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ABSTRACT
We define a reliable neighbor discovery layer for mobile ad-
hoc networks and present two algorithms that implement
this layer as a service with varying progress guarantees.
Our algorithms are implemented atop an abstract MAC
layer [13], which deals with the lower level details of col-
lision detection and contention. Specifically, we first de-
scribe a basic region-based neighbor discovery protocol with
weak progress guarantees. Informally speaking, this pro-
tocol does not guarantee communication links when nodes
move quickly across region boundaries. To overcome this
limitation, we describe a technique that uses a basic neigh-
bor discovery protocol as a black box and boosts its progress
guarantees. The key idea behind this technique is to use
multiple partitions overlayed in a specific way, and associate
with each partition an instance of the basic neighbor dis-
covery protocol. We show the output of these instances can
be composed in a way that provides stronger progress guar-
antees. In the last section of the paper we discuss different
user layer algorithms which would benefit from the reliable
neighbor discovery layer described in this paper.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms, Theory

Keywords
Mobile Ad Hoc Networks, Neighbor Discovery

1. INTRODUCTION
In mobile ad hoc networks (MANETs), the underlying

communication graph changes over time. In this setting, it
is not obvious how to define the neighbor set of a node in a
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way which is useful for user layer algorithms. For example, if
two nodes are within communication range at a time instant,
should they be considered neighbors even if they will not
remain in communication range for enough time to exchange
a message?

This paper defines a reliable neighbor discovery layer which
establishes links over which message delivery is guaranteed.
We present two algorithms that implement such a layer with
varying progress properties.

These algorithms are implemented on top of a Medium
Access Control (MAC) Layer which provides upper bounds
on the time for message delivery thereby abstracting away
the lower level details of collision detection, contention and
scheduling. We follow the specification of an abstract MAC
layer presented in [13] (with implementation details provided
in [12]). This modular approach makes the algorithm easier
to design, understand and verify. However, dealing with ar-
bitrary mobility patterns while trying to maximize the time
that links remain up, is still non-trivial. A performance com-
parison of this modular approach versus an approach where
the neighbor discovery layer and MAC layer are merged is
still an open problem.

We first implement a basic region-based neighbor discov-
ery protocol which relies on sending notification messages
when nodes enter and exit regions to set up the communica-
tion links. The main challenge is figuring out when messages
need to be sent to guarantee they reach their intended desti-
nation despite the continuous motion of the nodes. However,
this basic neighbor discovery protocol does not guarantee
communication links when nodes are moving quickly across
region boundaries. To this end, we use a technique that over-
lays multiple region partitions, associating with each region
partition a basic neighbor discovery protocol instance. The
output of each instance is then composed in a way which
provides stronger progress guarantees.

Motivation. A neighbor discovery service which provides
reliability guarantees is required for many user level algo-
rithms. For example, the leader election algorithm of [10],
the token circulation algorithm of [15], and the mutual ex-
clusion algorithm of [22], all require an underlying neighbor
discovery service. All these algorithms are important prim-
itives in distributed computing. In addition to these, even
the most basic of tasks in mobile ad-hoc networks, such as
routing [2, 17, 16] or broadcasting [3, 18, 1], require accu-
rate and up-to-date knowledge about neighbor nodes. For
example, [19] implements coordinate based routing by as-
suming nodes know the location of their two-hop neighbors.
Similarly, [16] describes a routing algorithm for multi-hop



wireless network that assumes one-hop neighbor informa-
tion.

Contributions. The main contributions of this paper are:
1.) We describe a specification for a reliable neighbor discov-
ery layer. We consider two different progress conditions. 2.)
We present a basic region-based neighbor discovery protocol
for MANETs which meets the above specification with the
weaker progress guarantee. 3.) We describe a technique to
boost the progress guarantees of a neighbor discovery proto-
col using overlayed region partitions. 4.) We discuss how the
reliable neighbor discovery service can be used with existing
user layer algorithms for MANETs.

Related Work. There has been a lot of previous work
related to neighbor discovery. For example in hello proto-
cols [2], nodes transmit periodic hello messages to discover
neighbors. The set of neighbors is updated to reflect the
information received in the hello message. If a hello mes-
sage is not received from a neighbor for too long a time then
it is discarded from the neighbor set. However, these ap-
proaches provide no formal guarantees and require sending
messages periodically. In contrast, in our approach the num-
ber of messages sent depends on the frequency with which
nodes cross region boundaries. Therefore, for example, if
two nodes remain in the same regions forever, they need not
exchange additional messages to maintain the status of the
link between them.

Much previous work focuses on static networks. For exam-
ple, in [4] a deterministic algorithm for computing two-hop
neighbors in static networks is presented. In [14] a tech-
nique is presented for secure neighbor discovery for static
networks. Similarly, [11] presents a deterministic protocol
for neighbor discovery in static cognitive radio networks.
Lastly, [20] considers neighbor discovery in static networks
with directional antennas.

A topology discovery algorithm for mobile nodes is given
in [5]; however, it is assumed that few nodes move at any
given time and the speed of movement is very limited.

An asynchronous neighbor discovery and rendezvous pro-
tocol is presented in [8]. However, the focus of this protocol
is to allow the nodes to operate at low duty cycles. Also,
the protocol only caters to a rendezvous between just two
nodes. An energy-efficient algorithm for node discovery is
also presented in [9]. However, the emphasis in that work
is on detecting the temporal patterns of node arrivals and
scheduling a wake-up based on expected hourly activity.

In [21] the authors focus on maintaining neighbor knowl-
edge in mobile nodes; however, they do not address the prob-
lem of nodes discovering neighbors at system start-up. An
algorithm for neighbor discovery similar to ours, but with
weaker progress guarantees, is presented in [6]. Specifically,
a pair of nodes need to remain in the same region in order to
set up a communication link. Although this is useful when
all communication occurs between nodes in the same region,
it cannot be used in more general settings. Even if all nodes
are static and very close to each other, if they are dispersed
across regions, the resulting neighbor graph will always be
disconnected.

