
Limitations on Database Availability
when Networks Partition

Brian A. Coan, Brian M. Oki, and Elliot K. Kolodner

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

A b s t r a c t : In designing fault-tolerant distributed database
systems, a frequent goal is making the system highly avail-
able despite component failure. We examine software ap-
proaches to achieving high availability in the presence of
partitions. In particular, we consider various replicated-
data management protocols that maintain database consis-
tency and attempt to increase database availability when
networks partition. We conclude that no protocol does bet-
ter than a bound we have determined. Our conclusions hold
under the assumption that the pattern of data accesses by
transactions obeys a uniformity assumption. There may be
some particular distribution for which specialized protocols
can increase availability.

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contracts N00014-83-K-0125 and
N00014-85-K-0168, in part by the National Science Foundation
under grants DCR-8503662 and DCR-83-02091, and in part by
the Office of Army Research under contract DAAG29-84-K-0058.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1 I n t r o d u c t i o n

In designing fault-tolerant distributed database sys-

tems, a frequent objective is to make the system highly

available in spite of component failures. We measure avail-

ability as the fraction of transactions presented to the sys-

tem that complete. One technique to increase data avail-

ability is replicating the data at various sites in the net-

work. In this paper, we examine several replicated-data

management protocols that maintain database consistency

and attempt to make replicated data highly available in

the presence of network partitions. (Partitions are failures

that divide a system into two or more components between

which communication is impossible.)

The protocols we examine in this paper maintain one-

copy serializability [1] [8], and are of the on-line kind, that is,

those that are required to make irrevocable commit/abort

decisions at the time the transaction is processed. We do

not consider other classes of protocols, such as off-line pro-

tocols, which are protocols that may defer commit/abort

decisions until the partitions are rejoined; protocols that

abandon one-copy serializability as the correctness crite-

rion; and protocols that use type-specific information. Da-

vidson's optimistic protocol [2] is an example of an off-

line protocol. The partition-tolerant distributed databases

project at the Computer Corporation of America [9] is an

example of a system that abandons one-copy serializability

to achieve higher availability. Herlihy [7] deals with repli-

cation methods for abstract data types.

The main objective of replicated-data management pro-

tocols is achieving availability while maintaining data con-

sistency. No protocol whose correctness criterion is one-

copy serializability can do better than a bound we have

determined, under the assumption that the pattern of data

accesses by transactions obeys a certain uniformity assump-

tion that we explain. We believe this assumption is a rea-

© 1986 A C M 0-89791-198-9/86/0800-0187 75¢ "18 7

sonable one if we know nothing in particular about the

transaction distributions; there might be some particular

distributions for which specialized protocols achieve greater

availability. Furthermore, this assumption permits us to do

the analysis.

In the context of a simple model we have developed,

we analyze the level of availability achieved by several

replicated-data management protocols proposed in the lit-

erature. The protocols we look at use different rules to

increase data availability during a partition. Given the au-

thors' informal discussion of availability achievable by these

protocols, it is difficult to determine how one protocol com-

pares against the others. We provide a uniform basis for

comparison. In addition, we show that several of the proto-

cols achieve the upper bound for availability, so the bound

is tight.

Our analysis shows that there is a severe limitation on

the availability that can be achieved during a partition.

Because of this limitation, networks should be designed to

minimize the probability that partitions will occur.

This paper is organized as follows. Section 2 begins with

some assumptions and definitions underlying our model, de-

fines the notion of availability, and provides a bound on the

level of availability achievable with replicated-data manage-

ment protocols that maintain one-copy serializability. In

section 3 we describe some of the known replicated-data

management protocols and, for each protocol, give a quan-

titative measure of the availability achieved by the protocol.

Finally, in section 4, we summarize our results.

2 B o u n d s o n A v a i l a b i l i t y

In this section, we define availability and then prove a

bound on the availability achievable.

2 . 1 A s s u m p t i o n s a n d D e f i n i t i o n s

The context of our work is a distributed database system

in which the data is fully replicated. This system consists of

a collection of n sites, numbered I , . . . , n. We have chosen

this special case of a distributed database system because

it simplifies our analysis. Transactions can operate on data

items by reading or updating. We assume no blind updates,

where a blind update is one that updates a data item with-

out first reading it. The set of data items updated by a

transaction is called its write set.

