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Abstract: We give several new results in the area of fault-tolerant distributed

computing. Our specific interest is consensus protocols, that is, protocols that
enable correct processors to reach agreement in the presence of disruptive behavior

by faulty processors. The results presented in this thesis are as follows: two new

efficient agreement protocols, one randomized and one deterministic; a method

for efficiently transforming a protocol that reaches agreement on a single bit into a

protocol that reaches agreement on values chosen form a larger set; a general method

for compiling a protocol that tolerates relatively benign processor faults into one

that tolerates more serious processor faults; and a strengthening of the known lower

bound on the number of rounds of communication required by consensus protocols.
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Introduction

The recent proliferation of distributed computing has provided computer-

system designers with the opportunity to create computer systems that continue to

function correctly despite the failure of some components. Exploiting this opportu-

nity has proved to be a difficult, but important, problem.

In this thesis we consider one particular problem that arises in the design of

fault-tolerant distributed computer systems. Specifically, we consider the design

of consensus protocols. A consensus protocol enables correct processors to reach

agreement in the presence of disruptive behavior by failed processors. We give

several new results for consensus protocols. Specifically, we give two new protocols,
a strengthened lower bound, and three new simulation results. Our method is

theoretical because, as the founding researchers in the field of consensus protocols

(Wensley et al. [48]) say:

[Protocols] of this type often contain very subtle errors, and extremely

rigorous proofs are needed to ensure their correctness.

1. Background

In 1978 the final report of the SIFT (Software Implemented Fault Tolerance)

project [48] documented an attempt to design a fault-tolerant computer system for

aircraft control. The intended application of the SIFT system is one in which a

failure of a computer system could render the aircraft that it controls unflyable.

13



Introduction

Naturally, the reliability requirements for such a system are extremely high. The

SIFT report proposed to achieve high reliability through the replication of compo-

nents. In order to ensure the independence of hardware failures, the architecture

proposed was a collection of communicating processors-a distributed system.

Taking advantage of replication to increase the fault-tolerance of a computer

system is a difficult problem. One would like the correct processors to act in concert

despite the disruptive behavior of any failed processors. An important insight from

the SIFT project is that in a distributed system in which some processors may fail,

it is necessary for the correct processors to run sophisticated consensus protocols

if the system is to guarantee that the correct processors will always be able to act

in concert. Since the publication of the SIFT final report, fault-tolerant consensus

protocols have been an active area of research.

2. Fault Models

The computer systems that we consider consist of a collection of processors

that communicate by sending messages over links. Each link connects a pair of

processors. We refer to the collection of links as the communication network. It

is known [27] that there are no consensus protocols unless the connectivity of the

communication network is high. Throughout this thesis we assume that the com-

munication network is fully connected.

The first step in the development of a consensus protocol is to characterize the

faults that it will tolerate. There are two components that could potentially fail,

processors and links. We make the assumption that the communication network

is reliable and that all failures are processor failures. The principal justification

for making this assumption is that links are simpler than processors and therefore

potentially more reliable.

A correct processor sends messages according to its protocol. A failed processor

can deviate from its protocol. One could imagine that a processor simply stops

sending messages when it fails. Alternatively, one could imagine that the message-

sending behavior of a failed processor is totally unconstrained. More generally,

there are a variety of possible fault models ranging from relatively benign faults to

relatively nasty faults. The four most commonly studied fault models are as follows:

e Crash fault model: A failed processor follows its protocol correctly for some

time. Then, it stops completely, sending no more messages.

14
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* Failure-by-omission fault model: A failed processor follows its protocol correctly
except that some of its outgoing messages may be lost.

* Authenticated Byzantine fault model: Correct processors can sign the messages
that they send. A failed processor can send arbitrary messages subject to the
constraint that it cannot forge the signature of a correct processor.

* Byzantine fault model: There are no constraints on the messages that can be
sent by a failed processor.

Throughout this thesis we develop protocols for the Byzantine fault model and

we prove impossibility results for the crash fault model. This makes our results as

strong as possible because any protocol that works in the Byzantine fault model

also works a fortiori in more benign fault models and any impossibility result that
holds in the crash fault model also holds a fortiori in nastier fault models.

3. Timing Models

A timing model embodies the set of assumptions that we make regarding

bounds on the relative rates of processors and bounds on message delivery time.

The solution to any consensus problem depends on the particular timing model.

So, for each consensus problem that we consider in this thesis, we settle on a timing

model. If we assume a high amount of synchronization, then it is relatively easy to
solve a consensus problem; if we assume a low amount of synchronization, then it is

relatively hard (or in some cases impossible). The two most widely studied timing

models are the synchronous model and the asynchronous model.

We say that a system is synchronous if all processors act in unison. That

is, communication takes place in a series of rounds. In each round each processor

sends messages, receives all of the messages sent to it, and acts on the messages

received. The synchronous model is the most optimistic timing model that we know.

Dolev, Dwork, and Stockmeyer [17] showed that an equivalent formulation of the

synchronous model is to assume a fixed, known upper bound on message delivery

time and on the difference in rate between each pair of processors.

Ve say that a system is asynchronous if there is no bound on the relative rates

of processors and if there is no bound on the message delay. The asynchronous model

is the most pessimistic timing modcl that we know. A famous result by Fischer.

Lynch, and Paterson [28] showed that in the asynchronous model it is impossible

to solve consensus problems if we require exact solutions and if we require that

15
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protocols always terminate. Subsequent results have shown that it is possible to

solve certain consensus problems in asynchronous systems. The problems that can

be solved either admit approximate solutions or allow protocols that terminate with

high probability, but not with certainty.

With the exception of Chapter 4, we restrict our attention to synchronous

systems. In Chapter 4 we restrict our attention to asynchronous systems. We do not

consider any timing models intermediate between synchronous and asynchronous.

Identifying interesting intermediate timing models is a potentially productive, but

largely unexplored, area for research. Attempts in this direction have been made

by Coan and Lundelius [143 and by Dwork, Lynch, and Stockmeyer [23].

4. The Agreement Problem

The most commonly studied consensus problem is the agreement problem. A

protocol for the agreement problem is run by a distributed system of processors.

Each processor starts the protocol with an input value v from a fixed set V of

legal inputs. Each correct processor may, at some point during the execution of

the protocol, irrevocably decide on an element of V as its answer. There are three

conditions that the correct processors must satisfy.

9 Agreement condition: All correct processors that decide reach the same deci-

sion.

* Validity condition: If all correct processors start the protocol with input v,

then v is the decision of all of the correct processors that decide.

* Termination condition: All correct processors eventually decide.

5. An Application of an Agreement Protocol

It may not be apparent how one would use a solution to the agreement problem

to construct a reliable distributed system. For instance, the validity condition

may seem too weak because it only imposes a constraint on the answer when all

processors have the same input. In this section we give an example that shows how

a solution to the agreement problem could help in the construction of a reliable

system for aircraft control.

Suppose that on an aircraft there are four units, each consisting of a processor

and an altimeter. Each processor has an output line over which it can issue requests

16
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to either raise or lower a flap. The altimeters of the correctly operating units give

approximately equal readings. The processors communicate over a network that is

fully connected and reliable. Suppose we have a solution to the agreement problem

for four processors with at most one Byzantine fault. We give a protocol P that

tolerates the Byzantine failure of one unit and allows the correct units to reach

exact agreement on an altitude within the range of the correct altimeter readings.

Then we explain how the protocol P can be used as part of a reliable system to

control the aircraft.

The protocol P is as follows. Each processor sends its altimeter reading to all

of the processors in the system. The system runs four instances of the agreement

protocol in parallel. Each processor uses as its input for instance i of the agreement

protocol the altimeter reading that it received from processor i. Let vi be the

answer at processor p from instance i of the agreement protocol. Processor p forms

the vector (vi, v2, v3, v4 ) and answers the average of the second largest and the third

largest elements in the vector.

We argue informally that this protocol enables the correct processors to agree

on an altitude within the range of the correct altimeter readings. By the agreement

condition satisfied by the agreement protocol, all correct processors form the same

vector and thus (because they all use the same averaging function) produce the

same altitude as an answer. By the validity condition satisfied by the agreement

protocol, the altimeter readings of the three correctly operating units are correctly

entered in the vector formed by each processor. At most one altimeter is faulty.

There are two cases. Either the agreed value of the faulty altimeter is an extreme

value or it is not. In either case it is easy to see that the averaging function used

by all of the correct processors must produce an altitude in the range of the correct

altimeter readings.

We now explain how the protocol P can be used as a part of a reliable system

for aircraft control. We will ensure that the aircraft is completely under the control

of the correct units. Recall that more than a majority of the units are assumed to

be correct and recall that the correct units have used protocol P to agree on an

altitude in the range of the correct readings. If processors are programmed so that

their outputs (to the flap) are a function of their inputs (altimeter readings) and

nothing else, then all correct units will produce the same output. It is possible to

construct the aircraft so that its flap is not controlled directly by any one processor;

rather, the flap is controlled by a physical voting device that will respond to the

correct processors (a majority) and ignore the failed processors (a minority). Thus

17
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the aircraft goes in a direction that is calculated by a correct processor based on an

altitude in the range of the correct altitude readings.

6. Glossary of Consensus Problems

In this thesis we discuss a large number of consensus problems. We define most

of these problems in this section. For the four problems that we do not define here,

we give references to the definitions. The consensus problems that we discuss fall

into two broad categories: variants of the agreement problem and other consensus

problems. We define all of the variants of the agreement problem here and, in

Table 1, we give the locations of the definitions of the other consensus problems.

Problem Chapter Section

Approximate Agreement 4 2
Avalanche Agreement 2 4

Distributed Firing Squad 6 3.1

Table 1: Location of Problem Definitions

We define 48 variants of the agreement problem. They arise from one three-

valued choice and four two-valued choices that are all made independently. We

enumerate the choices with the default choice in bold. The input is either mul-

tivalued or binary. The agreement requirement is either for exact agreement or

for crusader agreement. The validity requirement is either strong or weak. The

decision of the correct processors is either eventual or simultaneous. Termination

is either deterministic, randomized, or lazy.

A protocol is either randomized or deterministic. If it is randomized then each

processor can make local random choices; otherwise, this capability is unavailable.

it is common to require that correct processors in deterministic protocols decide in

all executions. In randomized protocols this requirement is usually relaxed; proces-

sors are merely required to terminate with probability one. We distinguish these

alternative termination requirements by formulating two variants of a consensus

problem, one deterministic and one randomized. These problem variants differ only

in the termination requirement. A third variant without any termination require-

ment is possible. We call this variant lazy.

In a protocol P that solves an agreement problem, each processor starts with

an input value from some fixed set V. We refer to the elements of the set V as

values. We require that * ( V and that IVI ;> 2. An agreement problem is binary
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if the input set is restricted to be of size two; otherwise the problem is multivalued.

Each correct processor may, at some point during the execution of P, irrevocably

decide on an element of a set A as its answer. If P is a crusader agreement protocol

then A = V U {*}; otherwise, A = V. Protocol 7P solves a particular agreement

problem if it satisfies the corresponding subset of the following conditions. The

agreement condition for P is one of the following:

* Agreement condition for exact agreement: All correct processors that decide

reach the same decision.

" Agreement condition for crusader agreement: All correct processors that decide

on an element of V reach the same decision.

The validity condition for P is one of the following:

* Validity condition for strong agreement: If all correct processors start the pro-

tocol with input v, then v is the decision of all of the correct processors that

decide.

e Validity condition for weak agreement: If all processors are correct and if all

processors start the protocol with input v, then v is the decision of all of the

processors that decide.

The simultaneity condition for P is one of the following:

* Simultaneity condition for eventual agreement: No condition is imposed.

* Simultaneity condition for simultaneous agreement: If any correct processor

decides then all correct processors decide in the same round. (This condition

is applicable only in synchronous systems.)

The termination condition for P is one of the following:

* Termination condition for deterministic agreement: All correct processors

eventually decide.

e Termination condition for randomized agreement: The probability that all cor-

rect processors decide by round r tends to 1 as r tends to infinity. (This

formulation of the condition is applicable only in synchronous systems. An

alternative formulation would be required in an asynchronous system.)

e Termination condition for lazy agreement: No condition is imposed.
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7. Roadmap

We now outline the results presented in this thesis. All of the chapters are

independent and self-contained except that Chapter 3 depends on some material

presented in Chapter 2. In the discussion in this section we let n be the number of

processors and we let t be an upper bound on the number of faults that a protocol

needs to tolerate.

In Chapter 2 we give an upper bound on the communication requirements

for fault-tolerant consensus protocols. We do this by showing that an arbitrary

consensus protocol can be simulated by a communication-efficient protocol (i.e., a

protocol with communication cost polynomial in the number of processors). As a

corollary to this result we obtain a major new result concerning the communication

cost of the agreement problem in the Byzantine fault model. This new result is a

polynomial-message agreement protocol that uses about half the rounds of commu-

nication used by the best previously known communication-efficient protocols. As

part of our simulation we found it necessary to formulate and solve a new consensus

problem that we call the avalanche agreement problem.

In Chapter 3 we present two applications of the new avalanche agreement proto-

col developed in Chapter 2. Specifically, we give a general technique for efficiently

transforming a binary agreement protocol into a multivalued agreement protocol

and we give a simple crusader agreement protocol.

In Chapter 4, extending a technique developed by Bracha [5], we give a general

method for compiling a protocol that tolerates relatively benign processor faults

(crash) into one that tolerates more serious processor faults (Byzantine). Our

method works in asynchronous systems only. Using our compiler we find it easy

to develop a new asynchronous approximate agreement protocol that is resilient to

Byzantine faults. For n = 3t + 1, our approximate agreement protocol terminates

in a number of "asynchronous rounds" that is independent of the behavior of the

faulty processors. This is an improvement on a result of Dolev, Lynch, Pinter,

Stark, and Weihl [19]. Their asynchronous protocol requires that n > 5t + 1 and it

permits the faulty processors to determine the number of "asynchronous rounds"

required for termination. In some systems-depending on the size of the system

and the number of faults tolerated-our protocol has a faster convergence rate than

the protocol of Dolev et al.

In Chapter 5 we present a new randomized eventual agreement protocol that

reaches agreement in O(t/ log n) expected rounds and O(n 2 t/ log n) expected mes-
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sage bits independent of the distribution of processor failures. This performance

is further improved to a constant expected number of rounds and 0(n 2 ) message

bits if the distribution of processor failures is assumed to be uniform. In either

event, the protocol beats the lower bound on rounds for deterministic agreement

protocols. Our protocol operates in the Byzantine fault model. Bracha [6] and,
more recently, Dwork, Shmoys, and Stockmeyer [24] have devised new randomized
eventual agreement protocols that are much faster than ours, but their protocols
run in a slightly more benign fault model.

It is known that t + 1 is a lower bound on the number of rounds required to
solve certain consensus problems. In Chapter 6 we extend the lower bound of t + 1
rounds to a larger class of consensus problems. Specifically, we show that the bound
holds for the simultaneous randomized agreement problem and for the randomized
distributed firing squad problem. Our lower bound contrasts with known fast pro-
tocols for the randomized eventual agreement problem, like the protocol presented

in Chapter 5.
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A Communication-Efficient
Canonical Form for
Fault-Tolerant Distributed
Protocols

The task of achieving consensus among the correct processors in a fault-tolerant

distributed computer system has been recognized as a fundamental problem in

distributed computing. Many consensus protocols are known. Some of these re-

quire an amount of communication that is exponential in the number of proces-

sors. We present a general simulation of any synchronous consensus protocol by a

communication-efficient protocol (i.e., a protocol with communication cost polyno-

mial in the number of processors). An important corollary of the simulation tech-

nique is a new communication-efficient protocol for a particular consensus problem

called the agreement problem. This new protocol uses about half the number of

rounds required by the best previously-known communication-efficient agreement

protocol. Our new protocol approaches the known lower bound for rounds to within

a small factor arbitrarily close to one. The only known protocols that achieve the

lower bound for rounds use an amount of communication that is exponential in the

number of processors.

1. Introduction

In a fault-tolerant distributed computer system, the consensus problem is the

problem of ensuring that correct processors reach some consistent decision despite

the erroneous behavior of those processors that fail. Protocols have been designed to

A preliminary version of this chapter appeared in the Proceedings of the Fifth Annual
ACM Symposium on Principles of Distributed Computing [11].
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Communication-Efficient Protocols

solve many variants of the consensus problem including the agreement problem [40],
the approximate agreement problem [19], the crusader agreement problem [16], and

the weak agreement problem [32]. In the Byzantine fault model some of these

protocols require a large (exponential in the number of processors) amount of com-

munication. Examples are the agreement protocol of Lamport et al. [34] and the
approximate agreement protocol of Fekete [25].

We demonstrate general upper bounds on the amount of communication needed
for any consensus protocol by showing that an arbitrary consensus protocol can be
simulated by a particular communication-efficient canonical-form protocol, which we
call the compact full-information protocol. The compact full-information protocol
solves the same problem as the consensus protocol that it simulates, but it uses an

amount of communication that is polynomial in the number of processors and the

number of rounds of message exchange.

The compact full-information protocol is a "universal" consensus protocol in
the sense that all of the message exchange among the processors is independent
of the particular consensus protocol being simulated. The only thing that does
depend on the protocol being simulated is the decision function that is used by
each processor to compute its answer (output) as a function of its current state.

There is a certain overhead in our simulations. To achieve its small communica-

tion cost, the compact full-information protocol incurs an increase in running time
(i.e., rounds of message exchange). It takes more than one round for the compact

full-information protocol to simulate one round of a consensus protocol. There is a
tradeoff between the number of rounds and the degree of the polynomial bounding

the communication. The value of this tradeoff is determined by a numerical param-

eter to the compact full-information protocol. For any e > 0 there is a choice for
the parameter that increases the number of rounds by a factor of 1+ e and that uses

O(r - n[2/,+3 - log jVJ) bits of communication where n is the number of processors,
r is the number of rounds of the simulated protocol, and V is the set of possible

inputs to the simulated protocol.

We develop the compact full-information protocol for use in the Byzantine

fault model. In more benign fault models like failure-by-omission and crash there

is a simple modification of our protocol that can simulate an arbitrary consensus

protocol with no increase in the number of rounds. Because the most interesting

applications of our results are in the Byzantine fault model, we will restrict our

attention to that model in the remainder of this chapter.
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As a corollary to the results in the Byzantine fault model, we obtain a major

new result about the communication requirements of agreement. Let t be an upper

bound on the number of processor faults that a protocol need tolerate. The earliest

agreement protocols [34] used exponential communication and t + 1 rounds; t + 1 is

the known lower bound on rounds [26]. Subsequently, improved protocols yielded

polynomial communication using about 2t rounds (see [18], [21], [35], and [46]). An

open question among researchers in this area for the past few years has been whether

there are any protocols that simultaneously use fewer than 2t rounds and polynomial

communication. We obtain an interesting answer to this question. For any E > 0

there is a protocol that uses (1 + e)(t + 1) rounds and polynomial communication

where the degree of the polynomial is linear in 1/e. We obtain this result by

simulating the communication-inefficient (t + 1)-round protocol of Lamport et al.

with our new communication-efficient canonical-form protocol.

Another use for our technique is improving the communication complexity of

a new approximate agreement protocol of Fekete [25]. His protocol has the opti-

mal convergence rate for any multi-round approximate agreement protocol, but re-

quires exponential communication. We can simulate his protocol with a polynomial-

communication protocol that has a near optimal convergence rate.

We develop our simulation of an arbitrary consensus protocol, say P", by a

compact full-information protocol in two stages. First we show that P" can be

simulated by a full-information protocol; then we show that a full-information pro-

tocol can be simulated by a compact full-information protocol. A full-information

protocol is a well-known [26] communication-inefficient canonical-form protocol in

which each processor, at each round, broadcasts its entire state, receives one mes-

sage from each processor, and forms its new state as the ordered collection of all

messages received. The simulation of P" by a full-information protocol yields a

canonical form protocol P' that solves the same problem as P" and that uses the

same number of rounds. Unfortunately, P' uses an amount of communication that

is exponential in system size. We complete the result by showing that P' can be

simulated by a compact full-information protocol P. Protocol TP solves the same

problem as protocols 7" and 7", and it uses an amount of communication that is

polynomial in the system size.

The heart of our result is our new method for efficiently simulating a full-

information protocol with a compact full-information protocol. We do this by using

data compression techniques to condense the information being distributed. Mes-

sages are compressed by the sender and expanded by the recipient. In parallel with
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the rest of the compact full-information protocol, each processor at each round com-

putes an expansion function that it can apply to incoming compressed messages to

obtain the full message text. Our technique requires that all correct processors be

able to consistently expand any message sent by a correct processor. This con-

sistency requirement seems difficult to achieve in the presence of faults, because

it requires that the correct processors agree on how to carry out the compression

and expansion. Such agreement might, at first, seem to require agreement or some

other time-costly protocol. We overcome this difficulty by using a new, different

form of agreement that we call avalanche agreement. The overhead in rounds of our

simulation is accounted for by the cost of periodically performing avalanche agree-

ment. The difference between avalanche agreement and agreement is explained in

Section 4. Using an avalanche agreement protocol to agree on their expansion func-

tion enables the correct processors to achieve a sufficient level of agreement at a

cost that we can afford.

One limitation of our technique is that it uses a large amount of local computing

resources. A complete reconstruction of the local state of processors in a full-

information protocol requires an amount of space and time that is exponential in

the system size. It is straightforward to devise an efficient data representation that

permits each processor to evaluate its decision function using only a polynomial

amount of space; however, the question of how much local processing time is required

to reach a decision remains open.

In Section 2 we review the definition of the agreement problem. In Section 3

we give our definition of simulation, we characterize those properties of a protocol

that are preserved under simulation, and we prove that the full-information protocol

can simulate an arbitrary consensus protocol. In Section 4 we define the avalanche

agreement problem and give a protocol that solves the problem. This avalanche

agreement protocol is called as a subprotocol by the compact full-information pro-

tocol. In Section 5 we present the compact full-information protocol and prove that

it simulates the full-information protocol.

2. The Agreement Problem

An agreement protocol is run by a distributed system of n processors, at most t

of which may fail. Communication is over a network that is fully connected and

reliable. The computation takes place in a series of rounds. In each round each

correct processor first sends messages, then receives messages, and finally makes a

local state change. Correct processors send messages according to their programs.

Failed processors can send arbitrary messages.
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Each processor starts the protocol with an input value v from a fixed set V

of legal inputs. Each correct processor may, at some point during the execution of

the protocol, irrevocably decide on an element of V as its answer. There are three

conditions that the correct processors must satisfy.

" Agreement condition: All correct processors that decide reach the same deci-

sion.

" Validity condition: If all correct processors start the protocol with input v,
then v is the decision of all of the correct processors that decide.

" Termination condition: All correct processors eventually decide.

3. Protocol Simulations

In this section we give our definition of one protocol simulating another, and

we characterize some important properties of protocol behavior that are preserved

by our simulations. We take the first step toward showing that any consensus

protocol can be simulated by a communication-efficient protocol, that is, we show

that the full-information protocol can simulate any consensus protocol. After this

section, the remainder of the chapter is devoted to showing how to simulate the full-

information protocol using a particular communication-efficient protocol, which we

call the compact full-information protocol.

3.1 Definitions

Following Lynch, Fischer, and Fowler [35], we model a consensus protocol as a

synchronous system of automata. We find it convenient to introduce this formalism

in order to discuss simulations. Later, when we give our protocols we will use a

higher-level language. The mapping from the higher-level language to automata is

straightforward.

Throughout this chapter we let n be the number of processors in the system,

we let N = {1,... , n}, and we let t be an upper bound on the number of processor

faults that a protocol need tolerate. A protocol P is described by the following.

* Q is the set of processor states.

* V C Q is the set of initial states. We say that a processor has input v if it

starts in the initial state v.

2T



Communication-Efficient Protocols

" M is the set of messages.

" pup,q Q -+ M, for (p, q) E N 2 , is the message generation function for messages

sent from processor p to processor q.

" b, : M" -+ Q, for p E N, is the state transition function for processor p. (The

prior state of processor p is omitted from the domain of 6, because it would

be redundant. Processor p can send any required information in a message to

itself.)

" -1 : Q -+ V U {I}, for p E N, is the decision function for processor p.

For any set S a 0-dimensional array of S is any s E S. An i-dimensional array

of S is any vector (M1,... , mn) where, for all j, my is an (i - 1)-dimensional array

of S. We say that a is an array of S if a is an i-dimensional array of S for some i.

Our definition of array is standard except that the size along each dimension is

always n.

An execution of protocol P consists of a series of rounds. Each round consists

of sending messages, receiving messages, and making a local state change. Each

processor starts in the initial state corresponding to its input value. In any execution

of protocol P, a correct processor sends messages according to its message generation

function and a faulty processor sends arbitrary messages from M. Formally, an

execution of protocol P is a triple (F, I, H) where F C N, where |Fj ; t, where I is

a 1-dimensional array of V, and where H is a function from F x {1, 2,... .} x (N - F)

to M. F is the set of faulty processors. I is the vector of inputs to all of the

processors. For all r > 1, for all correct processors p and for all faulty processors q

the value of H(q, r,p) is the round r message from faulty processor q to correct

processor p.

We can now give an inductive definition of the round r state of processor p in

execution E of protocol P, denoted state(p, r, E). Assume that E = (F, I, H) where

I = (i 1 ,...,in). We define state(p,0, E) = i,. For all r > 1 we define

state(p, r, E) if pE EF;

6p(mi,...,m,,) otherwise,

where { H(q,r,p) if q E F;
m= - iq,p(state(q, r - 1, E)) otherwise.

Correct processor p decides v in round r of execution E if -y,(state(p, r, E)) = v and

7y(state(p, r', E)) = _ for all r' < r.
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Execution E of protocol P is a deciding execution if there is some r such that

all processors that are correct in E have decided by round r. Protocol P terminates

if all executions of P are deciding executions. Protocol P is i-bounded if all correct

processors have decided by round l in any execution of P. Protocol P is bounded if it

is i-bounded for some 1. Protocol P is simultaneous if for any deciding execution E

all correct processors decide in the same round in execution E.

We remark that boundedness is a stronger requirement than termination.

Boundedness always implies termination; termination sometimes implies bounded-

ness. If a protocol P terminates and has a finite message set and a finite input set

then it follows by K6nig's infinity lemma that protocol P is 1-bounded for some 1.

In contrast, if either the message set or the input set is infinite, then there are

protocols that terminate but are not bounded.

If E is a deciding execution of P then ans(E) is defined to be (a1,... , an) where

a, is the decision of processor p if processor p is correct and a, = I otherwise.

Predicate C is a correctness predicate if its domain is V' x (V U {1})". Pro-

tocol P satisfies correctness predicate C if for any deciding execution E = (F, I, H)

the value of C(I, ans(E)) is true. Correctness predicates furnish a convenient way

of formalizing the correctness requirements for a consensus protocol. Specifically,
the correctness conditions for a protocol P that solves the agreement problem,
the approximate agreement problem, the crusader agreement problem, or the weak

agreement problem can be formulated as a requirement that protocol P terminates

and that it satisfies some correctness predicate C. For example, protocol P solves

the agreement problem if it terminates and it satisfies the correctness predicate C

that is defined below. Let

A(IA)= A ((aj =ak)V(aj =1)V(ak = 1)),
j,kEN

and let

V(I, A) ( A ((ij = ik) V(aj = 1) V (ak= 1)) -- A((aj =ij) V (aj = 1))).
j,kEN jEN

where I = (ii,..., in) and A = (a1,..., an). Now let C(I, A) = A(I, A) A V(I, A).
The correctness predicate A formalizes the agreement condition and the correctness

predicate V formalizes the validity condition.
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3.2 Definition of Simulation

Let 'P and T' be protocols with the same set of possible inputs. Proto-

col P simulates protocol P' if there is a non-decreasing function c from the nat-

ural numbers onto the natural numbers and a set of functions f, for p E N

from the processor states of P to the processor states of P' such that for any

execution E = (F, I, H) of P there is an execution E' = (F, I, H') of P' with

fp(state(p, r, E)) = state(p, c(r), E') for any correct processor p and for any r > 0.

We say that execution E' corresponds to execution E, that f, is the simulation

function for processor p, and that c is the scaling function.

3.3 Protocol Properties Invariant under Simulation

In this subsection we characterize the properties of a protocol that are preserved

by our notion of simulation. For the remainder of this subsection we let P and P'

be arbitrary protocol that satisfy the following three assumptions.

" Protocol P simulates protocol P' with scaling function c and simulation func-

tions f, for all p E N.

" Protocol P' has decision functions for all p E N.

" Protocol P has decision functions , = 'o f, for all p E N.

Lemma 1: If E is an arbitrary execution of P and E' is any execution of P' that

corresponds to E, then -y,(state(p, r, E)) = -y'(state(p, c(r), E')) for any correct

processor p and for any r > 0.

Proof: Recall that 7, = ' o f, by assumption and that fp(state(p, r, E)) =

state(p, c(r), E') by the definition of simulation. Therefore

m(state(p, r, E)) = -y'o fp(state(p, r, E))

= y,'(state(p, c(r), E')). I

Lemma 2: Let E be an arbitrary execution of P and let E' be any execution of P'

that corresponds to E. If a correct processor q decides v in round r' of execution E'

then it decides v in round r of execution E where r = min{i I c(i) = r'}.

Proof: Say processor q decides v in round r' of execution E'. For any i < r

processor q does not decide in round c(i) of execution E' because c(i) < r'. By

Lemma 1, processor q does not decide in round i of execution E. Thus processor q
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does not decide before round r in execution E. By Lemma 1, 'yq(state(q, r, E)) =

'Y'(state(q, r', E') and so processor q decides v in round r of execution E. E

Theorem 3: The following four conditions hold.

* Correctness condition: If protocol 7P' satisfies some correctness predicate C

then so does protocol 7.

" Termination condition: If protocol P' terminates then so does protocol T2.

" Boundedness condition: If protocol P' is l'-bounded for some I' then protocol P

is i-bounded where I = min{i I c(i) = l'}.

* Simultaneity condition: If protocol P' is simultaneous then so is protocol P.

Proof: We verify that the four conditions are satisfied.

Correctness condition: Suppose protocol P' satisfies correctness predicate C.

Let E = (F, I, H) be an arbitrary deciding execution of P. Let E' = (F', I', H')

be any execution of 7 that corresponds to E. By the definition of simulation,
F = F' and I = I'. By Lemma 1, E' is a deciding execution and ans(E) = ans(E').

Therefore C(I, ans(E)) = C(I', ans(E')) and P also satisfies correctness predicate C.

