
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 6, JUNE 1985

A Simple and Efficient Randomized Byzantine
Agreement Algorithm

BENNY CHOR AND BRIAN A. COAN

Abstract-A new randomized Byzantine agreement algorithm is pre-
sented. This algorithm operates in a synchronous system of n proces-
sors, at most t of which can fail. The algorithm reaches agreement in
0(t/log n) expected rounds and 0(n2tf/log n) expected message bits in-
dependent of the distribution of processor failures. This performance is
further improved to a constant expected number of rounds and 0(n2)
message bits if the distribution of processor failures is assumed to be
uniform. In either event, the algorithm improves on the known lower
bound on rounds for deterministic algorithms. Some other advantages
of the algorithm are that it requires no cryptographic techniques, that
the amount of local computation is small, and that the expected num-
ber of random bits used per processor is only one. It is argued that in
many practical applications of Byzantine agreement, the randomized
algorithm of this paper achieves superior performance.

Index Terms-Byzantine agreement, fault-tolerance, randomized
algorithms.

I. INTRODUCTION
B YZANTINE agreement is the problem of reaching a con-

sensus in a distributed system of n processors, at most t
of which may fail in arbitrary, even malicious, ways. In a ran-
domized Byzantine agreement algorithm each processor can
use the results of local random coin tosses in the course of
reaching agreement. In this paper we present a synchronous
randomized Byzantine agreement algorithm that terminates
in an expected O(t/log n) rounds and that works for any n >
3t + 1. This contrasts with the lower bound of t.+ 1 rounds
for deterministic algorithms that was shown by Fischer and
Lynch [8]. Our algorithm is of significance because it is sim-
ple and efficient enough to be of practical use, because it per-
forms better than any possible deterministic algorithm, be-
cause it operates for practical values of n and t, and because it
does not require any cryptographic techniques.
Ben-Or [2], Bracha and Toueg [5], and Rabin [12] each

have investigated the randomized Byzantine agreement prob-
lem. Their primary interest was asynchronous algorithms, but
simple variants of their algorithms operate in the synchronous
case. Because the topic of this paper is synchronous algo-
rithms, we will discuss only the synchronous variants of their
algorithms. A full comparison of the algorithms appears in

Manuscript received May 19, 1984; revised February 25, 1985. This
research was supported by the National Science Foundation under
Grants DCR-8302391 and MCS-8006938, by an IBM graduate fellow-
ship, by the U.S. Army Research Office under Contract DAAG29-84-
K-0058, by the Office of Naval Research under Contract N00014-
85-K-0168, and by the Advanced Research Projects Agency of the
Department of Defense under Contract N00014-83-K-0125.
The authors are with the Laboratory for Computer Science, Massa-

chusetts Institute of Technology, Cambridge, MA 02139.

Section XI; however, we give some advantages of our algo-
rithm here. Our algorithm improves on Ben-Or's in that it
operates efficiently for practical ratios of n and t, and it im-
proves on Rabin's in that it does not require initial distribution
of coin tosses by a trusted failure-free dealer. In the synchro-
nous case, the algorithm due to Bracha and Toueg is similar to
the one due to Ben-Or. For simplicity, we will only make
comparisons to Ben-Or's algorithm.
Bracha [4] has recently devised a new synchronous random-

ized Byzantine agreement algorithm that terminates in an ex-
pected O(log n) rounds. His algorithm assumes a model of
computation in which cryptographic techniques are used to
conceal information from malicious faulty processors. This is
different from the model that we assume in this paper.
In evaluating a Byzantine agreement algorithm, it is often

useful to consider the total number of processors that is re-
quired by the system in order to tolerate t processor failures.
This motivates us to define the redundancy of a system of n
processors as (n - i)/t. Lamport, Shostak, and Pease [9] have.
shown that no deterministic nonauthenticated algorithm is
possible unless the redundancy is at least 3. An easy extension
of their proof shows that this same amount of redundancy is
required for randomized algorithms. It is usually desirable to
minimize the redundancy in a system in order to reduce the
cost of hardware. It is always possible to increase the redun-
dancy in a system and maintain correct operation of a Byzan-
tine agreement algorithm. The basic algorithm that we will
present operates for any redundancy of 3 or more. We also
present a variant which requires redundancy 6 but terminates
twice as fast as the basic algorithm.

If we postulate the existence of a global reliable random coin
toss, Byzantine agreement can be reached in a constant ex-
pected number of rounds using techniques developed by
Ben-Or and by Rabin. Unfortunately, such a source of ran-
dom coin tosses is unlikely to be available in a distributed sys-
tem subject to Byzantine faults. A central component of the
known randomized Byzantine agreement algorithms is the
simulation of a global reliable coin toss using other methods.
Ben-Or and Rabin each have techniques for producing global
random coin tosses.
Ben-Or uses a technique which works well when the redun-

dancy is high but which has a low probability of producing a
good toss when the redundancy is low. In this technique, each
processor tosses a coin independently. If one result predomi-
nates by a sufficient margin then a coin toss has been pro-
duced; otherwise, no usable coin toss has been produced. A
spread of sufficient size is likely only when the total number

