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Abstrat

We propose light-weight lease primitives to leverage fault-tolerant oordination

among lients aessing a shared storage infrastruture (suh as network attahed disks

or storage servers). In our approah, leases are implemented from the very shared data

that they protet. That is, there is no global lease manager, there is a lease per data

item (e.g., a �le, a diretory, a disk partition, et.) or a olletion thereof. Our lease

primitives are useful for failitating exlusive aess to data in systems satisfying er-

tain timeliness onstraints. In addition, they an be utilized as a building blok for

implementing dependable servies resilient to timing failures. In partiular, we show

a simple lease based solution for fault-tolerant Consensus whih is a benhmark dis-

tributed oordination problem.
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1 Introdution

Motivation. In reent years, advanes in hardware tehnology have made possible a new

approah for storage sharing, in whih lients aess disks diretly over a storage area net-

work (SAN). By allowing the data to be transferred diretly from network attahed disks to

lients, SAN has the potential to improve salability (through eliminating the �le server bot-

tlenek) and performane (through shorter data paths). However, without properly restrit-

ing onurrent aess to shared data by lients, shared data would be rendered inonsistent.

Therefore, a salable and eÆient loking support is widely reognized as a key requisite for

realizing the SAN tehnology's full potential.

The traditional approah to implementing loks in SAN-based �le systems designates

a lok manager to administer shared aess [11, 32℄, thus reating a performane and an

availability bottlenek. An alternative approah, put forth in this paper, is to employ a

storage-entri loking, i.e., to o-loate loks with the very data items that are proteted by

these loks. This way, the ost of loking is folded into the ost of aessing the data itself,

and the loks availability is the same as that of the data itself. The hallenge is in providing

an eÆient and fault-tolerant implementation.

Fault tolerane. A naive per-datum lok design would assoiate a strong objet that di-

retly implements loking (suh as test-and-set) with eah data item. However, this approah

has several drawbaks: First, it neessitates a sophistiated support on behalf of the storage

hardware suh as SCSI ontrollers enhaned with devie loks (see [35, 9℄), or objet store

ontrollers (see [36, 22℄). These hardware enhanements still remain proprietary and it is

unlear whether they will be aepted by the storage manufaturers in the future.

Seond, data is frequently repliated on several storage units (e.g., a �le may be striped,

or mirrored) for availability and fault-tolerane. As a result, it is desirable to have the loks

repliated as well so that the same level of availability is preserved. Unfortunately, as it

was proved in [24℄, it is impossible to use a olletion of fail-prone strong objets (suh as

test-and-set, ompare-and-swap, et.) to implement a reliable one.

We therefore opt for an alternative approah whih is to build loks from weaker objets,

i.e., read/write registers. Thus, deployment beomes a non-issue, as designating a read/write

word per �le or per blok on a disk is trivially done. In ase that multi disk loking is required,

a single reliable read/write register is implementable using a farm of failure-prone storage

units (see, e.g., [7, 8, 13℄). In the remainder of this paper, we largely ignore repliation

and follow a modular approah: i.e., we will assume that reliable registers are available, and

develop algorithms in a shared memory model with reliable registers.

Uniform solutions. It is known that supporting mutual exlusion with read/write regis-

ters inurs a ost that is linear in the maximum potential number of partiipating proesses,

in terms of both the memory onsumption and the number of shared memory aesses [12℄.

Indeed, many similar abstrations suh as failure detetors, or the 
 leader orale of [16℄, are

de�ned for a group of known members. To irumvent this limitation, we adopt a timing-

based loking approah that was originally suggested by Fisher [26℄. This results in a very

simple loking protool, that uses a single read/write register per data item to support
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exlusion among a priori unknown (but eventually �nite) number of lient proesses.

We enhane Fisher's sheme with a number of important modi�ations. First, in order to

support automati reovery of the loks held by failed proesses, we augment the sheme with

an expiration mehanism so that a lok is leased to a proess for a pre-de�ned time period.

One the lease period expires, the lok is relinquished and subsequently, an be granted

to another proess. (In the following, we will use terms loks and leases interhangeably).

Another important extension we present is the support for automati lease renewal. This

leads to eÆient utilization of the lease by a leader who holds the lease and ontinues doing

useful work.

Reahing oordination. There still remain tasks that are best handled by a oordinated

group of SAN managers. For example, SAN managers need to administer volume assign-

ments and on�guration information. The ommon approah for reahing onsensus among

multiple servers in suh tasks is to employ the Paxos paradigm [27℄. This paradigm preserves

uniqueness of deisions through a three phase ommit protool, and relies on timeliness on-

ditions for progress. Our leases serve as a fundamental enabler of the Paxos paradigm

in storage-entri systems, and a neessary building blok for the agreement algorithms in

[19, 14℄. Our leases guarantee exlusion to lients one the system stabilizes (and remains

stable for long enough), regardless of any past timing violations. This allows our lease to

support an eventual leader-eletion primitive, a neessary building blok for implementing

dependable servies resilient to timing failures.

We show a simple lease based solution for fault-tolerant onsensus that guarantees agree-

ment at all times but an fail to make progress when the system is unstable. The latter an

be used to realize eÆient, always safe fault-tolerant loking using a hierarhial approah

desribed by Lampson in [28℄.

Contribution. In the remainder of this exposition, we provide a formal treatment of the

problem at hand, in whih disks are simply onsidered to be persistent shared memory

ontainers aessed by multiple fail-prone lients. Our work provides the following formal

ontribution. It gives a spei�ation of leases, inluding a renewal operation. It provides an

eÆient way to implement leases for an unbounded number of unreliable lient proesses.

The solution applies ideas originally developed for mutual exlusion in synhronous shared

memory to derive light-weight lease primitives for highly deentralized and unreliable dis-

tributed settings. Finally, we show a simple lease based solution for fault-tolerant Consensus

whih is a benhmark distributed oordination problem.

2 Related Work

In this paper we apply the real-time mutual exlusion theory to support loking in pratial

SAN-based systems. In the following, we survey the urrent state-of-the-art in these two

areas.
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2.1 Loking Support in SAN-based �le systems

Traditionally, SAN-based �le systems rely on separate servers to maintain their meta-data

and oordinate aess to the user data on storage devies. The meta-data servers an be repli-

ated for better availability and load balaning. The server replias are kept in a onsistent

state using a group-ommuniation substrate. However, the luster of repliated meta-data

servers still remains the performane and availability hotspot as all the �le-system operations

(even those targeted to di�erent objets) must onsult the meta-data servers before aessing

the storage. Examples of the systems whose design follows this approah inlude the IBM

General Parallel File System (GPFS) [37℄ and IBM StorageTank [32℄. More examples an

be found in [22℄.

