
1541 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37 , NO. 12, DECEMBER 1988

A Compiler that Increases the Fault Tolerance of
Asynchronous Protocols

BRIAN A. COAN

Abstract-We give a compiler that increases the fault tolerance
of certain asynchronous protocols. Specifically, it transforms a
“source protocol” that is resilient to crash faults into an “object
protocol” that is resilient to Byzantine faults. Our compiler can
simplify the design of protocols for the Byzantine fault model
because it enables us to break the design process into two steps.
The first step is to design a protocol for the crash fault model.
The second step, which is completely mechanical, is to compile
the protocol into one for the Byzantine fault model. We use our
compiler to produce a new asynchronous approximate agreement
protocol that operates in the Byzantine fault model. Specifically,
we design a new asynchronous approximate agreement protocol
for the crash fault model and observe that this protocol can be
compiled into a protocol for the Byzantine fault model. In the
Byzantine fault model, the new protocol improves in several
respects on the performance of the asynchronous approximate
agreement protocol of Dolev, Lynch, Pinter, Stark, and Weihl.

Index Terms-Approximate agreement protocols, asynchron-
ous distributed systems, Byzantine faults, crash faults, fault
tolerance, protocol transformations.

I . INTRODUCTION
E GIVE a compiler that transforms an arbitrary
standard-form asynchronous protocol that tolerates

crash faults into an asynchronous protocol that tolerates
Byzantine faults and that solves the same problem as the
original protocol. Our compiler incorporates communication
primitives and a message validation scheme developed by
Bracha [11. Bracha argues informally that his tools restrict the
disruptive behavior of a processor that fails with a Byzantine
fault. He argues that the restricted behavior is similar to that of
a processor subject only to crash failures. He then uses these
primitives to construct an interesting new randomized protocol
for the Byzantine fault model.

Our goal is similar to Bracha’s. It is to simplify the design
and proof of asynchronous protocols that are resilient to
Byzantine faults. Specifically, our approach is as follows. We
incorporate Bracha’s communication primitives and message
validation scheme in a compiler, which we prove correct.
Then, we design and prove protocols correct in the crash fault
model. It follows from the correctness of the compiler that the

Manuscript received March 5 , 1988; revised July 25, 1988. This work was
supported by the Advanced Research Projects Agency of the Department of
Defense under Contract N00014-83-K-0125, the National Science Foundation
under Grant DCR-83-02391, the Office of Army Research under Contract
DAAG 29-84-K-0058, and the Office of Naval Research under Contract
N00014-85-K-0168. An earlier version of this paper appears as chapter 4 of
the author’s Ph.D. thesis [3].

The author is with Bell Communications Research, Morristown, NJ 07960.
IEEE Log Number 8824079.

protocols that we design for the crash fault model can be
compiled into protocols that operate correctly in the Byzantine
fault model.

A limitation of our compiler is that it only works for
deterministic protocols. It is an open question to construct and
prove correct a compiler for randomized protocols. Because
our compiler works only for deterministic protocols, it is not
useful in the particular application that Bracha considers.

There seem to be two principal benefits of our approach.
First, it is simpler to design and prove protocols in the crash
model than it is to do the same in the Byzantine model. Using
our method, only the compiler needs to be proved correct for
the Byzantine model. Second, our approach is modular. For
example, we give two versions of our compiler with slightly
different performance tradeoffs. (The two versions of the
compiler use slightly different communication primitives.)
After we prove a protocol correct in the crash fault model, we
can use either version of the compiler to transform it into a
protocol that is correct in the Byzantine fault model.

It should be clear that our compiler must change some of the
properties of a protocol (like the kind of faults tolerated) and
leave other properties unchanged (like the problem solved by
the protocol). We use correctness predicates to formalize one
of the properties that we would like our compiler to preserve.
A correctness predicate is any predicate defined on the inputs
to and answers of correct processors. We show that our
compiler preserves the satisfaction of correctness predicates
and the property that all correct processors eventually decide.
Thus, our compiler preserves the solution to any problem that
can be formalized by a correctness predicate and a requirement
that all correct processors eventually decide. Agreement and
approximate agreement are such problems.

Asynchronous systems are “harder” than synchronous ones
because they can experience a superset of the executions of
synchronous systems. If a protocol solves some problem in an
asynchronous system, then it follows that the protocol solves
the same problem in a synchronous system. Of course, this
holds for any protocol that is the output of our compiler. The
foregoing argument might lead one to think that our compiler
is capable of transforming a synchronous protocol that solves
some problem in the crash model into a synchronous protocol
that solves the same problem in the Byzantine model. This is
wrong. The difficulty is that our compiler relies on the fact
that its source protocol operates correctly in asynchronous
executions with crash faults. The property of asynchronous
executions that our compiler relies on is that some messages
between correct processors may be delivered very late.

0018-9340/88/1200-1541$01 .OO 0 1988 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

1542 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 12, DECEMBER 1988

A limitation of our technique is that we are unable to force a
faulty processor to accurately report its input value. We have
accommodated this limitation by requiring that correctness
predicates not depend on the input to a faulty processor. A
related limitation accounts for our inability to generalize our
compiler to randomized protocols. The specific problem is
that there seems to be no way of detecting a processor that is
behaving correctly in all respects except that it “cheats” when
it makes random choices.

In general, the running time of a protocol may depend on
the input. Informally, for some fixed input we say that a
protocol has running time r if all correct processors decide by
time r in any execution in which the message-delivery time is
bounded above by one. Our compiler imposes certain over-
head in the running time. There are two versions of the
compiler. The first version increases the time by a factor of
two and requires that the number of processors be more than
four times the number of faults tolerated. The second version
increases the time by a factor of three and requires that the
number of processors be more than three times the number of
faults tolerated. The first version of the compiler uses new
communication primitives; the second version incorporates the
communication primitives developed by Bracha. Both versions
of the compiler substantially increase the number of message
bits sent.

Our compiler requires that its “source protocols” be in a
particular standard form. We believe that many asynchronous
protocols can be put into this standard form. A notable
exception is that the protocols that are output by our compiler
appear incapable of being put into this standard form. It would
be desirable to extend our compiler so that it could compile
arbitrary source protocols. We believe that this can be done,
but the unrestricted compiler and its proof seem very
complicated. We leave the construction and proof of the
unrestricted compiler as an open problem. We also leave open
the problem of ensuring that all correct processors eventually
stop sending messages (i.e., terminate).

Unfortunately, there are a limited number of known
protocols that are potential source protocols for our compiler.
The well-known impossibility result of Fischer, Lynch, and
Paterson [8] shows that many problems have no deterministic
solution in an asynchronous system. The only problems
currently defined in the literature that can be solved with
deterministic protocols in asynchronous systems are the
approximate agreement problem [5] , the inexact agreement
problem [9], and the task assignment problem [2]. Despite the
limited number of potential source protocols, we believe that
our compiler is interesting because of the method that it
embodies (i.e., modularizing the verification of fault-tolerant
distributed protocols). In the synchronous case, where more
problems have solutions, an analogous compilation technique
has been developed by Neiger and Toueg [lo].

Using the two versions of our compiler, we produce a pair
of new asynchronous approximate agreement protocols that
are resilient to Byzantine faults. Our protocols improve in
several respects on the asynchronous approximate agreement
protocol of Dolev, Lynch, Pinter, Stark, and Weihl [5]. Our
method is to design a new asynchronous approximate agree-

ment protocol for the crash fault model and observe that this
protocol can be compiled into a protocol for the Byzantine
fault model (using either version of our compiler). The
protocol that we design in the crash fault model uses many
ideas developed by Dolev et al. for use in their protocol. (The
approximate agreement problem is defined in Section 11.)

In the Byzantine fault model, our new approximate agree-
ment protocols tolerate a larger proportion of faulty processors
than the protocol of Dolev et al. Their protocol requires that
the number of processors be more than five times the number
of faults tolerated. One version of our protocol requires that
the number of processors be more than four times the number
of faults tolerated; the other requires that the number of
processors be more than three times the number of faults
tolerated. The second version of our protocol has an optimal
amount of redundancy. This follows because Fischer, Lynch,
and Merritt [7] have shown that no protocol solves the
approximate agreement problem unless the number of proces-
sors is more than three times the number of faults tolerated.

Dolev et al. [5] propose using the convergence rate as a
measure of the quality of an approximate agreement protocol.
Intuitively, the convergence rate of an approximate agree-
ment protocol is the factor by which the range of possible
answers is reduced each unit of time. Despite the overhead
introduced by the compiler, one of our approximate agreement
protocols has an improved convergence rate for some small
system sizes. Our improvement in the convergence rate does
not contradict the proved optimality of the convergence rate of
the protocol of Dolev et al. Their claim of optimality is for
protocols of a particular form-a form which is very similar to
the standard form defined in this paper. The output of our
compiler is not of that form. Asynchronous approximate
agreement protocols with optimal convergence rates, but large
messages, have been designed for the crash and failure-by-
omission models by Fekete [6] .