2. SYSTEM MODEL
The Timed I/O Automata (TIOA) modeling formalism [7]

is used to model the mobile ad hoc network (MANET). We
consider a system with n nodes (or users) which are execut-
ing in a MANET and communicate using local broadcast.

We use R to denote the physical space in which the nodes
reside, also referred to as the deployment space. We assume
R to be a closed, bounded and connected subset of R

2. We
assume all nodes agree on some partition of the deployment
space into regions. This region partition is defined as follows:

Definition 1. Let U be the index set for regions in the
deployment space. A region partition divides R into a set
of regions {Ru}u∈U such that: 1) For each u ∈ U , Ru is a
closed and connected subset of R. 2) For any u, v ∈ U , Ru

and Rv may overlap only at their boundaries. 3) Each point
in R must occur in at least one region. If any pair of regions
Ru and Rv have a nonempty intersection, we say they are
neighboring regions.

We refer to the graph induced by the neighborhood rela-
tion of the region partition scheme as the region graph. We
say region Ri and region Rj (or a node a in region Ri and
a node b in region Rj) are ℓ hops apart if the shortest path
between Ri and Rj in the region graph is of length ℓ.

We assume that nodes have access to their current loca-
tion, which can be achieved, for example, through GPS etc.
Note that this is not an unrealistic assumption for VANETs
(Vehicular Ad Hoc Networks). There is a trajectory func-
tion for each node which specifies the motion of the node
by giving its location at an instant of time. We assume
that a node’s trajectory function is known to that node with
enough anticipation to communicate with other nodes before
leaving or entering a region. Since in real deployments the
speed of motion is much slower compared to the communi-
cation speed, this is not a limiting assumption for MANETs
where mobility is controlled by a motion planner. Also in
vehicular ad hoc networks (VANETs) where the motion is
not directly controlled by a motion planner, the movement
is not erratic and it is usually slow enough (compared to the
communication speed) to be reliably predicted.

We now describe the five components in the system: the
network layer, the abstract MAC layer, the MAC Broker
layer, the neighbor discovery layer, and the user layer (cf.
Figure 1).

2.1 The Network Layer
The network layer captures the physical behavior of the

network. We assume that it provides other system compo-
nents with location and time information.

We use Gcomm to denote the directed graph whose ver-
tices are the nodes and whose directed edges indicate which
nodes are within the communication range of which other
nodes. Similarly, Ginterf denotes the directed graph whose
vertices are the nodes and whose directed edges indicate
which nodes are within the interference range of which other
nodes. Since the communication and interference graphs can
change dynamically over time during the execution, we can
view Gcomm and Ginterf as mappings from network states
to directed graphs.

Note that two nodes may have different broadcast and
interference ranges. Let rmin be the minimum broadcast
radius among all the nodes. For the region partition in use,
we assume there exists a fixed parameter k such that any
two points which are k hops apart in the region graph, are
at distance at most rmin. This in turn implies that when
two nodes are in regions separated by at most k hops, they
are within communication range.



Figure 1: MANET system block diagram.

2.2 The Abstract MAC Layer
The abstract MAC layer provides reliable local broadcast

with timing guarantees. It also provides acknowledgment
that a message has been delivered with success to all nodes
in the local neighborhood. This is done through interface
actions bcast(m)i, ack(m)i, and rcv(m)i

1. There is a guar-
anteed upper bound on the worst-case time for message de-
livery to nearby recipients given by F+

rcv. Similarly, F+

ack

gives the upper bound on the total time for the sender to
get an acknowledgment. These time bounds are functions of
the level of contention. We assume that they are constant
and available to algorithms implemented on top of the ab-
stract MAC layer. Note that this implies that the dynamic
communication graph (Gcomm) induced by the motion of the
nodes has a constant upper bound on the maximum degree.
The cost of implementing this abstract MAC layer exactly
as described in [13] might be prohibitively large. However,
it is possible to provide similar guarantees with a high prob-
ability (cf. [12]).

The MAC layer assumes well-formedness conditions for
upper layers. In particular, it assumes that a user process
does not submit a bcast until after its previous bcast has
had a matching ack returned. There are also constraints
on message behavior. In particular, if a bcast(m)i event
causes a rcv(m)j event, then at some point between these
events nodes i and j have to be within interference range.
If a bcast(m)i event causes an ack(m)i event and for ev-
ery point in between these two event nodes i and j are in
communication range, then a rcv(m)j caused by the bcast
is guaranteed to precede the ack. Additionally, there are
no duplicate receives or acknowledgments, and no receives
after acknowledgments. Finally, every bcast(m)i causes an
ack(m)i.

2.3 The MAC Broker Layer
This layer enforces the well-formedness property required

1We present a slight simplification of the MAC layer speci-
fication [13] by ignoring the abort(m)i functionality

by the MAC layer. The layer guarantees the following three
properties: 1) Well-formedness: A message is not broadcast
through the abstract MAC layer before the ack of the pre-
ceding messages has been received. 2) Priority: User mes-
sages are only sent when there is no pending neighbor dis-
covery message. 3) Routing: Received messages are routed
correctly to either the neighbor discovery automaton or the
user layer automaton.

To prioritize, the messages received through bcast usr(m)i

and bcast ndp(m)i are pushed into different queues. When-
ever the bcast(m)i action is triggered, a user message is only
routed when the neighbor discovery message queue is empty.
We assume that neighbor discovery messages are infrequent
as compared to user messages. Hence, there is no starva-
tion of the user messages caused by too many neighbor dis-
covery messages. To limit the bandwidth requested by the
user layer (and prevent starvation), we impose the restric-
tion that the size of both message queues should not exceed
some constant q. It is assumed that the user layer respects
this restriction.

To route the messages an identifier is attached to the mes-
sage before pushing it in the queue. This is then removed
when a message is received with rcv(m)i, and is used to
trigger either a rcv usr(m′)i or a rcv ndp(m′)i action. The
pseudo-code for the Mac Broker layer has been omitted due
to lack of space.