A partition occurs in a system when two functioning

sites are unable to communicate for a significant interval of

time. A maximal set of sites that can communicate with

one another is called a partition group, following Davidson

[2]. We make the simplifying assumption that a partitioned

network consists of only two partition groups, called a ma-

jority partition and a minority partition. This simplifica-

tion does not change our conclusions because we believe

that this kind of partition is rare and that more extensive

partitioning is even rarer; we analyze the most common

case. We define L i as the load on the system for a site j

based on the fraction of transactions that run there. That

is,

number o f transactions init iated at site j
Li = number o f transactions

Then set S of sites is a majority if and only if

(~0~s Lo) > ~. We use this somewhat nonstandard defi-

nition of majority because it ensures the desirable property

that during a partition more than one-half of the work sub-

mitted to the system is submitted to the majority partition.

In this paper, we are interested in availability. It is

a measure of the amount of work that can be done by a

system. We define availability as follows.

Availabil i ty =

number o f transactions success fu l ly completed

number o f transactions presented to the sys tem

We do not study other aspects of performance, such as the

relative expense of read/write operations or the cost of re-

joining partitions.

In order to quantify our observations concerning avail-

ability, we are interested in the following parameters.

t = total number of transactions presented during

the partition

u,~ i = fraction of t that are update transactions and

are in the majority partition

u,ra, = fraction of t that are update transactions and

are in the minority partition

rraai = fraction of t that are read - only transactions

and are in the majority partition

rm~. = fraction of t that are read - only transactions

and are in the minority partition

2 . 2 A n a l y s i s

We now show that no on-line replicated-data manage-

ment protocol that maintains one-copy serializability can

achieve a level of availability that is better than ur~ai +

rmaj + rrain.
Our proof depends on an assumption regarding system

workload, which we call the uniformity assumption. One

informal characterization, which is sufficient for the unifor-

'188

Majority

TA:

R(x)

W(x)

Minority

Rix)
W(x)

Figure 1: Execution £

mity assumption to be satisfied, is that the transaction mix

be the same at each site.

U n i f o r m i t y a s s u m p t i o n • For all D where D is a sub-

set of the data items, and for all j E 1, . . . ,n.

N u m b e r o f D - t ransact ions in i t ia ted at site j

Total number o f D - t ransact ions = L i

where a D-transaction is a transaction with write set D.

For example, suppose 10% of the update transactions run at

site 1; then our assumption says that of those transactions

that update a set of data items, 10% of them run at site 1.

We find it convenient to formulate the following correct-

ness property, which in Theorem 1 we show is a necessary

condition for maintaining one-copy serializability.

Cor rec tnes s p rope r ty . For all data items d, d is not

updated on both the minority and majority sides of a par-

tition.

T h e o r e m 1. Any replicated-data management proto-

col that preserves one-copy serializability satisfies the cor-

rectness property.

Proof . Assume not. Then there exists a replicated-data

management protocol that preserves one-copy serializabil-

ity and that violates the correctness property. There must

be some execution ~ of P in which the network partitions

and in which some data item x is updated on both sides of

the partition. Let A be the first transaction that updates

x on the majority side and let B be the first transaction

that updates x on the minority side. The execution ~ is il-

lustrated in Figure 1. Because of the partition, transaction

A cannot see the effects of the write to x by transaction

B. Thus, transaction A must be serialized before transac-

tion B. Analogously, transaction B must be serialized be-

fore transaction A. So, the execution ~ is not serializable.

Contradiction. []

The following lemma is central to our proof of the upper

0 Y.,.~

• Z , ~ j 0
R,,,,,i

Z, nia U

d
a

t
e

R,,~.

Majority Minority

R
e
a

d

Figure 2: Sets of transactions used in proof of Lemma 2

bound on the availability achievable by a replicated-data

management protocol that maintains one-copy serializabU-

ity.

L e m m a 2. Let .4 be any replicated-data management

protocol that satisfies the correctness property and that

operates in a system in which the uniformity assumption

holds. Any execution ~ of protocol .4 during a partition

has availability at most u,uzj + r ~ j + r,~,~.