The running time of either of our approximate agreement
protocols depends only on the inputs to the correct processors
and the size of the system. In the protocol of Dolev et al., the
faulty processors can choose the amount of time that will
elapse before the correct processors decide.

We now give an outline of the remainder of the paper. In
Section 11, we define the approximate agreement problem. In
Section 111, we give our model for asynchronous protocols that
operate in either the crash fault model or the Byzantine fault
model. In Section IV, we present our compiler and we prove
that it works correctly. In Section V, we give a new
asynchronous approximate agreement protocol for the crash
fault model and we prove it correct. We then note that this
protocol can be compiled into a protocol for the Byzantine
fault model.

11. THE APPROXIMATE AGREEMENT PROBLEM
The approximate agreement problem is stated for various

fault models including crash and Byzantine. The requirements
given here apply to both of these fault models. In a protocol
for the approximate agreement problem, each processor
begins with some real number as its input. Each correct
processor may, at some point during the execution of the

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

COAN: COMPILER THAT INCREASES FAULT TOLERANCE 1543

protocol, irrevocably decide on a real number as its answer. A
parameter 6 specifies the precision required in the solution.
There are three conditions that the correct processors must
satisfy in all executions.

Agreement condition: If U and U ’ are the decisions of
two correct processors, then I U - U ’ 1 I 6 .

Validity condition: If U is the decision of some correct
processor, then there are correct processors with inputs i and
i’ such that i 5 U I i’.

Decision condition: All correct processors eventually
decide.

III. THE MODEL
We model processors as state machines that communicate

by sending messages. In Section 111-A, we begin by defining
some parameters that specify the size of the systems that we
consider. In Section 111-B, we give our model for asynchron-
ous protocols subject to crash faults. In Section 111-C, we
define a subset of the possible executions in the crash fault
model; we call them sequenced executions. In Section III-D,
we give our model for asynchronous protocols subject to
Byzantine faults. In Section 111-E, we define correctness
predicates as a way to formalize part of the definition of a
problem in the asynchronous model. Finally, in Section 111-F,
we define our time measure.

A . Definition of Parameters
For the remainder of this paper, let n be the number of

processors, let t be an upper bound on the number of
processors that fail, and let N = { 1, * * , n} . We define the
redundancy to be (n - l) / t . For the remainder of this paper,
we assume that the redundancy is at least 3 and we let E be an
arbitrary fixed value of the parameter to the approximate
agreement problem.

Let 9+ be the set of positive integers; let 32 be the set of
natural numbers, including 0; and let be the set of real
numbers.

B. The Crash Fault Model
A processor is modeled as an infinite state machine with a

message buffer. The message buffer-modeled as a multiset of
messages-holds those messages that have been sent to the
processor but not yet received. Messages in the message
buffer are tagged with the identity of the sending processor. In
each step, a processor receives a set containing at most one
message from its buffer and (based on its transition function)
sends a finite set of messages. The transition function of a
processor uses the current state and current set of messages
received to compute a new state and a set of messages to be
sent. There is a fixed set Vof possible inputs to the processors.
Without loss of generality, we assume that * CI V and I 6
V. For each element U E V , each processor has one initial
state that corresponds to having input U. The processors are
indexed by the set N.

A configuration C is a vector of n states, one for each
processor, and a vector of n multisets of messages, one for
each message buffer. An initial configuration has all proces-
sors in initial states and all buffers equal to the empty multiset.

An event is denoted either (step: p) or (receive: p , q, m).
The event (step: p) models processor p taking a step without
receiving a message. The event e = (step: p) is applicable to
any configuration. The configuration resulting from applying
event e to configuration C, denoted e(C), is obtained from C
by changing the state of processor p according to the transition
function and adding messages from processor p (tagged with
sender p) to the appropriate buffers according to the transition
function. The event (receive: p , q, m) models processor p
receiving the message m from processor q. The event e’ =
(receive: p , q, m) is applicable to configuration C if the
message m (tagged with sender q) is an element of the buffer
of processor p in configuration C . The configuration resulting
from applying event e‘ to configuration C, denoted e‘(C), is
obtained from C by removing the message m from the buffer
of processor p , changing the state of processor p according to
the transition function, and adding messages from processor p
(tagged with sender p) to the appropriate buffers according to
the transition function.

A schedule is a finite or infinite sequence of events. A finite
schedule U = ele2 - ek is applicable to configuration C if el
is applicable to C , e2 is applicable to el(C), etc. The resulting
configuration is denoted a(C). An infinite schedule is applica-
ble to configuration C if every finite prefix of the schedule is
applicable to C.

For executions, we adopt a succinct representation which
contains enough information to determine the behavior of
every processor at all times. Formally, an execution of a
protocol is a triple (F, Z, U) where F C N, where Z = (i , , * . ,
in) is a one-dimensional array of V , where U is a schedule
applicable to the initial configuration in which an arbitrary
processor p begins in the initial state that corresponds to
having input ip, where all processors in N - F take an infinite
number of steps in U , and where every message that is sent to a
processor that takes an infinite number of steps in U is
eventually delivered. A processor p is faulty in the execution
(F, I , U) if p E F; otherwise, p is correct. (In the case that
some processor sends multiple identical messages to a proces-
sor that takes an infinite number of steps, our “eventual
delivery” requirement should be taken to have the following
meaning. If the number of copies sent is finite, then the
number of copies delivered is equal to the number of copies
sent. If the number of copies sent is infinite, then the number
of copies delivered is infinite.)

Each processor has a decision function that maps from
processor states to V U {*}. Recall that * V . In the first
step in which the decision function of a processor applied to
the current state is U E V , we say that the processor decides U.
The intuition is that after a processor has decided, the value of
its decision function is irrelevant. An execution is a deciding
execution if all correct processors eventually decide. A
protocol decides if all of its executions are deciding execu-
tions.

The model we have just given is one of the 32 crash fault
models that were categorized and analyzed by Dolev, Dwork,
and Stockmeyer [4]. Their 32 variants arise from five
independent binary choices for five parameters that character-
ize the degree of asynchrony. The description of our model

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

1544 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 12, DECEMBER 1988

using these parameters follows. Processor step time is
unbounded. Message delivery time is unbounded. Message
delivery is unordered (i.e., any two messages sent to processor
p can be delivered out of the order in which they were sent). A
processor can send any finite set of messages in one step (i.e.,
processors have an “atomic broadcast” capability). A proces-
sor can receive and send as part of one step. The impossibility
result of Fischer, Lynch, and Paterson holds for our model

There will be no atomic broadcast capability in our
[41, 181.

Byzantine fault model.
C. Sequenced Executions in the Crash Fault Model

In our correctness proofs, we construct certain executions
for the crash fault model. All of these executions belong to the
class of sequenced executions, which we now define. If E =
(F, I , a) is an execution, C is the initial configuration in
execution E, a’ is a prefix of a, and p E N , then we define
deliver(E, a’, p) to be the set of schedules that 1) are
applicable to the configuration a’(C), 2) deliver to processor
p all of the messages that are in the buffer of p in the
configuration a’(C), and 3) do nothing else. An execution E
= (F, I , a) is sequenced if a can be expressed as the
concatenation of subschedules, a = aoalaz . e , where a, =
a(r, l)a(r, 2) * * a(r, n), and where a(r, p) satisfies one of
the following three conditions for all r E 32 and for all p E
N :

Condition 1: p E F and, for all r‘ 1 r, a(r’ , p) is the
empty sequence.

Condition 2: r = 0 and a(r, p) = (step: p) . Recall that
(step: p) is the event in which processor p takes a step without
receiving messages.

Condition 3: r 1 1 and a(r, p) is in deliver(E, aoal * *

Intuitively a sequenced execution is organized into a series
of “phases.” In each phase, the processors are each given a
“turn” (in ascending numerical order by processor number).
In its first turn, a processor either takes a step without
receiving messages or fails, never to recover. In each
subsequent turn, a processor that is still operating either
receives all of the messages that were in its buffer at the start
of the current phase or fails, never to recover. In any turn in
which a processor takes steps it, of course, sends messages
according to its protocol.

We observe that the partitioning of any sequenced execution
into phases is unique. Thus, we make the following definition.
In a sequenced execution, we say that an event happens in
phase r if it is in a(r, p) for some p .
D. The Byzantine Fault Model

The Byzantine fault model has much in common with the
crash fault model. In this subsection, we define only those
parts of the Byzantine fault model that differ from the crash
fault model. The two differences are in the definition of events
and in the definition of executions.

An event is denoted either (step: p) , (receive: p , q , m), or
(error: p , q , m) . The events (step: p) and (receive: p , q , m)
are defined as they are in the crash fault model. The event
(error: p , q , m) models processor p erroneously sending the

or-1, P I .

message m to processor q . The event e = (error: p , q , m) is
applicable to any configuration. The configuration resulting
from applying event e to configuration C, denoted e(C), is
obtained from C by adding the message m (reliably tagged
with sender p) to the buffer of processor q .

