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a b s t r a c t

This paper presents a new algorithm for implementing a reconfigurable distributed shared memory in
an asynchronous dynamic network. The algorithm guarantees atomic consistency (linearizability) in
all executions in the presence of arbitrary crash failures of the processing nodes, message delays, and
message loss. The algorithm incorporates a classic quorum-based algorithm for read/write operations,
and an optimized consensus protocol, based on Fast Paxos for reconfiguration, and achieves the design
goals of: (i) allowing read and write operations to complete rapidly and (ii) providing long-term fault-
tolerance through reconfiguration, a process that evolves the quorum configurations used by the read
andwrite operations. The resulting algorithm tolerates dynamism.We formally prove our algorithm to be
correct, we present its performance and compare it to existing reconfigurablememories, andwe evaluate
experimentally the cost of its reconfiguration mechanism.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Providing consistent and available data storage in a dynamic
network is an important basic service for modern distributed
applications. To be able to tolerate failures, such services must
replicate data or regenerate data fragments, which results in
the challenging problem of maintaining consistency despite a
continually changing computation and communication medium.
The techniques that were previously developed to maintain
consistent data in static networks are inadequate for the dynamic
settings of extant and emerging networks.
Recently a newdirectionwas proposed, that integrates dynamic

reconfiguration within a distributed data storage service. The
goal of this research was to enable the storage service to
guarantee consistency (safety) in the presence of asynchrony,
arbitrary changes in the collection of participating network
nodes, and varying connectivity. The original service, called
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Rambo (Reconfigurable Atomic Memory for Basic Objects) [21,
11], supportsmulti-reader/multi-writer atomic objects in dynamic
settings. The reconfiguration service is loosely coupled with the
read/write service. This allows for the service to separate data
access from reconfiguration, during which the previous set of
participating nodes can be upgraded to an arbitrary new set of
participants. Of note, read and write operations can continue to
make progress while the reconfiguration is ongoing.
Reconfiguration is a two step process. First, the next configu-

ration is agreed upon by the members of the previous configura-
tion; then obsolete configurations are removed, using a separate
configuration upgrade process. As a result, multiple configurations
can co-exist in the system if the removal of obsolete configurations
is slow. This approach leads to an interesting dilemma. (a) On the
one hand, decoupling the choice of new configurations from the
removal of old configurations allows for better concurrency and
simplified operation. Thus each operation requires weaker fault-
tolerance assumptions. (b) On the other hand, the delay between
the installation of a new configuration and the removal of obsolete
configurations is increased. The delayed removal of obsolete con-
figurations can slow down reconfiguration, lead to multiple extant
configurations, and require stronger fault-tolerance assumptions.
The contribution of this work is the specification of a new

distributed memory service that tightly integrates the two
stages of reconfiguration. Our approach translates into a reduced
reconfiguration cost in terms of latency and a relaxation of fault-
tolerance requirements on the installed configurations. Moreover,
we provide a bound on the time during which each configuration
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needs to remain active, without impacting the efficiency of the
data access operations. The developments presented here are an
example of a trade-off between the simplicity of a loosely coupled
reconfiguration protocols, as in [21,11] and the fault-tolerance
properties that tightly coupled reconfiguration protocols, like the
current work, achieve.

1.1. Contributions

In this paper we present a new distributed algorithm,
named Reconfigurable Distributed Storage (RDS). As the Rambo
algorithms [21,11], RDS implements atomic (linearizable) object
semantics, where consistency of data is maintained via use
of configurations consisting of quorums of network locations.
Depending on the properties of the quorums, configurations are
capable of sustaining small and transient changes and remain fully
usable at the same time. Read and write operations consist of two
phases, where each accesses the needed read- or write-quorums.
In order to tolerate significant changes in the computing medium
we implement reconfiguration that evolves quorum configurations
over time.
In RDSwe take a radically different approach to reconfiguration

from Rambo and Rambo II. To speed up reconfiguration and
reduce the time duringwhich obsolete configurationsmust remain
accessible, we present an integrated reconfiguration algorithm
that overlays the protocol for choosing the next configurationwith
the protocol for removing obsolete configurations. The protocol for
choosing and agreeing on the next configuration is based on Fast
Paxos [5,18], an optimized version of Paxos [16,17,19]. Theprotocol
for removing obsolete configurations is a two-phase protocol,
involving quorums of the old and the new configurations.
In summary,we present a new algorithm, RDS, that implements

a survivable atomic memory service. We formally show that
the new algorithm correctly implements atomic objects in all
executions involving asynchrony, processor stop-failures, and
message loss. We present the time complexity of the algorithm
when message delays become bounded. More precisely, our
upper-bound on operation latency requires that at most one
reconfiguration success occurs every 5 message delays, and our
upper-bound on reconfiguration latency requires that a leader is
eventually elected and at least one read-quorum and one write-
quorum remain active during 4 message delays. Furthermore, we
compare the latencies obtained and show that RDS supersedes
other existing reconfigurable memories. Finally, we present the
highly encouraging experimental results of additional operation
latency due to reconfiguration. The highlights of our approach are
as follows:

