
Light-Weight Leases for Storage-Centri
 Coordination

Gregory Cho
kler

�

, Dahlia Malkhi

y

April 22, 2004

Abstra
t

We propose light-weight lease primitives to leverage fault-tolerant
oordination

among
lients a

essing a shared storage infrastru
ture (su
h as network atta
hed disks

or storage servers). In our approa
h, leases are implemented from the very shared data

that they prote
t. That is, there is no global lease manager, there is a lease per data

item (e.g., a �le, a dire
tory, a disk partition, et
.) or a
olle
tion thereof. Our lease

primitives are useful for fa
ilitating ex
lusive a

ess to data in systems satisfying
er-

tain timeliness
onstraints. In addition, they
an be utilized as a building blo
k for

implementing dependable servi
es resilient to timing failures. In parti
ular, we show

a simple lease based solution for fault-tolerant Consensus whi
h is a ben
hmark dis-

tributed
oordination problem.

Keywords: leases, �le systems, mutual ex
lusion,
onsensus

1

CS and AI Laboratory, MIT, Email: grisha
�
sail.mit.edu. Resear
h supported by NSF grant

#CCR-0121277, NSF-Texas Engineering Experiment Station grant #64961-CS, Air For
e Aerospa
e

Resear
h-OSR
ontra
t #F49620-00-1-0097, and MURI AFOSR
ontra
t #SA2796PO 1-0000243658.

2

S
hool of Computer S
ien
e and Engineering, The Hebrew University of Jerusalem. Email:

dalia�
s.huji.a
.il.

1 Introdu
tion

Motivation. In re
ent years, advan
es in hardware te
hnology have made possible a new

approa
h for storage sharing, in whi
h
lients a

ess disks dire
tly over a storage area net-

work (SAN). By allowing the data to be transferred dire
tly from network atta
hed disks to

lients, SAN has the potential to improve s
alability (through eliminating the �le server bot-

tlene
k) and performan
e (through shorter data paths). However, without properly restri
t-

ing
on
urrent a

ess to shared data by
lients, shared data would be rendered in
onsistent.

Therefore, a s
alable and eÆ
ient lo
king support is widely re
ognized as a key requisite for

realizing the SAN te
hnology's full potential.

The traditional approa
h to implementing lo
ks in SAN-based �le systems designates

a lo
k manager to administer shared a

ess [11, 32℄, thus
reating a performan
e and an

availability bottlene
k. An alternative approa
h, put forth in this paper, is to employ a

storage-
entri
 lo
king, i.e., to
o-lo
ate lo
ks with the very data items that are prote
ted by

these lo
ks. This way, the
ost of lo
king is folded into the
ost of a

essing the data itself,

and the lo
ks availability is the same as that of the data itself. The
hallenge is in providing

an eÆ
ient and fault-tolerant implementation.

Fault toleran
e. A naive per-datum lo
k design would asso
iate a strong obje
t that di-

re
tly implements lo
king (su
h as test-and-set) with ea
h data item. However, this approa
h

has several drawba
ks: First, it ne
essitates a sophisti
ated support on behalf of the storage

hardware su
h as SCSI
ontrollers enhan
ed with devi
e lo
ks (see [35, 9℄), or obje
t store

ontrollers (see [36, 22℄). These hardware enhan
ements still remain proprietary and it is

un
lear whether they will be a

epted by the storage manufa
turers in the future.

Se
ond, data is frequently repli
ated on several storage units (e.g., a �le may be striped,

or mirrored) for availability and fault-toleran
e. As a result, it is desirable to have the lo
ks

repli
ated as well so that the same level of availability is preserved. Unfortunately, as it

was proved in [24℄, it is impossible to use a
olle
tion of fail-prone strong obje
ts (su
h as

test-and-set,
ompare-and-swap, et
.) to implement a reliable one.

We therefore opt for an alternative approa
h whi
h is to build lo
ks from weaker obje
ts,

i.e., read/write registers. Thus, deployment be
omes a non-issue, as designating a read/write

word per �le or per blo
k on a disk is trivially done. In
ase that multi disk lo
king is required,

a single reliable read/write register is implementable using a farm of failure-prone storage

units (see, e.g., [7, 8, 13℄). In the remainder of this paper, we largely ignore repli
ation

and follow a modular approa
h: i.e., we will assume that reliable registers are available, and

develop algorithms in a shared memory model with reliable registers.

Uniform solutions. It is known that supporting mutual ex
lusion with read/write regis-

ters in
urs a
ost that is linear in the maximum potential number of parti
ipating pro
esses,

in terms of both the memory
onsumption and the number of shared memory a

esses [12℄.

Indeed, many similar abstra
tions su
h as failure dete
tors, or the
 leader ora
le of [16℄, are

de�ned for a group of known members. To
ir
umvent this limitation, we adopt a timing-

based lo
king approa
h that was originally suggested by Fis
her [26℄. This results in a very

simple lo
king proto
ol, that uses a single read/write register per data item to support

1

ex
lusion among a priori unknown (but eventually �nite) number of
lient pro
esses.

We enhan
e Fis
her's s
heme with a number of important modi�
ations. First, in order to

support automati
 re
overy of the lo
ks held by failed pro
esses, we augment the s
heme with

an expiration me
hanism so that a lo
k is leased to a pro
ess for a pre-de�ned time period.

On
e the lease period expires, the lo
k is relinquished and subsequently,
an be granted

to another pro
ess. (In the following, we will use terms lo
ks and leases inter
hangeably).

Another important extension we present is the support for automati
 lease renewal. This

leads to eÆ
ient utilization of the lease by a leader who holds the lease and
ontinues doing

useful work.

Rea
hing
oordination. There still remain tasks that are best handled by a
oordinated

group of SAN managers. For example, SAN managers need to administer volume assign-

ments and
on�guration information. The
ommon approa
h for rea
hing
onsensus among

multiple servers in su
h tasks is to employ the Paxos paradigm [27℄. This paradigm preserves

uniqueness of de
isions through a three phase
ommit proto
ol, and relies on timeliness
on-

ditions for progress. Our leases serve as a fundamental enabler of the Paxos paradigm

in storage-
entri
 systems, and a ne
essary building blo
k for the agreement algorithms in

[19, 14℄. Our leases guarantee ex
lusion to
lients on
e the system stabilizes (and remains

stable for long enough), regardless of any past timing violations. This allows our lease to

support an eventual leader-ele
tion primitive, a ne
essary building blo
k for implementing

dependable servi
es resilient to timing failures.

We show a simple lease based solution for fault-tolerant
onsensus that guarantees agree-

ment at all times but
an fail to make progress when the system is unstable. The latter
an

be used to realize eÆ
ient, always safe fault-tolerant lo
king using a hierar
hi
al approa
h

des
ribed by Lampson in [28℄.

Contribution. In the remainder of this exposition, we provide a formal treatment of the

problem at hand, in whi
h disks are simply
onsidered to be persistent shared memory

ontainers a

essed by multiple fail-prone
lients. Our work provides the following formal

ontribution. It gives a spe
i�
ation of leases, in
luding a renewal operation. It provides an

eÆ
ient way to implement leases for an unbounded number of unreliable
lient pro
esses.

The solution applies ideas originally developed for mutual ex
lusion in syn
hronous shared

memory to derive light-weight lease primitives for highly de
entralized and unreliable dis-

tributed settings. Finally, we show a simple lease based solution for fault-tolerant Consensus

whi
h is a ben
hmark distributed
oordination problem.

2 Related Work

In this paper we apply the real-time mutual ex
lusion theory to support lo
king in pra
ti
al

SAN-based systems. In the following, we survey the
urrent state-of-the-art in these two

areas.

2

2.1 Lo
king Support in SAN-based �le systems

Traditionally, SAN-based �le systems rely on separate servers to maintain their meta-data

and
oordinate a

ess to the user data on storage devi
es. The meta-data servers
an be repli-

ated for better availability and load balan
ing. The server repli
as are kept in a
onsistent

state using a group-
ommuni
ation substrate. However, the
luster of repli
ated meta-data

servers still remains the performan
e and availability hotspot as all the �le-system operations

(even those targeted to di�erent obje
ts) must
onsult the meta-data servers before a

essing

the storage. Examples of the systems whose design follows this approa
h in
lude the IBM

General Parallel File System (GPFS) [37℄ and IBM StorageTank [32℄. More examples
an

be found in [22℄.