Proof . We use a counting argument to bound the avail-

ability from above. See Figure 2 for an illustration of the

sets of transactions defined below.

We define the following quantities:

U,~,ai -- set of update transactions presented on the

majority side of the partition

U,~i, = set of update transactions presented on the

minority side of the partition

R,,,~ i = set of read-only transactions presented on the

majority side of the partition

R ~ i , = set of read-only transactions presented on the

minority side of the partition

Note that t = [U,~jl + [U,~anl + [R~aj[+ [R,~i,~[

u . . i = IU..il/t
u . j . = l u . , , , l l t
" - i = IR , , , , , i l / t

,',,,,,, = I R - - I / t .
Consider an arbitrary execution $. Let t~ be the num-

ber of transactions that complete in execution ~. To

bound te, we make the worst-case assumption that all read-

only transactions complete. To count the update transac-

tions, let Y,~y _C U,~j be the set of update transactions

189

that are initiated on the majority side and complete. Let

Zmin _C Umin be the set of update transactions that are ini-

tiated on the minority side and complete. Then we bound

t t from above as follows:

t t _< I-a,,~A + I ~ , n l + I raq i + IZ.,,.I O)

Let D be the set of all data items updated by transac-

tions in Ymj; similarly, let D ~ be the set of all data items

updated by transactions in Z,~in. By the correctness prop-

erty, D and D ~ do not intersect. Let Zmoj be the set of

transactions whose write sets are contained in D ~ and that

are initiated on the majority side. By the uniformity as-

sumption, for each possible write set in Zmi~, there are

more transactions with the same write sets in Z,~j; hence,

IZ,~aj] > IZmlnl. Substituting in equation (1) we get

t t < IR,n~j[+ JR,mini + IY, r~,jl + [Z,,~il. (2)

By the correctness property, no transactions in Z,,~i

complete during the partition, that is, Z,,~ i n Y,,~# = ~b.

Since Y,~i c U,~# and Z,~,i c U,~j, then IY~l + IZ~l _<

IUmaj]. Substituting in equation (2), we have

t~ < IRaqi + IR,~,.I + ItS~l. (3)

To calculate availability from equation (3), we divide

through by t, the total number of transactions presented

during the partition. Then

Avai lab i l i t y < r,,~ i + rmln + Umai. []

The following theorem, the main result of this section,

is an upper bound on availability.

T h e o r e m 3. In a system where the uniformity assump-

tion holds, no replicated-data management protocol that

maintains one-copy serializability can achieve availability

greater than u,,~, i + rmaj + rmln.

Proof . Assume that there exists an protocol A that

has availability greater than um~i + r ,~ i + r,~,i,~. By Lemma

2, protocol A violates the correctness property. By Theo-

rem 1, protocol A does not preserve one-copy serializability.

Contradiction. []

3 A n a l y s i s o f P r o t o c o l s

We are interested in database availability in the pres-

ence of long-lived partitions. The reasons why a transac-

tion might fail to complete can be divided into two cate-

gories: transient and permanent. Transient problems, such

as deadlock, will disappear if a transaction is retried suf-

ficiently often. Permanent problems, such as the inacces-

sibility of data, will last as long as the partition persists.

Only permanent problems are significant for analyzing the

long-term behavior of a partitioned system. Therefore, we

ignore the transient problems in the following analysis.

Using our new framework, we determine the level of

availability achievable with each of four known replicated-

data management protocols.

3.1 Gifford's Weighted Voting Protocol

Gitford [6] presents a simple and elegant protocol for

maintaining the consistency of replicated data in a dis-

tributed computer system. The basic idea of the protocol

rests on the notion of quorum intersections. Each copy of a

replicated data item is assigned some number of votes. To

read a data item, a transaction must collect a read quorum

of votes; to write a data item, it must collect a write quorum

of votes. To maintain the consistency of the replicated data,

these read and write quorums must satisfy two constraints.

First, read and write quorums must intersect, guaranteeing

that any read quorum has a current copy of a data item.

Second, write quorums must intersect, imposing an order

on updates. Together, these two rules ensure one-copy seri-

alizability. The protocol has several additional benefits: it

continues to operate correctly even if some copies are inac-

cessible, it is possible to change a data item's performance

and reliability characteristics by altering quorum sizes, and

it also copes with partitions without explicit detection. In

this section, we consider the two ends of a range of possible

quorum sizes.