An execution of a protocol is a triple (F, I , a) where F C
N , where I = (i l , - e , in) is a one-dimensional array of V ,
where U is a schedule applicable to the initial configuration in
which an arbitrary processor p begins in the initial state that
corresponds to having input i,, where all processors in N - F
take an infinite number of steps in a, where every message that
is sent to a processor in N - F is eventually delivered, where
processors in N - Ftake no error steps, and where processors
in F take only error steps. A processor p is faulty in the
execution (F, I , a) if p E F; otherwise, p is correct.

In each message buffer, each message is tagged with its
sender. The tags on all messages-even messages from faulty
processors-are accurate. So a faulty processor does not have
the ability to “impersonate” some other processor.

The requirement that a faulty processor take only error steps
does not restrict the kinds of faults that can be exhibited in an
execution. This is true because any message sending pattern
can be achieved with error steps and because we are never
interested in examining the state of a faulty processor. In
particular, a faulty processor’s error steps may mimic correct
behavior for an arbitrary (even infinite) period of time.

We could give a definition of “sequenced executions” in
the Byzantine fault model analogous to the definition of
sequenced executions in the crash fault model. We omit that
definition because we have no need to discuss such executions
formally.

E. Correctness Predicates
In this subsection, we define correctness predicates as a way

to formalize part of a problem definition (i.e., they formalize
the relationship between inputs and outputs). A problem
definition is formalized by requiring that all executions are
deciding executions which satisfy some specific correctness
predicate. Our formalism cannot be used to define problems
for which nondeciding executions are acceptable. The defini-
tions in this subsection apply to both the crash fault model and
the Byzantine fault model.

Predicate 6 is a correctnesspredicate if its domain is (V U
If E = (F, (i l , * * . , in), a) is any execution, then

inp(E) is defined to be (i ; , - - e , i;) where id = i, if processor
p is correct in E and ip = 1 otherwise. If E is any deciding
execution, then ans(E) is defined to be (al, - , a,) where a,
is the decision of processor p in execution E if p is correct in E
and a, = 1 otherwise. Protocol ‘X satisfies correctness
predicate 6 if for any deciding execution E the value of
6(inp(E), ans(E)) is true. Correctness predicates furnish a
convenient way of formalizing the correctness requirements
for a consensus protocol. For example, protocol ‘X solves the
approximate agreement problem (with parameter 6) if it
decides and it satisfies correctness predicate 6 that is defined
below. Let

a (I , A) = A ((a ,= l) V (a k = l) V (la j -akls6)) ,
j , k E N

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

COAN: COMPILER THAT INCREASES FAULT TOLERANCE 1545

and

j E N

whereZ = (i l l . e - , in) andA = (a l , . . a , a,,). Now let @(I,
A) = @(I, A) A V (I , A). The correctness predicate Q.
formalizes the agreement condition and the correctness predi-
cate V formalizes the validity condition.

F. Time
In this subsection, we define a notion of time in asynchron-

ous executions. We will use this notion when we discuss the
performance of our compiler. The definitions in this subsec-
tion apply to both the crash fault model and the Byzantine fault
model.

We define S to be a timing if S is an infinite nondecreasing
unbounded sequence of real numbers. Let E = (F, Z, a) be an
execution. If event e is the ith element of a, then the time at
which event e occurs in timing S of E is r where r is the ith
element of S . Timing S of execution E is 1-bounded if 1) each
processor that takes a nonerror step in E takes its first step at
time 0 and 2) any message that is sent at time x is delivered at
or before time x + 1. (The time at which a particular message
is sent is defined to be the time of the event that causes the
message to be inserted in a buffer.) A timed execution is a
pair (E, S) such that S is a 1-bounded timing of E.

Let X be a protocol and let Z = (i l , * e , in) be a vector of
inputs to X. Protocol X has running time r for input I if all
correct processors decide by time r in all of the timed
executions of protocol X where processor p has input ip for all
p E N.

IV. THE COMPILER
We give two versions of our compiler. One works in any

system where the redundancy is at least four. For any input, it
increases the running time by a factor of two. The other works
in any system where the redundancy is at least three. For any
input, it increases the running time by a factor of three. We
prove the correctness of the first version of the compiler. The
correctness proof for the second version is similar and is only
sketched.

It would be tedious to write protocols directly in terms of
our formal model. In the remainder of this paper, we write
protocols in a higher level language. The mapping from
protocols written in the higher level language to protocols
written directly in terms of the formal model is a straightfor-
ward exercise that we omit. To accommodate our new higher
level language for expressing protocols, we will redefine the
terms “transition function” and “decision function” in the
body of this section.

A. Standard Protocols
Our compiler works only for protocols in standard form. A

protocol is in standard form if it corresponds to an instance of
Protocol 1 customized by specifying A, V, S, and 9. A is the
set of possible values of the variable STATE. V C A is the set of

possibleinputs. S:N x 9 + x (A U {A})“ + A U {I} is
the transition function. The transition function maps a triple
consisting of a processor index, a positive integer (represent-
ing an “asynchronous round” number), and a vector of
messages (A represents the absence of a message) into either a
processor state (i.e., element of A) or undefined (i.e., I).
9 : N x 9 + x A + V U {*} is the decision function. The
decision function maps a triple consisting of a processor index,
a positive integer, and a processor state into a possible
decision. In the range of the decision function, an element of V
represents a decision and * represents the absence of a
decision. Throughout the rest of this paper, an instance of
Protocol 1 customized with A , V, S , and 9 is denoted e (A,
V , S, a>). For the remainder of this section, we choose an
arbitrary fixed A , V , S, and 9.

Protocol I : The Standard Protocol (Crash Faults):

Initialization for processor p :
STATE + the initial value of processor p
M S G ~ , ~ +- X for all (1 , q) E 9 + x N

1. fort-+- 1 tocmdo
2. broadcast (r , STATE)

3.
4.
5 . M S G ~ , ~ + m
6. STATE e s(p , r, (MSGr,l, * , MSG,,,))

7.
8. if DECISION E V then decide DECISION.

until M S G , , ~ # X and I { q E N : M S G , , ~ # A} 1 L n - t do
receive any message (1 , m) from any processor q

DECISION + 9 (p , r , STATE)

We impose the requirement that S(p , r , (m l , * * e , m,)) f
I if and only if there is a set G C N such that p E G, I G I 1
n - t , and m4 # X for all q E G. That is, S (p , r , (m , , . * e ,

m,)) is defined on exactly those message patterns (i.e.,
patterns of which elements of (M I , . . , m,) are defined) that
would cause a correct processor p to exit the inner loop (steps
3-5) and proceed to step 6 . We remark that it is essential to the
operation of Protocol 1 that the transition function is defined
on those message patterns on which it may be evaluated, but it
is only as a technical convenience that we require that it is
undefined on all other message patterns.

A standard-form protocol operates in a series of asynchron-
ous rounds. The rth execution of the body of the main loop is
asynchronous round r . A processor ends asynchronous
round r when it completes the last instruction in its rth
execution of the body of the main loop. At the start of each
asynchronous round, a correct processor broadcasts a message
containing its state. It then waits to receive messages from a
sufficiently large group of processors (including itself). It
computes its new state by applying its transition function to a
triple consisting of its index, its current asynchronous round
number, and the vector of messages received. Finally, it
(possibly) decides on an answer by applying its decision
function to its new state. It may seem unusual that a correct
processor sends a copy of its state to itself (and waits to receive
it) in each asynchronous round. We adopt this convention as a
technical convenience which simplifies our compiler.

We say that M is a message array if it is a two-dimensional
array of A U { A } indexed by 9 + and N (asynchronous
rounds and processor indexes). Message array L is an

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

1546 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

extension of message array M if for all r and p either Lr,p =
Mr,p or Mr,p = A. Let 3n be the set of all message arrays. In
protocol e (A , V, S, a) the variable MSG at any processor is
always an element of 3n. If the value at processorp of MSG,,~ is
ever m, then p received the message (r, m) from processor q.
The value at processor p of M S G , , ~ is X if p has received no
message (r, m) from processor q for any m. It is easy to see
from the code that if processor q sends a message (r, m) to
processor p , then it never sends a message (r, m’) to
processor p. Thus, at any time, the message array MSG at
processor p contains all of the messages received by processor
p up to the present time. Note that messages that arrive “too
late” are stored in MSG at processorp but do not affect the state
or decision of processor p.

B. Filtered Message Arrays
In this subsection, we define a filter that we will use in both

versions of our compiler. This filter operates on message
arrays. It obliterates (replaces by X) messages that Seem
“implausible” and it passes all other messages unchanged. It
is an adaptation of a “validation” scheme due to Bracha [I].
We now define the filter.

For all G C N , define pick(G, (U], - * e , U,)) to be (U;, * * * ,
U;) where U; = U; if i E G and U/ = X otherwise. The
function pick returns a vector in which those elements of (u t ,

e , U,) with indexes in N - G are replaced by X. The
function filter maps from 3n to 3n. Define filter(L) to be M
where

if Ll,p E V;
otherwise,

and

for all r E (2 , 3, * e } and for all p E N. For all p, MI,^
is equal to LIrP if and only if LI,p is an element of V, the set of
possible inputs to the protocol. For allp and for all r 1 2, Mr,p
is equal to Lr,p if and only if there is some set G C N such that
Lr,p is the message that would be sent by a correct processor p
that received the messages in pick(G, (Mr- * , Mr-l,,)).