The vision of a storage-entri loking was �rst realized in the Global File System (GFS)

projet [34, 38, 39℄ developed in the University of Minnesota. In GFS, the luster nodes

physially share storage devies onneted via a high-speed network. GFS utilizes �ne grain

test-and-set loks provided by speialized SCSI devies [35, 9℄ to implement atomi exeution

of �le system operations.

Amiri et al. [6℄ proposes base storage transations (BSTs) as a ore paradigm for main-

taining low-level integrity of striped storage (suh as RAID) in the fae of onurrent lient

aesses. In partiular, the paper disusses devie-served loking as an alternative to tradi-

tional entralized loking shemes. It demonstrates through an extensive empirial perfor-

mane study that devie-served loking provides better performane under high ontention,

and is therefore, more salable.

zFS [36, 22℄ is a researh �le system implemented over objet store devies [33℄ diretly

aessible over a SAN. In zFS, eah storage devie maintains a oarse grain lok whih an

be used by a lease manager to obtain an exlusive aess (a major lease) to the entire devie.

The lease manager is then responsible for administering �ne grain loks to lients requesting

aess to individual data items stored on the devie.

The symmetrial loking mehanisms above all guarantee availability of lok information

in fae of proess failures. However, none of these systems support data and lok repliation

and therefore, do not guarantee availability in the fae of storage devie failures. As a partial

solution, a reliability hardware (suh as RAID) may be employed in these systems to mask

the storage failures to some extent. In addition, both GFS and zFS require sophistiated

storage hardware whih must be able to support read-modify-write instrutions and, in the

ase of zFS, also be apable of measuring real time passages.

2.2 Time Based Mutual Exlusion

Algorithms for mutual exlusion in the presene of failures must be based on timeliness

assumptions, as they have to be able to attain progress in spite of proess failures while

exeuting in their ritial setion. There are two ommonly used timing assumptions in this

ontext: The known delay model of [3, 4, 5℄ and the unknown delay model of [2℄.

The known delay model was �rst formally de�ned in [4℄. The �rst mutual exlusion

algorithm expliitly based on the known delay assumption was the famous Fisher algorithm,

whih was �rst mentioned by Lamport in [26℄. In [26℄, another timing based algorithm is
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presented. This algorithm assumes a known upper bound on time a proess may spend in

the ritial setion.

Alur et al. onsider in [2℄ the unknown delay model: The time it takes for a proess to

make a step is bounded but unknown to the proesses. The paper presents algorithms for

mutual exlusion and Consensus in this model. A remarkable feature of these algorithms

is their ability to preserve safety even in ompletely asynhronous runs. However, they are

guaranteed to satisfy progress only if the system behaves synhronously throughout the entire

run. The mutual exlusion algorithm of [31℄ ombines the ideas of Fisher and Lamport's

fast mutual exlusion algorithm [26℄ to derive a timing based algorithm that guarantees

progress when the system stabilizes while being safe at all times. However, the algorithm

of [31℄ is not fault-tolerant.

As far as we know the eventual known delay timed (�ND) model introdued in this

paper was never onsidered in the shared memory ontext. Most of the existing time based

algorithms are either not fault-tolerant [4, 5℄, or resilient only to the timing failures [31, 2℄.

The fault-tolerant (wait-free) timing based algorithms of [3℄ are not suitable for the �ND

model as they might violate safety and/or liveness even during synhronous periods if the

delay onstraints do not hold right from the beginning of the run.

The �ND model onsidered in this paper is an extension of a standard asynhronous

shared memory model to inlude timeliness assumptions based on the absolute real-time.

To this end, the �ND model postulates the existene of bounded drift loal hardware loks

aessible to eah proess. In this respet, the �ND model losely resembles the timed

asynhronous model of Cristian and Fetzer de�ned in [17℄. An alternative approah to

model timeliness in shared memory environments is to postulate the existene of a known

upper bound on relative proess speeds as it is done by Lynh and Shavit in [31℄. This

results in a model analogous to the partial synhrony model of [18℄. However, as is, the

partial synhrony model of [31℄ is inappropriate for our purposes as it does not distinguish

between loal proess steps and those involving a shared memory aess. This distintion

is important if non-atomi shared objets (suh as regular registers) are assumed. Relaxing

the partial synhrony model of [31℄ to allow non-atomi memory aess as well as evaluating

appliability of other timed models (e.g., [1℄, or the timed I/O automata model of [25℄)

remains a subjet of the future work.

Other properties that are of interest to us is the ability of timing based algorithms to

support exlusion among arbitrarily many lient proesses and to work with weaker regis-

ters and/or a small number thereof. The latter is partiularly important in failure prone

environments as in these environments the registers must be �rst emulated out of possibly

faulty omponents. In this respet the original solution by Fisher is superior to all the other

algorithms as it is based on a single multi-writer multi-reader register. In fat, as we show

in this paper, the register is only required to support regular semantis (in the sense of [13℄),

and hene may be emulated eÆiently even in a message passing setting. This solutions was

therefore hosen as a basis for our lease implementation. The algorithms of [31℄ and [4℄ are

also oblivious to the number of partiipants and use two and three shared atomi registers

respetively.

The goodness of timing based mutual exlusion algorithms are frequently assessed in

terms of their performane in ontention free runs. In partiular, a good algorithm is expeted
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to avoid delay statements when there are no ontention. The performane of the timing based

algorithms under various levels of ontention is analyzed in [20℄. The paper examines (both

analytially and in simulations) the expeted throughput of timed based mutual exlusion

algorithms under various statistial assumptions on the arrival rate and the servie time.

The question of further optimizing our leases approah for ontention free runs is left for

future researh.

2.3 Other work on loks and leases

Gray and Cheriton were the �rst to employ leases in [23℄ for onstruting fault-tolerant

distributed systems. Lampson advoates in [28, 29℄ the use of leases to improve the Paxos

algorithm. Boihat et al. [10℄ introdue asynhronous leases as an optimization to the atomi

broadast algorithms based on the rotating oordinator paradigm. Chokler et al. [15℄ show a

randomized bako� based algorithm for implementing leases in a setting similar to the �ND

model of this paper. However, the algorithm of [15℄ guarantees progress only probabilistially,

and relies on shared objets that an measure the passage of time. Finally, Cristian and

Fetzer [17℄ show an implementation of leases in timed asynhronous message passing systems.