– Read/write independence: Read and write operations are inde-
pendent of the reconfiguration process, and can terminate re-
gardless of a success or a failure of the ongoing reconfiguration.
However, network instability can postpone termination of the
read and write operations.

– Fully flexible reconfiguration: The algorithm imposes no depen-
dencies between the quorum configurations selected for instal-
lation.

– Fast reconfiguration: The reconfiguration uses a leader-based
consensus protocol, similar to Fast Paxos [5,18]; when the
leader is stable, reconfigurations are very fast: three network
delays. Since halting consensus requires at least three network
delays, reconfiguration does not add any overhead and thus
reaches time optimality.

– Fast read operations: Read operations require only two mes-
sage delays when no write operations interfere with it. Conse-
quently, their time complexity is optimal [6].
– No recovery need: Our solution does not need to recover after
network instability by cleaning up obsolete quorum configu-
rations. Specifically, unlike the prior Rambo algorithms [21,11]
that may generate an arbitrarily long backlog of old configura-
tions, there is never more than one old configuration present in
the system at a time, diminishing message complexity accord-
ingly.More importantly, RDS tolerates the failures of all old con-
figurations but the last one.

Our reconfiguration algorithm can be viewed as an example
of protocol composition advocated by van der Meyden and
Moses [29]. Instead of waiting for the establishment of a
new configuration, and then running the obsolete configuration
removal protocol, we compose (or overlay) the two protocols so
that the upgrade to the next configuration takes place as soon as
possible.

1.2. Background

Several approaches have been used to implement consistent
data in (static) distributed systems. Starting with the work of Gif-
ford [10] and Thomas [27], many algorithms have used collections
of intersecting sets of objects replicas (such as quorums) to solve
the consistency problem. Upfal and Wigderson [28] use majority
sets of readers andwriters to emulate sharedmemory. Vitányi and
Awerbuch [3] use matrices of registers where the rows and the
columns arewritten and respectively read by specific nodes. Attiya,
Bar-Noy andDolev [2] usemajorities of nodes to implement shared
objects in static message passing systems. Extensions for limited
reconfiguration of quorum systems have also been explored [7,22]
and the recent timed quorum systems [13,15] provide only proba-
bilistic consistency.
Virtually synchronous services [4], and group communication

services (GCS) in general [26], can also be used to implement
consistent data services, e.g., by implementing a global totally
ordered broadcast.While the universe of nodes in aGCS can evolve,
in most implementations, forming a new view takes a substantial
time, and client operations are interrupted during view formation.
However, the dynamic algorithms, such as the algorithmpresented
in this work and [21,11,8], allow reads andwrites tomake progress
during reconfiguration and can benefit from grouping multiple
objects into domains as described in [9].
RDS improves on these latter solutions [21,11,8] by using

a more efficient reconfiguration protocol that makes it more
fault tolerant. Finally, reconfigurable storage algorithms are
finding their way into practical implementations [1,25]. The new
algorithm presented here has the potential of making further
impact on system development.

1.3. Document structure

Section 2 defines the model of computation. Section 3
presents some key ideas to obtain an efficient read/write
memory for dynamic settings. We present the algorithm in
Section 4. In Section 5 we present the correctness proofs. In
Section 6 we present conditional performance analysis of the
algorithm. Section 7 compares explicitely the complexity of RDS
to the complexity of the Rambo algorithms. Section 8 contains
experimental results about operation latency. The conclusions are
in Section 9.