Let S be some set of sites in the system. We define the

vote of S in terms of the transaction load. That is,

Vote o f S = ~ L , .
sE$

This apportionment of vote, which ensures that the major-

ity partition has a higher vote than the minority partition,

allows the maximum number of transactions to complete

during the partition.

Scheme 1. Set S is a read quorum if the vote of S > 0;

S is a write quorum if the vote of S = 1. The advantage

of such a choice of quorum sizes is that if a transaction

reads more data items than it updates, it is typically read-

ing only a single copy of a data item (usually the local one);

hence, it costs little more than the same transaction execut-

ing against a non-replicated database. The disadvantage is

that if there is a greater proportion of updates than reads,

then a transaction incurs the expense of updating all copies

of a data item every time it executes a write. In the pres-

190

ence of a partition, read operations will succeed because

only one copy of a data item need be read and that can oc-

cur on either side of a partition. Write operations, however,

will never complete during a partition because all copies of

a d a t a item must be accessible. Therefore, read-only trans-

actions are the only kinds of transactions that will succeed.

In terms of our model, the level of availability achievable in

this variation of Gifford's weighted voting protocol is

Avai labi l i ty = r,~¢ + train.

Scheme 2. This variation differs from the previous

scheme in that it permits more writes because it does not

require that all copies be available for writing. Set S is

a write quorum in this scheme if it is a minimal set such

that the vote of S > ~; set S is a read quorum if it is

a minimal set such that the vote of S _> ~. The penalty

incurred for cheaper write operations is that a transaction

must have at least half of the votes in order to read a data

item. By definition the total vote of all the sites on the

majority side of the partition is more than a half. Thus,

read and write quorums can be constructed on the majority

side. Analogously, the vote of all the sites on the minority

side is less than a half; neither read nor write quorums can

be constructed on the minority side. Both read and write

operations will succeed on the majority side, but neither

will succeed on the minority side. The availability is

Avai labi l i ty = u,~aj + rmai.

A n a l y s i s of Gif ford ' s p ro tocol . We observe that the

above two variants of Gifford's protocol constitute the ends

of a continuum of quorum choices afforded by his protocol.

We shall show that the availability achievable by choosing

intersecting quorums within the range of the two endpoints

is either u,,~j + rma i or rmay + r,nln.

Let w,,~ be the fraction of votes in a write quorum.

tOqr m > ~ because write quorums must intersect. When

wq,~ = 1 the first scheme results. There exist values of

VJqrnt sufficiently close to ~ such that the second scheme
results.

The size of the read quorum must be greater than 1 -

wq,~ in order that the read and write quorums intersect.

For example, if wqr~ = ~ then the read quorum size must be

greater than ~. The only possible values of wq,~ are greater

than ~ and less than or equal to 1. If p,~¢ is the fraction

of votes in the majority partition and p ~ , is the fraction

of votes in the minority partition, then p,~, = I - P,~oS.

There are two cases to consider.

1. p ,~ j < Wqr,~. This relationship implies that no

transaction can update items because of an insuffi-

cient write quorum size. On both sides of the par-

tition transactions can only read. The availability is

rmai ~ r,nin.

2. Pmaj --> Wqrm. This relationship implies that there are

enough votes on the majority side to satisfy the write

quorum size. Thus, transactions can read or write on

the majority side of the partition. The vote in the

minority partition pm~, is smaller than the required

read quorum size, 1 - wq,,,, so transactions cannot

even read on the minority side. The availability is

U,nay +rmai.

Our result is that the availability of Gifford's protocol

with parameter Wqrnt is

Avai labi l i ty = I r,naj + r,nin if Pmai < Wq,r,;
(u,,~j + r ,~j otherwise.

3.2 Missing Writes

Eager and Sevcik's protocol [3] is a more complicated

replicated-data management protocol than Gifford's and

attempts to achieve higher availability by switching be-

tween different quorum sizes; extra mechanism is required

to accomplish this switch without loss of one-copy serial

izability. Transactions run in either of two modes: nor-

mal mode or partitioned mode. In normal mode, transac-

tions follow scheme 1 of Gifford's protocol. When sites fail

or when the network partitions, normal mode transactions

make no progress if they must collect all possible votes to

update a data item. To make progress, normal mode trans-

actions abort. They restart in partitioned mode and follow

scheme 2 of Gifford's protocol.