0098/5589/85/0600-0531$01.00 ©) 1985 IEEE

531

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1 1, NO. 6, JUNE 1985

of processors is large relative to the number of faults. As a
consequence, his algorithm either requires a large (exponen-
tial) number of rounds or a high amount of redundancy (equal
toV).
Rabin produces global coin tosses efficiently; however, he

assumes a different, more powerful model of computation.
His coin tosses are precomputed by a trusted dealer who splits
the results of each coin toss so that t + 1 processors can deter-
mine the result, but t processors have no information. The dis-
tributed split coin tosses are an expensive resource that is par-
tially consumed at each execution of the algorithm. In some
applications, it may be unrealistic to assume that a trusted
dealer exists. Rabin's algorithm is a good choice in those ap-
plications where his model seems realistic. The algorithm
which we will describe generates global coin tosses more effi-
ciently than Ben-Or's algorithm and uses these global coin
tosses in a way similar to Ben-Or's method. Our algorithm re-
quires none of the extra machinery of Rabin's algorithm. In
particular, no reliable trusted dealer is required. One way in
which our technique is inferior to theirs is that ours works
only in a synchronous system while theirs work in both syn-
chronous and asynchronous systems. There, is something in-
herent in our technique that does not seem to generalize to the
asynchronous case.
A contribution of this paper is our new technique for gen-

erating random coin tosses that (while they are not perfect)
are of sufficient quality to permit our algorithm to make rapid
progress. We now outline our technique for tossing coins. At
each round, a small group of g processors is assigned the task
of coin tossing. Each processor in this group tosses its own
coin and broadcasts the result. The coin toss generated by this
group is the majority of individual outcomes. If more than
half the processors are faulty, they can bias the coin toss any
way they want or cause some processors to see heads and
others to see tails. But, if fewer than half are faulty, there is a
sufficiently large probability that all correct coin tossers will
have the same outcome (provided g is not too big). If they all
happen to have the same outcome, the majority is determined
regardless of what the faulty processors do. With no more
than t faulty processors, there can not be more than 2 t/g dis-
joint groups with a majority of faulty processors. After at
most that many tosses, a group of coin tossers with a majority
of correct processors will be reached. We will show that this
leads to fast termination of the algorithm.
We now give a brief outline of the remainder of the paper.

In Section II we define the synchronous randomized Byzan-
tine agreement problem. In Section III we elaborate on our
fault model. In Section IV we present the basic algorithm.
In Section V we analyze the performance of the basic algo-
rithm. In Section VI we present an alternative algorithm that
doubles the speed of the basic algorithm at the cost of requir-
ing twice the amount of redundancy. In Section VII we ex-
plain how the performance of our algorithm improves if the
actual number of faults is smaller than the bound on the num-
ber of faults t. In Section VIII we show that it is possible to
achieve coordinated termination (all processors decide in the
same round) with high probability. In Section IX we present
an alternative analysis of the basic algorithm for the case

where processor failures are assumed to be uniformly distrib-
uted. In Section X we discuss the problem of reintegrating re-
paired processors into the algorithm. In Section XI we evalu-
ate the basic algorithm by comparing it to the alternatives.

II. THE PROBLEM

A synchronous randomized Byzantine agreement algorithm
is run by a distributed system of n processors, at most t of
which may fail. The computation proceeds by the sending and
receiving of messages. Message exchange takes place in a series
of rounds over a network that is fully connected and reliable.
At each round, a processor can toss coins as part of its compu-
tation. These coin tosses affect message generation and pro-
cessor state. Correct processors toss fair coins and send mes-
sages according to their programs. Failed processors can send
arbitrary messages.
Each processor starts the algorithm with an input value v

from a fixed set of legal inputs V. The goal is that after send-
ing some messages each processor will produce an answer.
There are two requirements on the answer. The agreement
condition is that all correct processors produce the same an-
swer. The validity condition is that if all correct processors
start the algorithm with the same value, then this value will be
the answer produced by the correct processors.

III. THE ADVERSARY MODEL

In a real system, we may not be sure what failure modes may
occur. Our goal is to show that, for a wide range of possible
failures, our algorithm works correctly. We do this by imagin-
ing a powerful adversary which can select the components of
the system that fail and which can control the behavior of
the failed components. We achieve our goal by proving that,
no matter what the adversary does, our algorithm behaves
correctly.

It should be clear that we cannot allow our adversary unlim-
ited capabilities. If we did, the adversary could cause all of the
components in the system to fail and no algorithm would be
possible. In the remainder of this section we describe the
capabilities of our adversary and then we argue that this choice
of adversary is reasonable.
The principal capability of our adversary is that it can select

which processors fail. We define this as subverting a processor.
There are three aspects of the subverting of processors on
which we will elaborate: the selection of which processors to
subvert, the control of subverted processors, and the computa-
tional resources available to the adversary in developing its
strategy.
During the execution of the Byzantine agreement algorithm,

the adversary can dynamically select which processors to sub-
vert (up to the limit of t faulty processors). The selection can
be based on the following: the code executed by the various
processors, the messages previously sent by any of the proces-
sors, and the internal state of the processors. We require, how-
ever, that the adversary select the processors that it will sub-
vert in round r at the beginning of round r. Specifically, we do
not allow it to decide which processors to subvert in round r
based on the results of any of the coin tosses made in round r.
The messages that are sent by failed processors are under the

532

CHOR AND COAN: BYZANTINE AGREEMENT ALGORITHM

control of the adversary. The messages that are sent in round r
by failed processors can be based on any of the following: the
code, the current (round r) and prior state of any of the cor-
rect or faulty processors, and the current (round r) and the
prior coin tosses of any of the correct or faulty processors. We
only prohibit that the messages of the failed processors be
based on future (round r + 1 or later) coin tosses.
We assume that the adversary can use the optimal strategy

based on the information currently available. There is no re-
quirement that this strategy be computable or efficiently com-
putable. This is in contrast to- the assumption commonly
made in analyzing cryptographic protocols that the adversary
is limited to a polynomial amount of computation. The only
limitation we impose is that the strategy of the adversary not
be based on any ability to accurately predict the outcome of
future coin tosses.
We now review the four principal limitations that we impose

on the adversary and attempt to justify the reasonableness of
these limitations. First, we limit the number of processors
that the adversary can subvert to be fewer than a third of the
total because it is known that there is no noncryptographic
Byzantine agreement algorithm that operates correctly if the
adversary can subvert a third or more of the processors. Sec-
ond, we assume that the communication system is reliable.
The justification for this assumption is that the adversary can
simulate a faulty communications link by subverting one of
the two adjacent processors. Third, we assume that the adver-
sary cannot accurately predict the future coin tosses of the
correct processors. An adversary that could base its decisions
on future random choices could negate the benefit of random-
ization. The whole advantage of using randomization is that it
makes the future execution of the algorithm be unpredictable.
Finally, we assume that the adversary may not subvert a pro-
cessor during a round. This assumption is justified by the syn-
chrony of the system. The adversary does not have time to
make the necessary observations and then make its decision.
In an asynchronous system, only this last assumption would
become unreasonable.