The vision of a storage-
entri
 lo
king was �rst realized in the Global File System (GFS)

proje
t [34, 38, 39℄ developed in the University of Minnesota. In GFS, the
luster nodes

physi
ally share storage devi
es
onne
ted via a high-speed network. GFS utilizes �ne grain

test-and-set lo
ks provided by spe
ialized SCSI devi
es [35, 9℄ to implement atomi
 exe
ution

of �le system operations.

Amiri et al. [6℄ proposes base storage transa
tions (BSTs) as a
ore paradigm for main-

taining low-level integrity of striped storage (su
h as RAID) in the fa
e of
on
urrent
lient

a

esses. In parti
ular, the paper dis
usses devi
e-served lo
king as an alternative to tradi-

tional
entralized lo
king s
hemes. It demonstrates through an extensive empiri
al perfor-

man
e study that devi
e-served lo
king provides better performan
e under high
ontention,

and is therefore, more s
alable.

zFS [36, 22℄ is a resear
h �le system implemented over obje
t store devi
es [33℄ dire
tly

a

essible over a SAN. In zFS, ea
h storage devi
e maintains a
oarse grain lo
k whi
h
an

be used by a lease manager to obtain an ex
lusive a

ess (a major lease) to the entire devi
e.

The lease manager is then responsible for administering �ne grain lo
ks to
lients requesting

a

ess to individual data items stored on the devi
e.

The symmetri
al lo
king me
hanisms above all guarantee availability of lo
k information

in fa
e of pro
ess failures. However, none of these systems support data and lo
k repli
ation

and therefore, do not guarantee availability in the fa
e of storage devi
e failures. As a partial

solution, a reliability hardware (su
h as RAID) may be employed in these systems to mask

the storage failures to some extent. In addition, both GFS and zFS require sophisti
ated

storage hardware whi
h must be able to support read-modify-write instru
tions and, in the

ase of zFS, also be
apable of measuring real time passages.

2.2 Time Based Mutual Ex
lusion

Algorithms for mutual ex
lusion in the presen
e of failures must be based on timeliness

assumptions, as they have to be able to attain progress in spite of pro
ess failures while

exe
uting in their
riti
al se
tion. There are two
ommonly used timing assumptions in this

ontext: The known delay model of [3, 4, 5℄ and the unknown delay model of [2℄.

The known delay model was �rst formally de�ned in [4℄. The �rst mutual ex
lusion

algorithm expli
itly based on the known delay assumption was the famous Fis
her algorithm,

whi
h was �rst mentioned by Lamport in [26℄. In [26℄, another timing based algorithm is

3

presented. This algorithm assumes a known upper bound on time a pro
ess may spend in

the
riti
al se
tion.

Alur et al.
onsider in [2℄ the unknown delay model: The time it takes for a pro
ess to

make a step is bounded but unknown to the pro
esses. The paper presents algorithms for

mutual ex
lusion and Consensus in this model. A remarkable feature of these algorithms

is their ability to preserve safety even in
ompletely asyn
hronous runs. However, they are

guaranteed to satisfy progress only if the system behaves syn
hronously throughout the entire

run. The mutual ex
lusion algorithm of [31℄
ombines the ideas of Fis
her and Lamport's

fast mutual ex
lusion algorithm [26℄ to derive a timing based algorithm that guarantees

progress when the system stabilizes while being safe at all times. However, the algorithm

of [31℄ is not fault-tolerant.

As far as we know the eventual known delay timed (�ND) model introdu
ed in this

paper was never
onsidered in the shared memory
ontext. Most of the existing time based

algorithms are either not fault-tolerant [4, 5℄, or resilient only to the timing failures [31, 2℄.

The fault-tolerant (wait-free) timing based algorithms of [3℄ are not suitable for the �ND

model as they might violate safety and/or liveness even during syn
hronous periods if the

delay
onstraints do not hold right from the beginning of the run.

The �ND model
onsidered in this paper is an extension of a standard asyn
hronous

shared memory model to in
lude timeliness assumptions based on the absolute real-time.

To this end, the �ND model postulates the existen
e of bounded drift lo
al hardware
lo
ks

a

essible to ea
h pro
ess. In this respe
t, the �ND model
losely resembles the timed

asyn
hronous model of Cristian and Fetzer de�ned in [17℄. An alternative approa
h to

model timeliness in shared memory environments is to postulate the existen
e of a known

upper bound on relative pro
ess speeds as it is done by Lyn
h and Shavit in [31℄. This

results in a model analogous to the partial syn
hrony model of [18℄. However, as is, the

partial syn
hrony model of [31℄ is inappropriate for our purposes as it does not distinguish

between lo
al pro
ess steps and those involving a shared memory a

ess. This distin
tion

is important if non-atomi
 shared obje
ts (su
h as regular registers) are assumed. Relaxing

the partial syn
hrony model of [31℄ to allow non-atomi
 memory a

ess as well as evaluating

appli
ability of other timed models (e.g., [1℄, or the timed I/O automata model of [25℄)

remains a subje
t of the future work.

Other properties that are of interest to us is the ability of timing based algorithms to

support ex
lusion among arbitrarily many
lient pro
esses and to work with weaker regis-

ters and/or a small number thereof. The latter is parti
ularly important in failure prone

environments as in these environments the registers must be �rst emulated out of possibly

faulty
omponents. In this respe
t the original solution by Fis
her is superior to all the other

algorithms as it is based on a single multi-writer multi-reader register. In fa
t, as we show

in this paper, the register is only required to support regular semanti
s (in the sense of [13℄),

and hen
e may be emulated eÆ
iently even in a message passing setting. This solutions was

therefore
hosen as a basis for our lease implementation. The algorithms of [31℄ and [4℄ are

also oblivious to the number of parti
ipants and use two and three shared atomi
 registers

respe
tively.

The goodness of timing based mutual ex
lusion algorithms are frequently assessed in

terms of their performan
e in
ontention free runs. In parti
ular, a good algorithm is expe
ted

4

to avoid delay statements when there are no
ontention. The performan
e of the timing based

algorithms under various levels of
ontention is analyzed in [20℄. The paper examines (both

analyti
ally and in simulations) the expe
ted throughput of timed based mutual ex
lusion

algorithms under various statisti
al assumptions on the arrival rate and the servi
e time.

The question of further optimizing our leases approa
h for
ontention free runs is left for

future resear
h.

2.3 Other work on lo
ks and leases

Gray and Cheriton were the �rst to employ leases in [23℄ for
onstru
ting fault-tolerant

distributed systems. Lampson advo
ates in [28, 29℄ the use of leases to improve the Paxos

algorithm. Boi
hat et al. [10℄ introdu
e asyn
hronous leases as an optimization to the atomi

broad
ast algorithms based on the rotating
oordinator paradigm. Cho
kler et al. [15℄ show a

randomized ba
ko� based algorithm for implementing leases in a setting similar to the �ND

model of this paper. However, the algorithm of [15℄ guarantees progress only probabilisti
ally,

and relies on shared obje
ts that
an measure the passage of time. Finally, Cristian and

Fetzer [17℄ show an implementation of leases in timed asyn
hronous message passing systems.

3 System Model

We will start by de�ning a basi
 asyn
hronous shared memory model and the regular register

properties (Se
tion 3.1). We will follow the basi
 formalism of [13℄. Then, in Se
tion 3.3,

we augment the basi
 model with ne
essary timeliness assumptions by adapting the timed

asyn
hronous model of [17℄ to the shared memory environment.

3.1 The Basi
 Model

Our basi
 model is an asyn
hronous shared memory model
onsisting of �nite but a priori

unknown universe of pro
esses p

1

; p

2

; : : :
ommuni
ating by means of a �nite
olle
tion of

shared obje
ts, O

1

; : : : ; O

n

. Every shared obje
t has a sequential spe
i�
ation de�ning the

obje
t behavior when a

essed sequentially. A sequen
e of operations on a shared obje
t

is legal if it belongs to the sequential spe
i�
ation of the shared obje
t. In this paper, we

redu
e our attention to read/write shared obje
ts. A sequen
e of operations on a read/write

shared obje
t is legal if ea
h read operation returns the value written by the most re
ent

write operation if su
h exists, or an initial value otherwise.