2. Systemmodel and definitions

Here, we present the system model and give the prerequisite
definitions.
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2.1. Model

We use a message-passing model with asynchronous proces-
sors (also called nodes), that have unique identifiers (the set of
node identifiers need not be finite). Nodes may crash (stop-fail).
Nodes communicate via point-to-point asynchronous unreliable
channels. More precisely, messages can be lost, duplicated, and re-
ordered, but new messages can not be created by the link. In nor-
mal operation, any node can send a message to any other node. In
safety (atomicity) proofs we do not make any assumptions about
the length of time it takes for a message to be delivered.
To analyze the performance of the new algorithm, we make

additional assumptions about the performance of the underlying
network. In particular, we assume the presence of a leader election
service that stabilizes when failures stop and message delays are
bounded. (This leader must be a node that has already joined
the system, but does not necessarily need to be part of any
configuration.) This service can be implemented deterministically,
for example nodes periodically send the smallest node identifier
they have received so far to other nodes: the nodes that has never
received a smaller identifier than their own candecide to be leader;
after some time therewill be a single leader. In addition,we assume
that eventually (at some unknown point) the network stabilizes,
becoming synchronous and delivering messages in bounded (but
unknown) time. We also assume that the rate of reconfiguration
after stabilization is not too high, and limit node failures such that
some quorum remains available in an active configuration. (For
example, in majority quorums, this means that only a minority
of nodes in a configuration fail between reconfigurations.) We
present a more detailed explanation in Section 6.

2.2. Data types

The set of all node identifiers is denoted as I ⊂ N. This is a set
of network locations where the RDS service can be executed.
TheRDS algorithm is specified for a single object. LetX be the set

of all data objects, and RDSx, for x ∈ X , denotes an automaton that
implements atomic object x. A completememory system is created
by composing the individual RDS automata. The composition of
the RDS automata implements an atomic memory, since atomicity
is preserved under composition. From this point on, we fix one
particular object x ∈ X and omit the implicit subscript x. We refer
to V as the set of all possible values for object x. With each object x
we associate a set T of tags, where each tag is a pair of counter and
node identifier−T ⊂ N× I .
A configuration c ∈ C consists of three components: (i)

members(c), a finite set of node ids, (ii) read-quorums(c), a set
of quorums, and (iii) write-quorums(c), a set of quorums, where
each quorum is a subset of members(c). That is, C is the set of all
tuples representing a different configuration c. We require that
the read quorums and write quorums of a common configuration
intersect: formally, for every R ∈ read-quorums(c) and W ∈

write-quorums(c), the intersection R ∩ W 6= ∅. Neither two read
quorums nor two write quorums need to intersect. Note that a
node participating in the service does not have to belong to any
configuration.
The following are the additional data types and functions that

help to describe theway nodes handle and aggregate configuration
information. For this purpose, we use the not-yet-created (⊥) and
removed (±) symbols. and we partially order the elements of C ∪
{⊥,±} such that for any c ∈ C,⊥ < c < ±. The data types and
functions follow:

– CMap, the set of configuration maps, defined as the set of
mappings from integer indices N to C ∪ {⊥,±}.
– update, a binary function on C∪{⊥,±}, defined by update(c, c ′)
= max(c, c ′) if c and c ′ are comparable (in the partial ordering
of C ∪ {⊥,±}), update(c, c ′) = c otherwise.

– extend, a binary function on C ∪{⊥,±}, defined by extend(c, c ′)
= c ′ if c = ⊥ and c ′ ∈ C , and extend(c, c ′) = c otherwise.

– truncate, a unary function on CMap, defined by truncate(cm)(k)
= ⊥ if there exists ` ≤ k, such that cm(`) = ⊥, truncate
(cm)(k) = cm(k) otherwise. This truncates configuration map
cm by removing all the configuration identifiers that follow a⊥.

– Truncated, the subset of CMap such that cm ∈ Truncated if and
only if truncate(cm) = cm.

The update and extend operators are extended element-wise to
binary operations on CMap.

3. Overview of the main ideas

In this section, we present an overview of the main ideas
that underlie the RDS algorithm. In Section 4, we present the
algorithm in more detail. Throughout this section, we discuss
the implementation of a single memory location x; each of the
protocols presented supports read and write operations on x.
We begin in Section 3.1 by reviewing a simple algorithm for

implementing a read/write shared memory in a static system,
i.e., one in which there is no reconfiguration or change in
membership. Then, in Section 3.2, we review a reconfigurable
atomic memory, that consists of two decoupled components: a
read/write component (similar to that described in Section 3.1),
and a reconfiguration component, based on Paxos [16,17,19].
Finally, in Section 3.3, we describe briefly how the RDS protocol
improves and merges these two components, resulting in a more
efficient integrated protocol.