IV. THE BASIC ALGORITHM

For simplicity of presentation, the algorithm given here is
binary (reaches agreement on one bit). It can easily be ex-
tended to be multivalued (reach agreement on arbitrary values)
using the technique of Turpin and Coan [15].

First, we give an informal description of the algorithm, then
we give the code. The algorithm is organized as a series of
epochs of message exchange. Each epoch consists of two
rounds. The round structure is provided automatically by the
synchronous communications network. In the presentation of
the algorithm, epoch and round numbers are shown as the first
two components of each message. These should be viewed as
itnplicit. They are shown only to make it easier to discuss the
algorithm.
The algorithm is parameterized by g, the group size; n, the

number of processors; and t, the number of faults tolerated.
It is assumed that n > 3t + 1. The parameter g is used to de-
termine the number of processors in each group of coin toss-
ers. The processors are divided into a maximal number of dis-

joint groups of g processors each. Any processors that are left
over belong to no group. The groups are numbered from 1 to
[nlg].
In each epoch, the processors cooperate to perform a dis-

tributed coin toss. In epoch e, the group whose index is con-
gruent to e modulo (nig] actively performs the coin toss. All
processors attempt to observe the result. Each processor in
the active group tosses a coin and broadcasts the outcome. A
processor calculates the coin toss of the group as the majority
of the individual coin tosses it receives from processors in the
group. The value that processor P observes for a coin toss is
defined to be this majority value seen by P. If a group con-
tains a large number of faulty processors, then they can con-
trol the outcome of the toss or cause correct processors to
observe inconsistent values. We will, however, show that for
suitably selected group size g, a large enough number of groups
will toss sufficiently random coins for our purposes.
We describe the algorithm for the processor P. (All proces-

sors run the same code.) The variable CURRENT holds the
value that processor P currently favors as the answer of the
Byzantine agreement algorithm. At the start of the algorithm
CURRENT is set to the input value of processor P. In the first
round of each epoch, processor P broadcasts CURRENT. Based
on the round 1 messages received, processor P changes CUR-
RENT. If it sees at least n - t round 1 messages for some par-
ticular value, then it assigns that value to CURRENT; otherwise,
it assigns the distinguished value "?"to CURRENT. In the sec-
ond round of each epoch, processor P broadcasts CURRENT
and (if required) the result of a coin toss. Based on the round
2 messages received, processor P either changes CURRENT or
decides on an answer and exits the algorithm. Let ANS be the
most frequent value (other than "?") in round 2 messages re-
ceived by P. Let NUM be the number of such messages. There
are three cases depending on the value of NUM. If NUM >
n - t then processor P decides on the value ANS and exits the
algorithm. If n - t > NUM > t + 1 then processor P assigns the
value ANS to the variable CURRENT and continues the algo-
rithm. If t + 1 > NUM then processor P assigns the coin toss it
received in the current round to the variable CURRENT. The
selected coin toss is the one performed by the processor group
whose index number if congruent to the current epoch num-
ber modulo [nig] , the number of processor groups.
The code for processor P with parameters g, n, and t is as

follows.

1. procedure BYZANTINE_AGREEMENT(INPUT):
2. CURRENT <- INPUT
3. fore-l tooodo
4. broadcast (e, 1, CURRENT)
5. receive (e, 1, *) messages
6. if for some v there are >n - t messages (e, 1, v)
7. then CURRENT - V
8. else CURRENT v-'?
9. if GRoUP(P) e(mod ln/g])
10. then TOSS <- TOSS_COIN()
11 . ese TOSSv 0
12. broadcast (e, 2, CURRENT, TOSS)
13. receive (e, 2, *, *) messages

533

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-l1, NO. 6, JUNE 1985

14. ANS <- the value v i"?" such that (e, 2, v, *)
messages are most frequent

15. NUM '- number of occurrences of (e, 2, ANS, *)
messages

16. if NUM > n - t then decide ANS
17. elseif NUM > t + 1 thenI CURRENT 4- ANS

18. else CURRENT <- majority toss from processor
group x where x e(mod LnlgJ

We make several remarks about the algorithm. GROUP iS a
procedure that takes as input a processor identity and returns
the processor's group number. TOSS_ COIN is a procedure that
takes no argument and returns the result of a random coin toss
(0 or 1). In message descriptions, "*" is a wild-card character
that matches anything. In order to allow correct processors to
stop sending after they decide, we adopt the convention that
a processor that sends no message is assumed to vote for the
value in the last message that it sent. Therefore, a processor
that has decided may stop sending messages after the first
round in which it broadcasts its decided value. Other invalid
or missing messages present no difficulty. A processor that
sends such a message is faulty and therefore could have sent
anything. The recipient of such a message may correctly re-
place it by any valid message.
Define value as a legal input to the algorithm, either 0 or 1.

Specifically,"?" is not a value.
Lemma 1: During each epoch, at most one value is sent in

round 2 (step 12) messages by correct processors.
Proof: Assume at least one value is sent in round 2 of

epoch e. Say processor P sends value v. P has seen at least
n - t messages (e, 1, v). At least n - 2 t of them are from cor-
rect processors and are therefore reliably sent to all processors
in the system. All processors have at least n - 2t messages
(e, 1, v) in a total of n messages. This leaves at most 2 t < n -
t messages for some other value. This is not enough to cause a
correct processor to send a round 2 message for a value other
than v.-O
In Theorem 2 we prove that our algorithm never produces a

wrong answer and we prove that in each epoch there is at least
one coin-toss value that will terminate the algorithm. The
analysis of the expected running time of the algorithm follows
in Section V.
Theorem 2: The algorithm has the following three properties.
Validity: If value v is distributed as input to all correct pro-

cessors, then all correct processors decide v in round 2 of
epoch 1.
Agreement: Let e be the first epoch in which a correct pro-

cessor decides. If correct processor P decides v in epoch e then
by round 2 of epoch e + 1 all correct processors decide v.
Termination: In any epoch e, there is at least one value

which (if it is adopted by all processors executing the assign-
ment in step 18) will cause all correct processors to decide by
round 2 of epoch e + 1.

