

Despite the fact that the informal definition of weakly-connected is straightfor-
ward, the fact that different trajectories might have different lengths but their argu-
ment always goes from 0 to 1 introduces some technicalities which must be addressed
in the formal definition. Specifically, since the argument t of the trajectories does not

60

represent time, but a fraction of the distance, getting from γu(0) to γu(t) might re-
quire robot u to travel a much greater (or smaller) distance than what robot v needs
to travel to get from γv(0) to γv(t), which explains why we can’t compare γu(t) and
γv(t) directly. Instead, we must compare the two trajectories at the points at which
each robot has traveled the same distance, in other words we compare γu(t/`u) with
γv(t/`v) where `u and `v correspond to the length of the trajectories γu and γv respec-
tively. An additional caveat is that since the trajectories of the robots might have
different lengths, and the weakly-connected property requires the robots to travel
at the same speed, then it is possible for one robot to reach the destination of its
trajectory while the other robot is still en route to its own destination. In this case
we will require that once a robot has reached its destination, the other robot remains
at distance r while following its trajectory until it has reached its own destination.
This is handled by the use of min in the formal definition below.

Definition 4.3. The trajectories γu and γv are weakly-connected if ‖γu(s)− γv(t)‖ ≤
r for s = min(x/ ‖γu(0)− γu(1)‖ , 1), t = min(x/ ‖γv(0)− γv(1)‖ , 1) for all x ∈
[0,max(‖γu(0)− γu(1)‖ , ‖γv(0)− γv(1)‖)].

A set of trajectories (one for each robot in G) satisfies weak safety if there exists
a connected subgraph H ⊆ G where every pair of adjacent robots in H are assigned
weakly-connected trajectories. Similarly, a set of trajectories satisfies robust safety
if there exists a connected subgraph H ⊆ G where every pair of adjacent robots in
H are assigned robustly-connected trajectories.

61

4.2 The Connectivity-Preserving Algorithm
At the beginning of each round and at each robot v, the connectivity-preserving
algorithm receives as an input the communication radius r, its position %v and a pro-
posed trajectory γv from its motion planner module. The output of the connectivity-
preserving algorithm is a new trajectory γ′v. We present a connectivity-preserving
algorithm that requires only two communication steps per round. Specifically, CP-
Alg is a three-phase algorithm that consists of a Selection phase, a Proposal phase,
and an Adjustment phase (this last phase requires no communication). Below we
give an informal description of CP-Alg , the pseudocode is in Algorithm 6.

In the Selection phase each robot learns its set of unit disk neighbors and their
positions and locally selects a subset of them. The Selection Phase implements a
distributed edge-selection algorithm that guarantees that a connectivity-preserving
set of edges is consistently selected. The robots can accomplish this by running any
of the distributed edge-selection algorithms that solve the MST-containing problem
described in Chapter 3, but other implementations are possible. At each robot, the
output of the Selection phase is the set of neighbors which are locally selected.

In the Proposal phase each robot “optimistically” chooses a target based on the
neighbors locally selected in the Selection phase. Specifically, each robot v proposes
as its target the point q defined as the point closest to its original target γv(1) which is
also within distance r from each of the locally selected neighbors of v. The proposed
target is optimistic in the sense that if robot v follows a linear trajectory from %v
to q, and no other robot moved, then robot v would remain at distance r from its
locally selected neighbors. The proposed target is then broadcast and the proposals
of neighboring robots are recorded.

In the Adjustment phase each robot v assumes that itself and its neighbors will
move to their proposed targets, and it checks whether all of its locally selected
neighbors would be within distance r of itself. If every locally selected neighbor
would be within distance r, then the robot chooses q as the target position of its
output trajectory, otherwise the robot chooses q′ = 1

2(%v + q) as the target position
of its output trajectory.

Pseudo-code Description. In the Selection phase robot v runs a distributed
edge-selection algorithm that consistently selects a connectivity-preserving set of
edges while ignoring its non unit disk neighbors. This can be implemented using any
of the strategies described in Chapter 3. In the Proposal phase, robot v computes R
as the intersection of all the disks of radius r centered at the positions of each of the
neighbors of v which were selected in the previous phase. Robot v then computes q

62

Algorithm 6 CP-Alg (r, %v, γv) at robot v
. Initialization

N ← {} , P ← {} , Q← {}

. Selection Phase
bcast %v
if recv(%u, u) and d(%u, %v) ≤ r then

N ← N ∪ {u}, P [u]← %u

LocallySelect a subset S ⊆ N
. Proposal Phase

R←
⋂
u∈S

Br[P [u]]

q ← argminp∈R d(p, γv(1))
bcast q
if recv(qu, u) and d(%u, %v) ≤ r then

Q[u]← qu

. Adjustment Phase
q′ ← 1

2(%v + q)
if ∀u ∈ S d(qv, Q[u]) ≤ r then

γ′v ← linear trajectory from %v to q
else

γ′v ← linear trajectory from %v to q′

return γ′v

63

as the point inside R which is closest to its desired target. In the Adjustment phase
robot v first computes an adjusted proposal q′ = 1

2(%v + q). Robot v proceeds to
check whether the distance between its own proposal and the proposals of its selected
neighbors is at most r. If so, then the robot v outputs a linear trajectory between
its current position and its proposal, otherwise it outputs a linear trajectory between
its current position and its adjusted proposal.

4.3 Safety
In this section we prove that the trajectories output by the algorithm CP-Alg
guarantee the robust safety property. We start with two simple propositions. To
disambiguate we use Sv, Rv, qv, q

′
v to refer to the local variables S,R, q, q′ of robot v

respectively.

Proposition 4.4. Fix v ∈ V . Then 1. Rv is convex and contains %v, 2. qv, q′v ∈ Rv,
and 3. γ′v is contained in Rv.

Proof. We prove each property separately. 1. By construction Rv is the intersection
of a set of disks, each of which contains %v. 2. By construction qv ∈ Rv. From 1
we have that Rv is convex and contains %v, and the convexity of Rv implies that
q′v = 1

2(qv + %v) ∈ Rv. 3. From 1 we have that %v ∈ Rv, and from 2 we have that
qv, q

′
v ∈ Rv. Since γ′v is a linear trajectory from %v and qv or q′v, the convexity of Rv

implies that γ′v is contained in Rv.

We say two robots are consistent neighbors if the edge between them is consis-
tently selected. The next proposition captures a trivial but useful property about
the regions Ru and Rv when u and v are consistent neighbors.

Proposition 4.5. If u and v are consistent neighbors, then for any p ∈ Rv we have
‖%u − p‖ ≤ r.

Proof. By construction Rv ⊆ Br[%u].

As a corollary of these two propositions we have the following immediate result.

Corollary 4.6. If robot v follows the trajectory γ′v (at any speed) while all other
robots remain stationary then all consistently selected edges are preserved.

Proof. Since only robot v is moving, we need only to show that it preserves all its
consistent neighbors. Proposition 4.4 implies every point in the trajectory of v are
contained in Rv and Proposition 4.5 implies that a point in Rv is within distance r
from any of v’s consistent neighbors.

64

In the remainder of this section we show that the trajectories output by the
algorithm guarantee that all consistently selected edges are preserved, without having
to require any subset of robots to remain stationary. We start by proving why the
adjustment phase works.

Lemma 4.7. If u and v are consistent neighbors, then ‖q′u − q′v‖ ≤ r.

Proof. Since by assumption u and v are consistent neighbors then Proposition 4.5
implies that ‖%u − qv‖ ≤ r and ‖%v − qu‖ ≤ r. The statement follows from the
triangle inequality and the definition of the adjusted proposals:

‖q′u − q′v‖ =
∥∥∥∥1

2%u + 1
2qu −

1
2%v −

1
2qv

∥∥∥∥
= 1

2 ‖(%u − qv) + (qu − %v)‖

≤ 1
2 ‖%u − qv‖+ 1

2 ‖%v − qu‖ ≤ r

We leverage this lemma to show that the endpoints of the trajectories of two
consistent neighbors are connected.

Lemma 4.8. If u and v are consistent neighbors, then ‖γ′u(1)− γ′v(1)‖ ≤ r.

Proof. If ‖qu − qv‖ > r then both u and v adjust their trajectories and we have
γ′u(1) = q′u and γ′v(1) = q′v and the statement follows by Lemma 4.7.

If ‖qu − qv‖ ≤ r and neither u or v adjust their trajectories, then γ′u(1) = qu and
γ′v(1) = qv and the statement follows.

If ‖qu − qv‖ ≤ r and (without loss of generality) u adjusts and v doesn’t adjust
then γ′u(1) = q′u = 1

2(%u + qu) and γ′v(1) = qv. From Proposition 4.5 it follows that
‖%u − qv‖ ≤ r and since by assumption we have ‖qu − qv‖ ≤ r, the rest follows by
the triangle inequality:

‖q′u − qv‖ =
∥∥∥∥1

2%u + 1
2qu − qv

∥∥∥∥ =
∥∥∥∥1

2(%u − qv) + 1
2(qu − qv)

∥∥∥∥
≤ 1

2 ‖%u − qv‖+ 1
2 ‖qu − qv‖ ≤

1
2r + 1

2r = r.

Lemma 4.8 showed that the endpoints of the trajectories of two consistent neigh-
bors are connected. However this does not rule out the possibility that two robots

65

following these trajectories could become disconnected somewhere in between their
initial positions and the target positions. The next theorem proves the robustness of
the trajectories computed by the algorithm.

Theorem 4.9. (The trajectories of consistent neighbors are robustly-connected.) If
u and v are consistent neighbors, then ‖γ′u(s)− γ′v(t)‖ ≤ r for all s, t ∈ [0, 1].

Proof. Since u and v are neighbors in the communication graph, ‖γ′u(0)− γ′v(0)‖ =
‖%u − %v‖ ≤ r; equivalently γ′v(0) ∈ Br[γ′u(0)]. Since γ′v(1) ∈ Ru then Proposition 4.5
implies that ‖%u − γ′v(1)‖ = ‖γ′u(0)− γ′v(1)‖ ≤ r, and by symmetry ‖γ′u(1)− γ′v(0)‖ ≤
r; equivalently γ′v(0) ∈ Br[γ′u(1)] and γ′v(1) ∈ Br[γ′u(0)]. Moreover Lemma 4.8 implies
that ‖γ′u(1)− γ′v(1)‖ ≤ r; equivalently γ′v(1) ∈ Br[γ′u(1)].

Putting the above together we have γ′v(0), γ′v(1) ∈ Br[γ′u(0)]∩Br[γ′u(1)]. The con-
vexity of Br[γ′u(0)]∩Br[γ′u(1)] and the linearity of γ′v implies that γ′v(t) ∈ Br[γ′u(0)]∩
Br[γ′u(1)] for all t ∈ [0, 1]. This is equivalent to γ′u(0), γ′u(1) ∈ Br[γ′v(t)] for every
t ∈ [0, 1]. Finally, from the convexity of Br[γ′v(t)] and the linearity of γ′u we have
that γ′u(s) ∈ Br[γ′v(t)] for all s, t ∈ [0, 1], which is equivalent to ‖γ′u(s)− γ′v(t)‖ ≤ r
for all s, t ∈ [0, 1].

The result above holds for any pair of consistently selected neighbors, and since
by assumption the distributed edge-selection algorithm used in the selection phase
consistently selects a connectivity-preserving set of edges, then we have the following
as an immediate corollary (where H is the graph formed by the consistently selected
edges).

Theorem 4.10. (The algorithm satisfies robust safety.) There is a connected sub-
graph H ⊆ G where for every pair of adjacent robots in H CP-Alg outputs robustly-
connected trajectories.

4.4 Progress
In Section 4.3 we showed that CP-Alg satisfies the robust safety property, and
is therefore guaranteed to preserve the connectivity of the communication graph.
However, for the algorithm to be of any use, it must also allow the robots to advance
towards their destinations. We devote this entire section to this question.

Roadmap. Section 4.4.1 briefly argues that without additional assumptions no
algorithm can unconditionally guarantee safety and simultaneously guarantee that
collectively the robots get strictly closer to their desired positions. Sections 4.4.2
and 4.4.3 consider two different sets of assumptions under which CP-Alg guarantees
that collectively the robots get strictly closer to their desired positions.

66

4.4.1 Unconditional Progress
It is easy to verify that, by construction, CP-Alg never outputs a trajectory that
takes a robot farther away from its desired position. In other words, the trajectories
output by CP-Alg guarantee that δv ≥ 0 for every v ∈ V ; equivalently CP-Alg
satisfies the 0-progress property. However, it remains to show that the trajectories
output by CP-Alg allow the robots to get closer to their destinations, that is, that
CP-Alg satisfies the ε-progress property for some ε > 0.

In what follows we argue that it is impossible for any algorithm, and in particu-
lar for a local distributed algorithm, to unconditionally guarantee that connectivity
is preserved and simultaneously guarantee the robots advance towards the desired
positions. For instance, the motion planner could instruct every robot to remain
stationary (i.e., γv(0) = γv(1) for every v ∈ V), in which case it is impossible to have
δV > 0 by definition. Therefore, the progress guaranteed must be a function of the
amount of progress the robots “want” to make in the first place.

However even when robots “want” to make progress, there are other subtle condi-
tions which might prevent them from doing so. Specifically, some trajectories might
require breaking connectivity (i.e., violating safety) to make progress, while other tra-
jectories might require global information about the system (i.e., violating locality)
to make progress.

Example 4.1: (Progress requires violating locality) Consider a configu-
ration where the robots are arranged in a circle and their communication
graph corresponds to a cycle graph. Two neighboring robots want to
move apart (breaking the communication edge between them) and every
other robot wants to remain stationary. Observe that locally it is im-
possible for any robot in the system to determine if the communication
graph is a line graph or a cycle graph. Allowing the desired motion would
result in the communication graph becoming a line graph, and would not
violate safety. However, if the communication was initially a line graph,
the motion would violate safety. Since these two initial conditions are
indistinguishable to the individual robots, it follows that no local dis-
tributed algorithm can guarantee progress in this configuration without
violating safety in another.

Given that CP-Alg is a local distributed algorithm which guarantees safety
unconditionally, it follows that we can hope to show it makes progress only by making
additional assumptions on the set of trajectories produced by the motion planner.

67

The next subsections consider two “reasonable” sets of assumptions, and show
that under these assumptions CP-Alg satisfies the ε-progress property for some
ε > 0.

4.4.2 Robust Progress
In Section 4.3 we showed that the trajectories output by the proposed algorithm are
robustly-connected for consistent neighbors. It would be reasonable to hope that, if
the trajectories output by the motion planner are robustly-connected for consistent
neighbors, then the algorithm guarantees progress.

Definition 4.11. A configuration satisfies the robust assumption if the trajectories
produced by the motion planner are robustly-connected for consistent neighbors.

Leveraging the previous assumption we can prove the following theorem.

Theorem 4.12. Let C be a configuration that satisfies the robust assumption. Then
the progress of C is ∑v∈V ‖γv(0)− γv(1)‖.

In other words, if the configuration satisfies the robust assumption, then the
trajectories output by CP-Alg allow each robot to reach its desired destination
(i.e., the robots make full progress). To prove this theorem it suffices to prove the
following lemma.

Lemma 4.13. If a configuration satisfies the robust assumption then γ′v(1) = γv(1)
for every v ∈ V .

Proof. Fix a robot v ∈ V . The proof relies on two claims. First we claim that
qv = γv(1). Second, we claim that γ′v(1) = qv (i.e., v does not adjust its trajectory).
Together these claims imply γ′v(1) = qv = γv(1), which completes our proof.

To prove the first claim it suffices to show γv(1) ∈ Rv, since by the choice of
qv this implies qv = γv(1). From the robust assumption for every u ∈ Sv we have
‖γv(1)− γu(0)‖ ≤ r, or equivalently γv(1) ∈ Br[%u]. Since Rv is the intersection of
the set of disks Br[%u] for u ∈ Sv we have γv(1) ∈ Rv which proves the first claim.

To prove the second claim, it suffices to show that for every u ∈ Sv we have
‖qv − qu‖ ≤ r. From the first claim we have qv = γv(1) and qu = γu(1); thus we have
only to show ‖γv(1)− γu(1)‖ ≤ r. Finally, since u and v are consistent neighbors,
the robust assumption implies ‖γv(1)− γu(1)‖ ≤ r.

68

4.4.3 Weak Progress
In the same spirit of the assumptions considered in Section 4.4.2, this subsection
studies the progress guaranteed by CP-Alg under the assumption that the trajec-
tories produced by the motion planner are weakly connected for consistent neighbors
and that the trajectories do not induce any cyclic dependencies, defined below.

Definition 4.14. Given a configuration C, the trajectory of robot v depends on
robot u if and only if CP-Alg would output a different trajectory for robot v in the
configuration C ′ which is identical to C but without robot u.

We define the dependency graph of a configuration as a simple (i.e., with no multi-
edges or self-loops) directed graph D = (V,A) where A contains a directed edge from
v to u (denoted by (v, u) ∈ A) if and only if the trajectory output by robot v depends
on robot u. We say that a configuration has a cyclic dependency if its dependency
graph contains a simple directed cycle of three or more vertices.

Definition 4.15. A configuration satisfies the weak assumption if the trajectories
produced by the motion planner are weakly-connected for consistent neighbors and it
has no cyclic dependencies.

Our main result is the following theorem.

Theorem 4.16. Let C be a configuration that satisfies the weak assumption, and let
d = minv∈V ‖γv(0)− γv(1)‖. Then the progress of C is at least Ω(min(d, r)).

In other words, if the configuration satisfies the weak assumption then the progress
of the system must be at least the minimum amount of progress than any robot
“wants” to make.

To simplify the proof we will ignore the adjustment phase of the algorithm (for
example, by assuming the algorithm was modified by replacing the condition at line
12 to ensure all robots to execute line 13 and do not adjust their trajectory). We
claim that this simplification can be made at the expense of losing a factor of two in
our progress lower bound. To see why, observe that if we modify the algorithm to
force every robot to use their adjusted proposal, the progress of the system is at least
half of what it would have been if we modify the algorithm so that every robot uses
their unadjusted proposal. In other words, the difference between all robots adjusting
their proposals, or no robot adjusting its proposal is at most two. This allows us
to consider a simpler version of the algorithm, which may not preserve connectivity,
but whose progress is at most twice the progress of the original algorithm.

The proof of Theorem 4.16 is presented in the following sections. Below we give
a high level outline.

69

Proof Outline. The progress of each robot is a function of its initial trajectory and
the trajectory output by the algorithm. The trajectory output by the algorithm at
each robot is the solution of an optimization problem, in particular a quadratically
constrained quadratic program (the quadratic constraints and quadratic objective
function are defined in the proposal phase of Algorithm 6). This optimization prob-
lem depends on the initial and target position of the robot, as well as the initial
positions of its locally selected neighbors.

Therefore, to prove a lower bound on the progress of a configuration requires
characterizing (and analyzing) the worst case solution to a set of optimization prob-
lems whose definition depends on the initial and target positions of the robots, as
well as the structure of the communication graph induced by the configuration.

To tackle this problem, we first consider the set of configurations that satisfy a
series of properties (we defined them below), we refer to these configurations as the
worst-case configurations. Worst-case configurations have a structure which is simple
enough to allow us to determine a lower bound on their progress analytically. Next
we show that among all the configurations that satisfy the weak assumption, the
worst-case configurations have the smallest progress. To prove this, we consider the
space of configurations that results when removing each of the properties satisfied by
the worst case configurations, one at a time, proving after removing each property
that the progress of the resulting space of configurations cannot be any smaller.

To formalize the properties satisfied by the worst-case configurations we need
some additional notation and definitions. For a robot v we use τv to denote the
target position of v (i.e., τv = γv(1)). We refer to the vector between the initial
position of v and the target position of v as the target vector of v (i.e., the target
vector of v is τv − %v). Robot v is d-bounded if its target vector is of length d, i.e.,
if ‖τv − %v‖ = d. Robot v is balanced if either it has a single neighbor, or if it has
at least one neighbor on each side of the line that passes through τv and %v. Robot
u and robot v are parallel if their target vectors have the same length and direction
(i.e., the points %u, %v, τu and τv form a parallelogram). Robot u and robot v are
separated if they are at distance exactly r from each other. Robot v is straight if the
positions of all its neighbors and itself are collinear.

Using the definitions above we can define formally what constitutes a worst-case
configuration. We say a configuration is a worst-case configuration if it satisfies all
of the following properties.

1. Line: The communication graph of the robots is a line graph.
2. d-Bounded: All robots are d-bounded.
3. Balanced: All robots are balanced.
4. Parallel: All adjacent robots are parallel.

70

5. Separated: All adjacent robots are separated.
6. Straight: All robots are straight.
The next subsection argues that in a worst-case configuration all the “interior”

robots (i.e., all robots except for the endpoints of the line) are forced to remain
stationary, and only the robots at the endpoints of the line are capable of moving.
We show that the progress of a worst-case configuration is at least d. The remaining
subsections generalize this progress lower bound to any configuration that satisfies
the weak assumption.

4.4.3.1 Worst-Case Configuration

This section proves a lower bound on the progress of configurations which satisfy
property 1 through property 6. Specifically we line consider configurations with a set
of robots {v1, . . . , vn} where robot vi is adjacent to robot vi+1 for i ∈ {1, . . . , n− 1},
and each robot is d-bounded, balanced, parallel, separated and straight. A configu-
ration which satisfies the properties above is a worst-case configuration.

Rigid transformations are an isometry in Euclidean space, i.e., they are distance-
preserving transformations. Therefore, it follows that the progress of a configuration
is invariant to these transformations. In other words any combination of translations,
rotations or reflections of the global coordinate system does not affect the progress
of a configuration.

Thus, from a progress standpoint, the only relevant parameters for a worst-case
configuration are the number of robots n, the length d of the target vectors, and the
relative angle θ between the target vectors and the line formed by the positions of
the robots. Regardless of these parameters, its not hard to see that in a worst-case
configuration, the inner robots are ‘pinned’ down and do not move (cf. Figure 4-2).
Formally, for i ∈ {2, . . . , n− 1} robot vi has an intersection region Rvi = {%vi}, and
this implies δvi = 0. Since δV = ∑n

i=1 δvi then we have δV = δv1 + δvn .
We are now ready to show the main theorem of this section.

Theorem 4.17. Let C be a worst-case configuration which is d-bounded and d ≤ r.
The progress of C is at least d.

Proof. Since δV = δv1 + δvn we consider only the progress of robots v1 and vn. In
particular, these robots are restricted either by no other robot (in which case they
make full progress), or by a single neighboring robot (in which case their progress
depends on the exact value of θ).

By symmetry we can restrict to the case where the relative angle θ of the target
vectors is in the quadrant [0, π/2]; if θ lies in any other quadrant the configuration
is equivalent up to a reflection of the entire coordinate system.

71

Figure 4-2: A worst-case configuration of n robots. Except for robot v1 and robot vn
all other robots have an “empty” intersection region and have to remain stationary.

Figure 4-3: If θ = arccos(d/2r) the target position of robot v1 lies exactly at its
region boundary (and robot v1 makes full progress). If θ < arccos(d/2r) the target
position of robot v1 is contained inside or at its region boundary (and robot v1 makes
full progress). If θ > arccos(d/2r) the target position of robot v1 is contained outside
its region boundary (and the progress of v1 depends on θ).

72

If θ ∈ [0, arccos
(
d
2r

)
] then the target of robot v1 is contained inside the intersec-

tion region Rv1 = Br[%v2] and the progress of robot v1 depends on no other robot.
Therefore δv1 = d, which immediately implies δV ≥ d.

If θ ∈ (arccos
(
d
2r

)
, π2] then the target of robot v1 is outside the intersection

region Rv1 = Br[%v2] and the progress of robot v1 depends on robot v2. Therefore,
the progress of robot v1 is equal to δv1 = d − (x − r) = d + r − x where x is the
distance between v1’s target and v2’s position (i.e., x = ‖%v2 − τv1‖). Using the
cosine law (see Figure 4-3) we have that x =

√
r2 + d2 − 2rd cos θ and thus δv1 =

d+r−
√
r2 + d2 − 2rd cos θ. The case of robot vn is symmetric. Namely, the target of

robot vn is outside the intersection region Rvn = Br[%vn−1] (i.e., the progress of robot
vn depends on robot vn−1) and its progress is δvn = d+ r −

√
r2 + d2 + 2rd cos θ.

Therefore, if θ ∈ (arccos
(
d
2r

)
, π2] the progress of the configuration is δV = δv1 +

δvn = 2r+ 2d−
√
r2 + d2 − 2rd cos θ−

√
r2 + d2 + 2rd cos θ. Using Fermat’s theorem

we can confirm that this function attains its minimum at θ = π
2 when δV = 2r+2d−

2
√
r2 + d2. Observe that this function is monotone increasing with respect to r, since

its derivative with respect to r is strictly positive. Finally, since d ≤ r by assumption,
then we can let r = d which results in δV ≥ 2d+ 2d− 2

√
2d2 = (4− 2

√
2)d ≥ d.

In the remaining subsections we will sequentially remove properties 1-6, showing
that the progress of a configuration cannot be decreased by not satisfying these
properties. To this end, we define a series of primitive operations that can be applied
to the robots. We then use these operations to transform a configuration that does
not satisfy a particular property, to a configuration that does satisfy it, showing that
the transformation does not increase progress.

4.4.3.2 Primitive Operations

We describe four basic operations that will be used in later sections. We highlight
that some of this operations, by definition, can only be applied to configurations that
satisfy certain properties. At its core, each operation relies on applying some rigid
transformation (i.e., reflection, rotation or translation) to part of the configuration.
Each of these operations satisfies the following proposition by construction.

Proposition 4.18. Applying (when possible) one of the primitive operations to a
robot in a line configuration that satisfies the weak assumption results in a configu-
ration which also satisfies the weak assumption.

In other words, these operations preserve the weak assumption.

73

(a) Reflect vi

base-pivot

target-pivot

(b) Pivot vi (c) Stretch vi (d) Align vi

Figure 4-4: The four primitive operations that can be applied to robot vi. The
configuration before the operation is depicted in black, and the configuration after
the operation is depicted in red. To transform one configuration to another we will
describe a choreographed sequences of these operations.

Reflect. The reflect(vi) operation reflects the robots the positions and the targets
of the robots vi+1, . . . , vn on the line that goes through τvi and %vi . By definition
applying the reflect operation on an unbalanced robot makes it balanced (see Fig-
ure 4-4a).