Termination condition: We prove the contrapositive of the claim. Suppose that

protocol P does not terminate. By the definition of termination there is some non-

deciding execution E of protocol P. Let E' be any execution of P' that corresponds

to E. By Lemma 2, execution E' is a non-deciding execution. Thus, protocol P'

does not terminate.

Boundedness condition: We show that in an arbitrary execution E of proto-

col P all correct processors decide by round 1. Let E' be any execution of 7' that

corresponds to execution E. Because protocol P' is l'-bounded, execution E' must

be a deciding execution in which the correct processors decide by round 1'. By

Lemma 2 execution E is a deciding execution in which the correct processors decide

by round 1. Thus protocol 7 is i-bounded.

Simultaneity condition: Suppose protocol P' is simultaneous. Consider an

arbitrary deciding execution E of P. Let E' be any execution of P' that corresponds

to E. By Lemma 1, execution E' is deciding. Because P' is simultaneous there is

some r' such that all correct processors decide in round r' of execution E'. By

Lemma 2 there is some r such that all correct processors decide in round r of

execution E. This shows that protocol P is simultaneous.
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3.4 A Simple Simulation

In this subsection we review the well-known result that an arbitrary consensus

protocol can be simulated by the full-information protocol. In the full-information

protocol (shown as Protocol 1) each processor at each round broadcasts its entire

state, receives one message from each processor, and forms its new state as the

ordered collection of all messages received. To be precise, when we speak of the full-

information protocol, we are speaking of a class of protocols, one for each possible

input set. The actual code shown as Protocol 1 works for any choice of input set.

Let Pv denote the full-information protocol with input set V. In the remainder of

this subsection we prove that an arbitrary consensus protocol P' with input set V

is simulated by 'Pv.

Initialization for processor p:

STATE <- the initial value of processor p

Code for processor p in round r:

1. broadcast STATE
2. receive MSGq from processor q for 1 < q < n
3. STATE +- (MSG,...,MSGn)

Protocol 1: The Full-Information Protocol

Let P' be an arbitrary consensus protocol with input set V, state set Q',
message generating functions pp,q for (p, q) E N 2 , and state transition functions bp
for p E N. Let Q be the set of all arrays of V. Observe that Q is the state set

of Pv. Define the functions f, : Q -+ Q' for p E N as follows

f (s) = s 
if s E V;

6fpi,(fi(si)),... , pn,(fn(s))) if S = (S, ... s)

Let c be the identity function on the natural numbers.

Theorem 4: Pv, the full-information protocol with input set V, simulates proto-

col P' with simulation functions f, for p E N and with scaling function c.

Proof: Because c is the identity function it is sufficient to show that for any

execution E = (F, I, H) of the full-information protocol there is an execution E' -

(F, I, H') of P' with f,(state(p, r, E)) = state(p, r, E') for any correct processor p

and for any r > 0. The proof is in two stages. First, we construct the execution E'.

Second, we show that the execution E' has the desired property.
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Construction of the execution E': The execution E' = (FI,H') is com-

pletely specified except for H'. We now specify H', the history of messages sent

by faulty processors in execution E'. For all r > 0, for all correct processors p

where state(p,r, E) = (s1,..., s,,), and for all faulty processors q we specify that

H'(q,r, p) = pq,,(fq (sq)).

Verification that the execution E' has the desired property: We show that

f,(state(p, r, E)) = state(p, r, E') for any correct processor p and for any r > 0.

The proof is by induction on r.

Basis: (r = 0) This follows immediately because correct processors have the

same initial states in executions E and E' and because f, is the identity function

when applied to the initial states of the full-information protocol.

Induction: Let Mq be the round r message from processor q

execution E and let A be the round r message from processor

in execution E'. In the full-information protocol state(p, r, E)

because of step 3 of the code.

to processor p in

q to processor p

= (M 1 ,... ,Mn)

We claim that A' = qp(fq(Mq)) for all q E N. If processor q is faulty the

claim follows immediately from the choice of execution E'. If processor q is correct

then

M' = Puqp(state(q, r - 1, E')) By the definitions of M' and p/q,p

= tlqp(f(state(q, r - 1, E))) By the induction hypothesis.

= Pqp(fq(Mq)) From step 1 of the code.

This proves the claim that A' = Pqp(fq(Aq)) for all q E

induction by calculating that

f,(state(p, r, E)) = fp((M1,5..., M-A))

= 65(pi1,,(f1(JI1 )), ... , p(fn(M1n)))

= s(M, ... , ' )

= state(p, r, E').

N. Now we conclude the

From step 3 of the code.

By the definition of f,.
By the claim.

By the definition of 6,. Z

4. Avalanche Agreement

We formulate and solve the avalanche agreement problem as a building block

for use in our compact full-information protocol. At various points in the compact
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full-information protocol it is convenient to achieve some measure of agreement

among the correct processors. We might try using a standard agreement protocol

for this purpose. Unfortunately, we find that we cannot afford the cost (in rounds)

of standard agreement. By using an avalanche agreement protocol instead, we are

able to achieve a sufficient level of agreement among the correct processors at a cost

that we can afford.

A protocol that solves the avalanche agreement problem operates under the

same failure and communication assumptions as an agreement protocol. Each pro-

cessor begins the protocol with an input value from some fixed set V. We refer

to the elements of the set V as values. Each correct processor may, at some point

during the execution of the protocol, irrevocably decide on a value (element of V)

as its answer. There are three conditions that the correct processors must satisfy.

" Avalanche condition: If any correct processor decides v in round r then all

correct processors decide v by round r +1.

" Consensus condition: If all correct processors start the protocol with input v

then v is the decision of all of the correct processors by round 2.

" Plausibility condition: If any correct processor decides v then v must have been

the input to some correct processor.

There are four ways in which the avalanche agreement problem differs from the

standard agreement problem. First, there is no requirement that all executions (of

an avalanche agreement protocol) terminate. Second, certain executions (those in

which all correct processors have the same input) are required to terminate very

fast (in two rounds). Third, in any execution that terminates, all of the correct

processors are required to make their decisions within some window of two rounds.

Fourth, no correct processor is permitted to produce as an answer any value that

was not the input to at least one correct processor. The first of these differences

tends to make the avalanche agreement problem easier to solve than the agreement

problem. The remainder of the differences tend to make the avalanche agreement

problem harder to solve than the agreement problem. The combined effect of all of

the differences is to make the two problems incomparable.

It is straightforward to use standard techniques like those of Fischer, Lynch,

and Merritt [27] to show that no avalanche agreement protocol tolerates t processor

faults unless the total number of processors, n, is at least 3t + 1. Protocol 2 solves

the avalanche agreement problem for n = 3t + 1. It is a new deterministic protocol
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designed to solve this new problem; however, it incorporates many ideas from pre-

viously known randomized protocols for the standard agreement problem. Among

these are the protocols of Ben-Or [2], of Chor and Coan [9], and of Rabin [43].

Consider the variant of the avalanche agreement problem in which the consen-

sus condition has been strengthened to require agreement in one round rather than

two. It is straightforward to use the proof technique of Fischer and Lynch [26] to

show that if n < 4t there is no solution to this variant. If n > 4t + 1 then it is easy

to solve the problem using a simple variant of Protocol 2. We omit the details here.

Initialization for processor p:

VAL <- the initial value of processor p

Code for processor p in round r:

1. broadcast VAL
2. receive MSGq from processor q for 1 < q < n
3. let ANS be the most frequent non-L message among the MSGq

(break ties arbitrarily)
4. let NUM be the number of occurrences of ANS

5. if r = 1 then
6. if NUM > 2t + 1 then VAL 4- ANs else VAL-I

7. if r > 1 then
8. if NUM > t + 1 then VAL 4- ANS
9. if NUM > 2t + 1 and have not decided yet then decide VAL

Protocol 2: The Avalanche Agreement Protocol

In the following discussion and proof of Protocol 2 we append two subscripts

to each variable from the protocol. The first subscript, say r, is a positive integer

and the second subscript, say p, is in N. By this notation we mean the value of the

subscripted variable at processor p at the end of round r. For example, VALr,p is

the value of variable VAL at processor p at the end of round r.

In any execution of Protocol 2, value v is persistent if there is some correct

processor p such that VALI,, = v. Processor p votes for value v in round r if it

sends any round r messages containing only v. In every round each correct processor

broadcasts a message containing at most one value. So, a correct processor votes

for at most one value in each round. A faulty processor may vote for many values

by sending conflicting votes to diffei-ent recipients.

We give an informal description of the avalanche agreement protocol before
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proving it correct. For convenience we describe the protocol from the point of view

of an arbitrary correct processor p. (All processors run the same code.) At the end
of round r, the variable VALr,p holds the value, if any, that processor p currently
prefers as its answer. In round r + 1 processor p votes for VALr,p and then updates

its preference based on the votes it receives. The first round plays a special role
in the protocol. In round 1, the number of values favored by correct processors
is reduced to at most one-the persistent value. The protocol ensures that after
round 1 no correct processor votes for any value other than the persistent value. In

the second and subsequent rounds processor p uses the number of votes to predict
when there will be an "avalanche" of correct processors favoring some value v, which

must be the unique persistent value. As soon as processor p gets enough (2t + 1)
votes to predict an avalanche it decides v. Processor p continues to participate in

the protocol (send and receive messages) after it has decided.

Lemma 5: There is at most one persistent value.

Proof: Assume not. Then, there are values v and v' and correct processors p and q
such that VALi,p = V :V' = VALI,q. In round 1 processor p must have received
at least 2t + 1 votes for value v and processor q must have received at least 2t + 1
votes for value v'. The total number of processors is 3t + 1; therefore, at least t + 1
processors, including at least one correct processor, voted for both v and v'. This
is impossible behavior for a correct processor. We have a contradiction. 0

Lemma 6: For all correct processors p and for all rounds r > 1, either VALr,p is

the persistent value or VALr,p = 1.

Proof: The claim for r = 1 follows immediately from Lemma 5, so assume that

r > 2 is the first round in which the claim fails. There is some correct processor p
and some non-persistent value v such that VALr,p = v. In round r processor p must
have received at least t + 1 votes for v; at least one is from some correct processor q.

So, VALr-1,q = v. This contradicts the assumption that r is the first round in which

the claim fails.

Theorem 7: Protocol 2 solves the avalanche agreement problem.

Proof: We show that the avalanche, consensus, and plausibility conditions are

satisfied.

Avalanche condition: Say that correct processor p decides v in round r. By

Lemma 6, any correct processor that decides must pick the unique persistent value.
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Thus, v is the decision of all of the correct processors that decide. We conclude the

proof by showing that all correct processors decide v by round r + 1. In round r

processor p gets at least 2t + 1 votes for v; at least t + 1 are from correct processors.

So, all processors get at least t + 1 votes for v in round r. By Lemma 6, any correct

processor gets at most t votes for any value v' f v. Therefore, an arbitrary correct

processor q sets VALrq to v in round r, broadcasts v in round r + 1, gets at least

2t + 1 votes for v in round r + 1, and decides v by round r + 1.

Consensus condition: Let value v be the input to all of the correct processors.

There are at least 2t+1 correct processors that all broadcast v in round 1. All correct

processors receive at least 2t + 1 votes for v in round 1 and therefore broadcast v

in round 2. All correct processors receive at least 2t + 1 votes for v in round 2 and

therefore decide v in round 2.

Plausibility condition: Let value v be the decision of a correct processor p. By

Lemma 6, v is the persistent value. So, at least 2t + 1 processors (at least t + 1 of

which are correct) voted for v in round 1. Value v is the input to all of these correct

processors. 0

The communication cost of Protocol 2 is high because processors send messages

for an unbounded number of rounds. This cost can be limited in two ways. In

many applications (including Section 5) we are only interested in the results of an

avalanche agreement protocol for a small fixed number of rounds. We can limit

the communication cost by halting the protocol in the first round in which we are

uninterested in its results. Alternatively, a simple coding convention for messages

allows us to implement Protocol 2 so that at most O(n 2 - log VJ) message bits are

used in any execution. In Protocol 2 each correct processor broadcasts a non-null

message each round. The convention gives a meaning to null messages. A processor

that wishes to send the same message that it sent in the previous round instead sends

the null message (at a cost of 0 bits). It is easy to show that using this convention

each correct processor sends at most 3 non-null messages in any execution.

5. Compact Full-Information Protocols

In Section 3 we outlined the two-step process by which an arbitrary consensus

protocol P is simulated by a communication-efficient canonical form protocol. The

protocol P is first simulated by a full-information protocol that is, in turn, simulated

by a compact full-information protocol. In Subsection 3.4 we showed in detail that

the full-information protocol can simulate protocol P. In this section we complete

3T
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the description of the process. That is, we define the compact full-information

protocol and prove that it simulates the full-information protocol.

5.1 Definitions

For any array a we make the following definition of the operation compress(a),

which yields the set of all elements of a:

{{a} if a is a 0-dimensional array;

c p ) compress(ai)if a = (ai,...,an).

An index array is an array of N. A value array is an array of V where V is the set

of possible inputs to P. In a full-information protocol, all messages sent by correct

processors are value arrays and at each round the state of each correct processor is

a value array.

A partial function may be undefined (denoted 1) on some elements of its

domain. We adopt the convention that any partial function used in this chapter

is undefined whenever any of its arguments is undefined and that any array used

in this chapter is undefined (equals _) whenever any of its elements is undefined.

Partial function f is an extension of partial function g if for all x either f(x) = g(x)

or g(x) = I. A function f defined on arrays is substitutive if for all a 1 ,... , an the

following holds: f((a1,. . . , an)) = (f(ai), . . . , f(an)).

When we simulate an arbitrary protocol P' by a compact full-information pro-

tocol the tradeoff between time and communication is determined by a parameter k.

For any integer k > 0, there is a compact full-information protocol P that is struc-

tured as a series of blocks of k + 2 rounds. In each of the first k rounds of a block,
P makes one round of progress in its simulation of P'. The last two rounds are

overhead-no progress is made.

We define some functions that relate various ways of numbering rounds. Let

r > 1 be a round in a compact full-information protocol.

" block(r) = [r/(k + 2)1 is the block of which round r is a part.

" prior(r) = (block(r) - 1)- (k + 2) is 0 if round r is in the first block; otherwise,

it is the last round prior to the current block.

" phase(r) = r - prior(r) is the number of rounds since the start of the current

block.
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9 simul(r) = k - (block(r) - 1) + min(phase(r), k) is the number of rounds of

progress that have currently been made in the simulation of the full-information

protocol.

In Table 1, we illustrate the relationship among these quantities for 14 actual and 8

simulated rounds of a compact full-information protocol with parameter 2.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14

block(r) 1 1 1 1 2 2 2 2 3 3 3 3 4 4

prior(r) 0 0 0 0 4 4 4 4 8 8 8 8 12 12

phase(r) 1 2 3 4 1 2 3 4 1 2 3 4 1 2

simul(r) 1 2 2 2 3 4 4 4 5 6 6 6 7 8

Table 1: An Execution of 8 Simulated Rounds with k = 2

5.2 Subprotocols

Ordinary sequential programming problems are frequently decomposed into

simpler subproblems using subroutines. In a similar way we simplify our compact

full-information protocol by using avalanche agreement as a subprotocol. Subpro-

tocols are similar to subroutines in that they help us decompose problems; however,

they have different semantics. For example, our subprotocols run in parallel with

the main protocol and their results take at least one round to become available.

In this subsection we define the syntax and semantics that we will use for calls to

subprotocols.

Recall that each round of any protocol P consists of three components that are

performed in order: sending messages, receiving messages, and local state change.

In the language we use to write our protocols there is no specific mechanism that

ensures that this structure is followed; however, a quick inspection is generally

sufficient to verify that it is. We will only write protocols that conform to this

round structure.

Ve adopt the convention that if a call to the subprotocol SUB appears in round r

of protocol P then the first round of SUB coincides with round r of P. This implies

that the call to SUB should appear in the text of P before any round r messages

are sent and that all inputs to SUB must be available at the start of round r (i.e..

computed at round r - 1 at the latest). If processor p decides in SUB in the round

that coincides with round r' of P then we make this answer available to processor p
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in round r' of P before it computes its local state change. This simply means that

in the local-state-change portion of each round of protocol P we perform all of the

local state changes of the subprotocols before we perform the local state change

of P. Relative order among the subprotocols does not matter because they cannot

interact-we have provided no mechanism for one subprotocol to name or access

the internal variables of another subprotocol.

We require that all processors in protocol P initiate precisely the same subpro-

tocols at precisely the same rounds. If in round r of protocol P there are x active

subprotocols running then all round r messages are (x + 1)-tuples-one component

for each subprotocol and one component for P.

Within a protocol P, at an arbitrary correct processor p a call to subproto-

col SUB is written

call SUB(input: IN, result: OUT, rounds: 1)

where IN and OUT are local variables of processor p in P and where I is either

an integer or oo. (We require that all processors in P use the same value for 1.)

Let r be the round in which processor p executes the call statement. The variable

IN must be defined by the end of round r - 1. Subprotocol SUB is started with

input IN in round r and is run forever if I = oc; otherwise it is run for I rounds. The

variable OUT initially has the value .. If processor p in subprotocol SUB decides v

in round r' of P then the instance of variable OUT at processor p is set to v at the

start of the local-state-change portion of round r' of P. There is no requirement

that processors in SUB eventually decide.

5.3 The Compact Full-Information Protocol

The code for the compact full-information protocol is given as Protocol 3. In

the following discussion and proof we append two subscripts to each variable from

Protocol 3. The first subscript, say r, is a natural number and the second subscript,

say p, is in N. By this notation we mean the following. If r > 1 we mean the value

of the subscripted variable at processor p at the end of round r. If r = 0 we mean

the value of the subscripted variable at processor p at the start of round 1. For

example, OUTq,b,r,p is the value of variable OUTq,b at processor p at the end of

round r. We let Ai,b denote the instance of the subprotocol AVALANCHE that is

initiated in block b and for which each processor uses as input the current value of

the variable VALi. In Protocol 3 the state of each correct processor consists of the
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Initialization for processor p:

CORE <- the initial value of processor p

Code for processor p in round r where b = block(r):

1. if phase(r) k + 1 then
2. if b = 1 or phase(r) > 1 then broadcast CORE else broadcast p
3. receive MSGq from processor q for 1 < q < n

4. for i - 1 to n do

5. if b = 1 or compress(MSGi) C {u I OUTu,b - 1
6. then VALi +- MSGi

7. else VALi 4- MSGp

8. if phase(r) k then CORE 4- (VALi,.. . ,VALn)

9. if phase(r) = k + 2 then
10. for i <- 1 to n do

11. call AVALANCHE(input: VALi, result: OUTi,b+1, rounds: k + 3)

Protocol 3: The Compact Full-Information Protocol

following variables: r, CORE, MSG for i E N, VALi for i E N, and OUT,b for i E N

and for b E {2, . . ., block(r) + 1}.

In the discussion of Protocol 3 we call MSGq,rp the round r message from

processor q to processor p, and we call VALq,r,p the round r corrected message from

processor q to processor p.

Protocol 3 is divided into blocks of k + 2 rounds. In each of the first k rounds

of a block, one round of progress is made in the simulation of the full-information

protocol. The last two rounds of each block are overhead-no progress is made in

the simulation of the full-information protocol.

In most rounds-specifically in rounds 1 through k of block 1 and in rounds 2

through k of the other blocks-the compact full-information protocol closely resem-

bles the full-information protocol. In parallel with any subprotocol calls that may

be in progress, each correct processor broadcasts CORE (step 2), receives (step 3)

and possibly corrects (steps 5-7) a message from each processor, and forms (step

8) its new CORE as the ordered collection of corrected messages received. The cor-

rection operation in steps 5-7 only changes messages sent by faulty processors; this

fact follows from Lemmas 13 and 16, which we will prove.

The last two rounds of an arbitrary block b are overhead. Say round r is the

last round of block b. In round r the correct processors initiate n instances of the

A1
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avalanche agreement subprotocol. Specifically, for all q E N, the correct processors

initiate avalanche agreement on the value of COREr-2,q. This is done as follows.

In phase k + 1 of block b processor q broadcasts COREr-2,q. An arbitrary correct

processor p receives the message, stores it in MSGq,r-1,p, stores a corrected copy of

the message in VALq,r-1,p, and then, in phase k+2, initiates Aq,b with VALq,r-1,p as

input. The answer produced by Aq,b is stored in the variable OUTq,b+1. Thus, for

all rounds r', OUTq,b+1,r',p is the round r' estimate that processor p makes of the

value of COREr-2,q. Round r +1 is the first round of the next block after block b. If

processor q is correct, then (as we will show in Lemma 17) OUTq,b+1,r+1,p is equal

to COREr-2,q. So, at the start of the next block after block b, the estimate that

processor p makes of the value of COREr-2,q is equal to COREr-2,q-

We can now describe the first round of arbitrary block b where b> 2. In parallel

with the subprotocol calls that are in progress, an arbitrary correct processor p

broadcasts p (step 2), receives (step 3) and possibly corrects (steps 5-7) a message

from each processor, and forms (step 8) its new CORE as the ordered collection of

corrected messages received. The message p is intended to be a reference to the

answer produced by Ap,b-1. We can now see why the compact full-information

protocol is communication efficient. The saving in message size results from using

references to the output of various avalanche agreement protocols instead of using

the entire text of the answer itself.

Let r be any round and let p be any correct processor. Intuitively speaking,

the value of COREr,p, together with all of the current results of avalanche agreement

available at processor p at round r, constitute a compact representation of the round

simul(r) state of processor p in the simulated execution of the full-information pro-

tocol. The full state of processor p in the simulated execution can be reconstructed

using the expansion functions which we will define in the next subsection. Intu-

itively, the expansion functions operate by replacing references by the arrays to

which they refer.

5.4 Introduction to the Proof of Simulation

We define several expansion functions based on the states of the processors-in

particular, based on the results of the various avalanche agreement subprotocols that

have been run. The round r expansion functions of processor p are denoted b,r,,p,

for b E {1,... ,block(r)}. If b > 1 then 4b,r,p is a substitutive partial function from

index arrays to value arrays. If b = 1 then 4b,r,p is the identity function on value

arrays, which is also substitutive. Because expansion functions are substitutive, it
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is sufficient to define them on indices and values. We let 4b,r,p(X) = I if either

b = 1 and x ( V or b > 1 and x ( N; otherwise, 4b,r,p is defined as follows:

Ob,r,p(X {X if b= 1-

(b-1,r,p(OUTx,b,r,p) otherwise.

We introduce some terminology that we will use when we discuss the expan-

sion functions. If VAR is a variable of processor p then VARr,p is b-expandable if

0b,r,p(VARr,p) 7 1 and VARr,p is expandable if it is b-expandable for b = block(r).

For all p E N and for any processor state s define the function fp(s) to be s if s

is an initial state; otherwise, define it to be Oblock(r),r,p(CORE) where r and CORE are

contained in s. In Subsection 5.6 we will prove that the compact full-information

protocol simulates the full-information protocol with simulation functions fp for

p E N and scaling function simul.

5.5 Technical Lemmas

In this subsection we prove some technical lemmas that we will use in the proof

of our main simulation result in Subsection 5.6. We begin with a definition. For all

correct processors p, for all rounds r, and for all b > 2 we let

known(b, r, p) = {i | oUT,br,p # I}.

In order to explain the importance of this definition we introduce some terminology.

If i E N then we say that i is a reference. Reference i is b-known in round r at

correct processor p if i E known(b, r, p). Reference i is known in round r at correct

processor p if it is b-known for b = block(r). We will show that if any variable

VARr,p contains only references that are b-known in round r at processor p then

VARr,p is b-expandable.

In Lemma 8 we prove that any reference that is b-known at correct processor p

at round r is also b-known at processor p at round r + 1.

Lemma 8: For all rounds r, for all blocks b > 2, and for all correct processors p,

it holds that known(b, r, p) C known(b, r + 1, p).

Proof: Consider an arbitrary i E known(b, r, p). We have OUTi,b,r,p # I by the

definition of known(b, r, p). If b = block(r) and phase(r) $ k +2 then oUTi,b,r+1,p

OUTi,b,r,p by the avalanche condition satisfied by Al,b_1; otherwise, OUTi,b,r+1,p

OUTi,b,r,p because Ai,b-1 is no longer running and the variable OUTi,b is therefore

not being changed. Thus OUTi,b,r+1,p # 1 and so i E known(b, r + 1, p). E
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In Lemma 9 we prove that any reference that is known at correct processor p

at round r is also known-- all correct processors at round r + 1 as long as rounds

r and r + 1 are in the same block.

Lemma 9: For all rounds r where b = block(r) and for all correct processors p

and q, if phase(r) # k + 2 then known(b, r, p) C known(b, r + 1, q).

Proof: Consider an arbitrary i E known(b, r, p). We have OUTi,b,r,p j I by the

definition of known(b, r, p). By the avalanche condition satisfied by Ai,b-1 we have

that OUTi,b,r+1,q = OUTi,b,r,p. Thus OUTi,b,r+1,q # I and so i E known(b, r +
1,q). 11

In Lemma 10 we prove that all of the references in all of the round r corrected

messages at correct processor p are known at processor p in round r as long as the

reference p was known at processor p in the first round of the current block.

Lemma 10: For all rounds r where b = block(r), for all correct processors p, and

for all q E N, if b> 2 and p E known(b, prior(r) + 1, p) then compress(VALq,r,p) C
known(b, r, p).

Proof: The proof is by induction on phase(r).

Basis: (phase(r) = 1) From step 2 of the code MSGp,r,p = p. Thus we have that

compress(MSGp,r,p) C known(b, r, p). The effect of steps 5-7 of the code is that, if

compress(MSGq,r,p) C known(b, r, p) then VALq,r,p = MSGq,r,p; otherwise, VALq,r,p

MSGp,r,p- In either event we have that compress(VALq,r,p) C known(b, r, p).

Induction: MSGp,r,p = (VAL1,r-1,p,... ,VALn,r-1,p) because phase(r) > 1. So,

we can calculate that

compress(MSGp,r,p) C known(b, r - l,p) By the induction hypothesis.

C known(b, r, p) By Lemma 8.

The effect of steps 5-7 of the code is that, if compress(MSGq,rp) C known(b, r, p)

then VALq,rp = MSGq,r,p; otherwise, VALq,r,p = MSGp,r,p- In either event we have

that compress(VALq,r,p) C known(b, r, p). 11

In Lemma 11 we prove that all of the references in all of the round r corrected

messages at correct processor p are known at processor p in round r.

Lemma 11: For all rounds r where b = block(r), for all correct processors p, and

for all q E N, if b > 2 then compress(VALq,r,p) C known(b, r, p).
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Proof: The proof is by induction on b.

Basis: (b = 2) Let r' = prior(r) + 1. From step 2 of the code MSGp,r'- 2 ,s =

COREr'-3,p for all correct processors s. By the test at step 5 of the code VALp,r'-2,s =

COREr' - 3 ,p for all correct processors s because block(r' -2) = 1. Thus OUTp,b,r,,p =

COREr' -3,p by the consensus condition satisfied by Ap,b-1 and sop E known(b, r', p).

The claim follows by Lemma 10.

Induction: Let r' = prior(r) + 1. COREr'-3,p = (VAL,r'-3,p, ... , VALn,r'-3,p)

by step 8 of the code because phase(r' - 3) = k. Let processor s be an arbitrary

correct processor. Ve can calculate that

compress(COREr'- 3,p) c known(b - 1, r' - 3, p) By the induction hypothesis.

C known(b - 1, r' - 2, s) By Lemma 9.

From step 2 of the code MSGp,r'- 2 ,s = COREr'-3,p- By the test at step 5 of the code

VALp,r'-2,s = MSGp,r'-2,s because compress(MSGp,r'-2,s) C known(b - 1, r' - 2, s).
Thus OUTp,b,r',p = COREr'-3,p by the consensus condition satisfied by Ap,b_1 and

so p E known(b, r', p). The the claim follows by Lemma 10. E

In Lemma 12 we prove that any index array is expandable if it contains only

known references.

Lemma 12: For all index arrays a, for all rounds r, for all b > 2, and for all correct

processors p, if compress(a) C known(b, r, p) then 4,r,p(a) $ I.

Proof: The proof is by induction on b.

Basis: (b = 2) Consider an arbitrary x E compress(a). We have that 4b,r,p(X) =

41,r,p(OUTX,2,r,p) = OUTX,2,r,p by the definition of 4b,r,p. OUTX,2,r,p $ I because

x E known(2, r, p). Thus q,r,p(X) # -. The claim follows by the substitutivity of

kb,r,p.

Induction: Consider an arbitrary x E compress(a). We have that 4b,r,p(X) =

0b-1,r,p(OUTX,b,r,p) by the definition of db,r,p. OUTX,b,r,p # I because x E

known(b, r,p). By the plausibility condition satisfied by Ax,b-1, VALX,prior(r)-1,q =

OUTz,b,r,p for some correct processor q. We now calculate that

compress(OUTX,b,r,p) C known(b - 1, prior(r) - 1, q) By Lemma 11.

C known(b - 1, prior(r), p) By Lemma 9.

c known(b - 1, r, p) By Lemma 8.
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By the induction hypothesis 4b-1,,,p(0UTr,b,r,p) $ I. Thus 4b,r,p(X) # I. The

claim follows by the substitutivity of 4 b,,,p.

In Lemma 13 we prove that all corrected messages at all of the correct proces-

sors are expandable. This is a key lemma that we will use often in the rest of the

chapter.

Lemma 13: For all rounds r where b = block(r), for all correct processors p, and

for all q E N, it holds that 4b,r,p(VALq,r,p) # 1.

Proof: If b = 1 then 4b,r,p(VALq,r,p) = I because Ob,r,p is the identity function. If

b> 2 then compress(VALq,r,p) C known(b, r,p) by Lemma 11, and, by Lemma 12,

Ob,r,p(VALq,r,p) # 1-

In the next two lemmas we show some important properties of the expansion

functions.

Lemma 14: For all rounds r, for all b > 1, and for all correct processors p, it holds

that Ob,r+1,p is an extension Of 4b,r,p.

Proof: The proof is by induction on b.

Basis: (b = 1) The result follows immediately because 4b,r+1,p and Ob,rp are

both the identity function.

Induction: Consider an arbitrary i E N. If Ob,r,p(i) = I then the claim is

trivially true, so assume that 4b,r,p(i) 3 1. We wish to show that 4b,r+1,p(i)

0b,r,p(i)-

By assumption 4b,r,p() . b,r,p() = 4b_1,r,p(oUTi,b,r,p) by the definition of
6b,r,p. Thus, OUTi,b,,,p : 1. If b = block(r) and phase(r) < k+1 then OUTi,b,r+1,p =

OUTi,b,r,p by the avalanche condition satisfied by Ai,b-1; otherwise, OUTi,b,r+1,p =

OUTi,b,r,p because Ai,b-1 is no longer running and the variable OUTi,b is therefore

not being changed. Using the fact that #b,r,p(i) $ 1, we now calculate that

Ob,r,p(i) = 0b-1,r,p(OUTi,b,r,p) By the definition of 4b,r,p.