Proof: We show that the algorithm satisfies the three
conditions.

Validity: Assume that value v is distributed as input to all
correct processors. All (at least n - t) correct processors
broadcast v in rounds I and 2 of epoch 1. All correct proces-
sors assign v to ANS, set NUM to a value at least n - t, and
therefore decide v in round 2 of epoch 1.

Agreement: For processor P to decide v in epoch e, it must
be the case that P has seen at least n - t messages (e, 2, v, *).
At least n - 2t > t + 1 of the messages are from correct pro-
cessors and are therefore reliably sent to all processors in the
system. No correct processor sends round 2 messages for any
value other than v (by Lemma 1). Only failed processors send
such messages. Because there are at most t failed processors,
there are at most t round 2 messages for any value v' * v. All
correct processors assign v to ANS, set NUM to a value at least
t + 1, and either decide v in the current epoch or begin the fol-
lowing epoch with the variable CURRENT equal to v. All cor-
rect processors will therefore decide v by round 2 of epoch
e+ 1.
Termination: By Lemma 1, there is at most one value, say

V, that is broadcast by correct processors in round 2 of epoch
e. Any correct processor that does not execute the assign-
ment in step 18 must have ANS = v because it is not possible
to get more than t votes for any other value. The value v (if
adopted by all processors executing the assignment in step 18
of epoch e) will cause all correct processors to decide v by
round 2 of epoch e + 1. This is because all correct processors
will start epoch e + 1 with the value v assigned to the variable
CURRENT. El
Based on the termination property shown in Theorem 2, we

make the following definitions. Define a good value in epoch
e as one which (if it is adopted by all processors executing the
assignment in step 18) wirl cause all correct processors to de-
cide by round 2 of epoch e + 1. Defme a good coin toss in
epoch e as one which distributes in epoch e a good value to all
correct processors. Define a bad value or coin toss as one
which is not good.
We are now in a position to explain why randomization is

necessary for the correct operation of our algorithm. The ter-
mination part of Theorem 2 guarantees that in any epoch, say
e, there will be at least one good value. This value can, how-
ever, be determined by the adversary in round 1 of epoch e. If
the coin toss were replaced with some predetermined value,
then the adversary could always cause the good value to differ
from this predetermined value. In our scheme, this strategy is
unavailable to the adversary because the coin toss is not per-
formed until round 2 of epoch e-after the identity of the
good value has already been fixed.

V. ANALYSIS OF THE ALGORITHM

In this section we analyze the computational resources used
by the basic algorithm. At the system level, we calculate the
expected number of rounds needed to reach agreement and
the expected number of message bits sent. At the processor
level, we calculate the amount of internal memory, the num-
ber of computation steps, and the expected number of random
bits used by each processor. In particular, we show that the
expected number of rounds to reach agreement is O(t/log n)
and the expected number of random bits used by each pro-
cessor is bounded above by 1. The analysis is worst case in the
sense that it allows faulty processors to behave maliciously and
holds for any distribution of them, as long as the redundancy
is at least 3.
We defime some terminology and notation. Let g = 2m + 1

denote the number of processors in each group. (This relation

534

CHOR AND COAN: BYZANTINE AGREEMENT ALGORITHM

between g and m holds for the rest of the paper.) Let Ce be
the coin toss generated at epoch e. Denote by Pe the probabil-
ity that the coin toss ce is good (will cause termination), and
let qe = 1 Pe.
We say that coin toss Ce is pure if (among the g processors

that toss in epoch e) there are at least m + 1 correct processors
that all toss the same value. Recall that m + 1 is a majority of
a group of coin tossers. The significance of this definition is
that the outcome of a pure coin toss is completely beyond the
control of the adversary. It is possible that our algorithm may
terminate as the result of a toss that is not pure; however, it is
within the power of the adversary to prevent this. Therefore,
we assume for the purpose of analysis that progress is made
only on pure coin -tosses. We remark that the outcomes of
pure coin tosses are independent.

If there are at most m faulty processors among the coin
tossers of epoch e (a majority of the coin tossers are correct),
then

2m < Pr(Ce pure).

By Theorem 2 and the definition of good coin toss

Pr(ce goodjce pure) =

So, the conditional probability that ce is good given that at
most m coin tossers are faulty, is at least 1/2m + 1 .

Theorem 3: For group size g = log n, the expected number
of rounds to reach agreement, r, is bounded by

4t__.r< t~+4-h_+o(1) 0(
log n log n

Proof: By the defmintion of a good coin toss, agreement is
reached by all correct processors at most one epoch after a
good coin toss is achieved. Every epoch consists of two
rounds. Therefore, if Exp denotes the expected number of
epochs until a good coin-toss is achieved, then

r=2 *Exp+2.