2.4 The Reliable Neighbor Discovery Layer
The reliable neighbor discovery layer automaton for node

i has four actions, bcast ndp(m)i, rcv ndp(m)i, link up(j)i

and link down(j)i where j 6= i. The first two are used to
broadcast and receive messages through the MAC broker.
The link up(j)i action signals the user that a reliable com-
munication link has been established between node i and j
from the perspective of node i. Similarly the link down(j)i

action signals the user that a previously established commu-
nication link between node i and j is down from the perspec-
tive of node i.

Definition 2 (Well-Formedness). At a node i, for
any j, the actions link up(j)i and link down(j)i alternate.

Let actionj
i (t) ∈ {link up(j)i, link down(j)i} be the most

recent action involving node j observed by node i at time t.
If actionj

i (t) = link up(j)i then we say link (i, j) is Up at
time t, otherwise we say link (i, j) is Dn at time t.

To avoid unhelpful solutions where all links remain Dn
independent of the environment we define a progress condi-
tion.

Definition 3 (Weak Progress). There exist constants
a, b ∈ R

+, such that for all times t1 and t2 where t2 ≥
t1 +a+b, and for any nodes i and j: if i is in region Ri and
j is in region Rj throughout [t1, t2], where Ri and Rj are at
most k hops apart, the links (i, j) and (j, i) are Up during
the time interval [t1 + a, t2 − b].

The previous progress definition has some limitations (which
are discussed in detail in section 3). Hence we define the fol-
lowing (stronger) progress condition which does not require
nodes to stay in the same region throughout the time in-
terval; instead they only need to stay close enough to each
other throughout the time interval.



Definition 4 (Uniform Progress). There exist con-
stants a, b ∈ R

+ such that for all times t1 and t2 where
t2 ≥ t1 + a + b, and for any nodes i and j: if at every
time t ∈ [t1, t2] nodes i and j remain at most k hops apart,
the links (i, j) and (j, i) are Up during the time interval
[t1 + a, t2 − b].

We introduce a validity condition to avoid unhelpful so-
lutions where all links are kept in the Up state independent
of the environment.

Definition 5 (Validity). If (i, j) is Up at time t, then
nodes i and j are in regions which are at most k hops apart
at time t (and thus they are within distance rmin).

Finally, we add a condition to guarantee reliable message
delivery between neighboring nodes.

Definition 6 (Reliability). If node i broadcasts a mes-
sage at time t, and the link (i, j) is Up, the message is de-
livered to j exactly once. Also if a message is delivered to
node j, then it was previously sent by some node.

2.5 The User Layer
The user layer automaton is a composition of separate

(and non-interacting) automata for the users {1, . . . , n}. User
i learns about the state of its neighbors through the link up
and link down output actions of the neighbor discovery au-
tomaton. To broadcast and receive messages it communi-
cates with the MAC broker automaton.

3. BASIC NEIGHBOR DISCOVERY PROTO-
COL

Here we describe the basic neighbor discovery protocol,
which satisfies the reliable neighbor discovery layer specifi-
cations with weak progress (the detailed TIOA code is pre-
sented in the appendix). At a high-level, the protocol relies
on nodes sending notification messages tagged with their ids,
whenever nodes are about to change regions.

When a node i is about to exit a region, it broadcasts a
leave message some time before leaving. This leave mes-
sage includes the region i will be moving into, or null if i
will not be in the next region sufficiently long to establish a
link. Using the information received in the leave message,
i’s neighbors determine if they should begin tearing down
the corresponding link with i.

When a node i enters a new region and determines that
it is going to remain there for sufficiently long, it broadcasts
a join message. The recipients of the join message may
start setting up the corresponding link to i if they have not
already done so. The join message also serves as a request
to learn the ids of the recipients. Specifically, when a node
receives a join message from i, it first checks if it is going
to remain in its current region for sufficiently long, in which
case it responds with a join reply message. The timing
of these messages ensures that the proper semantics of the
corresponding links are maintained. This means that the
overhead for setting up and tearing down links is taken into
account, and reliable message delivery is guaranteed when a
link is in the Up state.

Suppose the time overhead for setting up a link between
two neighbors is given by δLU , and the time overhead for
tearing down a link is given by δLD. A node broadcasts a

t+Frcv
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+ 

Figure 2: Time required for setting up a link.

join message upon entering a new region only if it is going
to remain there for at least the amount of time required to
set up a link and to tear it down. Thus a node broadcasts
a join message if it is going to remain in its new region for
at least δLU + δLD + L time in the future where L ≥ 0 is an
user-provided parameter. Similarly, a node should broad-
cast a leave message δLD time before leaving the region to
make sure the link is destroyed before the nodes are (poten-
tially) out of transmission range. A node sends a join reply
message in response to a join message if it will remain in
its region for δLU + δLD time, to allow sufficient time to set
the link up and tear it down at both ends before either node
leaves the region.

The exact time overhead for setting up a link (δLU ) can be
determined in terms of the delays provided by the underly-
ing MAC layer. This is the time overhead incurred in send-
ing the join message and getting back the corresponding
join reply message. Now we argue that δLU = 2F+

rcv+3F+

ack

(cf. Figure 2). Recall that all messages are sent through the
MAC Broker, which could wait up to F+

ack time to get the
ack from the preceding message before sending a new mes-
sage. Hence, from the time the join message is sent by the
neighbor discovery protocol, it might take up to F+

ack +F+
rcv

time before it is received. When a receiver gets the join
message, it will respond with a join reply message to the
sender if it determines both nodes will remain within k hops
for sufficient time. However, to prevent the receiver from
being swamped with pending join messages (each of which
might require a join reply message), join reply messages
are buffered in intervals of F+

ack so that multiple join mes-
sages can be answered with a single join reply message.