= 4b-1,r,p(oUTi,b,r+1,p) Because OUTi,b,r+1,p = OUTi,b,r,p.

=4-1,r+,p(oUTi,b,r+1,p) By the induction hypothesis.

= 5b,r+1,p(i) By the definition of 5b,r+1,p-

Lemma 15: For all rounds r where b = block(r) and for all correct processors y

and q, if phase(r) k + 2 then 4b,r+1,p is an extension of 4b,r,q.
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Proof: The proof is by induction on b.

Basis: (b = 1) The result follows immediately because 4,r+1,p and 5b,r,q are

both the identity function.

Induction: Consider an arbitrary i E N. If 4b,r,q(i) = I then the claim is

trivially true, so assume that 4b,r,q(i) 5 1. We wish to show that 4b,r+1,p(z) =

Ob,r,q(i)-

By assumption lb,r,q(i) : 1. 45b,r,q(i) = 4b-1,r,q(OUTi,b,r,q) by the definition of

Ob,r,q. Thus, OUTi,b,r,q f I and OUTi,b,r+1,p = OUTi,b,r,q by the avalanche condition

satisfied by Ai,b_1. Let r' = prior(r). By the plausibility condition satisfied by

Ai,b_1 there is some correct processor s such that VALi,r'-1,s = OUTi,b,r,q. Let

X = Ob-1,r'-1,s(VALi,r,_1,s). By Lemma 13, x : I. We can now calculate that

X = 4b-1,r,-1,s(oUT,b,r,q) Because OUTi,b,r,q = VALi,r'-1,s-

= Ob-1,r',q(OUTi,b,r,q) By the induction hypothesis.

= Ob-1,r,q(OUTi,b,r,q) By Lemma 14.

= 4b,r,q(i) By the definition of 4b,r,q.

Similarly we calculate that

X = Ob-1,r'-1,s(OUTi,b,r+1,p) Because OUTi,b,r+1,p = VALi,r'-1,s-

= Ob-1,r',p(OUTi,b,r+1,p) By the induction hypothesis.

= 4b-1,r+1,p(OUTi,b,r+1,p) By Lemma 14.

= 4b,r+1,p(i) By the definition of 4b,r+1,p-

Thus 4b,r+1,p() = Ob,r,q(i), which is what we sought to show. 0

In Lemma 16 we prove that if the round r message from processor q to correct

processor p is expandable then the round r corrected message from processor q to

processor p is equal to the round r message from processor q to processor p.

Lemma 16: For all rounds r where b = block(r), for all correct processors p, and

for all q E N, if 4b,r,p(MSGq,r,p) $ I then VALq,r,p = MSGq,r,p-

Proof: If b = 1 then the condition in step 5 is satisfied and VALq,r,p is set equal to

MSGqr,p in step 6. Suppose instead that b > 2. Because Ob,r,p(MSGq,r,p) # I it is

immediate that compress(MSGq,r,p) C known(b, r, p). Thus the condition in step 5

is satisfied and VALq,r,p is set equal to MSGq,r,p in step 6. 0
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In Lemma 17 we prove an important property about the expansion of references

in the first round of each block after the first. This result explains why, in certain

rounds, it is sensible for a processor to broadcast its own index in step 2 of the code.

Lemma 17: For all rounds r where b = block(r) and for all correct processors p
and q, if phase(r) = 1 and b> 22 then OUTq,b,r,p = COREr-3,q-

Proof: By Lemma 13, 5-1,r-3,q(VALu,r-3,q) # I for all u E N. By the substi-

tutivity of 4b-1,r-3,q and by step 8 of the code, 4b-1,r-3,q(C0REr-3,q) AI. Let

processor s be an arbitrary correct processor. MSGq,r-2,s = COREr-3,q from step 2

of the code. By Lemma 15, qb-1,r-2,s(MSGq,r-2,s) 5 1. So, VALq,r-2,s = COREr-3,q

by Lemma 16. Thus each correct processor uses COREr-3,q as its input to Aq,b-1.

By the consensus condition OUTq,b,r,p = COREr-3,q, which is what we sought to

show.

5.6 Proof of Simulation

Theorem 18: The compact full-information protocol simulates the full-information

protocol with simulation functions f, for p E N and scaling function simul.

Proof: We must show that for any execution E = (F, I, H) of the compact full-

information protocol, there is an execution E' = (F, I, H') of the full-information

protocol with f,(state(p, r, E)) = state(p, simul(r), E') for any correct processor p

and for any r > 0.

The proof is in two stages. First we construct the execution E'. Second we

show that it has the desired property.

Construction of the execution E': The execution E' = (F, I, H') is completely

specified except for H'. We now specify H', the history of messages sent by faulty

processors in the execution E'. For all r > 1 where phase(r) < k, for all correct

processors p, and for all faulty processors q we specify that H'(q, simul(r), p) =

0block(r),r,p(VALq,r,p). This message is a value array by Lemma 13. Thus the execu-

tion E' is well defined.

Verification that the execution E' has the desired property: Ve show that

f,(state(p,r,E)) = state(p,simul(r),E') for any correct processor p and for any

r > 0. The proof is by induction on r.

Basis: (r = 0) This follows imamediately because correct processors have the

same initial states in executions E and E' and because f, is the identity function

when applied to the initial states of the compact full-information protocol.
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Induction: If phase(r) > k then simul(r) = simul(r - 1) and the result follows

immediately from Lemma 14 and the induction hypothesis. Suppose instead that

phase(r) < k. Let b = block(r) and let (v 1,..., ,) = state(p, simul(r), E'). The

calculations in the rest of the proof rely on the fact that Vq _ I for all q E N. This

fact follows because the execution E' is well defined.

Ve claim Vq = d,r,p(VALq,r,p) for all q E N. The proof of the claim has four

cases.

Case 1: (Processor q is faulty.) Vq = 4b,r,p(VALq,rp) by the specification of

execution E'.

Case 2: (Processor q is correct and r = 1.) We calculate the value of Vq as

follows:

Vq = state(q, simul(r) - 1, E')

= fq (state(q, r - 1, E))

= COREr-1,q

= 4,r,p(COREr-1,q)

= db,r,p(MSGq,r,p)

= d,r,p(VALq,r,p)

Because processors p and q are correct.

By the induction hypothesis.

By the definition of fq.

Because 4 b,r,p is the identity function.

MSGq,r,p = COREr-1,q from step 2 of the code.

By Lemma 16.

Case 3: (Processor q is correct and phase(r) > 1.) We calculate the value of vq

as follows:

Vq = state(q, simul(r) - 1, E')

= fq(state(q, r - 1, E))

= 4b,r1,q(COREr-1,q)

= 4br,p(COREr-1,q)

= O,r,p(MSGq,r,p)

= d,r,p(VALq,r,p)

Because processors p and q are correct.

By the induction hypothesis.

By the definition of fq.

By Lemma 15.

MSGq,rp = COREr-1,q from step 2 of the code.

By Lemma 16.

Case 4: (Processor q is correct and phase(r) = 1 and r > 1.) We calculate the

value of vq as follows:

Vq = state(q, simul(r) - 1, E')

= fq (state(q, r - 3, E))

= 45-1,r-3,q(COREr-3,q)

Because processors p and q are correct.

By the induction hypothesis.

By the definition of fq.
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= 4b-1,r-2,p(COREr-3,q) By Lemma 15.

= 4b-1,r,p(COREr-3,q) By Lemma 14.

= 0b-1,r,p(OUTq,b,r,p) By Lemma 17.

= Ob,r,p(q) By the definition of 4b,r,p.

= db,r,p(MSGq,r,p) MSGq,r,p = q from step 2 of the code.

= db,r,p(VALq,r,p) By Lemma 16.

Having proved the claim that Vq = 4b,r,p(VALq,r,p) for all q E N, we now

conclude the induction step of the proof by calculating that

fp (st ate(p, r, E))

= 4b,r,p(COREr,p) By the definition of fp.
= Ob,r,p(VAL1,r,p,.-. , VALn,r,p) From step 8 of the code.

= (0b,r,p(VAL1,r,p),- - , 4 b,r,p(VALn,r,p)) By the substitutivity of 4b,r,p.

= (vi,..., Vn) By the claim.

= state(p, simul(r), E') By assumption. 0

5.7 Performance Analysis

Corollary 19: For any e > 0, the agreement problem can be solved in (1+ E)(t +1)

rounds using O(t - n[2/,E+3 . log |VI) message bits.

Proof: Let protocol P' be the agreement protocol of Lamport et al. [34]. Proto-

col P' is a (t + 1)-round exponential-message agreement protocol. Let 6', for p E N,

be the decision functions used in protocol P'. By Theorem 4, the full-information

protocol simulates protocol P' with some simulation functions, say ft,, for p E N. By

Theorem 18, the compact full-information protocol simulates the full-information

protocol with some simulation functions, say f', for p E N. Let protocol P be the

compact full-information protocol with arbitrary correct processor p using decision

function -yr = o fp o f'. By Theorem 3, protocol P is an agreement protocol. We

now analyze the performance of protocol P.

In each of the first k rounds of a block of protocol P, one round of progress

is made in the simulation of protocol P'. In the last two rounds, no progress

is made. Therefore, in x actual rounds, protocol P has simulated at least k2

rounds of protocol P', for all x. In order for our agreement protocol to terminate

within (1 + e)(t + 1) actual rounds, we require that (k + 2)/k < 1 + E. Solving

for the minimum integer k we get k = [2/e]. Therefore, to achieve agreement in
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(1+e)(t+1) rounds, we run protocol P with parameter k = [2/e and with arbitrary

processor p using decision function -yp.

The communication cost of protocol P consists of the cost of avalanche agree-

ment and the cost of the remainder of the protocol. In the non-avalanche portion

of the protocol, in each of 0(t) rounds each processor broadcasts a message of size

O(nk - log |Vj) for a total cost of 0(t - nk+2 - log IVI) bits. This cost is dominated

by the cost of avalanche agreement. In the avalanche agreement portion of the

protocol, in each of 0(t) rounds, each processor broadcasts at most n messages of

size 0(nk - log VI) for a total of 0(t - nk+3 log Vj). Expressed in terms of e, this

communication complexity is 0(t . n2/E1+3 log |VI) message bits. In this analysis

we made use of the fact (which we have not proved) that it is possible to adopt a

representation for the index arrays used in the compact full-information protocol

that allows each index to be stored in a constant number of bits. E

If n > 4t + 1 then a modification of our technique can simulate any (t + 1)-

round consensus protocol by a (1+ e)(t + 1)-round protocol that uses 0(t -n[1/E+3.

log IVI) message bits. Given that n > 4t + 1 it is possible to solve a variant of

the avalanche agreement problem with a consensus condition modified to require

a decision in one round rather than two. Using this variant avalanche agreement

protocol, we can reduce the number of rounds in each block of a compact full-

information protocol by one. Analyzing the new compact full-information protocol

gives the total communication cost of 0(t -nr1/l+3 . log VI) message bits.

We compare the cost (i.e., rounds and message bits) of our agreement protocol

with the cost of the protocol of Srikanth and Toueg [46], which uses the smallest

number of rounds of any previously known protocol. The protocol of Srikanth and

Toueg uses 2t + 1 rounds and 0(t -n2 . log n . log VI) message bits. Both protocols

require that n > 3t + 1. The performance of our protocol for various values of e is

given in Table 2.

Message Bits Message Bits

e Rounds (n > 4t + 1) (4t > n > 3t + 1)

1 2 (t + 1) O(t- n -log IVI) O(t n- log IVI)

} 1 -(t + 1) O(t n5 log IVI) O(t ni log IVI)
13 l-(t + 1) 0(t n6 log|VI) O(t n9 log |VI)

Table 2: Communication Cost of Our New Agreement Protocol
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We find that when e = 1 our protocol uses about the same number of rounds

and more messages bits than the protocol of Srikanth and Toueg; however, for

smaller values of E, our protocol uses a number of rounds that is unattainable with

the protocol of Srikanth and Toueg. Also, our technique is more general and may

therefore have greater applicability (e.g., reducing the communication cost of the

approximate agreement protocol of Fekete [25]). A significant limitation of our

technique is the large amount of local computation that it requires. By contrast the

protocol of Srikanth and Toueg uses a small amount of space and time locally at

each processor. In this comparison we ignore a possible optimization due to Dolev

et al. [18] and another due to Perry [41] and to Turpin and Coan [47] because these

optimizations have a similar impact on both protocols.



Two Applications of the
Avalanche Agreement
Protocol

We give two applications of avalanche agreement. They are a general technique

for constructing simple and efficient solutions to the multivalued agreement problem

and a simple solution to the crusader agreement problem. These two applications,
in addition to being interesting in their own right, are intended to show the useful-

ness of an avalanche agreement protocol in the modular construction of consensus

protocols.

1. Introduction

Making use of the avalanche agreement protocol defined in Chapter 2, we give

a general technique for constructing simple and efficient solutions to the multival-

ued agreement problem and we give a simple solution to the crusader agreement

problem.

The material in this chapter depends on the following portions of Chapter 2:

the definition of l-boundedness, simultaneity, and termination (Subsection 3.1); the

definition of the agreement problem (Section 2); the formulation and the solution

of the avalanche agreement problem (Section 4); and the syntax and the semantics

of subprotocols (Subsection 5.2).

Sections 1 and 2 of this chapter are joint work with Russell Turpin and were published
in a different form in Information Processing Letters [47].
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We make the following two additional definitions. The binary agreement prob-

lem is the agreement problem with the input set restricted to be of size two. The

multivalued agreement problem is the agreement problem with no restrictions on

the size of the input set.

All of the protocols that we consider in this chapter function correctly in the

Byzantine fault model. Thus they also function correctly a fortiori in more benign

fault models.

We show how to construct a multivalued agreement protocol using an arbi-

trary binary agreement protocol and an arbitrary avalanche agreement protocol as

subprotocols. The resulting protocol is simple, has an easy correctness proof, and

can have a low communication cost. Its cost is a function of the particular binary

agreement protocol and avalanche agreement protocol used; there are choices that

give the best known message complexity for a multivalued agreement protocol. A

similar construction was discovered independently by Perry [41].

We also show how to construct a crusader agreement protocol using an arbitrary

avalanche agreement protocol as a subprotocol. In performance and behavior, our

protocol is very close to an earlier crusader agreement protocol by Dolev [16]. We

believe that our contribution is not the protocol itself; rather, it is the modular

method of constructing the protocol using an avalanche agreement protocol as a

subprotocol. Because of its method of construction, our crusader agreement protocol

is simple and has an easy correctness proof.

In Section 2 we construct a multivalued agreement protocol and analyze its

performance. In Section 3 we define the crusader agreement problem and give a

crusader agreement protocol.

2. The Multivalued Agreement Problem

In this section we give a general technique for using an arbitrary binary agree-

ment protocol and an arbitrary avalanche agreement protocol to construct a multi-

valued agreement protocol. The new multivalued agreement protocol is essentially

just a series of two subprotocol calls, one to the avalanche agreement protocol and

one to the binary agreement protocol. The communication cost of the multivalued

agreement protocol is a function of the cost of the two subprotocols. Specifically,

the worst-case number of rounds used by the multivalued agreement protocol is two

more than the worst-case number of rounds used by the binary agreement subpro-

tocol and the worst-case number of message bits sent by the multivalued agreement
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protocol is the sum of the worst-case number of message bits sent by the two sub-

protocols.

Let V be some set such that |V| > 2. Let DEFAULT be an arbitrary element

of V. Let BINARY be an arbitrary binary agreement protocol. Without loss of

generality we assume that the input set of BINARY is {0, 1}. Let AVALANCHE be an

arbitrary avalanche agreement protocol.

The multivalued agreement protocol with input set V is given as Protocol 1.

All processors run the same code. For convenience we describe the code run by an

arbitrary correct processor p. Processor p stores its input in the variable AAIN. In

round 1 processor p initiates avalanche agreement with input AAIN. It sets BA-IN

to 1 if the avalanche agreement protocol decides in two rounds; otherwise, it sets

BAIN to 0. In round 3 it initiates the binary agreement protocol with input BA-IN.

Eventually the binary agreement protocol terminates at processor p. If the answer

is 0 then processor p answers DEFAULT; otherwise, processor p decides on the value

that is the output from the avalanche agreement protocol. We will prove that such

a value exists whenever the decision from the binary agreement protocol is 1.

Initialization for processor p:

AAIN <- the initial value of processor p

Code for processor p in round r:

1. if r = 1 then
2. call AVALANCHE(input: AA-IN, result: AAOUT, rounds: 3)

3. if r = 2 then
4. if AAOUT 5 I then BAIN +- 1 else BAIN +- 0
5. if r = 3 then
6. call BINARY(input: BAIN, result: BA-OUT, rounds: oc)

7. if r > 3 then

8. if BA-OUT 5 1 then

9. if BA-OUT = 1 then decide AAOUT else decide DEFAULT

Protocol 1: The Multivalued Agreement Protocol

In the following proof of Protocol 1 we append two subscripts to each variable

from the protocol. The first subscript, say r, is a positive integer and the second

subscript, say p, is in N. By this notation we mean the value of the subscripted

variable at processor p at the end of round r. For example, AAINr,p is the value of

variable AAIN at processor p at the end of round r.
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Theorem 1: Protocol 1 solves the multivalued agreement problem.

Proof: We show that the agreement, validity, andtermination conditions are sat-

isfied.

Agreement condition: By the agreement and termination conditions satisfied

by BINARY, there is some b E {0, 1} and some r > 3 such that BA-OUTr,p = b for

all correct processors p. There are two cases, either b = 0 or b = 1. If b = 0 then all

correct processors decide DEFAULT. The agreement condition is satisfied. If b = 1

then, by the validity condition satisfied by BINARY, there is some correct processor q

such that BA-IN2,q = 1. From step 4 of the code, AAOUT2,q $ _I. Consider arbi-

trary correct processor p. From step 9 of the code, processor p decides AAOUTr',p
for some r' where 3 <Kr' <Kr. By the avalanche condition satisfied by AVALANCHE,

AA-OUT 3 ,p = AA-OUT2,q. Clearly, AAOUTr',p = AA-OUT 3 ,p. Thus arbitrary cor-

rect processor p decides AA-OUT2,q and the agreement condition is satisfied.

Validity condition: Let v be the input to all of the correct processors. By

the consensus condition satisfied by AVALANCHE, AAOUT 2 ,p = v for all correct

processors p. Clearly, for all r > 3 and for all correct processors p, AA-OUTr,p =
AAOUT 2 ,p- From step 4 of the code, BAIN2 ,p = 1 for all correct processors p.

Let processor p be an arbitrary correct processor. By the validity and termination

conditions satisfied by BINARY, there is some r > 3 such that BAOUTr,p = 1. From

step 9 of the code, processor p decides v.

Termination condition: This follows immediately from the termination condi-

tion satisfied by BINARY. 0

Theorem 2: If BINARY is 1-bounded for some I then Protocol 1 is (l+2)-bounded.

Proof: All correct processors call BINARY in round 3. BINARY is 1-bounded for

some 1. Thus all correct processors decide by round I + 2 of Protocol 1 and so

Protocol 1 is (1 + 2)-bounded.

Theorem 3: If BINARY is simultaneous then so is Protocol 1.

Proof: All correct processors call BINARY in round 3. BINARY is simultaneous. Thus

all correct processors decide in the same round in Protocol 1 and so Protocol 1 is

simultaneous. 1

In order to analyze the communication cost of Protocol 1 we make some defini-

tions. For any protocol P we let bits(P) be the worst-case number of message bits

56



Two Applications of Avalanche Agreement

sent by the correct processors in any execution of protocol P and we let rounds(P)

be the worst-case number of rounds until the last correct processor decides in any

execution of protocol P. We extend the standard notation [31] for the asymp-

totic behavior of functions of one variable to functions of three variables. Let

w(f(x, y, z)) denote the set of all g(x, y, z) such that for all positive constants c

there exists positive constants x0 , yo, and zo with g(x,y,z)/f(x,y,z) > c as long

as x 2 xo, y 2 yo, and z > zo. Let o(f(x, y, z)) denote the set of all g(x, y, z) such

that for all positive constants c there exists positive constants xo, yo, and zo with

|g(x, y, z)/f(x, y, z)| < c as long as x > xo, y > yo, and z > zo. This generalization

corresponds to making claims about functions when x, y, and z are all large.

The communication cost of Protocol 1 depends on the particular choice of

subprotocols and on the input set. For the purpose of this analysis we assume

that Protocol 1 uses the avalanche agreement protocol given in Section 4 of Chap-

ter 2. Let T(P, V) denote the instance of Protocol 1 that has input set V and uses

protocol P as its binary agreement subprotocol. It is easy to see for any binary

agreement protocol P and for any set V that bits(T(P, V)) = bits(') + 3n 2 log VI
and rounds(T(P, V)) = rounds(?) + 2. Using a variant of the relay-processor

optimization due to Dolev and Strong [21] it is possible to improve this to

bits(T(P, V)) = bits(P) + 3tn - log |VI and rounds(T(P, V)) = rounds(P) + 2.

We can view the results of this section as a general technique for transforming

an arbitrary multivalued agreement protocol into one that has an improved mes-

sage complexity but uses two extra rounds. For example, let Pv denote the mul-

tivalued agreement protocol of Lynch, Fischer, and Fowler [35] with input set V.

Then bits(Pv) = (t3 - log t + tn) - log IVI and rounds(Pv) = 2t + 5. In contrast,
bits(T(Pjo,1}, V)) = t3 - log t + tn log IV| and rounds(T(P{o,1), V)) = 2t + 7. More

generally, if Pv is any agreement protocol with input set V where

bits(Pv) = w(bits(P{o,1I) + tin - log |VI)

then

bits(T(P{o,1}, V)) = o(bits(Pv)).

Our claim for the generality of our technique-a claim that we believe defies

formal proof-is based on the observation that every known multivalued agree-

ment protocol, Pv, which does not use some variant of our technique or the

similar technique developed independently by Perry [41], has the property that

bits(Pv) = w(bits(P{o,11) + tn - log |VI). A limitation of our technique is that there

is no improvement in performance if our transformation is applied a second time.
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3. The Crusader Agreement Problem

The crusader agreement problem was first formulated and solved by Dolev [16].
For uniformity of style within this thesis, we adopt a formulation that is slightly

different from his. In his formulation there is one processor, the "sender," that plays
a special role; our formulation is symmetric. There are very easy simulation results

between the two models.

A protocol that solves the crusader agreement problem operates under the same

failure and communication assumptions as an agreement protocol. Each processor

begins the protocol with an input value from some fixed set V. We assume that

* ( V. Let A = V U {*}. Each correct processor may, at some point during the

execution of the protocol, irrevocably decide on an element of A as its answer.

There are three conditions that the correct processors must satisfy.

" Agreement condition: All correct processors that decide on an element of V

reach the same decision.

" Validity condition: If all correct processors start the protocol with input v then

v is the decision of all correct processors that decide.

" Termination condition: All correct processors eventually decide.

The crusader agreement protocol is given as Protocol 2. All processors run

the same code. For convenience we describe the code run by an arbitrary correct

processor p. Processor p stores its input in the variable IN. In round 1 processor p

initiates avalanche agreement with input IN. In round 2 processor p decides v if v is

the round 2 decision of the avalanche agreement subprotocol; otherwise, processor p

decides *.

Initialization for processor p:

IN +- the initial value of processor p

Code for processor p in round r:

1. if r = 1 then
2. call AVALANCHE(input: IN, result: OUT, rounds: 2)
3. if r = 2 then
4. if OUT 5 1 then decide OUT else decide *

Protocol 2: The Crusader Agreement Protocol
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Theorem 4: Protocol 2 solves the crusader agreement problem.

Proof: We show that the agreement, validity, and termination conditions are sat-

isfied.

Agreement condition: This follows immediately from the avalanche condition

satisfied by AVALANCHE.

Validity condition: This follows immediately from the consensus condition sat-

isfied by AVALANCHE.

Termination condition: It is apparent from steps 3-4 of the code that all correct

processors decide in round 2 of Protocol 2. 1
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A Compiler that Increases
the Fault-Tolerance of
Asynchronous Protocols

We give a compiler that increases the fault-tolerance of certain asynchronous

protocols. Specifically, it transforms a "source protocol" that is resilient to crash

faults into an "object protocol" that is resilient to Byzantine faults. Our compiler

can simplify the design of protocols for the Byzantine fault model because it enables

us to break the design process into two steps. The first step is to design a protocol

for the crash fault model. The second step, which is completely mechanical, is to

compile the protocol into one for the Byzantine fault model. We use our compiler

to produce a new asynchronous approximate agreement protocol that operates in

the Byzantine fault model. Specifically, we design a new asynchronous approximate

agreement protocol for the crash fault model and we observe that this protocol can

be compiled into a protocol for the Byzantine fault-model. In the Byzantine fault

model, the new protocol improves in several respects on the performance of the

asynchronous approximate agreement protocol of Dolev, Lynch, Pinter, Stark, and

Weihl.

1. Introduction

We give a compiler that transforms an arbitrary standard-form asynchronous

protocol that tolerates crash faults into an asynchronous protocol that tolerates

Byzantine faults and that solves the same problem as the original protocol. Our

compiler incorporates communication primitives and a message validation scheme

developed by Bracha [5]. Bracha argues informally that his tools restrict the dis-

ruptive behavior of a processor that fails with a Byzantine fault. He argues that
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the restricted behavior is that of a processor subject only to crash failures. He then

uses these primitives to construct an interesting new protocol for the Byzantine

fault model.

Our goal is similar to Bracha's. It is to simplify the design and proof of asyn-

chronous protocols that are resilient to Byzantine faults. Specifically, our approach

is as follows. We incorporate Bracha's communication primitives and message val-

idation scheme in a compiler, which we prove correct. Then, we design and prove

protocols correct in the crash fault model. It follows from the correctness of the

compiler that the protocols that we design for the crash fault model can be compiled

into protocols that operate correctly in the Byzantine fault model.

A limitation of our compiler is that it only works for deterministic protocols.

It is an open question to construct and prove correct a compiler for randomized

protocols. Because our compiler works only for deterministic protocols, it is not

useful in the particular application that Bracha considers.

There seem to be two principal benefits of our approach. First, it is simpler

to design and prove protocols in the crash model than it is to do the same in the

Byzantine model. Using our method, only the compiler needs to be proved correct

for the Byzantine model. Second, our approach is modular. For example, we give

two versions of our compiler with slightly different performance tradeoffs. (The two

versions of the compiler use slightly different communication primitives.) After we

prove a protocol P correct in the crash fault model, we can use either version of

the compiler to transform P into a protocol that is correct in the Byzantine fault

model.

It should be clear that our compiler must change some of the properties of

a protocol (like the kind of faults tolerated) and leave other properties unchanged

(like the problem solved by the protocol). We use correctness predicates to formalize

one of the properties that we would like our compiler to preserve. A correctness

predicate is any predicate defined on the inputs to and answers of correct processors.

We show that our compiler preserves the satisfaction of correctness predicates. We

also show that our compiler preserves termination. Thus our compiler preserves

the solution to any problem that can be formalized by a correctness predicate and

a requirement that all correct processors eventually terminate. Agreement and

approximate agreement are such problems.

Asynchronous systems are "harder" than synchronous ones because they can

experience a superset of the executions of synchronous systems. If a protocol solves
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some problem in an asynchronous system, then it follows that the protocol solves the

same problem in a synchronous system. Of course, this holds for any protocol that is

the output of our compiler. The foregoing argument might lead one to think that our

compiler is capable of transforming a synchronous protocol that solves some problem

in the crash model into a synchronous protocol that solves the same problem in the

Byzantine model. This is wrong. The difficulty is that our compiler relies on the
fact that its source protocol operates correctly in asynchronous executions with

crash faults. The property of asynchronous executions that our compiler relies on

is that some messages between correct processors may be delivered very late.

A limitation of our technique is that we are unable to force a faulty processor

to accurately report its input value. We have accommodated this limitation by

requiring that correctness predicates not depend on the input to a faulty processor.

It seems that this requirement does not substantially restrict the number of problems

that can be formalized with correctness predicates.

Informally, we say that a protocol terminates in time r if all correct processors

decide by time r in any execution in which the message-delivery time is bounded

above by one. Our compiler imposes a certain overhead in the running time. There

are two versions of the compiler. The first version increases the time by a factor of

two and requires that the number of processors be more than four times the number

of faults tolerated. The second version increases the time by a factor of three and

requires that the number of processors be more than three times the number of faults

tolerated. The first version of the compiler uses new communication primitives; the

second version incorporates the communication primitives developed by Bracha.

Both versions of the compiler substantially increase the number of message bits

sent.

Our compiler requires that its "source protocols" be in a particular standard

form. We believe that most asynchronous protocols can be put into this standard

form. Nevertheless, it would be good to extend the compiler so that it could compile

arbitrary source protocols. We believe that this can be done, but the unrestricted

compiler and its proof seem very complicated. Because of their apparent complexity.

we leave the construction and proof of the unrestricted compiler as an open problem.

Unfortunately, there are a limited number of known protocols that are potential

source protocols for our compiler. The well-known impossibility result of Fischer.

Lynch, and Paterson [28] shows that many problems have no deterministic solution

in an asynchronous system. The only problems currently defined in the literature

that can be solved with deterministic protocols in asynchronous systems are the
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approximate agreement problem [19] and the inexact agreement problem [36]. De-

spite the limited number of potential source protocols, we believe that our compiler

is interesting because of the method that it embodies.

Using the two versions of our compiler, we produce a pair of new asynchronous

protocols. Specifically, we develop two asynchronous approximate agreement proto-

cols that are resilient to Byzantine faults and that improve in several respects on the

asynchronous approximate agreement protocol of Dolev, Lynch, Pinter, Stark, and

Weihl [19]. Our method is to design a new asynchronous approximate agreement

protocol for the crash fault model and observe that this protocol can be compiled

into a protocol for the Byzantine fault model (using either version of our compiler).

The protocol that we design in the crash fault model uses many ideas developed

by Dolev et al. for use in their protocol. (The approximate agreement problem is

defined in Section 2.)

In the Byzantine fault model our new approximate agreement protocols toler-

ate a larger proportion of faulty processors than the protocol of Dolev et al. Their

protocol requires that the number of processors be more than five times the number

of faults tolerated. One version of our protocol requires that the number of proces-

sors be more than four times the number of faults tolerated; the other requires that

the number of processors be more than three times the number of faults tolerated.