The expected number of epochs to get a good coin toss is

00

Exp = e - Pr(ce is the first good coin toss).
e=i

Since pure coin tosses are independent and since qk= 1 for
nonpure coin tosses, we get

Pr(ce is the first-good coin toss) = q q2 * q (- 1. - qe)
so

00

Exp =E e*qlq2 ..*qe-i(- qe)
e=i

00

=(I - ql)+ E: (e -qlq2 ..qe-l e,qlq2 . qe)
e=2

00

= I + 1: qlq2 ..*q(e-
e=l

For any specific e, an adversary can block the coin toss gener-

ated at epoch e by assigning m + 1 faulty coin tossers, thus
making qe = 1. However, with a limited supply of faulty pro-
cessors, such blocking can not be repeated indefinitely.
We start by analyzing the first ln/gJ coin tosses, which are

performed by disjoint groups of processors. To do this we cal-
culate an upper bound on 2 /g' q,q2 ..q. If qi<qi+1
for some i, then the sum can be strictly increased by exchang-
ing qi and qi+l. Therefore, we assume that the sequence of
qi's is nonincreasing. There can be at most [tl(m + 1)] groups
with a majority of faulty processors. These groups are blocked
(the probability of getting a bad coin toss is 1). After the
blocked groups, all groups must have at least m + 1 good pro-
cessors and therefore at most 1 - 1/2 probability of pro-
ducing a bad toss. We permit the adversary an infinite number
of such groups and calculate

In/gi t
,: qlq2 ... qe 6 m + 2m+2 .

e= m+ 1

After [n/gJ groups, we cycle back through the coin tossers,
and so

qlq2 ...qe
e=-

Ilnlgj
=V qlq2
e= I

. q)

(1 + qlq2 * q*nlgJ + (q1q2 ***qlnlgj)2+)

mf + 2m)1 (qIq.2 ..qlnlgJ))

With t faulty processors, at most [t/(m + 1)J groups of coin
tossers can be blocked. Therefore

qt2c~,,g IIn_gJ -Ltl(M +i)I
qlq2 ..qt"lgj < t ml

1)(nf-2t)/g

Using the bound t < n13, we have

/ 1 ~n/3g
qlq2 qjn/gj <(1 -m+_,

Because g = log n and m < 2 log n, we get (e = 2.718+ in the
next two equations)

(i- 2I) <(3 - 1)n/3 logn (1)\J;;-/3 logn

The last bound implies
00 I~~~~/ \[n/3logn

E (qlq2 ... qtnlgJ

and therefore

(m 1 + 2m +1) E (qlq2 * qjn1gj)i = o(1).

535

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE- 1, NO. 6, JUNE 1985

TABLE I
COIN TOSSING EFFICIENCY

r_____ Expected Ntiiober of Tries to Prolllce a G"oo(d Coiln oss
Processors FallitS roup Siri E(Tosscs) Proce,sors Faults Groiip Size E(Tosses)

4 - 1 1 3.22 55 18 5 8.4
.7_ 2 3 4.0 58 19 __7 8.2

10 3 _ 4.4 61 20 5 9.0
13 4 3 4.7 64 21 7 8.3
16 _5 3 5.1 67 22 7 8.9
19 _ = 6 3 5.4 70 23 7 8.6
22 7 3 5.9 73 21 7 9.0
25 8 5 5.7 76 25 7 9.5
28 9 5 6.6 79 26 7 9.3
31 10 5 6.3 82 27 7 9.7
34 11 5 7.1 85 28 9.7
37 12 5 6.8 88 29 7 10.0
40 13 L 6.9 91 30 7 10.01
43 14 - 5 7.5 94 3it _ 7 -10.4
46 15 L 7.5 97 32 7__71 10.7
49 ~-16 7 7.5 10 _ 9 10.3
5 17 5- 8. I 103 -34 9 _10.9

Combining all these bounds together, we get

2tl

Exp <
log

+ 2
g

+ O(1) = °
g n)

The expected number of rounds is therefore bounded above
by 4t/log n + 4 + o (l). [
We remark that by setting m = (1 - e) log n, we have

t +2msl t +2n1e6
m + 1 (1 - e) log n

This means that by taking somewhat larger size groups, the
constant 1 in the 0(t/log n) expression for the expected num-

ber of epochs can be achieved asymptotically. On the other
hand, if the group size is slightly decreased by taking m=
(1 - e) log n/2, we get

2 t

Exp< 2 +2V+'~o(l).
(1 - e) log n

This will be significant for achieving early stopping in case the
actual number of faults ig very small (see Section VII for
details).
Our analysis is somewhat loose in that the adversary can

reuse faulty processors. For explicit values of n, t, and g the
exact value of Exp can be found by direct computation. In
Table I we list some values ofExp for small practical systems.
For each system size considered, the table shows the group

size which minimizes the expected number of tosses.
We calculate the expected number of message bits sent by

the basic algorithm. Individual messages have a constant size.
In each round there are 0(n2) messages sent. By Theorem 3,
the expected number of rounds is 0(t/log n). Therefore, over

the course of the algorithm, an expected 0(n2 t/log n) message
bits are sent. We remairk that the message complexity can be
improved to 0(nt2/log n) using relay processors, a technique
due to Dolev and Strong [7].

In randomized algorithms, the number of random bits used
by each processor is important. Current physical devices for
producing random bits are rather slow. If a large number of
random bits are required, then pseudorandom number genera-

tors are often used. Plumstead [I 1] showed that the fast lin-
ear congruence generators are not secure. After seeing a few
outcomes, an adversary can predict the remaining tosses (thus
allowing the faulty processors to block all future coin tosses).

Secure pseudorandom number generators, based on crypto-
graphic techniques, are known to exist under certain intract-
ability assumptions (see [3] and [1]). However, they require
a lot of computation, so we are better off if we can avoid using
them altogether. A surprising result is the number of random
bits used by our algorithm. For sufficiently large n, the ex-
pected number of epochs is bounded above by

Exp < + 2 + o(l)<log n log n

There are n/log n groups altogether. Therefore the expected
number of times we cycle through all groups of coin tossers is
bounded above by 1 if n is large. At each cycle one random
bit is used by each processor. Therefore, the expected number
of coins tossed by each processor is bounded above by 1.
From Table I we calculate that for smaller values of n the ex-
pected number of tosses per processor is bounded above by 2.
Slow physical generators are good enough then, and it is not
necessary to resort to pseudorandom number generators.
The complexity of the internal computation is that of count-

ing small numbers. The amount of internal space required by
our algorithm is small. Only log n memory bits for counting
NUM are required. Reintegration of faulty processors is easy
because no long histories need be stored (see Section X).