Consider the following scenario. Suppose that node i is
present in region Ri of the network. Now suppose that n−1
nodes move into region Ri and send join messages. Node i
will then have to send n−1 join replies. This will result in
overflow in the Neighbor Discovery Protocol message queue
in the MAC Broker layer. Thus i waits for F+

ack time and
collects the join messages and responds with one join reply
message, which guarantees that no more than one message
every F+

ack units is sent by the Neighbor Discovery Protocol
layer to the MAC Broker layer. As before, it may take up to
F+

ack +F+
rcv units of time from when the join reply message

gets sent to the MAC Broker to when it gets received.
The time overhead for tearing down a link (δLD) can sim-

ilarly be determined. This time bound should be sufficient
to allow the leave message to be received. Moreover, it
should also allow any node which receives the leave mes-
sage to deliver all messages which were previously sent to
the originator of the leave message. Specifically δLD =
2F+

rcv + (q + 1)F+

ack (cf. 3), where q is the size of the queue.
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Figure 3: Time required for taking down a link.

As before, the first F+
rcv + F+

ack time units allow the leave
to be processed by the MAC Broker and to be delivered to
its destination. Depending on the information received in
a leave message a node may decide to tear down the link
to the originator of the message. Regardless of this, the
next qF+

ack time units allow the MAC broker to send any
messages which were queued before the leave message was
received. (Recall that the maximum queue size is given by
q and each message can incur a maximum delay of F+

ack be-
fore it is sent.) The remaining F+

rcv time units allow the last
message of the queue to reach its destination.

Note that nodes that remain in regions for less than δLU +
δLD never establish links in the described protocol, since due
to their motion across region boundaries they might not be
able to receive messages reliably. In order to allow such
nodes to maintain links we introduce in the next section the
overlayed partition scheme. Here additional partitions are
introduced to ensure that there are always some boundaries
with respect to which nodes are stable enough to maintain
links.

Correctness Proof. The basic neighbor discovery pro-
tocol described satisfies the well-formedness, weak progress,
validity and reliability conditions defined in Section 2. Specif-
ically, it satisfies the weak progress condition with constants
a = δLU and b = δLD + L.

Proof (Well-formedness). Consider nodes i and j. Ob-
serve that node j is only added to the neighbor set of node i
with executing the link up(j)i action, and it is only removed
when executing the link down(j)i action.

Suppose that node i performs a link up(j)i, thereby adding
node j to its neighbor set. Node i can only perform another
link up(j)i if it receives a join or a join reply message. In
both cases it first checks if j is already in the neighbor set,
and therefore it cannot perform two consecutive link up(j)i

actions.
Now suppose that node i performs a link down(j)i, thereby

removing node j from its neighbor set. Node j can only per-
form another link down(j)i if it receives a leave message
from node j or performs a leave region action. For both
cases it checks its neighbor set to see if j is present in it be-
fore doing a link down(j)i, and therefore it cannot perform
two consecutive link down(j)i actions.

Proof (Weak Progress) . Let a = 2F+
rcv + 3F+

ack =
δLU and b = 2F+

rcv + (q + 1)F+

ack + L = δLD + L. Fix time
t1 and t2 where t2 ≥ t1 + a + b, and assume throughout the
interval [t1, t2] node i is in region Ri, node j is in region Rj ,
where Ri and Rj are at most k hops apart.

Let t ≤ t1 be the earliest time such that i and j are k hops
apart throughout the interval [t, t1]. At time t it follows that
either node i entered region Ri, or node j entered region
Rj (or both events happened). Without loss of generality,
suppose i entered region Ri at time t. Then node i would
have initiated the link establishment procedure by sending
a join message at time t. Moreover, this procedure takes
time a = δLU by construction, and hence starting at time
t + a ≤ t1 + a both (i, j) and (j, i) are Up.

The link tear down is not initiated by either endpoint until
b = δLD time before leaving their respective regions, which
by assumption, is no earlier than t2 − b (since b = δLD).
So (i, j) and (j, i) remain up until at least t2 − b and the
theorem follows.

Proof (Validity) . Suppose by contradiction that at time
t link (j, i) is Up, but node i and node j are more than k
hops apart.

Since (j, i) is Up and since the algorithm drops messages
from nodes which are more than k hops away, then at some
time t′ < t node j received a message from node i, while
they were within k hops of each other.

Moreover, since by assumption at time t they are more
than k hops apart, let t′′ ∈ (t′, t] be the first time after t′

that one of them left a region as to become at most k hops
apart at time t.

By construction, a leave message would have been sent
by i, j or both, at time t′′ − δLD. If node j sent the leave
message, then it would have set link (j, i) to Dn immediately
and it would remain down until time t – a contradiction.
Otherwise, node i sent the leave message, which would have
been received at time t′′ − δLD + F+

rcv + F+

ack < t′′ at which
point they were still k hops apart, and therefore would have
set the state of link (j, i) to Dn – a contradiction.

Proof (Reliability) . Suppose that link (i, j) is Up at
time t and node i sends a message at time t. We will show
this message is delivered by j. The fact that the message
is delivered exactly once, and messages are only delivered
if they were in fact generated by a node follows from the
properties of the MAC layer.

Since (i, j) is Up at time t, then by the validity condition
node i is in region Ri, and node j is in region Rj , where Ri

and Rj are at most k hops apart. If throughout the interval
[t, t+δLD−F+

rcv−F+

ack] nodes i and j remain at most k hops
apart, then node i has sufficient time to empty its message
queue and these messages will be successfully delivered to
node j while it is still within communication range.

Hence, let t′ > t be the first time that node i and j become
separated by more than k hops. This means at time t′ either
node i or node j left a region. If node i left a region then it
sent a leave message at time t′ − δLD and immediately set
link (i, j) to Dn. Therefore t′ > t + δLD and the theorem
holds. Otherwise, node j left a region and sent a leave
message at time t′ − δLD. This message was then processed
by node i setting link (i, j) to Dn before time t′ − δLD +
F+

rcv + F+

ack. Therefore t′ > t + δLD − F+
rcv − F+

ack and the
theorem holds.