Pivot. If robots vi and vi+1 are d-bounded, we define two pivot operations on robot
vi that make the target vectors of robot vi and robot vi+1 parallel. The base-pivot(vi)
operation rotates the positions and the targets of the robots v1, . . . , vi around %vi
until the target vectors of vi and vi+1 have the same direction, i.e., until the vectors
τvi − %vi and τvi+1 − %vi+1 have the same direction. Similarly, the target-pivot(vi)
operation rotates the positions and the targets of the robots v1, . . . , vi around τvi
until the target vectors of vi and vi+1 have the same direction. The max-pivot(vi)
operation is equivalent to base-pivot(vi) if

∥∥∥%vi − %vi+1

∥∥∥ > ∥∥∥τvi − τvi+1

∥∥∥, and otherwise
it is equivalent to target-pivot(vi) (see Figure 4-4b).

Stretch. If robot vi and robot vi+1 are d-bounded and parallel we define the
stretch(vi) operation that makes robots vi and vi+1 separated. Specifically, if the
length of the horizontal sides of the parallelogram between vi and vi+1 is ` (i.e., if
` =

∥∥∥%vi − %vi+1

∥∥∥ =
∥∥∥τvi − τvi+1

∥∥∥) then the stretch(vi) operation translates the posi-
tions and the targets of the robots v1, . . . , vi by the vector (r/`− 1)(%vi − %vi+1) (see

74

Figure 4-4c).

Align. If robot vi and robot vi+1 are d-bounded, parallel and separated, we define
the align(vi) operation that makes robot vi straight (i.e., makes %vi , %vi+1 and %vi+2

collinear). Specifically, the align(vi) operation rotates the position of the robots
v1, . . . , vi around the position of robot vi+1 until %vi , %vi+1 and %vi+2 are collinear,
without changing the length or direction of the target vectors (see Figure 4-4d).

Geometric Properties of the Operations. The next sections will use these op-
erations to transform one configuration into another, showing that the progress of the
resulting configuration is no greater than the progress of the original configuration.
Here we prove a series of lemmas that will be useful for that purpose.

First we prove that the max-pivot operation satisfies the following property.

Lemma 4.19. Let C be a line configuration that is d-bounded. The configuration that
results from the max-pivot(vi) operation does not decrease any of the lengths of the
segments of the quadrilateral between %vi , %vi+1 , τvi+1 and τvi. (i.e., the new distances
‖%vi − τvi‖,

∥∥∥%vi+1 − τvi+1

∥∥∥, ∥∥∥%vi − %vi+1

∥∥∥, ∥∥∥τvi − τvi+1

∥∥∥, ∥∥∥%vi − τvi+1

∥∥∥ and
∥∥∥%vi+1 − τvi

∥∥∥
are larger than or equal to the corresponding old distances.)

To prove Lemma 4.19 we will use the quadrilateral law (stated below, see [50] for
short a proof).
Quadrilateral Law. Consider a quadrilateral on points a, b, c and d with side
lengths ab, bc, cd and da, and diagonals ac and bd. If x ≥ 0 is the distance between
the midpoints of the diagonals then ab2 + bc2 + cd2 + da2 = ac2 + bd2 + 4x.

A quadrilateral is a parallelogram if and only if the distance between the mid-
points of the diagonals equals zero (i.e., if x = 0). In this case the quadrilateral
law reduces to Euclid’s parallelogram law. Furthermore, if the parallelogram is a
rectangle the two diagonals are of equal length and the parallelogram law reduces to
Pythagoras’ theorem. We leverage the quadrilateral law to prove Lemma 4.19.

Proof. Consider the quadrilateral with vertices %vi , %vi+1 , τvi+1 and τvi . By assump-
tion vi and vi+1 are d-bounded and therefore ‖%vi − τvi‖ =

∥∥∥%vi+1 − τvi+1

∥∥∥ = d. We
refer to these opposing sides of the quadrilateral as its vertical sides. We call the re-
maining opposite sides of the quadrilateral its horizontal sides, and they have lengths∥∥∥%vi − %vi+1

∥∥∥ = h1 and
∥∥∥τvi − τvi+1

∥∥∥ = h2. Finally the diagonals of the quadrilateral
have length

∥∥∥%vi − τvi+1

∥∥∥ = `1 and
∥∥∥%vi+1 − τvi

∥∥∥ = `2.

75

By construction, the pivot operations on vi do not change the lengths of the ver-
tical sides of the quadrilateral, and thus the sides ‖%vi − τvi‖ and

∥∥∥%vi+1 − τvi+1

∥∥∥ are
unaffected by max-pivot(vi). The base-pivot(vi) operation transforms the quadrilat-
eral into a parallelogram with vertical sides of length d, horizontal sides of length
h1, and diagonals of length `1 and `′2. Similarly, the target-pivot(vi) operation trans-
forms the quadrilateral into a parallelogram with vertical sides of length d, horizontal
sides of length h2, and diagonals of length `′1 and `2.

Therefore max-pivot(vi) produces a parallelogram with horizontal sides of length
max (h1, h2) without changing the length of the vertical sides. To complete the proof
it suffices to show that the diagonals in the parallelogram that results from max-
pivot(vi) are no smaller than the diagonals of the original quadrilateral.

Without loss of generality assume that max (h1, h2) = h1 (the other case is sym-
metric); therefore max-pivot(vi) is simply base-pivot(vi). In this case, it follows that
`′1 = `1 and we need only to show `′2 ≥ `2. Applying the quadrilateral law to the
resulting parallelogram we have

2d2 + 2h2
1 = `2

1 + `′2
2
, that is `′2

2 = 2d2 + 2h2
1 − `2

1.

Similarly, applying the quadrilateral law (where x is the distance between the
midpoints of the diagonals) to the original quadrilateral we have

2d2 + h2
1 + h2

2 = `2
1 + `2

2 − 4x, that is `2
2 = 2d2 + h2

1 + h2
2 − `2

1 − 4x.

Finally since by assumption 2h2
1 ≥ h2

1 + h2
2 and x ≥ 0 we have `′2 ≥ `2.

The following lemma captures a property guaranteed by the reflect operation
when applied to an unbalanced robot.
Lemma 4.20. Let C be a line configuration where robot vi is unbalanced, let C ′ be
the configuration that results from reflect(vi), and let v′i+1 in C ′ represent robot vi+1
in C. Then there is a point o which lies in the line between %vi and τvi such that
%vi+1 is a rotation of %vi−1 around o of angle θ, %v′i+1

is a rotation of %vi−1 around o
of angle θ′ and θ′ ≥ θ.
Proof. Let T be the triangle formed by %vi−1 , %vi+1 and %v′i+1

(Figure 4-5). There is a
unique circumcircle that passes through all the vertices of T , and the origin of this
circumcircle lies at the point where all the perpendicular bisectors of the triangle’s
sides meet.

Let o be the origin of the circumcircle defined by T . Since the perpendicular
bisector between %vi+1 and %v′i+1

is the axis of reflection, it follows that o lies in the
axis of reflection (i.e., o lies in the line between %vi and τvi).

76

Since o is the origin of a circumcircle that contains %vi−1 , %vi+1 and %v′i+1
, it follows

that %vi+1 and %v′i+1
are rotations of %vi−1 around o.

The fact that the angle ∠%vi−1o%v′i+1
is greater than the angle ∠%vi−1o%vi+1 follows

from the assumption that robot vi is unbalanced in C and therefore %vi−1 and %vi+1

lie on the same side of the axis of reflection that divides the circumcircle defined by
T , while %vi−1 and %v′i+1

lie on opposite sides of the axis of reflection (see Figure 4-5).

Figure 4-5: The target vector of robot vi is denoted by an arrow. The disks centered
of radius r centered at %vi−1 , %vi+1 and %v′i+1

are outlined with a black solid line. The
triangle T formed by %vi−1 , %vi+1 and %v′i+1

is denoted in blue. The circumcircle of T
is denoted with a dashed outline, and the origin of the circumcircle o is depicted by
a black square.

The following lemma shows that, as long as certain conditions are met, certain
transformations are guaranteed not to increase the progress of some robots.

Lemma 4.21. Let C be a line configuration and let vi be a robot that does not depend
on two neighbors in C. Let C ′ be a line configuration where the robots {v1, . . . , vi}
are exactly as in C and the distance

∥∥∥%vi+1 − τvi
∥∥∥ is not decreased in C ′. The progress

of vi is not greater in C ′ than it is in C.

Proof. Assume robot vi depends on none of its neighbors in C. Since robot vi is
not restricted by either neighbor in C then it has maximum progress in C, and the
progress of vi in C ′ cannot be any greater.

Assume robot vi depends only on its neighbor vi+1 in C. In this case the proposed
target of robot vi in C is the closest point to τvi in Br[%vi+1]. Hence it follows that

77

by moving %vi+1 further away from τvi the progress of vi will decrease, and thus the
progress of vi in C ′ is not greater than the progress of vi in C.

Assume robot vi depends only on its neighbor vi−1 in C. The restriction imposed
by vi−1 on vi in C is the same as the restriction imposed by vi−1 on vi in C ′. Moving
robot vi+1 can only restrict the motion of vi further (since in C robot vi does not
depend on robot vi+1 on any way). Therefore, the progress of vi in C ′ is not greater
than the progress of vi in C.

Next, we leverage the previous lemma to prove a slightly different result.

Lemma 4.22. Let C be a line configuration and let vi be a robot that is balanced in
C. Let C ′ be a line configuration where the robots {v1, . . . , vi} are exactly as in C, the
distance

∥∥∥%vi+1 − τvi
∥∥∥ is not decreased in C ′, vi is balanced in C ′, and

∥∥∥%vi − %vi+1

∥∥∥ = r

in C ′. The progress of vi is not greater in C ′ than it is in C.

Proof. First observe that Lemma 4.21 allows us to consider only the case when robot
vi depends on both of its neighbors in C.

Let qvi be the proposed target of vi in C. Since by assumption robot vi depends
on both of its neighbors in C, then qvi lies in the intersection of the two circles of
radius r centered at %vi−1 and %vi+1 .

The rest of the proof follows by a geometric argument (see Figure 4-6). Let
%′vi+1

be the position of robot vi in C ′ We argue that %v′i+1
is the result of two

rotations of %vi+1 , and the progress of vi is monotonically decreasing during each
individual rotation. Specifically, first %vi+1 is rotated counter-clockwise around τvi
until

∥∥∥%vi − %vi+1

∥∥∥ = r (see Figure 4-6). The progress of robot vi during this rotation
is monotonically decreasing. Next %vi+1 is rotated clockwise around %vi , but without
crossing the line between %vi and τvi , since by assumption robot vi is balanced (see
Figure 4-6). As before, the progress of vi is monotonically decreasing during this
second rotation.

4.4.3.3 Straight Transformation

This section describes a transformation that uses the align operation to transform a
d-bounded, balanced, parallel and separated line configuration to a d-bounded, bal-
anced, parallel, separated and straight line configuration (i.e., a worst-case configu-
ration). We prove that this transformation preserves the weak-assumption (trivial)
and that the progress of the resulting configuration is no greater than the progress
of the initial configuration.

78

Figure 4-6: The first diagram shows a configuration where robot vi depends on both
of its neighbors. The thick blue line represents the possible places occupied by %v′i+1

.
The middle diagram shows a counter-clockwise rotation of %vi+1 around τi. The last
diagram shows a clockwise rotation of %vi+1 around %vi .

First observe that in a d-bounded, balanced, parallel and separated line configu-
ration, the only parameters relevant to determine the progress of a particular robot,
are the relative angles (with respect to its target vector) to its neighbors. Specifi-
cally, given a line configuration which satisfies the properties above, its progress is
determined by the number of robots n, the length d of the target vectors, and n− 1
angles θ1, . . . , θn−1, where θi ∈ [0, π] represents the angle between robot vi’s target
position and the position of its neighbor robot vi+1 (see Figure 4-8).

Figure 4-7: A d-bounded, balanced, parallel and separated line configuration.

This allows us to use trigonometry to derive analytically the progress of a robot
in such a configuration as a function of the relative angle of its target vector to its
neighbors; endpoint robots have only one neighbor, and therefore only one angle is

79

required.

Figure 4-8: Inner robot vi.

Consider an inner robot vi, and let α = π − θi−1 be the counterclockwise angle
to its neighbor vi−1 and let β = θi be the clockwise angle to its neighbor vi+1 (see
Figure 4-8). To analyze the progress of robot vi we need only to do a case analysis
depending on the relationship between α and β. In particular it suffices to consider
five cases.

1. If α + β ≥ π then robot vi is completely immobilized by its neighbors and its
progress is 0.

2. If α ≤ arccos d
2r and β ≤ arccos d

2r then robot vi is not restricted by either
neighbor and its progress is d.

3. If α > arccos d
2r and sin(α + β) ≥ d

r
sinα the progress of robot vi depends

only on the angle α to robot vi−1, and its progress is given by the function
Γsingle(α) = r + d−

√
r2 + d2 − 2rd cosα.

4. If β > arccos d
2r and sin(α+ β) ≥ d

r
sin β the progress of robot vi depends only

on the angle β to robot vi+1 and its progress is given by the function Γsingle(β).
5. If sin(α + β) ≤ d

r
min(sinα, sin β) and α + β ≤ π then the progress of robot

vi depends on the angle to both of its neighbors and is given by the function
Γboth(α, β) = d−

√
2r2 + d2 − 2rd(cosα + cos β) + 2r2 cos(α + β).

Therefore the progress of an inner robot vi can be captured by a piecewise function
Γ(α, β) described in Figure 4-10.

The progress of an endpoint robot vi can only be a function of the angle to its
only neighbor, but the situation is still similar. Specifically, the progress of robot v1
is a function of the angle θ1 to its only neighbor v2, and is described by the function
Γ(0, θ1). Similarly, the progress of robot vn is a function of the angle θn−1 to its only
neighbor vn−1 and is described by the function Γ(π − θn−1, 0).

The next lemma shows that after applying each align operation, the resulting
configuration is “closer” to being straight, and its progress is no greater than the

80

Γsingle(α) = r + d−
√
r2 + d2 − 2rd cosα

Γboth(α, β) = d−
√

2r2 + d2 − 2rd(cosα + cos β) + 2r2 cos(α + β)

Γ(α, β) =



0 α + β ≥ π

d α ≤ arccos d
2r and β ≤ arccos d

2r
Γsingle(α) α ≥ arccos d

2r and sin(α + β) ≥ d
r

sinα
Γsingle(β) β ≥ arccos d

2r and sin(α + β) ≥ d
r

sin β
Γboth(α, β) α + β < π and sin(α + β) < d

r
min(sinα, sin β)

(a) Piecewise progress function

GHΑ,ΒL

0

Π

2

Π

Α

0

Π

2Β

d
r

(a) Plot of piecewise progress function

Figure 4-10: For most of our proofs the exact shape of the progress function Γ will not
be important. Instead it will be sufficient for us to observe that Γ is monotonically
decreasing with respect to α and β.

81

progress of the initial configuration.

Lemma 4.23. Fix i ∈ {2, . . . , n− 1}. Let C be a line configuration that is d-
bounded, balanced, separated, parallel and where the positions of the robots v1, . . . , vi
are collinear. Let C ′ be the configuration that results from the operation align(vi).
Then C ′ is a line configuration that is d-bounded, balanced, separated, parallel, where
the positions of the robots v1, . . . , vi+1 are collinear, and whose progress is no greater
than the progress of C.

Proof. The fact that C ′ is d-bounded, balanced, separated and parallel follows from
the fact that the align operation preserves all these properties. Moreover by definition
of the align operation, it follows that the positions of the robots v1, . . . , vi+1 are
collinear. We need only to show that the progress of C ′ is no greater than the
progress of C.

Let θ1, . . . , θn−1 be the angles that define configuration C, and let θ′1, . . . , θ′n−1
be the angles that define the resulting configuration C ′. Since the robots v1, . . . , vi
are collinear in C it follows that θ1 = θ2 = . . . = θi−1 and the robots v2, . . . , vi−1
are immobilized and have progress equal to zero in C. Similarly since the robots
v1, . . . , vi+1 are collinear in C ′ it follows that θ′1 = θ′2 = . . . = θ′i and the robots
v2, . . . , vi are immobilized and have progress equal to zero in C ′. Also, by construction
of the align operation it follows that θj = θ′j for j ∈ {i, . . . , n− 1} so the progress of
the robots vi+1, . . . , vn is the same in C and C ′.

Therefore, to prove the theorem we need only to show that the progress of robot
v1 in C ′ is no greater than the combined progress of robots v1 and vi in C. To prove
this we proceed by a case analysis depending on the relationship of θi−1 and θi.

1. Robots vi−1, vi and vi+1 are collinear in C (θi−1 = θi). In this case C is identical
to C ′ and this concludes our proof.

2. Robots vi−1,vi and vi+1 are ‘convex’ in C (θi−1 < θi). In this case robot vi is
immobilized in C, so we need to show only that the progress of v1 is not greater
in C ′ than in C. This follows from the fact that θ1 = θi−1 < θi = θ′1 and the
function Γsingle(θ) is monotonically decreasing with θ (recall the progress of v1
in C ′ is Γsingle(θ′1) and the progress of v1 in C is Γsingle(θ1)).

3. Robots vi−1, vi and vi+1 are ‘concave’ in C (θi−1 > θi). We divide further the
cases based on which neighbors the progress of robot vi depends on in C.

3.1. Robot vi doesn’t depend on robot vi+1 in C. In this case the robots
v1, . . . , vi behave in C as if they were in a worst-case line configuration,

82

and we have already showed such configurations have progress at least d.
Therefore the combined progress of v1 and vi in C is at least d, and since
the progress of v1 in C ′ is at most d, this concludes our proof.

3.2. Robot vi depends only on robot vi+1 in C. The angle between robot vi
and robot vi+1 in C is the same as the angle between robot v1 and v2 in
C ′. Therefore robot v1 depends only on robot v2 in C ′ and the progress
of robot v1 in C ′ is the same as the progress of robot vi in C. Since the
progress of robot v1 in C is at least zero this concludes our proof.

3.3. Robot vi depends on both robot vi−1 and robot vi+1 in C. Showing that the
combined progress of vi and v1 in C is greater than the progress of v1 in C ′
is equivalent to showing Γboth(π − θi−1, θi) + Γsingle(θi−1)− Γsingle(θi) ≥ 0.
For this we analytically evaluate the minimum of this function in the
appropriate interval. This yields two minima; one at θi = θi−1 = π

2 and
the other at θi−1 = π. Since the function evaluates to zero at both minima
this concludes our proof.

Finally we leverage Lemma 4.23 to prove our main theorem.

Theorem 4.24. Let C be a line configuration that is d-bounded, balanced, parallel,
separated and satisfies the weak assumption. There is a line configuration C ′ that is
d-bounded, balanced, parallel, separated, straight, satisfies the weak assumption (i.e.,
a worst-case configuration) and whose progress is no greater than the progress of C.

Proof. Let C ′ be the configuration that results from applying inductively the align
operation on robot v2, . . . , vn−1 in C. From Lemma 4.23 it follows that C ′ is d-
bounded, balanced, parallel, separated, straight, satisfies the weak assumption and
its progress is at most the progress of C.

4.4.3.4 Parallel-Separated Transformation

This section describes a transformation that uses the max-pivot, the stretch and
the reflect operations to transform a d-bounded, balanced line configuration to a
d-bounded, balanced, parallel and separated line configuration. We prove this trans-
formation preserves the weak assumption and that the progress of the resulting con-
figuration is no greater than the progress of the initial configuration.

We use Lemma 4.19 to prove that under some conditions a combination of the
max-pivot(vi), the stretch(vi) and the reflect(vi) operations does not increase the
progress of robot vi or robot vi+1.

83

Lemma 4.25. Let C be a line configuration that is d-bounded, balanced and satisfies
the weak assumption. Let C ′ be the configuration that results from the max-pivot(vi),
the stretch(vi) and (if needed to balance C ′) the reflect(vi) and reflect(vi+1) operations.
The progress of C ′ is no greater than the progress of C.

Proof. By construction the reflect(vi) and reflect(vi+1) operations affect only the
progress of robot vi and vi+1 respectively, while the max-pivot(vi) and the stretch(vi)
operations also affect only the progress of robots vi and vi+1. Therefore, given the
combination of operations we consider, the progress of robot vj for j /∈ {i, i+ 1} is
unchanged in C and C ′. Therefore to prove the lemma we need only to show that
the combined progress of robot vi and robot vi+1 is not greater in C ′ than it is in C.
First we prove the following claim.
Claim 4.26. As a result of the max-pivot(vi), the stretch(vi), and (if needed) the
reflect(vi) and reflect(vi+1) operations, robot vi and vi+1 are balanced in C ′ and the
quadrilateral with vertices %vi , %vi+1 , τvi+1 and τvi is transformed to a parallelogram
where the length of all the sides and diagonals are not decreased, and the length of
the horizontals is r.

Proof of Claim 4.26. The max-pivot(vi) operation is guaranteed to produce a par-
allelogram, and Lemma 4.19 implies that the lengths of the sides and diagonals of
this parallelogram are larger than or equal to the length of the sides and diagonals of
the original quadrilateral. Moreover the stretch(vi) operation only increases further
the lengths of the sides and diagonals of the parallelogram and ensure the horizontal
sides have length r. Finally if as a result of the max-pivot(vi) operation robot vi
or vi+1 became unbalanced, the reflect operations will make them balanced without
changing any of the lengths of the sides and diagonals of the parallelogram.

Next we use Claim 4.26 to apply Lemma 4.22 and show that the combined
progress of robot vi and robot vi+1 is not increased in the resulting configuration.

The only change observed by robot vi in C ′ is the relative position of robot
vi+1. Claim 4.26 implies the distance

∥∥∥%vi+1 − τvi
∥∥∥ is not decreased in C ′, robot vi

is balanced in C ′ and
∥∥∥%vi+1 − %vi

∥∥∥ = r in C ′. Therefore Lemma 4.22 implies the
progress of vi is not greater in C ′ than it is in C. The argument for robot vi+1 is
symmetric. Specifically, the only change observed by robot vi+1 in C ′ is the relative
position of robot vi. Claim 4.26 implies the distance

∥∥∥%vi − τvi+1

∥∥∥ is not decreased in
C ′, robot vi+1 is balanced in C ′, and

∥∥∥%vi+1 − %vi
∥∥∥ = r in C ′. Therefore Lemma 4.22

implies the progress of vi+1 is not greater in C ′ than it is in C.

Finally we leverage Lemma 4.25 to prove the main theorem of this subsection.

84

Theorem 4.27. Let C be a line configuration that is d-bounded, balanced and satis-
fies the weak assumption. There is a line configuration C ′ that is d-bounded, balanced,
parallel, separated, satisfies the weak assumption and whose progress is at most the
progress of C.

Proof. Let C ′ be the configuration that results from applying inductively the max-
pivot, the stretch, and (when needed to balance) the reflect operation to each robot
in C as in Lemma 4.25.

By construction it follows that C ′ is d-bounded, balanced, parallel, separated and
satisfies the weak assumption. Lemma 4.25 implies that the progress of C ′ is at most
the progress of C.

4.4.3.5 Balance Transformation

This section describes a transformation that uses the reflect operation to transform
a d-bounded line configuration to a d-bounded and balanced line configuration. We
prove that this transformation preserves the weak-assumption and that the progress
of the resulting configuration is no greater than the progress of the initial configura-
tion.

First we show that the reflect operation does not increase the progress of a robot.

Lemma 4.28. Let C be a line configuration and let vi be an unbalanced robot in C.
Let C ′ be the configuration that results from the reflect(vi) operation. The progress
of C ′ is no greater than the progress of C.

Proof. By construction of the reflect(vi) operation it follows that the progress of
robot vj for j 6= i is unchanged in C and C ′. Therefore we need only to show that
the progress of robot vi is not greater in C ′ than it is in C.

Observe that the reflect(vi) operation does not change the relative position of
robot vi and vi−1, and while it does change the relative position between robot vi
and vi+1, it does not change the distance

∥∥∥%vi+1 − τvi
∥∥∥. This allows us to leverage

Lemma 4.21 and consider only the case when robot vi depends on both vi−1 and vi+1
in C.

Let v′i+1 represent robot vi+1 after the reflection. Let Rvi represent the intersection
of the closed disks of radius r centered at %vi−1 and %vi+1 . Similarly, let R′vi represent
the intersection of the closed disks of radius r centered at %vi−1 and %v′i+1

. The
endpoint of the trajectory output by vi in C is the point inRvi closest to τvi . Similarly,
the endpoint of the trajectory output by vi in C ′ is the point in R′vi closest to τvi .
Thus, to prove that the progress of vi is not greater in C ′ than in C it suffices to
show that R′vi ⊆ Rvi .

85

Consider the points %vi−1 , %vi+1 and %v′i+1
around which the closed disks that

produced Rvi and R′vi are centered. Lemma 4.20 implies there exists a point o which
lies in the line between %vi and τvi such that %vi+1 is a rotation of %vi−1 around o of
angle θ, %v′i+1

is a rotation of %vi−1 around o of angle θ′, and θ′ > θ. To prove that
R′vi is contained in Rvi it suffices to show that the point of rotation o lies outside
the closed disks that were used to produce these intersection regions. However, this
follows from the assumption that vi depends on both of its neighbors in C, and that
vi is unbalanced in C.

Figure 4-11: The origin o is denoted by a black square. The disks centered of radius
r centered at %vi−1 , %vi+1 and %v′i+1

are outlined with a black solid line. The regions
Rvi and R′vi are shaded in light green and blue respectively.

Finally we can leverage Lemma 4.28 to prove the following theorem.

Theorem 4.29. Let C to be any line configuration that satisfies the weak assumption.
There is a line configuration C ′ that is balanced, satisfies the weak assumption and
whose progress is no greater than the progress of C. Moreover, if C is d-bounded
then C ′ is also d-bounded.

Proof. Let C ′ be the configuration that results from applying the reflection operation
to every robot which is unbalanced in C.

By construction of the reflect operation it follows that C ′ is balanced and satisfies
the weak assumption. Similarly, the fact that the reflect operation doesn’t change
the length of any of the target vectors, implies that if C is d-bounded then C ′ is also

86

d-bounded. Finally, Lemma 4.28 implies the progress of C ′ is at most the progress
of C.

4.4.3.6 Bounded Transformation

This section shows how to transform a line configuration that satisfies the weak as-
sumption, into a line configuration which is d-bounded (where d = minv∈V ‖τv − %v‖),
satisfies the weak assumption, and has progress no greater than the original config-
uration.

Theorem 4.30. Let C be a line configuration that satisfies the weak assumption,
and let d ≤ minv∈V ‖τv − %v‖. There is a line configuration C ′ that is d-bounded,
satisfies the weak assumption, and whose progress is no greater than the progress of
C.

Proof. Let τ ′v be the position reached by robot v ∈ V when following its trajectory
in C and stopping after having traveled exactly distance d. This is possible by our
choice of d, since every robot in C has a trajectory of length at least d. Let C ′ be
a configuration which is identical to C except that every robot v ∈ V has τ ′v as its
target position instead of τv.