The second version of our protocol has an optimal amount of redundancy. This

follows because Fischer, Lynch, and Merritt [27] have shown that no protocol solves

the approximate agreement problem unless the number of processors is more than

three times the number of faults tolerated.

Intuitively, the convergence rate of an approximate agreement protocol is the

factor by which the range of possible answers is reduced each unit of time. De-

spite the overhead introduced by the compiler, one of our approximate agreement

protocols has an improved convergence rate for some (small) system sizes. Our

improvement in the convergence rate does not contradict the proved optimality of

the convergence rate of the protocol of Dolev et al. Their claim of optimality is for

protocols of a particular form. The output of our compiler is not of that form.

The running time of either one of our approximate agreement protocols depends

only on the inputs to the correct processors and the size of the system. In the

protocol of Dolev et al. the faulty processors can choose the amount of time that

will elapse before the correct processors decide.

We now give an outline of the remainder of the chapter. In Section 2 we
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define the approximate agreement problem. In Section 3 we give our model for

asynchronous protocols that operate in either the crash fault model or the Byzantine

fault model. In Section 4 we present our compiler and we prove that it works

correctly. In Section 5 we give a new asynchronous approximate agreement protocol

for the crash fault model and we prove it correct. We then note that this protocol

can be compiled into a protocol for the Byzantine fault model.

2. The Approximate Agreement Problem

The approximate agreement problem is solved in various fault models including

crash and Byzantine. The requirements given here apply to both of these fault

models. In a protocol for the approximate agreement problem, each processor begins

with some real number as its input. Each correct processor may, at some point

during the execution of the protocol, irrevocably decide on a real number as its

answer. A parameter e specifies the accuracy required in the solution. There are

three conditions that the correct processors must satisfy in all executions.

" Agreement condition: If v and v' are the decisions of two correct processors,
then Iv - v'I < e.

" Validity condition: If v is the decision of some correct processor, then there are

correct processors with inputs i and i' such that i < v < i'.

" Termination condition: All correct processors eventually decide.

3. The Model

We model processors as state machines that communicate by sending messages.

In Subsection 3.1 we begin by defining some parameters that specify the size of the

systems that we consider. In Subsection 3.2 we give our model for asynchronous

protocols subject to crash faults. In Subsection 3.3 we define a subset of the pos-

sible executions in the crash fault model; we call them synchronous executions. In

Subsection 3.4 we give our model for asynchronous protocols subject to Byzantine

faults. In Subsection 3.5 we define correctness predicates as a way to formalize part

of the definition of a problem in the asynchronous model. Finally, in Subsection 3.6

we define our time measure.

3.1 Definition of Parameters

For the remainder of this chapter, let n be the number of processors, let t be

an upper bound on the number of processors that fail, and let N = {1,... , n}. We

65



A Compiler to Improve Fault-Tolerance

define the redundancy to be (n - 1)/t. For the remainder of this chapter we assume

that the redundancy is at least 3 and we let e be an arbitrary fixed value of the

parameter to the approximate agreement problem.

Let I+ be the set of positive integers; let .A be the set of natural numbers,

including 0; and let R be the set of real numbers.

3.2 The Crash Fault Model

A processor is modeled as an infinite state machine with a message buffer.

The message buffer-modeled as a multiset of messages-holds those messages that

have been sent to the processor but not yet received. Messages in the message

buffer are reliably tagged with the identity of the sending processor. In each step a

processor receives a set containing at most one message from its buffer and (based

on its transition function) sends a set of messages. The transition function of a

processor uses the current state and current set of messages received to compute a

new state and a set of messages to be sent. There is a fixed set V of possible inputs

to the processors. For each element v E V, each processor has one initial state that

corresponds to having input v. The processors are indexed by the set N.

A configuration C is a vector of n states, one for each processor, and a vector

of n multisets of messages, one for each message buffer. An initial configuration has

all processors in initial states and all buffers equal to the empty multiset.

An event is denoted either (step: p) or (receive: p, q, M). The event (step: p)

models processor p taking a step without receiving a message. The event e =

(step: p) is applicable to any configuration. The configuration resulting from ap-

plying event e to configuration C, denoted e(C), is obtained from C by changing

the state of processor p according to the transition function and adding messages

from processor p to the appropriate buffers according to the transition function.

The event (receive: p, q, m) models processor p receiving the message m from pro-

cessor q. The event e' = (receive: p, q, m) is applicable to configuration C if the

message m (tagged with sender q) is an element of the buffer of processor p in con-

figuration C. The configuration resulting from applying event e' to configuration C,

denoted e'(C), is obtained from C by removing the message m from the buffer of

processor p, changing the state of processor p according to the transition function,

and adding messages from processor p to the appropriate buffers according to the

transition function.

A schedule is a finite or infinite sequence of events. A finite schedule o- =

e1 e2 ... ek is applicable to configuration C if ei is applicable to C, e2 is applicable
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to ei(C), etc. The resulting configuration is denoted a(C). An infinite schedule is

applicable to configuration C if every finite prefix of the schedule is applicable to C.

An execution of a protocol is a triple (FI,o-) where I = (ii,..., is a

1-dimensional array of V, where o- is applicable to the initial configuration in which

an arbitrary processor p begins in the initial state that corresponds to having in-

put ip, where all processors in N - F take an infinite number of steps in a, and

where every message that is sent to a processor that takes an infinite number of

steps in a is eventually delivered. A processor p is faulty in the execution (F, I, a)

if p E F; otherwise, p is correct.

Each processor has a decision function that maps from processor states to

V U {J_}. In the first step in which the decision function of a processor applied to

the current state is v E V, we say that the processor decides v. After a processor

has decided, it makes no further use of its decision function. An execution is a

deciding execution if all correct processors eventually decide. A protocol terminates

if all of its executions are deciding executions.

In our crash fault model, processors have an "atomic broadcast" capability. A

processor can send several messages in one (atomic) step. Every message that is

sent to a processor that takes an infinite number of steps is delivered. Compared to

a crash fault model without atomic broadcast, the failures in our model are more

benign. This increases the strength of our compilation result because it potentially

makes it easier to write source protocols.

There will be no atomic broadcast capability in our Byzantine fault model.

3.3 Synchronous Executions in the Crash Fault Model

In this subsection we define what it means for an execution in the crash fault

model to be synchronous. If E = (F, I, a) is an execution, C is the initial configu-

ration in execution E, a' is a prefix of o, and p E N, then we define deliver(E, o', p)

to be the lexicographically least schedule that delivers to processor p all of the

messages that are in the buffer of p in the configuration o'(C). An execution

E = (F, I, a) is synchronous if a can be expressed as the concatenation of sub-

schedules, a = 00 1 0 2 ... , where or = a(r, 1)a(r, 2)... a(r, n), and where a(r,p)

satisfies one of the following three conditions for all r E N and for all p E N:

. Condition 1: p E F and a(r,p) is the empty sequence.
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" Condition 2: r = 0 and a(r,p) = (step: p). Recall that (step: p) is the event

in which processor p takes a step without receiving any messages.

" Condition 3: r > 1 and a(r, p) is any reordering of the events in deliver(E, or', p)

where a' = 0'o0ri .. . -r-1.

In a synchronous execution of a protocol, we say that an event happens in

phase r if it is in a(r,p) for some p.

3.4 The Byzantine Fault Model

The Byzantine fault model has much in common with the crash fault model. In

this subsection we define only those parts of the Byzantine fault model that differ

from the crash fault model. The two differences are in the definition of events and

in the definition of executions.

An event is denoted either (step: p), (receive: p, q, in), or (error: p, q, m). The

events (step: p) and (receive: p, q, m) are defined as they are in the crash fault

model. The event (error: p, q, m) models processor q erroneously sending the mes-

sage m to processor p. The event e = (error: p, q, m) is applicable to any con-

figuration. The configuration resulting from applying event e to configuration C,
denoted e(C), is obtained from C by adding the message m (tagged with sender q)

to the buffer of processor p.

An execution of a protocol is a triple (FI,C) where I = (ii,...,i,) is a

1-dimensional array of V, where C- is applicable to the initial configuration in which

an arbitrary processor p begins in the initial state that corresponds to having in-

put ip, where all processors in N - F take an infinite number of steps in 0-, where

every message that is sent to a processor in N - F is eventually delivered, where

processors in N - F take no error steps, and where processors in F take only error

steps. A processor p is faulty in the execution (F, I, Cr) if p E F; otherwise, p is

correct.

We remark that the requirement that a faulty processor take only error steps

does not restrict the kinds of faults that can be exhibited in an execution. This is

because any message sending pattern can be achieved with error steps and because

we are never interested in examining the state of a faulty processor.

We could give a definition of "synchronous executions" in the the Byzantine

fault model analogous to the definition of synchronous executions in the crash fault
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model. We omit that definition because we have no need to discuss such executions

formally.

3.5 Correctness Predicates

In this subsection we define correctness predicates as a way to formalize part

of a problem definition. The definitions in this subsection apply to both the crash

fault model and the Byzantine fault model.

Predicate C is a correctness predicate if its domain is (V U {IL})2n. If

E = (F, (ii,...,in),o-) is any execution then inp(E) is defined to be (ii,...,i')

where i' = i, if processor p is correct in E and i = I otherwise. If E is any

deciding execution then ans(E) is defined to be (a1,..., an) where a, is the de-

cision of processor p in execution E if p is correct in E and a, = I otherwise.

Protocol P satisfies correctness predicate C if for any deciding execution E the

value of C(inp(E), ans(E)) is true. Correctness predicates furnish a convenient way

of formalizing the correctness requirements for a consensus protocol. For exam-

ple, protocol P solves the approximate agreement problem (with parameter e) if it

terminates and it satisfies correctness predicate C that is defined below. Let

A(I, A) = A ((aj = 1) V (ak = _) V (jaj - ak| < E)),
j,kEN

and

V(,A)=A(aj = 1) V V ((I k # J-) A (Zil _L) A (ik :! aj : i 1)).V ((i, 
A) 

I)Ai 
() 

ijEN k,lEN

where I = (i1 , ... , in) and A = (a, .. . , an). Now let C(I, A) = A(I, A) A V(I, A).
The correctness predicate A formalizes the agreement condition and the correctness

predicate V formalizes the validity condition.

3.6 Time

In this subsection we define a notion of time in asynchronous executions. We

will use this notion when we discuss the performance of our compiler. The definitions

in this subsection apply to both the crash fault model and the Byzantine fault model.

We define S to be a timing if S is an infinite nondecreasing unbounded sequence

of real numbers. Let E = (F, I, a) be an execution. If event e is the i-th element

of o-, then the time at which event e occurs in timing S of E is r where r is the
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i-th element of S. Timing S of execution E is 1-bounded if (1) each processor that

takes a non-error step in E takes its first step at time 0 and (2) any message that is
sent at time x is delivered at or before time x + 1. (The time at which a particular

message is sent is defined to be the time of the event that causes the message to be

inserted in a buffer.) A timed execution is an execution with a 1-bounded timing.

4. The Compiler

We give two versions of our compiler. One works in any system where the

redundancy is at least four. It increases the running time by a factor of two. The

other works in any system where the redundancy is at least three. It increases the

running time by a factor of three. We prove the correctness of the first version of

the compiler. The correctness proof for the second version is similar and is only

sketched.

It would be tedious to write protocols directly in terms of our formal model.

In the remainder of this chapter we write protocols in a higher-level language. The

mapping from protocols written in the higher-level language to protocols written

directly in terms of the formal model is a straightforward exercise that we omit.

To accommodate our new higher-level language for expressing protocols, we will

redefine the terms "transition function" and "decision function" in the body of this

section.

4.1 Standard Protocols

Our compiler works only for protocols in standard form. A protocol is in

standard form if it corresponds to an instance of Protocol 1 customized by specifying

A, V, S, and D. A is the set of possible values of the variable STATE. V C A is

the set of possible inputs. S : N x 1+ x (A U {I})n -+ A U {I} is the transition

function. The transition function maps a triple consisting of a processor index, a

positive integer (representing an "asynchronous round" number), and a vector of

messages (I represents the absence of a message) into either a processor state (i.e.,
element of A) or I. D: N x 1+ x A -- V U {I} is the decision function. The

decision function maps a triple consisting of a processor index, a positive integer,
and a processor state into a possible decision. In the range of the decision function,
an element of V represents a decision and I represents the absence of a decision.

Throughout the rest of this chapter, an instance of Protocol 1 customized with A,

V, S, and D is denoted P(A, 7, S, D). For the remainder of this section we choose

an arbitrary fixed A, V, S, and D.
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Initialization for processor p:

STATE <- the initial value of processor p

MSGI,q +- I for all (1, q) E 1+ x N

1. for r <- 1 to oc do
2. broadcast (r, STATE)

3. until MSGr,p # 1 and I{q E N I MSGr,q = 1} I> n - t do
4. receive any message (1, m) from any processor q
5. MSGl,q +- m

6. STATE 4- S(p, r, (MSGr,1,... , MSGr,n))

7. DECISION +- D(p, r, STATE)

8. if DECISION 5 1 then decide DECISION

Protocol 1: The Standard Protocol (Crash Faults)

We impose the requirement that S(r, p, (mi,... , m n)) # I if and only if there

is a set G C N such that p E G, IG| > n - t, and mq # I for all q E G. That is,
S(r,p, (m1,..., mn)) is defined on exactly those message patterns (i.e., patterns of

which elements of (mi,... , mn) are defined) that would cause a correct processor p

to exit the inner loop (steps 3 to 5) and proceed to step 6.

A standard-form protocol operates in a series of asynchronous rounds. The

r-th execution of the body of the main loop is asynchronous round r. At the start

of each asynchronous round a correct processor broadcasts a message containing its

state. It then waits to receive messages from a sufficiently large group of processors

(including itself). It computes its new state by applying its transition function to a

triple consisting of its index, the number of the current asynchronous round, and the

vector of messages received. Finally, it (possibly) decides on an answer by applying

its decision function to its new state. It may seem unusual that a correct processor

sends a copy of its state to itself (and waits to receive it) in each asynchronous

round. We adopt this convention because it simplifies our compiler.

We say that M is a message array if it is a 2-dimensional array of A U {I}

indexed by 1+ and N (asynchronous rounds and processor indices). Message array L

is an extension of message array AM if for all r and p either Lr,p = Mr,p or Mr,p = 1.

Let A be the set of all message arrays. In protocol P(A, V, S, D) the variable MSG

is always an element of M. If the value at processor p of MSGr,q is ever m, then p

received the message (r, m) from processor q. The value at processor p of MSGr,q

is I if p has received no message (r, m) from processor q for any m. At processor p

at any time in an execution, the message array MSG contains all of the messages

71



A Compiler to Improve Fault- Tolerance

received by processor p up to the present time. Note that messages that arrive "too

late" are stored in MSG but do not affect the state or decision of processor p.

4.2 Filtered Message Arrays

In this subsection we define a filter that we will use in both versions of our

compiler. This filter operates on message arrays. It obliterates (replaces by I)

messages that seem "implausible" and it passes all other messages unchanged. It is

an adaptation of a "validation" scheme due to Bracha [5]. We now define the filter.

For all G C N define pick(G, (v1,... ,v,)) to be (vi, ... v' ) where v' = vi if

i E G and v = - otherwise. The function pick returns a vector in which some of

the elements of (v'1,... v' )-those with indices in N - G-are replaced by -. The

function filter maps from M to M. Define filter(M) to be N' where

M'f - M 1 ,, if Mi,, E V;
'P I otherwise,

and

M = fMr,p if 3GCN Mr,p = S(p, r - 1, pick(G, (M' 1 ,1 ,... ,M' 1 ,n)));
rp I otherwise,

for all r E {2, 3, .. .} and for all p E N. For all p, M',, is equal to M 1 ,, if and only

if M 1 ,, is an element of V, the set of possible inputs to the protocol. For all p and

for all r > 2, M',, is equal to Mr,p if and only if there is some set G C N such that

Mr,p is the message that would be sent by a correct processor p that received the

messages in pick(G, (M'.11 ,... M'._1,)).

In the next two lemmas we prove basic properties of filtered message arrays.

Lemma 1: Suppose that L is a message array and A = filter(L). If Mr, = -

then Ar+,,p = I for all r E I+ and p E N.

Proof: Immediate from the definition of filter(L). E

Lemma 2: If L is a message array then L is an extension of filter(L).

Proof: Immediate from the definition of filter(L). 0

Lemma 3: If message array L is an extension of message array Ml, then filter(L)

is an extension of filter(M).
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Proof: Let L' = filter(L) and let M' = filter(M). We prove by induction on r

that, for all r and for all p, either L' = M., or A',, = I.

Basis: (r = 1) Consider an arbitrary p E N. If Ml,,= I then the claim

is trivially true, so assume that M$,, 5 1. By Lemma 2, M',, = M 1 ,,. By the

definition of filter(M), Mi,, E V. Because L is an extension of Al, L 1 ,p = M 1,,. By

the definition of filter(L), L', = L1 ,,. Thus L', = M .

Induction: Consider an arbitrary p E N. If M,.,, = I then the claim is

trivially true, so assume that M',, 5 1. By Lemma 2, M',, = M,,p. Because L is

an extension of M, Lr,p = Mr,p. By the definition of filter(M), there is some set

G C N such that A'.l,q 5 I for all q E G and

M,,p = S(p, r - 1, pick(G, (M' 1 ,1 ,. .. ,'

By the induction hypothesis

pick(G, (M '1,,..1 ,.. , M '_1,n))= pick(G, (L'._. 1,1 , ... , L, 1,)).

Thus, by the definition of filter(L), L', = L,,p. So we have that L', = M.,. L

4.3 The Object Protocol

Our compiler operates by translating an instance of Protocol 1 customized by

A, V, S, and D into an instance of Protocol 2 customized by A, V, S, and D.

Throughout the rest of this chapter an instance of Protocol 2 customized with A,

V, S, and D is denoted Q(A, V, S, D).

The skeleton of Protocol 2 is similar to that of Protocol 1. Three distinguishing

features of Protocol 2 should be noted. First, Protocol 2 requires that the redun-

dancy be at least four. Second, there is extra communication in Protocol 2. Each

processor uses this extra communication to construct a message array called RAW.

Third, in Protocol 2 each processor applies its transition function to the message

array MSG, which is obtained by filtering RAW.

As in a standard-form protocol, Protocol 2 operates in a series of asynchronous

rounds. The r-th execution of the body of the main loop is asynchronous round r.

At the start of each asynchronous round a correct processor p broadcasts a message

containing the current value of the variable STATE. It then waits until its filteredl

message array, MSG, contains messages from a sufficiently large group of processors

(including itself). It computes its new value for the variable STATE by applyling
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Initialization for processor p:

STATE +- the initial value of processor p
VOTEI,q,i,u +- I for all (1, q, i, u) 6 E+ x N x H x N
RAWI,q +- I for all (1, q) E _T+ x N
MSGI,q +- I for all (1, q) ET+ x N

1. for r +-l1 to oo do
2. broadcast (r,p,0, STATE)

3. until MSGr,p #I and |{q E N I MSGr,q 5-11> n -t tdo
4. receive any message (1, q, i, m) from any processor u

5. if VOTEl,q,i,u = I then

6. VOTEl,q,i,u - m

7. NUM +- |{s E N I VOTEI,q,i,s = M1
8. if i = 0 and q = u then broadcast (1, q, 1, m)
9. if NUM = n - 2t then broadcast (1, q, i + 1, m)

10. if NUM = n - t then RAWl,q +- m
11. MSG +- filter(RAW)

12. STATE +- S(p, r,(MSGr,1,... ,MSGr,n))
13. DECISION +- D(p, r, STATE)

14. if DECISION : I then decide DECISION

Protocol 2: The Object Protocol (Byzantine Faults, n > 4t + 1)

its transition function to a triple consisting of its index, the number of the current

asynchronous round, and the vector of messages in the filtered message array. Fi-

nally, it (possibly) decides on an answer by applying its decision function to the

new value of STATE.

A processor in Protocol 2 maintains the invariant that MSG = filter(RAW).

Messages are placed in the array RAW when they accumulate enough votes. The

votes are stored in the array VOTES. If VOTESI,q,i,, = m then processor u sent a

level i vote that RAWi,q should be m. If a processor receives a level 0 vote from

processor q that RAWI,q should be m, then it sends a level 1 vote that RAWl,q should

be m. If a processor receives n - 2t level i votes that RAWI,q should be m, then it

sends a level i + 1 vote that RAWI,q should berm. If it receives n - t level i votes

that RAWl,q should be m, then it sets RAWI,q to m.

4.4 Preliminary Lemmas

In this subsection we give five lemmas that will be of use in our main correctness

argument in Subsection 4.5. The first four lemmas establish some basic properties
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of the communication primitives used in Protocol 2 and the last lemma establishes

an important liveness property for Protocol 2.

Lemma 4: If any correct processor ever assigns any value m to its copy of RAWr,p

in an execution of protocol Q(A,V,S,D), then every correct processor eventually

assigns the value m to its copy of RAWr,p and no correct processor ever assigns any

value m' 0 m to its copy of RAWr,p.

Proof: Any correct processor that assigns a value to its copy of RAWr,p does it

after receiving an (r, p, i, in') message for some i E AV and n' E A. We call such a

message a level i message. Let j be the smallest number such that a level j message

causes some correct processor to assign a value to its copy of RAWr,p, let q be such a

processor, and let d be the value assigned. Processor q gets n - t messages (r, p, j, d).

At least n - 2t are from correct processors. There are at most 2t processors that

could send an (r, p, j, d') message for any d' f d. Thus no correct processor assigns

any d' 4 d to its copy of RAWr,p based on a level j message. It is easy to show by

induction on j' that for all j' > j + 1 and for all d' = d there are no (r, p, j', d')

messages sent by any correct processor. All correct processors eventually receive

n - 2t messages (r, p, j, d) and broadcast an (r, p, j +1, d) message. Thus each correct

processor eventually receives n - t messages (r, p, j + 1, d) and assigns d to its copy

of RAWr,p. E

Based on Lemma 4, we define the eventual value of RAWr,p in an execution

of protocol Q(A, V, S, D), denoted [RAWr,p), to be the common value assigned to

RAWr,p by the correct processors. If the correct processors never assign a value to

RAWr,p then we define [RAWr,p] to be I. We define the eventual value of RAW,

denoted [RAW], in the obvious way. That is, [RAW] is the 2-dimensional array whose

elements are the eventual values of the corresponding elements of RAW. Based on

Lemma 3, we define the eventual value of MSGr,p and MSG analogously.

Lemma 5: If a correct processor p ever broadcasts the message (r, p, 0, m) for any

r and in, then [RAWr,p] = m.

Proof: All n - t correct processors eventually receive the message (r, p, 0, M) from

processor p. They all broadcast the message (r, p, 1, m). All n - t correct processors

eventually receive at least n - t copies of the message (r, p, 1, n) and at most t copies

of any message (r, p, 1, m') for any m' 5 in. Each correct processor assigns in to its

local copy of RAWr,p, and so [RAWr,p] = n.

Lemma 6: Let r E I+. If a correct processor p never broadcasts a message

(r, p, 0, m) for any n, then [RAWr,p]
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Proof: It is easy to show by induction on i that no correct processor ever sends a

message (r, p, i, m) for any m. Therefore no correct processor ever assigns any value
to its copy of RAWr,p and so [RAWr,p] = I. El

Lemma 7: If M is the value of the variable RAW at some processor p at some time
in an execution and L is the value of the same variable at processor p at some later
time in the same execution, then L is an extension of M.

Proof: Immediate from Lemma 4.

In the next lemma we prove an important liveness property of Protocol 2.

Lemma 8: [MSGr,p] I for all r E I+ and for all p E N - F.

Proof: The proof is by induction on r.

Basis: (r = 1) Let p be an arbitrary correct processor. Let v E V be the
input to processor p. In its first step processor p sends the message (1,p, 0, v). By
Lemma 5, [RAW1,p] = v. By the definition of filter, [MSG 1 ,p] = V.

Induction: Let p be an arbitrary correct processor. By the induction hypothesis

[MSGr-1,p] -. By Lemma 2, [RAWr-1,pI : I. By Lemma 6, there is some time

when processor p sends the message (r - 1,p,0,m') for some m'. Thus there is

some time at which processor p executes the broadcast (step 2) in asynchronous

round r - 1.

By the induction hypothesis, [MSGr-1,q] j I for all q E N - F. By Lemmas

3 and 7, there is some time after which the variable MSG at processor p always

satisfies the condition that MSGr-1,q f -L for all q E N - F. Therefore, processor p

eventually sends some message (r, p, 0, n). Let Al be the value of the variable MSG

at processor p when processor p sends the message (r, p, 0, m). It follows from the

code that

m = S(p, r - 1, (MNr-1,1,..., Mr-1,n)).

By Lemmas 3 and 4, [MSG] is an extension of Al. Therefore there is a G C N such

that

m = S(p, r - 1, pick(G, ([MSGr-1,1.. , [MSGr-1,nJ)))-

By Lemma 5, [RAWr,p] = m. By the definition of filter, [MSGr,p] = [RAWr,p]. Thus

[MSGr,p]
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4.5 Proof of Correctness

In this subsection we show for any A, V, S, and D that if protocol P(A, V, S, D)

solves some problem (formalized by a correctness predicate and a termination re-

quirement) then protocol Q(A, V, S, D) solves the same problem. Our approach is

to exhibit for any execution E of protocol Q(A, V, S, D) an execution of protocol

P(A, V, S, D) in which the correct processors "do the same thing" that they did in

execution E.

Let vo be an arbitrary fixed element of V. In this subsection we will find it

convenient to use vo as a "default input."

We now construct for any execution E of protocol Q(A, V, S, D) a synchronous

execution of protocol P(A, V, S, D), denoted crash(E), in which the correct proces-

sors "do the same thing" that they did in E. Because crash(E) is a synchronous

execution in the crash fault model, it is completely determined by the following

three items: (1) the inputs to the processors; (2) the number, if any, of the last

phase in which each processor takes steps, and (3) the order in which each operat-

ing processor receives its phase r messages for each r. We will construct crash(E)

so that the following three properties hold: (1) the input to processor p is [MSG 1 ,p]

if [MSGi,p] 5 I and v0 otherwise; (2) a processor p sends a phase r message if and

only if [MSGr,p] # I; and (3) messages are delivered to a processor p in phase r in

precisely the order that causes processor p to send the message (r + 1, [MSGr+1,p]).

Define support(p, r, M) to be the lexicographically least set G C N such that

Ar-,q I for all q E G and

Mr,p = S(p, r - 1, pick(G, (Mr-1, 1 , ... , M,l,n))).

If there is no such set G, then define support(p, r, M) to be 0.

If M 1 ,, = I then define 3(0,p, A) to be the empty sequence of events; other-

wise, define 3(O,p, M) to be the event (step: p). For all r > 1, if Mr+1 ,, = I

then define #(r, p, A) to be the empty sequence of events; otherwise, define

#(r,p, M) to be the sequence of events that consists of (1) the receipt by pro-

cessor p of all of the (non-1) messages in (A,,.. ,Ar,n) that are from processors

in support(p, r + 1, A) - {p} followed by (2) the receipt by processor p of Mr,p

followed by (3) the receipt by processor p of all of the remaining (non-1) messages

in (Mr,,1. . ., Mr,n).
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Suppose E = (F, I, a) is an arbitrary execution of protocol Q(A, V, S, D). We

define crash(E) to be (F, i'), o ... ) where

, [MSGipif [MSGi,p '
ZM=SVO p otherwise,

and for all r

,.= #(r, 1, [MSGI)f(r, 2, [MSG]) ... #(r, n, [MSG]).

Lemma 9: Let p E N, q E N, r E V, and m E A. Let L be a message array.

Let A = filter(L). Let C be an initial configuration for protocol P(A, V, S, D).

Let a' = oi ... .. r- 1 where (for 0 < r' < r - 1) O = O(r',1,M)... i3(r',n,M).

Suppose that a' is a schedule that is applicable to configuration C. Suppose that

processor p sends an (r, m) message to processor q in a'(C). Then m = Mr,p.

Proof: There are two cases.

Case 1: (r = 1) Let v be the input to processor p in configuration C. Clearly,

m = v. To send the message (1, m), processor p must take at least one step in

schedule o'. It follows from Lemma 1 and the definition of a' that M 1,, 5 1. By

the construction of a', V = M 1,,. Thus m = M1,.

Case 2: (r > 2) Let M' be the value of the variable MSG in protocol

P(A, V, S, D) after the application of the event that causes the sending of the mes-

sage (r, m) from processor p to processor q. By Lemmas 3 and 7, message array Al

is an extension of message array Al'. Because the message (r, m) is-sent in o-'(C),

we have that support(p, r, Al) # I. We claim that

(M'_ 1,1 ".. . , A'.,) = pick(support(p, r, Al), (Mr-1,1,...., Ar-1,,)).

The claim follows by the definition of 0(r - 1, p, Al). Using the claim, we calculate

that

m = S(p, r - 1,(M'_-,,,I.. . .AlM ,'J))From the code.

= S(p, r - 1, pick(support(p, r, M), (Ar-,1,... , Mr_1,n))) By the claim.

= Mr,p. By the definition of support. 0

Lemma 10: If E = (F, (ii,...,in),a) is an execution of protocol Q(A,V,S,D),

then E' = crash(E) is an execution of protocol P(A,V, S,D).

Proof: Suppose that E' = (F, I', a') where I' = (i,.1.. , i'). Partition the schedule

a' into subschedules o, a'I, etc. with a defined as it is in the definition of crash.
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To show that E' is an execution of protocol 'P(A, V, S, D), we verify the follow-

ing three properties. (1) The schedule a' is applicable to the initial configuration C

of P(A, V, S, D) in which F is the set of faulty processors and in which proces-

sor p begins in the initial state that corresponds to input i', for all p E N. (2) All

processors in N - F take an infinite number of steps. (3) If processor p takes an

infinite number of steps, then every message that is sent to processor p is eventually

delivered.

Property 1: We prove for all r E V that all events in a, are applicable. The

proof is by induction on r.

Basis: (r = 0) All events in o are of the form (step: p) for some p E N. It is

immediate that a' is applicable to configuration C.

Induction: Pick an arbitrary event e = (receive: q,p, (r, [MSGr,p])) from the

schedule or. By the induction hypothesis, the schedule abcTI ... o,_- is applicable

to configuration C. The event e is in the schedule #(r, q, [MSG]). By the definition of

#(r, q, [MSG]), [MSGr,p] - . By the definition of 0(r -1, p, [MSG]), processor p sends

some message (r, m) to processor q in oTJo7' . .. a'. 1 (C). By Lemma 9, m = [MSGr,p]-

Thus the message (r, [MSGr,p]) is placed in the buffer of processor q. It is easy to see

that the event e is unique in the schedule a'. Therefore, the message (r, [MSGr,pl) is

in the buffer of processor q in the configuration just before the event e is applied.