4. UNIFORM NEIGHBOR DISCOVERY
The weak progress condition for basic neighbor discovery

requires nodes to be “stable” in the regions. In particular,
nodes that are constantly changing regions won’t have any
neighbors, even if at every instant they remain arbitrarily



close to other nodes and move arbitrarily slowly. This lim-
its the usefulness of the basic neighbor discovery protocol
in settings where the nodes are in constant motion across
boundaries.

However, the uniform progress condition does not suffer
from these problems. Loosely speaking, uniform progress
guarantees a communication link between any pair of nodes
that remain sufficiently close together, without requiring
the nodes to stay in the same regions. Instead of design-
ing another protocol tailored to satisfy the uniform progress
properties, we describe a construction that uses as a black-
box any neighbor discovery protocol (that satisfies the weak
progress condition) to build a uniform neighbor discovery
service.

Let U be a region partitioning scheme. We define a region
mapping function XU : V ×R

+ → 2U , that given a node v ∈
V and a time t ∈ R

+ returns the set of regions where node
v was at time t. Except when a node is traveling through
the border of neighboring regions, the mapping XU returns
a singleton set with one region. Node v ∈ V is jittering in
partition U at time t, if there exist constants a, b ∈ R

+ and
t1, t2 ∈ [t − a, t + b] such that XU (v, t1) ∩ XU (v, t2) = ∅. A
node is stable in partition U at time t, if it is not jittering
in U at time t.

Observe that by requiring the nodes to stay in fixed re-
gions throughout a time interval, the weak progress condi-
tion implicitly required the nodes to be stable. In contrast,
the uniform progress condition does not require nodes to be
stable to guarantee a link. Instead, it allows nodes to keep
changing regions as long as they remain k hops apart at
every instant. To implement a protocol that satisfies uni-
form progress we will assume there exists some constant
c ∈ R that bounds the maximum speed of the nodes. Since
in practical deployments motion speed is bounded, and the
communication speed is orders of magnitude faster than the
physical speed of the nodes, we do not expect this assump-
tion to be a limitation.

Figure 4 a) shows the trajectory of a node which is con-
stantly changing regions, and thus jittering. This trajectory
can be scaled down to obtain a trajectory where the node
moves arbitrarily slowly while still jittering. Therefore it is
clear that imposing a speed limit on the nodes does not solve
the problem.

However, observe that in Figure 4 a) the node is jittering
with respect to the grid partition defined by the solid lines,
but if this partition were displaced to match the dashed
lines, the same motion would become stable. We will ex-
ploit this observation by running several neighbor discov-
ery algorithms in parallel using displaced region partitioning
schemes and composing their results to guarantee uniform
progress.

4.1 Stability and Partition Displacement
In this section we describe a set of displaced partitions

that, assuming reasonable speed limits, guarantee a single
node is stable in at least one partition. For ease of exposition
we focus on regular grid partitions. In a regular grid tiling
of the plane, the boundaries between different regions can
be described by the union of two ordered sets of lines where:
1.) lines in the same set are parallel and uniformly spaced
(the distance between neighboring lines is the same), and
2.) lines from different sets are perpendicular to each other.
When a node crosses a region boundary of an axis-aligned

grid partition, it will often be useful to make a distinction
as to whether it crossed a horizontal or vertical boundary
line.

Let U0 be an axis-aligned grid partition where ℓ is the
side length of a grid square. We consider a family of m
regular grid partitions Um = {U0, . . . ,Um−1}. To simplify
things further, let Um be the family of m partitions where
partition Ui is a copy of U0 displaced by i · ℓ

m
in the x- and

y-axis.
By definition, if a node is jittering in a partition at time

t, then during the interval [t−a, t+ b] it crossed at least one
region boundary of that partition. In particular this implies
that during the interval [t − a, t + b] either it crossed one
horizontal boundary line or one vertical boundary line.

For the family of two partitions U2 any horizontal bound-
ary line of partition U0 intersects with any vertical boundary
line of partition U1 at a single point. Hence, for any speed
limit c > 0, it is always possible to define a motion whose
speed is bounded by c while jittering on both partitions (cf.
Figure 4 b). Since any two non-parallel lines intersect at a
single point, the same argument can be made for any set
of two grid partitions, even when allowing arbitrary scal-
ing, rotation and displacement of such partitions. This is
summarized by the next theorem.

Theorem 1. Consider any set of two regular grid parti-
tions and any speed limit c > 0. There exists a motion that
respects c while jittering in both partitions.

However assuming a node respects a reasonable speed
limit, three partitions are sufficient to guarantee the sta-
bility of a single node in a partition.

Lemma 1. Consider any set of three axis-aligned grid
partitions, where x is the minimum distance between two
parallel line boundaries that belong to distinct partitions. If
a node respects a speed limit of x/(a + b) during the interval
[t−a, t+ b], then it is stable in at least one partition at time
t.

Lemma 1 is tight, and one can show the following result.

Lemma 2. Consider any set of three axis-aligned grid
partitions, where x is the minimum distance between two
parallel line boundaries that belong to distinct partitions. For
any ε > 0 there exists a motion that respects a speed limit of
x/(a + b) + ε in the interval [t − a, t + b] which jitters in all
three partitions at time t.

When considering sets of displaced identical grids, the dis-
tance between two parallel line boundaries is maximized by
the set U3. As a corollary to Lemma 1, we have the following
result (which is tight by Lemma 2).

Theorem 2. If a node respects a speed limit of ℓ/(3(a +
b)) (where ℓ is the side length of a grid square) during the
interval [t − a, t + b], there exists a partition Ui ∈ U3 (for
which x = ℓ/3) with respect to which the node is stable at
time t.

Proof. By definition, if a node jitters at time t in a par-
tition, it must cross at least one region boundary of the par-
tition during the interval [t− a, t + b]. Hence to jitter on all
partitions at time t it must cross at least one region bound-
ary of each partition in the interval [t−a, t+b]. At least two



of these boundaries are either vertical or horizontal bound-
ary lines. In either case, the shortest distance between two
parallel boundary lines that belong to different partitions is
at least x.