The operations on obje
ts have non-zero duration,
ommen
ing with an invo
ation and

ending with a response. An exe
ution of an obje
t is a sequen
e of possibly interleaving

invo
ations and responses. For an exe
ution � and a pro
ess p

i

, we denote by �ji the

subsequen
e of �
ontaining invo
ations and responses performed by p

i

. Pro
esses may fail

by
rashing. A pro
ess is
alled
orre
t in an exe
ution � if it never
rashes throughout

�. Otherwise, a pro
ess is
alled faulty in �. A threshold t of the obje
ts may su�er non-

responsive
rash failures [24℄, i.e., may stop responding to in
oming invo
ations.

An exe
ution � is admissible if the following is satis�ed: (1) Every invo
ation by a
orre
t

pro
ess in � has a mat
hing response; and (2) For ea
h pro
ess p

i

, �ji
onsists of alternating

5

invo
ations and mat
hing responses beginning with an invo
ation. In the rest of this paper,

only admissible exe
utions will be
onsidered.

Given an exe
ution �, we denote by ops(�) (resp. write(�)) the set of all operations

(resp. all write operations) in �; and for a read operation r in �, we denote by writes

 r

the

set of all write operations w in � su
h that w begins before r ends in �. The operations in

ops(�) are partially ordered by a!

�

relation satisfying o

1

!

�

o

2

i� o

1

ends before o

2

begins

in �. In the following, we will often omit the exe
ution subs
ript from ! if it is
lear from

the
ontext.

Our de�nition of regularity for a multi-reader/multi-writer read/write shared obje
t is

similar to the MWR2
ondition of [13℄. It is as follows:

De�nition 1 (Regularity). An exe
ution � satis�es regularity if there exists a permutation

� of all the operations in ops(�) su
h that for any read operation r, the proje
tion �

r

of �

onto writes

 r

[frg satis�es:

1. �

r

is a legal sequen
e.

2. �

r

is
onsistent with the ! relation on ops(�).

A read/write shared obje
t is regular if all its exe
utions satisfy regularity.

3.2 Masking obje
t failures

Given a
olle
tion of n > 2t shared obje
ts up to t of whi
h
an su�er from non-responsive

rash failures, it is possible to
onstru
t a wait-free regular register de�ned in the previous

se
tion (see e.g., [13, 8℄). The resulting reliable registers
an then be used to
onstru
t higher

level servi
es. Hen
e, in this paper we will follow a modular approa
h: i.e., we will assume

that reliable registers are available, and develop algorithms in a shared memory model with

reliable registers.

3.3 The Augmented model

In the augmented model, ea
h pro
ess is assumed to have a

ess to a hardware
lo
k with

some predetermined granularity. We also assume that ea
h pro
ess
an suspend itself by

exe
uting a delay statement. Thus, a
all to delay(t) will
ause the
aller to suspend its

exe
ution for t
onse
utive time units. We model the system behavior as a General Timed

Automaton (GTA) [30℄ whi
h is a state ma
hine augmented with spe
ial time-passage events

�(t), t 2 R. The time-passage event �(t) denotes the passage of real time by the amount t.

The system is
alled stable over a time interval [s; t℄,
alled a stability period, if the

following holds during [s; t℄: (1) The pro
esses'
lo
k drift with respe
t to the real-time is

bounded by a known
onstant �. For simpli
ity we assume that � = 0 (it is easy to extend

our results to
lo
ks with � 6= 0); and (2) The time it takes for a
orre
t pro
ess to
omplete

its a

ess to a shared memory obje
t, i.e., to invoke an operation and re
eive a reply, is

stri
tly less than a known bound Æ.

In the following, we will be interested mainly in properties exhibited by the system during

stability periods. To simplify the presentation, we will
onsider a timed model, whi
h we

6

release

i

�(�)

ontend

i

a
k

i

Try

i

Hold

i

Exit

i

Release

i

a
k

i

�(0)

�(t),t � 0

Free

i

(initial

state)

Figure 1: Well-formed intera
tion of pro
ess i and the �-Lease obje
t

all an Eventually Known Delay Timed model, or �ND, with stability periods of in�nite

duration: i.e., we assume that for ea
h run there exists a global stabilization time (GST)

su
h that the system is stable forever after GST (i.e., during [GST;1℄). In the remainder

of the presentation, all properties and
orre
tness proofs regard operations the start after

GST.

We will also
onsider a spe
ial
ase of the �ND model, whi
h we
all a Known Delay

Timed model, or ND, that requires ea
h run to be stable right from the outset.

4 The Lease Spe
i�
ation without Renewals

We de�ne the �-Lease obje
t as a shared memory obje
t that
an be
on
urrently a

essed

by any number of pro
esses, and whose interfa
e
onsists of the following two operations for

ea
h pro
ess i:
ontend

i

and release

i

. The responses to these operations are a
k

i

. We

assume that the intera
tion between ea
h pro
ess i and the lease obje
t is well-formed in the

sense that it is
onsistent with the state diagram depi
ted in Figure 1.

A pro
ess that is not holding a lease is in the state Free. We assume that ea
h pro
ess

exe
ution always starts from the Free state. A pro
ess that attempts to a
quire the lease,

invokes
ontend and moves to the state Try. On
e
ontend returns, the pro
ess moves

to the state Hold assuming the lease for the next � time units. On
e the lease expires, the

pro
ess moves to the Exit state. At this state, the appli
ation invokes release and returns

to the Free state upon the a
k response.

7

In the states Free, Hold and Exit, the pro
ess exe
utes the
ode spe
i�ed by the appli
a-

tion program. We do not put any restri
tions on the time spent in the Free state (indi
ated

by t � 0 time passage). However, we assume that the transition from the state Exit to the

Release state is instantaneous (indi
ated by a 0 time passage).

A �-Lease obje
t is required to satisfy the following property after time t � GST :

Property 1. At any point in an exe
ution, the following holds:

1. Safety: At most one pro
ess is in the Hold state.

2. Contend Progress: If no pro
ess is in the Hold state, and some
orre
t pro
ess is in the

Try state, then at some later point some
orre
t pro
ess enters the Hold state.

3. Release Progress: At any point in an exe
ution, if a
orre
t pro
ess i is in the Release

state, then at some later point pro
ess i enters the Free state.

5 The Lease Implementation

The �-Lease obje
t implementation appears in Figure 2. It utilizes a single shared multi-

reader multi-writer regular register x. A pro
ess that tries to a
quire the lease writes a

unique timestamp to the register x and delays for 2Æ time. If upon the delay expiration,

the pro
ess reads its own value ba
k, then it a
quires the lease and enters the Hold state.

Otherwise, it ba
ks o� to the loop in lines 4{8, where it waits until the
urrent lease holder

either relinquishes the lease, or the lease period � expires without release being
alled.

The latter
ould happen if the
urrent lease holder
rashes before
alling release. Note

that ea
h pro
ess has to write a unique timestamp (e.g., id and a sequen
e number) into x.

This is ne
essary in order to prevent a pro
ess that a
quires the lease for several times in a

row from being falsely suspe
ted by other pro
esses.

Upon release, a spe
ial ? value is written to x to indi
ate the fa
t that no pro
ess

is
urrently holding the lease. This way a newly
ontending pro
ess
ould avoid the delay

statement in line 2.6 and pro
eed dire
tly to 2.9.

We now prove that the implementation in Figure 2 satis�es the �-Lease obje
t properties.

Throughout the proof, we make use of the following assumptions and notations. Let

L be a
ontend operation. We denote the sequen
e of read/write operations by whi
h L

terminates by:

L:r

0

, (delay � + 5Æ), L:r

00

, L:w, (delay 2Æ), L:r :

That is, denote by L:w the last write operation invoked during L (i.e., the last time line 10

in Figure 2 is a
tivated). Denote by L:r the read operation that follows L:w (on line 12).

If there exists a read operation invoked from line 7, denote by L:r

00

the one immediately

pre
eding L:w. If L:r

00

exists, it is immediately pre
eded by a read operation L:r

0

from line

1 or line 12 followed by a delay of (� + 5Æ). Otherwise, let L:r

0

be the last read operation

during L from line 1 or line 12 that pre
edes L:w.

Finally, for the exe
ution
onsidered in all proofs, let � be a serialization of the operations

that upholds the regularity of x.

8

Shared:

x 2 TS

?

;

Lo
al:

x

1

; x

2

2 TS

?