VI. AN ALTERNATIVE ALGORITHM
Our basic algorithm is resilient to t< n/3 faults and uses

two rounds per epoch. If the number of faulty processors t is
bound by t< n/6, then one round per epoch sufflces. Thus
the expected number of rounds is cut by a factor of 2. The
code for this case uses two thresholds to which NUM, the num-
ber of supporters for the current majority value, are compared.
This two-threshold scheme is an adaptation of one by Rabin
[12]. If NUM falls between the two thresholds, the coin toss
is used to determine the value of the variable CURRENT in the
next round. With the two thresholds further than t apart, one
of the two possible outcomes of the coin toss is good. The
generation of coin tosses is done in the same way as in our
basic algorithm. This makes the analysis of the expected num-
ber of coin tosses needed to get a good one identical to the
analysis in Section V.
The code for processor P with parameters g, n, and t is as

follows.
1. procedure BYZANTINE_ AGREEMENT(INPUT):
2. CURRENT - INPUT

3. for e - I tooo do
4. if GROUP(P) e(mod [nig])
5. then TOSS - TOSS_ COIN()
6. else TOSS <- 0
7. broadcast (e, CURRENT, TOSS)
8. receive (e, *, *) messages
9. ANS <- the value v such that (e, v, *) messages are

most frequent
10. NUM v- number of occurrences of (e, ANS, *)

messages
11. if NUM > n - t then decide ANS
12. elseif NUM > n - 2t then CURRENT +- ANS
13. elseif NUM < n - 3t then CURRENT <-

14. else

536

CHOR AND COAN: BYZANTINE AGREEMENT ALGORITHM

15.

6.

17.

COIN v- majonty toss from processor group
x where x--e(mod lnigj)

if COIN = 0 then CURRENT v 0
elseif COIN = 1 then CURRENT v- ANS

VII. EARLY STOPPING
Our algorithm is resilient to t faults, but the actual number

of faulty processors f might be smaller than the upper bound t.
A desirable property of any Byzantine agreement algorithm is
that agreement be reached early in this case. Dolev, Reischuk,
and Strong [6] have studied early termination for determinis-
tic Byzantine agreement algorithms. From the analysis in Sec-
tion V, it follows that the expected number of rounds to reach
agreement in the presence of f faults is bounded above by
4f/log n + 4 \/n + o(l). Thus early stopping is automatically
achieved. Furthermore, for the range \/n log n S f< n/3,
agreement is reached in O(f/log n) rounds.
We can modify the basic algorithm to get uniform O(f/log n)

expected time for termination for all values of f. To do that,
we slightly decrease the size of each group of coin tossers by
setting m = (1 - e) log n /2. As analyzed in Section V, this
yields

Exp< +2 + o(1).
(1- e) log n

Iff> \/n, then \/n is o(f/log n) and agreement is reached

in O(f/log n) rounds.
For f in the range f6 \, the standard deviation of n - f

unbiased coins is larger than f. If we take g = n (all processors

are coin tossers), then with a constant probability (about 1/3)
the deviation from the average of the n - f fair coins (tossed
by correct processors) is bigger than f. Therefore, there is a

constant probability that termination will be reached at the
end of each epoch. Thus the expected run time in this case is
constant. (This idea is similar to the one used in [2] and [5] .)
The situation now is that large values off can be handled ef-

ficiently by using small groups of coin tossers (g= (1 - e)
log n), and small values off can be handled efficiently by using
large groups of coin tossers (g = n). However, we want our

algorithm to handle both cases, without knowing in advance
which one it faces. In order to accommodate both small and
large values of f, we will alternate between the small groups of
coin tossers and the large ones. In the even epochs, the coin
tossers will be taken from the groups of size (1 - e) log n. In
the odd epochs, every processor will be a coin tosser.
To analyze the run time, we distinguish between the two

cases. If f is large (f> V-), we might as well assume that the
odd epochs are useless and contribute nothing to termination.
However, the expected time to reach agreement in this case is
at most twice the number of even epochs to reach agreement,
which is O(f/log n). Similarly, iff< \/n, then the expected
number of odd epochs to reach agreement is 0(1). By alter-
nating between odd and even epochs, we only increase the
hidden constants in these expressions by a factor of 2. Thus,
our interleaved algorithm yields the following expression for
Exp, the expected number of rounds to reach agreement:

0(f/log n),
Exp <

0(1),

if f>Vi;

otherwise.

VIII. COORDINATED TERMINATION

One disadvantage of our algorithm is that even though all
processors start the algorithm in exactly the same round, they
might be off by one epoch when they terminate. In this sec-
tion we show that a minor modification of the algorithmi
yields an almost certain coordinated termination, namely all
correct processors halt at exactly the same round with over-
whelming probability. This is done without violating the
agreement, validity, and termination requirements, which will
still be achieved with probability 1. The expected running
time is changed only by a small multiplicative constant.
The modification is quite simple. We know that the ex-

pected number of epochs to reach agreement in the basic
algorithm is at most 2t/log n + 2 V4 + o(l) and that the tail
probability for the number of epochs converges rapidly. For
example, the probability that more than 3t/log n epochs will
be needed is no greater than (I/e)Vf/3lg . In the modified
algorithm, each correct processor will just delay the transition
to a "halt" state until epoch 3t/log n (in case it made its deci-
sion before that epoch) and behave as before otherwise. This
guarantees coordinated termination by epoch 3t/log n with
probability at least 1 - (I/e) logn Greater confidence of
coordinated termination can be achieved at the cost of more
rounds.

It remains to be seen whether Byzantine agreement in
O(t/log n) expected time and probability 1 of coordinated ter-
mination can be achieved. The deterministic lower bound im-
plies only t + 1 worst case lower bound for any such algorithm.