Therefore, to jitter at time t the node must travel more
than x during the interval [t − a, t + b], which requires the
node to attain a speed strictly larger than x/(a + b).

Figure 4 c) describes a jitter pattern for U3, which depicts
the fact that it is necessary for the node to travel at least a
distance of ℓ/3 = x to jitter in all three grids.

However, this result is not enough to guarantee uniform
progress. The progress condition deals with edges (a pair
of nodes) and not with single nodes. Moreover, it can be
shown as a consequence of Theorem 1 that no set of three
or four partitions is sufficient to guarantee a pair of nodes
will be stable in the same partition.

Corollary 1. Consider any set of four regular grid par-
titions and any speed limit c > 0. It is possible for two nodes
to respect the speed limit of c, while not being stable in the
same partition.

Fortunately, it turns out that a set of five partitions are
sufficient to guarantee that for any pair of nodes, there exists
a partition in which they are both stable (assuming reason-
able speed limits). First, we prove the following generaliza-
tion of Lemma 1.

Lemma 3. Consider any set of m ≥ 3 axis-aligned grid
partitions, where x is the minimum distance between two
parallel line boundaries that belong to distinct partitions. If
a node respects a speed limit of x/(a + b) during the interval
[t − a, t + b], then it is stable in at least m − 2 partitions at
time t.

Proof. Consider a node that respects a speed limit of
x/(a + b) during the interval [t − a, t + b].

We proceed by induction on m. For m = 3 the base case
holds by Lemma 1. Consider a set P of size |P | = m of
axis-aligned grid partitions, and let P ′ ⊂ P be any subset
of size |P ′| = m − 1. By inductive hypothesis the node is
stable in a set Q ⊂ P ′ ⊂ P of size |Q| = m − 3 at time t.
Moreover, since |P \ Q| = 3 then by Lemma 1 there exists
at least one partition U ∈ P \ Q where the node is stable
at time t. Therefore it follows the node is stable in the set
Q ∪ {U} of size m − 2, which concludes the proof.

Therefore, if the nodes are sufficiently slow, the number
of partitions where the nodes are guaranteed stability grows
at the same rate as the number of partitions. Hence, it is
not surprising that given enough axis-aligned grid partitions
we can guarantee any pair of nodes that are sufficiently slow
will be stable in a non-empty subset of partitions.

Lemma 4. Consider any set P of size |P | = m ≥ 5 of
axis-aligned grid partitions, where x is the minimum dis-
tance between two parallel line boundaries that belong to dis-
tinct partitions. If two nodes respect a speed limit of x/(a+b)
during the interval [t− a, t + b], there exists a subset Q ⊂ P
of size |Q| ≥ m − 4 where both nodes are stable at time t.

Hence in particular U5 is enough to guarantee that any
pair of nodes that respect a sufficiently low speed limit will
be stable in at least one partition Ui ∈ U5.

Theorem 3. If two nodes respect a speed limit of ℓ/5(a+
b) during the interval [t − a, t + b], there exists a partition
Ui ∈ U5 (for which x = ℓ/5) with respect to which both nodes
are stable at time t.

Proof. Consider nodes i and j that respect a speed limit
of x/(a + b) during the interval [t − a, t + b].

Let P be any set of size |P | = m ≥ 5 of axis-aligned grid
partitions. By Lemma 3 at time t node i is stable in some
subset Qi ⊂ P of size |Qi| = m − 2, and node j is stable in
some subset Qj ⊂ P of size |Qj | = m − 2.

Hence, both nodes are stable at time t in the set Q = Qi∩
Qj . Moreover, by De Morgan’s laws Qi∩Qj = (Qc

i ∪Qc
j)

c =
(P \ Qi ∪ P \ Qj)

c = P \ (P \ Qi ∪ P \ Qj). Finally |Q| =
|P |−|P \Qi∪P \Qj | ≥ |P |−|P \Qi|−|P \Qj | = m−4.

As before, Theorem 3 is tight, since it is possible for two
nodes to not be stable in any partition of U5 with speed
limit of ℓ/5(a + b) + ε for any ε > 0. Therefore the family
U5 is sufficient to guarantee that any pair of nodes will be
stable in some partition, as long as their speed is bounded
by ℓ/5(a + b). Moreover, we also argued that regardless of
the speed limit imposed, no smaller family of regular grid
partitions can guarantee the stability of both nodes in the
same partition. We also showed that at least when consider-
ing identical partitions, no other arrangement of partitions
has a less demanding speed bound.

4.2 Uniform Neighbor Discovery Protocol
Here we exploit the stability properties of the displaced

partitions described in the previous subsection to construct a
uniform neighbor discovery protocol (UNDP) which guaran-
tees uniform progress. Specifically we execute an instance of
a neighbor discovery protocol with the basic progress guar-
antees in each partition, and describe how to combine the
outputs to guarantee uniform progress. Figure 5 shows the
detailed interactions between different components.

Figure 5: Uniform Neighbor Discovery block diagram.

In particular we consider the regular grid partition family
U5, and in each partition Ui ∈ U5 we execute an instance of
of a neighbor discovery protocol NDPi with basic progress
guarantees. Letting k′ be the parameter received by each
NDPi instance to determine the maximum hop distance be-
tween two neighbors, we set k′ = k + 1 where k will be the



(a) Jittering in a single
partition

(b) Jittering in U2. (c) Jittering in U3.

Figure 4: Jittering trajectories

maximum hop distance between two neighbors in the uni-
form neighbor discovery protocol. We will show later that
this is required in order to guarantee uniform progress.

The neighbor discovery protocol black-box needs to be
slightly augmented for it to run correctly in parallel. In a
message processing (MP) phase an instance identifier is at-
tached to every message sent and removed after routing the
message to the correct instance. Similarly, an output adapter
(OA) phase translates the link up(j) and link down(j) out-
put actions of instance NDPn to include an instance identi-
fier (i.e. they are translated to the output actions
link up(j, n) and link down(j, n) respectively).