3.1. Static read/write memory

In this section, we review a well-known protocol for imple-
menting read/write memory in a static distributed system. This
protocol (also known as ABD) was originally presented by Attiya,
Bar-Noy, andDolev [2]. (For the purposes of presentation,we adapt
it to the terminology used in this paper.)
The ABD protocol relies on a single configuration, that is, a

single set of members, read-quorums, and write-quorums. (It does
not support any form of reconfiguration.) Each member of the
configuration maintains a replica of memory location x, as well as
a tag that contains some meta-data about the most recent write
operation. Each tag is a pair consisting of a sequence number and
a process identifier.
Each read and write operation consists of two phases: (1) a

query phase, in which the initiator collects information from a
read-quorum, and (2) a propagate phase, in which information is
sent to a write-quorum.
Consider, for example, a write operation initiated by node i that

attempts to write value v to location x. First, the initiator i contacts
a read-quorum, collecting the set of tags and values returned by
each quorum member. The initiator then selects the tag with the
largest sequence number, say, s, and creates a new tag 〈s + 1, i〉.
The initiator then sends the new value v and the new tag 〈s+ 1, i〉
to a write-quorum.
A read operation proceeds in a similar manner. The initiator

contacts a read-quorum, collecting the set of tags and values
returned by each quorum member. It then selects the value v
associated with the largest tag t (where tags are considered in
lexicographic order). Before returning the value v, it sends the
value v and the tag t to a write-quorum.
The key observation is as follows: consider some operation π2

that begins after an earlier operationπ1 completes; then thewrite-
quorum contacted by π2 in the propagate phase intersects with
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the read-quorum contacted by π1 in the query phase, and hence
the second operation discovers a tag at least as large as the first
operation. If π2 is a read operation, we can then conclude that it
returns a value at least as recent as the first operation.

3.2. Dynamic read/write memory

The Rambo algorithms [21,11] introduce the possibility of
reconfiguration, that is, choosing a new configuration with a
new set of members, read-quorums, and write-quorums. Rambo
consists of two main components: (1) a Read–Write component
that extends the ABD protocol, supporting read and write
operations; and (2) a Reconfiguration component that relies
on Paxos [16,17,19], a consensus protocol, to agree on new
configurations. These two components are decoupled, and operate
(almost) independently.

3.2.1. The read–write component
The Read–Write component of Rambo is designed to operated

in the presence of multiple configurations. Initially, there is
only one configuration. During the execution, the Reconfiguration
component may produce additional new configurations. Thus, at
any given point, there may be more than one active configuration.
At the same time, a garbage-collection mechanism proceeds to
remove old configurations. If there is a sufficiently long period of
time with no further reconfigurations, eventually there will again
only be one active configuration.
Read and write operations proceed as in the ABD protocol, in

that each operation consists of two phases, a query phase and a
propagation phase. Each query phase accesses one (or more) read-
quorums,while eachwrite operation accesses one (ormore)write-
quorums. Unlike ABD, however, each phase may need to access
quorums from more than one configuration. In fact, each phase
accesses one quorum from each active configuration.
The garbage-collection operation proceeds much like the read

and write operations. It first performs a query phase, collecting
tag and value information from the configuration to be removed,
that is, from a read-quorum and a write-quorum of the old
configuration. It then propagates that information to the new
configuration, i.e., to a write-quorum of the new configuration. At
this point, it is safe to remove the old configuration.

3.2.2. The reconfiguration component
The Reconfiguration component is designed to produce new

configurations. Specifically, it receives, as input, proposals for
new configurations, and produces, as output, a sequence of
configurations, with the guarantee that each node in the system
will learn an identical sequence of configurations. In fact, the
heart of the Reconfiguration component is a consensus protocol,
in which all the nodes attempt to agree on the sequence of
configurations.
In more detail, the Reconfiguration component consists of a

sequence of instances of consensus, P1, P2, . . .. Each node presents
as input to instance Pk a proposal for the kth configuration ck.
Instance Pk then uses the quorum-system from configuration ck−1
to agree on the new configuration ck, which is then output by the
Reconfiguration component.
For the purpose of this paper, we consider the case where each

consensus instance Pk is instantiated using the Paxos agreement
protocol [16,17,19].
In brief, Paxos works as follows. (1) Preliminaries: First, a leader

is elected, and all the proposals are sent to the leader. (2) Prepare
phase: Next, the leader proceeds to choose a ballot number b
(larger than any prior ballot number known to the leader) and to
send this ballot-number to a read-quorum; this is referred to as
the prepare phase. Each replica that receives a prepare message
responds only if the ballot number b is in fact larger than any
previously received ballot number. In that case, it responds by
sending back any proposals that it has previously voted on. The
leader then chooses a proposal from those returned by the write-
quorum; specifically, it chooses the one with the highest ballot
number. If there is no such proposal that has already been voted
on, then it uses its own proposal. (3) Propose phase: The leader then
sends a message to a write-quorum including the chosen proposal
and the ballot number. Each replica that receives such a proposal
votes for that proposal if it has still seen no ballot number larger
than b. If the leader receives votes from a write-quorum, then it
concludes that its proposal has been accepted and sends amessage
to everyone indicating the decision.
The key observation that implies the correctness of Paxos

is as follows: notice that if a leader eventually decides some
value, then there is some write-quorum that has voted for it;
consider a subsequent leader that may try to render a different
decision; during the prepare phase it will access a read-quorum,
and necessarily learn about the proposal that has already been
voted on. Thus every later proposal will be identical to the already
decided proposal, ensuring that there is at most one decision.
See [16,17,19] for more details.