To complete the theorem we only need to show that (1) C ′ is d-bounded, (2) C ′
satisfies the weak assumption, (3) the progress of C ′ is at most the progress of C.
We prove each of these properties separately.

1. By definition of τ ′v we have that ‖%v − τ ′v‖ = d, so it follows that C ′ is d-
bounded.

2. By assumption C satisfies the weak assumption. Since the configuration C ′

results from having each robot travel at the same speed for a fraction of their
trajectories in C, it follows that C ′ also satisfies the weak assumption.

3. To prove that the progress of C ′ is not larger than the progress of C, we show
that the progress of each individual robot v ∈ V is not larger in C ′ than in C.
First observe that by our choice of d we have that τ ′v = τv(t) = %v + t(τv − %v)
for some t ∈ [0, 1].
Let Rv be the intersection region of robot v in C and C ′, and let qv and qv(t)
be the proposed targets by robot v in C and C ′ respectively.
By definition the progress of robot v in C is δv = ‖%v − τv‖ − ‖qv − τv‖, and
the progress of robot v in C ′ is δ′v = ‖%v − τv(t)‖ − ‖qv(t)− τv(t)‖. We will
prove that δv ≥ δ′v.

87

From the definition of the algorithm, qv is the point in Rv closest to τv, and
qv(t) is the point in Rv closest to τv(t). Therefore, it immediately follows
that ‖qv − τv‖ ≤ ‖qv(t)− τv‖. From the triangle inequality we have that
‖qv(t)− τv‖ ≤ ‖qv(t)− τv(t)‖+ ‖τv(t)− τv‖. By the definition of τv(t) we also
have that ‖τv(t)− τv‖ = (1− t) ‖%v − τv‖. Putting these observations together
we have ‖qv − τv‖ ≤ ‖qv(t)− τv(t)‖ + (1 − t) ‖%v − τv‖. Now the statement
follows by algebraic manipulation.

δv = ‖%v − τv‖ − ‖qv − τv‖
≥ ‖%v − τv‖ − ‖qv(t)− τv(t)‖ − (1− t) ‖%v − τv‖
= t ‖%v − τv‖ − ‖qv(t)− τv(t)‖
= ‖%v − (%v + t(τv − %v))‖ − ‖qv(t)− τv(t)‖
= ‖%v − τv(t)‖ − ‖qv(t)− τv(t)‖ = δ′v

4.4.3.7 Line Transformation

This section shows that in any configuration without cyclic dependencies there is a
subset of robots that are connected in a line and whose progress does not depend
on any other robot. In other words, any configuration without cyclic dependencies
contains a subset of robots that, from a progress standpoint, behave as if they were
on a line configuration. This implies that a lower bound on the progress of line
configurations is also a lower bound on the progress of configurations without cyclic
dependencies.

The out-neighbors of a vertex v ∈ V in a dependency graph (V,A) are defined
as N+(v) = {u | (v, u) ∈ A} and represents precisely the set of robots that robot v
depends on. The out-degree of a vertex v ∈ V is denoted as deg+(v) = |N+(v)| and
represents the number of robots on which robot v depends. We analogously define
the in-neighbors and in-degree of a vertex v ∈ V in a dependency graph, denoted by
N−(v) and deg−(v) respectively.

A subset of vertices V ′ ⊆ V is an independent component in a configuration if
in the corresponding dependency graph there is no directed edge that originates in
V ′ and ends in V \ V ′. Observe that by definition, if a subset of robots forms an
independent component in a configuration, then their progress is not affected by any
other robot in the system. This allows us to analyze the progress of an independent

88

component without considering the state of any robot outside the component. We
will show that every configuration without cyclic dependencies has an independent
component which corresponds to a line graph.

First we show that every vertex in the dependency graph has an out-degree of
at most two. Recall that by definition qv is the point inside Rv which minimizes the
distance to the target position τv. Moreover, Rv is defined as the intersection of a
set of closed disks of radius r centered at the initial positions of its locally selected
neighbors Sv. Therefore the boundary of Rv is described by a collection of circular
arc segments, where each arc segment belongs to the boundary of a closed disk of
radius r centered at the initial position of one of the locally selected neighbors Sv.
We leverage this observation in the next proposition.

Figure 4-12: A thick line delineates the boundary of a region defined by the inter-
section of four disks denoted with dashed lines. A point contained in the region is
either at the region boundary, or completely inside the region. A point in the region
boundary lies either at the intersection of two circle arcs, or on the arc of a single
circle.

Proposition 4.31. For every v ∈ V we have that deg+(v) ≤ 2.

Proof. Fix a robot v ∈ V . We proceed by cases depending on where the target
position τv is located with respect to Rv.

If τv is contained in Rv, then by construction qv = τv and this implies the output
of v depends on no other robot (that is deg+(v) = 0). On the other hand if τv lies
outside Rv, then qv must lie on the boundary point of the region Rv closest to τv. If
qv lies on the intersection point of two arc segments then the trajectory of robot v
can depend only on the two neighbors which are responsible for those arc segments
(and thus deg+(v) = 2). Otherwise, qv lies on a single arc segment on the boundary
of Rv, in which case the trajectory of robot v depends only on a single neighbor (and
thus deg+(v) = 1).

89

We leverage Proposition 4.31 to show the main result of this subsection.

Theorem 4.32. In configurations without cyclic dependencies, there is a subset of
robots that form an independent component and are connected in a line.

Before proving this theorem, we state and prove a well known property of directed
acyclic graphs (or DAGs for shorthand notation). A sink vertex is defined as a vertex
with no outgoing edges.

Fact 1. A finite DAG contains at least one sink vertex.

Proof. Consider a directed walk starting at any vertex of a finite DAG. As long as
the walk doesn’t hit a vertex with no outgoing edges (i.e., a sink vertex), the walk
is continued by visiting one of the outgoing neighbors of the current vertex. If the
directed walk is finite then the claim follows. If the directed walk is infinite it must
visit at least one vertex more than once, which implies the graph contains a directed
cycle – a contradiction.

With this result in place, we are ready to prove Theorem 4.32.

Proof. A dependency graph with no cyclic dependencies might not be a DAG since
it can contain simple cycles of two vertices. In what follows we describe how to
transform a dependency graph with no cyclic dependencies to a finite DAG.

The transformation consists of a series of edge contractions between pairs of
vertices that form a directed cycle of length two, until no such contractions are
possible. Since by assumption there are no cyclic dependencies, it follows that the
dependency graph has no simple directed cycles of length greater than two and the
transformation results in a finite DAG. From the definition of the transformation, it
also follows that any sink vertex in the resulting DAG corresponds to an independent
component in the dependency graph (i.e., no outgoing edges).

We claim that any vertex in the resulting DAG represents a set of vertices in the
dependency graph which are connected in a line graph. This claim implies the theo-
rem since a sink vertex in the resulting DAG (which is guaranteed to exist by Fact 1)
represents a set of vertices in the dependency graph which form an independent
component and are connected in a line.

We prove this claim by an induction on the number of contractions a vertex in
the resulting DAG was involved in. Moreover, we use the fact that each vertex in
the dependency graph has at most two outgoing edges (shown in Proposition 4.31).

Let v be any vertex in the DAG that corresponds to a set of k vertices v1, . . . , vk
in the dependency graph. Our inductive hypothesis is that the vertices v1, . . . , vk are
connected in a line in the communication graph, and that the outgoing edges of v

90

correspond to (at most) one outgoing edge of v1 and (at most) one outgoing edge of
vk.

In the inductive step we consider a vertex v in the resulting DAG which corre-
sponds to a set of k+ 1 vertices in the dependency graph. Vertex v was the result of
the contraction of a vertex u and a vertex w, where u corresponds to a set u1, . . . , u` of
vertices and w corresponds to a set w1, . . . , wm where ` ≥ 1,m ≥ 1 and `+m = k+1.
From our inductive hypothesis the directed edges between the cycle that was con-
tracted to create vertex v must correspond to directed edges between u` and w1, or
u` and wm, or u1 and w1, or u1 and wm. In any case, it follows that v represents a
set of vertices v1, . . . , vk+1 which are connected in a line, and any outgoing edges of
v correspond to (at most) one outgoing edge of v1 and (at most) one outgoing edge
of vk+1.

4.4.3.8 Putting all the pieces together

Finally we leverage our lower bound on the progress of a worst-case configuration, as
well as the transformations described in subsection 4.4.3.3 through 4.4.3.7, to prove a
lower bound on the progress of any configuration that satisfies the weak assumption.

Theorem 4.33. Let C be a configuration that satisfies the weak assumption and let
d = minv∈V ‖ζv − %v‖. Then C has a progress of at least Ω(min(d, r)).

Proof. Theorem 4.32 implies that if C is not a line graph then it contains a subset
of robots which are connected in a line, and whose progress does not depend on any
other robot. Since a lower bound on the progress of these subset of robots (which
are connected in a line and satisfy the weak assumption) is also a lower bound on
the progress of C, then without loss of generality we can assume that C is a line
configuration that satisfies the weak assumption.

Theorems 4.30, 4.29, 4.27 and 4.24 imply there exists a worst-case line config-
uration C ′ whose progress is strictly smaller than the progress of C. Finally The-
orem 4.17 implies the progress of a worst-case configuration is at least d, and the
theorem follows.

91

4.5 Multi-Round Executions
Section 4.3 and Section 4.4 analyzed, respectively, the safety and progress properties
of CP-Alg during a single communication round. This section extends the analy-
sis to consider executions that span multiple rounds. Since at any round safety is
preserved unconditionally, it immediately follows that safety is also preserved uncon-
ditionally in any multi-round execution. Therefore, we study the progress guarantees
for multi-round executions.

We focus our efforts on a particular class of executions. Before we define them
formally we provide a motivating example. Suppose that every robot wants to reach
its docking station to recharge its batteries. For a particular robot, given its physical
speed and the distance to its docking station, it might be impossible for its motion
planner to output a trajectory that gets the robot to the docking station in a single
communication round. Instead the motion planner at each robot can output, at
every round, a trajectory which gets the robot as close as possible to its long term
goal in that particular round (taking into consideration the maximum physical speed
of the robot).

For simplicity in this section we assume that in the duration of a single round,
each robot can travel distance s. This amounts to assuming that all robots have
identical actuators. Moreover we also assume that s ≤ r. This assumption almost
always holds in practice, since real robots can rarely outrun their own communication
range in a single communication round.

Formally, we say a long term execution is one where: 1) Each robot v ∈ V has a
long term desired target position Tv. 2) At each round in the execution, if robot v
has reached Tv then it outputs a length 0 trajectory, otherwise robot v outputs the
linear trajectory of length at most s with its endpoint closest to Tv.

We remark that the progress assumptions for configurations introduced in Sec-
tion 4.4 can be extended naturally to multi-round executions. Namely, an execution
satisfies the weak assumption (resp. the robust assumption) if the configuration at
each round in the execution satisfies the weak assumption (resp. the robust assump-
tion).

For a long term execution we define dv(`) = ‖%v(r)− Tv‖ as the distance from
the position of robot v at round ` to its long term target position. We denote with
D(`) = ∑

v∈V dv(`) the sum over all robots of their distance at round ` to their
long term target positions. In other words, D(0) denotes the total (over all robots)
distance that the robots need to travel at the beginning of the execution in order
for every robot to reach its desired long term target. The duration of a long term
execution is the earliest round ` such that dv(`) = 0 for every v ∈ V .

92

Our goal is to bound, in terms of D(0), the duration of any long term execution
that satisfies the robust or weak assumption. For this we leverage Theorem 4.12 and
Theorem 4.16 respectively. Not surprisingly, proving a bound on the duration of a
long term execution that satisfies the robust assumption is significantly easier than
it is to prove a bound on the duration of a long term execution that satisfies the
weak assumption.

The next theorem captures the informal notion that the number of rounds re-
quired for all robots to reach their target should be proportional to the total distance
the robots need to travel and inversely proportional to the distance the robots can
travel at every round.

Theorem 4.34. The duration of a long term execution that satisfies the robust as-
sumption is at most O(D(0)/s).

Proof. Since by assumption the execution satisfies the robust assumption, then by
definition the configuration at every round in the execution satisfies the robust as-
sumption. By definition of a long term execution, if at a round ` a robot v is such
that dv(`) ≥ s, then the target vector of robot v at round ` is of length s. Further-
more, Theorem 4.12 implies that in a round where at least one robot has a target
vector of length s the system makes progress at least s in that round.

It follows that if at round ` there exists a robot v such that dv(`) ≥ s then we
have that D(`+ 1) ≤ D(`)− s. Hence, after at most k = bD(0)/sc rounds D(k) < s
and hence every robot v is such that dv(k) < s.

Therefore at round k = bD(0)/sc all robots have their long term trajectory within
reach (i.e. within distance s), and Theorem 4.12 implies that every robot reaches its
long term target by round k + 1, completing the proof.

The reason why this theorem cannot be easily extended to long term executions
that satisfy the weak assumption, is that once a single robot has reached its target
position (i.e., when there exists a round r and a robot v such that dv(r) = 0),
then Theorem 4.16 gives us the empty guarantee that the progress is at least d =
minv∈V ‖γv(0)− γv(1)‖ = 0. To sidestep this problem we generalize the notion of a
long term execution to one where robots are content with getting within a ball of
radius ε of their long term target positions, instead of reaching the exact long term
target position.

Formally, a long term ε-close execution is one where: 1) Each robot v ∈ V has
a long term desired target position Tv. 2) At each round in the execution, if robot
v is within distance ε from Tv then it outputs a length 0 trajectory, otherwise robot
v outputs the linear trajectory of length at most s which gets it closest to Tv. The

93

duration of a long term ε-close execution is the earliest round number r such that
dv(r) ≤ ε for every v ∈ V .

The proof of our next result has a similar flavor to that of Theorem 4.16. In
more detail, first we leverage the line transformation to restrict our attention to
line configurations. Next we leverage the bounded, balance and parallel-separated
transformations to further restrict the space of line configurations we consider. The
resulting configurations are very similar to the ones considered in Section 4.4.3.3,
but the differences prevent us from applying the straight transformation directly.
However, these configurations share the same characterization of the progress of
each robot in terms of the angles from its target vector to its neighbors. This allows
us to prove a lower bound on the progress by induction on the number of robots in
the configuration.

Lemma 4.35. Fix a long term ε-close execution and a round k in the execution. If
there is a robot v such that dv(k) ≥ ε, then the progress of the system at round k is
Ω(ε).

Proof. Fix a long term ε-close execution, a round k in the execution, and a robot v
such that dv(k) ≥ ε. We partition the robots into two sets P and Q, such that for
all u ∈ P we have du(k) ≥ ε and for all u ∈ Q we have du(k) < ε. By assumption P
is non-empty and the robots in Q remain stationary at round k.

Let P ′ ⊆ P be a maximal connected subset of robots in P . Theorem 4.32 applied
to the configuration induced by the robots in P ′ implies there is a subset P ′′ ⊆ P ′

of robots which are connected in a line and which do not depend on any other robot
in P . However, it is possible that each of the robots at the end points of the line
formed by the robots in P ′′ might depend on (at most) one robot outside P (i.e., in
Q). The case where none of the robots in P ′′ depend on a robot outside P is already
handled by Theorem 4.16. In the rest of our progress argument we assume that both
of the end point robots in P ′′ depend on a robot on Q. In other words we consider
a line configuration where the robots at the end points are in Q (and have a target
vector of length 0) and the inner robots are in P (and have a target vector of length
at least ε). The case where only one of the end point robots is in Q is analogous.

Since the inner robots are connected in a line and have a non-zero target vector
we can apply the bounded, balance and parallel-separate transformations to assume,
without loss of generality, that the inner robots are ε-bounded, balanced, parallel and
separated. Furthermore, since the end point robots have zero target vectors, we can
leverage Lemma 4.22 to assume, without loss of generality, that they are at distance
exactly r from their neighbors’ position (i.e., separated), and at distance exactly r
from their neighbors’ target position. Therefore, we consider a line configuration

94

where all robots are balanced and separated, the inner robots are ε-bounded and
parallel, and the end point robots have a zero length target vector and are at distance
exactly r from their neighbors’ target position.

Figure 4-13: A line configuration of n robots where all robots are balanced and
separated, the inner robots are ε-bounded and parallel, and the end point robots
have a zero target vector and are at distance r from their neighbors’ target position.

We highlight that this situation is very similar to the one considered in the straight
transformation. Namely, the progress of such a line configuration with n robots is
a function of ε and a series of n − 1 angles θ1, . . . , θn−1. Furthermore, since the
end point robots are at distance exactly r from their neighbors’ target position (in
addition to being separated) then the angles θ1 and θn−1 are fixed (see Figure 4-13).

Despite these similarities, we cannot apply the straight transformation directly.
Instead, in the next claim, we prove a lower bound of Ω(ε) on the progress of the
configuration by an induction on the number of robots.
Claim. Fix a line configuration with n ≥ 3 robots that satisfies the weak assumption
and is balanced, separated, the inner robots are ε-bounded and parallel, and the two
end point robots have a target vector of length zero and are at distance exactly r
from their neighbors’ target position. The progress of this configuration is ≥ ε/3.

Base Case: If n = 3 then there is a single inner robot, and by definition its
target vector is contained in the ball of radius r around both of its neighbors. This
implies the inner robot is unrestricted by its neighbors and its progress is exactly ε.

Inductive Step: If n ≥ 4 then the progress of the configuration can be written
as χ + Γ(α, β) + Γ(π − β, arccos ε

2r) where χ ≥ 0 represents the progress of the first
n−4 inner robots and Γ(α, β)+Γ(π−β, arccos ε

2r) represents the progress of the last
two inner robots. In the previous expression α and β represent the angles from the
target vector of the one before last inner robot to its neighbors, and arccos ε

2r is the
angle from the last inner robot to the end point robot (this angle is fixed since these
two robots are separated and the distance from the end point robot to its neighbors’
target is exactly r). The rest of the proof follows by some algebraic manipulation.

95

If α ≤ π
2 then the minimum of Γ(α, β)+Γ(π−β, arccos ε

2r) is at α = β = π
2 which

is greater than ε/3 and completes our inductive step.
If α > π

2 then we leverage the inductive hypothesis for a configuration with n− 1
robots. In particular by inductive hypothesis we have that χ+Γ(α, arccos ε

2r) ≥ ε/3.
Therefore we need only to show that Γ(α, β)+Γ(π−β, arccos ε

2r)−Γ(α, ε2r) ≥ 0, which
can be confirmed by finding the minimum of this function in the region α > π

2 .

With this lemma in place, we are ready to prove our main theorem for long term
ε-close executions that satisfy the weak assumption.

Theorem 4.36. The duration of a long term ε-close execution that satisfies the weak
assumption is at most O(D(0)/s+ n2r/ε).

Proof. Since by assumption the execution satisfies the weak assumption, then by
definition the configuration at every round in the execution satisfies the weak as-
sumption. By definition of a long term ε-close execution, if at a round ` a robot v is
such that dv(`) ≥ s ≥ ε, then the target vector of robot v at round ` is of length s.
Furthermore, Theorem 4.16 implies that in a round where all robots have a target
vector of length s (i.e., an s-bounded configuration) the system makes progress at
least s in that round.

It follows that if at round ` every robot v ∈ V is such that dv(`) ≥ s then we
have that D(` + 1) ≤ D(`) − s. Hence after at most k = bD(0)/sc rounds there is
(at least) one robot v such that dv(k) ≤ s.

The weak assumption requires the trajectories of adjacent robots to be weakly
connected at every round. This implies that the difference in the length of the
target vectors of two adjacent robots is at most 2r. Together with the fact that
at round k there is a robot v such that dv(k) ≤ s ≤ r, this implies that D(k) ≤
r + (r + 2r) + (r + 2r + 2r) + . . . = 2r ·∑n

i=1 i − nr = rn2. For any round ` > k
if there exists a robot v such that dv(`) ≥ ε then Lemma 4.35 implies the progress
at round ` is Ω(ε). Otherwise the execution has terminated (since for every robot v
we have dv(`) ≤ ε). This shows the duration of the execution is O(D(0)/s+ n2r/ε),
which completes the proof.

96

Chapter 5

Preserving a k-Connected Graph

Chapters 3 and 4 tackled the problem of preserving the connectivity of the commu-
nication graph while allowing each robot to get closer to its desired target position.
This chapter describes how to generalize this approach to preserve a k-connected
graph.

Paraphrasing the formal definition given in Section 2.1, the connectivity of a
graph G, denoted κG, is the size of the smallest set of vertices whose removal discon-
nects the graph. A complete graph on n vertices cannot be disconnected by removing
vertices, but by convention its connectivity is n − 1. A graph G is k-connected if
κG ≥ k. As we argued before, the connectivity of a graph is a good estimate of the
fault-tolerance of the communication network, since higher connectivity means more
robots can fail without disrupting the communication among the rest of the robots.

Roadmap. As we did for the problem of preserving a simply (i.e., k = 1) con-
nected communication graph, the problem we consider can be subdivided into two
parts. In the first part, the goal is to find, for each robot, a set of neighbors such that
preserving connectivity to these neighbors is sufficient for the communication graph
to remain k-connected. The fewer neighbors a robot has to preserve, the greater
freedom it has to compute a trajectory that remains connected to these neighbors.
Moreover, remaining connected to close-by robots is less of a restriction than remain-
ing connected to robots that are farther away.

The second part of the problem is concerned with agreeing on a set of linear
trajectories (one for each robot), so as to maximize the progress each robot makes
with respect to its original trajectory (controlled by the motion planner). The only
constraint when finding such trajectories is that each robot should remain robustly-
connected to each of the neighbors which were identified as being sufficient for pre-

97

serving k-connectivity in the first part.
For k = 1 these problems were tackled in Chapters 3 and 4 respectively. Instead

of solving these two problems for general k from scratch, this chapter describes how
to leverage the solutions derived in Chapters 3 and 4 for k = 1 and apply them for any
k ≥ 1. To this end we explore the relationship between preserving the connectivity
of a communication graph using “small” edges, and preserving the k-connectivity of
a graph using “normal” edges.

5.1 From 1-Connected to k-Connected
A graph with n vertices has, by definition, connectivity of at most n − 1. Since we
are concerned with guaranteeing that a graph remains k-connected, all graphs we
consider will have at least n ≥ k + 1 vertices unless specifically stated.

The main technical result in this section is a theorem that says that if a connected
spanning subgraph of a unit disk graph uses only “small” edges then the unit disk
graph has “high” connectivity. This is captured by the next theorem.

Theorem 5.1. Let G be a unit disk graph of radius r of n ≥ k+1 points. If G has a
connected spanning subgraph using edges of length at most r

k
then G is k-connected.

Proof. Let G be a unit disk graph of radius r of n ≥ k+1 points that has a connected
spanning subgraph H which uses edges of length at most r

k
. Recall from section 2.1

that a vertex cut is a set of vertices whose removal disconnects the graph.
If G does not have a vertex cut of size k − 1 or smaller, then G is k-connected

and the theorem follows. Therefore, let us assume by way of contradiction that G
has a vertex cut C of size |C| ≤ k − 1. Let P and Q be two connected components
produced by removing the vertices of the cut C from G (i.e., the cut C separates P
and Q in G). Fix any vertex p ∈ P and any vertex q ∈ Q. Since H is a connected
spanning subgraph of G there must exists a path Hpq ⊆ H that connects p and q
using edges of length at most r

k
.

We define a gap in the path Hpq as a maximal set of vertices of C which are
contiguous in the path Hpq. For a gap g in Hpq we use pred(g) and succ(g) to denote
the vertices in the path Hpq immediately before and after the gap. The size of a gap
g, denoted |g|, is the number of vertices it contains. The length of a gap g, denoted
length(g), is the Euclidean distance between the vertices pred(g) and succ(g). Since
the path Hpq uses only edges of length at most r/k then for any gap g in Hpq we have
length(g) ≤ (|g|+1)r/k. Moreover for any gap g inHpq we have that |g| ≤ |C| ≤ k−1
by definition, and therefore length(g) ≤ (|C|+ 1|)r/k ≤ (k)r/k = r.

98

Figure 5-1: A path from p ∈ P to q ∈ Q with a single gap g of 6 vertices.

Since by assumption G is a unit disk graph of radius r the above implies that
for any gap g in Hpq the graph G contains an edge between pred(g) and succ(g).
ThereforeG contains a path from p to q without using vertices of C, which contradicts
the assumption that C is a vertex cut of size |C| ≤ k−1 that separates P and Q.

Let UDGr(P) denote the unit disk graph of radius r on a point set P . Theo-
rem 5.1 can be rephrased to yield the following corollary.

Corollary 5.2. For any point set P where |P | ≥ k + 1, if UDGr/k(P) is connected
then UDGr(P) is k-connected.

The next section describes how we can leverage this corollary to design an algo-
rithm that preserves a k-connected graph.

5.2 Preserving a k-Connected Graph
For shorthand notation, we say a graph is (r, k)-connected if it has a connected
subgraph using edges of length at most r/k. Corollary 5.2 implies that if the com-
munication graph is a k-connected unit disk graph, then to preserve k-connectivity
it suffices to preserve a (r, k)-connected graph.

Naturally, to preserve a (r, k)-connected graph, the graph must initially be (r, k)-
connected. We highlight that the requirement that the graph is initially (r, k)-
connected is slightly stronger than requiring that it is k-connected. This follows from
the fact that Corollary 5.2 implies that an (r, k)-connected graph is k-connected, but
the converse is not always true. For instance, the unit disk graph of radius r that
results from three nodes arranged in an equilateral triangle with side length r is a
complete graph of 3 vertices. This graph is 2-connected by definition, but since it
does not have a single edge of length r/2 it is not (r, 2)-connected.

99

Theorem 4.10 showed that when CP-Alg received as a parameter the commu-
nication radius r it robustly preserves a connected subgraph with edges of length at
most r. Therefore we immediately have as a corollary that if CP-Alg is used with
a communication radius of r/k then it robustly preserves a connected subgraph with
edges of length at most r/k. This is captured by the following theorem.

Theorem 5.3. If the communication graph is initially (r, k)-connected, then running
CP-Alg with a communication radius of r/k robustly preserves an (r, k)-connected
subgraph.

Corollary 5.2 implies that an (r, k)-connected graph is always k-connected. This,
together with the previous theorem yields the following corollary.

Corollary 5.4. If the communication graph is initially (r, k)-connected, then running
CP-Alg with a communication radius of r/k robustly preserves k-connectivity.

The robust and weak progress theorems 4.12 and 4.16 apply unchanged to this
setting. Therefore the cost of preserving k-connectivity (as opposed to preserving
simple connectivity) is that the robust and weak assumptions need to be satisfied
with the more stringent communication radius of r/k.