.

ontend:

(1) x

2

 read(x);

(2) do

(3) if (x

2

6= ?) then f

(4) do

(5) x

1

 x

2

;

(6) delay(� + 5Æ);

/* � + 6Æ for the �ND renewals */

(7) x

2

 read(x);

(8) until x

1

= x

2

_ x

2

= ?;

g

(9) Generate a unique timestamp ts;

(10) write(x; ts);

(11) delay(2Æ);

(12) x

2

 read(x);

(13) until x

2

= ts;

(14) return a
k;

release:

write(x;?);

return a
k;

Figure 2: The �-Lease Implementation.

Lemma 1. Let L

0

be a
ontend operation invoked by pro
ess p that returns at time t

0

.

Denote s

0

= t

0

+� the expiration time of L

0

. Then for all
ontend operations L su
h that

L:w appears in � after L

0

:w, if L:r

00

is invoked, then it is invoked after s

0

+ Æ.

Proof. Assume to the
ontrary, and let L be a
ontend operation su
h that L:w is the �rst

write in � that breaks the
onditions of the lemma.

Clearly, L:w does not pre
ede L

0

:r in �

L

0

:r

, for else L

0

:r
annot return the value written

by L

0

:w. Furthermore, sin
e all write operations w su
h that w ! L

0

:r must appear in �

L

0

:r

before L

0

:r, and be
ause by assumption L

0

:w pre
edes L:w in �, L:w 6! L

0

:r. Putting this

together with the fa
t that the response of L

0

:w and the start of L

0

:r are separated by a 2Æ

delay, we have L

0

:w! L:r

00

(see Figure 3(a)). Hen
e, L

0

:w 2 �

L:r

00

.

Next, we show that L

0

:w is the last write pre
eding L:r

00

in �

L:r

00

. Let L

0

6= L be a

ontend operation su
h that L

0

:w is between L

0

:w and L:r

00

in �

L:r

00

. By assumption, L

0

:r

00

must be invoked after s

0

+ Æ. Sin
e, by de�nition of �

L:r

00

, L

0

:w must be invoked before L:r

00

returns, L:r

00

returns after s

0

+ Æ, as depi
ted in Figure 3(b). Sin
e L

0

:w is invoked after

9

r

00

w

(b):

(a):

L

0

L

2Æ r �

wr

00

r

00

w

L

0

w

r

0

s

0

s

0

+ Æ

L

Figure 3: Possible pla
ements of overlapping
ontend operations L

0

and L.

s

0

+ Æ, and sin
e by assumption, L:r

0

�nishes before s

0

+ Æ, we get that L:r

0

! L

0

:w. Putting

this together with the assumption that L

0

:w pre
edes L:r

00

in �

L:r

00

, we obtain that L:r

0

and

L:r

00

will return di�erent values in whi
h
ase the lease implementation implies that the write

statement is not rea
hed. Hen
e, L:w
ould not have been invoked. Thus, L

0

:w is the last

write pre
eding L:r

00

in �

L:r

00

implying that L:r

00

returns the value written by L

0

:w.

By
onstru
tion, L:r

00

is pre
eded by a 5Æ +� delay pre
eded by another read operation

L:r

0

su
h that the timestamp values returned by these two read's are identi
al. However, it

is easy to see that L

0

:w is
ontained in full between these two reads. Indeed, we already

know that L

0

:w ! L:r

00

. We now show that L:r

0

! L

0

:w. Indeed, the earliest time that

L

0

:w
an be invoked is s

0

��� 4Æ. Sin
e by assumption L:r

00

is invoked before s

0

+ Æ, L:r

0

returns before s

0

+ Æ � (� + 5Æ) = s

0

��� 4Æ (see Figure 3(b)). Therefore, L:r

0

! L

0

:w.

Thus, regularity of x and the timestamp uniqueness imply that L:r

0

and L:r

00

return di�erent

timestamps in whi
h
ase the lease implementation implies that the write statement is not

rea
hed. Hen
e, L:w
ould not have been invoked. A
ontradi
tion.

We are now ready to prove Safety.

Lemma 2 (Safety). The implementation in Figure 2 satis�es Property 1.1.

Proof. Let L be a
ontend operation by pro
ess p that returns at time t. Denote s = t+�.

Suppose to the
ontrary that another
ontend operation L

0

returns at time t

0

within the

interval [t; s℄.

First, suppose that L

0

:r

00

has never been invoked. Then, L:r

0

must have returned ?.

Therefore, L:r

0

must have been invoked before L:w returns. Therefore, L

0

:w returns before

L:delay(2Æ) terminates. Hen
e, L

0

:w! L:r, and by regularity of x, both L:w and L:w

0

must

appear in both �

L:r

and �

L:r

0

. Sin
e L:r returns the value written by L:w, L:w

0

pre
edes L:w

10

in �. However, by assumption, L:r

0

must return the value written by L:w

0

. Therefore, L:w

pre
edes L:w

0

in �. A
ontradi
tion.

Next, suppose that L

0

:r

00

was invoked. Then, it must have been invoked before s+ Æ. By

Lemma 1, putting L

0

= L we get that L:w does not pre
ede L

0

:w in �. Se
ond, L:r

00

must be

invoked before t

0

, and a fortiori, before t

0

+�+ Æ. Applying Lemma 1 again, with L

0

= L

0

,

we get that L:w

0

does not pre
ede L:w in �. A
ontradi
tion.

We now turn our attention to proving Progress. We �rst prove the following te
hni
al fa
t.

Lemma 3. Let q be a pro
ess that performs an operation w

1

= write that returns at time

t. If no pro
ess returns from a
ontend operation after t, then for ea
h s > t, the interval

[s; s+ 5Æ℄
ontains a
omplete write invo
ation (i.e., from its invo
ation to its response).

Proof. Suppose to the
ontrary. By assumption, no write operation is invoked between s

and s+4Æ. Let W be the last write invoked before s, or possibly the set of
on
urrent, latest

writes invoked before s. Formally, W is the set of all w su
h that (1) w is invoked before

s; and (2) for any write w

0

invoked by s + 4Æ, w 6! w

0

. W is not empty be
ause w

1

starts

before s, and no write is invoked in the interval [s; s+ 4Æ℄.

Let w 2 W , and let r = read be the
orresponding read operation, invoked by the same

pro
ess 2Æ after w. We
laim that (i) W ! r, and (ii) there does not exist any write event

! in �

r

that follows W in � su
h that W ! ! and ! is invoked before r returns.

To see that (i) holds, let w

0

2 W . Sin
e w 6! w

0

, we have that w

0

terminates at most Æ

after w; sin
e r starts 2Æ after w's termination, w

0

! r. To see (ii), �rst note that ifW ! !,

then by de�nition !
annot be invoked before s. Se
ond, by assumption, no write is invoked

between s and s+4Æ, but r terminates by s+4Æ at the latest. So !
annot be invoked before

r returns, and hen
e is not in �

r

.

Hen
e, by the regularity of x, all read's
orresponding to write's in W must return the

value of the last write in � from W . The read
orresponding to this write then sees x

un
hanged, and its initiator is allowed to obtain the lease. A
ontradi
tion.

Lemma 4 (Progress). The implementation in Figure 2 satis�es Property 1.2.

Proof. Suppose that no pro
ess is holding the lease at time t. Let p be a
orre
t pro
ess

that is still
ontending at t. Suppose for
ontradi
tion that no
ontend operation returns

after t.

First, eventually some pro
ess, say q

1

, invokes an operation w

1

= write. This is due to

the fa
t that the wait-loop at the start of the
ontend algorithm (lines 2.4{8) terminates

at some pro
ess when no write's are performed.

By Lemma 3, if there is no su

essful
ontend after w

1

returns, then every instan
e

of the loop by q

1

observes at least one new written value. Thus, the test in line 2 remains

false. Hen
e, q

1

does not perform any further write's. Let an operation w

2

= write by q

2

be

observed by q

1

. Again, so long as there is no su

essful
ontend, by Lemma 3, q

2

performs

no further write's. And so on.

Sin
e the number of pro
esses is �nite, eventually all pro
esses are in their wait loop and

no pro
ess writes. This is a
ontradi
tion.

Finally, sin
e the release
ode is trivially live, we proved the following

Theorem 1. The implementation in Figure 2 satis�es Property 1.