It follows that the schedule aeo,' ... a' is applicable to configuration C.

Property 2: Let p be an arbitrary element of N - F. By Lemma 8, [MSGr,p] $ I

for all r E I+. By the construction of o', each (non-1) message in [MSG] is delivered

to processor p in the execution (F, I', a'). There are an infinite number of such

messages. To receive all of these messages, processor p must take an infinite number

of steps.

Property 3: Let q be any processor that takes an infinite number of steps in

execution E'. Consider an arbitrary message (r, m) sent from a processor p to the

processor q in E'. By property 1 and Lemma 9, m = [MSGr,p]-

We now show that the message (r, [MSGr,p]) is delivered to processor q in ex-

ecution E'. Processor q takes an infinite number of steps in execution E'. By the

definition of E', [MSGr',q] 5 I for infinitely many r'. By Lemma 1, [MSGr',q] 5 I

for all r'. So [MSGr+i,q] # 1. By construction, the schedule /(r, q, [MSG]) includes

the event (q, p, (r, [MSGr,p})). Thus the message (r, m) is delivered in the execu-

tion E'.
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Lemma 11: If E is any execution of protocol Q(A,V, S, D), then the executions

E and E' = crash(E) have the same set of faulty processors and the same inputs

to the correct processors.

Proof: It is immediate that executions E and E' have the same faulty processors.

We now show that the correct processors have the same inputs in executions E

and E'. Let p be an arbitrary correct processor. Suppose that in execution E

processor p has input v E V. Processor p broadcasts the message (1,p,0,v) in its

first step in execution E. By Lemma 5, [RAWI,p] = v. By the definition of filter,

[MSGi,,] = v. Thus, the input to processor p in execution E' is v. 11

If E is an execution of either protocol P(A, V, S, D) or protocol Q(A, V, S, D),

processor p is correct in E, and r E Al, then we define state(p, r, E) to be the

(r + 1)-st value that processor p assigns to the variable STATE in the execution E.

For example, state(p, 0, E) is the input to processor p.

Lemma 12: If E is an execution of protocol Q(A, V, S, D) and E' = crash(E),

then state(p, r, E) = state(p, r, E') for all (p, r) E (N - F) x I+.

Proof: If r = 0 then the claim follows from Lemma 11. Suppose instead that r > 1.

By the construction of the execution E',

state(p, r, E') = S(p, r + 1, pick(support(p, r, [MSG]), ([MSGr,1 ,--- , [MSGr,n])))-

By the definition of support

S(p, r + 1, pick(support(p, r, [MSG]), ([MSGr,1,... , [MSGr,n]))) = [MSGr+1,p].

By the definition of filter, [MSGr+1,p] = [RAWr+1,p]. By Lemma 5, state(p, r, E) =

[RAWr+1,p]. Thus state(p, r, E') = state(p, r, E). E

Theorem 13: If n > 4t + 1, then the following two conditions hold.

9 Correctness condition: If protocol IP(A, V, S, D) satisfies some correctness pred-

icate C then so does protocol Q(A, V, S, D).

9 Termination condition: If protocol 'P(A, V,S, D) terminates then so does pro-

tocol Q(A,V,S,D).

Proof: We verify that the two conditions are satisfied.

Correctness condition: Suppose protocol P(A, V, S, D) satisfies correctness

predicate C. Let E = (F, I, o-) be an arbitrary deciding execution of Q(A, V S, D).
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Let E' = crash(E). By Lemma 10, E' is an execution of P(A, V, S, D). Suppose

E' = (F', I', ). By Lemma 11, F = F' and inp(E) = inp(E'). By Lemma 12,
E' is a deciding execution and ans(E) = ans(E'). Therefore, C(inp(E), ans(E)) =

C(inp(E'), ans(E')) and Q(A, V, S, D) also satisfies correctness predicate C.

Termination condition: We prove the contrapositive of the claim. Suppose that

protocol Q(A, V, S, D) does not terminate. By the definition of termination, there

is some non-deciding execution E of protocol Q(A, V, S, D). Let E' = crash(E).

By Lemma 10, E' is an execution of P(A, V, S, D). By Lemma 12, execution E' is

a non-deciding execution of P(A, V, S, D). Thus, protocol P(A, V, S, D) does not

terminate. E

Theorem 14: For all I E V", suppose that all timed executions of protocol
P(A,V,S,D) with input I terminate by time r and n > 4t + 1. Then all timed

executions of protocol Q(A, V, S, D) with input I terminate by time 2 - r.

Proof: We claim that all correct processors decide by the end of asynchronous

round r in all timed executions of protocol P(A, V, S, D) with input I. Suppose

not. Then, there is some timed execution E of protocol P(A, V, S, D) with input I

in which a correct processor decides in asynchronous round r' for some r' > r. We

can construct a synchronous execution E' of protocol P(A, V, S,1D) in which the

sequence of values assigned to the variable STATE at each correct processor is the

same as it is in execution E. It should be clear that each correct processor decides

in the same asynchronous round in executions E and E'. For the synchronous exe-

cution E', consider the obvious 1-bounded timing where receiving an asynchronous

round r" message takes place at time r". In this timed execution there is a correct

processor which decides at time r'. This contradicts the assumption that there is

no such execution.

Let E be an arbitrary timed execution of protocol Q(A, V, S, D) with input I. It

follows from Lemma 12 that if there is a correct processor in the execution crash(E)

of protocol P(A, V, S, D) that decides in asynchronous round r' for some r', then the

same correct processor decides in asynchronous round r' in execution E of protocol

Q(A, V, S, D). It follows from the claim that all correct processors in execution E

decide by asynchronous round r.

We can show by induction on r' that in the timed execution E of protocol

Q(A, V, S, D) all processors end asynchronous round r' at or before time 2 -r'. Thus

all correct processors in the timed execution E decide by time 2 - r. O
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4.6 An Alternative Object Protocol

The alternative version of our compiler operates by translating an instance of

Protocol 1 customized by A, V, S, and D into an instance of Protocol 3 customized

by A, V, S, and D. Throughout the rest of this chapter an instance of Protocol 3
customized with A, V, S, and D is denoted T(A, V, S, D). Protocol 3 requires that

the redundancy be at least three. It uses the function filter defined in Subsection 4.2.

The only difference between Protocol 3 and Protocol 2 is that in Protocol 3 we

use a different set of communication primitives to install elements in the message

array RAW. They are the communication primitives developed by Bracha [53.

Initialization for processor p:

STATE +- the initial value of processor p
VOTEL,q,i,u 4- I for all (1, q, i, u) E 1+ x N x A x N
RAWI,q <- I for all (1, q) E X+ x N
MSGl,q <- I for all (1, q) E _+ x N

1. for r <- 1 tocoodo
2. broadcast (r, p, 0, STATE)

3. until MSGr,p : I and I{q E N |MSGr,q j I}| n - t do
4. receive any message (1, q, i, m) from any processor u
5. if VOTEl,q,i,u = I then
6. VOTEl,q,i,u +- m

7. NUM +- I{s E N | VOTEI,q,i,, = mhj

8. if i = 0 and q = u then broadcast (l, q,1, m)
9. if i = 1land NUM = n - t then broadcast (l, q,2, m)

10. if i = 2 and NUM = n - 2t then broadcast (1, q, 2, m)
11. if i =2 and NUM = n - t then RAWl,q +- M
12. MSG +- filter(RAW)

13. STATE +- S(p, r, (MSGr,1,-.. , MSGr,n))
14. DECISION +- 7D(p, r, STATE)

15. if DECISION # I then decide DECISION

Protocol 3: The Object Protocol (Byzantine Faults, n > 3t + 1)

Theorem 15: If n > 3t + 1, then the following two conditions hold.

* Correctness condition: If protocol P(A, V, S, D) satisfies some correctness pred-

icate C then so does protocol T(A, V,S, D).

e Termination condition: If protocol PT(A,IV,S, D) terminates then so does pro-

tocol T(A, V, S, D).
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Proof sketch: We begin by proving the analogues of Lemmas 5, 6, 7 and 8. The

remainder of the proof is identical to the proof of Theorem 13. 0

Theorem 16: For all I G V", suppose that all timed executions of protocol

P(A,V,S,D) with input I terminate by time r and n > 3t + 1. Then all timed

executions of protocol T(A, V, S,D) with input I terminate by time 3 - r.

Proof: Similar to the proof of Theorem 14. 0

5. Approximate Agreement Protocols

We use our compiler to simplify the design of a new approximate agreement

protocol that operates in the Byzantine fault model. In Subsection 5.1 we review

some definitions and basic results regarding multisets. In Subsection 5.2 we give

an approximate agreement protocol that operates in the crash fault model. In

Subsection 5.3 we prove our approximate agreement protocol correct in the crash

fault model. In Subsection 5.4 we apply the two versions of our compiler to the

approximate agreement protocol given in Subsection 5.2. In the Byzantine fault

model, we compare the performance of our compiled protocols with the performance

of the protocol of Dolev et al.

5.1 Preliminary Definitions

We give some definitions and prove some basic facts about multisets. The

presentation in this subsection borrows heavily from Dolev et al. [19]. Lemma 19

of this subsection is very similar to Lemma 5 of Dolev et al.

We view a finite multiset U of reals as a function U : R -- g that is nonzero

on at most finitely many r E RZ. Intuitively, the function U assigns a multiplicity to

each real number. In the remainder of this section the term multiset always refers

to finite multisets of reals as described above.

The cardinality of a multiset U is given by ZrEi U(r) and is denoted by Ut.

A multiset is empty if its cardinality is 0; otherwise it is nonempty. Multiset U is a

subset of multiset V, written U C V, if U(r) <_ V(r) for all r E R. The minimum

min(U) of a nonempty multiset U is given by min(U) = min{r E R I U(r) # 0}. The

maximum max(U) is defined analogously. If multiset U is nonempty, let p(U) (the

range of U) be the closed interval [min(U), max(U)], and let 6(U) (the diameter of

U) be max(U) - min(U).
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For the remainder of this chapter, let c = [(n - 1)/t]. The constant c, which is

the floor of the redundancy, plays a role in the definition of our averaging functions

and, as we will see in Theorem 25, is the convergence rate of our approximate

agreement protocol. Suppose that U is a multiset with |UI = n - t. Let uo

U1 < ... K Un-t-1 be the elements of U in nondecreasing order. Define select(U)

to be the multiset consisting of the elements uo, ut,...,u(c-1).t. Thus select(U)

chooses the smallest element of U and every t-th element thereafter. The median of

multiset U, written median(U), is defined to be u,n where m = [UI/2J. The mean

of multiset U, written mean(U), is defined to be

mean(U)= zE r|U(r)

In our approximate agreement protocol we will use the two averaging functions

median(U) and mean(select(U)). The next three lemmas characterize the conver-

gence properties of these functions.

Lemma 17: If U and V are multisets such that V C U, then median(V) E p(U)
and mean(select(V)) E p(U).

Proof: This is immediate from the definition of the averaging functions. C

Lemma 18: If U, V and TV are multisets such that |V| = JWJ = n - t, V C U,

TV C U, and |UI < n, then median(V) E p(W).

Proof: Let vo 5 v1  ... 5 V.t_1 be the elements of V, let wo 5 wi 5 ... <

Wn-t_1 be the elements of TV, and let uO ui < ... K uvi1 be the elements of

U. We calculate that

median(V) 2 Vt Because |V1 1 2t + 1.

> Ut Because V C U.

> wO Because TV C U and |U| -|W t.

= min(TV).

Thus median(V) > min(TV). By a similar argument median(V) max(TV). It

follows that median(V) E p(TV). D

Lemma 19: If U, V and TV are multisets such that |VI = |TV = n - t, V C U,

TV C U, and |UI K n, then Imean(select(V)) - mean(select(TV))| 6(U)/c.

Proof: Let vo vi < ... < ve_1 be the elements of select(V) and let wo wi 1

... < wc_ 1 be the elements of select(V).
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We claim that max(vi, wi) 5 min(vi+1,wi+1) for 0 < i < c - 2. Let uo

ui < ... < ujuvi 1 be the elements of U. Observe that vi u(i+1).t 5 vj+1 because

V C U and because there are at most t elements of U that are not in V. Similarly,
wi < u(i+1 ).t wi+1 . Thus max(vi, wi) 5 min(vi+1, wi+1) for 0 < i < c - 2. This

concludes the proof of the claim.

Let x = Imean(select(V)) - mean(select(W))|. We

lation that follows.

c-1 c-1

x=-Z(vi --C -1

i=0
c-1

- |:vi - wil ytetinl nq aiy
i=0

c-1

- 1.(max(vi, wi) - min(vi, wi))

Z=0

1 - (max(vc_, Iwc-1) - min(v, wo)

(max(vc-1, wc-1) - min(vo, wo))/c

(max(U) - min(U))/c Because

= 6(U)/c.

use the claim in the calcu-

c-2

+ ((max(vi, wi) - min(vi+1, wi+1)))
i=0

By the claim.

V C U and W c U.

5.2 The Protocol

Our approximate agreement protocol is given as Protocol 4. A processor begins

the protocol by assigning its input value to the variable VAL. The protocol is

organized into a series of asynchronous rounds. In each asynchronous round each

processor that is still operating broadcasts the value of VAL, waits to receive at least

n-t values broadcast in the current asynchronous round, places the multiset of these

n - t values in the variable SAMPLE, and applies an averaging function to SAMPLE

to get a new value for VAL. In the first two asynchronous rounds the averaging

function used is median. In subsequent asynchronous rounds it is mean o select. In

asynchronous round 2 each processor that is operating calculates an upper bound

on the number of asynchronous rounds required and stores the bound in the variable

ROUNDS. When sufficient asynchronous rounds have elapsed, a processor decides

on the current value of VAL as its answer.
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Initialization for processor p:

VAL +- the initial value of processor p

1. for r <- 1 to oo do

2. broadcast (r, VAL)

3. wait to receive (r, *) from n - t processors

4. let SAMPLE be the multiset of values received in the previous step

5. if r = 1 then
6. VAL <- median(SAMPLE)

7. if r = 2 then
8. VAL <- median(SAMPLE)

9. ROUNDS <- 2 + [logc(max(1, 6(SAMPLE)/E))]

10. if r = ROUNDS then decide VAL

11. if r >3 then
12. VAL +- mean(select(SAMPLE))
13. if r = ROUNDS then decide VAL

Protocol 4: An Approximate Agreement Protocol (Crash Faults, n > 3t + 1)

Some straightforward translation is necessary to put Protocol 4 in standard

form. We omit the details.

5.3 Proof of Correctness

For all r > 1, we say that a processor p finishes asynchronous round r if it

completes the last instruction in the code for asynchronous round r.

Lemma 20: In every execution of Protocol 4, for all r, all correct processors

eventually finish asynchronous round r.

Proof: An easy induction on r.

In an execution of Protocol 4 we let Xo denote the multiset containing the

inputs to all of the correct processors and we let Xr denote the multiset containing

the value of the variable VAL at the end of asynchronous round r for all processors

that finish asynchronous round r. It follows from Lemma 20 that IXr l n - t for

all r.

The next three lemmas help establish the convergence of our approximate agree-

ment protocol. In proving these lemmas, we use the properties of our two averaging

functions that we proved in Subsection 5.1.
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Lemma 21: If r > 1, then p(Xr) C p(X,_1).

Proof: There are two cases. Either r = 1 or r > 2.

Case 1: (r = 1) Let U be the multiset of inputs to all processors. Because

there are n processors, IUI = n. Let W be the multiset of inputs to an arbitrarily

chosen set of n - t correct processors. Clearly, WV C Xo C U and IWI = n - t. Let p

be an arbitrary processor that finishes asynchronous round 1. Let V be the multiset

of values received by processor p in asynchronous round 1. Because there are only

crash faults, V C U. From step 2 of the code, |VI = n - t. We have established

that the multisets U, V, and W satisfy the preconditions of Lemma 18; therefore,
median(V) E p(W) C p(Xo). Because median(V) is an arbitrarily chosen element

of X 1 , we have that p(Xi) C p(Xo).

Case 2: (r > 2) Let U = Xr-1. Let p be an arbitrary processor that finishes

asynchronous round r. Let V be the multiset of values received by processor p in

asynchronous round r. Because there are only crash faults, V C U. If r = 2 then let

a = median(V); otherwise, let a = mean(select(V)). We have established that the

multisets U and V satisfy the preconditions of Lemma 17; therefore, a E p(Xr-1).

Because a is an arbitrarily chosen element of Xr, we have that p(Xr) C p(Xr-1). 1

Lemma 22: If Y is the mUltiset of values received by an arbitrary correct processor

in asynchronous round 2, then 6(X 2 ) < 6(Y).

Proof: Let U = X 1. Because there are n processors, IUI < n. Let p be an arbitrary

processor that finishes asynchronous round 2. Let V be the multiset of values

received by processor p in asynchronous round 2. Let TV = Y. Because there are

only crash faults, V C U and W C U. From step 2 of the code, IVI = ITV = n - t.

We have established that the multisets U, V, and TV satisfy the preconditions

of Lemma 18; therefore, median(V) E p(V) = p(Y). Because median(V) is an

arbitrarily chosen element of X 2 , we have that p(X 2 ) C p(Y). It is immediate that

6(X 2 ) 6(Y). O

Lemma 23: If r > 3, then 6(Xr) 5 6(Xr_1)C. (Recall that c is the floor of the

redundancy.)

Proof: Let U = X,_1. Because there are n processors, IUI 5 n. Let p and q be

two arbitrary processors that finish asynchronous round r. Let V be the multiset of

values received by processor p in asynchronous round r and let TV be the multiset

of values received by processor q in asynchronous round r. Because there are only
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crash faults, V C U and V C U. From step 2 of the code, IVI = |W| = n - t.

We have established that the multisets U, V, and V satisfy the preconditions of

Lemma 19; therefore, Imean(select(V)) - mean(select(V))| 6(Xri)/c. Because

mean(select(V)) and mean(select(V)) are arbitrarily chosen elements of X, we

have that 6(Xr) 5 6(Xr-1)/c.

Theorem 24: In the crash fault model, Protocol 4 solves the approximate agree-

ment problem.

Proof: We show that the agreement, validity, and termination conditions are sat-

isfied.

Agreement condition: Let p and p' be arbitrary correct processors. Suppose

that processor p decides v in asynchronous round r and processor p' decides v' in

asynchronous round r'. Without loss of generality assume that r < r'. Let Y be

the multiset of values received by processor p in asynchronous round 2.

We claim that 6(Y)/c1 2 > 6(Xi) for all i > 2. The proof of the claim is by

induction on i. The basis (i = 2) is immediate from Lemma 22. The inductive step

is immediate from Lemma 23.

From steps 9, 10 and 13 of the code, r = 2 + [loge(max(1, 6(Y)/e))]. It follows

that e > 6(Y)/cr-2. By the claim, e >6(X,). Clearly, v E Xr and v' E Xr,. By
repeated application of Lemma 21, v E p(Xr). Thus IV- v'j 5 6(Xr) !5e.

Validity condition: If v is the decision of some correct processor, then there is

some r such that v E Xr. By repeated application of Lemma 21, p(Xr) C p(Xo).
Thus v E p(Xo) and there are correct processors with inputs min(Xo) and max(Xo)

such that such that min(Xo) v v max(Xo).

Termination condition: Let p be an arbitrary correct processor. Processor p

assigns some value-an integer greater than or equal to 2-to the variable ROUNDS

in asynchronous round 2; it never changes the variable ROUNDS after asynchronous

round 2. Eventually, processor p calculates that r = ROUNDS and it decides on

some answer in either step 10 or step 13. Thus each correct processor eventually

decides. Because there are a finite number of correct processors, all correct proces-

sors eventually decide. 11

We say that an approximate agreement protocol has convergence rate I if

there is some constant k such that in every timed execution where the multi-

set of inputs to the correct processors is X, all correct processors decide by time

k + [logl(max(1, 6(X)/E))].
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Theorem 25: The convergence rate of Protocol 4 is c.

Proof: For all r > 1, it is easy to see that in any timed execution of Protocol 4,
asynchronous round r ends by time r. Thus it is sufficient to show that every correct

processor decides by asynchronous round 2 + [logc(max(1, 6(Xo)/e))].

Let p be an arbitrary correct processor. Let Y be the multiset of values received

by processor p in asynchronous round 2. It is clear that Y C Xo. So, 6(Y) ; 6(Xo)

and processor p assigns the value 2+ [logc(max(1, 6(Y)/e))] to the variable ROUND.

Thus processor p decides by asynchronous round 2 + [logc(max(1, 6(Xo)/e))]. D

5.4 Approximate Agreement with Byzantine Faults

So far in this section, we have developed an approximate agreement protocol

that tolerates crash faults. We now apply the two versions of the compiler developed

in Section 4 to produce approximate agreement protocols that tolerate Byzantine

faults.

It is possible to express Protocol 4 in the standard form defined in Subsec-

tion 4.1. That is, there are A, V, S, and D such that Protocol 4 can be expressed

as P(A, V, S, D). For the remainder of this chapter we let A, V, S, and D be chosen

in that way.

Theorem 26: In the Byzantine fault model, for c > 4, protocol Q(A, V, S, D)

solves the approximate agreement problem with a convergence rate of ,Fc.

Proof: Correctness follows from Theorems 13 and 24. It follows from Theorems 14

and 25 that the convergence rate is fc. r

Theorem 27: In the Byzantine fault model, for c > 3, protocol T(A,V,S,D)

solves the approximate agreement problem with a convergence rate of A.

Proof: Correctness follows from Theorems 15 and 24. It follows from Theorems 16

and 25 that the convergence rate is V.

In Tables 1 and 2, which follow, we compare the Dolev et al. protocol with the

two compiled versions of our approximate agreement protocol. To compare the con-

vergence rates, we need to overcome one obstacle. For our definition of convergence

rate, the Dolev et al. protocol, as published, has no bounded convergence rate. The

difficulty lies with the method that correct processors use to estimate the number of

asynchronous rounds required until termination. Faulty processors can cause this
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estimate to be unboundedly pessimistic. This difficulty could easily be overcome if

the Dolev et al. protocol were modified to use an estimation method similar to the

one used in our Protocol 4. To allow for a fair comparison of convergence rates we

assume that the Dolev et al. protocol has been modified in this way.

In Table 1 we compare the convergence rates and the minimum required re-

dundancy. We can see that the asymptotic convergence rate of the Dolev et al.

protocol is better than the asymptotic convergence rate of either compiled version

of our protocol. Our protocols, however, operate with a smaller amount of redun-

dancy.

Protocol Convergence Rate Minimum Redundancy

Q(A, V,S,D) VC~ 4

T(A, V, S, D)NY- 3

Dolev et al. L(c - 1)/2j 5

Table 1: Comparison of Performance

In Table 2 we give numerical values of the convergence rate for specific small

values of c. The data in Table 2 shows that, for any system with n < 7t, there

is a compiled version of our approximate agreement protocol that has a better

convergence rate than the Dolev et al. protocol.

c=3 c=5 c=7 c=8
c=4 c=6

Q(A, V,S,D) - 2 2.24 2.45 2.65 2.83

T(A, V, S,D) 1.44 1.59 1.71 1.82 1.91 2

Dolevet al. - - 2 2 3 3

Table 2: Convergence Rate for Specific Values of c
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A Simple and Efficient 5
Randomized Agreement
Protocol

We give a randomized agreement protocol that tolerates Byzantine processor

faults-the worst kind of processor fault commonly investigated. This protocol op-

erates in a synchronous system of n processors, at most t of which may fail. It

reaches agreement in O(t/ log n) expected rounds and O(n 2t/log n) expected mes-

sage bits independent of the distribution of processor faults. This performance is

further improved to a constant expected number of rounds and 0(n 2 ) expected mes-

sage bits if the distribution of processor faults is assumed to be uniform. In either

event, the protocol improves on the known lower bound on rounds for deterministic

protocols. Some other advantages are that the protocol requires no cryptographic

techniques, that the amount of local computation is small, and that the expected

number of random bits used per processor is only two.

1. Introduction

We present a synchronous randomized protocol that solves the agreement prob-

lem in a distributed system of n processors, at most t of which may fail with Byz-

antine faults. It terminates in an expected 0(t/ log n) rounds and works for any

n > 3t + 1. This contrasts with the lower bound of t + 1 rounds for determinis-

tic protocols that was shown by Fischer and Lynch [26]. Other advantages of our

protocol are the following. It is simple and efficient enough to be of practical use.

This chapter is joint work with Benny Chor and was published in a different form in
IEEE Transactions on Software Engineering [9].
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It terminates faster than any possible deterministic protocol. It operates for small,

practical values of n and t. It does not require any cryptographic techniques.

In the model in which it operates, if n = 0(t) our protocol has the smallest

expected running time of any known agreement protocol. In other models there are

many alternative protocols (see [2], [6], [7], [24], and [43]). Most of these protocols

have performance that is better than our protocol, but operate under more benign

failure assumptions or with n much larger than t. We compare our protocol with

these alternatives in Section 6 of this chapter.

It is useful to consider the total number of processors that is required to tolerate

t processor faults. This motivates us to define the redundancy of a system of n

processors as (n - 1)/t. Lamport, Shostak, and Pease [34] have shown that no

deterministic non-authenticated protocol is possible unless the redundancy is at

least 3. An easy extension of their proof shows that this same amount of redundancy

is required for randomized protocols. It is desirable to minimize the redundancy

in a system in order to reduce the cost of hardware. The randomized agreement

protocol that we present operates for any redundancy of 3 or more. We also present

a variant protocol that uses only half the rounds used by the basic protocol but

that requires a redundancy of 5 or more.

We assume that each processor is equipped with a primitive mechanism for

making private random choices, but there is no primitive mechanism for making a

random choice visible to all correct processors. If we were to postulate the existence

of some mechanism for making a global random choice, then agreement could be

reached in a constant expected number of rounds using techniques developed by

Ben-Or [2] and by Rabin [43]. A central component of the known randomized

agreement protocols is the synthesis of some mechanism for making global random

choices. Ben-Or and Rabin each have different approaches to producing global

random choices. Each of their approaches incurs certain costs.

Ben-Or uses a scheme that works well when the redundancy is high but that

has a low probability of success when the redundancy is low. In his scheme, each

processor chooses a random bit locally. If one result predominates by a sufficient

margin then a global random choice has been produced; otherwise, no usable global

random choice has been produced. A spread of sufficient size is likely only when

the total number of processors is large relative to the number of faults. As a

consequence, his protocol requires either a large (exponential) number of rounds or

a high amount of redundancy (equal to .fi).
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Rabin produces global random choices efficiently; however, he assumes a dif-

ferent, more powerful model of computation. His global random choices are pre-

computed by a trusted dealer that splits the results of each global random choice

so that t + 1 processors can determine the result, but t processors have no informa-

tion. The distributed, split global random choices are an expensive resource that is

partially consumed at each execution of the protocol. In some applications, it may

be unrealistic to assume that a trusted dealer exists. Rabin's protocol is a good

option in those applications where his model seems realistic.

The protocol that we will describe generates global random choices more effi-

ciently than Ben-Or's protocol and uses these global random choices in a way similar

to Ben-Or's scheme. Our protocol requires none of the extra machinery of Rabin's

protocol. In particular, no reliable, trusted dealer is required. One way in which

our technique is inferior to theirs is that ours works only in synchronous systems

while theirs work in both synchronous and asynchronous systems. Our technique

does not generalize to the asynchronous case.

A contribution of this chapter is our new technique for generating global ran-

dom choices that, while not perfect, are of sufficient quality to permit our protocol

to make rapid progress. Our technique works roughly as follows. For each global

random choice that is attempted, a small group of g processors is assigned the task

of choosing. Each processor in this group chooses a random bit locally and broad-

casts the result. The global random choice generated by this group is the majority

of individual outcomes. If more than half the processors are faulty, they can bias

the global choice any way they want or cause processors to see conflicting results.

But, if fewer than half are faulty, there is a sufficiently large probability that at

least (g + 1)/2 correct processors will choose the same bit (provided g is not too

big). If this happens then the majority is determined regardless of what the faulty

processors do. With no more than t faulty processors, there are fewer than 2t/g
disjoint groups with a majority of faulty processors. After at most that many at-

tempts, a group with a majority of correct processors will be reached. We will show

that this leads to fast termination of the protocol.

The requirements that we impose on our global random choices are weak. We

do not require that the correct processors always agree on the result, nor do we

require that the result is always random. What we do require is that if the global

random choice is attempted often enough, then there will be one result that is

random and that is observed by all correct processors.

We now give an outline of the remainder of the chapter. In Section 2 we define
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the randomized agreement problem. In Section 3 we describe the model in which

we will solve the randomized agreement problem. In Section 4 we present our new

randomized agreement protocol, prove that the protocol is correct, and analyze the

performance of the protocol. In Section 5 we present various optimizations of our

protocol. In Section 6 we compare our protocol with the alternatives.

2. The Randomized Agreement Problem

Randomized agreement protocols are run by a distributed system of n proces-

sors, at most t of which may fail. We let N = {1,...,n}. Each processor starts

the protocol with an input value v from a fixed set V of legal inputs. If, in some

execution of the protocol, v, is the input to processor p for all p E N then we

say that (v 1 ,... , vn) is the input vector for that execution. Each correct processor

may, at some point during the execution of the protocol, irrevocably decide on an

element of V as its answer. There are three conditions that the correct processors

must satisfy.

" Agreement condition: All correct processors that decide reach the same deci-

sion.

" Validity condition: If all correct processors start the protocol with input v then

v is the decision of all of the correct processors that decide.

" Termination condition: For any adversary and for any input vector, the prob-

ability that all correct processors decide by round r tends to 1 as r tends to

infinity.

3. The Model

Communication is over a network that is fully connected and reliable. The

computation takes place in a series of rounds. In each round each correct processor

first makes a local random choice, then sends messages, then receives messages,
and finally makes a local state change. Correct processors make their local random

choices fairly and send messages according to their programs. Failed processors can

send arbitrary messages.

In a real system, we may not be sure what failure modes may occur. Our goal

is to show that, for a wide range of possible failures, our protocol works correctly.

We do this by imagining a powerful adversary that can select the components of

the system that fail and that can control the behavior of the failed components. Ve
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achieve our goal by proving that, no matter what the adversary does, our protocol

behaves correctly.

It should be clear that we cannot allow our adversary unlimited capabilities.

If we did, the adversary could cause all of the components in the system to fail and
no protocol would be possible. In the remainder of this subsection we describe the
capabilities of our adversary.