100

Chapter 6

Applications of Connectivity

The purpose of this chapter is to argue that the connectivity-preserving algorithm
can be used to facilitate the design of higher level behavior for multi-robot swarms.
Concretely we consider the problem of flocking. Informally, flocking describes an
emergent behavior of a collection of agents with no central coordination that move
cohesively despite having no common a priori sense of direction. This chapter de-
scribes how to combine a connectivity-preserving algorithm with standard agreement
procedures [8, 46] to implement a provably correct flocking behavior.

6.1 What is flocking?
The word flocking is typically used to describe the behavior exhibited by a group
of birds (i.e., a flock) during flight. A similar behavior is observed in schools of
fish, swarms of insects, herds of hoofed animals (i.e., zebra, sheep, etc.), colonies of
bacteria, etc. In computer science the word flocking is used to refer to the collective
motion of a large number of collaborating but independent entities. Flocking is an
often cited example of emergent behavior that does not require central coordination
and arises from a collection simple rules followed by individuals. Flocking has several
applications to multi-robot systems, and one of the most often cited applications [7]
is to control the behavior of Unmanned Aerial Vehicles (UAVs).

The Boids computer program of Reynolds [79] in 1986 is the first example of
simulated flocking. The Boids program simulates simple agents that move according
to a set of basic local rules. Visually the result is akin to the behavior of a flock of
birds in flight.

One of the first works to study flocking behavior from a biological perspective,
is that of Partridge [73] in 1982. Patridge studied the coordination of fish schools,

101

in particular the response of fish schools to predators. Vicsek et al. [92] studied
flocking from a physics perspective through simulations. The work of Vicsek et al.
focused on the emergence of alignment in self-driven particle systems. Flocking has
also been studied from a control theoretic perspective, for example in the work of
Olfati-Saber [71] and Jadbabaie et al. [46], where the emphasis is on the robustness
of the eventual alignment process despite the local and unpredictable nature of the
communication.

Despite numerous works devoted to studying flocking, different research groups
have used different definitions for flocking, and there does not exist a unique for-
mal definition of what constitutes flocking behavior. Nevertheless, most (if not all)
works agree that in order for the behavior of a collection of entities to be considered
flocking it must satisfy certain connectivity and alignment properties. Informally,
the connectivity property ensures the group remains cohesive and the agents do not
become dispersed in the environment and the alignment property ensures that the
flock moves in the same general direction. There is an inherent synergy between
these two properties: without agreement on the direction of motion it is hard for the
group to remain cohesive, and without cohesion it is hard for the group to agree on
a direction of motion. Therefore, the flocking behavior embodies the challenges that
our connectivity preserving algorithm was designed to overcome.

Formally, we say a configuration is connected if its communication graph is con-
nected, and we say it is aligned if every robot has the same target vector (i.e. they
are moving in the same direction and with the same speed). A configuration is
flocking if it is both connected and aligned. The goal of this chapter is to describe a
local distributed algorithm that allows a multi-robot system to converge to a flocking
configuration.

Roadmap. Section 6.2 presents a brief summary of various agreement procedures
available in the literature. It also outlines how alignment can be achieved by carrying
out an agreement procedure on the components of the target vectors. Section 6.3
describes how to combine the connectivity preserving algorithm of Chapter 4 with the
agreement procedures of Section 6.2 to design a provably correct flocking algorithm.

6.2 Alignment and Agreement
In the 1980s Bertsekas and Tsitsiklis [8, 91] studied various models of “distributed
asynchronous iterations”. They were motivated mainly by distributed signal process-
ing, distributed optimization and parallel computation. An important part of this

102

work was an agreement algorithm whereby a set of agents converge to the same value,
by performing a series of weighted averages of their own value and their neighbors
(possibly outdated) values.

In this respect, their main result was to show that simple repeated averaging
procedures (proposed earlier by De Groot [25]) allow agents to converge to the same
common value under very mild assumptions on the communication delays and the
structure of the time-varying neighbor relations. In particular, they considered di-
rected (as opposed to undirected) communication between neighbors, and a semi-
asynchronous model of computation with unknown but bounded time delays. This
section presents only a special case of their results for a synchronous round-based
model of computation and an undirected model of communication; we refer the in-
terested reader to [8] for the more general version of the results.

The agreement algorithm considered by Bertsekas and Tsitsiklis has every node
compute the weighted arithmetic mean of the scalar values of its neighbors. The
weighting coefficients used by each node should be convex (in other words, they
should add up to one) and they should also be positive and bounded away from zero.

Recall that Gt = (V,Et) denotes the communication graph at time t. Let
Nt[u] = {u} ∪ {v | {u, v} ∈ Et} represent the set of closed neighbors of robot u at
time t. Suppose each robot u starts with a scalar value x0(u). The precise agreement
algorithm is described in Algorithm 7.

Algorithm 7 AgreementUpdate at robot u

xt+1(u) =
∑

w∈Nt[u]
αt(w, u)xt(w) (6.1)

The weight coefficients αt(w, u) should satisfy the following for some α0 > 0:

∀t ∈ N,∀v ∈ V, ∀w ∈ Nt[v] αt(w, v) ≥ α0 (6.2)
∀t ∈ N,∀v ∈ V

∑
w∈Nt[v]

αt(w, v) = 1 (6.3)

The following theorem is a special case of the main theorem in Bertsekas and
Tsitsiklis [8, Section 7.3].

Theorem 6.1. If at every time t the graph Gt is connected, then there is a set of
non-negative coefficients {φ(w)}w∈V (that depend only on the sequence of graphs)

103

such that

lim
t→∞

xt(v) =
∑
w∈V

φ(w)x0(w) ∀v ∈ V,

and convergence takes place at the rate of a geometric progression.

In other words, as long as the communication graph remains connected and every
robot updates its own value using a convex combination of the values of its neighbors,
eventually every robot will converge to the same value. The proof of this theorem
relies on a result on the convergence of products of stochastic matrices from Markov
chain theory.

From Scalar Agreement to Vector Agreement. The target vector of each
robot can be decomposed into two scalars, for example the vector’s magnitude and
direction. Each robot can then update its target vector using the agreement algo-
rithm on each of the scalar components of its target vector. Provided the conditions
of Theorem 6.1 are met, this would result in every robot converging to the same
target vector (i.e., achieving alignment). This is summarized by the next corollary.

Corollary 6.2. If at every time t the graph Gt is connected, and at every round each
robot updates its target vector to match the arithmetic mean of the magnitude and
direction of its neighbors’ target vector, then all robots converge to the same target
vector.

The connection between these simple averaging procedures and the emergent
alignment property exhibited during flocking was first studied through simulations
by Vicsek et al. [92]. Jadbabaie et al. [46] later provided a rigorous analysis showing
the convergence of the averaging procedures used in Vicsek’s work under certain
connectivity assumptions. The main convergence result of [46] can be interpreted as
an instance of Theorem 6.1 for the case when αt(u, v) = 1/ |Nt[v]| for ∀t ∈ N, ∀v ∈
V, ∀u ∈ Nt[u]. However, as observed in [9], more general convergence results had
appeared earlier in the work of Bertsekas and Tsitsiklis [8, 91], although not in the
context of flocking.

However, as noted in the work on Olfati-Saber [71], on their own, averaging up-
date rules do not enforce group cohesion and lead to flocking behavior only for a “very
restricted set of initial states”. In particular, [71] showed through simulations that in
configurations of 10 or more robots with a set of random initial states, relying solely
on an averaging rule to achieve alignment most likely leads to a fragmentation and
therefore does not achieve flocking. This fragmentation problem was also observed,

104

although not dealt with, by the earlier work of Vicsek et al. [92] and Jadbabaie et
al. [46].

To alleviate the fragmentation problem and achieve successful flocking, Olfati-
Saber proposed an approach that relied on using a “γ-agent” to provide a moving
rendezvous point that prevents fragmentation. This approach is non-local since it
requires all robots to follow the global trajectories of this “γ-agent”. In contrast, the
next section describes how to achieve flocking behavior by combining the aforemen-
tioned averaging procedure with the connectivity-preserving algorithm of Chapter 4
to prevent the flock from dispersing, all this using only local interactions.

6.3 Flocking Algorithm
This subsection describes how to combine the agreement algorithm described in
Section 6.2 with the connectivity-preserving algorithm of Chapter 4 to produce an
algorithm that steers the multi-robot system to a flocking configuration. In partic-
ular we describe an “alignment motion planning module” and we argue that, when
combined with the connectivity-preserving algorithm of Chapter 4, it guarantees that
the system will converge to a flocking configuration.

The only state kept by the alignment motion planner module is the current direc-
tion and magnitude of the target vector. Initially these are set to arbitrary values.
At each round, the motion planner uses one step of the agreement algorithm de-
scribed in Section 6.2 to update the direction and magnitude of the target vectors.
The psuedo-code appears in Algorithm 8.

Algorithm 8 AlignmentMotionPlanner at robot u
. Initial state

diru ← arbitrary(0,2π), magu ← arbitrary(0,1)
. At each round

bcast 〈diru,magu〉
D ← {diru} ,M ← {magu}
add every 〈dirw,magw〉 recv’d to D and M
diru ← mean(D), magu ← mean(M)

return linear trajectory γu from %u with direction diru and magnitude magu

We refer to the composition of the alignment motion planner module and the
connectivity-preserving algorithm as the flocking algorithm. At each round the flock-
ing algorithm feeds the trajectory output by the alignment motion planner to the

105

connectivity-preserving algorithm. This allows the robots to try to move closer to
the goal dictated by the alignment motion planner, while guaranteeing that the
communication graph of the configuration remains connected. This prevents the
fragmentation observed in the algorithm considered by by Vicsek et al. [92] and Jad-
babaie et al. [46], which instead feeds the trajectory output by the alignment motion
planner to the robot’s actuators.

We refer the reader back to Figure 4-1 for a diagram of the system components
and the interactions between the motion planner, the connectivity-preserving algo-
rithm and the actuators. We highlight that the modified trajectories produced by the
connectivity-preserving algorithm are fed directly to the actuators and have no effect
on the state variables of the motion planner module. Specifically, the direction and
magnitude of the target vector computed by the alignment motion planning module
at the end of round r−1 is used as input to the arithmetic mean used to update these
values at round r. To prevent the communication graph from becoming disconnected,
we do not use the output of the alignment motion planning module to control the
motion of the robots directly, and instead we feed this to the connectivity-preserving
algorithm. In particular at round r the connectivity-preserving algorithm uses as its
input the target vector defined by the direction and magnitude values computed by
the motion planner module at round r. The (possibly) modified target vector output
by the connectivity-preserving algorithm is used to control the resulting motion of
the robots. Since this (possibly) modified vector has no effect on the computations
carried out by the alignment motion planner, we can leverage Corollary 6.2 to guar-
antee the convergence of the target vectors as computed by the alignment motion
planning module.

Algorithm 9 describes in pseudo-code the high-level interactions between the
different components of the system at each round.

Algorithm 9 FlockAlgorithm: Component Interactions at robot u in a round
%u ←position-sensors()
γu ←alignment-motion-planner(%u)
γ′u ←CP-Alg (r, %u, γu)
updatePosition(γ′u)

We are ready to prove the main theorem of this chapter.
Theorem 6.3. Starting from any connected configuration, the flocking algorithm
guarantees the system will converge to a flocking configuration.
Proof. From Theorem 4.10 it follows that the connectivity-preserving algorithm will
guarantee the configuration remains connected, regardless of what target vectors

106

are used by the robots. In other words the configuration is always connected. Theo-
rem 6.1 implies that since the configuration is always connected the alignment motion
planning module will converge to the same target vector (same magnitude and same
direction) for every robot. In other words, the alignment motion planning module
guarantees the system converges to an aligned configuration. Since by definition a
configuration is flocking if it is connected and aligned, the theorem follows.

By construction if all target vectors are equal at some round r, the alignment
motion planning module will not modify the target at any round r′ ≥ r. This,
together with the fact that the connectivity-preserving algorithm unconditionally
guarantees the communication graph remains connected, implies that if the system
reaches a flocking configuration it will remain in a flocking configuration thereafter.
This is captured by the next corollary.

Corollary 6.4. Starting from a flocking configuration, the flocking algorithm guar-
antees the system will remain in a flocking configuration.

We remark that since the target vectors of the robots are initially arbitrary, the
connectivity-preserving algorithm cannot guarantee progress. Nevertheless, once the
system has reached a flocking configuration, we can translate some of the progress
results of Section 4.4 to a flocking configuration. Specifically, we can prove the
following theorem.

Theorem 6.5. Let C be a flocking configuration with no cyclic dependencies, and let
d be the length of the target vectors of C. The progress of C is at least Ω(min(d, r)).

Proof. Since C is flocking, then by definition it is aligned and therefore all robots
have the same target vectors (of length d). Therefore by definition it follows that
all neighboring robots have weakly-connected trajectories. Moreover since C by
assumption has no cyclic dependencies, then Definition 4.15 implies C satisfies the
weak assumption. Finally from Theorem 4.16 it follows that the progress of C is at
least Ω(min(d, r)).

107

108

Part II

Localization

109

Large populations of robots can solve many challenging problems such as map-
ping, exploration, search-and-rescue, and surveillance. All these applications require
robots to have at least some information about the network geometry: the posi-
tions and orientations of other robots relative to their own. Different approaches
to computing network geometry have trade-offs between the amount of information
provided, the complexity and cost of the sensors required, and the amount of com-
munications used. For instance, a GPS system provides each robot with a global
position, which can be used to easily derive complete network geometry information.
However, GPS is not available in many environments: under foliage, indoors, under-
water, or on other planets. Vision- and SLAM∗-based approaches to build a global
map and extract a shared global reference frame do not suffer from the environmen-
tal restrictions of GPS. However, the cost and complexity of these solutions make
them unsuitable for large populations of simple robots. Ideally, a localization system
for large populations of simple robots must rely on simple and low cost sensors and
allow the robots to operate in as many environments as possible.

The second part of this thesis is devoted to studying coordinate systems that
can be obtained from simple angle measuring sensors. Angle measuring sensors
are appropriate for low-cost simple robots, and are readily available in multi-robot
systems intended for large populations [61]. We use the term scale-free coordinates
to describe the maximum amount of network geometry which can be recovered when
using only angle measuring sensors. We propose a distributed algorithm that can
be used to compute the scale-free coordinates of any subset of robots using the
minimum number of communication rounds possible. To do so, we first develop a
precise mathematical characterization of the computability of scale-free coordinates
using only angle measuring sensors.

Problem Formulation. We consider a simple sensing model in which each robot
can only measure the angle, relative to its own orientation, to neighboring robots
in the communication graph. We highlight that, in contrast to Part I, we assume
no relationship between the distance between two robots and the presence of an
edge in the communication graph. We require only that the communication graph
is connected (or alternatively, we consider the problem only for robots in the same
connected component). For simplicity, we assume that when a robot u receives a
message from a robot v, it records the identifier id(v) of the sender and measures the
angle θ(u, v), with respect to u’s orientation, from which the message originated. In

∗SLAM is an acronym for simultaneous localization and mapping. It is a widely used [36]
technique in robotics that allows robots to build a map within an unknown environment while
simultaneously keeping track of their current location in that environment.

110

practice the mechanism for measuring angles between adjacent robots needs not be
coupled with message reception, but this abstraction simplifies our model.

The goal of each robot is to compute the relative orientation and the relative
position up to scale (i.e., scale-free coordinates) of some specific subset of robots
in the system. To accomplish this, robots will collaborate and leverage the angle
measurements available in the network. Informally, scale-free coordinates provide
complete network geometry information up to a fixed but unknown scaling factor.
In other words, each robot can recover the “shape” of the network, but not its scale.
Formally, the scale-free coordinates of a set of robots S is described by a set of tuples
{(i, xi, yi, θi) | i ∈ S}, where each tuple represents the relative orientation and the
relative position (up to some unknown positive scaling constant) of a robot in S. Of
particular interest to us are the local scale-free coordinates of a robot, which are the
scale-free coordinates of itself and its neighbors.

Outline. We tackle the problem of computing the relative orientations and com-
puting the relative positions (up to scale) separately.

Chapter 7 describes a centralized procedure that allows each robot to compute the
relative orientation of every other robot. We use this procedure to translate the angle
measurements of any connected subset of robots to the same reference orientation.
These “translated” angle measurements can then be used as an angle-constraint on
the graph.

Chapter 8 provides a precise mathematical characterization of the communication
graphs and angle-constraints in which it is possible to compute the relative positions
(up to scale) of every robot in the system. Later we generalize this characterization
to the case of computing the relative positions of a specific subset of robots in the
system (even if it is not possible to compute them for all robots).

Chapter 9 leverages the previous two results to design a distributed protocol, with
an optimal round complexity, which efficiently computes the scale-free coordinates
of any subset of robots in the system. Finally Chapter 10 describes how to perform
a variety of multi-robot tasks using scale-free coordinates.

111

112

Chapter 7

Relative Orientations

This chapter tackles the problem of computing the relative orientations of all robots
in the system. Informally, the relative orientation between two robots is simply the
difference between their orientations. (Recall from Section 2.3 that the orientation of
a robot is simply the counter-clockwise angle between the x-axis of the global coor-
dinate system and the robots’ heading.) A robot does not know its own orientation,
but we will show that this does not prevent it from computing the relative orientation
of other robots using the angle measurements in the communication graph.

Roadmap. Section 7.1 defines the concept of an angle-constrained graph. Briefly,
an angle-constraint on a graph is simply a collection of angle measurements on the
graph which are taken with respect to the same orientation. The additional structure
present in angle-constraints makes them easier to work with than the “raw” angle
measurements.

Section 7.2 describes, and proves the correctness of, a simple procedure that
allows us to compute, with respect to a fixed robot, the relative orientations of every
other robot in the system. At the same time, this procedure allows us to transform
a collection of angle measurements on a graph to an angle-constraint on the same
graph.

These results allow us to focus in Chapter 8 on the problem of finding the relative
positions (up to scale) of the robots given an angle-constrained graph.

113

7.1 Defining Angle-Constraints
To simplify some definitions it will be useful to consider for each undirected edge
in the communication graph its two directed counterparts. Specifically let ←→E G =
{(u, v) | {u, v} ∈ EG} denote the directed edges present in the undirected graph G.

Recall from Chapter 2 that φv represents the orientation of robot v, defined as
the counter-clockwise angle from the x-axis of the global coordinate system to v’s
heading. We use this to define the relative orientation between two robots.

Definition 7.1. The relative orientation of robot v with respect to robot u is defined
as huv = φv − φu (mod 2π).

Next we define formally what is the angle measurement between two robots.

Definition 7.2. The angle measurement from u to v, denoted by θ(u, v), is the
counter-clockwise angle between the heading vector of u and the vector from u to v
(see Figure 7-1).

Figure 7-1: Each robot is represented by a dot denoting its position and an arrow
denoting its heading. Thin (black) dotted lines connect neighboring robots, thick
(blue) arcs represent the orientations of the robots and thin (red) arcs represent the
angle measurements between neighboring robots.

We let ΘG : ←→E G → [0, 2π) be a function that associates an angle measurement
to each directed edge in G, so that ΘG(v, w) = θ(v, w) for every edge (v, w) ∈ ←→E G.

For a pair of robots u and v the following proposition relates the angle measure-
ments θ(u, v) and θ(v, u).

Proposition 7.3. θ(u, v) + φu = θ(v, u) + φv + π (mod 2π).

Proof. The term θ(u, v) + φu represents the counter-clockwise angle from the x-axis
of the global coordinate system to the vector from u to v while the term θ(v, u) +φv
represents the counter-clockwise angle from the x-axis of the global coordinate system

114

to the vector from v to u. The difference of π between these two terms accounts
the fact that the vector from u to v and the vector from v to u have opposite
directions.

By looking at Proposition 7.3 more closely we can observe that it allows us
to express the relative orientation between robot u and v in terms of the angle
measurements from u to v and from v to u.

As a warm up, first observe that if θ(u, v) = θ(v, u) = 0 then the robots u and v
are “pointing” at each other (see Figure 7-2 left). Generalizing this slightly, it is not
hard to see that as long as θ(u, v) = θ(v, u) then the heading of robot u must the
opposite of the heading of robot v (see Figure 7-2 middle and right). In other words
if θ(u, v) = θ(v, u) then it follows that huv = π.

Figure 7-2: Robots are represented by a dot denoting their position and an arrow
denoting their orientation. A thin dotted line connects robot u and v, and the angle
measurements θ(u, v) and θ(v, u) are denoted with dashed lines. The figure depicts
three cases when θ(u, v) = θ(v, u).

In general, the relationship between huv and θ(u, v) and θ(v, u) is captured by
the next proposition.

Proposition 7.4. huv = θ(u, v)− θ(v, u)− π (mod 2π).

This proposition follows immediately from Proposition 7.3 and Definition 7.1 and
requires no proof.

By definition, the angle measurement θ(v, w) from robot v to robot w is with
respect to the orientation of robot v. Informally speaking, if a third robot u wanted
to interpret the angle measurement θ(v, w) we would expect robot u would need
to “translate” this measurement to its own orientation. This informal notion of
“translating” angle measurements is captured formally by the next definition.

Definition 7.5. An angle measurement with respect to u from v to w is defined as
θu(v, w) = θ(v, w) + huv (mod 2π).

115

We let Θu
G : ←→E G → [0, 2π) be a function that associates an angle measurement

to each directed edge in G, so that Θu
G(v, w) = θu(v, w) for every edge (v, w) ∈ ←→E G.

For a pair of robots v and w the following proposition relates the angle mea-
surements θu(v, w) and θu(w, v) with respect to a robot u. The proof follows by
unraveling the definitions and applying Proposition 7.3.

Proposition 7.6. θu(v, w) = θu(w, v) + π (mod 2π)

Proof. Applying Proposition 7.3 to robots v and w we have that,

θ(v, w) + φv = θ(w, v) + φw + π (mod 2π)
θ(v, w) + φv − φu = θ(w, v) + φw − φu + π (mod 2π) subtracting φu on both sides

θ(v, v) + huv = θ(w, v) + huw + π (mod 2π) by Definition 7.1
θu(v, w) = θu(w, v) + π (mod 2π) by Definition 7.5

which concludes our proof.

Finally we define the concept of an angle-constraint on a graph.

Definition 7.7. A function ω : ←→E G → [0, 2π) that associates an angle to each
directed edge of G is an angle-constraint on G iff ω(u, v) = ω(v, u) + π (mod 2π)
for every edge (u, v) ∈ ←→E G.

From this definition it is easy to verify that Θu
G is an angle-constraint on G for

any u ∈ VG (this follows immediately from Proposition 7.6). We refer to the tuple
(G,ω) as an angle-constrained graph.

Definition 7.8. A function ` : ←→E G → R+ that associates a length to each directed
edge of G is A a length-constraint on G iff `(u, v) = `(v, u) for every edge (u, v) ∈
←→
E G.

Observe that in contrast with angle-constraints, length-constraints assign the
same length to both directions of an undirected edge. We refer to the tuple (G, `) as
a length-constrained graph.

7.2 Computing an Angle-Constraint
The main contribution of this section is to describe and prove the correctness of the
centralized ComputeAngleConstraint procedure. This procedure allows us to

116

use the angle measurements available in ΘG to compute the angle-constraint Θu
G on

G for some u ∈ VG, as well as the relative orientations of all robots in G with respect
to robot u.

First observe that from Definition 7.5 it follows that if we are given ΘG then to
compute Θu

G it suffices to compute huv for every v ∈ VG. Therefore the problem of
computing Θu

G from ΘG can be reduced to the problem of computing huv for every
v ∈ VG.

Moreover, for the case when robots u and v are neighbors, the angle measurements
θ(u, v) and θ(v, u) are available in ΘG. This allows us to use Proposition 7.4 directly
to compute huv. Subsequently from Definition 7.5 it follows that we can use huv
together with ΘG to compute θu(v, w) for every w ∈ NG(v).

However, in the case when robots u and v are not neighbors then the angle
measurements θ(u, v) and θ(v, u) are not available in ΘG. This complicates things
slightly, since we are unable to leverage Proposition 7.4 to compute huv directly.

The centralized ComputeAngleConstraint procedure essentially leverages
Proposition 7.4 repeatedly to compute huv for the case when the robots u and v
are not necessarily neighbors, but are connected through a path. Informally the
ComputeAngleConstraint procedure first computes a spanning tree rooted at
u and then “pushes” the orientation of the root robot down the levels of the tree. To
push the orientation from one level to the next the algorithm relies on Proposition 7.4.

The ComputeAngleConstraint procedure receives as input an undirected
graph G, the angle measurements ΘG, and a distinguished node u ∈ VG. It computes
the relative orientations huv for all v ∈ VG, and the angle-constraint Θu

G on G.

Algorithm 10 ComputeAngleConstraint (G,ΘG, u)
T ← spanning tree of G rooted at u
H(u, u)← 0
for each z ∈ NG(u) do

L(u, z)← θ(u, z)
for k := 1 to height of T do

for each v at level k in T do
w ← parent of v in T
H(u, v)← L(w, v)− θ(v, w)− π (mod 2π)
for each z ∈ NG(v) do

L(v, z)← θ(v, z) +H(u, v) (mod 2π)

117

Theorem 7.9. After executing ComputeAngleConstraint(G,ΘG, u) we have
that H(u,w) = huw for every w ∈ VG, and L(v, w) = θu(v, w) for every (v, w) ∈ ←→E G.

This theorem follows from an inductive application of Proposition 7.4.

Proof. Let parent(w) and level(w) denote the parent of node w and the level of node
w in the spanning tree used by the algorithm. Since the spanning tree is rooted at
u then level(u) = 0 and parent(u) is undefined.

Fix a node v ∈ VG. To prove the theorem it suffices to show that the algo-
rithm computes the relative orientation H(u, v) = huv and the angle measurements
L(v, z) = θu(v, z) for every z ∈ NG(v).

We prove this by induction on the level of node v. The base case is trivial, since
level(v) = 0 implies v ≡ u and we have H(u, u) = 0 = huu and L(u, z) = θ(u, z) =
θu(u, z) for every z ∈ NG(u), as required.

For the inductive step we suppose v has level(v) = k+1 and we let w = parent(v).
Since level(w) = k then the inductive hypothesis implies that H(u,w) = huw and
L(w, z) = θu(w, z) for every z ∈ NG(w). In particular this implies that L(w, v) =
θu(w, v) = θ(w, v) + huw.

By construction of the algorithm we have that H(u, v) = L(w, v) − θ(v, w) − π,
and since L(w, v) = θ(w, v)+huw we have that H(u, v) = θ(w, v)+huw−θ(v, w)−π.
Moreover, Proposition 7.4 implies that hwv = θ(w, v)−θ(v, w)−π and replacing this
in H(u, v) we have that

H(u, v) = huw + hwv = φw − φu + φv − φw = φv − φu = huv.

Finally since by construction the algorithm sets L(v, z) = θ(v, z) + H(u, v) =
θ(v, z) + huv = θu(v, z) for every z ∈ NG(v), the rest of the statement follows.