11

�(�)

ontend

i

a
k

i

true

i

false

i

Try

i

Hold

i

Exit

i

Release

i

Renew

i

a
k

i

�(0)

�(t),t � 0

Free

i

(initial

state)

renew

i

release

i

Figure 4: Well-formed intera
tion of pro
ess i and the �-Lease obje
t with renewals

6 Lease renewals

In many situations, it is important to enable the
urrent lease holder to renew its lease

without
ontention. For example, this is the
ase when a lease holder requires more time

to
omplete an operation than the alloted period. Another example is the use of leases to

obtain a leader, in whi
h
ase we wish the leader to perpetuate so long as it is alive.

In this and the following se
tion, we
onsider lease renewals. We start by extending the

lease spe
i�
ation in Se
tion 4 to in
lude lease renewals.

The �-Lease obje
t with renewals supports for ea
h pro
ess i, an additional renew

i

operation whose response is either true

i

or false

i

. The extended well-formedness
ondition

is given by the state diagram depi
ted in Figure 4. It allows an appli
ation in the Exit state

to attempt lease renewal by
alling the renew operation. If the
all to renew returns

true, the pro
ess assumes the lease for another � time units. Otherwise, it returns to the

state Free. Note that a pro
ess is allowed to renew its lease for several times in a row before

relinquishing the lease with the release operation.

In addition to Property 1, a �-Lease obje
t with renewals is required to satisfy the

following properties after time t � GST :

Property 2. At any point in an exe
ution, the following holds:

1. Renewal Safety: If a
orre
t pro
ess i is in the Renew state, then no other pro
ess is

in the Hold state.

12

2. Renewal Progress: At any point in an exe
ution, if a
orre
t pro
ess i is in the Renew

state, then at some later point pro
ess i enters the Hold state.

7 Implementing Renewals

In this se
tion we address the lease renewals implementation. We
onsider two implemen-

tation options: The �rst one is suitable for the ND model, and is extremely eÆ
ient. The

se
ond one works in the �ND model, and guarantees stabilization of renewal: Only one

renewal emerges su

essfully after GST, despite any unstable past periods, and despite the

possible existen
e of multiple simultaneous lease holders before GST. The �ND renewal

proto
ol is somewhat more
ostly.

7.1 ND renewal

The renewal implementation in the ND model is extremely simple: A pro
ess whose pre-

viously granted lease expires
an renew it for another � time units by simply exe
uting

lines 8{9 of the �-Lease implementation in Figure 2. More pre
isely, we de�ne the renew

operation as follows:

renew:

Generate a unique timestamp ts;

write(x; ts);

return true;

We now prove the
orre
tness of the ND renewal s
heme. Sin
e liveness trivially holds,

we are only left with proving safety.

Lemma 5. Consider a sequen
e ` = L

0

rn

1

rn

2

: : : rn

k

of lease operations by pro
ess p. Sup-

pose that L

0

is a su

essful
ontend operation that returns at time t

0

, and rn

i

is a su

essful

renew operation that returns at time t

i

. Then there exists no
ontend operation L by pro-

ess q 6= p su
h that L:w is invoked within the interval [t

0

; t

k

+�+ 2Æ℄.

Proof. By indu
tion on length of `. For the base
ase, let ` = L

0

rn

1

. Suppose to the
ontrary

that there exists a
ontend operation L su
h that L:w is invoked within [t

0

; t

1

+�+ 2Æ℄.

First, note that L

0

:w! L:w, and therefore, L

0

:w pre
edes L:w in �. Therefore, by Lemma 1,

L:r

00

must be invoked after t

0

+� + Æ. Sin
e rn

1

:w is invoked at t

0

+�, it must return by

t

0

+ � + Æ, and therefore, rn

1

:w ! L:r

00

. Sin
e L:r

00

is invoked before t

1

+ � + 2Æ, L:r

0

returns before t

1

+�+ 2Æ � (� + 5Æ) = t

1

� 3Æ. Sin
e rn

1

:w must be invoked at t

1

� Æ the

earliest, L:r

0

! rn

1

:w. Therefore, by regularity of x and timestamp uniqueness, L:r

0

and L:r

00

will return di�erent values violating the ne
essary
ondition for the write statement of the

ontend implementation to be rea
hed. Hen
e, L:w
annot be invoked. A
ontradi
tion.

Assume that the result holds for all sequen
es ` of length k� 1, and
onsider a sequen
e

`

0

= ` rn

k

. Assume to the
ontrary. By the indu
tive assumption, L:w must be invoked

after t

(k�1)

+ � + 2Æ. Therefore, rn

k

:w ! L:r

00

. On the other hand, L:r

00

must be invoked

13

before t

k

+ � + 2Æ. Therefore, L:r

0

must return before t

k

� 3Æ. Sin
e the earliest time

rn

k

:w
an be invoked is t

k

� Æ, L:r

0

! L:w. Therefore, by regularity of x and timestamp

uniqueness, L:r

0

and L:r

00

will return di�erent values violating the ne
essary
ondition for

the write statement of the
ontend implementation to be rea
hed. Hen
e, L:w
annot be

invoked. A
ontradi
tion.

Lemma 6. Suppose that a pro
ess p returns from a renew operation rn at time t. Then,

there exists no pro
ess q 6= p whose renew operation rn

0

returns within the interval [t; t+�℄.

Proof. Suppose to the
ontrary that rn

0

returns at time t

0

within the interval [t; t + �℄.

By well-formedness, both p and q must have been invoked
ontend operations L and L

0

in the past to a
quire their initial leases. Suppose that L and L

0

return at times
 < t

and

0

< t

0

respe
tively. Assume, w.l.o.g, that
 <

0

. By Lemma 5, putting t

0

=
 and

t

k

= t +�, and be
ause t

0

� t +�, we get that the lease period of L

0

overlaps with [t

0

; s

k

℄.

A
ontradi
tion.

The following lemma follows immediately from Lemma 5 and Lemma 6.

Lemma 7 (ND Renewal Safety). The ND renewal implementation satis�es Properties 1.1

and 2.1.

We proved the following:

Theorem 2 (ND Renewal Corre
tness). The ND renewal implementation satis�es Prop-

erties 1 and 2.

7.2 �ND renewal

The renew operation implementation for the �ND model is shown in Figure 5. For sim-

pli
ity, we require that timestamps
onsist of two �elds: the pro
ess id and a monotoni
ally

in
reasing
ounter.

Throughout the proof of
orre
tness of the �ND renewal s
heme, we make use of the

following notation. Let L be a
ontend or renew operation. As in the previous se
tion,

we denote the sequen
e of read/write operations by whi
h L terminates by:

(in
ontend only: L:r

0

, delay � + 6Æ), L:r

00

, L:w, (delay 2Æ), L:r :

That is, L:w is the last write operation invoked within L, and L:r

00

, L:r and the read opera-

tions immediately pre
eding and following L:w, respe
tively. If L is a
ontend operation,

and there exists a read operation invoked from line 7 of Figure 2, then L:r

00

denotes the one

immediately pre
eding L:w. If L:r

00

exists, it is immediately pre
eded by a read operation

L:r

0

from line 1 or line 12 of Figure 2 followed by a delay of (�+5Æ). Otherwise, let L:r

0

be

the last read operation during L from line 1 or line 12 of of Figure 2 that pre
edes L:w.

then in addition, the read operation pre
eding L:r

00

is denoted L:r

0

.

Finally, for the exe
ution
onsidered in all proofs, let � be a serialization of the operations

that upholds the regularity of x.

14

renew:

(1) x

1

 read(x);

(2) if (x

1

:id 6= ts:id) then

(3) return false;

(4) ts:
ounter ts:
ounter + 1;

(5) write(x; ts);

(6) delay(2Æ);

(7) x

1

 read(x);

(8) if (x

1

= ts) then

(9) return true;

(10) else

(11) return false;

Figure 5: �ND Renew Implementation.

L

0

r' w

2Æ

r"

w

L

r'

Figure 6: Overlapping renewals.

Lemma 8. Let L

0

be a lease operation (
ontend or renew) invoked by pro
ess p that returns

su

essfully at time t

0

. Denote s

0

= t

0

+� the expiration time of L

0

. Then there exists no

write operation w in � after L

0

:w, su
h that w is invoked before s

0

+ Æ.

Proof. Assume to the
ontrary, and let L:w be the �rst write in � that breaks the lemma.