The principal capability of our adversary is that it can select which processors

fail. We define this as subverting a processor. There are three aspects of the

subversion of processors on which we will elaborate: the selection of which processors

to subvert, the control of subverted processors, and the computational resources

available to the adversary in developing its strategy.

During the execution of the agreement protocol, the adversary can dynamically

select which processors to subvert (up to the limit of t faulty processors). The selec-

tion can be based on the following: the code executed by the various processors, the

messages previously sent by any of the processors, the internal state of the proces-

sors, and the previous random choice of the processors. We require, however, that

the adversary select the processors that it will subvert in round r at the beginning

of round r. Specifically, we do not allow it to decide which processors to subvert

in round r based on the results of any random choices made by any processors in

round r or later.

The messages that are sent by failed processors are under the control of the

adversary. The messages that are sent in round r by failed processors can be based

on any of the following: the code, the current (round r) and prior state of any of the

correct or faulty processors, and the current (round r) and prior random choices

of any of the correct or faulty processors. However, the messages of the failed

processors in round r cannot be based on future (round r + 1 or later) random

choices.

We assume that the adversary can use the optimal strategy based on the infor-

mation currently available. There is no requirement that this strategy be efficiently

computable or even computable. This is in contrast to the assumption commonly

(and necessarily) made in analyzing cryptographic protocols that the adversary is

limited to a polynomial amount of computation. The only limitation we impose is

that the strategy of the adversary not be based on any ability to predict accurately

the outcome of future random choices.
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In any execution of a protocol, we let C, C N be the set of processors that

are correct during round r. Recall that the adversary is constrained when it selects

which processors fail. It must make its selection at the start of each round. Thus

in any execution the set Cr is fixed at the start of round r before any messages

are sent and before any local random choices are made. We say that processor p is

correct if there is no r such that p E Cr. For the remainder of this chapter we will

use the Cr notation.

4. Solution to the Randomized Agreement Problem

We give our protocol for the randomized agreement problem, prove that it is

correct, and analyze its performance.

4.1 The Randomized Agreement Protocol

For simplicity, the protocol given here is binary (reaches agreement on one bit).

It can easily be extended to be multivalued (reach agreement on arbitrary values)

using the technique given in Section 2 of Chapter 3.

The protocol is parameterized by g, the group size; n, the number of processors;

and t, the number of faults tolerated. We require that n > 3t + 1, t > 1, g is odd,

and n mod g < n - 2t. Processors are assigned to [n/g] disjoint groups of size g.

If n is not evenly divisible by g then there are some processors that belong to no

group. We index the groups by {1,..., [n/gj }. An arbitrary processor p is assigned

to a group by the function

group(p) = L(P 1)/g] if p : g - [n/gj;
otherwise.

If group(p) = _ then processor p belongs to no group.

The protocol is organized as a series of blocks. Each block consists of two

rounds, an odd numbered round followed by an even numbered round. The block

number is used to select one group to play a special role in the current global random

choice. The special group in block b is the group active(b), where active is defined

to be the function

active(b) = 1 + (b - 1) mod Ln/gJ.

As the block number b increases the function active(b) cycles through the groups.

We say that processor p is active in block b if group(p) = active(b).
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Initialization for processor p:

VAL +- the initial value of processor p

Code for processor p in round r:

1. if r is even and group(p) = active(r/2)
2. then LOCAL +- PICK()

3. else LOCAL 4- 1

4. broadcast (VAL, LOCAL)
5. receive (MSGq, BITq) from processor q for 1 < q < n
6. let ANS be the most frequent non-1 message among the MSGq

(break ties arbitrarily)

7. let NUM be the number of occurrences of ANS

8. if r is odd then
9. if NUM > n - t then VAL +- ANs else VAL-

10. if r is even then

11. let GLOBAL be the most frequent non-I message among the BITq for
q E {u I group(u) = active(r/2)} (break ties arbitrarily)

12. if NUM > n - 2t then VAL +- ANS else VAL +- GLOBAL

13. if NUM > n - t and have not decided yet then decide VAL

Protocol 1: A Randomized Agreement Protocol

Our randomized agreement protocol is given as Protocol 1. We give an informal

description of the protocol before proving it correct. We describe the behavior of

an arbitrary correct processor p in a block b that consists of rounds r and r + 1.

In round r + 1 all of the correct active processors locally choose a random bit (by

calling PICK) and broadcast the result. Processor p sets GLOBAL, its estimate of

the result of the global random choice, to be the most frequent non-L bit that it

receives from the active processors. The variable VAL holds the value, if any, that

processor p currently prefers as its answer. In each round processor p votes for

(i.e., sends a message containing) VAL and then updates its preference based on

the votes it receives and based on other information available to it. In round r the

number of values preferred by correct processors is reduced to at most one-call it

the b-persistent value. The protocol ensures that in round r + 1 no correct processor

votes for any value other than the b-persistent value. In round r + 1 if processor p

receives at least n -2t votes for some value v, which must be the unique b-persistent

value, then it sets VAL to v; otherwise, it sets VAL to GLOBAL. If processor p gets

at least n - t round r + 1 votes for some v then it decides v-all other processors

will receive at least n - 2t votes for v and, as we will show in Lemma 2, all correct

processors will decide v by round r + 3.
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4.2 Proof of Correctness

In the following proof of Protocol 1 we append two subscripts to each variable

from the protocol. The first subscript, say r, is a natural number and the second

subscript, say p, is in N. By this notation we mean the following. If r> 1 we mean

the value of the subscripted variable at processor p at the end of round r. If r = 0

we mean the value of the subscripted variable at processor p at the start of round 1.

For example, if r > 1 then VALr,p is the value of variable VAL at processor p at the

end of round r.

We say that v is a value if v E {0, 1}. Specifically, I is not a value. In any

execution of Protocol 1, for all b > 1 and for r = 2b - 1, the value v is b-persistent

if there is some correct processor p such that VALr,p = v. For all b > 1 and for

all v E {0, 1}, we say that v is b-good if either v is equal to a b-persistent value or

there is no b-persistent value. For all r we say that processor p votes for value v

in round r if it sends any round r message containing v as its first component. A

correct processor votes for at most one value in each round, but a faulty processor

may vote for many values by sending conflicting votes to different recipients. If there

is some even r and some v such that GLOBALr,p = v for all correct processors p,

then we say that v is the result of the global random choice performed in block r/2;

otherwise we say that the result is I (undefined).

Lemma 1: For any b > 1, there is at most one b-persistent value and there is at

least one b-good value.

Proof: We show each of the two claims.

Proof that there is at most one b-persistent value: Assume not. Let r = 2b- 1.

Then, there are values v and v' and correct processors p and q such that VALr,p =

V z V' = VALr,q. In round r processor p must have received at least n - t votes for

value v and processor q must have received at least n-t votes for value v'. Therefore,

at least n - 2t > t + 1 processors including at least one correct processor voted for

both v and v'. This is impossible behavior for a correct processor, contradiction.

Proof that there is at least one b-good value: This is immediate from the first

part of Lemma 1 and from the definition of b-good value.

Lemma 2: If there is some value v and some r > 0 such that r is even and

VALr,p = v for all correct processors p then any correct processor that has not

decided by round r will decide v in round r + 2.
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Proof: There are at least n -t correct processors that all broadcast v in round r+1.

In round r + 1 all correct processors receive at least n - t votes for v and at most

t votes for any v' = v. Therefore all correct processors broadcast v in round r + 2.

In round r + 2 all correct processors receive at least n - t votes for v and at most

t votes for any v' $ v. Therefore, any correct processor that has not previously
decided will decide v in round r + 2. E

Lemma 3: For all b > 1, if the result of the block b global random choice is a
b-good value then all correct processors decide by round 2b + 2.

Proof: Let b be an arbitrary block and let r = 2b. There are two cases.

Case 1: (There is a b-persistent value.) Let v be the b-persistent value, which

is unique by Lemma 1. By the definition of b-good, v is the only b-good value. In

round r any correct processor receives at most t votes for any value v' # v. Thus
in step 12 every correct processor p either sets VALr,p to v or to GLOBALr,p- If

the result of the block b global random choice is v, then VALr,p = v for all correct

processors p and by Lemma 2 all correct processors decide by round r +2 = 2b + 2.

Case 2: (There is no b-persistent value.) In round r any correct processor
receives at most t votes for any value v. Thus in step 12 an arbitrary correct
processor p sets VALr,p to GLOBALr,p- If the result of the block b global random

choice is any b-good value v 5 _1, then VALr,p = v for all correct processors p and
by Lemma 2 all correct processors decide by round r + 2 = 2b + 2. E

We now give the probability model that we will use to analyze the probability

of termination and the expected running time of Protocol 1. Our sample space

consists of all of the infinite strings over the alphabet {0, 1}. The character in

position i of a string represents the local random choice made by processor p in

round r where i = p + (r - 1) - n. Given an input vector, an adversary, and a point

in the sample space, the behavior of all processors (correct and faulty) in all rounds

is determined. Our analysis is for an arbitrary, fixed adversary and input vector.

For all b > 1, let sb be the event that the result of the block b global random choice

is a b-good value and let fb be the complement of sb. For all r > 1, let dr be the

event that all correct processors decide by round r.

In the remainder of this chapter T, R, and A are random variables. Let T be

the smallest b such that the event sb occurs. Let R be the smallest r such that the

event dr occurs. Let
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Let the random variable A be (ai, ... , a Ln/gJ) E A if the total number of processors

in group j that fail is a3 for all j E {1,... , [n/gj }. For all b > 1 and for all a E A,
let q(b, a) = Pr{fb Ifb-A ... A fiAA= a}.

Recall that g is the number of processors in each group and that g is required
to be odd. Let m denote the number of processors that constitute a majority of a

group. Thus g = 2m - 1.

Lemma 4: For all b> 1

Pr{fi A f2 A ... A fb} max q(1, a) - q(2, a)- .q(b, a).
aE A

Proof: We calculate that

Pr{fiA f 2 A ... Afb} =E Pr{fiAf 2 A ... Afb IA= a'} - Pr{A = a'}
a'EA

< Z(max Pr{fi A.
a'EA

f 2 A ... A fb IA = a}) -Pr{A = a'}

= (max Pr{fi A f 2 A --- AfbA=a})- 1:
a' EA

= max Pr{f1A A ... A fb I A = a}.
aEA

We simplify Pr{fi A f2 A ... A fb j A = a} as follows

b

Pr{fiA f 2 A ... A fb IA= a} = jPr{fj I fi-1 A ... A fi A A = a}

= q(1, a) -q(2, a)...q(b, a).

Using this expression for Pr{fi A f2 A ... A fb I A = a}, we calculate that

Pr{fi A f2 A...Afb f} max q(1, a) -q(2, a)...q(b, a).
aEA

Lemma 5: For all b > 1 and for all a E A

q(1, a) -q(2, a)...q(b, a) < (1 - 1/ 2 ")[b/nJ

Proof: Suppose a = (ai, .. ., aLn/,jg). By assumption, n mod g n - 2t. So

n - (n mod g) > n - (n - 2t)

g -n/gj >2t

m -[n/g] > t

Pr{A = a'}

0



A Randomized Agreement Protocol

Therefore, by the pigeon-hole principle, there is some group, say group i, that

contains at least m correct processors (i.e., ai < m). For all b, if active(b) = i
and fi A f2 A ... A fb-i then, with probability at least 1/2"', there are m correct

processors in group i that all toss a b-good value. (By Lemma 1 there is at least

one b-good value.) Group i is active at least once every n blocks. Thus, q(1, a)

q(2, a) .- q(b, a) ; (1 - 1/2)( /"J

In Theorem 6 we prove the correctness of Protocol 1. The analysis of the

expected running time of the protocol follows in Subsection 4.3.

Theorem 6: Protocol 1 solves the randomized agreement problem.

Proof: We show that the agreement, validity, and termination conditions are sat-

isfied.

Agreement condition: Suppose that round r is the first round in which a correct

processor decides and suppose that correct processor p decides v in round r. Clearly,
r is even. In round r processor p got n - t votes for v. At least n - 2t, which is

at least one, were from correct processors, so v is the (r/2)-persistent value, which

is unique by Lemma 1. Therefore, in round r all correct processors get at least

n - 2t votes for v and at most t votes for any v' = v. Thus VALr,q = v for any

correct processor q. So, any correct processor that decides in round r decides v. By

Lemma 2, all of the other correct processors decide v in round r + 2.

Validity condition: Suppose all correct processors start the protocol with in-

put v. It is immediate that VALO,p = v for all correct processors p. By Lemma 2,
all correct processors decide v in round 2.

Termination condition: Recall that dr is the event that all correct processors

decide by round r. We calculate

lim Pr{dr} > lim Pr{si V s2 V ... V sb} By Lemma 3.
,-+oo b-+oc

=1-lim Pr{f Af 2A... Afb}
b-+oo

> 1 - lim (1 - 1/ 2m) L/n By Lemmas 4 and 5.
b-oo

=1

We are now in a position to explain why randomization is necessary for the

correct operation of our protocol. By Lemma 3, in any block b, if the result of the

block b global random choice is a b-good value then all correct processors will decide
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by the end of block b + 1. The set of b-good values can, however, be determined by

the adversary in the first round of block b. If the random choice were replaced with

some predetermined value, say Vb, then the adversary might be able to cause the set

of b-good values to be {0, 1} - {vb}. In our scheme, this strategy is unavailable to

the adversary because the random choice is not performed until the second round

of block b-after the identity of the set of b-good values has already been fixed.

4.3 Analysis of the Protocol

Using the probability model defined in Subsection 4.2, we analyze the compu-

tational resources used by Protocol 1 under the assumption that g = 2. L- log nj -1.

(We first use this assumption in Lemma 13.) We show that the expected number of

rounds to reach agreement is O(t/ log n), the expected number of message bits sent

by all correct processors is O(n 2 t/ log n), and the expected number of random bits

that each processor is required to generate locally is less than 2. We remark that

the amount of local computing resources used by each correct processor is small.

Lemma 7:

Exp[T] max Exp[T I A = a]
aEA

Proof: We calculate that

Exp[T] = E Exp[T I A = a'] - Pr{A = a'}
a'EA

- (max Exp[T I A = a]) . Pr{A = a'}
a'E aaA

= (max Exp[T I A = a])- Pr{A = a'}
'a6 A 'a' EA

= max Exp[T I A = a]. El
a6 A

Lemma 8: For all a G A

00

Exp[T I A = a] !1 +Eq(1, a) - q(2, a) -..-q(b, a).
b=1

Proof: Let a be an arbitrary element of A. By the definition of expected value

00

Exp[T I A = a] = b - Pr{sb A fb-1 A ... Afj A = a}.
b=1
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We simplify Pr{sb A fb-1 A ... A fi I A = a} as follows

Pr{sb A fb- A ... Afi A=a}

= Pr{sb I fb_ A ... A fi A A =a} Pr{fb-1 A ... Af lIA=a}
b-1

= Pr{sb I fb-1 A... A fi A A =a} -. Pr{fI fii A ... A fi A A = a}
i=1

= (1 - q(b, a)) - q(b - 1, a) - q(b - 2, a) .- q(1, a).

Using this expression for Pr{sb A fb-i A ... A fi I A = a}, we calculate that

00

Exp[T | A = a] = b -q(1, a) -q(2, a) -.-. q(b - 1, a) -(1 - q(b, a))
b=1

00 00

= b -q(1, a) -- q(b - 1, a) - b - q(1, a) ... q(b, a)
b=1 b=1

00

b=1

In order to bound the series q with a periodic series 4, we make the following

definition. For all b > 1 and for all a = (ai, ... , a Ln/gJ) in A, let

^(b a) (1 if c < m;
b') =~ E 1 - E-m (c) (I)c otherwise,

where c = g - aactive(b). The significance of this definition is that c is a lower bound

on the number of correct processors in group active(b) and E _,m (,) (I)C is the

probability that at least m correct processors out of a group of c correct processors

will select a particular predetermined value.

Lemma 9: For all b > 1 and for all a E A it is the case that q(b, a) c.(b, a).

Proof: Consider an arbitrary b > 1 and an arbitrary a = (ai,... , a Ln/gJ) in A. Let

c = g - aactive(b). There are two cases. If c < m then q(b, a) 1 = j(b, a). For the

remainder of this proof we assume that c > m.

By definition q(b, a) = Pr{ffb Ifb-1 A .. .Afi AA = a}. So we are considering only

those executions for which A = a. In all of these executions there are c processors

in group active(b) that are correct.throughout the execution. Let r be the first

round of block b. Clearly, there are at least c processors in group active(b) that are

correct during round r. Select the lexicographically least set of c processors that
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are in group active(b) and correct during round r. By assumption, the adversary

has no knowledge of any round r random choices when it selects which processors

fail in round r. Using this limitation on the adversary and the existence of a b-good

value for all b > 1 (shown in Lemma 1), we proceed to calculate a bound on q(b, a).

In a collection of exactly c correct processors the conditional probability that

exactly i correct processors choose a b-good value given that no previous group

has chosen a good value is at least (c) (.1)'. So, in a group with at least c correct

processors the conditional probability that at least m correct processors choose

a b-good value given that no previous group has chosen a good value is at least

ZD=m (c) (1)c. Because q(b, a) is the probability of the complement of this event,
we have that

C

q(b, a) E1- ( ) (})" = d(b, a). 11
i=m

Lemma 10: For all a E A
( n/gJ 0

Exp[T | A = a] :5 1 + E 4(1 , a) -.-.- (b, a)) 1 + 1 (4(1 , a) -.-. 4([n/g j, a))'.
b=1 i=1

Proof: This is immediate from Lemmas 8 and 9 and from the periodicity of 4.

In Section 4.4 we will use Lemmas 7 and 10 to calculate explicit bounds

on Exp[T] for particular small values of n and t. We now proceed to calculate

a closed-form bound on Exp[T]. As a first step we find it convenient to make the

following definition. Let

1if active(i) Lt/mJ;
1 - 1/2"* otherwise.

Lemma 11:

Ex []:51+ (Ln/gJ ln/gJ 4 oo4b 0

Exp[T] & + : 41 - 42 -.-.-4 b+ E 41 4 -- l(1- 42 .-.-.- 4Ln/gJ
b=1) b=1 i=1

Proof: Let a = (a1,... , a n/gj) be an arbitrary element of A. If m < c < 2m - 1

C)C C C Q iC

( Cjj2) (I)c Because i < c - rn <m.
i=1

- c-m (1c(1 m-- kj~k2
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Using this inequality and the definition of j, we have

()

Recall that Ednlg ai < t by the definition of

So I{i E {1,. . [ , n/gj} | 4(i, a) 5
straightforward to show that

1 - (1)m}I

if ai > m-

otherwise.

A. Thus |{i | a2 m}|

2 [n/g] - t/mJ. Using

4(1, a) -4(2, a) ... 4( [n/g], a) (1 - 1/ 2m) Ln/gJ -Lt/mJ

= 41 - 42 - - - dtn/gj,

and

ln/gJ

S 4(1,
b=1

Lt/mJ

= 1 +
b=1

ln/gJ

b=1

Using these inequalities and Lemma 10, we have that

Exp[T I A = a] < 1 +
Ln/gJ

(E 4(1, a) -
b=1

-4(b, a)) (1

1 -q2---qb) -- Ln/gJ))

Because this bound holds for an arbitrarily chosen a,

ln/gJ

b=1

max Exp[TIA=a'] 1+
a'EA 4Ln/gJ -

By Lemma 7,

Exp[T] < 1 +

< [t/m].
this, it is

Ln/gJ

S (1 - 1 /)m)b-Lt/mJ
b= [t/mJ +1

oo

i=

(1
00

+ 1 -42-

00

i=1

- 42 -

Ln/gJ

1i 4(b=1

00

+ 1 - 42 - - -

i=1

L1n /gJ )
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Rearranging, we have

Exp[T] <1+
[n/gJ

b=1

Ln/gJ

(
b=1

q2 -- b) 11 2 ... - Ln/gJ

which is what we sought to show.

Thus Exp[T] is bounded above by the sum of three terms. The first term is

the constant 1. In Lemma 12 we give an upper bound on the second term.

Lemma 14 we show that the third term is o(1).

Lemma 12:
Ln/gJ

E di -142 -.- db
b=1

In

+ 2"

Proof: We calculate that

12- l=b

Lt/mJ

E 1
b=1

Ln/gJ - Lt/mj

b=1

(1 - 1/ 2m)b

t
< -- + 2"* -1.

m
0

The following is a technical lemma used in the proof of Lemma 14.

Lemma 13: If g = 2 -[}log nj - 1 and 1 < t < }n then Ln/gj - Lt/m] > n/12m.

Proof: By elementary calculus, -n> (log n) - 2 for all n > 1. So,

n > (logn) -2> 2- [}lognj - 2 = g - 1.

Using the fact that -in > g - 1 we calculate

}n < n - (g - 1) < n - n mod g = g - [n/gj.

Thus }n < g* L-n/gJ. Using this and the observations that 2m > g and that

-2m -Lt/mJ > -2t we calculate that

2m -[(n/gj - 2m -[(t/mj > }n - 2t

[n/gJ - (t/mi > (}n - 2t)/2m.

Using the bound -n > t, we have

[n/g] - [t/mi > n/12m.

Ln/gJ

b=1
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Lemma 14: If g = 2 - [} log nj-1

Ln/gJ

b=1

di -42-'

then

db E(41
0i=1

Proof: We calculate that

41 - 42 ... = (1

By Lemma 13,

41 - #2 - - - dLn/gJ

Because m < 1 log n, we get

(1
n/12m 1 )n /6 log n

./ii <G) \/n/6 log n

where e = 2.718+, the base of the natural logarithms. Because n > 3t +1 and t > 1,
we have that n > 4. It is easy to verify that V/n/6log n > for all n > 4. Thus,
for all n > 4, we can calculate that (1/e)V//n < .

geometric series we have that

Using basic properties of

(1 f/6 log n

41 -42 -q - tn/gj )< 8
i=1

Using Lemma 12 and the bound that 1 < m < } log n it follows that

-- n/gj < + )i(=1
iO=1

<(t + v/ni) - 8 (1/e)7/6 log n

< 16n - (/.) /6 l n

= o(1).

In Theorem 15 we prove an upper bound on the expected number of rounds

for the last correct processor in Protocol 1 to decide. This bound holds for all

adversaries and for all possible inputs to Protocol 1.

- 42 -.. -Ln/gJ ) = 0(1).

-1) Ln/gJ - Lt/mJ

2m

1)n/12m

2M-g

[n/gJ

E 41

b=1

oo2
- 2 '.-. db E(1 - 42

0i=1

10T
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Theorem 15: For group size g = 2 - [I log n] - 1 in Protocol 1,

Exp[R] < +4t 29/++2 + o(1) = 0
logn +logn

Proof: By Lemma 11,

Ln/gJ Ln/gJ 00

Exp[T] < 1+ ( 41 - 42-.b) + ( 41 -42-.-4) ( 1 -42-.-.-4)n/gJ .
b=1 b==1/

and by Lemmas 12 and 14,

Exp[T] < + 2') + o(1).
m

Because }1log n - 1 < m < } log n, we have that

Exp[T] < o2 ,+ s/n-+ o(1) = 0 o .
log n log

By Lemma 3, Exp[R] < 2 - Exp[T] + 2. So, we have that the expected number of

rounds is bounded above by 4t/ log n + 2j/ Y + 2 + o(1). E

We remark that by setting m = (1 - e)log n, we have

t t
+ 2" =+ 2n~.

m (1 - e) log n

This means that by taking somewhat larger size groups, the constant 1 in the

0(t/ log n) expression for the expected number of blocks can be achieved asymp-

totically. On the other hand, if the group size is decreased slightly by taking

m = }(1 - e)log n, we get

9t
Exp[T] < (1 - E)logn + /n- + o(1).

This will be significant for achieving early stopping in case the actual number of

faults is very small (see Subsection 5.2 for details).

We calculate the expected number of message bits sent by Protocol 1. Individ-

ual messages have a constant size. In each round there are 0(n 2 ) messages sent.

By Theorem 15, the expected number of rounds is O(t/log n). Therefore, over

the course of the protocol, an expected O(n2 t/log n) message bits are sent. We
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remark that the message complexity can be improved to O(nt 2 / log n) using relay

processors, a technique due to Dolev and Strong [21].

In randomized protocols, the number of random bits used by each processor is

important. Current physical devices for producing random bits are rather slow. If a

large number of random bits are required, then pseudo-random number generators

are often used. Plumstead [42] showed that the fast, linear congruence generators

are not secure. After seeing a few outcomes, an adversary can predict the remaining

bits. Secure pseudo-random number generators, based on cryptographic techniques,
are known to exist under certain intractability assumptions (see [4] and [1]). How-

ever, they require a lot of computation, so we are better off if we can avoid using

them altogether. A surprising result is the number of random bits used by our

protocol. For sufficiently large n, the expected number of global random choices is

bounded above by

2t n
Exp[T] < 2g+ vn + + O(1) < n

log n log n

There are n/log n groups. Therefore the expected number of times we cycle through

all groups is bounded above by 1 if n is large. At each cycle one random bit is used

by each processor. Therefore, the expected number of random bits used by each

processor is bounded above by 1. From Table 1 (in the next subsection) we calculate

that for smaller values of n the expected number of random bits per processor is

bounded above by 2. Slow physical generators are good enough then, and it is not

necessary to resort to pseudo-random number generators.

4.4 Performance of the Protocol in Small Systems

The analysis of Theorem 15 is somewhat loose; we believe that the upper

bound given for Exp[T] is too big by a constant factor. This looseness comes

from the approximations made in the proof of Lemma 11. In this subsection we

consider a tighter bound that we calculate explicitly for small systems. We do this

to validate our claim that Protocol 1 works well in small, practical systems. In

Theorem 16, which follows, we give a tighter open-form bound on Exp[T]. We will

use Theorem 16 to calculate some specific values.

Theorem 16:

Ln/gJ -1

Exp[T] max 1 + S 4(1, a) -4(2, a) ... (b, a)
-aEA b=1

1 - 4(1, a) -4(2-, a) -.-. 4([n/g], a)
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n t g Exp[T]

4 1 1 3.2
7 2 3 4.0

10 3 3 4.4
13 4 3 4.7
16 5 3 5.1
19 6 3 5.4
22 7 3 5.9
25 8 5 5.7
28 9 5 6.6
31 10 5 6.3
34 11 5 7.1
37 12 5 6.8
40 13 5 6.9
43 14 5 7.5
46 15 5 7.5
49 16 7 7.5
52 17 5 8.1

n t g Exp[T]

55 18 5 8.4
58 19 7 8.2
61 20 5 9.0
64 21 7 8.3
67 22 7 8.9
70 23 7 8.6
73 24 7 9.0
76 25 7 9.5
79 26 7 9.3
82 27 7 9.7
85 28 7 9.7
88 29 7 10.0
91 30 7 10.0
94 31 7 10.4
97 32 7 10.7

100 33 9 10.3
103 34 9 10.9

Table 1: Performance of Protocol 1 in Small Systems

Proof: The proof is straightforward from Lemmas 7 and 10. 0

We can view n, g, and t as parameters that influence Exp[T]. In Table 1 we

list some values of Exp[T] for small systems. For each system size considered, the

table shows the group size that minimizes Exp[T].

5. Extensions

We present various extensions to Protocol 1. In Subsection 5.1 we present an

alternative analysis for Protocol 1 for the case where processor failures are assumed

to be uniformly randomly distributed. In Subsection 5.2 we explain how the per-

formance of Protocol 1 can be improved when the actual number of faults that

occurs in an execution is less than t. In Subsection 5.3 we show that it is possible

to transform Protocol 1 into one that achieves simultaneous termination with high

probability. In Subsection 5.4 we present an alternative protocol that doubles the

speed of Protocol 1 at the cost of requiring somewhat more redundancy.

5.1 Uniformly Distributed Processor Failures

In the previous analysis we assumed that an adversary controls both the se-

lection of which processors fail and the behavior of the failed processors. In this
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subsection we analyze the performance of our protocol under a weaker adversary.

We assume that the distribution of processor faults is uniform. That is, each of the

(') ways of distributing t faults among the n processors is equally likely. We retain

the assumption that failed processors are under the control of the adversary and

therefore behave in a way that will cause our protocol the most difficulty.

In Theorem 17 we show that for g = 1 and uniform processor faults our protocol

terminates in a constant expected number of rounds. Because g = 1, each group

consists of a single processor.

Theorem 17: If the group size, g, is 1 and processor faults are uniformly dis-

tributed, then Exp[R] < 8.

Proof: By Lemma 3, Exp[R] = 2 - Exp[T] + 2. We show that Exp[T] < 3. For

all b > 1, the probability that the block b random choice of a correct processor

is a b-good value is at least I (by Theorem 6 and the fairness of the choice). The2

probability that processor p is correct is at least } because n > 3t+1. Therefore, the

probability that the random choice of processor p is a b-good value is at least } The

conditional probability that the random choice of processor p is a b-good value given

that previous random choices have been bad is at least as great as the unconditional

probability (at least .). Therefore, Exp[T] is at most the mean of a geometric

random variable with parameter }, which is 3. 3

We calculate the expected number of message bits sent by the protocol. Indi-

vidual messages have a constant size. On each round, there are 0(n 2 ) messages sent.

By Theorem 17, the expected number of rounds is 8. Therefore, over the course

of the protocol, an expected 0(n 2) message bits are sent. This can be reduced to

0(nt) using the relay-processor technique of Dolev and Strong [21].

Termination in a constant expected number of rounds is an attractive feature of

the protocol; however, this feature is not unique to randomized protocols. Under the

same assumption of uniform randomly distributed processor failures, a deterministic

protocol due to Reischuk [44] also terminates in a constant expected number of

rounds.

5.2 Early Stopping

Our protocol is resilient to t faults, but the actual number of faulty proces-

sors, f, might be smaller than the upper bound t. A desirable property of any

agreement protocol is that agreement be reached early in this case. Dolev, Reis-

chuk, and Strong [20] have studied early termination for deterministic agreement
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protocols. From the analysis in Subsection 4.3, it follows that the expected num-

ber of rounds to reach agreement in the presence of f faults is bounded above by
4f/ log n+25/Y+o(1). Thus early stopping is automatically achieved. Furthermore,

for the range V/ log n < f < n/3, agreement is reached in O(f/ log n) rounds.

We can modify Protocol 1 to get uniform O(f/ log n) expected time for termi-
nation for all values of f. To do that, we slightly decrease the size of each group by
setting m = }(1 - e) log n. This yields

2f
Exp[T] < 2 +/n + o(1).

(1 - e)log n

If f > JY, then vn-E is o(f/ log n) and agreement is reached in O(f / log n) rounds.