118

Chapter 8

Relative Positions

Building upon the results in Chapter 7, in this chapter we avoid dealing with the
angle measurements and instead we assume we are given a graph G and an angle-
constraint ω on G. The main contribution of this chapter is to describe a centralized
procedure that given an angle-constrained graph (G,ω) and a subset of robots S,
computes an assignment of positions to the robots in S which satisfies the angle-
constraint ω.

Roadmap. Section 8.1 defines graph realizations, which are simply embeddings
of the vertices of the graph in the Euclidean plane. Informally speaking, we say a
realization satisfies an angle-constrained graph, if for adjacent vertices in the graph
the angles between the vertices in the embedding match the corresponding angles in
the angle-constraint.

Section 8.2 describes a simple mathematical framework that relates the problem
of finding a realization that satisfies an angle-constrained graph, to the problem of
computing the null space basis of a matrix which can be derived efficiently from an
angle-constrained graph. As mentioned in the introduction, Section 8.2 presents an
alternative derivation to that descried in the earlier and seminal results of Whiteley
[94], who considered a very similar problem following the traditional graph rigidity
approach. Chapter 9 argues how this characterization can be used to compute (if
possible) relative positions for all the robots.

Section 8.3 extends this framework to the problem of finding a realization of an
angle-constrained graph for only a particular subset of robots. This might be possible
even when finding a realization for all the robots is impossible.

119

8.1 Defining Unique Realizations
A realization of a set V is a function p : V → R2 that maps each element of V
to a point in the Euclidean plane. A realization of a graph is a realization of its
vertices. We refer to realizations which map all elements to the same point as trivial
realizations.

Let S2 := {(x, y) ∈ R2 | x2 + y2 = 1} be the space of two-dimensional unit vec-
tors. We define the function ψ : [0, 2π)→ S2 that maps an angle to a two-dimensional
unit vector, concretely we let ψ(z) :=

[
cos z sin z

]T
. Since ψ is invertible via the

atan2 function we can define the function ψ−1 : S2 → [0, 2π) which maps a unit
vector n̂ to an angle z = ψ−1(n̂) such that ψ(z) = n̂. We define the angle of a vector
as the counter-clockwise angle from the x-axis of the coordinate system to the vector.

Recall from Definition 7.7 in Chapter 7 that a function ω : ~E → [0, 2π) that
associates with every directed edge of G an angle is an angle-constraint on G if for
every edge {u, v} ∈ EG we have that ω(u, v) = ω(v, u) + π (mod 2π) and therefore
ψ(ω(u, v)) = −ψ(ω(v, u)). Similarly from Definition 7.8 we have that a function
` : ~E → R+ that associates with every directed edge of G a length is a length-
constraint on G if for every edge {u, v} ∈ EG we have that `(u, v) = `(v, u).

Next we define what it means for a realization to satisfy an angle-constraint.

Definition 8.1. Fix a graph G, a realization p of G and an angle-constraint ω on
G. We say p is a satisfying realization of (G,ω) iff every edge (u, v) ∈ ←→E G satisfies
p(v)− p(u) = ψ(ω(u, v)) ‖p(v)− p(u)‖ ∗.

Analogously we define what it means for a realization to satisfy a length-constraint.

Definition 8.2. Fix a graph G, a realization p of G and a length-constraint ` on
G. We say p is a satisfying realization of (G, `) iff every edge (u, v) ∈ ←→E G satisfies
‖p(v)− p(u)‖ = `(u, v).

Next, we introduce some basic geometry definitions. If p is a realization, we use
p(v)T to denote a column vector representing the point p(v). We say a realization p′
is a translation of p if for some t ∈ R2 it holds that p′(v) = p(v) + t for every v ∈ V .
We say a realization p′ is a positive uniform-scaling of p if for some s ∈ R+ it holds
that p′(v) = sp(v). We say a realization p′ is a rotation of θ ∈ [0, 2π) of p if it holds

that p′(v)T = R(θ)p(v)T where R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
. We say a realization p′

∗This definition allows any angle-constraint to be satisfied by a trivial realization that maps ev-
ery vertex to the same point. A more substantive discussion about the meaning of trivial realizations
appears at the end of Section 8.2.

120

is a reflection of p if it holds that p′(v)T = Qp(v)T where Q =
[

1 0
0 −1

]
(in other

words we consider only reflections on the x-axis, since any other reflection can be
expressed as a reflection on the x-axis followed by a rotation and a translation).

To analyze the realizations that satisfy a particular angle-constraint or length-
constraint, it will be useful to define two different equivalence relations that induce
two different partitions of the set of realizations.

Definition 8.3. Fix realizations p and p′ of V . We say p is angle-equivalent to p′
if p′ can be obtained from p by a positive uniform-scaling followed by a translation.

Observe that the effect of performing a translation followed by a scaling can also
be achieved by first performing a scaling and then a translation (the same scaling
will be used, but the translation is adjusted). Also observe that the effect of any
sequence of translations and scalings can be obtained by a single scaling followed by
a single translation. These remarks imply that the angle-equivalence relation is an
equivalence relation.

The following proposition shows that two realizations are angle-equivalent if and
only if there exists a positive scalar s such that for any pair of vertices the vector
between them in one realization is the same as in the other realization but multiplied
by s.

Proposition 8.4. The realizations p and p′ of V are angle-equivalent if and only
if there exists s ∈ R+ such that for every u, v ∈ V it follows that p′(v) − p′(u) =
s(p(v)− p(u)).

Proof. First assume that p and p′ are angle-equivalent. From this it follows that there
exists s0 ∈ R+ and t0 ∈ R2 such that p′(v) = s0p(v)+t0 for every v ∈ V . From this it
follows that for every pair of elements u, v ∈ V we have p′(v)−p′(u) = s0(p(v)−p(u))
as needed.

Next, assume that there exists s ∈ R+ such that for every u, v ∈ V it holds that
p′(v)−p′(u) = s(p(v)−p(u)). It suffices to define t0 ∈ R2 such that p′(v) = sp(v)+t0
for every v ∈ V . Let t0 = p′(w) − sp(w) for an arbitrary w ∈ V . We need to show
only that for any other v ∈ V it holds that p′(v) = sp(v)+t0 or equivalently that t0 =
p′(v)−sp(v). Observe that by assumption we have that p′(v)−p′(w) = s(p(v)−p(w))
and rearranging the terms we obtain p′(w)− sp(w) = t0 = p′(v)− sp(v) as needed.

In fact, it turns out that for non-degenerate point sets, that is, point sets for
which no three points are collinear, the following proposition holds (observe that the
order of the quantifiers is reversed).

121

Proposition 8.5. The realizations p and p′ of V are angle-equivalent if and only if
for every u, v ∈ V there exists s ∈ R+ such that p′(v)− p′(u) = s(p(v)− p(u)).

Next we define the concept of length-equivalence, that is in many ways analogous
to angle-equivalence but using lengths instead of angles.

Definition 8.6. Fix realizations p and p′ of V . We say p is length-equivalent to p′
if for all pairs of elements u, v ∈ V we have that ‖p′(u)− p′(v)‖ = ‖p′(u)− p′(v)‖.

As before, it is easy to verify that the length-equivalence relation is symmetric, re-
flexive and transitive, and is therefore an equivalence relation. The following propo-
sition characterizes the type of transformations that relate two length-equivalent
realizations.

Proposition 8.7. Fix realizations p and p′ of V . Then p is length-equivalent to p′ if
and only if p can be obtained from p′ by a reflection, followed by a rotation, followed
by a translation.

Proof. In Euclidean geometry two point sets that have the same pairwise distances
are said to be congruent, and one can be obtained from the other by an isometry [14].
Moreover, it is known that a transformation is an isometry if and only if it can be
decomposed into a translation, a rotation and a reflection.

Therefore the proposition follows by definition of the length-equivalence relation.

Finally, we say an angle-constrained graph (G,ω) has a unique realization if
and only if it has at least one non-trivial satisfying realization and all its non-trivial
satisfying realizations are angle-equivalent. Analogously, we say a length-constrained
graph (G, `) has a unique realization if and only if it has at least one satisfying
realization and all its satisfying realizations are length-equivalent.

Discussion. A satisfying realization of (G,ω) is by definition a mapping that as-
sociates with each robot in VG a position in the Euclidean plane where for every pair
of adjacent robots in G, the angle of the vector between their associated positions
matches the corresponding angle in ω. Therefore if (G,ω) has no non-trivial satis-
fying realization then, except for the trivial assignment that maps all robots to the
same point, there is no assignment of positions to robots which is consistent with
the angle-constraint ω.

Example 8.1: Let G be a cycle graph on three vertices {u, v, w}.
Consider the angle-constraint ω on G that assigns ω(u, v) = 0, ω(v, w) =

122

π/8 and ω(w, u) = 0. Except for the trivial realizations that map u, v
and w to the same point, there is no realization that satisfies this angle-
constrained graph (G,ω). One way to see this, is that in any non-trivial
realization of u, v and w, if the angle-constraint in ω is satisfied then
the interior angles of the triangle formed by u, v and w cannot sum to π
(which is a contradiction since no such triangle can exist).

On the other hand if (G,ω) has multiple satisfying realizations which are not
angle-equivalent, then there are several assignments of positions to robots which
are consistent with the angle-constrained graph, and these assignments are not just
translations and positive uniform-scalings of each other (for example, see Figure 8-1).

Figure 8-1: Let G be a cycle graph on four vertices {u, v, w, z}. The left part of
the figure depicts the direction of the vectors between {u, v}, {v, w}, {w, z} and
{z, u} for an angle-constraint that assigns ω(u, v) = 0, ω(v, w) = π/6, ω(w, z) = π
and ω(z, u) = 7π/6. The right part of the figure shows two non-trivial satisfying
realizations of the angle-constrained graph where one cannot be obtained from the
other by a translation and a uniform-scaling operation (i.e. these realizations are not
angle-equivalent).

However, if (G,ω) has a unique satisfying realization, then it implies that there
is at least one non-trivial assignment of positions to robots that is consistent with
the angle-constraint, and all non-trivial assignments of positions to robots which are
consistent with the angle-constraint are translations and uniform-scalings of each
other.

8.2 Satisfying Realizations
Given an angle-constrained graph (G,ω), the questions that we are concerned with
in this section are: Does the angle-constrained graph have any satisfying non-trivial

123

realizations? If it does, what are they? Are they all angle-equivalent?

Roadmap. Section 8.2.1 states some simple facts about realizations of graphs.
Section 8.2.2 studies satisfying realizations of angle-constrained trees. Section 8.2.3
describes the restrictions on a satisfying realization imposed by cycles. Section 8.2.4
describes a relationship between satisfying realizations and the restrictions imposed
by all the cycles in a graph. Section 8.2.5 describes an explicit method for computing
the satisfying realizations of an angle-constrained graph.

8.2.1 Basic Facts
First observe that a realization p of G defines a length-constraint and an angle-
constraint which are simultaneously satisfied by p. This is captured in the following
algorithm and accompanying lemma.

Algorithm 11 RealizationToConstraints(G, p)

for each (u, v) ∈ ←→E G do
`(u, v)← ‖p(v)− p(u)‖
if `(u, v) ≥ 0 then

ω(u, v)← ψ−1((p(v)− p(u))/ ‖p(v)− p(u)‖
else

ω(u, v)← 0
return ω, `

Lemma 8.8. Fix a graph G and a realization p of G. The angle-constraint and
length-constraint returned by RealizationToConstraints(G, p) are simultane-
ously satisfied by p.

Proof. The fact that the length-constraint and angle-constraint returned by Re-
alizationToConstraints(G, p) are simultaneously satisfied by p follows imme-
diately by construction. We note that any variation to the lengths of the length-
constraint will result in a length-constraint which is no longer satisfied by p. More-
over, except for the edges of zero length, any variation to the angles of an angle-
constraint will also result in an angle-constraint which is not satisfied by p.

On the other hand, there exist length- and angle-constraints that cannot be sat-
isfied simultaneously by any realization. For instance, if a length-constraint does not

124

satisfy the triangle inequality then no realization can satisfy it (much less satisfy it
simultaneously with an angle-constraint). This implies the converse of Lemma 8.8
does not hold in general.

8.2.2 Trees
The next lemma shows that if we restrict the graph to be a tree, then a statement
that is analogous to the converse of Lemma 8.8 holds.

Algorithm 12 TreeConstraintToRealization(T, ω, `)
v0 ←arbitrary vertex in VT
for each v ∈ VT do

P (v0, v)← unique directed path from v0 to v in T
p(v)← ∑

e∈P (v0,v) `(e)ψ(ω(e))
return p

Lemma 8.9. Fix a tree T , an angle-constraint ω on T and a length-constraint ` on
T . The realization returned by TreeConstraintToRealization(T, ω, `) simul-
taneously satisfies ω and `, and is unique up to translations.

Proof. It is not hard to verify that by construction the realization output by the
algorithm is such that every edge e ∈ ET in the tree has length `(e) and angle ω(e)
in p. Therefore p simultaneously satisfies both ` and ω. It remains only to show that
p is unique up to translations.

Let p′ be any angle- and length-satisfying realization of T , we will show that p is
a translation of p′. Specifically we define r0 = p(v0) − p′(v0) for an arbitrary vertex
v0 ∈ VT and we show that ∀v ∈ VT we have p(v) = p′(v) + r0. We proceed by
induction on the number of edges in the directed path P (v0, v) from v0 to v in T .

The base case is trivial, since |P (v0, v)| = 0 implies v = v0, and by definition of
r0 it holds that p(v) = p′(v) + r0.

For the inductive step, consider a vertex v such that |P (v0, v)| = k for some k > 0.
There must exist a vertex w ∈ VT such that |P (v0, w)| = k − 1 and (w, v) ∈ ET .

Consider the edge (w, v). Since by assumption both p and p′ simultaneously
satisfy ω and `, then p(w) − p(v) = `(v, w)ψ(ω(v, w)) = p′(w) − p′(v). Moreover,
since P (v0, w) = k − 1 then by the inductive hypothesis we have p(w) = p′(w) + r0.
We can combine these two equations to yield that p′(w) + r0 − p(v) = p′(w)− p′(v).
Canceling and rearranging terms we have p(v) = p′(v) + r0, which completes the
proof.

125

The following corollary is a direct consequence of the previous result.

Corollary 8.10. An angle-constrained tree always has a satisfying realization, but
never a unique realization.

Additionally, we can leverage Lemma 8.9 to prove the following result for general
graphs.

Algorithm 13 ConstraintToRealization(G,ω, `)
T ← spanning tree of G
ωT ← ω projected to the edges of T
`T ← ` projected to the edges of T
return TreeConstraintToRealization(T, ωT , `T)

Lemma 8.11. Let G be a graph and let ω and ` be an angle-constraint and a length-
constraint that can be simultaneously satisfied by G. Then the realization returned
by ConstraintToRealization(G,ω, `) (a) simultaneously satisfies ω and `, and
(b) is unique up to translations.

Proof. Let p be the realization returned by ConstraintToRealization(G,ω, `),
and let T , ωT and `T be the values taken by the corresponding internal variables of
this procedure.

Lemma 8.9 implies that p simultaneously satisfies ωT and `T , and it also implies
that p is unique up to translations and therefore any other realization that satisfies
ωT and `T must be a translation of p. Fix p′ to be any satisfying realization of ω
and `; we know at least one such realization exists by assumption. Observe that p′
must also satisfy ωT and `T , and therefore p′ must be a translation of p.

We claim that this completes the lemma, since by showing that p is a translation
of p′ we have shown that (a) p simultaneously satisfies ω and `, since p′ satisfied
ω and ` by assumption and p′ is just a translation of p, and (b) p is unique up to
translations, since p′, which was chosen to be any realization that simultaneously
satisfies ω and `, is a translation of p.

The results we have proved so far reveal a close correspondence between the set
of satisfying realizations of an angle-constrained graph (G,ω), and the set of length-
constraints that can be satisfied simultaneously with the angle-constraint ω. Namely
Lemma 8.8 allows us to translate a realization that satisfies an angle-constraint
graph (G,ω) to a length-constraint that can be satisfied simultaneously with ω. On

126

the other hand, Lemma 8.11 allows us to translate a length-constraint that can be
simultaneously be satisfied with an angle-constraint ω to a realization that satisfies
(G,ω).

8.2.3 Facts about Cycles
Corollary 8.10 suggests that the restrictions that make satisfying realizations unique
(or impossible to construct) must be encoded in the cycles of a graph (defined for-
mally below). This subsection describe how a cycle yields a pair of equations that
must be satisfied by any satisfying realization.

A cycle is a set of edges that can be arranged end-to-end to describe a path from
a vertex to itself. The traversal of a cycle is a consistent orientation of the edges of
the cycle that allows us to start at any vertex and follow the directions of the edges
to eventually return to the starting vertex. Observe that any cycle has only two
possible traversals. For a cycle C we let ~C and ~C denote the two possible traversals.

For any realization p and an undirected cycle C defined on the vertices of p, we
have the following proposition (which follows from the fact that after traversing a
cycle we return to the starting vertex).

Proposition 8.12. Let G be a graph and let p be a realization of G. For every cycle
C in G the following equation must hold.

∑
(u,v)∈E−→

C

(p(v)− p(u)) =
∑

(u,v)∈E←−
C

(p(v)− p(u)) = 0 (8.1)

Since the two possible traversals of a cycle produce exactly the same equation,
from here on we can consider only one of them. Given an angle-constraint ω and
a length-constraint ` that can be satisfied simultaneously by a realization, we can
rewrite Proposition 8.12 as follows.

Proposition 8.13. Let G be a graph and let ω and ` be an angle-constraint and
length-constraint on G that can be satisfied simultaneously. For every cycle C in G
the following equation must hold.∑

e∈E~C

`(e)ψ(ω(e)) = 0 (8.2)

Since the terms of the equation are two-dimensional vectors, every cycle generates
two scalar equations, one for the x-component and one for the y-component.

127

8.2.4 Graphs with Cycles
This subsection establishes a relationship between the set of satisfying realizations
of an angle-constrained graph and the solutions to a system of equations derived
from the cycles present in the graph. Concretely, through Equation 8.2, a cycle in G
represents two restrictions that must be satisfied by a realization of G.

Our goal is to construct a system of equations that captures the restrictions
encoded by all the cycles in the graph. However, the number of cycles in a graph can
be exponential on the number of edges in the graph, and therefore considering the
equations generated by every cycle in the graph may lead to a very large system of
equations that would later yield very inefficient algorithms. Instead we will construct
a reduced set of equations that express the same constraints. The observation that
allows us to do this, is that a large number of cycles must share a large number
of edges, and this implies that the constraints imposed by these cycles are not all
independent.

In particular we will show that it is enough to consider only the fundamental
cycles of a spanning tree of G (defined below).

Definition 8.14. Let T be a spanning tree of G. Every non-tree edge {u, v} defines
a fundamental cycle of T , which is the cycle formed by the union of the edge {u, v}
and the edges in the unique path between u and v in T .

We refer to a set C of cycles as a fundamental cycle basis of G, if there exists a
spanning tree T of G such that C is equal to the set of all fundamental cycles of T .

Now we are ready to state and prove the main theorem of this subsection.

Theorem 8.15. Let G be a graph, let ω be an angle-constraint on G, let ` be a length-
constraint on G, and let C be a fundamental cycle basis of G. There is a realization
that simultaneously satisfies ω and ` if and only if ω and ` satisfy Equation 8.2 for
every cycle in C.

Proof. We prove each direction separately.
Case ⇒: Suppose there is a realization p that simultaneously satisfies ω and `.

From Proposition 8.13 it follows that p satisfies Equation 8.2 for every cycle in G,
and this implies that p satisfies Equation 8.2 for every cycle in C.

Proving the other direction is more involved, since we need to show that all the
satisfiability restrictions which are implicit in the graph are captured by considering
Equation 8.2 for the cycles in C.

Case ⇐: Suppose ω and ` satisfy Equation 8.2 for every cycle in C. Let T be
the spanning tree of G used to generate the fundamental cycles in C, and let ωT and

128

`T correspond to ω and ` projected to the edges of the spanning tree T respectively.
Lemma 8.9 implies there is a realization p of T that simultaneously satisfies ωT and
`T and is unique up to translations.

Since realizations are mappings of vertices (and not edges), it follows that p is also
a realization of G. To complete our proof it suffices to show that p simultaneously
satisfies ω and `. Moreover, since by construction p satisfies ωT and `T , we need only
to show that p satisfies ω and ` for the edges in F , where F is the set of (directed)
edges that are not covered by the spanning tree T .

Fix an edge (u, v) ∈ F ; we show that p satisfies ω and ` on (u, v). The edge
(u, v) ∈ F , together with the edges on the unique path between u and v contained
in T describe a fundamental cycle C of G. Since by assumption Equation 8.2 is
satisfied on every fundamental cycle of T it follows that Equation 8.2 is satisfied for
C. Moreover, except for the edge (u, v) ∈ F , by construction of p, individually all
other edges in the cycle satisfy ω and `, and since Equation 8.2 is satisfied in C it
follows that ω and ` are also satisfied on the edge (u, v).

Theorem 8.15 establishes a close correspondence between the length-constraints
that can be satisfied simultaneously with an angle-constraint, and the solution set
of a system of equations defined over the fundamental cycles of a spanning tree of
the graph. Moreover, Lemma 8.11 allows us to translate these length-constraints to
satisfying realizations of the angle-constraint graph.

A Remark on Theorem 8.15. Theorem 8.15 can be generalized by consider-
ing any cycle basis (defined below) of G as opposed to a fundamental cycle basis
of G (which is just a particular kind of cycle basis). Here we briefly discuss this
generalization.

In a graph G with an edge set {e1, . . . , em} a simple cycle can be represented by
a {0, 1} edge incidence vector [λ1, . . . , λm] where for every i ∈ {1, . . . ,m} we have
λi = 1 if the cycle includes edge ei, and λi = 0 otherwise. Next we define a vector
space associated with the cycles in the graph.

Definition 8.16. The cycle space of a graph G is the vector space over {0, 1} gen-
erated by the incidence vectors associated with the directed cycles in G,

In particular, it turns out that it suffices to consider only the restrictions imposed
by the cycles in a cycle basis of the cycle space of the graph, which we define below.

Definition 8.17. A cycle basis of a graph G is a set of simple cycles in G that have
linearly independent edge incidence vectors and that span the cycle space of G.

129

For a more in depth discussion about cycle bases and their properties, we refer
the interested reader to [41, 56]. For our purposes it suffices to know that every
connected graph on n vertices and m edges has a cycle basis with m− n+ 1 cycles.
Moreover, it is known [41] that the fundamental cycles of any spanning tree of G
define a cycle basis of G.

With minor modifications, the proof of Theorem 8.15 can be extended to prove the
same result holds for any cycle basis of G, without requiring it to be a fundamental
cycle basis.

8.2.5 Computing Satisfying Realizations
Lemma 8.11 showed that computing a satisfying realization of an angle-constrained
graph (G,ω) is equivalent to computing a length-constraint that can be satisfied
simultaneously with the angle-constraint ω. Theorem 8.15 showed that computing
a length-constraint that can be satisfied simultaneously with an angle-constraint ω
is equivalent to computing a length-constraint that satisfies a system of equations
defined over a fundamental cycle basis of G. This subsection describes how to use
standard linear algebra tools to solve the previously defined system of equations and
compute the set of length-constraints on G that can be satisfied simultaneously with
an angle-constraint ω on G.

To borrow the tools of linear algebra it will be useful to represent a length-
constraint as a real vector. To simplify our discussion, we introduce some additional
definitions. Let EG = {e1, . . . , em} be a subset of the directed edges ←→E G such that
every undirected edge in EG has one of its directed counterparts (but not both)
present in EG. Let x be an m×1 column vector whose i

th
entry represents the length

of the directed edge ei ∈ EG. In an angle-constrained graph (G,ω), every cycle in G
represents, through Equation 8.2, a linear restriction on any length-constraint which
can be satisfied simultaneously with ω. The following matrix equation captures the
linear restrictions imposed by Equation 8.2 on every cycle of a fundamental cycle

130

basis C = {C1, . . . , Cq} of G.

e1 · · · em

C1

...

Cq



a11 . . . a1m
b11 . . . b1m

...

aq1 . . . aqm
bq1 . . . bqm


︸ ︷︷ ︸

A(C,ω)



`(e1)

...

`(em)


︸ ︷︷ ︸

x

= 0 (8.3)

Since Equation 8.2 is a vector equation then every cycle in C corresponds to two
scalar rows in A(C,ω); in other words A(C,ω) is 2q × m matrix. In more detail, for
i ∈ {1, . . . , q} and j ∈ {1, . . . ,m} we have that [aij, bij]T = ψ(ω(ej)) if cycle Ci
uses edge ej, [aij, bij]T = −ψ(ω(ej)) if cycle Ci uses edge ~ej, and [aij, bij]T = [0, 0]T
otherwise. We highlight that by virtue of C being a fundamental cycle basis, no cycle
in C will use both directions of an edge.

Therefore each length-constraint that satisfies Equation 8.2 for every cycle in C
corresponds to an assignment of x where A(C,ω) · x = 0. Since Equation 8.3 is a
homogeneous system, the solution space is exactly the null space of A(C,ω), denoted
by null(A(C,ω)). In a slight abuse of notation for a length-constraint ` on G we
say ` ∈ null(A(C,ω)) if the vector representation of ` is in the null space of A(C,ω).
Theorem 8.15 has the following immediate corollary.
Theorem 8.18. Let G be a graph, let ω be an angle-constraint on G, let ` be a
length-constraint on G, and let C be a fundamental cycle basis of G. There is a
realization that simultaneously satisfies ω and ` if and only if ` ∈ null(A(C,ω)).

Null Space Discussion. Next we list a few properties of the null space of a
matrix and we briefly discuss what are their implications for the space of satisfying
realizations of an angle-constrained graph.

First, observe that the null space of a matrix always contains the zero vector.
This zero vector solution corresponds to a trivial satisfying realization of an angle-
constraint that maps all vertices to the same point. To see why, observe that if the
length-constraint of an edge is zero, then any realization that satisfies that length-
constraint must map both endpoints of the edge to the same point (regardless of the
angle-constraint is for that edge).

Second, if the null space of a matrix contains the vector x, then it also contains
the vector c · x for any positive constant c ∈ R+. This corresponds to the fact that

131

satisfying realizations of angle-constrained graphs are equivalent up to a positive
uniform-scaling. Therefore if a particular realization satisfies (G,ω) then a positive
uniform-scaling of the realization also satisfies (G,ω).

Third, recall that each column of A(C,ω) corresponds to an edge in G. If a column
i is all zeros, then the null space of A(C,ω) allows any length assignment for edge ei.
However, column i is all zeros if and only if edge ei is not used by any cycle in C,
and this happens only when there is a partition of the graph in to two components
where ei is the only edge between them. Therefore, the fact that the null space
allows any assignment for edge ei corresponds to the fact that these two connected
components can be shifted and scaled independently of each other, while respecting
the angle-constraint on ei.