Clearly, L:w does not pre
ede L

0

:r in �

L

0

:r

, for else L

0

:r
annot return the value written

by L

0

:w. Furthermore, sin
e all write operations w su
h that w ! L

0

:r must appear in �

L

0

:r

before L

0

:r, and be
ause by assumption L

0

:w pre
edes L:w in �, L:w 6! L

0

:r. Putting this

together with the fa
t that the response of L

0

:w and the start of L

0

:r are separated by a 2Æ

delay, we have L

0

:w! L:r

00

(see Figure 6). Hen
e, L

0

:w 2 �

L:r

00

.

Furthermore, by assumption L:w is the �rst write su
h that (1) L:w follows L

0

:w in �;

and (2) L:w is invoked before s

0

+ Æ. Sin
e L

0

:w 2 �

L:r

00

any write w 6= L:w that follows

L

0

:w 2 �

L:r

00

must be invoked after s

0

+ Æ. Sin
e, by de�nition of �

L:r

00

, w must be invoked

before L:r

00

terminates, L:r

00

terminates after s

0

+ Æ. Consequently, L:w would be invoked

after s

0

+ Æ
ontradi
ting the assumption. Sin
e L:w 62 �

L:r

00

, the only remaining possibility

is that L

0

:w is the last write in �

L:r

00

, and so L:r

00

returns the value of L

0

:w.

Next, we
onsider the
ase that L is a
ontend operation separately from the
ase that

15

it is a renew operation. First,
onsider that L is a renew operation. Then the analysis

above shows that L:r

00

returns the timestamp written in L

0

:w, hen
e L is unsu

essful.

Se
ond, assume that L is a
ontend operation. Here, L:r

00

is pre
eded by a 6Æ + �

delay pre
eded by another read operation L:r

0

: and the timestamp values returned by these

two read's are identi
al. However, it is easy to see that L

0

:w is
ontained in full between

these two reads. We already know that L

0

:w ! L:r

00

. We now show that L:r

0

! L

0

:w.

Indeed, the earliest time that L

0

:w
an be invoked is s

0

��� 4Æ. Sin
e by assumption L:w

is invoked before s

0

+ Æ, L:r

0

is invoked before s

0

+ Æ � (� + 6Æ) = s

0

��� 5Æ. Therefore,

L:r

0

! L

0

:w. Thus, regularity of x and the timestamp uniqueness imply that L:r

0

and L:r

00

return di�erent timestamps in whi
h
ase the lease implementation implies that the write

statement is not rea
hed. Hen
e, L:w
ould not have been invoked. A
ontradi
tion.

We are now ready to prove Safety:

Lemma 9. Assume that a lease operation L (
ontend or renew) by pro
ess p returns

su

essfully at time t. Let s = t +�. Then there exists no su

essful
ontend or renew

operation L

0

by a pro
ess q 6= p that returns during the interval [t; s℄.

Proof. Suppose to the
ontrary that L

0

returns su

essfully at time t

0

within the interval

[t; s℄. First, L

0

:w must be invoked before s + Æ. By Lemma 8, putting L

0

= L we get that

L:w does not pre
ede L

0

:w in �. Se
ond, L:w must be invoked before t

0

, and a fortiori, before

t

0

+�+ Æ. Applying Lemma 8 again, with L

0

= L

0

, we get that L:w

0

does not pre
ede L:w

in �. A
ontradi
tion.

Lemma 10. Assume that a renew operation L by a pro
ess p is invoked at time t

1

and

returns su

essfully at time t

2

. Then there exists no su

essful
ontend or renew operation

L

0

by a pro
ess q 6= p that returns during the interval [t

1

; t

2

℄.

Proof. Suppose to the
ontrary that L

0

returns at a time t

0

within the interval [t

1

; t

2

℄. First,

L

0

:w must be invoked before s + Æ. By Lemma 8, putting L

0

= L we get that L

0

:w must

pre
ede L:w in �. Furthermore, applying Lemma 8 again with L

0

= L

0

, we get that L:w

must be invoked after t

0

+ � + Æ. Therefore, L

0

:w ! L:r

00

so that L

0

:w 2 �

L:r

00

, and L

0

:w

pre
edes L:r

00

in �

L:r

00

.

First, suppose that L:w is the �rst write operation by p in � after L

0

:w. Hen
e, there is

no write operation by p in �

L:r

00

following L

0

:w. Then by regularity of x, and be
ause L is

a renew operation, L:r

00

returns a timestamp written by a pro
ess q 6= p,
ontradi
ting to

the fa
t that L is su

essful.

Next, suppose that there exists a write operation L

00

:w by p in �

L:r

00

that follows L

0

:w.

Sin
e L is a renew operation, L

00

must be the su

essful lease (renew or
ontend)

operation immediately pre
eding L. Applying Lemma 8 with L

0

= L

0

, we get that L

00

:w must

be invoked after t

0

+�+ Æ implying that L starts after t

0

+�+ Æ (i.e., t

1

> t

0

+�+ Æ).

We proved the following

Theorem 3 (Renewal Safety). �ND renew implementation satis�es Properties 1.1 and

2.1.

16

Finally, we prove Liveness:

Lemma 11. Assume that a
orre
t pro
ess p obtains the lease in a
ontend or renew

operation L at time t. Then, a renew operation rn invoked by p at s = t + �, returns

su

essfully.

Proof. For rn to be su

essful, �rst rn:r

00

must return the timestamp written by L:w. This

holds by the fa
t that L:r returns the value of L:w, and by Lemma 8, sin
e no other write

operation that follows L:w in � is invoked before s+�+ Æ.

Se
ond, rn:r needs to return the value written by rn:w. Suppose to the
ontrary that

some lease operation L

0

overwrites rn:w. Let L

0

:w be the �rst write in � by pro
ess q 6= p

that follows L:w and pre
edes rn:r in �

rn:r

.

By Lemma 8, L

0

:w is invoked after s+Æ. Hen
e, L:w ! L

0

:r

00

. Sin
e L:

0

w is the �rst write

to follow L:w, and sin
e L

0

:r

00

! L

0

:w, we have that L

0

:r

00

returns the timestamp written

by p in L:w. By
onstru
tion, this o

urs only if L

0

is a
ontend (not renew) operation.

Still, for L

0

:w to be invoked, L

0

:r

0

and L

0

:r

00

must return the same timestamp. We now show

this is impossible.

We already know that L:w ! L

0

:r

00

. By
onstru
tion, L

0

:r

00

follows a delay of � + 6Æ

after the termination of L

0

:r

0

. If L

0

:r

00

is invoked no later than s + 2Æ, then L

0

:r

0

terminates

by s��� 4Æ. Sin
e the earliest that L:w is invoked is t� 4Æ, we have L

0

:r

0

! L:w. We get

that L:w is a write that o

urs
ompletely between L

0

:r

0

and L

0

:r

00

, and so they must return

di�erent timestamps.

We are left with the possibility that L

0

:r

00

is invoked after s+ 2Æ. Be
ause L

0

:w pre
edes

rn:r in �

rn:r

, the latest that L

0

:r

00

may be invoked is s+5Æ. Hen
e, L

0

:r

0

terminates by s� Æ.

We now get that rn:w is a write that o

urs
ompletely between L

0

:r

0

and L

0

:r

00

, and so they

return di�erent timestamps.

Hen
e, L:r

0

and L

0

:r

00

must see di�erent values, in
ontradi
tion to the assumption that

L

0

:w is invoked after L

0

:r

00

. Hen
e, rn:r returns the same value as rn:w, and the renewal

su

eeds.

We proved the following

Theorem 4 (�ND Renewal Corre
tness). The �ND renewal implementation satis�es

Properties 1 and 2.

8 Leader Ele
tion

In this se
tion we show the lease based implementation of the Boolean failure dete
tor ora
le,

denoted L, that is required by the Consensus algorithms of [19, 14℄. L is de�ned as follows:

Let L

i

denote the lo
al instan
e of L at a pro
ess p

i

, with a boolean isLeader() operation

returning the
urrent value output by L

i

. Then, L is required to satisfy the following property

eventually:

Property 3 (Unique Leader). There exists a
orre
t pro
ess p

i

su
h that every invo
ation

of L

i

:isLeader() returns true, and for ea
h pro
ess p

j

6= p

i

, every invo
ation of L

j

:isLeader()

returns false.

17

The lease based implementation of L appears in Figure 7. A
omplete Consensus algo-

rithm based on L appears in [14℄. Here, we in
lude it in Appendix A for
ompleteness.