In the next three lemmas, we prove basic properties of
filtered message arrays.

Lemma I: Suppose that L is a message array and M =
filter(L).ForallrE 4 + a n d p E N, i fMr ,p= X , thenM,+~ ,~
= A.

Proof: Immediate from the definition of filter(L). U
Lemma 2: If L is a message array, then L is an extension of

0
Lemma 3: If message array L is an extension of message

array M, then filter(L) is an extension of filter(M).
Proof: Let L ’ = filter(L) and let M‘ = filter(M). We

prove by induction on r that, for all r and for all p , either Lr?”

filter(L).
Proof: Immediate from the definition of filter(L).

= or M:, = X.

Basis: (r = 1): Consider an arbitrary p E N. IfM;,P = A,
then the claim is trivially true, so assume that M;,p # A. By
Lemma 2, M;,p = By the definition of filter(M), MI,^
E V. Because L is an extension of M, L1,p = MI,p . By the
definition of filter(L), L;,p = L1,p. Thus, L;,p = M;,p.

Induction: Consider an arbitrary p E N. If M;,p = A, then
the claim is trivially true, so assume that M;,, # X. By Lemma
2, Mr:p = Mr,p. Because L is an extension of M, Lr,p = Mr,p.
By the definition of filter(M), there is some set G C N such
that M;-l,g # X for all q E G and

M r , p = S (~ , r -1 , pick(G, (M;-l,l, ..., M;-],,))).

By the induction hypothesis,

pick(G, (M;- * * * M:- I , n))

=pick(G, (L ; -] ,] , * * * , L;-l,,,)).

Thus, by the definition of filter(L), L:,p = Lr,p. So we have
that L;,p = M:,. 0

C. The Object Protocol
Our compiler operates by translating an instance of Protocol

1 customized by A , V, S, and 53 into an instance of Protocol 2
customized by A, V, S, and 9. Throughout the rest of this
paper, an instance of Protocol 2 customized with A , V, S, and
9 is denoted @ (A , V , S, a).

The skeleton of Protocol 2 is similar to that of Protocol 1.
Four important features of Protocol 2 should be noted. First,
Protocol 2 requires that the redundancy be at least four.
Second, there is extra communication in Protocol 2. Each
processor uses this extra communication to construct a
message array called RAW. Third, in Protocol 2 each correct
processor applies its transition function to its copy of the
message array MSG, which it obtains by filtering its copy of the
message array RAW. Fourth, the exit test in step 3 ensures that
the transition function is defined (i.e., not 1) whenever it is
evaluated.

Protocol 2: The Object Protocol (Byzantine Faults, n 1
4t + 1):

Initialization for processor p :
STATE + the initial value of processor p
 VOTE/,^,^,^ +- X for all (I, q, i, U) E 9 + x N x 3t x N
 RAW/,^ + X for all (I, q) E 4 + x N
M S G / , ~ + X for all (I, q) E 4 + x N

broadcast (r, p, 0, STATE)

until MSG,,~ # X and 1 { q E N: MSG,,~ # A} I 2 n - t
do
receive any message (I, q, i, m) from any processor

if VOTE^,^,^,^ = X then

1. f o r r + 1 to 00 do
2.
3.

4.

5 .

7 .
8.
9.

10.
11. MSG + filter(RAw)

U

6. VOTEl>qJ,lI + m
NUM + 1 {s E N:VOTE/,~,~,~ = m} 1
if i = 0 and q = U then broadcast ([, q, 1, m)
if NUM = n - 2t then broadcast (I, q, i + 1, m)
if NUM = n - t then RAW^,^ + m

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

COAN: COMPILER THAT INCREASES FAULT TOLERANCE 1547

12. STATE + S (p , r, (M S G , , ~ , * e , MSG,,,))

13. DECISION + a>(p, r, STATE)
14. if DECISION E I/ then decide DECISION.

As in a standard-form protocol, Protocol 2 operates in a
series of asynchronous rounds. The rth execution of the body
of the main loop is asynchronous round r. At the start of each
asynchronous round, a correct processor p broadcasts a
message containing the current value of the variable STATE at
processor p. It then waits until its filtered message array (i.e.,
the value of MSG at processor p) contains messages from a
sufficiently large group of processors (including itself). It
computes a new value for its copy of the variable STATE by
applying its transition function to a triple consisting of its
index, its current asynchronous round number, and the vector
of messages in its filtered message array. Finally, it (possibly)
decides on an answer by applying its decision function to its
new value of STATE.

A correct processor in Protocol 2 locally maintains the
invariant that MSG = filter(rww), except in steps 10 and 11. It
updates its copy of the array RAW in step 10 and reestablishes
the invariant in step 11. A correct processor places a message
in its copy of the array RAW when it has accumulated enough
votes for that message. It stores the votes that it receives in its
copy of the array VOTES. If VOTES/,~,;,, = m at correct processor
p , then processor U sent processor p a level i vote that RAW^,^
should be m. If a correct processor receives a level 0 vote from
processor q that RAW^,^ should be m , then it sends a level 1 vote
that RAW/,^ should be m. If a correct processor receives n - 2t
level i votes that RAW^,^ should be m , then it sends a level i + 1
vote that RAW/,^ should be m. If it receives n - t level i votes
that RAW/,^ should be m , then it sets its copy of RAW/,^ to m.

D. Preliminary Lemmas
In this subsection, we give five lemmas that will be of use in

our main correctness argument in the next subsection. The
first four lemmas establish some basic properties of the
communication primitives used in Protocol 2 and the last
lemma establishes an important liveness property for Protocol
2 .

Lemma 4: Let r E 4 + andp E N. If any correct processor
ever assigns any value m to its copy of RAW,,^ in an execution
of protocol @ (A , V , S, D), then every correct processor
eventually assigns the value m to its copy of RAW,,^ and no
correct processor ever assigns any value m ’ # m to its copy
of

Proof: Any correct processor that assigns a value to its
copy of RAW,,^ does it immediately after receiving an (r, p , i ,
m ’) message for some i E 32. and m ’ E A . We call such a
message a level i message. Let j be the smallest number such
that a level j message causes some correct processor to assign
a value of its copy of RAW,,^, let q be such a processor, and let
d be the value assigned. Processor q gets n - t messages (r,
p , j , d) . At least n - 2t are from correct processors. There
are at most 2t processors that could send an (r , p , j , d ’)
message for any d‘ # d. Thus, no correct processor assigns
any d’ # d to its copy of RAW,,^ based on a level j message. It
is easy to show by induction o n j ’ that for a l l j ’ 2 j + 1 and
for all d’ # d there are no (r, p , j ’ , d’) messages sent by any

correct processor. All correct processors eventually receive n
- 2t messages (r, p , j , d) and broadcast an (r, p , j + 1, d)
message. Thus, each correct processor eventually receives n
- t messages (r, p , j + 1, d) and assigns d to its copy of

Based on Lemma 4, for all r E 4 + and p E N, we define
the eventual value of RAW,,^ in an execution of protocol 63 (A ,
V, S, a>), denoted RAW,,^], to be the common value assigned
to RAW,,^ by the correct processors. If the correct processors
never assign a value to RAW,,^, then we define RAW,,^] to be h.
(Note that RAW,,^] is an abstract global variable which we
define based on the many local copies of RAW,,^ maintained by
the correct processors.) We define the eventual value of RAW,

denoted [RAW], in the obvious way. That is, [RAW] is the two-
dimensional array whose elements are the eventual values of
the corresponding elements of RAW. Based on Lemmas 3 and
4, we define the eventual value of MSG,,~ and MSG analogously.

Lemma 5: If a correct processor p ever broadcasts the
message (r, p, 0, m) for any r and m , then RAW,,^] = m.

Proof: All n - t correct processors eventually receive
the message (r, p, 0, m) from processor p . They all broadcast
the message (r , p , 1, m) . All n - t correct processors
eventually receive at least n - t copies of the message (r, p, 1,
m) and at most t copies of any message (r, p, 1, m ‘) for any
m‘ # m. Each correct processor assigns m to its local copy of

0
Lemma 6: Let r E 4 + . If a correct processor p never

broadcasts a message (r, p , 0, m) for any m, then RAW,,^] =
A.

Proof: It is easy to show by induction on i that no correct
processor ever sends a message (r, p, i , m) for any m.
Therefore, no correct processor ever assigns any value to its

0
Lemma 7: If M is the value of the variable RAW at some

processor p at some time in an execution and L is the value of
the same variable at processor p at some later time in the same
execution, then L is an extension of M.

0
In the next lemma, we prove an important liveness property

Lemma 8: [MSG,,~] # h for all r E 4 + and for a l lp E N -

M W r , p * 0

 RAW,,^, and so RAW,,^] = m.

copy of RAW,,^ and so RAW,,^] = h.