3 System Model

We will start by de�ning a basi asynhronous shared memory model and the regular register

properties (Setion 3.1). We will follow the basi formalism of [13℄. Then, in Setion 3.3,

we augment the basi model with neessary timeliness assumptions by adapting the timed

asynhronous model of [17℄ to the shared memory environment.

3.1 The Basi Model

Our basi model is an asynhronous shared memory model onsisting of �nite but a priori

unknown universe of proesses p

1

; p

2

; : : : ommuniating by means of a �nite olletion of

shared objets, O

1

; : : : ; O

n

. Every shared objet has a sequential spei�ation de�ning the

objet behavior when aessed sequentially. A sequene of operations on a shared objet

is legal if it belongs to the sequential spei�ation of the shared objet. In this paper, we

redue our attention to read/write shared objets. A sequene of operations on a read/write

shared objet is legal if eah read operation returns the value written by the most reent

write operation if suh exists, or an initial value otherwise.

The operations on objets have non-zero duration, ommening with an invoation and

ending with a response. An exeution of an objet is a sequene of possibly interleaving

invoations and responses. For an exeution � and a proess p

i

, we denote by �ji the

subsequene of � ontaining invoations and responses performed by p

i

. Proesses may fail

by rashing. A proess is alled orret in an exeution � if it never rashes throughout

�. Otherwise, a proess is alled faulty in �. A threshold t of the objets may su�er non-

responsive rash failures [24℄, i.e., may stop responding to inoming invoations.

An exeution � is admissible if the following is satis�ed: (1) Every invoation by a orret

proess in � has a mathing response; and (2) For eah proess p

i

, �ji onsists of alternating
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invoations and mathing responses beginning with an invoation. In the rest of this paper,

only admissible exeutions will be onsidered.

Given an exeution �, we denote by ops(�) (resp. write(�)) the set of all operations

(resp. all write operations) in �; and for a read operation r in �, we denote by writes

 r

the

set of all write operations w in � suh that w begins before r ends in �. The operations in

ops(�) are partially ordered by a!

�

relation satisfying o

1

!

�

o

2

i� o

1

ends before o

2

begins

in �. In the following, we will often omit the exeution subsript from ! if it is lear from

the ontext.

Our de�nition of regularity for a multi-reader/multi-writer read/write shared objet is

similar to the MWR2 ondition of [13℄. It is as follows:

De�nition 1 (Regularity). An exeution � satis�es regularity if there exists a permutation

� of all the operations in ops(�) suh that for any read operation r, the projetion �

r

of �

onto writes

 r

[ frg satis�es:

1. �

r

is a legal sequene.

2. �

r

is onsistent with the ! relation on ops(�).

A read/write shared objet is regular if all its exeutions satisfy regularity.

3.2 Masking objet failures

Given a olletion of n > 2t shared objets up to t of whih an su�er from non-responsive

rash failures, it is possible to onstrut a wait-free regular register de�ned in the previous

setion (see e.g., [13, 8℄). The resulting reliable registers an then be used to onstrut higher

level servies. Hene, in this paper we will follow a modular approah: i.e., we will assume

that reliable registers are available, and develop algorithms in a shared memory model with

reliable registers.

3.3 The Augmented model

In the augmented model, eah proess is assumed to have aess to a hardware lok with

some predetermined granularity. We also assume that eah proess an suspend itself by

exeuting a delay statement. Thus, a all to delay(t) will ause the aller to suspend its

exeution for t onseutive time units. We model the system behavior as a General Timed

Automaton (GTA) [30℄ whih is a state mahine augmented with speial time-passage events

�(t), t 2 R. The time-passage event �(t) denotes the passage of real time by the amount t.

The system is alled stable over a time interval [s; t℄, alled a stability period, if the

following holds during [s; t℄: (1) The proesses' lok drift with respet to the real-time is

bounded by a known onstant �. For simpliity we assume that � = 0 (it is easy to extend

our results to loks with � 6= 0); and (2) The time it takes for a orret proess to omplete

its aess to a shared memory objet, i.e., to invoke an operation and reeive a reply, is

stritly less than a known bound Æ.

In the following, we will be interested mainly in properties exhibited by the system during

stability periods. To simplify the presentation, we will onsider a timed model, whih we
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release

i

�(�)

ontend

i

ak

i

Try

i

Hold

i

Exit

i

Release

i

ak

i

�(0)

�(t),t � 0

Free

i

(initial

state)

Figure 1: Well-formed interation of proess i and the �-Lease objet

all an Eventually Known Delay Timed model, or �ND, with stability periods of in�nite

duration: i.e., we assume that for eah run there exists a global stabilization time (GST)

suh that the system is stable forever after GST (i.e., during [GST;1℄). In the remainder

of the presentation, all properties and orretness proofs regard operations the start after

GST.

We will also onsider a speial ase of the �ND model, whih we all a Known Delay

Timed model, or ND, that requires eah run to be stable right from the outset.

4 The Lease Spei�ation without Renewals

We de�ne the �-Lease objet as a shared memory objet that an be onurrently aessed

by any number of proesses, and whose interfae onsists of the following two operations for

eah proess i: ontend

i

and release

i

. The responses to these operations are ak

i

. We

assume that the interation between eah proess i and the lease objet is well-formed in the

sense that it is onsistent with the state diagram depited in Figure 1.

A proess that is not holding a lease is in the state Free. We assume that eah proess

exeution always starts from the Free state. A proess that attempts to aquire the lease,

invokes ontend and moves to the state Try. One ontend returns, the proess moves

to the state Hold assuming the lease for the next � time units. One the lease expires, the

proess moves to the Exit state. At this state, the appliation invokes release and returns

to the Free state upon the ak response.
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In the states Free, Hold and Exit, the proess exeutes the ode spei�ed by the applia-

tion program. We do not put any restritions on the time spent in the Free state (indiated

by t � 0 time passage). However, we assume that the transition from the state Exit to the

Release state is instantaneous (indiated by a 0 time passage).

A �-Lease objet is required to satisfy the following property after time t � GST :

Property 1. At any point in an exeution, the following holds:

1. Safety: At most one proess is in the Hold state.

2. Contend Progress: If no proess is in the Hold state, and some orret proess is in the

Try state, then at some later point some orret proess enters the Hold state.

3. Release Progress: At any point in an exeution, if a orret proess i is in the Release

state, then at some later point proess i enters the Free state.