Since normal mode transactions can coexist with parti-

tioned mode transactions, a normal mode transaction might

be serialized before and after some partitioned mode trans-

action, leading to non-serializable behavior. To prevent this

violation from occurring, the protocol guarantees that par-

titioned mode transactions are always serialized after nor-

mal mode transactions. The technique is to maintain data

structures that keep track of the updates to data items that

were not made at other sites storing copies of the data items

because of failure--the so-called missing write information.

Whenever a normal mode transaction has read a data item

that has missing write information associated with it, it

must abort. To make progress, it restarts in partitioned

191

mode. Because we are interested in availability in the long

term, the way in which this information is propagated and

the speed with which it is propagated are irrelevant to our

analysis.

All transactions executing on the majority side run to

completion. The contribution to total system availability

by these transactions is umaj + r,~j. On the minority side

of the partition, normal mode read-only transactions can

run successfully (contribution to total availability is r,~,).

Writes are impossible because normal mode requires that

all copies be available for writing. If update transactions

restart in partitioned mode, they cannot make progress be-

cause a majority of votes for the read and write quorums

cannot be attained. The total availability is

Availability = u,~j + r,~j ÷ r,~,.

3 . 3 V i r t u a l P a r t i t i o n s

Another variation on Gifford's weighted voting proto-

col is the virtual partition scheme of E1 Abbadi, Skeen,

and Cristian [4]. Virtual partitions attempt to track real

changes in the network topology as closely as possible with-

out being constrained by the need to cope with changes

instantaneously. A virtual partition is a set of nodes that

have agreed that they can communicate with each other

and further agree that they will not communicate with any

processors outside the partition. The ability to commu-

nicate within a partition may be subsequently lost due to

failures. Although communication with processors outside

a virtual partition may be physically possible, this commu-

nication may not be initiated until a special protocol is run

to form a new virtual partition.

The virtual partition scheme permits cheap read opera-

tion as in Gifford's scheme 1; yet it allows write operations

to be performed in the majority partition as in Gifford's

scheme 2. The cheaper read operations come at the expense

of a protocol that updates every item in the database when

partitions are rejoined.

Th~ authors enumerate rules and properties that they

show are sufficient to ensure one-copy serializability. We list

the ones that affect our calculations of availability. There

are four rules that govern transaction execution. The acces-

sibility rule is that a logical data object is accessible from a

processor in a virtual partition if a simple majority of copies

reside on processors in its virtual partition. The read rule

is that a transaction may read from the nearest copy in its

virtual partition, but the logical data object must first be

accessible. The write rule is that a transaction must write

to all copies in its virtual partition (which may be more

than a simple majority), but the logical data object must

first be accessible. The one-partition rule is that the ex-

ecution of an individual transaction does not span virtual

partitions.

Our analysis of availability depends heavily on the rule

used to decide whether to form a new virtual partition. We

call this rule the tracking strategy. Several tracking strate-

gies are possible. The choice of strategy is not fundamental

to the virtual partitions scheme. The particular strategy

proposed by the authors of the scheme, which we call ag-

gressive tracking, is to initiate the formation of a new vir-

tual partit ion soon after a change in the physical network is

discovered. Unfortunately, this strategy limits the level of

availability achieved. We propose an alternative strategy,

which we call lazy tracking, that achieves higher availabil-

ity. This strategy is that a new virtual partition is formed

only if read operations are possible in the virtual partition.

In proposing this strategy, we depend on our assumption

of full replication.

In terms of our model, we calculate the level of avail-

ability achievable in the virtual partition scheme for both

tracking strategies mentioned above. As before, we suppose

the physical network partitions into a majority side and a

minority side.