Proof: Immediate from Lemma 4.

of Protocol 2 .

F.
Proof: The proof is by induction on r.

Basis: (r = 1): Let p be an arbitrary correct processor. Let U
E V be the input to processor p. In its first step, processor p
sends the message (1, p , 0, U). By Lemma 5, RAW^,^] = U. By
the definition of filter, [M S G ~ , ~] = U.

Induction: Let p be an arbitrary correct processor. By the
induction hypothesis, [M S G , - ~ , ~] # A. By Lemma 2 ,
[R A W , - I , ~] # A. By Lemma 6, there is some time when
processorp sends the message (r - 1, p , 0, m ’) for some m ’ .
Thus, there is some time at which processor p executes the
broadcast (step 2) in asynchronous round r - 1.

By the induction hypothesis, [MSG,- l,q] # h for all q E N
- F. By Lemmas 3 and 7, there is some time after which the
variable MSG at processor p always satisfies the condition that
M S G , - ~ , ~ # h for all q E N - F. Therefore, processor p
eventually sends some message (r , p, 0, m). Let M be the

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 12, DECEMBER 1988 1548

value of the variable MSG at processor p when processor p
sends the message (r, p , 0, m). It follows from the code that

~ = S (P , r-1, (M~- I , I , ‘ ‘ ’ 3 Mr-1.n))-

By Lemmas 3 and 4, [MSG] is an extension of M. Therefore,
there is a G C N such that

followed by 3) the receipt by processor p of all of the
remaining (non-X) messages in (M,,I, - . . , Mr,n).

Suppose E = (F, I, a) is an arbitrary execution of protocol
@(A, V , S, 9). We define crash(E) to be (F, (i;, * . . , i;),
ai a; * ‘) where

[M S G I , ~] if [M S G I , ~] f X;
j‘=

~ = S (P , r- 1, p W G , ([M s G , - I , I I , a - . , [M S G , - I , J))) . I, otherwise,
By Lemma 5, RAW,,^] = m. By the definition of filter,

and for all r [MSGr,p] = [RAWr,p]. Thus, [MSGr,p] # X.

E. Proof of Correctness
In this subsection, we show for any A , V, S, and 9 that if

protocol (?(A, V , S, 9) solves some problem (formalized by
a correctness predicate and a requirement that all correct
processors eventually decide), then protocol @(A, V , S, 9)
solves the same problem. Recall that protocol C!(A, V, S, 9)
operates in the crash fault model and protocol 63 (A, V, S, 9)
operates in the Byzantine fault model. Our approach is to
exhibit for any execution E of protocol @(A, V, S, 9) an
execution of protocol (?(A, V , S, 9) in which the correct
processors “do the same thing” that they did in execution E.
More specifically the property we seek is that the “eventual
value” of MSG in the constructed execution of protocol (? (A,
V , S, 9) is equal to the eventual value of MSG in execution E
of protocol @(A, V, S, 9).

Let uo be an arbitrary fixed element of V. In this subsection,
we will find it convenient to use uo as a “default input.”

We now construct for any execution E of protocol 63 (A, V,
S, 9) a sequenced execution of protocol (?(A, V, S, a),
denoted crash(E), in which the correct processors “do the
same thing” that they did in E. Because crash(E) is a
sequenced execution in the crash fault model, it is completely
determined by the following three items: 1) the inputs to the
processors, 2) the number, if any, of the last phase in which
each processor takes steps, and 3) the order in which each
operating processor receives its phase r messages for each r.
We will construct crash@) so that the following three
properties hold: 1) the input to processor p is [M S G ~ , ~] if
[M S G ~ , ~] # X and uo otherwise, 2) a processorp sends a phase r
message if and only if [MSG, ,~] # A, and 3) messages are
delivered to a processor p in phase r in an order that causes
processor p to send the message (r + 1, [MSG,+ I,p]).

Suppose p E N, r E X , and 3TZ is a message array. Define
support(p , r, M) to be the lexicographically least set G C N
such that Mr-l ,q # X for all q E G and

M r , p = s (~ , r -1 , pick(G, (M ~ - I , I ~ Mr-l,n))).

If there is no such set G , then define support(p , r, M) to be 0.
If M I , p = X, then define P(0, p , M) to be the empty

sequence of events; otherwise, define P(0, p , M) to be the
event (step: p). For all r I 1, if M,, I ,p = X, then define P(r,
p , M) to be the empty sequence of events; otherwise, define
P(r, p , M) to be the sequence of events that consists of 1) the
receipt by processorp of all of the (non-X) messages in (M r , ~ ,

* * , Mr,n) that are from processors in support(p, r + 1, M)
- { p } followed by 2) the receipt by processor p of Mr,p

a: =P(r, 1, [MSGI)P(~, 2, [MSGI), * * P(r, n, [MSGI).
Lemma9:Letp E N, q E N , r E X , andm E A . Let L

be a message array. Let M = filter(L). Let C be an initial
configuration for protocol (?(A, V, S, 9). Let a’ = aoal . * *

where (for 0 I r ’ I r - l)a,, = P(r’, 1, M) * * -

P(r’, n , M) . Suppose that a’ is a schedule that is applicable to
configuration C. Suppose that processor p sends an (r, m)
message to processor q in a’(C). Then m = Mr,p.

Proof: There are two cases.
Case I : (r = 1): Let U be the input to processor p in

configuration C. Clearly, m = U. To send the message (1, m),
processor p must take at least one step in schedule a’. It
follows from Lemma 1 and the definition of a’ that # A.
By the construction of a‘, U = Thus, m =

Case 2: (r L 2): Let M‘ be the value of the variable MSG at
processor p in protocol C! (A , V, S, 9) after the application of
the event that causes the sending of the message (r, m) from
processor p to processor q. By Lemmas 3 and 7, message
array M is an extension of message array M’ . Because the
message (r, m) is sent in a‘(C), we have that support(p, r,
M) # 0. We claim that

(M;-l,I, M;-l,n)

=pick(support (P, r, M) , (M r - 1 , l r . . ‘ 3 Mr- I , n)) *

The claim follows by the definition of P(r - 1, p , M) . Using
the claim, we calculate that

m = S (p , r - 1 , (M;-l,l, - . . ,M;- , , ,)) Fromthecode.

=S(p , r- 1, pick(support (p , r, M) ,

(Mr- a , Mr- I ,n))) By the claim.

=Mr,p. By the definition of support. 0

Lemma IO: If E = (F, (il, . , in), a) is an execution of
protocol @(A, V, S, a), then E’ = crash(E) is an execution
of protocol (!?(A, V , S, 9).

Proof: Suppose that E = (F, I’ , a’) where I‘ = (i; ,
* * e , i;). Partition the schedule a’ into subschedules ai, a;,
etc., with a,’ defined as it is in the definition of crash.

To show that E ‘ is an execution of protocol C!(A, V , S, 9)
we verify the following three properties. 1) The schedule a’ is
applicable to the initial configuration C of (? (A , V, S, 9) in
which F is the set of faulty processors and in which processor
p begins in the initial state that corresponds to input id for all p
E N. 2) All processors in N - F take an infinite number of
steps. 3) If processor q takes an infinite number of steps, then

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

COAN. COMPILER THAT INCREASES FAULT TOLERANCE 1549

every message that is sent to processor q is eventually
delivered.

Property 1: We prove for all r E 32 that all events in a,’ are
applicable. The proof is by induction on r.

Basis: (r = 0): All events in U; are of the form (step: p) for
some p E N. It is immediate that a; is applicable to
configuration C.

Induction: Pick an arbitrary event e = (receive: q, p, (r,
[MSG, ,~])) from the schedule ar’ . By the induction hypothesis,
the schedule ad a; * * . a,’- is applicable to configuration C .
The event e is in the schedule p(r, q, [MSG]). By the definition
of P(r , q, [MSG]), [M S G , , ~] # h. By the definition of P(r - 1,
p , [MSG]), processorp sends some message (r, m) to processor
q in a; a,’ * a,’-, (C) . By Lemma 9, m = [MSG, ,~] . Thus, the
message (r, [MSG, ,~]) is placed in the buffer of processor q. It is
easy to see that the event e is unique in the schedule U ‘ .

Therefore, the message (r, [MSG,,~]) is in the buffer of
processor q in the configuration just before the event e is
applied. It follows that the schedule a; a; * ar’ is applicable
to configuration C.

Property 2: We prove that all processors in N - F take an
infinite number of steps. Let p be an arbitrary element of N -
F. By Lemma 8, [MSG,,~] # h for all r E 4’. By the
construction of U’, each (non-h) message in [MSG] is delivered
to processor p in the execution (F, Z’, U’). There are an
infinite number of such messages To receive all of these
messages, processor p must take an infinite number of steps.

Property 3: Let q by any processor that takes an infinite
number of steps in execution E ’ . We prove that every message
sent to processor q is eventually delivered. Consider an
arbitrary message (r , m) sent from a processor p to the
processor q in E ’ . By property 1 and Lemma 9, m = [MSG,,~].