5 The Lease Implementation

The �-Lease objet implementation appears in Figure 2. It utilizes a single shared multi-

reader multi-writer regular register x. A proess that tries to aquire the lease writes a

unique timestamp to the register x and delays for 2Æ time. If upon the delay expiration,

the proess reads its own value bak, then it aquires the lease and enters the Hold state.

Otherwise, it baks o� to the loop in lines 4{8, where it waits until the urrent lease holder

either relinquishes the lease, or the lease period � expires without release being alled.

The latter ould happen if the urrent lease holder rashes before alling release. Note

that eah proess has to write a unique timestamp (e.g., id and a sequene number) into x.

This is neessary in order to prevent a proess that aquires the lease for several times in a

row from being falsely suspeted by other proesses.

Upon release, a speial ? value is written to x to indiate the fat that no proess

is urrently holding the lease. This way a newly ontending proess ould avoid the delay

statement in line 2.6 and proeed diretly to 2.9.

We now prove that the implementation in Figure 2 satis�es the �-Lease objet properties.

Throughout the proof, we make use of the following assumptions and notations. Let

L be a ontend operation. We denote the sequene of read/write operations by whih L

terminates by:

L:r

0

, (delay � + 5Æ), L:r

00

, L:w, (delay 2Æ), L:r :

That is, denote by L:w the last write operation invoked during L (i.e., the last time line 10

in Figure 2 is ativated). Denote by L:r the read operation that follows L:w (on line 12).

If there exists a read operation invoked from line 7, denote by L:r

00

the one immediately

preeding L:w. If L:r

00

exists, it is immediately preeded by a read operation L:r

0

from line

1 or line 12 followed by a delay of (� + 5Æ). Otherwise, let L:r

0

be the last read operation

during L from line 1 or line 12 that preedes L:w.

Finally, for the exeution onsidered in all proofs, let � be a serialization of the operations

that upholds the regularity of x.
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Shared:

x 2 TS

?

;

Loal:

x

1

; x

2

2 TS

?

.

ontend:

(1) x

2

 read(x);

(2) do

(3) if (x

2

6= ?) then f

(4) do

(5) x

1

 x

2

;

(6) delay(� + 5Æ);

/* � + 6Æ for the �ND renewals */

(7) x

2

 read(x);

(8) until x

1

= x

2

_ x

2

= ?;

g

(9) Generate a unique timestamp ts;

(10) write(x; ts);

(11) delay(2Æ);

(12) x

2

 read(x);

(13) until x

2

= ts;

(14) return ak;

release:

write(x;?);

return ak;

Figure 2: The �-Lease Implementation.

Lemma 1. Let L

0

be a ontend operation invoked by proess p that returns at time t

0

.

Denote s

0

= t

0

+� the expiration time of L

0

. Then for all ontend operations L suh that

L:w appears in � after L

0

:w, if L:r

00

is invoked, then it is invoked after s

0

+ Æ.

Proof. Assume to the ontrary, and let L be a ontend operation suh that L:w is the �rst

write in � that breaks the onditions of the lemma.

Clearly, L:w does not preede L

0

:r in �

L

0

:r

, for else L

0

:r annot return the value written

by L

0

:w. Furthermore, sine all write operations w suh that w ! L

0

:r must appear in �

L

0

:r

before L

0

:r, and beause by assumption L

0

:w preedes L:w in �, L:w 6! L

0

:r. Putting this

together with the fat that the response of L

0

:w and the start of L

0

:r are separated by a 2Æ

delay, we have L

0

:w! L:r

00

(see Figure 3(a)). Hene, L

0

:w 2 �

L:r

00

.

Next, we show that L

0

:w is the last write preeding L:r

00

in �

L:r

00

. Let L

0

6= L be a

ontend operation suh that L

0

:w is between L

0

:w and L:r

00

in �

L:r

00

. By assumption, L

0

:r

00

must be invoked after s

0

+ Æ. Sine, by de�nition of �

L:r

00

, L

0

:w must be invoked before L:r

00

returns, L:r

00

returns after s

0

+ Æ, as depited in Figure 3(b). Sine L

0

:w is invoked after

9
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00
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(b):

(a):

L

0

L

2Æ r �

wr

00

r

00

w

L

0

w

r

0

s

0

s

0

+ Æ

L

Figure 3: Possible plaements of overlapping ontend operations L

0

and L.

s

0

+ Æ, and sine by assumption, L:r

0

�nishes before s

0

+ Æ, we get that L:r

0

! L

0

:w. Putting

this together with the assumption that L

0

:w preedes L:r

00

in �

L:r

00

, we obtain that L:r

0

and

L:r

00

will return di�erent values in whih ase the lease implementation implies that the write

statement is not reahed. Hene, L:w ould not have been invoked. Thus, L

0

:w is the last

write preeding L:r

00

in �

L:r

00

implying that L:r

00

returns the value written by L

0

:w.

By onstrution, L:r

00

is preeded by a 5Æ +� delay preeded by another read operation

L:r

0

suh that the timestamp values returned by these two read's are idential. However, it

is easy to see that L

0

:w is ontained in full between these two reads. Indeed, we already

know that L

0

:w ! L:r

00

. We now show that L:r

0

! L

0

:w. Indeed, the earliest time that

L

0

:w an be invoked is s

0

��� 4Æ. Sine by assumption L:r

00

is invoked before s

0

+ Æ, L:r

0

returns before s

0

+ Æ � (� + 5Æ) = s

0

��� 4Æ (see Figure 3(b)). Therefore, L:r

0

! L

0

:w.

Thus, regularity of x and the timestamp uniqueness imply that L:r

0

and L:r

00

return di�erent

timestamps in whih ase the lease implementation implies that the write statement is not

reahed. Hene, L:w ould not have been invoked. A ontradition.

We are now ready to prove Safety.

Lemma 2 (Safety). The implementation in Figure 2 satis�es Property 1.1.

Proof. Let L be a ontend operation by proess p that returns at time t. Denote s = t+�.

Suppose to the ontrary that another ontend operation L

0

returns at time t

0

within the

interval [t; s℄.

First, suppose that L

0

:r

00

has never been invoked. Then, L:r

0

must have returned ?.

Therefore, L:r

0

must have been invoked before L:w returns. Therefore, L

0

:w returns before

L:delay(2Æ) terminates. Hene, L

0

:w! L:r, and by regularity of x, both L:w and L:w

0

must

appear in both �

L:r

and �

L:r

0

. Sine L:r returns the value written by L:w, L:w

0

preedes L:w

10



in �. However, by assumption, L:r

0

must return the value written by L:w

0

. Therefore, L:w

preedes L:w

0

in �. A ontradition.