For f in the range f \ /, the standard deviation of the number of ones in

n - f independent unbiased random bits is larger than f. If we take g = n (all

processors are in the same group), then with a constant probability (about 1/3)
the deviation from the average of the number of ones in the n - f random bits

chosen by correct processors exceeds f. Therefore, there is a constant probability

that termination will be reached at the end of each block. Thus the expected run

time in this case is constant. (This idea is similar to the one used in [2] and [7]).

The situation now is that large values of f can be handled efficiently by using

small groups (g = (1 - e) log n), and small values of f can be handled efficiently

by using large groups (g = n). However, we want our protocol to handle both

cases, without knowing in advance which one it faces. In order to accommodate

both small and large values of f, we will alternate between the small groups and

the large ones. In the even blocks, the global random choices will be performed by

groups of size (1 - e) log n. In the odd blocks, the global random choices will be

performed by groups of size n.

To analyze the run time, we distinguish between the two cases. If f is large

(f > 5), we might as well assume that the odd blocks are useless and contribute

nothing to termination. However, the expected time to reach agreement in this case

is at most twice the number of even blocks to reach agreement, which is O(f/ log n).

Similarly, if f < JY, then the expected number of odd blocks to reach agreement

is 0(1). By alternating between odd and even blocks, we only increase the hidden

constants in these expressions by a factor of 2. Thus, our interleaved protocol

yields the following expression for Exp[T], the expected number of rounds to reach

agreement:

Exp[T] <(O(f/log n) if f> -/';
- 0(1) otherwise.
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5.3 Simultaneous Termination

One disadvantage of our protocol is that even though all correct processors

start the protocol in exactly the same round, they might decide in different rounds.

In this subsection we show that a minor modification of Protocol 1 yields an almost

certain simultaneous termination, that is, all correct processors decide in exactly

the same round with overwhelming probability. This is done without violating the

agreement, validity, and termination requirements, which will still be achieved with

probability 1. The expected running time is changed only by a small multiplicative

constant.

The modification is quite simple. We know that the expected number of blocks

to reach agreement in Protocol 1 is at most 2t/ log n + V/n + o(1) and that the tail

probability for the number of blocks converges rapidly. For example, the probability

that more than 3t/ log n blocks will be needed is no greater than (1/e) /6 log . In

the modified protocol, each correct processor will just delay its decision until block

3t/ log n (if it would have made its decision before that block) and behave as in

Protocol 1 otherwise. This guarantees simultaneous termination by block 3t/ log n

with probability at least 1 - (1/e)n/6 log n*. Greater confidence of simultaneous

termination can be achieved at the cost of more rounds.

In this subsection we have shown that there is a randomized agreement pro-

tocol that has an expected running time of O(t/log n) rounds and that achieves

simultaneous termination with very high probability. This result contrasts sharply

with the lower bound proved in Chapter 6; there we show that any randomized

agreement protocol that achieves simultaneous termination with probability 1 must

necessarily have an expected running time of at least t + 1 rounds.

5.4 An Alternative Protocol

The randomized protocol presented in Subsection 4.1 requires redundancy of 3

and uses two rounds per block. If the system redundancy is increased to 5 then one

round per block suffices. Thus the expected number of rounds is cut by a factor

of 2. The code for this case (n > 5t + 1) is given as Protocol 2.

In the following discussion and proof of Protocol 2 we append two subscripts to

each variable from the protocol. This notation has the same meaning that it did for

Protocol 1. When we discuss Protocol 2 we will use all of the terminology defined

in Subsection 4.1 except that we give replacement definitions for "persistent" and

"good." Protocol 2 is similar to, but simpler than Protocol 1. The correctness
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Initialization for processor p:

VAL +- the initial value of processor p

Code for processor p in round r:

1. if group(p) = active(r) then LOCAL +- PICK() else LOCAL +- I

2. broadcast (VAL, LOCAL)

3. receive (MSGq, BITq) from processor q for 1 < q n
4. let ANS be the most frequent non-I message among the MSGq

(break ties arbitrarily)
5. let NUM be the number of occurrences of ANS

6. let GLOBAL be the most frequent non-l message among the BITq for

q E {u I group(u) = active(r/2)} (break ties arbitrarily)
7. if NUM > n - 2t then VAL +- ANS else VAL +- GLOBAL

8. if NUM > n - t and have not decided yet then decide VAL

Protocol 2: A Variant Randomized Agreement Protocol

proof of Protocol 2 follows the same outline as the correctness proof of Protocol 1.

We begin the proof of Protocol 2 with replacement definitions of "persistent" and

"good." For all r > 1 we say that value v is r-persistent if

{P E Cr I VALr-1,p = V}j Cr1 -t.

For all r > 1 and for all v E {0, 1}, we say that v is r-good if either v is equal to

the r-persistent value or if there is no r-persistent value.

Lemma 18: For any r > 1, there is at most one r-persistent value and there is at

least one r-good value.

Proof: We show each of the two claims.

Proof that there is at most one r-persistent value: Assume not. Let r be any

round in which the claim fails. There are distinct values v and v' and sets

S = {p E Cr I VALr-1,p = v} and S' = {p E Cr I VALr-1,p = v I

such that |SI |Cr1 - 2t and JS'J 2 |Cr - 2t. It is immediate that S n S' = 0.

Because S and S' are disjoint sets contained in Cr, we have

|SI+ \S'\ |Cr|

|Cr| - 2t + \Cr| - 2t < |Cl

|Cr\ 4t.
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Thus there are at most 4t correct processors during round r. Because the total

number of processors is at least 5t + 1 there must be more than t processors that

have failed, contradiction.

Proof that there is at least one r-good value: This is immediate from the first

part of Lemma 18 and from the definition of r-good value. l

Lemma 19: If there is some value v and some r > 0 such that VALr,p = v for all

correct processors p then any correct processor that has not decided by round r will

decide v in round r + 1.

Proof: There are at least n - t correct processors that all broadcast v in round r +1.

In round r + 1 all correct processors receive at least n - t votes for v and at most

t votes for any ' j v. Therefore, any correct processor that has not previously

decided will decide v in round r +1. 2

Lemma 20: Let r be an arbitrary round and let v be a value that is not r-persistent.

In round r, any correct processor receives fewer than n - 2t votes for v.

Proof: Let S = {p E Cr I VALr-1,p = v}. Because v is not r-persistent we have

that |SI < |Cr| - 2t. Let q be an arbitrary processor in Cr - S. Processor q is

correct in round r and has VAL,-1,q = v- It therefore does not vote for v. The

only processors that vote for v are those in S and those in N - Cr. Using the

observations that |SI < |Cr1 - 2t and IN - Cr = n - |Cr, it is easy to calculate

that ISl + IN - Cr| < n - 2t. Consider an arbitrary processor p C Cr. Processor p

receives at most one vote for v from each processor in S U(N - Cr). Thus processor p

receives fewer than n - 2t votes for v. 11

Lemma 21: For all r > 1, if the result of the round r global random choice is an

r-good value then all correct processors decide by round r + 1.

Proof: Let r be an arbitrary round. There are two cases.

Case 1: (There is an r-persistent value.) Let v be the r-persistent value, which

is unique by Lemma 18. By the definition of b-good, v is the only b-good value. In

round r any correct processor receives fewer than n - 2t votes for any value v' # v

(by Lemma 20). Thus in step 7 every correct processor p either sets VALr,p to v or

to GLOBALr,p- If the result of the round r global random choice is v, then VALr,p = t

for all correct processors p and by Lemma 19 all correct processors decide by round

r + 1.

115



A Randomized Agreement Protocol

Case 2: (There is no r-persistent value.) In round r any correct processor

receives fewer than n - 2t votes for any value v (by Lemma 20). Thus in step 7 an

arbitrary correct processor p sets VALr,p to GLOBALr,p- If the result of the round r

global random choice is any b-good value v -L, then VALr,p = v for all correct

processors p and by Lemma 19 all correct processors decide by round r +1. 0

Theorem 22: Protocol 2 solves the randomized agreement problem.

Proof: We show that the agreement, validity, and termination conditions are sat-

isfied.

Agreement condition: Suppose that round r is the first round in which a correct

processor decides and suppose that correct processor p decides v in round r. In

round r processor p got at least n - t votes for v. At least n - 2t of these votes are

from processors in Cr, so v is the r-persistent value, which is unique by Lemma 18.

Therefore, in round r all correct processors get at least n - 2t votes for v and (by

Lemma 20) fewer than n - 2t votes for any v' 0 v. Thus VALr,q = v for any correct

processor q. So, any correct processor that decides in round r decides v and by

Lemma 19 all of the other correct processors decide v in round r + 1.

Validity condition: Suppose all correct processors start the protocol with in-

put v. It is immediate that VALO,p = v for all correct processors p. By Lemma 19,

all correct processors decide v in round 1.

Termination condition: This is analogous to the proof of termination for Pro-

tocol 1. E

In Theorem 22 we proved the correctness of Protocol 2. In Protocol 2 random

choices are used in the same way that they are in Protocol 1. This makes the

analysis of the expected running time of Protocol 2 identical to the analysis in

Subsection 4.3. The analysis is not repeated here.

6. Comparison with Alternative Protocols

We compare our protocol with some alternative protocols (all synchronous). We

consider the alternatives in three groups: randomized non-cryptographic protocols,

randomized cryptographic protocols, and deterministic protocols.

6.1 Non-Cryptographic Protocols

Ben-Or [2] and Bracha and Toueg [7] investigated non-cryptographic solutions

to the randomized agreement problem in the presence of Byzantine processor faults.
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Their primary interest was asynchronous protocols, but simple variants of their

protocols operate in the synchronous case. Because the topic of this chapter is

synchronous protocols, we only consider the synchronous variants of their protocols.

In the synchronous case, the protocol due to Bracha and Toueg is similar to the one

due to Ben-Or. For brevity, we only compare our protocol with Ben-Or's protocol.

When the redundancy, r, of a system of processors is Q(t), Ben-Or's proto-

col terminates in a constant expected number of rounds. For practical systems,
however, it is desirable to operate at a lower redundancy in order to minimize the

cost of computer hardware. The optimal value is r = 3. Unfortunately, for any r

that is 0(1), Ben-Or's protocol requires an exponential number of rounds. Com-

pared to Ben-Or's protocol, ours is more efficient for practical amounts of system

redundancy.

6.2 Cryptographic Protocols

We consider cryptographic protocols by Rabin [43]; Bracha [6]; and Dwork,
Shmoys, and Stockmeyer [24]. These protocols all use cryptographic techniques to

conceal information from faulty processors.

Rabin's protocol terminates in a constant expected number of rounds; how-

ever, it requires more resources than our protocol. In particular, it requires a

trusted dealer that distributes random values before the start of the protocol. The

underlying mechanism is authentication and Shamir's [45] shared secret. If the re-

quirements for Rabin's protocol can be met at a reasonable cost, then his protocol

is an attractive choice. We believe, however, that in practical systems it is often

unrealistic to assume the existence of a trusted dealer.

The randomized protocol due to Bracha terminates in O(log n) expected

rounds. The principal advantage of his protocol is this fast asymptotic performance.

The principal disadvantages are the use of cryptographic techniques, a seemingly

high constant factor in the run time, relatively high communications costs, and

the use of a hard-to-compute local graph partition. (The only known deterministic

protocols that compute this partition run in exponential time.)

A new protocol by Dwork, Shmoys, and Stockmeyer terminates in O(log log n)

expected rounds in the same model as Bracha's protocol. The principal advantage

of their protocol is its extremely fast asymptotic performance. The protocol has

the same disadvantages as Bracha's protocol, including its use of a hard-to-compute

local graph partition.
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Another protocol by Dwork, Shmoys, and Stockmeyer terminates in 0(1) ex-

pected rounds and requires that the redundancy of the system of processors is

Q(log n). This protocol does not require any hard-to-compute local graph partition.

The principal advantage of this protocol is its efficiency. The principal disadvan-

tages of this protocol are its use of cryptographic techniques and its relatively high

redundancy requirement.

6.3 Deterministic Protocols

It is also possible to compare our protocol with deterministic agreement pro-

tocols. A representative deterministic protocol is due to Srikanth and Toueg [46].
There are trade-offs between their protocol and ours. The principal advantages of

the deterministic protocol are that it uses a fixed number of rounds and that all

processors decide at the same round. The principal advantages of our protocol are

that the expected number of rounds is small, that the expected number of message

bits is small, and that only two rounds are required if the input to all processors is

the same. Our protocol cannot ensure simultaneous (in the same round) termina-

tion; however, using the techniques of Subsection 5.3, this property can be achieved

with high probability.
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We investigate the number of rounds of message exchange required for correct

processors to act simultaneously (in the same round) in certain synchronous fault-

tolerant distributed systems. In particular, we prove a strong lower bound on the

number of rounds of message exchange that any randomized protocol requires to

solve either the simultaneous agreement problem or the distributed firing squad

problem. It is known that any protocol that solves either of these problems and

that is resilient to t processor faults has at least one execution that lasts at least t +1

rounds. We strengthen that bound by showing that all normal executions of such a

protocol last at least t+1 rounds. The restriction to normal executions is a technical

one that excludes certain executions in which a fortuitous pattern of processor faults

enables early termination. The lower bounds proved in this chapter contrast with

known protocols that achieve agreement on a value (without simultaneity) in fewer

than t +1 rounds in some normal executions. Our results are proved for randomized

protocols, for a benign failure model (crash faults), and for a weak adversary. They

apply a fortiori to deterministic protocols, to more malicious failure models, and

to stronger adversaries.

1. Introduction

We prove a strong lower bound on the number of rounds of communication

This chapter is joint work with Cynthia Dwork; a preliminary version appeared in
the Proceedings of the Fifth Symposium on Reliability in Distributed Software and
Database Systems [13].
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that any randomized protocol requires to solve either the simultaneous agreement

problem or the distributed firing squad problem. In this chapter we formulate

deterministic protocols as a special case of randomized protocols. The lower bound

that we prove for randomized protocols holds a fortiori for deterministic protocols.

We restrict our attention to problems that are solved in a system of n processors

that communicate via a fully connected reliable message system. For some fixed t, a

protocol is required to work correctly in any execution in which at most t processors

fail, but may produce arbitrary results if more than t processors fail. For the

problems that we consider it is known that any protocol that solves the problem

has at least one execution that lasts at least t + 1 rounds. In this chapter we

strengthen that bound by showing that all normal executions of such a protocol

last at least t + 1 rounds. An execution of a simultaneous agreement protocol is

normal if the number of processors that fail by the end of round r is at most r for all

r E {1,... , t}. In Subsection 3.2 we give a slightly different definition of a normal

execution for the randomized distributed firing squad problem.

Our lower bound applies to normal executions only. We believe that this limita-

tion to normal executions is merely a technical restriction. An adversary can ensure

that all executions of a protocol are normal by limiting the rate at which processors

fail. Our lower bound implies that a protocol can terminate before round t + 1

only if a large number of failures occur early in an execution. One would hope

that such a pattern of failures would be rare in a reliable fault-tolerant distributed

system. Thus, our lower bound removes much of the incentive to design protocols

that terminate in fewer than t + 1 rounds. An important special case of our lower

bound is that every failure-free execution of a correct protocol must run for at least

t + 1 rounds.

Our approach is to prove lower bounds for extremely weak variants of the

simultaneous agreement problem and the distributed firing squad problem. These

are the lazy simultaneous weak agreement problem (defined in Subsection 2.1 of this

chapter) and the lazy distributed firing squad problem (defined in Subsection 3.1).

These weak problem variants seem interesting only in the context of lower bounds.

For example, each can be solved by a protocol that does nothing. The lower bound

that we prove for weak variants holds a fortiori for stronger variants.

In order to demonstrate a concrete application of the lower bounds that we

will prove, we give informal definitions of standard variants of the simultaneous

agreement problem and the distributed firing squad problem. We call these variants

the randomized simultaneous agreement problem and the randomized distributed
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firing squad problem. We use the term "randomized" because the termination

condition of each problem is probabilistic. The problem definitions that we give

suffice for both randomized and deterministic protocols; however, if we know that a

protocol is deterministic it is straightforward to replace the termination condition

with an equivalent condition that makes no mention of probabilities. For example,

the equivalent termination condition for the randomized simultaneous agreement

problem is that all correct processors eventually decide.

In the randomized simultaneous agreement problem each processor begins with

an input chosen from a fixed set V. The objective is for all of the correct processors

to agree on one element of V subject to the following four conditions.

e Agreement condition: All correct processors that decide reach the same deci-

sion.

e Validity condition: If all correct processors start the protocol with input v then

v is the decision of all of the correct processors that decide.

* Simultaneity condition: If any correct processor decides then all correct pro-

cessors decide in the same round.

* Termination condition: The probability that all correct processors decide by

round r tends to 1 as r tends to infinity.

In the randomized distributed firing squad problem each processor may, at any

round, receive a request to fire. This request comes from some unspecified source

outside of the system of processors. We would like for all of the correct processors

to respond to this request by simultaneously firing (i.e., entering a distinguished

state). In any protocol that solves this problem the processors must satisfy the

following three conditions.

" Validity condition: No correct processor fires unless some processor receives a

request to fire.

" Simultaneity condition: If any correct processor fires then all correct processors

fire in the same round.

" Termination condition: If any correct processor receives a request to fire then

the probability that all correct processors fire by round r tends to 1 as r tends

to infinity.
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A key assumption must be made if randomization is to be a useful tool for

solving consensus problems. This assumption is that there is some measure of

independence between the failure modes of the system and the random choices of

correct processors. We capture this assumption by imagining that the selection

of which processors fail and the behavior of the failed processors are under the

control of an adversary that has specified, limited powers. A formal description

of our adversary appears in Subsection 2.2. We prove our lower bound for a weak

adversary. This contributes to the strength of the bound.

The consensus problems for which we obtain a strong lower bound require si-

multaneous (in the same round) action by all correct processors. Similar bounds

seem to be impossible to obtain for consensus problems without a simultaneity re-

quirement. Consider, for example, the randomized eventual agreement problem,

which is just the randomized simultaneous agreement problem without the simul-

taneity requirement. There are many protocols for this problem that terminate in

fewer than t + 1 rounds in some normal executions, for example, the protocol given

in Chapter 5 has normal executions that terminate in 2 rounds for all t. The pattern

is as follows: problems that require simultaneous action by the correct processors

take at least t + 1 rounds in all normal executions, but problems that merely re-

quire agreement on some value have protocols that terminate faster in some normal

executions. This is why we say that simultaneity is harder than agreement.

We use an assortment of techniques to prove the various lower bounds given in

this chapter. For the lazy simultaneous weak agreement problem we use a standard

technique [15], [20], [21], [22], [26], [37], [38], [39], [33] to give a direct proof that there
is no deterministic protocol that beats the bound. We then use a reduction to show

that the bound holds for randomized protocols. Specifically, we show that if there is

any randomized protocol that beats the bound, then there is a deterministic protocol

that does the same. We prove our lower bound for the randomized distributed firing

squad problem by reducing the lazy simultaneous weak agreement problem to the

lazy distributed firing squad problem. We use a different reduction from the one

that Coan, Dolev, Dwork, and Stockmeyer [12] used to show a worst-case lower

bound for the distributed firing squad problem. They used a reduction suitable for

showing worst-case lower bounds. We use a new reduction suitable for showing a

lower bound on all normal executions.

There has been a long history of.work on lower bounds on the number of rounds

required to solve various consensus problems in various fault models. The earliest

lower bounds shown are for worst-case performance. Fischer and Lynch [26] showed
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that, in the worst case, t + 1 rounds are required to solve either the simultaneous

or the eventual agreement problem in the Byzantine fault model. The lower bound

was extended to the authenticated Byzantine fault model by DeMillo, Lynch, and

Merritt [15] and by Dolev and Strong [21] and to the failure-by-omission fault model

by Hadzilacos [29]. It was further extended to the crash fault model by Lamport

and Fischer [33]. By reducing the agreement problem to the distributed firing squad
problem, Coan, Dolev, Dwork, and Stockmeyer [12] showed that in the worst case
t + 1 rounds are required to solve the distributed firing squad problem. These

bounds are tight in the sense that there are matching protocols that terminate in
t + 1 rounds. Nevertheless, the bounds are weak in that they admit the possibility

that there are many executions that terminate faster.

Dolev, Reischuk, and Strong [20] were the first to investigate consensus proto-

cols that sometimes terminate in fewer than t+1 rounds. They began by distinguish-
ing between simultaneous agreement and eventual agreement. For both variants of

the agreement problem they parameterized the lower bounds by f, the actual num-

ber of failures in a given execution of an agreement protocol. They showed that

for all f E {0, . . . , t} and for every protocol for simultaneous agreement there is at

least one execution with f failures that lasts for at least t + 1 rounds. They further

showed that for any f E {0,... , t} and for every protocol for eventual agreement

there is at least one execution with f failures that lasts for at least min(f + 2, t + 1)

rounds. Their results were for deterministic protocols only. The Dolev, Reischuk,
and Strong lower bound is for the model with authenticated Byzantine failures.

Their technique was extended to crash faults by Lamport and Fischer [33].

In recent work Dwork and Moses [22] and Moses and Tuttle [39] have used the

theory of knowledge [30] to develop tight bounds on the number of rounds required

to solve some consensus problems in all (including non-normal) executions. Each

paper restricts its attention to deterministic protocols. For deterministic protocols,
each of the papers subsumes the lower bounds of this chapter. The work of Dwork

and Moses characterizes the crash fault model. The work of Moses and Tuttle

characterizes various failure-by-omission fault models. Devising tight bounds for

the Byzantine fault model remains an open question.

2. Lower Bounds for Agreement

In this section we develop a strong lower bound on the number of rounds

that a randomized protocol requires to solve the lazy simultaneous weak agreement

problem. We begin in Subsection 2.1 by defining this problem. In Subsection 2.2 we
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give the formal model in which this problem is solved. In Subsection 2.3 we review

the known lower bound for deterministic protocols. Finally, in Subsection 2.4 we

prove our lower bound for randomized protocols by showing that the existence of a

randomized protocol that beats the bound implies the existence of a deterministic

protocol that does the same.

2.1 The Problem

The lazy simultaneous weak agreement problem differs from the randomized

simultaneous agreement problem only in that the termination condition is deleted

(making the problem lazy) and the validity condition is relaxed (making the problem

weak). A protocol for this problem is run by a distributed system of n processors, at

most t of which may fail. Each processor starts the protocol with an input value v

from a fixed set V of legal inputs. Each correct processor may, at some point during

the execution of the protocol, irrevocably decide on an element of V as its answer.

There are three conditions that the correct processors must satisfy.

" Agreement condition: All correct processors that decide reach the same deci-

sion.

" Validity condition: If all processors are correct and if all processors start the

protocol with input v, then v is the decision of all of the processors that decide.

* Simultaneity condition: If any correct processor decides then all correct pro-

cessors decide in the same round.

2.2 The Model

We model an agreement protocol as a synchronous system of automata.

Throughout this chapter we let n be the number of processors in the system, we let

N = {1,... , n}, and we let t <n -2 be an upper bound on the number of processor

faults that a protocol need tolerate. A protocol P is described by the following.

" D is the set of possible outcomes from the random choice performed by each

processor each round.

" V is the input set.

" Q is the set of processor states.

" qo E Q is the initial state in which each processor begins the protocol.
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" M is the set of messages.

* p1p,q:I+ x V x D x Q -+ M, for (p, q) E N 2 , is the message generation function for

messages sent from processor p to processor q. (1+ denotes the set of positive

integers.) The first component of the domain of Lp,q is the current round

number. The second is the input to processor p. The third is the current local

random choice of processor p. The fourth is the current state of processor p.

S :I(M U {I})" -+ Q, for p E N, is the state transition function for processor p.

We model the absence of a message from some (failed) processor by I. (The

prior state of processor p is omitted from the domain of 6, because it would

be redundant. Processor p can send any required information in a message to

itself.)

" 7, : Q -+ {I} U V, for p E N, is the decision function for processor p.

Each processor starts an execution of protocol P in the initial state qo. The

execution consists of a series of rounds. In each round each correct processor makes

a local random choice, sends messages to the other processors, receives messages

from the other processors, and makes a local state change. We assume ordered

sending: the i-th message sent by any correct processor in any round is sent to

processor i. In any execution of protocol P a correct processor behaves according to

its transition rules during the entire execution. A faulty processor behaves according

to its transition rules during some prefix of the execution, then it stops sending

messages. The messages sent by a correct processor depend on its current state and

on its current local random choice.

Formally, an execution of protocol P is a triple (C, I, H) where C is a function

from N x I+ to D, where I E V" , and where H is a function from N x I+ x N

to {I, /}. In an execution E we say that C is the random-choice history, I is the

input vector, and H is the message history. For all r E I+ and for all processors p,

the value of C(p, r) is the round r random choice of processor p. I is the vector of

inputs to all of the processors. For all r E 1+ and for all processors p and q, the

value of H(p, r, q) determines whether there is a round r message from processor p

to processor q. If H(p, r, q) = I then processor p sends no round r message to

processor q; otherwise, processor p sends the message that is specified by its protocol

for its current state and current random choice. If H(p, r, q) = \/ for all (r, q) E

1+ x N then processor p is correct; otherwise, processor p is faulty.

We impose two constraints on H. First we require that there are at most t

faulty processors. Second, we model ordered sending with crash faults by requiring
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that, for all (r, r') E I+ x 1+ and for all (p, q, q') E N', the following holds: if

H(p, r, q) = land H(p, r', q') = \ then either r' < r or r' = r and q' < q. If

H(p, r, n) = I then we say that processor p fails by round r.

An execution E = (C, I, H) is normal if for all r < t at most r processors fail

by round r.

We now give an inductive definition of the round r state of processor p in exe-

cution E of protocol P, which we denote state(p, r, E). Assume that E = (C, I, H)

where I = (i, . .. , ia). We define state(p, 0, E) = qo and for all r E T+ we define

state(p,r,E)= 
6 ,(m1,...,m,,) if H(p,r,n) = ';

otherwise,

where

f tiqp(r, iq, C(q, r), state(q, r - 1, E)) if H(q, r, p) =

I =otherwise.

Correct processor p decides v in round r of execution E if -',(state(p, r, E)) = v

and -y,(state(p, r', E)) = _ for all r' < r. The running time of an execution is the

number of rounds until the last correct processor decides.

When analyzing the performance of a randomized consensus protocol, it is

convenient to assume that the selection of which components fail and the behavior

of the failed components are under the control of an adversary. Our lower bound

is strong because we prove it for an extremely weak adversary. Specifically, our

adversary selects the message history at the start of an execution without ever

seeing either the inputs or the random choices. In contrast, a stronger adversary

might be allowed to base its actions on the previous behavior (e.g., random choices)

in an execution. Because it is weak, our adversary can be modeled as a message

history. It should be immediate that for any protocol P, input vector I, random-

choice history C and adversary A there is a unique execution E = (C, I, A).

Having defined our adversary, we can now define the expected running time of a

fixed protocol P. Let T be a random variable that given an execution of protocol P

returns the running time of the execution. For a fixed adversary A and input

vector I, let the expected value of T, taken over the random choices, be denoted

E(TA,I). Define the expected running time for protocol P to be maxA,I(E(TA,I)).

We model deterministic protocols as a special case of randomized protocols.

Specifically, a protocol is deterministic if |DI = 1 where D is the set of possible
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outcomes from the random choice performed by each processor each round. When-

ever |DI = 1 we adopt the convention that D = {0}. We use 0 to denote the

random-choice history that is 0 for all processors and for all rounds.

2.3 The Lower Bound for Deterministic Protocols

We state, without proof, a lower bound for deterministic protocols. The bound

is a straightforward extension of a well-known result [15], [20], [21], [22], [26], [37],

[38], [39], [33]. Its proof is given in Appendix A of this chapter.

Theorem 1: Let P be any deterministic protocol that solves the lazy simultaneous

weak agreement problem. In any normal execution of P no correct processor decides

before round t + 1.

2.4 The Lower Bound for Randomized Protocols

We prove that, for any protocol P that solves the lazy simultaneous weak agree-

ment problem and for any normal execution E of protocol P, no correct processor

decides before round t + 1. We do this by showing how to transform an arbitrary

protocol for the problem into a deterministic protocol for the same problem. Our

transformation preserves the existence of normal executions that terminate in fewer

than t + 1 rounds.

We define a function a that, given an arbitrary protocol for the lazy simulta-

neous weak agreement problem and an arbitrary random-choice history, produces a

deterministic protocol for the lazy simultaneous weak agreement problem. Let pro-

tocol P = (D, V, Q, qo, Al, p, 6, 7) be an arbitrary lazy simultaneous weak agreement

protocol and let C be an arbitrary random-choice history. We define a(P, C) to be

the protocol ({0}, V, Q, qo, Al, p', 6, y) where p' q(r, v, 0, s) = ,up,q(r, v, C(p, r), q) for

all (p, q) E N 2 .

Lemma 2: Let P = (D, V, Q, qo, M, p, 6,-y) be any protocol that solves the lazy

simultaneous weak agreement problem, let C be an arbitrary random-choice history,

and let P' = a(P, C). Let E' = (0, (i 1 ,... , in), H) be any execution of protocol P'.

If E = (C,(ii,...,in),H) is an execution of protocol P, then state(p,r,E') =

state(p, r, E) for all (p, r) E N x {0,1,.. .}.

Proof: Suppose that P' = (0, V, Q, qo, MI, ', 6,7). The proof is by induction on r.

Basis: (r = 0) It is immediate that state(p, 0, E') = qo = state(p, 0, E).
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Induction: If processor p fails by round r in message history H then it is

immediate that state(p, r, E') = I = state(p, r, E). So, for the remainder of the

proof we suppose that processor p does not fail by round r. Thus H(p, r, n) = V.

For all (q, s) E N 2 , let

, P q,,(r, iq,O(q, r), state(q, r - 1, E')) if H(q, r,s) =
mq,' i otherwise,

and let

fpq,,(r,ig, C(q, r), state(q, r - 1, E)) if H(q, r, s) =

mI otherwise.

We claim that m', = mqs for all (q,s) E N 2 . If H(q, r,s) = I then it is

immediate that the claim is true. If H(q, r, s) = / then we calculate that

m,, = P',,(r, iq, O(q, r), state(q, r - 1, E'))

= pg,,(r, iq C(q, r), state(q, r - 1, E))

mqs

Having proved the claim that m',, = m,, for all (q,-s) E N 2 , we now conclude

the induction step by calculating that

state(p, r, E') = 6,(m'I.. ,m )

= 6,(mi,,, . .. , )

= state(p, r, E). 1

Theorem 3: Let P be any protocol that solves the lazy simultaneous weak agree-

ment problem and let C be an arbitrary random-choice history. If P' = a(P, C)

then protocol P' solves the lazy simultaneous weak agreement problem.