We now show that the message (r , [MSG,,~]) is delivered to
processor q in execution E‘. Processor q takes an infinite
number of steps in execution E‘. By the definition of E ‘ ,
[M S G , , , ~] # h for infinitely many r’. By Lemma 8 , [M S G , , , ~]

h for all r’. So [M S G , + ~ , ~] # A. By construction, the
schedule p(r, q , [MSG]) includes the event (4 , p , (r, [MSG,,~])).

Thus, the message (r , m) is delivered in the execution
E ’ . 0

Lemma 11: If E is any execution of protocol @ (A , V, S,
a), then the executions E and E ‘ = crash(E) have the same
set of faulty processors and the same inputs to the correct
processors.

Proof: It is immediate that executions E and E ‘ have the
same faulty processors. We now show that the correct
processors have the same inputs in executions E and E‘. Let p
be an arbitrary correct processor. Suppose that in execution E
processor p has input U E V. Processor p broadcasts the
message (1, p , 0 , U) in its first step in execution E. By Lemma
5 , RAW^,^] = U. By the definition of filter, [M S G ~ , ~] = U.

0
If E is an execution of either protocol e (A , V, S, D) or

protocol @ (A , V, S, D), processorp is correct in E, and r E
32, then we define state(p , r, E) to be the (r + 1)st value that
processor p assigns to its copy of the variable STATE in the
execution E. For example, state(p, 0, E) is the input to
processor p .

Thus, the input to processor p in execution E’ is U.

Lemma 12: If E is an execution of protocol 03 (A , V , S, 9)
and E‘ = crash(E), then state(p , r, E) = state(p , r , E ‘) for
all (p , r) E (N - F) x 9+ .

Proof: If r = 0, then the claim follows from Lemma 11.
Suppose instead that r 2 1. By the construction of the
execution E ’ ,
STATE(P, r, E ’) = S (p , r + 1,

pick(support (P , rr [MSGI), ([MSGr,lIr ’ . ’ 9 [MSGr,nI))) .

By the definition of support

S(P, r + 1, pick(supp0fl (P , r , [MSGI),

([MSGr,lI, * * ’ 9 [MSGr,,]))) = [MSGr+ 1,pI .

By the definition of filter, [MSG,+ I,p] = [RAW,+ I , p] . By Lemma
5, STATE(P, r , E) = RAW,+^,^]. Thus, STATE(^, r, E ’) =
STATE(P, r , E).

Theorem 13: If n 2 41 + 1, then the following two
conditions hold.

Correctness condition: If protocol C (A , V , S, 9)
satisfies some correctness predicate 6 , then so does protocol

Decision condition: If protocol e (A , V, S, 9) decides,

Proof: We verify that the two conditions are satisfied.
Correctness condition: Suppose protocol e (A , V , S, 9)

satisfies correctness predicate 6. Let E = (F, Z, a) be an
arbitrary deciding execution of @ (A , V, S, D). Let E ‘ =
crash(E). By Lemma 10, E‘ is an execution of C (A , V , S,
D). Suppose E’ = (F’ , Z’, U’). By Lemma 11, F = F’ and
inp(E) = inp(E’). By Lemma 12, E ’ is a deciding execution
and ans(E) = ans(E’). Therefore, 6(inp(E), ans(E)) =
6(inp(E’), ans(E’)) and @(A, V, S, 9) also satisfies
correctness predicate 6.

Decision condition: We prove the contrapositive of the
claim. Suppose that protocol @ (A , V, S, 9) does not decide.
By the definition of decision, there is some nondeciding
execution E of protocol @ (A , V, S, 9). Let E ‘ = crash(E).
By Lemma 10, E ‘ is an execution of (?(A, V, S, 9). By
Lemma 12, execution E ‘ is a nondeciding execution of C (A ,
V, S, D). Thus, protocol e (A , V, S, 9) does not decide.U

Theorem 14: Let I E V”. If protocol C (A , V, S, 9) has
running time r for input I and n 2 4t + 1, then protocol
@ (A , V , S, 9) has running time 2 . r for input I.

Proof: By assumption, all correct processors decide by
time r in all timed executions of protocol C (A , V, S, 9) with
input I . We claim that all correct processors decide by the end
of asynchronous round r in all executions of protocol C (A , V,
S, D) with input I . Suppose not. Then, there is some
execution E of protocol C (A , V , S, 9) with input Z in which a
correct processor decides in asynchronous round r ’ for some
r’ > r. We can construct a sequenced execution E’ of
protocol e (A , V , S, D) in which the sequence of values
assigned to the variable STATE at each correct processor is the
same as it is in execution E. It should be clear that each correct
processor decides in the same asynchronous round in execu-
tions E and E‘. For the sequenced execution E ‘ , consider the
obvious 1 -bounded timing S ’ where receiving an asynchron-

@(A, I/, s, 9).

then so does protocol @ (A , V, S, a).

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988 1550

ous round r“ message takes place at time r”. In the timed
execution (E’, S ’) , there is a correct processor which decides
at time r‘. This contradicts the assumption that there is no such
execution. Thus, we have proved our claim that all correct
processors decide by the end of asynchronous round r in all
executions of protocol (?(A, V , S, 9) with input I.

Let (E”, S ”) be an arbitrary timed execution of protocol
@(A, V , S, 9) with input I. It follows from Lemma 12 that if
there is a correct processor in the execution crash(E”) of
protocol (?(A, V , S, 9) that decides in asynchronous round r’
for some r’, then the same correct processor decides in
asynchronous round r’ in execution E“ of protocol @(A, V,
S, 9). It follows from the claim that all correct processors in
execution E“ decide by asynchronous round r.

We can show by induction on r“‘ that in the timed execution
(E”, S ”) of protocol @(A, V , S, 9), all processors end
asynchronous round r”‘ at or before time 2.r“‘. Thus, all
correct processors in the timed execution (E ” , S ”) decide by
time 2 - r. 0

F. A n Alternative Object Protocol
The alternative version of our compiler operates by translat-

ing an instance of Protocol 1 customized by A , V, S, and 9
into an instance of Protocol 3 customized by A , V , S, and 9.
Throughout the rest of this paper, an instance of Protocol 3
customized with A , V , S, and 9 is denoted @ ’ (A , V , S, 9).
Protocol 3 requires that the redundancy be at least three. It
uses the function filter defined in Section IV-B.

The only difference between Protocol 3 and Protocol 2 is
that in Protocol 3 we use a different set of communication
primitives to install elements in the message array RAW. They
are the communication primitives developed by Bracha [11.

Protocol 3: The Object Protocol (Byzantine Faults, n 2
3t + 1):

Initialization for processor p :
STATE + the initial value of processor p
 VOTE^,^,^,^ +- X for all (1, q, i , U) E 4 + x N x X x N
 RAW!,^ + X for all (1, q) E 4 + x N
M S G ~ , ~ + X for all (I, q) E 4 + x N

broadcast (r, p , 0, STATE)

until MSG, ,~ # h and I { q E N: MSG,,~ # X } I 2 n - t
do
receive any message (1, q, i, m) from any processor

if VOTE^,^,^,^ = X then

1. for r + 1 to 03 do
2 .
3.

4.

5 .

7.
8.
9. if i = 1 and NUM = n - t then broadcast

10. if i = 2 and NUM = n - 2t then broadcast

1 1 .
12. MSG +- filter(RAw)

14.
15. if DECISION E V then decide DECISION.

U

6. VOTEi,q,i,u + m
NUM +- I {s E N:VOTE,,~,~,~ = m } I
if i = 0 and q = U then broadcast (1, q, 1, m)

(1 9 4 , 2 , m)

(1, 4 , 2 , m)
if i = 2 and NUM = n - t then RAW^,^ + m

13. STATE +- s (p , r, (M S G r , 1 , ” * , MSGr,,))

DECISION +- 9 (p , r, STATE)

Theorem 15: If n L 3t + 1 , then the following two
conditions hold.

Correctness condition: If protocol (?(A, V , S, 9)
satisfies some correctness predicate 6, then so does protocol
@’(A, V , S, 9).

Decision condition: If protocol (? (A, V , S , 9) decides,
then so does protocol @’(A, V , S, 9).

Proof sketch: We begin by proving the analogues of
Lemmas 5,6,7, and 8. The remainder of the proof is identical

0
Theorem 16: Let I E Vn. If protocol (?(A, V , S, 9) has

running time r for input I and n 2 3t + 1 , then protocol
@’(A, V , S , ’33) has running time 3.r for input I .

0

to the proof of Theorem 13.

Proof: Similar to the proof of Theorem 14.

V . APPROXIMATE AGREEMENT PROTOCOLS
We use our compiler to simplify the design of a new

approximate agreement protocol that operates in the Byzantine
fault model. In Section V-A, we review some definitions and
basic results regarding multisets. In Section V-B, we give an
approximate agreement protocol that operates in the crash
fault model. In Section V-C, we prove our approximate
agreement protocol correct in the crash fault model. In Section
V-D, we apply the two versions of our compiler to the
approximate agreement protocol given in Section V-B. In the
Byzantine fault model, we compare the performance of our
compiled protocols to the performance of the protocol of
Dolev et al.