In principle the null space of a matrix can contain an infinite number of vectors.
Therefore, in order to be able to compute it we first need a concise way of representing
it, which we introduce below.

Definition 8.19. A null space basis of a matrix is a set of linearly independent
column vectors that span the null space of the matrix.

In other words, every vector in the null space of a matrix can be expressed as
a linear combination of the columns in a null space basis of the same matrix. The
nullity of a matrix is the number of dimensions of its null space, or equivalently the
number of columns in a null space basis of the matrix.

Let N be a null space basis of A(C,ω). By definition each column of N represents
a length-constraint that can be satisfied simultaneously with ω (for every column of
N , the value of row i represents the length of edge ei). Since the columns of the null
space basis are linearly independent then the length-constraints represented by two
different columns are not scalings of each other. This, together with Theorem 8.18
imply the following proposition.

Proposition 8.20. The columns of a null space basis of A(C,ω) correspond to non-
zero length-constraints of G which can satisfied simultaneously with ω and that are
not scalings of each other.

Theorem 8.18 has the following immediate corollary relating a null space basis of
A(C,ω) and the space of satisfying realizations of (G,ω).

Corollary 8.21. Fix an angle-constrained graph (G,ω) and a fundamental cycle
basis C of G:
1) (G,ω) has no non-trivial satisfying realization iff the nullity of A(C,ω) is zero.
2) (G,ω) has a unique satisfying realization iff the nullity of A(C,ω) is one.

132

3) (G,ω) has several distinct non-trivial satisfying realizations iff the nullity of A(C,ω)
is greater than one.

Therefore, in particular, to determine whether (G,ω) has a unique satisfying
realization, and to compute this realization, it suffices to compute a null space basis
of A(C,ω) where C is a fundamental cycle basis of G. Specifically, if the nullity of A(C,ω)
is one then the unique column vector in a null space basis of A(C,ω) corresponds to
the lengths of the edges of a non-trivial satisfying realization of (G,ω).

We conclude this section by describing the ComputeRealizations procedure,
which is the algorithmic counterpart of Proposition 8.20 and Corollary 8.21. This
procedure receives as input a graph G and an angle-constraint ω on G. It produces
as an output a set of non-trivial satisfying realizations of (G,ω).

ComputeRealizations starts by computing a fundamental cycle basis C of
the graph G. The fundamental cycle basis C is then used together with the angle-
constraint ω to produce the matrix A(C,ω). Next, the algorithm proceeds to compute
a null space basis N of A(C,ω). Finally, each column of the null space basis N (which
from Proposition 8.20 correspond to a non-zero length-constraint that can be satisfied
simultaneously with ω) is transformed to a non-trivial satisfying realization of (G,ω)
using the ConstraintToRealization procedure described in Section 8.2.2.

Algorithm 14 ComputeRealizations(G,ω)
C ← fundamental cycle basis of G
A(C,ω) ← matrix of Equation 8.3 using C and ω
N ← null space basis of A(C,ω)
k ←number of columns in N
Q← {}
for i := 1 to k do

`i ← length constraint from column i in N
pi ←ConstraintToRealization(G,ω, `i)
Q← Q ∪ {pi}

return Q

The next theorem states the properties of the ComputeRealizations pro-
cedure. Its proof follows directly from Proposition 8.20, Corollary 8.21 and the
correctness of the ConstraintToRealization procedure.

Theorem 8.22. Let Q be the output of ComputeRealizations(G,ω). Each ele-
ment in Q is a non-trivial satisfying realization of (G,ω).

1. |Q| = 0 iff (G,ω) does not have a non-trivial satisfying realization.

133

2. |Q| = 1 iff (G,ω) has a unique satisfying realization.
3. |Q| ≥ 2 iff (G,ω) has several non-trivial satisfying realizations which are not

angle-equivalent.

8.3 Unique Subset Realizations
Chapter 9 describes a distributed algorithm that leverages our results on the set of
satisfying realizations of an angle-constrained graph to compute relative positions
(up to scale) for every robot of a multi-robot system. It turns out that it is possible
to compute the relative positions (up to scale) of every robot in the multi-robot
system if and only if a particular angle-constrained graph has a unique satisfying
realization.

However, in our general problem formulation we are interested in computing the
relative positions for only a subset of the robots. Furthermore, it is possible (and
in practice it will frequently be the case) that it is feasible to compute the relative
positions for a subset of robots, but the entire associated angle-constrained graph
does not have a unique satisfying realization. For this purpose, in this section we
introduce a concept which is analogous to a unique realization but is defined for a
particular subset of robots.

We start by restricting our notion of a graph, a realization, an angle-constraint
and a length-constraint to a subset of vertices. For a subset S of the vertices in
G, let G[S] be the subgraph of G induced by S, formally VG[S] = S and EG[S] =
{{u, v} | {u, v} ∈ EG ∧ u ∈ S ∧ v ∈ S}. If p is a realization of G then we let
p[S] : S → R2 be the restriction of p to the vertices in S, where for every u ∈ S
we have that p(u) = p[S](u). If ω is an angle-constraint on G then we define ω[S] :
←→
E G[S] → [0, 2π) as the restriction of ω to G[S] where for every edge (u, v) ∈ ←→E G[S]
we have ω[S](u, v) = ω(u, v). Similarly, if ` is a length-constraint on G then we define
`[S] :←→E G[S] → R+ as the restriction of ` to G[S] where for every edge (u, v) ∈ ←→E G[S]
we have `[S](u, v) = `(u, v).

The next lemma shows that, as natural generalizations of the definitions we pre-
sented in Section 8.1, the previous definitions satisfy a number of properties. (The
proof of the lemma follows immediately by unravelling the definitions.)

Lemma 8.23. Let G be a graph, let S ⊆ VG be a subset of vertices of G, let p be a
realization of G, let ω be an angle-constraint on G, and let ` be a length-constraint
on G. We have that:

1. ω[S] is an angle-constraint on the graph G[S].
2. `[S] is a length-constraint on the graph G[S]

134

3. p[S] is a realization of the graph G[S].
4. if p satisfies ω then p[S] satisfies ω[S].
5. if p satisfies ` then p[S] satisfies `[S].

With these definitions in place, we are ready to introduce a concept analogous to
unique realizations for a subset of vertices.

Definition 8.24. The angle-constrained graph (G,ω) is S-unique if and only if
(G,ω) has at least one satisfying realization p such that p[S] is non-trivial, and every
satisfying realization p′ of (G,ω) such that p′[S] is non-trivial is angle-equivalent to
p[S].

This definition gives rise to natural generalizations of the questions we asked at
the beginning of Section 8.2, namely: Does an angle-constrained graph have any
satisfying realizations that are non-trivial when restricted to the vertices in S? If it
does, what are they? Is the angle-constrained graph S-unique?

It turns out that we have already developed all the tools necessary to address
these questions. Below we describe the ComputeSubsetRealizations procedure,
which is the natural generalization of the ComputeRealizations procedure for
subsets of vertices. The procedure receives as input a graph G, an angle-constraint
ω on G, and a subset of vertices S ⊆ VG. It produces as an output a set of non-
trivial satisfying realizations of (G[S], ω[S]) that are restrictions to the vertices in S
of satisfying realizations of (G,ω).

Algorithm 15 ComputeSubsetRealizations(G,ω, S)
C ← fundamental cycle basis of G
A(C,ω) ← matrix of Equation 8.3 using C and ω
N ← null space basis of A(C,ω)
k ←number of columns in N
Q← {}
for i := 1 to k do

`i ← length constraint from column i in N
pi ←ConstraintToRealization(G,ω, `i)
if pi[S] is non-trivial and is not angle-equivalent to a realization in Q then

Q← Q ∪ {pi[S]}
return Q

The ComputeSubsetRealizations procedure is almost identical to the Com-
puteRealizations procedure. The only difference is that before inserting the

135

satisfying realizations of (G,ω) into the output set Q, they are first restricted to
the vertices in S and it is verified that they are non-trivial and they are not angle-
equivalent to any realization previously inserted into the output set. This modifica-
tion guarantees that only realizations which are non-trivial when restricted to the
vertices in S are returned, and that if two or more realizations are returned, then
they are not angle-equivalent. The following theorem states the properties satisfied
by the algorithm, which follow by construction and the correctness of the Comput-
eRealizations procedure.

Theorem 8.25. Let Q be the output of ComputeSubsetRealizations(G,ω, S).
Each element in Q is a non-trivial realization of (G[S], ω[S]) that is the restriction
to the vertices in S of a satisfying realization of (G,ω).

1. |Q| = 0 iff (G,ω) does not have a satisfying realization p such that p[S] is
non-trivial.

2. |Q| = 1 iff (G,ω) is S-unique.
3. |Q| ≥ 2 iff (G,ω) has at least two satisfying realizations p and p′ such that p[S]

and p′[S] are both non-trivial and p[S] is not angle-equivalent to p′[S].

136

Chapter 9

Distributed Localization
Algorithm

Informally, in the localization problem each robot seeks to compute the relative
orientations and the relative positions (up to scale) of an arbitrary subset of robots
in the system. The specific subset of robots that each robot seeks to localize is
application dependent. For instance, in many applications it suffices for each robot
to localize only its neighboring robots. However one can also envision applications
where each robot wants to localize the robots in the system that have a particular
capability, regardless of whether these robots are neighbors or not.

In particular, we consider the localization problem in a very simple sensing model
where each robot can measure only the angle, relative to its own orientation, to
neighboring robots in the communication graph.

We tackle the localization problem with a two step approach. In the first part
each robot computes the relative orientations of the desired subset of robots and
converts all the angle measurements available to the same reference frame. This first
part of the problem was tackled with a centralized procedure in Chapter 7. For the
second part of the problem, the converted angle measurements obtained in the first
part are used to compute the relative positions (up to scale) of the desired subset of
robots. This second part was tackled with a centralized procedure in Chapter 8.

This chapter describes how to leverage the centralized procedures described in
Chapter 7 and Chapter 8 to design the distributed algorithm SubsetLocalizek,
which solves a k-hop variant of the localization problem. Here k ∈ N is a positive
integer that determines the number of communication steps used by the distributed
algorithm. The specifics of the multi-robot platform and the application determine
the ideal value of this parameter. Larger values of k allow each robot to localize robots

137

that are farther away, but also results in a distributed algorithm that requires more
communication steps and is therefore more demanding on the speed and bandwidth of
the communication infrastructure of the multi-robot system. We also highlight that
larger values of k will rarely prove useful in applications that require localizing only
neighboring robots. We argue that the proposed distributed algorithm is optimal
in the following sense: if a subset of robots can be successfully localized by any
algorithm using k communication steps, then they will be successfully localized by
SubsetLocalizek.

Towards the end of the chapter we consider what happens when the proposed
distributed localization algorithm is run in two consecutive rounds, and the robots
move in between rounds. We argue that by using odometry (i.e., each robot keeps
track of how much it moved between rounds) it is possible to recover the scale of the
relative coordinates provided by the distributed localization algorithm

Roadmap. Section 9.1 introduces the definitions necessary to formalize the dis-
tributed localization problem. Section 9.2 contains a detailed description of the
proposed distributed localization algorithm. Section 9.3 proves the correctness and
optimality claims of the proposed algorithm. Finally, in Section 9.4 we describe how
to leverage odometry and the distributed localization algorithm to obtain relative
positions with scale.

9.1 Problem Statement
To define formally the distributed localization problem we first describe formally
the local coordinate system of each robot. Specifically, the local coordinate system
of robot u has its position %u at the origin, and has its heading aligned with the
x-axis. In other words, in its own local coordinate system, each robots sits at the
origin and has orientation 0; therefore to transform from a robot’s local coordinate
system to the global coordinate system it suffices to perform a rotation followed by
a translation (see Figure 9-1). We highlight that since each robot u is not aware of
its own position %u or its own orientation φu, it cannot transform between local and
global coordinates.

Informally, we say that a robot u has learned the relative orientation and relative
position of robot w, if robot u knows in its local coordinate system the orientation
and position of robot w. Formally, for robot u the relative orientation and the relative
position of robot w are defined as φuw = φw−φu (mod 2π) and %uw = R−φu(%w− %u),
respectively, where Rθ is a rotation matrix with angle θ around the origin. (This

138

Figure 9-1: Local coordinate system of robots u and v.

definition of relative orientation matches our previous Definition 7.1.)
Intuitively, a distributed algorithm solves the localization problem if each robot

u outputs the set of relative orientations and relative positions that correspond to
the robots that need to be localized by robot u. To formalize this intuitive definition
we must address some important subtleties. First, recall that in our system model a
robot can only send and receive messages to neighbors in the communication graph
and measure the angle (relative to their own orientation) of neighboring robots. In
this model the execution of an algorithm can depend only on the communication
graph G and the angle measurements ΘG (recall from Section 7.1 that ΘG associates
an angle measurement to each directed edge in ←→E G). Second, to determine if the
output of a distributed localization algorithm is successful, it is necessary to compare
the output against the assignment of orientations φ and positions % to robots. There-
fore a formal definition of a distributed localization algorithm must account for the
fact that there are multiple assignments of positions and orientations to robots which
produce exactly the same angle measurements (and these will be indistinguishable
to the algorithm).

For succinctness, we use 〈%, ϕ,G〉 to denote an environment where % is the as-
signment of positions to robots, ϕ is the assignment of orientations to robots, and G
is the communication graph of the robots.

Definition 9.1. Consider an execution of a distributed localization algorithm A on
〈%, ϕ,G〉 where the subset Su ⊆ VG \ {u} occurs as an input to every robot u ∈ VG.
We say:

1. A succeeds at u if its output at u is a set {(w, ow, tw) | w ∈ Su} where ow ∈
[0, 2π) and tw ∈ R2 such that for all w ∈ Su it holds that ow = φuw and

139

tw = αu%
u
w for some αu ∈ R+.

2. A aborts at u if its output at u is ⊥.
3. A fails at u otherwise.

Observe that each robot recovers, in its local coordinate system, the coordinates of
the other robots up to a fixed but unknown scaling factor. Moreover, the coordinates
recovered by different robots might have different scales. To have all robots agree on
the same scaling factor would require O(diameter(G)) communication steps. More
importantly, even without agreement on the scaling factor, the information recov-
ered is sufficient to perform a number of multi-robot tasks. Concretely Chapter 10
describes some simple applications using these coordinates.

Since the distributed algorithm we will consider in the next section runs for k
communication steps, then for simplicity we will impose the requirement that the
subset of robots Su that occurs as an input at each robot u must be contained in
the k-neighborhood u. (It is not hard to show that it is impossible for a robot at u
to learn anything about a robot w outside its k-neighborhood, including the relative
position or relative orientation of w, using k or fewer communication rounds).

Definition 9.1 allows a distributed localization algorithm to succeed at some (but
not all) of the robots. The distributed localization algorithm described in the next
section succeeds in as many cases as possible and never fails in any environment at
any robot.

9.2 Algorithm
From a very high level, the distributed algorithm to solve the localization problem
we describe in this section has the same basic structure as the distributed algorithm
for the edge-selection problem described in Chapter 3. Namely, each robot first runs
a data collection phase for k communication rounds, and then applies the centralized
procedures of Chapter 7 and Chapter 8 on the data collected by each robot to produce
the desired output. The pseudo-code is presented in Algorithm 16.

In more detail, to collect the maximum amount of information, first each robot
runs a full-information protocol for k communication steps. This allows each robot
u to learn its k-neighborhood Gk[u], which is by definition the largest subgraph of G
which can be learned by robot u after k communication steps. In addition, robot u
also learns all the angle measurements associated with the directed edges in ←→E Gk[u],
denoted ΘGk[u].

An input at each robot u provides a subset Su of robots in the k-neighborhood
of u to be localized. Robot u then runs the centralized procedure ComputeAn-

140

Algorithm 16 SubsetLocalizek at robot u
1: G′ ← empty graph
2: Θ′ ← empty angle measurements
3: for k communication steps do
4: run full-information protocol
5: update G′ and Θ′

6: Let S in VG′ be the input that occurs at robot u
7: H,L←ComputeAngleConstraint (G′,Θ′, u)
8: Q←ComputeSubsetRealizations(G′, L, S ∪ {u})
9: if |Q| = 1 then
10: let p be the only realization in Q
11: return {(w,H(w), p(w)− p(u)) | w ∈ S}
12: return ⊥

gleConstraint described in Chapter 7, using as input the graph Gk[u] and the
angle measurements ΘGk[u]. This procedure outputs the relative orientations of all
robots in Gk[u] with respect to robot u, as well as the angle measurements Θu

Gk[u]
with respect to robot u. Recall from Definition 7.5 that the angle measurements in
Θu
Gk[u] correspond to the angle measurements that would have resulted if every robot

in Gk[u] had u’s orientation. Moreover from Definition 7.7 it follows that Θu
Gk[u] is

an angle-constraint on Gk[u].
Finally, each robot u runs the centralized procedure ComputeSubsetRealiza-

tions described in Chapter 8, using as input the graph Gk[u], the angle-constraint
Θu
Gk[u], and the subset of robots Su ∪ {u}. The output of this procedure is a set Q,

and from Theorem 8.25 it contains non-trivial realizations of Su ∪ {u}, which are
restrictions of satisfying realizations of the angle-constrained graph (Gk[u],Θu

Gk[u]).
If Q contains exactly one realization, then robot u uses this realization to compute
the relative positions (up to scale) of the robots in Su after translating the realization
to ensure that robot u is at the origin. If Q does not contain exactly one realization
then robot u fails to compute the relative orientations and relative positions of the
robots in Su and returns ⊥.

By construction, it immediately follows that the communication step complexity
of the SubsetLocalizek algorithm is k. The computational complexity is domi-
nated by the computation of a null space basis, used in the ComputeSubsetReal-
izations procedure. Since the dimensions of the matrix are 2q×m where q < m and
m is the number of edges in Gk[u], then if implemented using Gaussian elimination,
the null space basis can be computed using O(m3) arithmetic operations. However,

141

in practice due to numerical stability issues it is usually preferable to compute the
null space basis through costlier methods such as Singular Value Decomposition or
QR decomposition [90].

9.3 Correctness and Optimality
In this section we prove the correctness of the SubsetLocalizek distributed algo-
rithm, and we state and prove our optimality claims about the algorithm.

First we show that whenever the algorithm outputs a non-empty set at a robot
u, it succeeds in localizing the subset of robots input to the algorithm by robot u.

Theorem 9.2. Consider an execution of SubsetLocalizek on 〈%, ϕ,G〉 where the
subset Su ⊆ VG \ {u} occurs as an input at every robot u ∈ VG. If the algorithm does
not abort at robot u, then the algorithm succeeds at robot u.

Proof. Let G′ and Θ′ be the subgraph of G and the associated angle measurements
learned by robot u after running the k communication steps of the full-information
protocol (i.e., G′ = Gk[u] and Θ′ = ΘGk[u]). Let S ′ = Su ∪ {u} be a subset of robots
contained in G′.

If the algorithm does not abort at robot u, then by definition it does not output
⊥ at robot u (line 13). Then it follows that the set of realizations Q returned
by ComputeSubsetRealizations contains exactly one realization p (line 10).
Moreover, the set output by u contains exactly one tuple (w,H(w), p(w)− p(u)) for
each robot w ∈ Su (line 12).

To complete the proof we need only to show that for every w ∈ Su it holds that
H(w) = φuw and for some αu ∈ R+ we have p(w) − p(u) = αu%

u
w. The fact that

H(w) = φuw for every w ∈ Su follows immediately from Theorem 7.9, thus we need
only to show that for every w ∈ Su it holds that p(w) = αu%

u
w for some αu ∈ R+.

From Theorem 7.9 it also follows that L contains the angle-constraint Θu
G′ on G′,

and from Definition 7.5 this angle-constraint corresponds to the angle measurements
that would result if every robot had u’s orientation. Therefore it follows that the
realization p′ defined as p′(v) = R−φu(%v) for every v ∈ VG′ satisfies the angle-
constraint Θu

G′ . Moreover, since a position assignment never maps two robots to
the same position, it follows that p′, and therefore any restriction of p′, is also a
non-trivial realization.

Since the set Q returned by ComputeSubsetRealizations contains exactly
one realization by assumption, Theorem 8.25 implies that the angle-constrained
graph (G′,Θ′) is S ′-unique. This means that for any realization p that satisfies

142

(G′,Θ′) where p[S] is non-trivial (such as the realization returned in Q), p[S ′] is
angle-equivalent to p′[S ′].

Finally if we let p be the realization returned in Q, then by the fact that it is S-
unique and the definition of angle-equivalence it follows that there exists an αu ∈ R+

and a t0 ∈ R2 such that p(v) = αup
′(v) + t0 for every v ∈ S ′. The rest of the proof

follows from some simple algebraic manipulation:

p(w)− p(u) = αu(p′(w)− p′(u))
= αu(R−φu%w −R−φu%u)
= αuR−φu(%w − %u)
= αu%

u
w.

Theorem 9.2 implies that the SubsetLocalizek algorithm never fails in any
environment at any robot, it only succeeds or aborts. To complement Theorem 9.2,
we show that if there is a distributed algorithm that runs in k or fewer communication
rounds, that succeeds at robot u in some environment, and does not fail at robot u
in other environments, then SubsetLocalizek also succeeds at robot u in the same
environment.
Theorem 9.3. If there is a distributed algorithm that runs for k or fewer communi-
cation steps, that succeeds at robot u on 〈%, ϕ,G〉 and does not fail at robot u in any
other environment, then SubsetLocalizek succeeds at robot u on 〈%, ϕ,G〉.
Proof. Let G′ and Θ′ be the subgraph of G and the associated angle measurements
learned by robot u after running the k communication steps of the full-information
protocol (i.e., G′ = Gk[u] and Θ′ = ΘGk[u]). Let S ′ = Su ∪ {u} be a subset of robots
contained in G′, where Su is the set of robots to localize that occurred as an input
at robot u.

To prove the theorem it suffices to show that if SubsetLocalizek aborts at
robot u on 〈%, ϕ,G〉, then any other distributed algorithm that runs for k or fewer
communication rounds must either fail at u in some enviroment or also abort at u
on 〈%, ϕ,G〉.

Suppose that SubsetLocalizek aborts at robot u on 〈%, ϕ,G〉, that is, that it
outputs ⊥ at robot u (line 13). Then it follows that the set of realizations Q returned
by ComputeSubsetRealizations does not contain exactly one realization p (line
10). There are two possible cases: the set Q of realizations returned by Compute-
SubsetRealizations either (a) contains zero realizations, or (b) contains two or
more realizations. We consider these two cases separately.

143

(a) Theorem 7.9 implies that the L returned by ComputeAngleConstraint
contains the angle-constraint Θu

G′ on G′, and from Definition 7.5 this angle-constraint
corresponds to the angle measurements that would result if every robot had u’s
orientation. Therefore it follows that the realization p′ defined as p′(v) = R−φu%v for
every v ∈ VG′ satisfies the angle-constraint Θu

G′ .
However, this implies that case (a) cannot occur, since there is at least one

realization of G′ that satisfies Θu
G′ and which is non-trivial when restricted to S ′ (the

non-triviality follows from the fact that any robot assignment % will not assign two
distinct robots to the same position), and Theorem 8.25 implies this realization is
contained in Q.

(b) Suppose Q has two realizations. Theorem 8.25 implies there are two real-
izations p and p′ of G that satisfies Θu

G′ and which are not angle-equivalent, even
when restricted to S ′. This implies there is an environment 〈%′, ϕ,G〉 where %′ is
not a translation and scaling of %, even when restricted to the robots in S ′. Since
these two environments are indistinguishable at u for any algorithm that runs in k
or fewer communication steps, then any algorithm that runs for k or fewer commu-
nication steps must produce the same output at u in both environments. Therefore
if an algorithm that runs in k or fewer communication steps succeeds at robot u in
environment 〈%, ϕ,G〉 then it must fail at robot u in environment 〈%′, ϕ,G〉, which
concludes our proof.

9.4 Recovering Scale Through Odometry
The SubsetLocalizek algorithm described in Section 9.2 uses k communication
steps but runs in a single round, and as such it does not require the robots to move.
This property makes the algorithm suitable for platforms that are not capable of
motion, such as sensor networks. In this section we argue that, in applications where
the robots are required to move, it is possible to use odometry (i.e., have each robot
keep track of the motion it performs between rounds) to recover the scale (e.g., to
have the distance in meters between robots) of the relative positions provided by the
proposed localization algorithm.

Concretely, we assume that at each communication round every robot computes
the relative orientations and relative positions, up to scale, of a subset of robots
in the communication graph (for instance, via the SubsetLocalizek algorithm).
In between rounds each robot moves by following the trajectory prescribed by an
arbitrary motion planner, and robots use odometry to keep track of the motion
performed. Our goal is then to leverage the information provided by the odometry
to recover the scale of the relative positions. Using odometry as a source of “distance”

144

information allows us to combine our existing localization approach with the standard
triangulation-based techniques for localization [27, 68].

As before we use %u, φu andN(u) to denote the position, orientation and neighbors
of robot u at the current round, and in addition, we use %′u, φ′u andN ′(u) to denote the
position, orientation and neighbors of robot u at the previous round. For convenience
at the first round (i.e. when there is no “previous” round) we let %′u = %u, φ

′
u = φu and

N ′(u) = N(u). The orientation change at the current round for robot u is denoted
by Ou = φu − φ′u, and the translation change at the current round for robot u is
denoted by Tu = %u − %′u. Therefore by definition, in the first round the orientation
change and translation change of every robot is zero.

Formally, our additional odometry assumption amounts to assuming that at the
beginning of each round, every robot u knows its orientation change Ou and its local
translation change LT u = R−φuTu. In other words, each robot knows how many
degrees it turned, how many meters it moved, and the direction of the movement in
its local coordinate system; however it does not know the direction of the movement
in the global coordinate system.

This additional knowledge has some minor but important side effects on the
SubsetLocalizek algorithm described in Section 9.2. Namely, after running the
full-information protocol for k communication steps, each robot u learns not only
its k-neighborhood Gk[u] and the associated angle measurements ΘGk[u], but also
learns the orientation change Ov and translation change LT v for every robot v in its
k-neighborhood. For convenience in this section we assume that together with the
relative orientations and relative positions of the robots being localized, SubsetLo-
calizek also returns the local orientation change and the local translation change of
the robots being localized.

However, this additional knowledge cannot always be used to recover the scale
of the coordinates, for instance, if the robots remain stationary (i.e., Ou = 0 and
Tu = 0 for every robot u) or all robots perform the same motion at every round (i.e.,
Ou = Ov and Tu = Tv for every robot u and v). The following definition captures
what constitutes a “useful” motion for a pair of robots.