Shared �-Lease obje
t L;

Lo
al Boolean leader;

(1) forever do

(2) leader false;

(3) L:
ontend();

(4) leader true;

(5) delay(�);

(6) while(L:renew()) do

(7) delay(�);

(8) od;

isLeader:

return leader;

Figure 7: The Lease-based Leader Ora
le implementation

The following theorem establishes the
orre
tness of the leader ora
le implementation in

the �ND model.

Theorem 5. The pseudo
ode in Figure 7 eventually satis�es Property 3 in the �ND model.

Proof. Let T � GST be the time su
h that all the leases a
quired before GST have expired

and all the faulty pro
esses have
rashed by T . Let Leaders

T

be the set of pro
esses that are

still leaders after T . If Leaders

T

6= ;, then all the pro
esses in Leaders

T

must be exe
uting

lines 6{7 of the
ode in Figure 7. By the renewal liveness, some of the pro
esses renewing its

lease at line 6 at the time t � T will su

eed to renew its lease at ea
h renewal attempted

after t. By the renewal safety, starting from time t on, this pro
ess will remain the ex
lusive

lease holder.

If Leaders

T

= ;, then by the lease liveness, for some pro
ess p invoking L:
ontend()

after GST , L:
ontend() will return at time t � T . By the renewal liveness, p will su

eed

to renew its lease at ea
h renewal attempted after t. By the renewal safety, starting from

time t on, p will remain the ex
lusive lease holder.

9 Preliminary Performan
e Assessment

To assess the s
alability of the lease implementation, we
arried out preliminary simulation

studies. The simulation results appear in Figures 8 and 9.

In our experiments, we assumed that read and write operations take times exponentially

distributed with mean 1. Subsequently, the lease delays were measured in the units of the

mean read/write delay. In all the experiments, Æ was set to 2, and � was set to 1. The
hoi
e

18

5.5

6

6.5

7

7.5

8

8.5

9

0 10 20 30 40 50 60 70 80 90 100

Simulation data

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Logarithmi
 �t

Figure 8: Delay until the �rst
lient gets the lease

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

Simulation data

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

��
�

�
�

�
�

�

��

�

�

Logarithmi
 �t

Figure 9: Delay until all the
lients get the lease

19

of Æ = 2 is justi�ed by both the exponential distribution properties, and the simulation stud-

ies. The experiments vary the number n of
ontending pro
esses. All
ontending pro
esses

start simultaneously, and
ontend for the lease on
e until they obtain it. Subsequently, they

release it after � = 1 delay. The graph in Figure 8 shows the average delay until the �rst

pro
ess obtains the lease as a fun
tion of the number of simultaneously
ontending pro
esses;

and the graph in Figure 9 shows the average delay until all the
ontending pro
esses su
-

eed to obtain their leases. The �rst graph �ts into a O(ln(n))
urve and the se
ond one

�ts into a O(n + ln(n))
urve. These results suggest good s
alability features for the real

implementation and are also
onsistent with the exponential distribution analysis of [20℄.

Both analyti
al and empiri
al performan
e evaluation of the lease algorithms as well as

their implementation in the real storage system is the subje
t of the ongoing work.

10 Pra
ti
al
onsiderations

There are a number of
onsiderations worthy of noting in the
ontext of pra
ti
al distributed

storage systems. First, a standard
on
urren
y poli
y is to allow either multiple simultaneous

readers, or one ex
lusive writer. Our leases easily support this paradigm. More spe
i�
ally,

in our s
heme, a

ess is granted to
ontending pro
esses by writing their names onto a shared

read/write register. Therefore, multiple-readers
an be supported simply by having readers

use a
ommon name (e.g., \reader"), and writers use their own identity.

Another important
on
ern is
a
hing. In a s
alable system, a
lient obtaining a lease

on a �le may hold the �le for some period of time, and work on a lo
al
a
hed
opy of the

�le. However, the lease for the �le has to be renewed periodi
ally, whi
h in our approa
h,

implies writing to disk. The obvious
on
ern is that lease-renewal
ould subvert the bene�ts

of
a
hing.

We expe
t this not to be the
ase for several reasons. First,
omparing our storage-
entri

lo
k-renewal with the standard lease-manager approa
h, it is disputable that writing to a

disk over a modern SAN is less eÆ
ient than sending a message to the lease manager. First,

an advan
ed storage
ontroller (like IBM's Shark or Total Storage Volume Controller [21℄)

provides a sophisti
ated
a
hing whi
h is also fault-tolerant. So writing to a disk
an be

as fast as writing to a pro
ess. Moreover, measurements performed in [6℄ indi
ate that in

s
alable settings, the
osts of a

essing a remote disk are signi�
antly outweighed by the

overhead of going through a bottlene
k lease manager. Further assessing the
ost tradeo�s

of our approa
h under di�erent
onditions is a topi
 of further study.

Additionally, the performan
e gain of
a
hing should be always weighed against the end-

user guarantees. Suppose that a
lient holding a
a
hed data is falsely suspe
ted, and the

lease is granted to another
lient. Then, when the original
lient eventually attempts to

write the
a
hed data ba
k to disk, its write would be aborted to prevent in
onsisten
y.

Subsequently, all the modi�
ations issued by the end-user will be lost. In order to provide a

reasonable level of end-user semanti
s, the
a
hed
opy must be syn
hronized with the disk

opy frequently enough. Thus, the lease renewal
an be piggyba
ked on these syn
hronization

messages.

20

A
knowledgments

We are thankful to Ohad Rodeh for introdu
ing us to the subje
t of the lo
king support in

SAN and many fruitful dis
ussions.

Referen
es

[1℄ M. Abadi and L. Lamport. An Old-Fashioned Re
ipe for Real Time. ACM Transa
tions

on Programming Languages and Systems 16, 5 (September 1994) 1543-1571.

[2℄ R. Alur, H. Attiya, and G. Taubenfeld. Time-adaptive algorithms for syn
hronization.

SIAM J. on Computing 26(2):539-556, 1997.

[3℄ R. Alur and G. Taubenfeld. How to share a data stru
ture: A fast timing-based solution.

In Pro
eedings of the 5th IEEE Symposium on Parallel and Distributed Pro
essing, pp.

470-477, 1993.

[4℄ R. Alur and G. Taubenfeld. Fast timing-based algorithms. Distributed Computing,

10(1):1{10, 1996.

[5℄ R. Alur and G. Taubenfeld. Contention-free
omplexity of shared memory algorithms.

Information and Computation, 126(1):62-73, 1996.

[6℄ K. Amiri, G. A. Gibson, R. Golding. Highly
on
urrent shared storage. In Pro
eedings

of the International Conferen
e on Distributed Computing Systems (ICDCS2000), April

2000.

[7℄ H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory Robustly in Message-Passing

Systems. Journal of the ACM 42(1):124{142, 1995.

[8℄ H. Attiya and A. Bar-Or. Sharing Memory with semi-Byzantine Clients and Faulty Stor-

age Servers. The 22nd Symposium on Reliable Distributed Systems (SRDS), O
tober,

2003.

[9℄ A. Barry, et al. An Overview of Version 0.9.5 Proposed SCSI Devi
e Lo
ks. In Pro
eed-

ings of the 17th IEEE Symposium on Mass Storage Systems, pages 243-252, College

Park, Maryland, Mar
h 27-30, 2000. IEEE Computer So
iety.

[10℄ R. Boi
hat, P. Dutta, and R. Guerraoui. Asyn
hronous Leasing. Invited paper at the

7th IEEE International Workshop on Obje
t-oriented Real-time Dependable Systems

(WORDS 2002), San Diego, California, January 2002.

[11℄ R. Burns. Data management in a distributed �le system for Storage Area Networks.

PhD Thesis. Department of Computer S
ien
e, University of California, Santa Cruz,

Mar
h 2000.

[12℄ J. Burns and N. Lyn
h. Bounds on shared memory for mutual ex
lusion. Information

and Computation 107(2):171{184, De
ember 1993.

21

[13℄ Cheng Shao, E. Pier
e, J. Wel
h. Multi-Writer Consisten
y Conditions for Shared Mem-

ory Obje
ts. In Pro
eedings of the 17th International Symposium on Distributed Com-

puting (DISC'2003), To appear.

[14℄ G. Cho
kler and D. Malkhi. A
tive Disk Paxos with In�nitely Many Pro
esses. Pro-

eedings of the 21st ACM Symposium on Prin
iples of Distributed Computing (PODC),

August 2002.