Next, suppose that L

0

:r

00

was invoked. Then, it must have been invoked before s+ Æ. By

Lemma 1, putting L

0

= L we get that L:w does not preede L

0

:w in �. Seond, L:r

00

must be

invoked before t

0

, and a fortiori, before t

0

+�+ Æ. Applying Lemma 1 again, with L

0

= L

0

,

we get that L:w

0

does not preede L:w in �. A ontradition.

We now turn our attention to proving Progress. We �rst prove the following tehnial fat.

Lemma 3. Let q be a proess that performs an operation w

1

= write that returns at time

t. If no proess returns from a ontend operation after t, then for eah s > t, the interval

[s; s+ 5Æ℄ ontains a omplete write invoation (i.e., from its invoation to its response).

Proof. Suppose to the ontrary. By assumption, no write operation is invoked between s

and s+4Æ. Let W be the last write invoked before s, or possibly the set of onurrent, latest

writes invoked before s. Formally, W is the set of all w suh that (1) w is invoked before

s; and (2) for any write w

0

invoked by s + 4Æ, w 6! w

0

. W is not empty beause w

1

starts

before s, and no write is invoked in the interval [s; s+ 4Æ℄.

Let w 2 W , and let r = read be the orresponding read operation, invoked by the same

proess 2Æ after w. We laim that (i) W ! r, and (ii) there does not exist any write event

! in �

r

that follows W in � suh that W ! ! and ! is invoked before r returns.

To see that (i) holds, let w

0

2 W . Sine w 6! w

0

, we have that w

0

terminates at most Æ

after w; sine r starts 2Æ after w's termination, w

0

! r. To see (ii), �rst note that ifW ! !,

then by de�nition ! annot be invoked before s. Seond, by assumption, no write is invoked

between s and s+4Æ, but r terminates by s+4Æ at the latest. So ! annot be invoked before

r returns, and hene is not in �

r

.

Hene, by the regularity of x, all read's orresponding to write's in W must return the

value of the last write in � from W . The read orresponding to this write then sees x

unhanged, and its initiator is allowed to obtain the lease. A ontradition.

Lemma 4 (Progress). The implementation in Figure 2 satis�es Property 1.2.

Proof. Suppose that no proess is holding the lease at time t. Let p be a orret proess

that is still ontending at t. Suppose for ontradition that no ontend operation returns

after t.

First, eventually some proess, say q

1

, invokes an operation w

1

= write. This is due to

the fat that the wait-loop at the start of the ontend algorithm (lines 2.4{8) terminates

at some proess when no write's are performed.

By Lemma 3, if there is no suessful ontend after w

1

returns, then every instane

of the loop by q

1

observes at least one new written value. Thus, the test in line 2 remains

false. Hene, q

1

does not perform any further write's. Let an operation w

2

= write by q

2

be

observed by q

1

. Again, so long as there is no suessful ontend, by Lemma 3, q

2

performs

no further write's. And so on.

Sine the number of proesses is �nite, eventually all proesses are in their wait loop and

no proess writes. This is a ontradition.

Finally, sine the release ode is trivially live, we proved the following

Theorem 1. The implementation in Figure 2 satis�es Property 1.
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Figure 4: Well-formed interation of proess i and the �-Lease objet with renewals

6 Lease renewals

In many situations, it is important to enable the urrent lease holder to renew its lease

without ontention. For example, this is the ase when a lease holder requires more time

to omplete an operation than the alloted period. Another example is the use of leases to

obtain a leader, in whih ase we wish the leader to perpetuate so long as it is alive.

In this and the following setion, we onsider lease renewals. We start by extending the

lease spei�ation in Setion 4 to inlude lease renewals.

The �-Lease objet with renewals supports for eah proess i, an additional renew

i

operation whose response is either true

i

or false

i

. The extended well-formedness ondition

is given by the state diagram depited in Figure 4. It allows an appliation in the Exit state

to attempt lease renewal by alling the renew operation. If the all to renew returns

true, the proess assumes the lease for another � time units. Otherwise, it returns to the

state Free. Note that a proess is allowed to renew its lease for several times in a row before

relinquishing the lease with the release operation.

In addition to Property 1, a �-Lease objet with renewals is required to satisfy the

following properties after time t � GST :

Property 2. At any point in an exeution, the following holds:

1. Renewal Safety: If a orret proess i is in the Renew state, then no other proess is

in the Hold state.
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2. Renewal Progress: At any point in an exeution, if a orret proess i is in the Renew

state, then at some later point proess i enters the Hold state.

7 Implementing Renewals

In this setion we address the lease renewals implementation. We onsider two implemen-

tation options: The �rst one is suitable for the ND model, and is extremely eÆient. The

seond one works in the �ND model, and guarantees stabilization of renewal: Only one

renewal emerges suessfully after GST, despite any unstable past periods, and despite the

possible existene of multiple simultaneous lease holders before GST. The �ND renewal

protool is somewhat more ostly.

7.1 ND renewal

The renewal implementation in the ND model is extremely simple: A proess whose pre-

viously granted lease expires an renew it for another � time units by simply exeuting

lines 8{9 of the �-Lease implementation in Figure 2. More preisely, we de�ne the renew

operation as follows:

renew:

Generate a unique timestamp ts;

write(x; ts);

return true;

We now prove the orretness of the ND renewal sheme. Sine liveness trivially holds,

we are only left with proving safety.

Lemma 5. Consider a sequene ` = L

0

rn

1

rn

2

: : : rn

k

of lease operations by proess p. Sup-

pose that L

0

is a suessful ontend operation that returns at time t

0

, and rn

i

is a suessful

renew operation that returns at time t

i

. Then there exists no ontend operation L by pro-

ess q 6= p suh that L:w is invoked within the interval [t

0

; t

k

+�+ 2Æ℄.

Proof. By indution on length of `. For the base ase, let ` = L

0

rn

1

. Suppose to the ontrary

that there exists a ontend operation L suh that L:w is invoked within [t

0

; t

1

+�+ 2Æ℄.

First, note that L

0

:w! L:w, and therefore, L

0

:w preedes L:w in �. Therefore, by Lemma 1,

L:r

00

must be invoked after t

0

+� + Æ. Sine rn

1

:w is invoked at t

0

+�, it must return by

t

0

+ � + Æ, and therefore, rn

1

:w ! L:r

00

. Sine L:r

00

is invoked before t

1

+ � + 2Æ, L:r

0

returns before t

1

+�+ 2Æ � (� + 5Æ) = t

1

� 3Æ. Sine rn

1

:w must be invoked at t

1

� Æ the

earliest, L:r

0

! rn

1

:w. Therefore, by regularity of x and timestamp uniqueness, L:r

0

and L:r

00

will return di�erent values violating the neessary ondition for the write statement of the

ontend implementation to be reahed. Hene, L:w annot be invoked. A ontradition.