IX. UNIFORMLY DiSTRIBUTED PROCESSOR FAILURES

In the previous analysis we have assumed that an adversary
controls both the selection of which processors fail and the
behavior of the failed processors. It does this in the way
which will cause our algorithm the most difficulty. An alter-
native assumption is that the faulty processors are randomly
distributed.
In the analysis in this section we assume that the distribution

of processor faults is uniform. That is, each of the (t) ways
of distributing t faults among the n processors is equally likely.
We retain the assumption that failed processors are under the
control of the adversary and therefore behave in a way which
will cause our algorithm the most difficulty. In Theorem 4 we
show that for g = 1 and uniform processor faults our algorithm
terminates in a constant expected number of rounds. Because
g = 1, each group of coin tossers consists of a single processor.
Theorem 4: If g = 1 and processor faults are uniformly dis-

tributed, then the expected number of rounds until the last
correct processor decides is at most 8.

Proof: The expected number of rounds is 2c + 2 where c is
the expected number of coin tosses to get a good toss. We
show that the expected number of coin tosses is at most 3.
The probability that the coin toss of a correct processor is
good is at least - (by Theorem 2 and the fairness of the coin
toss). The probability that processor P is correct is at least 2

because n > 3t + 1. Therefore, the probability that the coin
toss of processor P is good is at least 3. The conditional prob-3.
ability that the coin toss of processor P is good given that pre-
vious coin tosses have been bad is at least as great as the un-

537

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 6, JUNE 1985

conditional probability (at least 3). Therefore, the expected
number of coin tosses is at most the mean of a geometric ran-
dom variable with parameter 1 , which is 3. O
We calculate the expected number of message bits sent by

the algorithm. Individual messages have a constant size. On
each round, there are 0(n2) messages sent. By Theorem 4, the
expected number of rounds is 8. Therefore, over the course of
the algorithm, an expected 0(n2) message bits are sent. This
can be reduced to 0(nt) using the relay-processor technique of
Dolev and Strong [7].
Termination in a constant expected number of rounds is an

attractive feature of the algorithm; however, this feature is not
unique to randomized algorithms. Under the same assumption
of uniform randomly distributed processor failures, a deter-
ministic algorithm due to Reischuk [13] also terminates in a
constant expected number of rounds.

X. REINTEGRATION OF FAILED PROCESSORS
It is possible for a processor that fails and is subsequently re-

paired to rejoin our Byzantine agreement algorithm. We as-
sume that such a processor loses its local memory and that it
runs special recovery code after it is repaired. In order to re-
join the algorithm a processor needs to replace its lost state
information. This is easy with our algorithm because the
amount of state information is small. It is also important that
correct processors do not record the identities of known faulty
processors. Reintegrating failed processors permits the algo-
rithm to tolerate a larger number of failures as long as at most
t occur simultaneously. In this section we describe how a re-
paired processor rejoins the algorithm.
During an epoch, there are several times at which a repaired

processor can rejoin the algorithm. We describe one. The re-
paired processor simply begins the epoch with step 13, receiv-
ing round 2 messages. A processor that fails and is subse-
quently repaired is counted as a failed processor only from the
epoch in which it fails until two epochs after it recovers. After
that it is considered to be a correct processor. The constraint
is that at any time there are no more than t failed processors.
A processor that attempts to rejoin the algorithm after the

correct processors have decided or as they are deciding may
not see enough messages in order to decide. To solve this
problem, we adopt the rule that a processor that sees t + I or
more silent processors in the epoch after it attempts to rejoin
the algorithm will conclude that a decision has been reached.
It then broadcasts a query and decides on any value that it re-
ceives from at least t + 1 processors. It is easy to see that a
processor that rejoins the algorithm as a decision is being
reached can not be tricked into making a wrong decision.
There will not be enough votes for any incorrect value because
only faulty processors will cast such votes after a correct pro-
cessor has decided.

XI. EVALUATION
In this section we evaluate the extent to which our algorithm

is practical. We do this by comparing our algorithm with four
alternatives (all synchronous): Ben-Or's randomized algorithm,
Bracha's randomized cryptographic algorithm, Rabin's ran-
domized cryptographic algorithm, and a deterministic algo-
rithm due to Lynch, Fischer, and Fowler.

When the redundancy r of a system of processors is QZ(t),
Ben-Or's algorithm terminates in a constant expected number
of rounds. For practical systems, however, it is desirable to
operate at a lower redundancy in order to minimize the cost
of computer hardware. The optimal value is r = 3. Unfortu-
nately, for any r that is 0(1), Ben-Or's algorithm requires an
exponential number of rounds. Compared to Ben-Or's algo-
rithm, ours is more efficient for practical amounts of system
redundancy.
The new randomized algorithm due to Bracha [41 termi-

nates in 0(log n) rounds using cryptographic techniques. The
principal advantage of his algorithm is this extremely fast
asymptotic performance. The principal disadvantages are the
use of cryptographic techniques, a seemingly high constant
factor in the run time, relatively high communications costs,
and the use of a hard to compute local graph partition. (The
only known deterministic algorithms to compute this partition
are exponential in run time.)
Rabin's algorithm terminates in a constant expected number

of rounds; however, it requires more resources than our algo-
rithm. In particular, it requires a trusted dealer that distrib-
utes random coin tosses before the start of the algorithm. The
underlying mechanism is authentication and Shamir's [14]
shared secret. If this cost seems small, then Rabin's algorithm
would be the choice. On the other hand, if the cost seems
high, then our algorithm would be the choice. We believe that
in practical systems, it is often unrealistic to assume the exis-
tence of a trusted dealer.
The most practical deterministic algorithm is due to Lynch,

Fischer, and Fowler [10]. There are tradeoffs between their
algorithm and ours. The principal advantages of the determin-
istic algorithm are that it uses a fixed number of rounds and
that all processors decide at the same round. The principal ad-
vantages of our algorithm are that the expected number of
rounds is small, that the expected number of message bits is
small, and that only two rounds are required if the input to all
processors is the same. Our algorithm cannot ensure synchro-
nous termination; however, using the techniques of Section
VIII, this property can be achieved with high probability.
We conclude that for a practical algorithm, one would

choose either the deterministic algorithm of Lynch, Fischer,
and Fowler or our randomized algorithm. The deterministic
algorithm would be chosen if the extra synchronization that it
provides were important to the particular application. Other-
wise, our randomized algorithm would be chosen. If it seems
realistic to assume that processor faults are uniformly distrib-
uted, then the randomized algorithm is especially attractive be-
cause its expected running time is constant.