Aggress ive t r ack ing . A virtual partition is formed for

the majority side and another is formed for the minority

side. Read operations are possible on the majority side due

to the read rule. Update operations are also possible due

to the write rule. Thus, both read and write transactions

will complete if they run on the majority side (contribution

to total availability is r,z~j + u,naj). Consider transactions

presented on the minority side of the partition. Because

of the accessibility rule, no transaction can run at all; a

majority of copies is not accessible. Thus, in the presence of

a network partition, this scheme behaves in essentially the

same way as Scheme 2 of Gifford's weighted voting protocol.

The availability is

Availability = u,~aj + rm~j.

Lazy t r ack ing . A virtual partition is formed for the

majority side because read operations are possible. If a vir-

tual partition were formed for the minority side, read oper-

ations would be impossible in that partition; therefore, the

sites on the minority side retain their view that the network

is unpartitioned. The same level of avallahillty is achieved

on the majority side as in the first case, u,~,~j + r,,~j. The

accessibility rule is satisfied on the minority side because

192

the processors in the minority side still think they are in

an unpart l t loned network. Hence, read-only transactions

are possible (contribution to total availability is r,~,~). The

availability is

Avai labi l i ty = Umai + r,,~j + r,n~,.

A recent replicated-data management protocol similar

to virtual part i t ions has been proposed by El Abbadi and

Toueg [5]. Their new protocol provides greater flexibility

in quorum choices and other improvements on the virtual

parti t ions scheme. These differences, however, do not affect

the analysis of the maximum availability possible. Their

scheme is based on a concept similar to virtual parti t ions,

which they call v/et0s. When the quorum sizes are set in

their scheme in the way that provides the maximum avail-

ability, views behave the same way as virtual partit ions.

In that case, all the I~-evious analysis, including tracking

strategies, applies with.~ut change to the El Abbadi and

Toueg scheme. Quorum sizes could also be chosen to pro-

vide the same availability as in Gifford's scheme 1, if avail-

ability of read-only transactions is deemed more important

than that of update transactions.

3.4 Privileged Parti t ions

The notion of a privileged partition is suggested by

Wright and Skeen [10] in their paper on class conflict

graphs. In the class conflict graph scheme, the basic tech-

nique is to divide transactions into classes according to data

access patterns, assign these classes to partit ions, and con-

struct a graph (called a class conflict graph) showing all

possible interactions between the classes. Given this graph,

one identifies those interactions between classes that could

lead to non-serializable behavior and deletes those classes

from parti t ions until the graph is acyclic. This pre-analysis

is performed before any transactions are actually executed.

When the system parti t ions, the transactions in the classes

can be executed to completion without conflict.

This approach extends other replicated-data manage-

ment protocols by relaxing some restrictions that those

protocols impose on the reading and updating of a da ta

item in different partit ions. A simple application of their

method that does not require pre-analysis is the notion of

a "privileged" parti t ion. We can adapt Gifford's protocol,

where the read and write quorums require a majority of

votes, to achieve greater availability while still guarantee-

ing one-copy serializability. We choose one part i t ion to be

the privileged parti t ion, where an protocol can write what-

ever it did before, but in addition, it can read any item.

The class conflict graph analysis guarantees the graph to

be acyclic. The difference between this protocol and Gif-

ford's is that parti t ions must be detected in some fashion

and the da ta repaired after parti t ions are rejoined; in Gif-

ford's protocol, parti t ions need not be explicitly detected,

nor does the database require repair.

Suppose the privileged part i t ion is the minority parti-

tion. Gifford's protocol is run on both sides of the parti t ion.

On the majority side, transactions can read and write da ta

items; on the minority side, Gifford's protocol by itself al-

lows no transactions. But read-only transactions can run

on the minority side because of this special rule for priv-

Ueged partit ions. Assuming the minority part i t ion is the

privileged parti t ion, the availability is

Avai labi l i ty = um~j + r ,~ j + r,~,~.

Suppose the privileged part i t ion is the majority partit ion.

Both read-only and update transactions can complete on

the majority side; neither can complete on the minority

side. Assuming the majority part i t ion is the privileged par-

ti t ion the availability is

Avai labi l i ty = u,,~aj + rmaj.

Given our assumption of full replication there is a method

that ensures that the minority parti t ion is the privileged

parti t ion. Unfortunately, this method does not generalize

to systems without full replication.