Let ANDPi represent the instances of NDPi augmented
to run in parallel. If we represent the state of each directed
link as a boolean variable (where Up = 1 and Dn = 0), we
want the state of a link in the uniform neighbor discovery
to be the OR of the state of the basic neighbor discovery
instances. Specifically, we use an OR-Combiner automaton
that outputs a link up(j) action the first time there exists
some n such that ANDPn considers node j a neighbor. Sim-
ilarly, the OR-Combiner outputs a link down(j) action the
first time that for every n instance ANDPn determines that
node j should no longer be a neighbor.

It remains to prove that the UNDP algorithm described
implements the reliable neighbor discovery layer with uni-
form progress. We start by showing that UNDP satisfies the
well-formedness condition, which follows from the definition
of the OR-Combiner.

Theorem 4. UNDP satisfies the well-formedness condi-
tion.

Proof. The OR-Combiner outputs link up(j) if j /∈ S
and immediately executes S := S ∪ {j}. Similarly the OR-
Combiner outputs link down(j) if j ∈ S and immediately
executes S := S \ {j}. Moreover, no other action modifies
the set S.

Hence it follows that link up(j) and link down(j) events
alternate at each node.

The fact that the uniform neighbor discovery protocol sat-
isfies the validity and reliability properties follows from the
fact the basic neighbor discovery protocol also satisfies these
properties.

Theorem 5. UNDP satisfies the validity and reliability
conditions.

Proof. By construction if the link (u, v) with respect
to node u in UNDP at time t, then the link (u, v) is Up

according to u in at least one neighbor discovery instance
NDPi at time t.

Since each neighbor discovery instance satisfies both the
validity and safety conditions, then by the former the dis-
tance between u and v at time t is less than rmin, and by
the latter a message sent by node u at time t is received by
node v.

To guarantee a communication link, the uniform progress
condition stipulates the nodes should remain at most k hops
apart during some time interval. Since the number of hops
between two nodes is measured with respect to a partition, it
seems pertinent to first define which of the partitions should
be used to measure the hops between two nodes. However,
this is a moot point since the guarantees hold as long as the
nodes remain k hops apart with respect to any partition (the
partition can be different for every time instant). To show
this, we first need an auxiliary result concerning hop count
in displaced grid partitions.

Lemma 5. Consider a set of identical but displaced grid
partitions and a pair of points. The hop distance between
the two points varies by at most one hop between partitions.

Proof. Fix two grid partitions A and B with side length
ℓ, and two points p and q.

We decompose the hop distance and Euclidean distance
between points in two components. Specifically, let ‖p−q‖U

x

be the number of vertical boundary lines between p and q in
U , and ‖p−q‖U

y be the number of horizontal boundary lines
between p and q in U . Similarly, let ‖p − q‖x and ‖p − q‖y

be the vertical and horizontal Euclidean distance between p
and q.

By the neighbor structure of grid partitions it follows that
‖p − q‖U = max(‖p − q‖U

x , ‖p − q‖U
y ). Without loss of gen-

erality assume ‖p − q‖B ≥ ‖p − q‖A, hence we need only to
show ‖p − q‖B ≤ ‖p − q‖A + 1.

Let ‖p−q‖A
x = s and ‖p−q‖A

y = t. Hence the components
of the Euclidean distance between p and q are bounded by
‖p − q‖x ≤ ℓ(s + 1) and ‖p − q‖y ≤ ℓ(t + 1). Moreover,
regardless of the partition displacement, no more than s+1
vertical boundary lines (resp. t + 1 horizontal boundary
lines) need to be crossed to travel a distance of ℓ(s+1) (resp.
ℓ(t + 1)). Hence, ‖p − q‖B = max(‖p − q‖B

x , ‖p − q‖B
y ) ≤

max(s + 1, t + 1)
= max(s, t)+1 = max(‖p−q‖A

x , ‖p−q‖A
y )+1 = ‖p−q‖A +1

Finally we can show that UNDP satisfies the stronger uni-
form progress property.



Theorem 6. UNDP satisfies the uniform progress con-
dition.

Proof. By assumption each instance NDPi satisfies the
basic progress condition with some fixed a, b ∈ R

+ for nodes
that are k′ = k + 1 hops away in partition Ui.

Consider two nodes u and v that respect a speed limit
of c = ℓ/5(a + b) and remain k hops apart in at least one
partition during the time interval [t − a, t + b].

By Theorem 3 there exists at least one partition Uj ∈ U5

where both u and v are stable. Since during the interval
[t − a, t + b] nodes u and v remained k hops apart in some
partition, then by Lemma 5 they remained at most k+1 hops
apart in all partitions. This is because the hop distance be-
tween two points varies by at most one hop between different
partitions.

In particular, they also remained k + 1 = k′ hops apart
in the partition Ui where they are both stable. Specifically,
both u and v remained in regions Ru ∈ Ui and Rv ∈ Ui

during the interval [t− a, t + b], where Ru and Rv are k + 1
hops apart.

Since NDPi satisfies basic progress, then the link (u, v)
was Up with respect to both u and v at time t in the instance
NDPi. Finally, since the state of a link in UNDP is the OR
of the state in all instances, the theorem follows.

5. DISCUSSION
There is a collection of algorithms for mobile ad hoc net-

works which assume a neighbor discovery layer. In some
cases, these algorithms can be used without modification
with the reliable neighbor discovery service given in this pa-
per.

For example, the work in [15] presents several algorithms
to continually circulate a token through all nodes of a mo-
bile ad hoc network. The circulating token can be used to
provide total order for message delivery in group communi-
cation services. To obtain neighbor information, they rely
on a hello protocol, and to ensure messages are eventually
delivered they rely on TCP. Observe that neither of these
mechanisms provides formal guarantees. However, these un-
modified algorithms can be implemented on top of a reliable
neighbor discovery service as the one presented here, which
does provide formal guarantees.