ACKNOWLEDGMENT

We would like to thank N. Alon, J. Burns, 0. Goldreich, L.
Levin, B. Lindsay, N. Lynch, M. Tuttle, and W. Weihli for
many helpful discussions.

REFERENCES

(11 W. Alexi, B. Chor, 0. Goldreich, and C. Schnorr, "RSA/Rabin
bits are i + poly Iog N) secure," in Proc. 25th Annu. Symp.
Foundations of Comput. Sci., Oct. 1984, pp. 449-457.

[2] M. Ben-Or, "Another advantage of free choice: Completely asyn-

538

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 6, JUNE 1985

chronous agreement protocols," in Proc. 2nd Annu. ACM Symp.
Principles of Distributed Comput., Aug. 1983, pp. 27-30.

[3] M. Blum and S. Micali "How to generate cryptographically
strong sequences of pseudo-random bits," SIAM J. Comput., vol.
13, pp. 850-864, Nov. 1984.

[4] G. Bracha, "An O(log n) expected rounds randomized Byzantine
generals algorithm," in Proc. 1 7th Annu. ACM Symp. Theory of
Comput., May 1985.

[5] G. Bracha and S. Toueg, "Resilient consensus protocols," in Proc.
2nd Annu. ACM Symp. Principles of Distributed Comput., Aug.
1983, pp. 12-26.

[6] D. Dolev, R. Reischuk, and H. R. Strong, "Eventual is earlier
than immediate," in Proc. 23rd Annu. Symp. Foundations of
Comput. Sci., Nov. 1982, pp. 196-203.

[7] D. Dolev and H. R. Strong, "Polynomial algorithms for multiple
processor agreement," in Proc. 14th Annu. ACM Symp. Theory
of Comput., May 1982, pp. 401-407.

[81 M. Fischer and N. Lynch, "A lower bound for the time to assure
interactive consistency," Inform. Processing Lett., vol. 14, pp.
183-186, June 1982.

[9] L. Lamport, R. Shostak, and M. Pease, "The Byzantine generals
problem," ACM Trans. Program. Lang. Syst., vol. 4, pp. 382-
401, July 1982.

[10] N. Lynch, M. Fischer, and R. Fowler, "A simple and efficient
Byzantine generals algorithm," in Proc. 2nd Symp. Reliability in
Distributed Software and Database Syst., July 1982, pp. 46-52.

[111 J. Plumstead, "Inferring a sequence generated by a linear con-
gruence," in Proc. 23rd Annu. Symp. Foundations of Comput.
Sci., Nov. 1982, pp. 153-159.

[12] M. Rabin, "Randomized Byzantine generals," in Proc. 24th
Annu. Symp. Foundations of Comput. Sci, Nov. 1983, pp.
403-409.

[13] R. Reischuk, "A new solution for the Byzantine generals prob-
lem," IBM Corp., Tech. Rep. IBM-RJ-3673, Sept. 1982.

[14] A. Shamir, "How to share a secret," Commun. ACM, vol. 22, pp.
612-613, Nov. 1979.

[15] R. Turpin and B. Coan, "Extending binary Byzantine agreement
to multivalued Byzantine agreement," Inform. Processing Lett.,
vol. 18, pp. 73-76, Feb. 1984.

Benny Chor received the B.Sc. and M.S. degrees
in mathematics from the Hebrew University of
Jerusalem, Israel, in 1980 and 1981, respectively.
He is currently working toward the Ph.D. de-

gree in computer science at the Massachusetts
Institute of Technology, Cambridge. His re-
search interests include cryptography, com-
plexity theory, and randomized algorithms for
distributed systems.

, Brian A. Coan received the B.S.E. degree in
electrical engineering and computer science
from Princeton University, Princeton, NJ, in
1977 and the M.S. degree in computer engineer-
ing from Stanford University, Stanford, CA, in
1979.
He has worked for Amdahl Corporation and

for AT&T Bell Laboratories. Currently he is
working toward the Ph.D. degree in computer
science at the Massachusetts Institute of Tech-
nology. His research interests are in the theory
of distributed compiter_systeis.

Randomized Byzantine Agreement
KENNETH J. PERRY, MEMBER, IEEE

Abstract-A randomized model of distributed computation was re-
cently presented by Rabin [81. This model admits a solution to the
Byzantine Agreement Problem for systems of n asynchronous processes
where no more than t are faulty. The algorithm described by Rabin
produces agreement in an expected number of rounds which is a smaDl
constant independent of n and t. Using the same model, we present an
algorithm of similar complexity which is able to tolerate a greater pro-
portion of malicious processes. The algorithm is also applicable, with
minor changes, to systems of synchronous processes.

Index Terns-Distributed computing, distributed database systems,
fault-tolerance, protocols, reliability.

Manuscript received May 9, 1984; revised February 1, 1985. This
work was supported in part by the National Science Foundation under
Grant MCS83-03135.
The author was with the Department of Computer Science, Cornell

University, Ithaca, NY 14853. He is now with the I. B. M. Thomas
J. Watson Research Center, Yorktown Heights, NY 10598.

I. INTRODUCTION
CONSIDER a collection of n processes, each possessing a

previously initialized local variable message. Desired is an
agreement protocol whose execution results in the same value
being assigned to the message variables of all processes. Some
processes may not obey the protocol for its entire duration.
In fact, these processes may actively attempt to hinder agree-
ment. We call any process that deviates from the protocol
malicious. Those processes that strictly adhere to the protocol
for its entire execution are deemed proper. Because we can
not constrain the behavior of malicious processes, we require
only that all proper processes agree on their message values
upon termination.
A Byzantine Agreement protocol is an agreement protocol

with the additional constraint that if the protocol commences
with the same value V in the message variables of all proper

0098-5589/85/0600-0539$01.00 © 1985 IEEE

539