Assume that the result holds for all sequenes ` of length k� 1, and onsider a sequene

`

0

= ` rn

k

. Assume to the ontrary. By the indutive assumption, L:w must be invoked

after t

(k�1)

+ � + 2Æ. Therefore, rn

k

:w ! L:r

00

. On the other hand, L:r

00

must be invoked

13



before t

k

+ � + 2Æ. Therefore, L:r

0

must return before t

k

� 3Æ. Sine the earliest time

rn

k

:w an be invoked is t

k

� Æ, L:r

0

! L:w. Therefore, by regularity of x and timestamp

uniqueness, L:r

0

and L:r

00

will return di�erent values violating the neessary ondition for

the write statement of the ontend implementation to be reahed. Hene, L:w annot be

invoked. A ontradition.

Lemma 6. Suppose that a proess p returns from a renew operation rn at time t. Then,

there exists no proess q 6= p whose renew operation rn

0

returns within the interval [t; t+�℄.

Proof. Suppose to the ontrary that rn

0

returns at time t

0

within the interval [t; t + �℄.

By well-formedness, both p and q must have been invoked ontend operations L and L

0

in the past to aquire their initial leases. Suppose that L and L

0

return at times  < t

and 

0

< t

0

respetively. Assume, w.l.o.g, that  < 

0

. By Lemma 5, putting t

0

=  and

t

k

= t +�, and beause t

0

� t +�, we get that the lease period of L

0

overlaps with [t

0

; s

k

℄.

A ontradition.

The following lemma follows immediately from Lemma 5 and Lemma 6.

Lemma 7 (ND Renewal Safety). The ND renewal implementation satis�es Properties 1.1

and 2.1.

We proved the following:

Theorem 2 (ND Renewal Corretness). The ND renewal implementation satis�es Prop-

erties 1 and 2.

7.2 �ND renewal

The renew operation implementation for the �ND model is shown in Figure 5. For sim-

pliity, we require that timestamps onsist of two �elds: the proess id and a monotonially

inreasing ounter.

Throughout the proof of orretness of the �ND renewal sheme, we make use of the

following notation. Let L be a ontend or renew operation. As in the previous setion,

we denote the sequene of read/write operations by whih L terminates by:

(in ontend only: L:r

0

, delay � + 6Æ), L:r

00

, L:w, (delay 2Æ), L:r :

That is, L:w is the last write operation invoked within L, and L:r

00

, L:r and the read opera-

tions immediately preeding and following L:w, respetively. If L is a ontend operation,

and there exists a read operation invoked from line 7 of Figure 2, then L:r

00

denotes the one

immediately preeding L:w. If L:r

00

exists, it is immediately preeded by a read operation

L:r

0

from line 1 or line 12 of Figure 2 followed by a delay of (�+5Æ). Otherwise, let L:r

0

be

the last read operation during L from line 1 or line 12 of of Figure 2 that preedes L:w.

then in addition, the read operation preeding L:r

00

is denoted L:r

0

.

Finally, for the exeution onsidered in all proofs, let � be a serialization of the operations

that upholds the regularity of x.
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renew:

(1) x

1

 read(x);

(2) if (x

1

:id 6= ts:id) then

(3) return false;

(4) ts:ounter  ts:ounter + 1;

(5) write(x; ts);

(6) delay(2Æ);

(7) x

1

 read(x);

(8) if (x

1

= ts) then

(9) return true;

(10) else

(11) return false;

Figure 5: �ND Renew Implementation.

L

0

r' w

2Æ

r"

w

L

r'

Figure 6: Overlapping renewals.

Lemma 8. Let L

0

be a lease operation (ontend or renew) invoked by proess p that returns

suessfully at time t

0

. Denote s

0

= t

0

+� the expiration time of L

0

. Then there exists no

write operation w in � after L

0

:w, suh that w is invoked before s

0

+ Æ.

Proof. Assume to the ontrary, and let L:w be the �rst write in � that breaks the lemma.

Clearly, L:w does not preede L

0

:r in �

L

0

:r

, for else L

0

:r annot return the value written

by L

0

:w. Furthermore, sine all write operations w suh that w ! L

0

:r must appear in �

L

0

:r

before L

0

:r, and beause by assumption L

0

:w preedes L:w in �, L:w 6! L

0

:r. Putting this

together with the fat that the response of L

0

:w and the start of L

0

:r are separated by a 2Æ

delay, we have L

0

:w! L:r

00

(see Figure 6). Hene, L

0

:w 2 �

L:r

00

.

Furthermore, by assumption L:w is the �rst write suh that (1) L:w follows L

0

:w in �;

and (2) L:w is invoked before s

0

+ Æ. Sine L

0

:w 2 �

L:r

00

any write w 6= L:w that follows

L

0

:w 2 �

L:r

00

must be invoked after s

0

+ Æ. Sine, by de�nition of �

L:r

00

, w must be invoked

before L:r

00

terminates, L:r

00

terminates after s

0

+ Æ. Consequently, L:w would be invoked

after s

0

+ Æ ontraditing the assumption. Sine L:w 62 �

L:r

00

, the only remaining possibility

is that L

0

:w is the last write in �

L:r

00

, and so L:r

00

returns the value of L

0

:w.

Next, we onsider the ase that L is a ontend operation separately from the ase that
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it is a renew operation. First, onsider that L is a renew operation. Then the analysis

above shows that L:r

00

returns the timestamp written in L

0

:w, hene L is unsuessful.

Seond, assume that L is a ontend operation. Here, L:r

00

is preeded by a 6Æ + �

delay preeded by another read operation L:r

0

: and the timestamp values returned by these

two read's are idential. However, it is easy to see that L

0

:w is ontained in full between

these two reads. We already know that L

0

:w ! L:r

00

. We now show that L:r

0

! L

0

:w.

Indeed, the earliest time that L

0

:w an be invoked is s

0

��� 4Æ. Sine by assumption L:w

is invoked before s

0

+ Æ, L:r

0

is invoked before s

0

+ Æ � (� + 6Æ) = s

0

��� 5Æ. Therefore,

L:r

0

! L

0

:w. Thus, regularity of x and the timestamp uniqueness imply that L:r

0

and L:r

00

return di�erent timestamps in whih ase the lease implementation implies that the write

statement is not reahed. Hene, L:w ould not have been invoked. A ontradition.