[15℄ G. Cho
kler, D. Malkhi, and M. K. Reiter. Ba
ko� proto
ols for distributed mutual

ex
lusion and ordering. Pro
eedings of the 21st International Conferen
e on Distributed

Computing Systems, pages 11-20, April 2001.

[16℄ T. D. Chandra and S. Toueg. Unreliable failure dete
tors for reliable distributed systems.

Journal of the ACM 43(2):225{267, Mar
h 1996.

[17℄ F. Cristian and C. Fetzer. The Timed Asyn
hronous Distributed System Model. IEEE

Transa
tions on Parallel and Distributed Systems 10(6):642{657, 1999.

[18℄ C. Dwork, N. Lyn
h and L. Sto
kmeyer. Consensus in the presen
e of partial syn
hrony.

Journal of the ACM 35(2):288{323, 1988.

[19℄ E. Gafni and L. Lamport. Disk Paxos. In Distributed Computing 16(1):1{20, 2003.

[20℄ E. Gafni and M. Mitzenma
her. Analysis of Timing-Based Mutual Ex
lusion with Ran-

dom Times. Pro
eedings of the 18th Annual ACM Symposium on Prin
iples of Dis-

tributed Computing (PODC'99), pages 13{21, May 3-6, 1999, Atlanta, Georgia, USA.

[21℄ J. S. Glider, C. F. Fuente, and W. J. S
ales. Software Ar
hite
ture of a SAN Storage

Control System. IBM Systems Journal, 2(42), 2003.

[22℄ R. Golding and O. Rodeh. Group Communi
ation { Still Complex after All These Years.

In International Workshop on Large-S
ale Group Communi
ation (in
onjun
tion with

SRDS'2003), O
tober 5, 2003, Floren
e, Italy.

[23℄ C. Gray and D. Cheriton. Leases: An EÆ
ient Fault-TolerantMe
hanism for Distributed

File Ca
he Consisten
y. Pro
eedings of the 12th ACM Symposium on Operating Systems

Prin
iples, pages 202{210, 1989.

[24℄ P. Jayanti, T. Chandra, and S. Toueg. Fault-tolerant wait-free shared obje
ts. Journal

of the ACM 45(3), pages 451{500, May 1998.

[25℄ D. K. Kaynar, N. Lyn
h, R. Segala, and F. Vaandrager. Timed I/O Automata.

Manus
ript in progress, 2003.

[26℄ L. Lamport. A Fast Mutual Ex
lusion Algorithm. ACM Transa
tions on Computer

Systems, 5, 1 (February 1987), 1-11. Also appeared as SRC Resear
h Report 7.

[27℄ L. Lamport. Paxos made simple. Distributed Computing Column of SIGACT News

32(4):34{58, De
ember 2001.

22

[28℄ B. W. Lampson. How to build a highly available system using Consensus. In Pro
eed-

ings of the 10th International Workshop on Distributed Algorithms (WDAG), Springer-

Verlag LNCS 1151:1-17, Berlin, 1996.

[29℄ B. W. Lampson. The ABCD's of Paxos. Lamport Celebration Le
ture 2, Presented on

the 20th Annual ACM Symposium on Prin
iples of Distributed Computing (PODC'01),

August 26-29, 2001, Newport, Rhode Island, USA.

[30℄ N. Lyn
h. Distributed Algorithms. Morgan Kaufman Publishers, San Mateo, CA, 1996.

[31℄ N. Lyn
h and N. Shavit. Timing-based mutual ex
lusion. In Pro
eedings of the 13rd

Real-Time Systems Symposium, pages 2{11, Phoenix, Arizona, De
ember 1992. IEEE

Computer So
iety.

[32℄ J. Menon, D. Pease, R. Rees, L. Duyanovi
h, and B. Hillsberg. StorageTank, a Hetero-

geneous S
alable SAN File System. IBM Systems Journal, 2(42), 2003.

[33℄ The Obje
t-Based Storage Devi
es Te
hni
al Work Group.

www.snia.org/te
h a
tivities/workgroups/osd.

[34℄ K. Preslan, et al. A 64-bit, Shared Disk File System for Linux. In Pro
eedings of the

16th IEEE Symposium on Mass Storage Systems, pages 22-41, San Diego, California,

Mar
h 15-18, 1999. IEEE Computer So
iety.

[35℄ K. Preslan, S. Soltis, C. Sabol, and M. O'Keefe. Devi
e Lo
ks: Mutual Ex
lusion for

Storage Area Networks, In Pro
eedings of the 16th IEEE Symposium on Mass Storage

Systems, pages 262-274, San Diego, California, Mar
h 15-18, 1999. IEEE Computer

So
iety.

[36℄ O. Rodeh and A. Teperman. zFS - a s
alable distributed �le system using obje
t disks.

In Pro
eedings of the 20th IEEE/11th NASA Goddard Conferen
e on Mass Storage

Systems and Te
hnologies, pages 207-218, San Diego, California, April 7-10, 2003. IEEE

Computer So
iety.

[37℄ F. S
hmu
k and R. Haskin. GPFS: A Shared-Disk File System for Large Comput-

ing Clusters. In pro
eedings of the First Conferen
e on File and Storage Te
hnologies

(FAST), January 2002.

[38℄ S. Soltis, T. Ruwart, and M. O'Keefe. The Global File System. In Pro
eedings of the 5th

NASA Goddard Conferen
e on Mass Storage Systems and Te
hnologies, College Park,

Maryland, September, 1996.

[39℄ S. Soltis, G. Eri
kson, K. Preslan, M. O'Keefe, and T. Ruwart. The Design and Per-

forman
e of a Shared File System for IRIX. In Pro
eedings of the 6th NASA Goddard

Conferen
e on Mass Storage Systems and Te
hnologies, College Park, Maryland, Mar
h

23-26, 1998.

23

A Uniform Consensus based on L

Our Consensus implementation utilizes the ranked register primitive of [14℄ de�ned as follows:

Let Ranks be a totally ordered set of ranks with a distinguished initial rank r

0

su
h that for

ea
h r 2 Ranks, r > r

0

; and Vals be a set of values with a distinguished initial value v

0

. We

also
onsider the set of pairs denoted RVals whi
h is Ranks� V als with sele
tors rank and

value. A ranked register is a multi-reader, multi-writer shared memory register with two

operations: rr-read(r)

i

by pro
ess i, r 2 Ranks, whose
orresponding response is value(V)

i

,

where V 2 RVals. And rr-write(V)

i

by pro
ess i, V 2 RVals, whose reply is either
ommit

i

or abort

i

.

De�nition 2. We say that a rr-read operation R = rr-read(r

2

)

i

sees a rr-write operation

W = rr-write(hr

1

; vi)

j

if R returns hr

0

; v

0

i where r

0

� r

1

.

The ranked register is required to satisfy the following three properties:

Property 4 (Safety). Every rr-read operation returns a value and rank that was written in

some rr-write invo
ation. Additionally, let W = rr-write(hr

1

; vi)

i

be a rr-write operation that

ommits, and let R = rr-read(r

2

)

j

, su
h that r

2

> r

1

. Then R sees W .

Property 5 (Non-Triviality). If a rr-write operation W invoked with the rank r

1

aborts,

then there exists a rr-read (rr-write) operation with rank r

2

> r

1

whi
h is invoked before W

returns.

Property 6 (Liveness). If an operation (rr-read or rr-write) is invoked by a non-faulty

pro
ess, then it eventually returns.

The pseudo
ode of the Consensus implementation is shown in Figure 10. Please refer

to [14℄ for the
orre
tness proof.

24

Shared: Ranked registers rr, initialized by rr-write(hr

0

;?i)

whi
h
ommits;

Regular register de
ision, with values in RVals,

initialized by write(hr

0

;?i)

Lo
al: V 2 RVals [fabortg,

r 2 Ranks;

Pro
ess i:

propose(v), V als! V als

r r

0

;

while(true) do

V de
ision:read();

if (V:value 6= ?)

return V:value;

if (L

i

:isLeader()) then

r
hooseRank(r);

V de
ide(hr; vi);

if (V 6= abort)

return V:value;

�

od

Fun
tion de
ide(hr; vi), RVals! RVals [fabortg:

V rr:rr-read(r)

i

;

if (V:value = ?) then

V:value v;

V:rank r;

if (rr:rr-write(V)

i

=
ommit) then

de
ision:write(V);

return V ;

�

return abort;

Figure 10: Consensus using a ranked register and L

25