A leader election algorithm for dynamic graphs is pre-
sented in [10], which assumes an underlying layer guaran-
tees reliable neighbor discovery. The leader election algo-
rithm guarantees that after topology changes cease, eventu-
ally there is a unique leader in every connected component.
The algorithm is based on the temporally ordered routing
algorithm (TORA) given in [16]. However, it is not imme-
diate that our reliable neighbor discovery layer can be used,
since the authors in [10] impose an extra synchronization
condition as part of the neighbor discovery specification. Al-
though this synchronization condition is not satisfied by our
specification, it turns out this condition is not required for
the algorithm to work. With little work, it is possible to
show the same results hold when using the reliable neighbor
discovery layer described in the original paper.

This does not mean that our neighbor discovery service
can be used for all applications. For example [22] presents a
mutual exclusion algorithm that assumes a neighbor discov-
ery service which provides perfectly synchronized and timely
information, and in fact, does not work with the service de-

fined in this paper. Although our specification does not meet
these requirements, it is unclear if such strong assumptions
are justified in truly mobile networks.

As future work, we would like to extend the service pre-
sented to handle the presence of faulty nodes. Another in-
teresting thread would be to compare the cost of this service
against another which dispenses with the MAC layer by im-
plementing directly on the physical layer.
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APPENDIX: TIOA Code
We describe the algorithms using the TIOA formalism [7].

For simplicity we define the function hops : {Ru}u∈U ×
{Ru}u∈U → N that receives two regions and returns the
number of hops between them. If one of the regions is null
it returns ∞. Similarly, we define the function getregion :
R

2 → 2U that maps any point in the deployment space to
a set of regions that contain such point. When queried in a
region boundary it returns the set of regions that share the
boundary, otherwise it returns a singleton set with the cur-
rent region. For the neighbor discovery protocol we assume
a TIOA trajectory that stops time whenever a precondition
is enabled. However since formally there is no first time
when a node enter or leaves a region (left-open intervals) we
define a TIOA trajectory for the enter region action as:

∃u : Region (u 6= val(region))∧

curreg /∈ getregion(trajnow) ∧ u ∈ getregion(trajnow)∧

curreg ∈ getregion(trajnow−ε) ∧ u ∈ getregion(trajnow−ε)

where ε > 0 is a small constant describing the slack, and
depending on the motion of the agents with respect to the
size of the regions. A similar predicate is assumed for the
leave region action.

Algorithm 1 Neighbor Discovery Protocol

automaton NDP(i:N, traj:Traj, F+

ack
:R, L:R, k:N,δLU :R,δLD:R)

states

active : Bool := false;
sendbuffer : Seq[M ] := ⊘;
recvbuffer : Seq[M ] := ⊘;
eventqueue : Seq[Ev] := ⊘;
S : Set[N] := ⊘;
regs : Map[N, Region] := empty;
curreg : Null[Region] := nil;
newreg : Null[Region] := nil;
jointrigger : Real := −1;
now : R := 0;

transitions

output bcast(m, i)
pre m = head(sendbuffer);
eff sendbuffer := tail(sendbuffer);

input rcv(m, i)
eff recvbuffer := recvbuffer ⊢ m;

internal enter region(i)
pre eventqueue = ⊘ ∧ getregion(traj[now]) 6= val(curreg);
eff curreg := embed(getregion(traj[now]));
if ∀t : R(t ≥ now ∧ t ≤ now + δLU + L + δLD

⇒ getregion(traj[t]) = val(curreg)) then

sendbuffer := sendbuffer ⊢ [[join, val(curreg), nil], i];
active := true;

internal leave region(i)
pre eventqueue = ⊘ ∧ active
∧getregion(traj[now + δLD]) 6= val(curreg);

eff newreg := embed(getregion(traj[now + δLD]));
active := false;
if ∃t : R(t ≥ now + δLD∧

t ≤ now + δLD + δLU + L + δLD

⇒ getregion(traj[t]) 6= val(newreg)) then

newreg := nil;
sendbuffer := sendbuffer ⊢

[[leave, val(curreg), newreg], i];
for j : N in S
if hops(regs[j], val(newreg)) > k then

eventqueue := eventqueue ⊢ [down, j, regs[j]];

internal process message(m, i)
pre eventqueue = ⊘ ∧ m = head(recvbuffer)
∧getregion(traj[now]) = val(curreg);

eff recvbuffer := tail(recvbuffer);
if m.sender ∈ S then

regs := update(regs, m.sender, m.msg.reg);
if hops(m.msg.reg, val(curreg)) ≤ k then

if m.msg.type = join ∧ m.sender /∈ S∧
(∀t : R(t ≥ now ∧ t ≤ now + δLU + δLD

⇒ getregion(traj[t]) = val(curreg))) then

if jointrigger = −1 then

jointrigger := now + F+

ack
;

eventqueue := eventqueue ⊢ [up, m.sender, m.msg.reg];
if m.msg.type = leave ∧ m.sender ∈ S∧

hops(val(m.msg.dest), val(curreg)) > k then

eventqueue := eventqueue ⊢
[down, m.sender, regs[m.sender]];

if m.msg.type = join reply ∧ m.sender /∈ S
∧active then

eventqueue := eventqueue ⊢ [up, m.sender, m.msg.reg];

internal send join reply(i)
pre eventqueue = ⊘ ∧ jointrigger = now;
eff jointrigger := −1;

sendbuffer := sendbuffer ⊢
[[joinreply, val(curreg), nil], i];

output link down(j, i)
pre ∃reg : Region(head(eventqueue) = [down, j, reg]);
eff S := S − j;

regs := remove(regs, j);
eventqueue := tail(eventqueue);

output link up(j, i)
pre ∃reg : Region(head(eventqueue) = [up, j, reg]);
eff S := S ∪ j;

regs := update(regs, j, head(eventqueue).reg);
eventqueue := tail(eventqueue);