We are now ready to prove Safety:

Lemma 9. Assume that a lease operation L (ontend or renew) by proess p returns

suessfully at time t. Let s = t +�. Then there exists no suessful ontend or renew

operation L

0

by a proess q 6= p that returns during the interval [t; s℄.

Proof. Suppose to the ontrary that L

0

returns suessfully at time t

0

within the interval

[t; s℄. First, L

0

:w must be invoked before s + Æ. By Lemma 8, putting L

0

= L we get that

L:w does not preede L

0

:w in �. Seond, L:w must be invoked before t

0

, and a fortiori, before

t

0

+�+ Æ. Applying Lemma 8 again, with L

0

= L

0

, we get that L:w

0

does not preede L:w

in �. A ontradition.

Lemma 10. Assume that a renew operation L by a proess p is invoked at time t

1

and

returns suessfully at time t

2

. Then there exists no suessful ontend or renew operation

L

0

by a proess q 6= p that returns during the interval [t

1

; t

2

℄.

Proof. Suppose to the ontrary that L

0

returns at a time t

0

within the interval [t

1

; t

2

℄. First,

L

0

:w must be invoked before s + Æ. By Lemma 8, putting L

0

= L we get that L

0

:w must

preede L:w in �. Furthermore, applying Lemma 8 again with L

0

= L

0

, we get that L:w

must be invoked after t

0

+ � + Æ. Therefore, L

0

:w ! L:r

00

so that L

0

:w 2 �

L:r

00

, and L

0

:w

preedes L:r

00

in �

L:r

00

.

First, suppose that L:w is the �rst write operation by p in � after L

0

:w. Hene, there is

no write operation by p in �

L:r

00

following L

0

:w. Then by regularity of x, and beause L is

a renew operation, L:r

00

returns a timestamp written by a proess q 6= p, ontraditing to

the fat that L is suessful.

Next, suppose that there exists a write operation L

00

:w by p in �

L:r

00

that follows L

0

:w.

Sine L is a renew operation, L

00

must be the suessful lease (renew or ontend)

operation immediately preeding L. Applying Lemma 8 with L

0

= L

0

, we get that L

00

:w must

be invoked after t

0

+�+ Æ implying that L starts after t

0

+�+ Æ (i.e., t

1

> t

0

+�+ Æ).

We proved the following

Theorem 3 (Renewal Safety). �ND renew implementation satis�es Properties 1.1 and

2.1.

16



Finally, we prove Liveness:

Lemma 11. Assume that a orret proess p obtains the lease in a ontend or renew

operation L at time t. Then, a renew operation rn invoked by p at s = t + �, returns

suessfully.

Proof. For rn to be suessful, �rst rn:r

00

must return the timestamp written by L:w. This

holds by the fat that L:r returns the value of L:w, and by Lemma 8, sine no other write

operation that follows L:w in � is invoked before s+�+ Æ.

Seond, rn:r needs to return the value written by rn:w. Suppose to the ontrary that

some lease operation L

0

overwrites rn:w. Let L

0

:w be the �rst write in � by proess q 6= p

that follows L:w and preedes rn:r in �

rn:r

.

By Lemma 8, L

0

:w is invoked after s+Æ. Hene, L:w ! L

0

:r

00

. Sine L:

0

w is the �rst write

to follow L:w, and sine L

0

:r

00

! L

0

:w, we have that L

0

:r

00

returns the timestamp written

by p in L:w. By onstrution, this ours only if L

0

is a ontend (not renew) operation.

Still, for L

0

:w to be invoked, L

0

:r

0

and L

0

:r

00

must return the same timestamp. We now show

this is impossible.

We already know that L:w ! L

0

:r

00

. By onstrution, L

0

:r

00

follows a delay of � + 6Æ

after the termination of L

0

:r

0

. If L

0

:r

00

is invoked no later than s + 2Æ, then L

0

:r

0

terminates

by s��� 4Æ. Sine the earliest that L:w is invoked is t� 4Æ, we have L

0

:r

0

! L:w. We get

that L:w is a write that ours ompletely between L

0

:r

0

and L

0

:r

00

, and so they must return

di�erent timestamps.

We are left with the possibility that L

0

:r

00

is invoked after s+ 2Æ. Beause L

0

:w preedes

rn:r in �

rn:r

, the latest that L

0

:r

00

may be invoked is s+5Æ. Hene, L

0

:r

0

terminates by s� Æ.

We now get that rn:w is a write that ours ompletely between L

0

:r

0

and L

0

:r

00

, and so they

return di�erent timestamps.

Hene, L:r

0

and L

0

:r

00

must see di�erent values, in ontradition to the assumption that

L

0

:w is invoked after L

0

:r

00

. Hene, rn:r returns the same value as rn:w, and the renewal

sueeds.

We proved the following

Theorem 4 (�ND Renewal Corretness). The �ND renewal implementation satis�es

Properties 1 and 2.

8 Leader Eletion

In this setion we show the lease based implementation of the Boolean failure detetor orale,

denoted L, that is required by the Consensus algorithms of [19, 14℄. L is de�ned as follows:

Let L

i

denote the loal instane of L at a proess p

i

, with a boolean isLeader() operation

returning the urrent value output by L

i

. Then, L is required to satisfy the following property

eventually:

Property 3 (Unique Leader). There exists a orret proess p

i

suh that every invoation

of L

i

:isLeader() returns true, and for eah proess p

j

6= p

i

, every invoation of L

j

:isLeader()

returns false.

17



The lease based implementation of L appears in Figure 7. A omplete Consensus algo-

rithm based on L appears in [14℄. Here, we inlude it in Appendix A for ompleteness.

Shared �-Lease objet L;

Loal Boolean leader;

(1) forever do

(2) leader  false;

(3) L:ontend();

(4) leader  true;

(5) delay(�);

(6) while(L:renew()) do

(7) delay(�);

(8) od;

isLeader:

return leader;

Figure 7: The Lease-based Leader Orale implementation

The following theorem establishes the orretness of the leader orale implementation in

the �ND model.

Theorem 5. The pseudoode in Figure 7 eventually satis�es Property 3 in the �ND model.