Definition 9.4. Robots u and v have a useful motion if the points %′u, %′v and %′u +
Tu − Tv are not collinear.

To see that this definition is symmetric for u and v, observe that the points %′u, %′v
and %′u + (Tu−Tv) are collinear iff the vector %′v− %′u is parallel to the vector Tu−Tv,
and this last condition is symmetric for u and v.

For two vectors a, b ∈ R2 the two-dimensional cross product is defined as a ⊗
b = axby − aybx. In contrast with the three-dimensional cross product, the two-

145

dimensional cross product returns a scalar. However, the two-dimensional cross
product satisfies a number of properties also satisfied by its three-dimensional coun-
terpart. The next proposition lists a number of properties satisfied by the two-
dimensional cross product (see [10] for a more extensive list of properties, together
with their proofs).

Proposition 9.5. Let a, b ∈ R2 be two-dimensional vectors, let r ∈ R be a scalar,
and let R be a two-dimensional rotation matrix. Then:

1. Anti-commutative: a⊗ b = −b⊗ a.
2. Distributive over addition: a⊗ (b+ c) = a× b+ a⊗ c.
3. Compatible with scalar multiplication: (ra)⊗ b = a⊗ (rb) = r(a⊗ b).
4. Invariant to rotations: (Ra)⊗ (Rb) = a⊗ b.

The following proposition, which appears in [10], provides an efficient way of
determining if three points are collinear through the two-dimensional cross product.

Proposition 9.6. The points a, b, c ∈ R2 are collinear iff (b− a)⊗ (c− a) = 0.

The information required to recover the scale of the relative coordinates at a
robot u is captured by the next definition. Informally speaking, robot u needs two
sets of tuples (one for the previous round and the other for the current round), where
each tuple contains the identifier of a robot v, the relative orientation of robot v,
the relative position (up to scale) of robot v, the orientation change of robot v, and
the translation change of robot v. Specifically, the tuples in the first set have the
relative positions scaled by a positive constant a ∈ R+, and the tuples in the second
set have the relative positions scaled by a positive constant b ∈ R+. The goal is to
use the information contained in these two sets of tuples, together with the known
motion of the robots, to recover both a and b.

Definition 9.7. Let X ′ and X be sets of tuples of the form (v, o, t, O, T) where v is
a robot identifier, o ∈ [0, 2π) is an angle, t ∈ R2 is a vector, O ∈ [0, 2π) is an angle
and T ∈ R2 is a vector. For a, b ∈ R+ we say X ′ and X are (a, b)-valid for robot u
at the current round iff the following two conditions hold:

1. If (v, o′v, t′v, O′v, T ′v) ∈ X ′ then in the previous round robot v is such that o′v = φuv ,
t′v = a%uv , O′v = Ov, T ′v = LT v.

2. If (v, ov, tv, Ov, Tv) ∈ X then in the current round robot v is such that ov = φuv ,
tv = b%uv , Ov = Ov, Tv = LT v.

The main contribution of this section is the RecoverScale procedure. It re-
ceives as input two sets of tuples that are (a, b)-valid for robot u at the current round,
and it returns (a, b) if it succeeds and ⊥ if it fails.

146

The idea behind the procedure is straightforward. Robot u searches through X ′
and X looking for a robot v which is present in both sets, and with which it has a
useful motion according to Definition 9.4. If no such robot is found, then robot u fails
and returns ⊥. If such a robot v is found, then robot u uses the relative positions
and the translation change of u and v to construct a non-degenerate triangle (the
fact that the triangle is non-degenerate follows from the non-collinear requirement
of Definition 9.4). Specifically, two sides of the triangle correspond to the relative
coordinates of robot v at robot u obtained at the previous and the current round.
The lengths of these sides are known up to a positive scalar a and b respectively.
The third side of the triangle is the subtraction of the translation change of v from
the translation change of u; the length of this third side is known exactly. The
properties of this triangle are instrumental in our correctness proof, and a diagram
of it appears in Figure 9-2. Robot u uses the dot product to compute the inner
angles of the triangle, and finally using the sine law it recovers and returns the
scaling factors a and b. The detailed pseudo-code appears in Algorithm 17.

Algorithm 17 RecoverScale(X ′, X) at robot u
1: for each (v, o′v, t′v, O′v, T ′v) ∈ X ′ do
2: for each (v, ov, tv, Ov, Tv) ∈ X do
3: A← (R−Out′v), B ← tv, C ← (LT u −RovTv)
4: if A⊗ C 6= 0 then
5: α← arccos

(
B·C
‖B‖‖C‖

)
β ← arccos

(
A·C
‖A‖‖C‖

)
, γ ← arccos

(
A·B
‖A‖‖B‖

)
6: return (‖A‖ sin γ/ ‖C‖ sinα, ‖B‖ sin γ/ ‖C‖ sin β)
7: return ⊥

The following theorem proves the correctness of this procedure.

Theorem 9.8. Let X ′ and X be (a, b)-valid for robot u at the current round. If
there is a robot v in X and X ′, with which robot u has a useful motion, then running
RecoverScale (X ′, X) at robot u returns (a, b), otherwise it returns ⊥.

The next auxiliary proposition states a few properties of rotations.

Proposition 9.9. (1) Rotation additivity: RxRy = Rx+y where Rx is a rotation of
angle x, Ry is a rotation of angle y and Rx+y is a rotation of angle x+ y. (2) Dot-
Product Rotation Invariance: (Ra) · (Rb) = a · b where R is a rotation and a, b ∈ R2

are two-dimensional vectors. (3) Norm Rotation Invariance: ‖Ra‖ = ‖a‖ where R
is a rotation and a ∈ R2 is a two-dimensional vector.

147

Proof of Theorem 9.8. We organize the proof as a series of simple claims regarding
the values of the variables computed at different steps in the algorithm.

The following three claims prove properties about the values of the variables
computed at line 3 in the algorithm.

Claim 1. A = aR−φu(%′v − %′u).

Proof. By definition Ou = φu− φ′u. By the assumption that X ′ and X are
an (a, b)-valid input it follows that t′v = aR−φ′u(%′v − %′u).
Since by construction we have that A = R−Out

′
v, then by the additivity of

rotations A = R−φu+φ′uaR−φ′u(%′v − %′u) = aR−φu(%′v − %′u).

Claim 2. B = bR−φu(%v − %u).

Proof. By the assumption that X ′ and X are an (a, b)-valid input it follows
that tv = bR−φu(%v − %u). The claim now follows by construction since
B = tv.

Claim 3. C = R−φu(Tu − Tv).

Proof. By construction C = LT u−RovTv and by definition LT u = R−φuTu,
thus we need only to show that RovTv = R−φuTv.
By the assumption that X ′ and X are an (a, b)-valid input it follows that
ov = φuv = φv−φu and Tv = R−φvTv, and thus by the additivity of rotations
RovTv = Rφv−φuR−φvTv = R−φuTv.

Claim 4. The points %′u, %′v and %′u + Tu − Tv are collinear iff A⊗ C = 0

Proof. From Proposition 9.6 it follows that %′u, %′v and %′u + Tu − Tv are
collinear iff (%′v−%′u)⊗(Tu−Tv) = 0. Since a ∈ R+ by assumption, then this
is equivalent to a(%′v−%′u)⊗(Tu−Tv) = 0. From the rotational invariance of
the cross product this is equivalent to (aR−φu(%′v − %′u))⊗ (R−φu(Tu−Tv)).
The claim now follows from Claim 1 and 3.

Observe that by construction of the algorithm and Claim 4 it already follows that
if there is a robot v present in X ′ and X, with which robot u has a useful motion,
then RecoverScale (X ′, X) returns a pair (at line 6), otherwise it returns ⊥.

148

Figure 9-2: Left: The motion vectors of robot u and robot v are denoted with black
arrows. The gray arrow denotes the motion vector −Tv. Red arrows denote the
vectors Tu − Tv and %v − %u. Right: The inner angles of the triangle formed by %′v,
%′u and %uv are denoted in blue. The vectors outlining the sides of the triangle are
labeled ~A, ~B and ~C, and the opposite angles are labeled α, β and γ, respectively.

To prove the theorem it remains only to show that the pair returned (at line
6) corresponds to (a, b). Before we prove the remaining claims we introduce some
additional definitions. Namely, let q = %′u+Tu−Tv and consider the triangle between
%′u, %′v and q with sides ~A = %′v − %′u, ~B = q − %′v and ~C = q − %′u (see Figure 9-2).

Observe that Claim 4 implies that this triangle is non-degenerate, and therefore
the length of its three sides is non-zero and each of the inner angles of the triangle
is greater than zero and smaller than π.

Claim 5. A = aR−φu ~A, B = bR−φu ~B and C = R−φu ~C.

Proof. From Claim 1 it follows that A = aR−φ ~A.
From Claim 2 it follows that to prove that B = bR−φu ~B we need only to
show that q − %′v = %u − %v. This follows by unraveling the definitions,
q − %′v = %′u + Tu − Tv − %′v = %′u + %u − %′u − %v + %′v − %′v = %u − %v.
From Claim 3 it follows that C = R−φ(Tu − Tv) and by definition ~C =
q − %′u = Tu − Tv, and thus C = R−φ ~C.

Claim 6. The inner angles of the triangle opposite to the sides ~A, ~B and ~C correspond
to α, β and γ, respectively.

149

Proof. We prove this claim for γ, the case for α and β is analogous.
Proving that γ is the inner angle of the triangle opposite to the side ~C
is equivalent to showing that γ is the angle between the vectors ~A and
~B. By definition of the dot product, this is equivalent to showing that
γ = arccos(~A · ~B/

∥∥∥ ~A∥∥∥ ∥∥∥ ~B∥∥∥), this is what we show next.

By construction we have that γ = arccos(A·B/ ‖A‖ ‖B‖), and from Claim 5
this implies that α = arccos

(
(aR−φu ~A) · (bR−φu ~B)/

∥∥∥aR−φu ~B∥∥∥ ∥∥∥bR−φu ~B∥∥∥).
From the rotational invariance of the dot product it follows that γ = arccos(
(a ~A) · (b ~B)/

∥∥∥a ~A∥∥∥ ∥∥∥b ~B∥∥∥) = arccos
(
ab ~A · ~B/ab

∥∥∥ ~A∥∥∥ ∥∥∥ ~B∥∥∥) = arccos(~A ·
~B/
∥∥∥ ~A∥∥∥ ∥∥∥ ~B∥∥∥).

We are now ready to conclude our proof. From Claim 6 and the sine law, we
have that

∥∥∥ ~A∥∥∥ / sinα =
∥∥∥ ~B∥∥∥ / sin β =

∥∥∥~C∥∥∥ / sin γ. Therefore
∥∥∥ ~A∥∥∥ =

∥∥∥~C∥∥∥ sinα/ sin γ
and

∥∥∥ ~B∥∥∥ =
∥∥∥~C∥∥∥ sin β/ sin γ.

From Claim 5 and the rotational invariance of the dot product we have that ‖A‖ =
a
∥∥∥ ~A∥∥∥, ‖B‖ = b

∥∥∥ ~B∥∥∥ and ‖C‖ =
∥∥∥~C∥∥∥. Thus a = ‖A‖ /

∥∥∥ ~A∥∥∥ = ‖A‖ sin γ/ ‖C‖ sinα
and b = ‖B‖ /

∥∥∥ ~B∥∥∥ = ‖B‖ sin γ/ ‖C‖ sin β. Therefore the pair returned (at line 6)
corresponds to (a, b), which concludes our proof.

Given the definition of an (a, b)-valid input (Definition 9.7), and the definition of
the output of a localization algorithm (Definition 9.1), then Theorem 9.2 implies that
the successful output of SubsetLocalizek for the previous round and the current
round constitutes an (a, b)-valid input for the RecoverScale procedure.

Therefore, as a corollary of Theorem 9.2 and Theorem 9.8 we have the following.

Theorem 9.10. Let X ′ and X be the output at robot u of successful runs of the
SubsetLocalizek algorithm for the previous and the current round, respectively.
By definition ∃a, b ∈ R+ such that all the relative positions in X ′ and X are scaled
by a and b respectively. If there is a robot v present in X ′ and X with which robot u
has a useful motion then the output of RecoverScale (X ′, X) is the tuple (a, b).

In Chapter 10 we leverage this theorem to show how various multi-robot motion
control tasks can be implemented by combining the RecoverScale procedure,
together with the SubsetLocalizek distributed algorithm, and a task-dependent
motion planner.

150

Chapter 10

Applications of Localization

The contributions of Chapter 9 can be summarized by the SubsetLocalizek dis-
tributed algorithm and the RecoverScale procedure, together with their respec-
tive correctness proofs. The SubsetLocalizek distributed algorithm enables robots
to compute the relative orientations and relative positions, up to scale, of other robots
in the multi-robot system. This algorithm runs in a single round, and requires only
that each robot can measure the angle, with respect to its own orientation, towards
neighboring robots. The RecoverScale procedure allows a robot to use the in-
formation provided by the SubsetLocalizek algorithm, over the course of two
consecutive rounds, to recover relative positions complete with scale. This proce-
dure requires the additional assumption that robots move between rounds and use
odometry to track the motion they perform.

The purpose of this chapter is simply to argue that the information provided by
these two procedures is sufficient to implement a variety of multi-robot tasks. We
provide examples of tasks which do not involve motion (and thus where Recover-
Scale is not applicable), and of tasks which do involve motion (and therefore where
RecoverScale is applicable). For tasks that do not require motion we discuss how
the distributed edge-selection algorithms described in Chapter 3 can be implemented
using only the information provided by SubsetLocalizek. For tasks that require
motion, we argue how SubsetLocalizek and RecoverScale can be combined
to implement motion control algorithms that require the knowledge of the relative
positions (for instance the flocking algorithm in Chapter 6).

Roadmap. Section 10.1 briefly sketches how the information obtained by the Sub-
setLocalizek distributed algorithm can be used to implement the edge-selection
procedures described in Chapter 3. Section 10.2 describes how to combine the infor-

151

mation provided by the SubsetLocalizek distributed algorithm and the Recov-
erScale procedure to implement any distributed motion control algorithm that
requires the relative positions of its neighbors.

10.1 Localization for Static Applications
This section describes how to use the information provided by the distributed lo-
calization algorithm of Chapter 9, which is correct only up to scale, to implement
some multi-robot tasks that do not require motion. Concretely, we describe how
this information can be used to implement the distributed edge-selection algorithms
which were described in Chapter 3.

Paraphrasing the formal definitions in Section 3.1, a subset of edges of a connected
graph G is a connectivity-preserving set of edges if it contains a connected subgraph
that spans G. An edge-selection algorithm is a distributed algorithm in which each
robot locally selects a subset of its neighbors. An edge {u, v} is consistently selected
by an edge-selection algorithm if the robot at u locally selects the robot at v and
vice versa.

Chapter 3 described various distributed edge-selection algorithms that consis-
tently select a small connectivity-preserving set of edges of the communication graph.
Specifically Chapter 3 described edge-selection algorithms that consistently select
the Gabriel graph, the Relative Neighbor graph, the Cone-Based Topology Control
graph, and the Local Minimum Spanning graph.

All the edge-selection algorithms in Chapter 3 were described for a model where
the following two conditions are satisfied: (a) the underlying communication graph is
a unit disk graph, and (b) each robot is knows its own position in a global coordinate
system. We argue that the second requirement can be replaced by endowing each
robot with the capability of computing the relative coordinates, up to scale, of its
neighbors.

The edge-selection algorithms described in Chapter 3 share the same outline.
First each robot broadcasts its own position and receives the position of its neighbors
in the communication graph. Next, to determine which of its neighbors to locally
select, each robot evaluates a predicate that depends on the positions of itself and
its neighbors. Algorithm 18 describes this with pseudo-code.

Algorithm 18 GenericEdgeSelect at robot u.
1: broadcast (u, %u), and let X = {(u, %u)} ∪ {(v, %v) | (v, %v) was received}
2: locally select {v | v 6= u and predicate(u, v,X)}

152

For instance, in the edge-selection algorithm that consistently selects the edges
in the Gabriel graph, each robot u locally selects its neighboring robot v ∈ N(u)
if and only if there is no other neighboring robot w ∈ N(u) which lies inside the
closed disk with the line segment seg(p,q) as its diameter, where p and q are
the position of robot u and robot v respectively. Similarly, in the edge-selection
algorithm to consistently select the Relative Neighbor graph, each robot u locally
selects its neighboring robot v ∈ N(u) if and only if there is no other neighboring
robot w ∈ N(u) which lies inside the lens produced by the intersection of two open
disks of radius ‖p− q‖ centered at p and q, where p and q are the positions of
robot u and robot v respectively.

It is not hard to verify that the previous two predicates, as well as the predicates
used by the other edge-selection algorithms described in Chapter 3, are invariant
to applying a translation, a rotation and a uniform-scaling to the positions of the
robots. In other words, one of the predicates used for edge-selection evaluates to true
when applied to the actual positions of the robots if and only if the same predicate
evaluates to to true when applied to the positions of the robots after having applied a
translation, a rotation and a uniform scaling. We can leverage this fact to implement
the edge-selection algorithms described in Chapter 3 in a system where robots do
not have access to their absolute position, but instead can compute the relative
coordinates, up to scale, of its neighbors.

Concretely, Algorithm 19 presents the pseudo-code of an edge-selection algorithm
to select the Gabriel graph. Instead of having each robot broadcast its own position
and receive the position of its neighbors, each robot relies on SubsetLocalizek
to compute the relative coordinates, up to scale, of neighboring robots. Next, each
robot applies exactly the same predicate for Gabriel graphs described in Chapter 3,
but using as input the relative positions of its neighbors (as opposed to the absolute
positions). Since the predicate is invariant to rotations, translations and positive
uniform-scalings of the positions, it follows that this edge-selection algorithm consis-
tently selects the edges in the Gabriel graph.

Algorithm 19 ScaleGabrielGraphEdgeSelect at robot u.
1: X ← SubsetLocalizek using neighbors as input subset
2: locally select {v | v 6= u and (u, ou, tu), (v, ov, tv) ∈ X and ∀(w, ow, tw) ∈ X
3: where w 6∈ {u, v} then tw is not in the circle with seg(tu, tv) as its diameter}

The remaining edge-selection algorithms in Chapter 3 can be implemented in a
similar fashion, changing only the predicate to locally select neighbors as appropriate.

153

10.2 Localization for Motion Control Applications
This section describes how multi-robot tasks that involve motion and where each
robot requires the relative positions can be implemented by combining the informa-
tion provided by the SubsetLocalizek distributed algorithm with the Recover-
Scale procedure and a motion planner.

Concretely, let A represent a multi-robot distributed algorithm that controls the
motion of the robots and that requires that each robot knows the relative orientations
and relative positions (complete with scale) of its neighbors. The purpose of this
section is to describe how the SubsetLocalizek algorithm can be combined with
the RecoverScale procedure to allow robots to run A in a model where each robot
can only track its own motion and measure the angle, relative to its own orientation,
to its neighbors.

In what follows we describe the ScaledLocalization distributed algorithm,
which implements A at each robot using the information by the SubsetLocalizek
algorithm and the RecoverScale procedure. The key insight behind ScaledLo-
calization, is that once the relative coordinates have been computed (complete
with scale) using the RecoverScale procedure, in subsequent rounds that infor-
mation can be used together with the odometry information to compute the scale
of the relative coordinates returned by the SubsetLocalizek algorithm, without
resorting again to the RecoverScale procedure.

The high level outline of the ScaledLocalization distributed algorithm is
straightforward. During the first two rounds every robot goes through a bootstrap-
ping phase that uses the SubsetLocalizek distributed algorithm and the Recov-
erScale procedure to obtain the scale of the relative positions. In subsequent
rounds, the motion information and the relative positions (complete with scale) of
the previous round are used to compute the scale of the relative positions of the
current round without resorting to the RecoverScale procedure.

In more detail, in the first and second round each robot u uses the SubsetLo-
calizek algorithm to obtain the relative orientations, the relative positions (up to
scale), the orientation change and the translation change of each of its neighbors.
Additionally each robot moves in a arbitrary direction between the first and second
round. Each robot uses the information collected by the SubsetLocalizek algo-
rithm in these two rounds, together with the RecoverScale procedure, to obtain
the relative positions (complete with scale) of its neighbors.

From round three onwards, each robot starts by using the SubsetLocalizek
algorithm to localize (up to scale) each of its neighbors. Next, each robot u searches
for a neighboring robot v which was also its neighbor in the previous round. If such

154

a robot v is found, its current relative position (with scale) is computed by updating
the previous known relative position of v (computed in the previous round) with
the orientation and translation change of u and v. Since all the relative positions
returned by SubsetLocalizek at robot u are scaled by the same positive constant,
then robot u uses the computed relative position of robot v to update the relative
positions of the rest of its neighbors to have the correct scale. Finally, each robot
u uses the relative positions (with scale) of its neighbors to run the A algorithm to
determine its position for the next round.

The pseudo-code for the ScaledLocalization distributed algorithm appears
in Algorithm 20. The pseudo-code assumes that the contents of the variable X is
stored in the state of each robot and carried over from one round to the next.

Algorithm 20 ScaledLocalization at robot u
. Bootstrap Phase

X ← SubsetLocalizek using neighbors as input
move in a arbitrary direction
X ′ ← X, X ← SubsetLocalizek using neighbors as input
scale← RecoverScale(X ′, X)
if scale 6=⊥ then

let (a, b)← scale
multiply the relative positions in X ′ by 1/a
multiply the relative positions in X by 1/b
run A using the relative positions in X

else
fail

. Subsequent Rounds
X ′ ← X, X ← SubsetLocalizek using neighbors as input
if ∃(v, o′v, t′v, O′v, T ′v) ∈ X ′, (v, ov, tv, Ov, Tv) ∈ X then

let (v, o′v, t′v, O′v, T ′v) ∈ X ′, (v, ov, tv, Ov, Tv) ∈ X
α← ‖tv‖ / ‖t′v − (LT u −R−OvTv)‖
multiply the relative positions in X by 1/α
run A using the relative positions in X

else
fail

If in the bootstrap phase there is a useful motion for robot u and one of its neigh-
bors then Theorem 9.10 implies that the ScaledLocalization algorithm correctly
implements A at robot u. For subsequent, as long as there is a neighbor of u which

155

was also a neighbor of u in the previous rounds, then the fact that SubsetLocal-
izek uses the same positive scaling factor for all the relative positions implies that
ScaledLocalization algorithm correctly implements A at a robot u.

We highlight that there are a large number of distributed algorithms that can be
implemented using the aforementioned scheme. For example, the flocking algorithm
described in Chapter 6 can be implemented using only relative positions. Another
example is the distributed coverage control algorithm proposed in [22].

Informally, the goal of coverage control is to control the position of the robots
within the environment to optimize the “performance” of a particular task. The
meaning of performance depends on the specific task being considered. The uses
of coverage control include environmental monitoring and clean up, automatic re-
connaissance of buildings, monitoring human activity, providing wireless coverage
to soldiers in a battlefield, and a wide variety of applications that can be cast as
a location optimization problem. It has been shown [22] that, under reasonable
assumptions on the communication radius of the robots, if each robot knows the
relative positions of its neighbors in the communication graph then it is possible to
implement standard coverage control algorithms (such as Lloyd’s [58] algorithm).

156

Chapter 11

Conclusion

To conclude this thesis we present a brief summary of our results, we discuss their
implications, and describe some future work and open problems suggested by this
thesis. We treat the two parts of the thesis separately.

11.1 Connectivity
The first part of this thesis considered the problem of preserving a connected com-
munication graph while allowing the robots to execute an arbitrary motion control
algorithm. The following subsections outline our contributions and possible future
work.

11.1.1 Summary of Contributions
Chapter 3 suggested various edge-selection distributed algorithms to select a span-
ning subgraph of the communication graph, such that if the communication graph
is connected then the selected spanning subgraph is also connected. In particular,
we proposed the Local Minimum Spanning Graph algorithm, and proved that this
algorithm is optimal in the sense that no distributed algorithm with the same run
time that selects a connected spanning subgraph of the communication graph can
select a spanning subgraph with fewer edges.

Chapter 4 described a distributed connectivity-preserving algorithm. At each
round an arbitrary motion planner produces a set of desired trajectories, one tra-
jectory at each robot. These trajectories are used as an input to the connectivity-
preserving algorithm, which outputs at each robot a trajectory that is guaranteed
to preserve a selected spanning subgraph (to select the spanning spanning subgraph

157

we can use one of the edge-selection algorithms described in Chapter 3, but other
implementations are possible).

We proved that our connectivity-preserving algorithm guarantees the communi-
cation graph remains connected regardless of the input trajectories and irrespective
of the speed used by each robot to follow the output trajectory (even if each robot
travels only a fraction of its prescribed trajectory). We also showed that under
reasonable assumptions the algorithm guarantees that collectively the robots move
closer to their desired positions.

Chapter 5 extended our connectivity-preserving algorithm to preserve a k-connected
communication graph. Specifically, we showed how to leverage the algorithm de-
scribed in Chapter 4 to preserve a k-connected communication graph by simulating
a communication radius of r/k instead of r (i.e., by trying to keep neighboring robots
within distance r/k instead of distance r).

Chapter 6 described how to use the connectivity-preserving algorithm to facilitate
the design of higher level multi-robot behaviors. Specifically we considered flocking
which, informally, is the behavior of a collection of agents with no central coordinate
that move as cohesively despite having no common a priori sense of direction. In
particular, we described how standard averaging procedures can be combined with
our connectivity-preserving algorithm to yield a provably correct flocking behavior.

11.1.2 Future Work and Open Questions
Using Edge-Selection for Topology Control. We believe that the edge-selection
procedures described in Chapter 3 could be used for other purposes other than our
connectivity-preserving algorithm. For instance, one immediate application could
be to the field of topology control. Topology control is a technique used in wire-
less networks to save energy by reducing the number of active links in the network
[19, 5]. It is not unreasonable to expect that, at least for reasonable power models,
our optimality results on the Local Minimum Spanning graph as an edge-selection
procedure could be used to design optimal topology control algorithms. An in-depth
investigation of the details of these applications is future work.

Preserving Connectivity in Three Dimensions. The connectivity-preserving
algorithm described in Chapter 4 assumes the robots are in the Euclidean plane and
the communication graph is a unit disk graph of radius r. However, the algorithm
can easily be generalized to consider robots in three-dimensional space, where the
communication graph is a “unit ball graph” of radius r (i.e., two robots are connected
iff they are distance less or equal than r). The proof of the safety properties of the

158

original algorithm apply to its three-dimensional generalization. However, the proofs
for the progress properties do not hold in this three-dimensional setting. Specifically,
it remains as an open question weather the weak progress property holds in the three-
dimensional version of the problem.