4 C o n c l u s i o n s

A contribution of this paper is its uniform analysis of

database availability that can serve as a basis for com-

parison of other replicated-data management protocols.

We have shown, given our uniformity assumption, that

no replicated-data management protocol that maintains

one-copy serializability achieves availability greater than

u ~ j ~ r ,~ j + r,ni,. Additionally, we have shown that there

are replicated-data management protocols that achieve the

bound. Thus, the bound is tight.

Our analysis shows that there is a severe limitation on

the availability that can be achieved during a partit ion.

Because of this limitation, networks should be designed to

minimize the probabili ty that partit ions will occur. We

believe that it is technically feasible to make network par-

titions highly unlikely by building sufficiently reliable net-

works using a combination of the following techniques: high

connectivity; software security, such as preventing mall-

193

cious application programs from corrupting the operating

system or gateway; and physical security, such as keeping

people away from the machines.

But even though the likelihood of a network part i t ion

may be small given such a sufficiently reliable network,

software should still preserve one-copy serializability in the

presence of parti t ions. A system should not fail in a catas-

trophic way. When choosing a replicated-data management

protocol from among several, the criteria one uses need not

necessarily be availability alone; other factors, such as ease

of implementation and cost of repairing a database when

parti t ions rejoins, should be considered as well.

Acknowledgments

We thank Jim Gray of Tandem Computers for a helpful

discussion on the merits of hardware versus software so-

lutions to the problem of high data availability. We thank

Gary Leavens who suggested we write this paper, and Sunil

Sarin, who encouraged us. Finally, we thank Amr E1 Ab-

badi, Maurice Herlihy, Jennifer Lundelius, Sam Toueg, and

Bill Weihl, whose comments proved helpful in preparing the

final version of this paper.

R e f e r e n c e s

(ll

[2]

[3]

[4]

[5]

Philip A. Bernstein and Nathan Goodman. "Multiver-

sion Concurrency Control-Theory and Algorithms".

ACM Transactions on Database Systems, 8(4):465-

483, December 1983.

Susan B. Davidson. "Optimism and Consistency in

Part i t ioned Distributed Database systems". ACM

Transaction: on Database Systems, 9(3):456-481,

September 1984.

Derek L. Eager and Kenneth C. Sevcik. "Achiev-

ing Robustness in Distributed Database Systems".

ACM Transactions on Database Systems, 8(3):354-

381, September 1983.

Arar E1 Abbadi, Dale Skeen, and Flaviu Cristian.

"An Efficient, Fault-Tolerant Protocol for Replicated

Data Management". In Proceedings of the 4th ACM

SIGACT/SIGMOD Conference on Principles of Data

Base Systems, 1985.

Amr E1 Abbadi and Sam Toueg. "Maintaining Avail-

ability in Part i t ioned Replicated Databases". In Pro-

ceedings of the 5th ACM SIGACT/SIGMOD Con-

[6]

[7]

[81

ference on Principles of Data Base Systems, 1986.

Held at the Hyatt Regency Hotel, Cambridge, Mas-

sachusetts, March 24-26, 1986.

David K. Gifford. "Weighted Voting for Replicated

Data". In Proceedings of the 7th ACM Symposium

on Operating Systems Principles in Operating Systems

Review Vol. 18, No. 5 (December 1979), pages 150--

162, 1979. Asilomar Conference Grounds, Pacific

Grove, California, December 10-12, 1979.

Maurice P. Herlihy. "A Quorum-Consensus Replica-

tion Method for Abstract Data Types". ACM Trans-

actions on Computer Systems, 4(1):32-53, February

1986.

Christos H. Papadimitriou.

current Database Updates".

24(4):631-653, October 1979.

"Serializability of Con-

Journal of the ACM,

[9] Sunil K. Sarin. "Robust Application Design in Highly

Available Distr ibuted Databases". In Proceedings of

the 5th IEEE Symposium on Reliability in Distributed

Software and Database Systems, pages 87-94, 1986.

Held at the Marr iot t Hotel, Los Angeles, California,

January 13-15, 1986.

[10] Dale Skeen and David D. Wright. "Increasing Avail-

ability in Part i t ioned Database Systems." Technical

Report TR 83-581, Department of Computer Science,

Cornell University, March 1984.

194