A. Preliminary Definitions
We give some definitions and prove some basic facts about

multisets. The presentation in this subsection borrows heavily
from Dolev et al. [5]. Lemma 19 of this subsection is very
similar to Lemma 5 of Dolev et al.

We view a finite multiset U of reds as a function U : 6i --*
92 that is nonzero on at most finitely many r E 63. Intuitively,
the function U assigns a multiplicity to each real number. In
the remainder of this section, the term multiset always refers
to finite multisets of reals as described above.

The cardinality of a multiset U is given by CrE o1 U(r) and is
denoted by I UI. A multiset is empty if its cardinality is 0;
otherwise it is nonempty. Multiset U is a subset of multiset
V, written U C V, if U(r) I V(r) for all r E 6i. The
minimum min(U) of a nonempty multiset U is given by
min(U) = min{r E a: U(r) # O } . The maximum max(U)
is defined analogously. If multiset U is nonempty, let p (U)
(the range of U) be the closed interval [min(U), max(U)],
and let & (U) (the diameter of U) be max(U) - min(U).

For the remainder of this paper, let c = L(n - l) / t] . The
constant c, which is the floor of the redundancy, plays a role in
the definition of our averaging functions and, as we will see in
Theorem 25, is the convergence rate of our approximate
agreement protocol. Suppose that U is a multiset with I U1 =
n - t. Let MO I u1 I . - * I be the elements of U in
nondecreasing order. Define select(U) to be the multiset
consisting of the elements uo, U t , * * * , u (, + I) . ~ . Thus,
select(U) chooses the smallest element of U and every tth
element thereafter. The median of multiset U , written

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

COAN: COMPILER THAT INCREASES FAULT TOLERANCE 1551

median(U), is defined to be U, where m = LIUl/2J. The
mean of multiset U, written mean(U), is defined to be

r - U(r)
mean (U) = ~ .

rea 1'1
In our approximate agreement protocol, we will use the two
averaging functions median(U) and mean(select(U)). The
next three lemmas characterize the convergence properties of
these functions.

Lemma 17: If U and V are multisets such that V C U, then
median(V) E p(U) and mean(select(V)) E p (U) .

Proof: This is immediate from the definition of the

Lemma 18: If U, V, and Ware multisets such that I VI =

IWI = n - t , V C U, W C U, and IUI I n, then
median(V) E p (W) .

Proof: Let uo I u1 I * * - 5 U,-,- I be the elements of
V, let WO I w1 I * * I w,-~- I be the elements of W, and
let uo I u1 I I ullll-l be the elements of U. We
calculate that

averaging functions. 0

median (V) 1 ut Because 1 VI 2 2t + 1.

?ut Because V C U.

> W O

=min (W).
Because W C Uand 1Ul-l W I s t .

Thus, median(V) L min(W). By a similar argument,
median(V) I max(W). It follows that median(V) E p (W).

Lemma 19: If U, V, and Ware multisets such that 1 VI =
1WI = n - t , V C U, W C U, and J U (I n, then
I mean(select(V)) - mean(select(W)) I 5 6 (U) / c .

Proof: Let uo I uI I * I U,- be the elements of
select(V) and let wo I w1 I I w,- I be the elements of
select(W).

We claim that max(ui, w;) I min(u;+ for 0 I i I c
- 2. Let uo I uI I * * * I zqU+ be the elements of U.
Observe that U; I U(;+ I) . f I U;+ because V C U and because
there are at most t elements of U that are not in V. Similarly,
w; I U(;+ I wi+ Thus, max(u;, w;) I min(u;+ w;+ I) for
0 I i I c - 2. This concludes the proof of the claim.

Let x = I mean(select(V)) - mean(select(W)) 1 . We use
the claim in the calculation that follows.

wi+

1 r-1

c j - 0
5- * 2 1 ui- w;l By the triangle inequality.

1 c - 1

c 1-0

1

=- *

=- (max (uc- 1, wc- I) - min (uo, wo)

(max (U;, w;)-min (vi, wi))

C

c - 2

+E (max (U;, wi)-min (u;+l, wi+l)))
i = O

~ (m a x (~ ~ - 1 , ~ , - ~) - m i n (uo, wo)) / c

I (max (U) - min (U)) / c

By the claim.

Because V C U and W c U.

= 6 (U)/C.

B. The Protocol

0

Our approximate agreement protocol is given as Protocol 4.
A processor begins the protocol by assigning its input value to
the variable VAL. The protocol is organized into a series of
asynchronous rounds. In each asynchronous round, each
processor that is still operating broadcasts the value of VAL,
waits to receive at least n - t values broadcast in the current
asynchronous round, places the multiset of these n - t values
in the variable SAMPLE, and applies an averaging function to
SAMPLE to get a new value for VAL. In the first two
asynchronous rounds, the averaging function used is median.
In subsequent asynchronous rounds, it is mean 0 select, where
0 denotes function composition. In asynchronous round 2,
each processor that is operating calculates an upper bound on
the number of asynchronous rounds required and stores the
bound in the variable ROUNDS. When sufficient asynchronous
rounds have elapsed, a processor decides on the current value
of VAL as its answer.

Protocol 4: An Approximate Agreement Protocol
(Crash Faults, n L 3t + 1):

Initialization for processor p :
VAL + the initial value of processor p

1. f o r r t l t o m d o
2. broadcast (r , VAL)

3.
4.

5 . if r = 1 then
6. VAL + median(sAMPLE)
7. if r = 2 then
8. VAL + median(sAMpLE)
9.

wait to receive (r, *) from n - t processors
let SAMPLE be the multiset of values received in the

previous step

ROUNDS + 2 + rlog,(max(1, ~(SAMPLE)/E))~
10. if r = ROUNDS then decide VAL

11. i f r > 3 then
12. VAL + mean(select(sAMPLE))
13. if r = ROUNDS then decide VAL.

Some straightforward translation is necessary to put Proto-
col 4 in standard form. We omit the details.

C. Proof of Correctness
For all r L 1, we say that a processor p finishes

asynchronous round r if it completes the last instruction in the
code for asynchronous round r.

Lemma 20: In every execution of Protocol 4, for all r , all
correct processors eventually finish asynchronous round r.

0
In an execution of Protocol 4, we let X o denote the multiset

containing the inputs to all of the correct processors and we let

Proof: An easy induction on r.

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

1552 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 12, DECEMBER 1988

X, denote the multiset containing the value of the variable VAL

at the end of asynchronous round r for all processors that
finish asynchronous round r. It follows from Lemma 20 that
IX,l L n - t for all r.

The next three lemmas help establish the convergence of our
approximate agreement protocol. In proving these lemmas, we
use the properties of our two averaging functions that we
proved in Section V-A.

Lemma 21: If r L 1, then p(Xr) C p (X r - 1) .
Proof: There are two cases. Either r = 1 or r L 2.

Case I : (r = 1): Let U be the multiset of inputs to all
processors. Because there are n processors, 1 U\ = n. Let W
be the multiset of inputs to an arbitrarily chosen set of n - t
correctprocessors. Clearly, W C Xo C Uand (W(= n - t .
Let p be an arbitrary processor that finishes asynchronous
round 1. Let V be the multiset of values received by processor
p in asynchronous round 1. Because there are only crash
faults, V C U. From step 2 of the code, I VI = n - t . We
have established that the multisets U, V, and W satisfy the
preconditions of Lemma 18; therefore, median(V) E p(W)
C p (XO). Because median(V) is an arbitrarily chosen element
of X, , we have that p(Xl) C p(Xo).

Case 2: (r 1 2): Let U = X r P l . Let p be an arbitrary
processor that finishes asynchronous round r. Let V be the
multiset of values received by processor p in asynchronous
round r. Because there are only crash faults, V c U. If r. = 2,
then let a = median (V) ; otherwise, let a = mean(select(V)) .
We have established that the multisets U and V satisfy the
preconditions of Lemma 17; therefore, a E p(X,- ,). Because
a is an arbitrarily chosen element of X,, we have that p (X,) C
AXr- 1)- 0

Lemma 22: If Y is the multiset of values received by an
arbitrary correct processor in asynchronous round 2, then
6(X,) I 6 (Y) .

Proof: Let U = Xl. Because there are n processors, 1 U1
I n. Let p be an arbitrary processor that finishes asynchron-
ous round 2. Let V be the multiset of values received by
processor p in asynchronous round 2. Let W = Y. Because
there are only crash faults, V C U and W C U. From step 2
of the code, 1 VI = 1 WI = n - t . We have established that
the multisets U, V, and W satisfy the preconditions of
Lemma 18; therefore, median(V) E p (W) = p(Y). Because
median(V) is an arbitrarily chosen element of X2, we have
that p(X2) C p (Y) . It is immediate that 6(X2) I 6 (Y) . 0

Lemma 23: If r L 3, then 6(X,) I 6(X,- l)/c. (Recall that
c is the floor of the redundancy.)