Preserving Connectivity with Noisy Sensors. An interesting direction for
future work, would be to study the connectivity-preserving problem in a model where
the localization information available to the robots is noisy. We believe that it
is possible to modify the connectivity-preserving algorithm proposed Chapter 4 to
adopt more conservative trajectories and reserve connectivity in this setting. Working
out the details of the required modifications and the implications on the correctness
of the algorithm remains as future work.

Optimal k-Connected Edge-Selection. A natural extension to the k-connectivity-
preserving algorithm described in Chapter 5 would be to study separately the prob-
lem of selecting a “small” spanning subgraph which is k-connected. We describe some
preliminary results in this direction in [20], but the optimality of the edge-selection
procedures for k-connected subgraphs still remains as an open question.

Repairing (k-)Connectivity. A question which arises when studying the problem
of preserving the connectivity of a communication graph in a multi-robot swarm, is
that of repairing the connectivity or k-connectivity of the communication graph. In
particular we would like to design distributed algorithms that control the motion of
the robots so as to repair poorly connected areas of the communication graph while
minimizing the energy spent (or the motion required). Different versions of this
problem have already been studied in the literature [17, 4]. While in general optimal
solutions to this problem are NP-hard even in a centralized setting, we believe that
it is possible to provide distributed solutions that approximate the optimal solution.

11.2 Localization
The second part of this thesis studied the problem of computing the relative orien-
tations and the relative positions (up to scale) of an arbitrary subset of robots in
a system where each robot is equipped with only with a sensor that measures the
angle, relative to its own orientation, to neighboring robots in the communication
graph. In the following two subsections we outline our contributions and describe
future work.

159

11.2.1 Summary of Contributions
Chapter 7 described a centralized procedure that given a subgraph of the commu-
nication graph together with the angle measurements associated with the robots in
that subgraph, can be used to compute the relative orientations of all the robots in
the subgraph. This procedure also allows a robot to “translate” the angle measure-
ments available in the communication graph to its own orientation, thereby defining
an angle-constraint on the graph.

Chapter 8 provided a precise mathematical characterization of the communication
graphs and angle-constraints in which it is possible to compute the relative positions
(up to scale) of every robot in the system. In the same chapter we generalized this
characterization to the case of computing the relative positions of a specific subset
of robots in the system (even if it is not possible to compute them for all robots).
The key of this characterization is leveraging the satisfiability restrictions encoded
by the cycles in the communication graph.

Chapter 9 leveraged the results of Chapter 7 and Chapter 8 to design a distributed
localization algorithm which runs in k communication steps, and efficiently computes
the relative positions and relative orientations of an arbitrary subset of robots in
the system. We proved that this algorithm is optimal in the sense that no other
distributed localization algorithm that runs in k communication steps can succeed in
a setting where the proposed algorithm fails. For the case when odometry information
is available, we described how standard triangulation procedures can be used to
recover the relative positions, complete with scale, of an arbitrary subset of robots.

Chapter 10 argued that the information provided by the proposed distributed
localization algorithm is sufficient to implement a variety of multi-robot tasks. In
particular we discussed how the distributed edge-selection algorithms described in
Chapter 3 can be implemented using only relative orientations and relative positions
(up to scale). For tasks that require motion, we described how the extra information
provided by odometry can be used to implement any task that requires relative
orientations and relative positions (for instance, the flocking algorithm in Chapter 6).

11.2.2 Future Work and Open Questions
Localization in Higher Dimensions. All our results concerning the localization
problem deal exclusively with two dimensional Euclidean space. However, we believe
there is no fundamental problem that prevents our techniques from being extended
to higher dimensional spaces. For example, a point in three-dimensional space can
be described in spherical coordinates by a distance ` and two angles θ ∈ [0, π) and
φ ∈ [0, 2π). Therefore in three-dimensional space an angle measurement between two

160

robots would be a pair (θ, φ) of angles. Accordingly, we could define an invertible
function ψ(θ, φ) =

[
sin θ cosφ sin θ sinφ cos θ

]T
that maps an angle measure-

ment to a point in the unit sphere. The rest of our definitions and results can be
extended naturally to three-dimensions. As future work, we would like to explore
the consequences of the generalization of our results to higher dimensional spaces.

Localization with Imperfect Sensors. To solve the localization problem we
assume each robot has available simple angle measurement sensors that provide only
a minimal amount of information about the configuration. Nevertheless, we assume
that the information that is provided by these sensors is error-free, an assumption
that cannot hold in practice. It remains an open problem to study the robustness
of our proposed methods to noisy angle measurements. In what follows we discuss
specific techniques that we believe could be used applied in different components of
the algorithm to mitigate the impact of noisy sensor measurements.

Rooted Trees and Relative Orientations. The procedure used to compute the
relative orientations of the robots relies on constructing a rooted spanning tree
of the communication graph and then the relative orientation of different robots
is computed by exploring iteratively the spanning tree, starting at the root and
concluding at the leafs. When the angle measurements are error-free then any
rooted spanning tree will produce the same relative orientations. However,
when dealing with noisy angle measurements the choice of the spanning tree
used will affect the precision of the resulting relative orientations. In particular,
the number of angle measurements used to compute the relative orientation of
a robot u depends on the length of the directed path in the spanning tree from
the root robot to robot u. Therefore, by using a breadth-first search tree we
can minimize the number of angle-measurements used to compute the relative
orientations of each robot.

Cycle Bases and Relative Positions. The procedure used to compute the
relative positions of the robots relies on first finding a cycle basis of the com-
munication graph. In a setting with perfect angle measurements the choice
of cycle basis is irrelevant, since they all produce the same relative positions.
An interesting open problem is to define a suitable noise model (for instance,
additive Gaussian noise) and then compute the cycle basis that minimizes the
error of the resulting relative positions.
Another key step in the process of computing relative positions is computing the
null space basis of a matrix. Noisy measurements could easily result in a null

161

space basis is of dimension zero. Fortunately, most of the existing techniques
used to compute the null space basis of a matrix (including Singular Value
Decomposition) are already robust to errors. However, it remains an open
question to analyze the properties of the resulting relative positions computed
using existing techniques with respect to the amount of noise in the angle
measurements.

11.3 Other Future Work
Ultimately our goal is to construct a toolbox of distributed algorithms that facilitate
the task of designing high-level behaviors on multi-robot systems. In this vein, other
problems that we would like to look at include distributed task allocation, distributed
state estimation and distributed environment exploration. The challenge here is two-
fold; to provide formal problem definitions which have a general enough interface to
allow us to compose solutions to different problems to design high-level multi-robot
behaviors, and to describe distributed algorithms that solve these problems. Some
of these challenges have been described in more detail in [66].

162

Index

CBTCα(P), 49
GG(P), 46
LMSGL(G), 55
LMSGL(P), 51
RNG(P), 47
α-neighbors, 49
α-safe, 49
ε-progress, 60
k-connected, 34

angle, 35
angle measurement, 114, 115
angle-constraint, 116
angle-equivalent, 121

ball
closed, 35
open, 35

circle, 35
communication graph, 37
communication step, 37
component, 34
cone, 36

aperture, 36
apex, 36
axis, 36
base, 36
right circular, 36

configuration, 59
connected, 34
connectivity, 34

connectivity-preserving, 44
consistent edge, 44
consistent neighbors, 64
convex, 36
cycle, 34
cycle basis, 129
cycle space, 129
cyclic dependency, 69

degree, 33
dependency graph, 69
diameter, 34
disk, 35
distance, 35
duration of execution, 92

Euclidean graph, 45
Euclidean minimum spanning tree, 45

flocking, 102
aligned, 102
connected, 102

forest, 34
fundamental cycle, 128

GG-neighbors, 46
GG-region, 46

hyperplane, 35

inconsistent edge, 44
independent component, 88
induced, 34

163

L-neighbors, 50
L-safe, 50
length-constraint, 116
length-equivalent, 122
lens, 35

base, 36
symmetric, 36

line, 35
line segment, 35
local-region, 50
long term ε-close execution, 93
long term execution, 92

minimum spanning tree, 44
MST-containing, 45

neighbors, 33
norm, 35
null space basis, 132
nullity, 132

orientation change, 145
out-degree, 88
out-neighbors, 88

path, 34
Primitive Operations, 73

align, 75
base-pivot, 74
max-pivot, 74
reflect, 74
stretch, 74
target-pivot, 74

Primitive Properties
balanced, 70
bounded, 70
parallel, 70
separated, 70
straight, 70

progress, 60

ray, 35
realization, 120
reflection, 35
relative orientation, 114
RN-neighbors, 47
RN-region, 47
robot

identifiers, 37
orientation, 37
pose, 37
position, 37

robust safety, 61
robustly-connected, 60
round, 37

selected edge, 44
spanning, 33
sphere, 35
subgraph, 34

trajectory, 59
translation change, 145
tree, 34
triangle inequality, 35

undirected graph, 33
unique realization, 122
unit disk graph, 40, 45
unselected edge, 44

vector
angle, 120

vertex cut, 34

weak safety, 61
weakly-connected, 61
worst-case configuration, 70

164

Bibliography

[1] H. Akcan, V. Kriakov, H. Bronnimann, and A. Delis. GPS-Free node localization
in mobile wireless sensor networks. In Proceedings of the 5th ACM international
workshop on Data engineering for wireless and mobile access, pages 35–42. ACM,
2006. ISBN 1595934367.

[2] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point
convergence algorithm for mobilerobots with limited visibility. Robotics and
Automation, IEEE Transactions on, 15(5):818–828, 1999.

[3] L. Asimow and B. Roth. The rigidity of graphs, II. Journal of Mathematical
Analysis and Applications, 68(1):171–190, 1979.

[4] N. Atay and B. Bayazit. Mobile wireless sensor network connectivity repair with
k-redundancy. Algorithmic Foundation of Robotics VIII, pages 35–49, 2009.

[5] P. Bahl, J. Y. Halpern, Li L., Y-M. Wang, and R. Wattenhofer. Analysis of
a Cone-Based Distributed Topology Control Algorithm for Wireless Multi-hop
Networks. Principles of Distributed Computing, pages 264–273, 2001. doi: {10.
1145/383962.384043}.

[6] A. Basu, J. Gao, J.S.B. Mitchell, and G. Sabhnani. Distributed localization
using noisy distance and angle information. In Proc. 7th ACM international
symposium on Mobile ad hoc networking and computing, pages 262–273, 2006.

[7] P. Basu, J. Redi, and V. Shurbanov. Coordinated flocking of uavs for improved
connectivity of mobile ground nodes. In Military Communications Conference
(MILICOM), volume 3, pages 1628–1634, 2004.

[8] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation. 1989.

165

[9] D.P. Bertsekas and J.N. Tsitsiklis. Comments on âĂĲcoordination of groups of
mobile autonomous agents using nearest neighbor rulesâĂİ. IEE Transactions
on Automatic Control, 52(5):968–969, 2007.

[10] C. A. Bishop. Using vector products in two dimensions. The Mathematical
Gazette, pages 296–298, 1978.

[11] Y.U. Cao, A.S. Fukunaga, and A. Kahng. Cooperative mobile robotics: An-
tecedents and directions. Autonomous robots, 4(1):7–27, 1997.

[12] S. Capkun, M. Hamdi, and J.P. Hubaux. GPS-free positioning in mobile ad hoc
networks. Cluster Computing, 5(2):157–167, 2002. ISSN 1386-7857.

[13] S. Carpin and L. E. Parker. Cooperative Leader Following in a Distributed
Multi-Robot System. ICRA, 2002.

[14] H.S.M. Coexeter. Introduction to Geometry, 2nd Edition. Wiley, Boston, MA,
1989.

[15] R. Cohen and D. Peleg. Robot convergence via center-of-gravity algorithms.
Structural Information and Communication Complexity, pages 79–88, 2004.

[16] R. Connelly. Rigidity. Handbook of Convex Geometry, volume A, pages 223–271,
1993.

[17] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme. Au-
tonomous deployment and repair of a sensor network using an unmanned aerial
vehicle. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, volume 4, pages 3602–3608. IEEE, 2004.

[18] Alejandro Cornejo and Nancy Lynch. Connectivity Service for Mobile Ad-Hoc
Networks. IEEE Self-Adaptive and Self-Organizing Systems (SASO 08): Spatial
Computing Workshop, 2008.

[19] Alejandro Cornejo and Nancy Lynch. Minimum Spanning Trees and Cone-
Based Topology Control. Proc. of the 28th ACM Symposium on Principles of
Distributed Computing (PODC 2009), 2009.

[20] Alejandro Cornejo and Nancy Lynch. Reliably Detecting Connectivity Using
Local Graph Traits. International Conference On Principles Of Distributed
Systems (OPODIS 2010), 2010.

166

[21] Alejandro Cornejo, Ruy Ley-Wild, Fabian Kuhn, and Nancy Lynch. Keeping
Mobile Robot Swarms Connected. 23rd International Symposium on Distributed
Computing (DISC 2009), 2009.

[22] Jorge Cortes, Sonia Martinez, and Francesco Bullo. Spatially-distributed cover-
age optimization and control with limited-range interactions. ESAIM: Control,
Optimisation and Calculus Variations, 2004.

[23] H. Crapo. Structural rigidity. Structural Topology, 1(1), 1979.

[24] A. Czumaj and H. Zhao. Fault-tolerant geometric spanners. Discrete and Com-
putational Geometry, 32(2):207–230, 2004.

[25] M.H. DeGroot. Reaching a consensus. Journal of the American Statistical
Association, pages 118–121, 1974.

[26] G. A. Dirac. Some theorems on abstract graphs. Proc. London Mathematical
Society, 2, 1952.

[27] K. Dogancay. Bearings-only target localization using total least squares. Signal
processing, 85(9):1695–1710, 2005.

[28] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape
of a set of points in the plane. IEEE Transactions on Information Theory, 1983.

[29] A. Efrima and D. Peleg. Algorithms for partitioning swarms of autonomous
mobile robots. Technical report, Technical Report MCS06-08, The weizmann
Institute of Science, 2006.

[30] Asaf Efrima and David Peleg. Distributed models and algorithms for mobile
robot systems. In Proceedings of the 33rd conference on Current Trends in
Theory and Practice of Computer Science, pages 70–87. Springer-Verlag, 2007.

[31] M. Elkin. Unconditional lower bounds on the time-approximation tradeoffs for
the distributed minimum spanning tree problem. In Proc. of the 36th Annual
Symposium on Theory of Computing (STOC), pages 331–340, 2004.

[32] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges:
Scalable coordination in sensor networks. Proc. 5th International Conference
on Mobile Computing and Networking (MobiCom), 1999.

167

[33] R. Fierro and A.K. Das. A modular architecture for formation control. Robot
Motion and Control, 2002. RoMoCo ’02. Proceedings of the Third International
Workshop on, pages 285–290, Nov. 2002.

[34] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed coordina-
tion of a set of autonomous mobile robots. In Intelligent Vehicles Symposium,
2000. IV 2000. Proceedings of the IEEE, pages 480–485. IEEE, 2000.

[35] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer.
Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci.,
337(1-3):147–168, 2005.

[36] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A Probabilistic Approach to
Collaborative Multi-Robot Localization. Autonomous Robots, 8, 2000.

[37] T. Fukuda and S. Nakagawa. Dynamically reconfigurable robotic system. In
Robotics and Automation, 1988. Proceedings., 1988 IEEE International Confer-
ence on, 1988.

[38] K.R. Gabriel and R.R. Sokal. A new statistical approach to geographic variation
analysis. Systematic Zoology, 18(3):259–278, 1969. doi: {10.2307/2412323}.

[39] Anurag Ganguli, Jorge Cortés, and Francesco Bullo. Multirobot rendezvous with
visibility sensors in nonconvex environments. CoRR, abs/cs/0611022, 2006.

[40] A.T. Hayes and P. Dormiani-Tabatabaei. Self-organized flocking with agent
failure: Off-line optimization and demonstration with real robots. In ICRA,
2002.

[41] J. D. Horton. A Polynomial-Time algorithm to find the shortest cycle basis of
a graph. SIAM Journal on Computing, 1987.

[42] A. Howard, L.E. Parker, and G.S. Sukhatme. Experiments with a large hetero-
geneous mobile robot team: Exploration, mapping, deployment and detection.
The International Journal of Robotics Research, 25(5-6):431, 2006.

[43] iRobot. Swarmbot. www.irobot.com, 2002.

[44] R. Iyengar and B. Sikdar. Scalable and distributed GPS free positioning for
sensor networks. In Communications, 2003. ICC’03. IEEE International Con-
ference on, volume 1, pages 338–342. IEEE, 2003. ISBN 0780378024.

168

[45] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile agents
using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003.

[46] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. In IEEE Transactions on Auto-
matic Control, volume 48, pages 988–1001, 2003.

[47] X. Jia, D. Kim, S. Makki, P.J. Wan, and C.W. Yi. Power assignment for
k-connectivity in wireless ad hoc networks. Journal of Combinatorial Optimiza-
tion, 9(2):213–222, 2005.

[48] D. Johnson and D. Maltz. Dynamic source routing in ad-hoc wireless networks.
Computer Communications Review - SIGCOMM, 1996.

[49] M. Jorgic, N. Goel, K. Kalaichevan, A. Nayak, and I. Stojmenovic. Localized
detection of k-connectivity in wireless ad hoc, actuator and sensor networks.
Proc. 16th ICCCN, 2007.

[50] Geoffrey A. Kandall. Euler’s theorem for generalized quadrilaterals. The College
Mathematics Journal, 3(5):403–404, 2002.

[51] D.K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The theory of timed
i/o automata. Synthesis Lectures on Distributed Computing Theory, 1(1):1–137,
2010.

[52] K. Konolige, D. Fox, C. Ortiz, A. Agno, M. Eriksen, B. Limketkai, J. Ko,
B. Morisset, D. Schulz, B. Stewart, et al. Centibots: Very large scale distributed
robotic teams. Experimental Robotics IX, pages 131–140, 2006.

[53] Geunho Lee, Nak Young Chong, and X. Defago. Robust Self-Deployment for a
Swarm of Autonomous Mobile Robots with Limited Visibility Range. In Robot
and Human interactive Communication, 2007.

[54] N. Li and J.C. Hou. FLSS: a fault-tolerant topology control algorithm for wire-
less networks. In Proceedings of the 10th annual international conference on
Mobile computing and networking, pages 275–286. ACM New York, NY, USA,
2004.

[55] N. Li, J. C. Hou, and L. Sha. Design and analysis of an MST-based topology
control algorithm. INFOCOM, 3:1702–1712, 2003.

169

[56] Christian Liebchen and Romeo Rizzi. Classes of cycle bases. Discrete Applied
Mathematics, 155(3):337 – 355, 2007.

[57] N. Linial. Distributive graph algorithms Global solutions from local data. In
28th Annual Symposium on Foundations of Computer Science, 1987., pages
331–335, 1987.

[58] S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Trans-
actions on, 28(2):129–137, 1982.

[59] Andrew Howard Maja, Andrew Howard, Maja J MatariÄĞ, and Gaurav S
Sukhatme. An Incremental Self-Deployment Algorithm for Mobile Sensor Net-
works. Autonomous Robots, Special Issue on Intelligent Embedded Systems, 13:
113–126, 2001.

[60] N. Malpani, J. Welch, and N. Vaidya. Leader election algorithms for mobile
ad-hoc networks. DIAL-M: Workshop in Discrete Algorithms and Methods for
Mobile Computing and Communications, 2000.

[61] J. McLurkin, A. Lynch, S. Rixner, T. Barr, A. Chou, K. Foster, and S. Bilstein.
A Low-Cost Multi-Robot System for Research, Teaching, and Outreach. Proc.
10th Symposium on Distributed Autonomous Robotic Systems (DARS), 2010.

[62] James McLurkin. Stupid Robot Tricks: A Behavior-Based Distributed Al-
gorithm Library for Programming Swarms of Robots. Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge MA, 2004.

[63] James McLurkin and Erik D. Demaine. A distributed boundary detection algo-
rithm for multi-robot systems. In International Conference on Intelligent Robots
and Systems (IROS), 2009.

[64] James McLurkin and Jennifer Smith. Distributed algorithms for dispersion in
indoor environments using a swarm of autonomous mobile robots. In Distributed
Autonomous Robotic Systems (DARS), pages 399–408. 2007.

[65] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magne-
nat, J.C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot designed
for education in engineering. In Proceedings of the 9th conference on autonomous
robot systems and competitions, volume 1, pages 59–65, 2009.

170

[66] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mo-
bile robot programming: The carnegie mellon navigation (carmen) toolkit. In In-
telligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, volume 3, pages 2436–2441. IEEE, 2003.

[67] L. Mureau. Stability of multiagent systems with time-dependent communication
links. IEEE Transactions on Automatic Control, 2005.

[68] D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In
Proc. 22nd IEEE Computer and Communications, volume 3, pages 1734–1743,
2003.

[69] J.M. O’Kane and S.M. LaValle. Localization with limited sensing. Robotics,
IEEE Transactions on, 23(4):704–716, 2007.

[70] J.M. O’Kane and S.M. LaValle. Comparing the power of robots. The Interna-
tional Journal of Robotics Research, 27(1):5–23, 2008.

[71] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and
theory. In IEEE Transactions on Automatic Control, volume 51, pages 401–
420, 2006.

[72] L.E. Parker. Current state of the art in distributed autonomous mobile robotics.
Distributed autonomous robotic systems (DARS), 2000.

[73] B.L. Partridge. The structure and function of fish schools. In Scientific Ameri-
can, volume 246, pages 114–123, 1982.

[74] D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity
of distributed mst construction. In Proc. of the 40th Annual Symposium on
Foundations of Computer Science (FOCS), pages 253–261, 1999.

[75] C. Perkins and E. Royer. Ad hoc on-demand distance vector routing. Workshop
on Mobile Computing Systems and Applications, 1999.

[76] G. Prencipe. Corda: Distributed coordination of a set of autonomous mobile
robots. 2002.

[77] A. Regmi, R. Sandoval, R. Byrne, H. Tanner, and CT Abdallah. Experimental
Implementation of Flocking Algorithms in Wheeled Mobile Robots. In American
Control Conference, 2005. Proceedings of the 2005, pages 4917–4922, 2005.

171

[78] W. Ren and R. W. Beard. Consensus seeking in multiagent systems under
dynamically changing topologies. IEEE Transactions on Automatic Control,
2005.

[79] C.W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
ACM SIGGRAPH Computer Graphics, volume 21, pages 25–34, 1987.

[80] R. Saber and R. M. Murray. Consensus protocols for networks of dynamic
agents. Proc. of the American Control Conference (ACC), 2003.

[81] R. Saber and R. M. Murray. Consensus protocols for networks of agents with
switching topology and time-delays. IEEE Transactions on Automatic Control,
2004.

[82] R. Saber, A. Fax, and R. M. Murray. Consensus and cooperation in multi-agent
networked systems. Procedings of IEEE, 2007.

[83] K. Savla, G. Notarstefano, and F. Bullo. Maintaining limited-range connectivity
among second-order agents. SIAM Journal on Control and Optimization, 2007.

[84] Samia Souissi, Xavier Défago, and Masafumi Yamashita. Using eventually con-
sistent compasses to gather oblivious mobile robots with limited visibility. In
SSS, pages 484–500, 2006.

[85] K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric
patterns with many mobile robots. Journal of Robotic Systems, 13(3):127–139,
1996.

[86] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Forma-
tion and agreement problems? In Structure, information and communication
complexity: 3rd Colloquium, SIROCCO’96, Certosa di Pontignano, Siena, June
1996: proceedings, page 313. McGill-Queen’s University Press, 1997.

[87] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: formation
of geometric patterns. SIAM J COMPUT, 28(4):1347–1363, 1999.

[88] R. Thurimella. Sub-linear distributed algorithms for sparse certificates and
biconnected components. In PODC, pages 28–37. ACM New York, NY, USA,
1995.

[89] G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern
Recognition, 12(4):261–268, 1980.

172

[90] L.N. Trefethen and D. Bau. Numerical linear algebra. Number 50. Society for
Industrial Mathematics, 1997.

[91] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous determinis-
tic and stochastic gradient optimization algorithms. Transactions on Automatic
Control, 31(9):803–812, 1986.

[92] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of
phase transition in a system of self-driven pinproceedingss. In Physical Review
Letters, volume 75, pages 1226–1229, 1995.

[93] J. Walter, J. Welch, and N. Vaidya. A mutual exclusion algorithm for ad-hoc
mobile networks. Wireless Networks, 2001.

[94] W. Whiteley. Matroids from Discrete Geometry. AMS Contemporary Mathe-
matics, 197:171–312, 1996.

[95] A. Wigderson. Improving the performance guarantee for approximate graph
coloring. Journal of the ACM (JACM), 30(4):735, 1983.

[96] M. M. Zavlanos and G. J. Pappas. Controlling Connectivity of Dynamic Graphs.
Decision and Control, 2005 and 2005 European Control Conference. CDC-
ECC’05. 44th IEEE Conference on, pages 6388–6393, 2005.

173

	List of Figures
	List of Algorithms
	Introduction
	Connectivity
	k-Connectivity
	Applications

	Localization
	Applications

	Additional Related Work
	Distributed Computing
	Multi-Robot Systems

	Model
	Graph Theory Preliminaries
	Geometry Preliminaries
	Modeling a Multi-Robot System

	I Connectivity
	Selecting Edges
	The Edge Selection Problem
	Sparse Connectivity-Preserving Sets of Edges
	Gabriel graph
	Relative Neighbor graph
	Cone-Based Topology Control graph
	Local Minimum Spanning graph
	Local Minimum Spanning Graphs With Few Edges

	Optimal Local Minimum Spanning Graphs

	Distributed Connectivity-Preserving Algorithm
	The Connectivity-Preserving Problem
	The Connectivity-Preserving Algorithm
	Safety
	Progress
	Unconditional Progress
	Robust Progress
	Weak Progress

	Multi-Round Executions

	Preserving a k-Connected Graph
	From 1-Connected to k-Connected
	Preserving a k-Connected Graph

	Applications of Connectivity
	What is flocking?
	Alignment and Agreement
	Flocking Algorithm

	II Localization
	Relative Orientations
	Defining Angle-Constraints
	Computing an Angle-Constraint

	Relative Positions
	Defining Unique Realizations
	Satisfying Realizations
	Basic Facts
	Trees
	Facts about Cycles
	Graphs with Cycles
	Computing Satisfying Realizations

	Unique Subset Realizations

	Distributed Localization Algorithm
	Problem Statement
	Algorithm
	Correctness and Optimality
	Recovering Scale Through Odometry

	Applications of Localization
	Localization for Static Applications
	Localization for Motion Control Applications

	Conclusion
	Connectivity
	Summary of Contributions
	Future Work and Open Questions

	Localization
	Summary of Contributions
	Future Work and Open Questions

	Other Future Work

	Index