Proof. Let T � GST be the time suh that all the leases aquired before GST have expired

and all the faulty proesses have rashed by T . Let Leaders

T

be the set of proesses that are

still leaders after T . If Leaders

T

6= ;, then all the proesses in Leaders

T

must be exeuting

lines 6{7 of the ode in Figure 7. By the renewal liveness, some of the proesses renewing its

lease at line 6 at the time t � T will sueed to renew its lease at eah renewal attempted

after t. By the renewal safety, starting from time t on, this proess will remain the exlusive

lease holder.

If Leaders

T

= ;, then by the lease liveness, for some proess p invoking L:ontend()

after GST , L:ontend() will return at time t � T . By the renewal liveness, p will sueed

to renew its lease at eah renewal attempted after t. By the renewal safety, starting from

time t on, p will remain the exlusive lease holder.

9 Preliminary Performane Assessment

To assess the salability of the lease implementation, we arried out preliminary simulation

studies. The simulation results appear in Figures 8 and 9.

In our experiments, we assumed that read and write operations take times exponentially

distributed with mean 1. Subsequently, the lease delays were measured in the units of the

mean read/write delay. In all the experiments, Æ was set to 2, and � was set to 1. The hoie
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Figure 8: Delay until the �rst lient gets the lease
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Figure 9: Delay until all the lients get the lease
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of Æ = 2 is justi�ed by both the exponential distribution properties, and the simulation stud-

ies. The experiments vary the number n of ontending proesses. All ontending proesses

start simultaneously, and ontend for the lease one until they obtain it. Subsequently, they

release it after � = 1 delay. The graph in Figure 8 shows the average delay until the �rst

proess obtains the lease as a funtion of the number of simultaneously ontending proesses;

and the graph in Figure 9 shows the average delay until all the ontending proesses su-

eed to obtain their leases. The �rst graph �ts into a O(ln(n)) urve and the seond one

�ts into a O(n + ln(n)) urve. These results suggest good salability features for the real

implementation and are also onsistent with the exponential distribution analysis of [20℄.

Both analytial and empirial performane evaluation of the lease algorithms as well as

their implementation in the real storage system is the subjet of the ongoing work.

10 Pratial onsiderations

There are a number of onsiderations worthy of noting in the ontext of pratial distributed

storage systems. First, a standard onurreny poliy is to allow either multiple simultaneous

readers, or one exlusive writer. Our leases easily support this paradigm. More spei�ally,

in our sheme, aess is granted to ontending proesses by writing their names onto a shared

read/write register. Therefore, multiple-readers an be supported simply by having readers

use a ommon name (e.g., \reader"), and writers use their own identity.

Another important onern is ahing. In a salable system, a lient obtaining a lease

on a �le may hold the �le for some period of time, and work on a loal ahed opy of the

�le. However, the lease for the �le has to be renewed periodially, whih in our approah,

implies writing to disk. The obvious onern is that lease-renewal ould subvert the bene�ts

of ahing.

We expet this not to be the ase for several reasons. First, omparing our storage-entri

lok-renewal with the standard lease-manager approah, it is disputable that writing to a

disk over a modern SAN is less eÆient than sending a message to the lease manager. First,

an advaned storage ontroller (like IBM's Shark or Total Storage Volume Controller [21℄)

provides a sophistiated ahing whih is also fault-tolerant. So writing to a disk an be

as fast as writing to a proess. Moreover, measurements performed in [6℄ indiate that in

salable settings, the osts of aessing a remote disk are signi�antly outweighed by the

overhead of going through a bottlenek lease manager. Further assessing the ost tradeo�s

of our approah under di�erent onditions is a topi of further study.

Additionally, the performane gain of ahing should be always weighed against the end-

user guarantees. Suppose that a lient holding a ahed data is falsely suspeted, and the

lease is granted to another lient. Then, when the original lient eventually attempts to

write the ahed data bak to disk, its write would be aborted to prevent inonsisteny.

Subsequently, all the modi�ations issued by the end-user will be lost. In order to provide a

reasonable level of end-user semantis, the ahed opy must be synhronized with the disk

opy frequently enough. Thus, the lease renewal an be piggybaked on these synhronization

messages.
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A Uniform Consensus based on L

Our Consensus implementation utilizes the ranked register primitive of [14℄ de�ned as follows:

Let Ranks be a totally ordered set of ranks with a distinguished initial rank r

0

suh that for

eah r 2 Ranks, r > r

0

; and Vals be a set of values with a distinguished initial value v

0

. We

also onsider the set of pairs denoted RVals whih is Ranks� V als with seletors rank and

value. A ranked register is a multi-reader, multi-writer shared memory register with two

operations: rr-read(r)

i

by proess i, r 2 Ranks, whose orresponding response is value(V )

i

,

where V 2 RVals. And rr-write(V )

i

by proess i, V 2 RVals, whose reply is either ommit

i

or abort

i

.

De�nition 2. We say that a rr-read operation R = rr-read(r

2

)

i

sees a rr-write operation

W = rr-write(hr

1

; vi)

j

if R returns hr

0

; v

0

i where r

0

� r

1

.

The ranked register is required to satisfy the following three properties:

Property 4 (Safety). Every rr-read operation returns a value and rank that was written in

some rr-write invoation. Additionally, let W = rr-write(hr

1

; vi)

i

be a rr-write operation that

ommits, and let R = rr-read(r

2

)

j

, suh that r

2

> r

1

. Then R sees W .

Property 5 (Non-Triviality). If a rr-write operation W invoked with the rank r

1

aborts,

then there exists a rr-read (rr-write) operation with rank r

2

> r

1

whih is invoked before W

returns.

Property 6 (Liveness). If an operation (rr-read or rr-write) is invoked by a non-faulty

proess, then it eventually returns.

The pseudoode of the Consensus implementation is shown in Figure 10. Please refer

to [14℄ for the orretness proof.
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Shared: Ranked registers rr, initialized by rr-write(hr

0

;?i)

whih ommits;

Regular register deision, with values in RVals,

initialized by write(hr

0

;?i)

Loal: V 2 RVals [ fabortg,

r 2 Ranks;

Proess i:

propose(v), V als! V als

r  r

0

;

while(true) do

V  deision:read();

if (V:value 6= ?)

return V:value;

if (L

i

:isLeader()) then

r hooseRank(r);

V  deide(hr; vi);

if (V 6= abort)

return V:value;

�

od

Funtion deide(hr; vi), RVals! RVals [ fabortg:

V  rr:rr-read(r)

i

;

if (V:value = ?) then

V:value v;

V:rank r;

if (rr:rr-write(V )

i

= ommit) then

deision:write(V );

return V ;

�

return abort;

Figure 10: Consensus using a ranked register and L
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