Proof: The proof is by contradiction. Suppose that protocol P' does not solve

the lazy simultaneous weak agreement problem. Then there is some execu-

tion E = (0,1I, H) of protocol P' for which some correctness condition is violated.

By Lemma 2, the same correctness condition is violated in execution (C, I, H) of

protocol P. This contradicts the assumption that protocol P solves the lazy simul-

taneous weak agreement problem. 0

Lemma 4: Let P be any protocol that solves the lazy simultaneous weak agreement

problem. Let E = (C, I, H) be any normal execution of protocol P in which the
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correct processors decide in some round r. If P' = a(T, C) then E' = (0, I, H) is a

normal execution of protocol P' in which the correct processors decide by round r.

Proof: By assumption, execution E is normal. Executions E and E' have identical

message histories. Therefore, execution E' is normal.

Having shown that execution E' is normal, we now show that all correct proces-

sors decide by round r in execution E'. By assumption, the correct processors decide

by round r in execution E. By Lemma 2 and the fact that protocols P and P' have

identical decision functions, correct processors decide in the same round in these

two protocols. Therefore, the correct processors decide by round r in execution E'

of protocol P'. D

Theorem 5: Let P be any protocol that solves the lazy simultaneous weak agree-

ment problem. Let E be any normal execution of protocol 7. The earliest round

in which the correct processors can decide in execution E is round t + 1.

Proof: The proof is by contradiction. Suppose that the correct processors decide

before round t + 1 in execution E of protocol P. Suppose E = (C, I, H). Let

P' = a(P, C). Protocol P' solves the lazy simultaneous weak agreement problem

by Theorem 3. By Lemma 4, there is some normal execution of protocol P' in which

the correct processors decide before round t + 1. By Theorem 1, such an execution

is impossible, contradiction. E

It is immediate from Theorem 5 that t + 1 is a lower bound on the expected

number of rounds required to solve the lazy simultaneous weak agreement problem.

3. Lower Bounds for Distributed Firing Squad

We develop a strong lower bound on the number of rounds required to solve

the lazy distributed firing squad problem. In Subsection 3.1 we give the correctness

conditions for the lazy distributed firing squad problem. In Subsection 3.2 we give

the formal model in which the lazy distributed firing squad problem is solved. In

Subsection 3.3 we prove our lower bound on the number of rounds required to

solve the lazy distributed firing squad problem. Our proof is by reducing the lazy

distributed firing squad problem to the lazy simultaneous weak agreement problem.

It is common [8], [12] to assume that processors that solve the distributed firing

squad problem have no access to a global clock. We prove our lower bound for a

system of processors that have access to a reliable global clock that indicates the

current round number. This more powerful model strengthens our lower bound.
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3.1 The Problem

A protocol for the lazy distributed firing squad problem is run by a distributed

system of n processors, at most t of which may fail. Each processor may receive one

or more request to fire during the execution of a protocol. Each correct processor

may fire at any point during the execution of the protocol. There are two conditions

that the correct processors must satisfy.

" Validity condition: No correct processor fires unless some processor receives a

request to fire.

" Simultaneity condition: If any correct processor fires then all correct processors

fire in the same round.

3.2 The Model

We model a distributed firing squad protocol as a synchronous system of au-

tomata. We continue to follow the convention that n is the number of processors

in the system, N = {1..., n}, and t < n - 2 is an upper bound on the number

of processor faults that a protocol need tolerate. A protocol P is described by the

following.

* D is the set of possible outcomes from the random choice performed by each

processor each round.

" Q is the set of processor states.

" qo E Q is the initial state in which each processor begins the protocol.

" Al is the set of messages.

* ptp,q : I+ x {0, 1} x D x Q -A+ M, for (p, q) E N 2 , is the message generation

function for messages sent from processor p to processor q. The first component

of the domain of p,q is the current round number. The second is equal to 1 if

processor p receives a request in the current round and 0 otherwise. The third

is the current local random choice of processor p. The fourth is the current

state of processor p.

S 6p:(Al U {I})" -> Q, for p E N, is the state transition function for processor p.

We model the absence of a message from some (failed) processor by -.

" 7, : Q -+ {I, FIRE}, for p E N, is the decision function for processor p.
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Each processor starts an execution of protocol T in the initial state qo. The

execution consists of a series of rounds. In each round each correct processor makes a

local random choice, possibly receives a request to fire, sends messages to the other

processors, receives messages from the other processors, and makes a local state

change. In any execution of protocol P a correct processor behaves according to its

transition rules during the entire execution. A faulty processor behaves according

to its transition rules during some prefix of the execution, then it stops sending

messages. The messages sent by a correct processor depend on its current state, on

the presence or absence of a request to fire, and on its current random choice.

Formally, an execution of protocol P is a triple (C, TV, H) where C is a function

from N x IT+ to D, where W is a function from N x 2+ to {0, 1}, and where H is

a function from N x 27+ x N to {IL, V}. In an execution E we say that C is the

random-choice history, TV is the request history, and H is the message history. For

all r E 1+ and for all processors p, the value of C(p, r) is the round r random choice

of processor p. For all r E 1+ and for all processors p, W(p, r) = 1 if processor p

receives a request to fire in round r and W(p, r) = 0 otherwise. Message histories for

distributed firing squad protocols are identical to message histories for agreement

protocols as described in Subsection 2.2. We use the same terminology and impose

the same restrictions.

In execution E = (C, TV, H), round I > 0 is quiescent if for all (p, r) E N x

{1..., l} it is the case that W(p,r) = 0 and processor p does not fail by round 1;

otherwise, round 1 is active. Execution E = (C, W, H) is i-normal if there is some

quiescent round 1 such that for all r E {l, . . . , I + t} at most r - I processors fail by

round r. Execution E is normal if it is i-normal for some 1.

We now give an inductive definition of the round r state of processor p in

execution E = (C, TV, H) of protocol P, which we denote state(p, r, E). We define

state(p, 0, E) = qo and for all r E 1+ we define

statep r, E) - (.. , mn) if H(p, r, n) =

- {, E otherwise,

where

mq _ qp(r, TV(q, r), C(q, r), state(q, r - 1, E)) if H(q, r, p)
I otherwise.

A correct processor p fires in round r of execution E if -y(state(p, r, E)) = FIRE and

'y,(state(p, r', E)) = I for all r' < r. We measure the running time of an executiou
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of a randomized distributed firing squad protocol as the number of active rounds

that elapse until the last correct processor fires.

Our adversary and our method of calculating the expected cost of a distributed

firing squad protocol are the obvious analogues of the adversary and method given
for agreement protocols at the end of Subsection 2.2. We model deterministic
distributed firing squad protocols in the same way that we modeled deterministic
agreement protocols.

3.3 The Lower Bound

In this subsection we prove that all i-normal executions of a lazy distributed
firing squad protocol take at least I + t + 1 rounds. We do this by reducing the
lazy simultaneous weak agreement problem to the lazy distributed firing squad

problem. We use a different reduction from the one that Coan, Dolev, Dwork, and
Stockmeyer [12] used to show worst-case bounds for the distributed firing squad
problem. Using our new reduction, we prove that if there is any i-normal execution
of a lazy distributed firing squad protocol in which the correct processors fire before
round l+t+1 then there is a normal execution of a lazy simultaneous weak agreement
protocol in which all correct processors decide before round t + 1. Because there are
no normal executions of a lazy simultaneous weak agreement protocol in which the

correct processors decide before round t + 1 (Theorem 1), we conclude that there

are no i-normal executions of a lazy distributed firing squad protocol in which the

correct processors decide before round I + t + 1.

We begin with an informal description of our reduction. WVe use an arbitrary

lazy distributed firing squad protocol P as a basis for constructing a lazy simulta-

neous weak agreement protocol P'. Protocol V' has input set {1, 2}. In protocol V'

two copies of protocol ' are run in parallel. One copy corresponds to input 1, and

the other corresponds to input 2. In protocol V' an arbitrary processor p decides

in the earliest round in which it would fire in either of the simulated copies of P.

If one copy of P fires first then processor p decides on the value that corresponds

to that copy. If both copies fire together then processor p decides 1. There are

two components to each random choice made by processor p in protocol V. One

component is used to provide random choices to the two simulated copies of P. The

other component is used to provide requests to fire to the simulated copy of P that

corresponds to the input to processor p. Processor p gives no requests to the other

simulated copy of P. A formal description of this reduction follows.

We define a function ,3 that, given an arbitrary protocol for the lazy distributed
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firing squad problem, produces a protocol for the lazy simultaneous weak agreement

problem. Let protocol P = (D, Q, qo, A, p, 6, -y) be an arbitrary lazy distributed fir-

ing squad protocol. We define O(P) to be the protocol (D', V', Q', ql, M', p', 6', y'),
which is given by the following.

* D' = {0, 1} x D. An element of D' is denoted [b, c] where b E {0, 1} and where

c E D. The first component of D' is used to simulate requests to protocol P

and the second is used to simulate the random choices made in P.

SV' ={1, 2}.

" Q' = Q2 . An element of Q' is denoted [qi, q2] where qi E Q and where q2 E Q.
We identify I, the undefined state, with [II].

* qO = [qo, qO .

* M' = M2. An element of M' is denoted [i 1 , M 2 ] where mi E M and where

M2 E M. We identify I, the null message, with [1, 1].

e Iqp, is defined as follows:

p,,q(r, v, [b, c], [qi, q2]) = [p1p,q(r, wi, c, qi), p1p,q(r, w 2 , c, q2)],

where w; = b if i = v and wi = 0 otherwise. The role played by wi is to provide

requests to the one simulated copy of protocol P that corresponds to the input

to processor p and to block requests to the other simulated copy of P.

9 6' is defined as follows:

P=

6' ([mni, mn'], .. ., [mn, M',] [6,(mi,., mn), 6p(m',.,m ]

S7'is defined as follows:

y (qi, q2]) = min{i 1yp(qi) = FIRE),

where we follow the convention that min 0 = I.

We define two functions, first and second. For any lazy distributed firing squad

protocol P, these functions yield executions of P when given an execution of the

protocol #(P). In Lemma 6 we will use these functions to characterize the rela-

tionship between executions of protocol P and executions of the protocol /(P).
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Let P = (D, Q, qo, M, pj6, y) be any protocol that solves the lazy distributed firing

squad problem, let P' = #(P), and let E' = (C',(ii,...,in),H) be any execu-

tion of protocol P'. Recall that C' is a function from N x I2+ to {O, 1} x D. Let

B:N x 2+ - {0, 1} and C:N x 1+ -+ D be chosen so that C' is the cross product of
the two functions B and C. Thus C'(p, r) = [B(p, r), C(p, r)] for all (p, r) E N x I+.
For all j E {1, 2} let W, be the request history

W (p, r) = B(p, r) if i, =j;
0 otherwise.

We define first(E') = (C, W 1 , H) and second(E') = (C, W2 , H).

Lemma 6: Let P = (D,Q,qo,M,p,6,y) be any protocol that solves the lazy

distributed Bring squad problem, let P' = O(P), and let E' = (C', (ii,... , in), H)

be any execution of protocol P'. If E1 = first(E') and E2 = second(E'), then for

all (p, r) E N x {0, 1, ... }

state(p, r, E') = [state(p, r, E1), state(p, r, E2)] if r = 0 or H(p, r, n) =
I I otherwise.

Proof: Suppose that P' = (D', V', Q',q g, M', p' ,6', y'). The proof is by induction

on r.

Basis: (r = 0) We calculate that

state(p, 0, E') = [qo, qo]

= [state(p, 0, E1), state(p, 0, E2)].

Induction: If processor p fails by round r in message history H then it is

immediate that state(p, r, E') = 1. So, for the remainder of the proof we suppose

that processor p does not fail by round r. Thus H(p, r, n) = V.

For all (q, s, j) E N 2 x {1,2}, let

m = {p,,(r, i. C'(q, r), state(q, r - 1, E')) if H(q, r, s) =

m' = otherwise,

and let

mi -- P,,(r, TVj (q, i C(q, r), state (q, r - 1, EJ if H(q, r, s) = 7;
' I otherwise.

134



Simultaneity is Harder than Agreement

'We claim that mq,s = [mn ,M , m2,,] for all (q, s) E N 2 . If H(q, r, s) = 1 then it

is immediate that the claim is true. If H(q, r, s) = V then we calculate that

mq,, = p',,,(r, iq, C'(q, r), state(q, r - 1, E'))

= p'q,(r, iq, [B(q, r), C(q, r)], [state(q, r - 1, E), state(q, r - 1, E2))

= [pq,,(r, 1(q, r), C(q, r), state(q, r - 1, E1)),

= q,,(r, WV2 (q, r), C(q, r), state(q, r - 1, E2))]

Having proved the claim that mq,, = [mq, 8 , m2,,] for all (q, s) E N 2 , we now

conclude the induction step by calculating that

state(p, r, E') = 6'(m1,,, ... ,m )

= o ([m 1,,, m2,,],. . ., [mn,, m2,,])

= [6P(ml,,, ... , my,,), 6,(m , , m,,)]

= [state(p, r, E1), state(p, r, E2)). D

Theorem 7: Let P = (D, Q, o, M,[ ,6,y) be any protocol that solves the lazy

distributed Bring squad problem. If P' = 3(P), then the protocol P' solves the lazy

simultaneous weak agreement problem.

Proof: Suppose that P' = (D', V', Q', q', M', p', 6', y') We show that the agree-

ment, simultaneity, and validity conditions are satisfied.

Agreement and simultaneity conditions: Say that correct processor p de-

cides v in round r of execution E' of protocol P'. Let Ei = first(E') and let

E2 = second(E'). By Lemma 6, state(q,r,E') = [state(q,r,E1),state(q,r,E2 )]
for all correct processors q. It is immediate from the definition of decides that

y '(state(p, r, E')) = v and that 7' (state(p, r', E')) = I for all r' E {1,. . . , r - 1}.

Using the definition of 7', we observe that

-y(state(p, r,E,)) = FIRE,

yp(state(p, r', Ej)) = I for all (r',j) E {1,... ,r - 1} x {1,2},

and

if v = 2 then y,(state(p, r, E1)) = 1.

By the simultaneity condition satisfied by protocol P we have, for all correct pro-

cessors q

qy(state(q, r, Ev)) = FIRE,

y(state(q,r', Ej)) = I for all (r',j) E {1,. . . ,r - 1} x {1,2},
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and

if v = 2 then yq(state(q, r,Ei)) = 1.

Let q be any processor that is correct in execution E'. Using the definition of

', we have that 7y'(state(q, r, E')) = v and that 7y'(state(q, r', E')) = I for all

r' E {1,... , r - 1}. Thus any correct processor decides v in round r of execution E'.

Validity condition: Say that all processors are correct and that all proces-

sors start execution E' of protocol P' with input v. There are two cases. Either

V = 1 or v = 2. We argue the case when v = 1. The other case is similar.

Let E1 = first(E') and let E2 = second(E'). By Lemma 6, state(p, r, E') =

[state(p, r, E1 ), state(p, r, E2)] for all p E N. By Lemma 6, no processor ever

receives a request to fire in execution E2. Thus yp(state(p, r, E2)) = I for all

(p, r) E N x I+. From the definition of y' we have that '(state(p, r, E')) E {I, 1}

for all (p, r) E N x I+. Thus the decision of all of the processors that decide is 1. 0

Lemma 8: Let P be any protocol that solves the lazy distributed Bring squad

problem. Let E = (C,WTV, H) be any normal execution of protocol P in which the

correct processors fire in some round r. If P' = /(P) then there is some normal

execution E' of protocol P' in which the correct processors decide by round r.

Proof: This proof is in two parts. First we construct the execution E'. Second we

show that it has the desired properties.

Construction of the execution E': We specify that E' = (C', (1,1,... , 1), H)

where the random-choice history C' is defined to be C'(p, r') = [W(p, r'), C(p, r')]

for all (p, r') EN x I+.

Verification that the execution E' has the desired properties: We now show

that execution E' is normal and that all correct processors decide by round r in

execution E'.

Executions E and E' have the same message histories. Execution E is a normal

execution of a lazy distributed firing squad protocol. The following property fol-

lows from the definitions of normal executions of lazy distributed firing squad and

randomized simultaneous agreement protocols: if H' is the message history of any

normal execution of a lazy distributed firing squad protocol then any execution of

a randomized simultaneous agreement protocol with message history H' is normal.

Thus execution E' is normal.

Having shown that execution E' is normal, we now show that all correct pro-

cessors decide by round r in execution E'. For all p E N let 7, be the decision
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function used by processor p in protocol P and let 7' be the decision functions used

by processor p in protocol P'. Note that E = first(E'). Let F = second(E'). By

Lemma 6,

state(p, r, E') = [state(p, r, E), state(p, r, F)].

By assumption, the correct processors fire in round r in execution E. Thus,

-y,(state(p, r, E)) = FIRE. We have that y'([state(p, r, E), state(p, r, F)]) = 1, by

the definition of y'. Therefore, the correct processors decide by round r in execu-

tion E' of protocol 7'. E

Lemma 9: If there is a protocol P that solves the lazy distributed firing squad

problem and that has an i-normal execution E in which all correct processors fire

in round r, then there is a protocol P' that solves the lazy distributed Bring squad

problem and that has a 0-normal execution E' in which all correct processors fire

in round r - 1.

Proof: The protocol P' is only slightly different from the protocol P; it is con-

structed from P by having each processor p start in the state state(p, 1, E) rather

than in the state qo. (We overcome the technical obstacle that our model requires

that all n processors start in the same state by encoding the new start states in the

message generation functions of protocol P'.) For all r, in protocol P' each proces-

sor sends the messages that it would send in round r + I of protocol P. That is,

if protocol P uses the message generation function yp,q(r, w, c, s), then protocol P'

uses the message generation function p',(r, , c,S) = pip,q(r + l, w, c, s). No other

change is required.

The proof that protocol P' solves the lazy distributed firing squad problem is

straightforward and is omitted. The execution E' is constructed from the execu-

tion E simply by discarding the first I rounds of the random-choice history, the

request history, and the message history. Removing I quiescent rounds from the

start of an i-normal execution in this way produces a 0-normal execution. Thus

execution E' is 0-normal. It is straightforward to show by induction on r that

state(p, r', E') = state(p, l + r', E) for all (p, r') E N x I+. No processors fire in

quiescent rounds of execution E by the validity condition satisfied by protocol 'P.

Thus, if the correct processors fire in round r in execution E then they fire in

round r - l in execution E'. D

Theorem 10: Let P be any protocol that solves the lazy distributed firing squad

problem. If E is any i-normal execution of protocol P, then the earliest round in

which the correct processors can fire in execution E is round I + t + 1.
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Proof: The proof is by contradiction. Suppose that the correct processors fire

before round I + t + 1 in execution E of protocol P. By Lemma 9, there is a

protocol P' that solves the lazy distributed firing squad problem and that has a

0-normal execution E' in which the correct processors fire before round t + 1.

Let P" = O(M). Protocol P" solves the lazy simultaneous weak agreement

problem by Theorem 7. By Lemma 8, there is some normal execution of protocol P"
in which the correct processors decide before round t + 1. By Theorem 5, such an

execution is impossible, contradiction. E

It is immediate from Theorem 10 that t + 1 is a lower bound on the expected

number of rounds required to solve the lazy distributed firing squad problem.

4. Tabulation of Known Bounds

We tabulate the known upper and lower bounds on rounds for various consen-

sus problems. The variables used in the tables are n, the number of processors; t, a

bound on the number of faults; and f, the number of faults that actually occur. We

consider the distributed firing squad problem, the simultaneous agreement problem,

and the eventual agreement problem. For each problem we consider a worst-case

bound, a worst-case bound parameterized by f, and a bound on the expected num-

ber of rounds required by a randomized protocol. The lower bounds are in the crash

fault model; the upper bounds are in the Byzantine fault model. For the agreement

problems, the lower bounds assume weak agreement and the upper bounds assume

strong agreement.

Lower bounds are given in Table 1. These bounds are for the crash fault model

Distributed Simultaneous Eventual
Firing Squad Agreement Agreement
Problem Problem Problem

Worst-case rounds t + 1 t + 1 t + 1
(deterministic) Coan, Dolev, Dwork, Lamport and Lamport and

and Stockmeyer (12] Fischer [33] Fischer [33]

Worst-case rounds t + 1 t + 1 min(f + 2, t + 1)
parameterized by f New in this Dolev, Reischuk, Dolev, Reischuk,

(deterministic) chapter. and Strong [20] and Strong [20]
Expected rounds t + 1 t + 1

(randomized) New in this New in this No non-trivial

chapter. chapter. bound is known.

Table 1: Lower Bounds for Crash Faults

138



Simultaneity is Harder than Agreement

and therefore also hold for more malicious failure models. Each entry in the table

gives a bound and a reference to the paper where the bound first appeared.

Upper bounds (protocols) are given in Table 2 for comparison with the lower

bounds. The upper bounds are all for the unauthenticated Byzantine fault model

and therefore also work in more benign fault models. In all but two cases, the

bounds are tight. In the case of early-stopping eventual agreement protocols, Dolev,
Reischuk, and Strong [20] have a protocol that achieves the lower bound if the

number of processors is large (n > 2t 2 +3t+5). The tabulated protocol works for all

n > 3t + 1. In the case of randomized eventual agreement protocols, there are many

protocols that improve on the tabulated one for more benign fault models. Protocols

exist that achieve 0(1) rounds if n is Q(t 2 ) [3], if only crash faults occur [10], or

if there is a trusted dealer [43]. There is a protocol due to Bracha [6] that uses

cryptography to terminate in O(log n) rounds. The performance of this protocol was

improved to O(log log n) rounds by Dwork, Shmoys, and Stockmeyer [24]. Another

protocol by Dwork, Shmoys, and Stockmeyer uses cryptography to terminate in

0(1) rounds if n is Q(t - log t).

Distributed Simultaneous Eventual
Firing Squad Agreement Agreement
Problem Problem Problem

Worst-case rounds t + 1 t + 1 t + 1
(deterministic) Burns and Lamport, Shostak, Lamport, Shostak,

Lynch [8] and Pease [34] and Pease [34]

Worst-case rounds t + 1 t + 1 min(2f + 5, 2t + 3)
parameterized by f Burns and Lamport, Shostak, Dolev, Reischuk,
(deterministic) Lynch [8] and Pease [34] and Strong [20]

Expected rounds t + 1 t + 1 O(t/ log n)

(randomized) Burns and Lamport, Shostak, New in

Lynch [8] and Pease [34] Chapter 5.

Table 2: Upper Bounds for Unauthenticated Byzantine Faults

The protocol of Lamport, Shostak, and Pease [34] is a deterministic simultane-

ous agreement protocol that always terminates in t + 1 rounds. It is therefore also a

degenerate randomized protocol (in which processors ignore their random choices)

that terminates in an optimal expected number of rounds. Each entry in the table

gives a bound and a reference to the paper where the bound first appeared.
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Appendix A to Chapter 6:
Lower Bounds for Deterministic Agreement Protocols

We prove Theorem 1, which is a lower bound on the number of rounds required

by any deterministic protocol for the lazy simultaneous weak agreement problem.

All executions and protocols in this appendix are deterministic. Our proof is in the

style developed by Merritt [38] as simplified by Dwork and Moses [22].

A.1 Directly Similar Executions and Similar Executions

We define two useful relations on executions-direct similarity and similarity.

Recall that t is an upper bound on the number of processor failures. Let E and E'

be executions of some protocol. E is directly similar to E', written E - E', if there

is some processor p such that state(p, t, E) = state(p, t, E'), and p is correct in E

and E'. Note the special role played by round t: two executions are directly similar

if they are indistinguishable to some correct processor at round t. The relation ~ is

symmetric. The relation similar, written ~~, is taken to be the reflexive, transitive

closure of the relation ~. Thus, e is an equivalence relation.

We now prove three lemmas that establish some basic properties of the

relation. In Lemma A-1 we prove that two executions are directly similar if they

differ only in the sending of a single round t message (i.e., the message is sent in

one execution and is not sent in the other).

Lemma A-1: Let E = (0, 1, H) and E' = (0, 1, H') be arbitrary executions. Let
p and q be arbitrary processors. If the message histories H and H' are identical
except that H(p,t,q) = / and H'(p,t, q) = I, then E ~-E'.

Proof: We claim that state(s, r, E) = state(s, r, E') for all (s, r) E N x {0, ... , t} -

{(p, t), (q, t)}. The proof of the claim is a straightforward induction on r and is

omitted.

Processor p is faulty in execution E'. In every execution there are at least two

correct processors because n > t +2. So, there must be some processor u : q that is

correct in execution E'. Any processor that is correct in execution E' is also correct

in execution E. Thus processor u is correct in executions E and E'. By the claim,

state(u, t, E) = state(u, t, E'). Thus E ~E'. 1

In Lemma A-2 we prove that two executions are directly similar if, for some r.

they differ only in the sending of a single round r message to some processor that

fails (in both executions) before sending any round r + 1 messages.
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Lemma A-2: Let E = (0, I, H) and E' = (0, I, H') be arbitrary executions. Let

r E I+. Let p and q be arbitrary processors. If H(q,r+1,1) = l and if the message

histories H and H' are identical except that H(p,r,q) = y/ and H'(p,r,q) = I,

then E ~ E'.

Proof: We claim that state(s, r', E) = state(s, r', E') for all (s, r') E N x {0,. . .} -
{(p, r), (q, r)}. The proof of the claim is a straightforward induction on r' and is

omitted.

Processors p and q are faulty in execution E'. In every execution there is at

least one correct processor because n > t + 2. So there must be some processor u

that is correct in execution E'. Any processor that is correct in execution E' is also

correct in execution E. Thus processor u is correct in executions E and E'. By the

claim, state(u, t, E) = state(u, t, E'). Thus E ~ E'. 0

In Lemma A-3 we prove that two executions are directly similar if they differ

only in the input to some processor that fails before sending its first message.

Lemma A-3: Let E = (0, 1, H) and E' = (0, ', H) be arbitrary executions where

I = (ii, ... , in) and where I' = (i',... ,i'). Let p be an arbitrary processor. If

iq = i' for all q E N - {p} and if H(p,1,1)= 1, then E - E'.

Proof: We claim that state(s,r, E) = state(s, r, E') for all (s, r) E N x {0,...} -
(p, 0). The proof of the claim is a straightforward induction on r and is omitted.

Clearly, executions E and E' have the same set of faulty processors. In every

execution there is at least one correct processor because n > t + 2. So, there

must be some processor u that is correct in executions E and E'. By the claim,
state(u, t, E) = state(u, t, E'). Thus E - E'. E

A.2 The Lower Bound

In this subsection we give a series of lemmas that culminate in our lower bound

for agreement. Lemma A-4 is our key lemma in which we prove that two normal ex-

ecutions are similar if they differ only in the sending of a single round r E {1, . . . , t }

message (i.e., the message is sent in one execution and not in the other) and if no

processor ever fails after sending its last round r message.

Lemma A-4: Let E = (0, 1, H) and E' = (0, 1, H') be arbitrary normal execu-

tions. Let r E {1, ... , t}. Let p and q be arbitrary processors. If every processor
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that fails in message history H fails by round r and if the message histories H and

H' are identical except that H(p, r, q) = / and H'(p, r, q) = I, then E ~ E'.

Proof: The proof is by reverse induction on r, from r = t to r = 1.

Basis: (r = t) By Lemma A-1, E ~ E'. Thus E ~ E'.

Induction: We make the following definitions. Let

, I if r' > r + 1 and s = q;
J(S, r , u) {H(s, r', u) otherwise.

The message history J is identical to the message history H except that in message

history J processor q fails after sending its last round r message. Let

J, , f I if r' > r + 1 and s =

H'(s, r', u) otherwise.

The message history J' is identical to the message history H' except that in message

history J' processor q fails after sending its last round r message. Let F = (0, 1, J)

and let F' = (0, 1, J'). Observe that F and F' are normal executions. Observe

that every processor that fails in message history J fails by round r + 1 and every

processor that fails in message history J' fails by round r + 1. We now calculate

E ~ F By repeated application of the induction hypothesis.

F' By Lemma A-2.

~ E' By repeated application of the induction hypothesis. E

In Lemma A-5 we use Lemmas A-3 and A-4 to show that two failure-free

normal executions are similar if they differ only in the input to one processor.

Lemma A-5: Let E = (0, I, H) and E' = (0,I', H) be arbitrary normal executions

where I = (ii,.. . , i) and where I' = (i'i,... i'). Let p be an arbitrary processor.

If i, = i for all q E N - {p} and if all processors are correct in the message

history H, then E ~ E'.

Proof: We make the following definition. Let

, I if S = P;
J(s,r/,u) = o{ h

Sotherwise.
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Thus, the message history J is identical to the message history H except that

in message history J processor p sends no messages. Let F = (0, I, J) and let

F' = (0, I', J). We calculate that

E ~ F By repeated application of Lemma A-4.

F' By Lemma A-3.

~ E' By repeated application of Lemma A-4. E

In Lemma A-6 we use Lemmas A-4 and A-5 to prove the surprising result

that all normal executions are similar.

Lemma A-6: For all normal executions E = (0, I, H) and E' = (0, I', H') it is

the case that E ~ E'.

Proof: Let J(p, r, q) = /for all r E I+ and for all (p, q) E N 2 . Let F = (0,I,J)
and let F' = (0, I', J). We calculate that

E ~ F By repeated application of Lemma A-4.

~ F' By repeated application of Lemma A-5.

~ E' By repeated application of Lemma A-4. E

Theorem 1: Let P be any deterministic protocol that solves the lazy simultaneous

weak agreement problem. In any normal execution of P no correct processor decides

before round t + 1.

Proof: The proof is by contradiction. Suppose there is a normal execution E =

(0, I, H) of protocol P in which some correct processor decides in some round r

where r < t. By the simultaneity condition satisfied by P, all correct processors

decide in round r. By the agreement condition satisfied by P, all correct processors

reach the same decision. Without loss of generality suppose they all decide 0.

Let H'(s, r', u) = V for all r' E I+ and for all (s, u) E N 2 . Let E' = (oI', H')

where I' is an n-element vector of ones. By the validity condition satisfied by

protocol P, no correct processor decides 0 in execution E'. By Lemma A-6, E ~ E'.

Thus there is a chain of executions E = Ei £2 - - - - ~ Ej = E'. We have already

shown that all of the correct processors in execution E = E1 decide 0 in round r.

For all i E {2,... ,j}, it follows from the definition of ~ and from the agreement

and simultaneity conditions satisfied by protocol P that all of the correct processors

in execution Ei decide 0 in round r. Thus all of the correct processors in E' decide

0 in round r, contradiction.
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