Proof: Let U = X r - l . Because there are n processors,
1 U (I n. Let p and q be two arbitrary processors that finish
asynchronous round r. Let V be the multiset of values received
by processor p in asynchronous round r and let W be the
multiset of values received by processor q in asynchronous
round r. Because there are only crash faults, V C U and W C
U. From step 2 of the code, I VI = 1 W(= n - t . We have
established that the multisets U, V, and W satisfy the
preconditions of Lemma 19; therefore, I mean(select(V)) -
mean(select(W)) (I 6(X,- l)/c. Because mean(select(V))
and mean(select(W)) are arbitrarily chosen elements of X,,
we have that 6(X,) I 6(X,-l)/c. 0

Theorem 24: In the crash fault model, Protocol 4 solves the
approximate agreement problem.

Proof: We show that the agreement, validity, and
decision conditions are satisfied.

Agreement condition: Let p and p ' be arbitrary correct
processors. Suppose that processor p decides U in asynchron-
ous round r and processor p ' decides U' in asynchronous
round r' . Without loss of generality, assume that r I r' . Let
Y be the multiset of values received by processor p in
asynchronous round 2.

We claim that ~ (Y) / c ' - ~ L a(&) for all i 2 2. The proof
of the claim is by induction on i. The basis (i = 2) is
immediate from Lemma 22. The inductive step is immediate
from Lemma 23.

From steps 9, 10, and 13 of the code, r = 2 + rlo&(max(l,
6(Y)/€))I. It follows that E L 6(Y) / c ' - ~ . By the claim, E 2
6 (X,). Clearly, U E X, and U ' E X , , . By repeated application
of Lemma 21, U E p(Xr). Thus, (U - U' I I 6(X,) I E .

Validity condition: If U is the decision of some correct
processor, then there is some r such that U E Xr. By repeated
application of Lemma 21, p (X r) C ~(XO). Thus, U E p(X0)
and there are correct processors with inputs min(Xo) and
max(Xo) such that min(Xo) I U I max(Xo).

Decision condition: Let p be an arbitrary correct proces-
sor. Processor p assigns some value-an integer greater than
or equal to 2-to the variable ROUNDS in asynchronous round 2;
it never changes the variable ROUNDS after asynchronous round,
2. Eventually, processor p calculates that r = ROUNDS and it
decides on some answer in either step 10 or step 13. Thus,
each correct processor eventually decides. Because there are a
finite number of correct processors, all correct processors
eventually decide. 0

We say that an approximate agreement protocol has
convergence rate 1 if there is some constant k such that in
every timed execution where the multiset of inputs to the
correct processors is X, all correct processors decide by time

Theorem 25: The convergence rate of Protocol 4 is c.
Proof: For all r 1 1, it is easy to see that in any timed

execution of Protocol 4, asynchronous round rends by time r.
Thus, it is sufficient to show that every correct processor
decides by asynchronous round 2 + rlo&(max(l, 6(XO)/c))1.

Let p be an arbitrary correct processor. Let Y be the
multiset of values received by processor p in asynchronous
round 2. It is clear that Y C XO. So, 6 (Y) I ~(XO) and
processor p assigns the value 2 + [log, (max(1, 6 (Y) / €)) I to
the variable ROUNDS. Thus, processor p decides by asynchron-

0

D. Approximate Agreement with Byzantine Faults
So far in this section, we have developed an approximate

agreement protocol that tolerates crash faults. We now apply
the two versions of the compiler developed in Section IV to
produce approximate agreement protocols that tolerate Byzan-
tine faults.

It is possible to express Protocol 4 in the standard form
defined in Section IV-A. That is, there are A , V, S, and 9
such that Protocol 4 can be expressed as e(A, V, S, 9). For

k + riog,(max(l, 6(x)/E))i.

ous round 2 + rlog,(max(l, 6(&)/€))1.

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

COAN: COMPILER THAT INCREASES FAULT TOLERANCE

Protocol

B (A , V,S, D)
W A , v,s,m

TABLE I
COMPARISON OF PERFORMANCE

Convergence Rate Minimum Redundancy

J c 4

fi 3

B (A , V , S , D)

B ’ (A , V , S , D)

I

Dolevet al. I IW-11/21 I 5 1

- 2 2.24 2.45 2.65 2.83

1.44 1.59 1.71 1.82 1.91 2

TABLE II
CONVERGENCE RATE FOR SPECIFIC VALUES OF c

the remainder of this paper, we let A , V, S, and 6) be chosen
in that way.

Theorem 26: In the Byzantine fault model, for c 1 4,
protocol @ (A , V, S, 6)) solves the approximate agreement
problem with a convergence rate of &.

Proof: Correctness follows from Theorems 13 and 24. It
follows from Theorems 14 and 25 that the convergence rate is

Theorem 27: In the Byzantine fault model, for c 1 3,
protocol 63 ’ (A , V, S, 6)) solves the approximate agreement
problem with a convergence rate of %.

Proof: Correctness follows from Theorems 15 and 24. It
follows from Theorems 16 and 25 that the convergence rate is

In Tables I and 11, we compare the Dolev et al. protocol to
the two compiled versions of our approximate agreement
protocol. To compare the convergence rates, we need to
overcome one obstacle. For our definition of convergence
rate, the Dolev et al. protocol, as published, has no bounded
convergence rate. The difficulty lies with the method that
correct processors use to estimate the number of asynchronous
rounds required until decision. Faulty processors can cause
this estimate to be unboundedly pessimistic. This difficulty
could easily be overcome if the Dolev et al. protocol were
modified to use an estimation method similar to the one used in
our Protocol 4. To allow for a fair comparison of convergence
rates, we assume that the Dolev et al. protocol has been
modified in this way.

In Table I , we compare the convergence rates and the
minimum required redundancy. We can see that the asymp-
totic convergence rate of the Dolev et al. protocol is better
than the asymptotic convergence rate of either compiled

&. 0

%. 0

1553

version of our protocol. Our protocols, however, operate with
a smaller amount of redundancy.

In Table 11, we give numerical values of the convergence
rate for specific small values of c. The data in Table 11 show
that, for any system with n I 7 t , there is a compiled version
of our approximate agreement protocol that has a better
convergence rate than the Dolev et al. protocol.

ACKNOWLEDGMENT
I would like to thank C. Dwork, A. Fekete, N. Lynch, S.

Toueg, W. Weihl, J. Welch, and the anonymous referees for
many helpful comments on various versions of this paper.

REFERENCES

G. Bracha, “Asynchronous Byzantine agreement protocols,” Inform.
Computat., vol. 75, pp. 130-143, Nov. 1987.
M. F. Bridgland and R. J. Watro, “Fault-tolerant decision making in
totally asynchronous distributed systems,” in Proc. Sixth Annu.
ACM Symp. Principles Distributed Comput., Aug. 1987, pp. 52-
63.
B. A. Coan, “Achieving consensus in fault-tolerant distributed
computer systems: Protocols, lower bounds, and simulations,’’ Ph.D.
dissertation, Massachusetts Instit. of Technol., Apr. 1987.
D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchro-
nism needed for distributed consensus,” J . ACM, vol. 34, pp. 77-97,
Jan. 1987.
D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” J .

A. D. Fekete, “Asymptotically optimal algorithms for approximate
agreement,” in Proc. Fifth Annu. ACM Symp. Principles Distrib-
uted Comput., Aug. 1986, pp. 73-87.
M. J. Fischer, N. A. Lynch, and M. Merritt, “Easy impossibility
proofs for distributed consensus problems,” Distributed Comput.,
vol. 1, pp. 26-39, Jan. 1986.
M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, pp.
374-382, Apr. 1985.
S. R. Mahaney and F. B. Schneider, “Inexact agreement: Accuracy,
precision, and graceful degradation,” in Proc. Fourth Annu. ACM
Symp. Principles Distributed Comput., Aug. 1985, pp. 237-249.
G. Neiger and S. Toueg, “Automatically increasing the fault-tolerance
of distributed systems,’’ in Proc. Seventh Annu. ACM Symp.
Principles Distributed Comput., Aug. 1988, pp. 248-262.

ACM, vol. 33, pp. 499-516, July 1986.

Brian A. Coan received the B.S.E. degree in
electrical engineering and computer science from
Princeton University, Princeton, NJ, in 1977, the
M.S. degree in computer engineering from Stanford
University, Stanford, CA, in 1979, and the Ph.D.
degree in computer science from the Massachusetts
Institute of Technology, Cambridge, MA, in 1987.

He has worked for Amdahl Corporation and
AT&T Bell Laboratones. Currently he is a member
of the Technical Staff at Bell Communications
Research. His main research interests are in the

theory of reliable distributed systems

Authorized licensed use limited to: MIT Libraries. Downloaded on April 14,2020 at 20:11:11 UTC from IEEE Xplore. Restrictions apply.