3.3. RDS overview

The key insight in this paper is that both the Read–Write
component and the Paxos component of Rambo operate in the
same manner, and hence they can be combined. Thus, as in
both ABD and Rambo, each member of an active configuration
stores a replica of location x, along with a tag consisting of a
sequence number s and a node identifier. Similarly as before, read
and write operations rely on a query phase and a propagation
phase, each of which accesses appropriate quorums from all active
configurations, but in RDS some operations consist only of a query
phase.
Unlike Rambo algorithms, the reconfiguration process does two

steps simultaneously: it both decides on the new configuration,
and it removes the old configuration. Reconfiguration from old
configuration c to new configuration c ′ consists of the following
steps:
Preliminaries: First, the request is forwarded to a possible leader

`. If the leader has already completed Phase 1 for some ballot b,
then it can skip Phase 1, and use this ballot in Phase 2. Otherwise,
the leader performs Phase 1.
Phase 1: Leader ` chooses a unique ballot number b larger than

any previously used ballot and sends 〈Recon1a, b〉 messages to
a read quorum of configuration c (the old configuration). When
node j receives 〈Recon1a, b〉 from `, if it has not received any
message with a ballot number greater than b, then it replies to `
with 〈Recon1b, b, configs, b′′, c ′′〉 where configs is the set of active
configurations and b′′ and c ′′ represent the largest ballot and
configuration which j has voted should replace configuration c .
Phase 2: If leader ` has received a 〈Recon1b, b, configs, b′′, c ′′〉

message, it updates its set of active configurations; if it receives
‘‘Recon1b’’ messages from a read quorum of configuration c ,
then it sends a 〈Recon2a, b, c, v〉 message to a write quorum
of configuration c , where: if all the 〈Recon1b, b, . . .〉 messages
contain empty signifiers for the last two parameters, then v is c ′;
otherwise, v is the configuration with the largest ballot received
in the prepare phase. If a node j receives 〈Recon2a, b, c, c ′〉 from `,
and if c is the only active configuration, and if it has not already
received any message with a ballot number greater than b, it
sends 〈Recon2b, b, c, c ′, tag, value〉 to a read-quorum and a write-
quorum of c , where value and tag correspond to the current object
value and its version that j has locally.
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Fig. 1. Signature.
Phase 3: If a node j receives 〈Recon2b, b, c, c ′, tag, value〉
from a read quorum and a write quorum of c , and if c is
the only active configuration, then it updates its tag and value,
and adds configuration c ′ to the set of active configurations.
It then sends a 〈Recon3a, c, c ′, tag, value〉 message to a read
quorum and a write quorum of configuration c. If a node j
receives 〈Recon3a, c, c ′, tag, value〉 from a read quorum and a
write quorum of configuration c , then it updates its tag and value,
and removes configuration c from its active set of configurations.

4. RDS algorithm

In this section, we present the RDS service and its specification.
The RDS algorithm is formally stated using the Input/Output
Automata notation [20]. We present the algorithm for a single
object; atomicity is preserved under composition and the complete
shared memory is obtained by composing multiple objects. See [9]
for an example of a more streamlined support of multiple objects.
In order to ensure fault-tolerance, data is replicated at several

nodes in the network. The key challenge, then, is to maintain
the consistency among the replicas, even as the underlying set
of replicas may be changing. The algorithm uses configurations
to maintain consistency, and reconfiguration to modify the set
of replicas. During normal operation, there is a single active
configuration; during reconfiguration, when the set of replicas is
changing, there may be two active configurations. Throughout the
algorithm, each nodemaintains a set of active configurations. A new
configuration is added to the set during a reconfiguration, and the
old one is removed at the end of a reconfiguration.

4.1. Signature

The external specification of the algorithm appears in Fig. 1.
Before issuing any operations, a client instructs the node to join
the system, providing the algorithm with a set of ‘‘seed’’ nodes
already in the system. When the algorithm succeeds in contacting
nodes already in the system, it returns a join-ack. A client can
then choose to initiate a read or write operation, which result,
respectively, in read-ack and write-ack responses. A client can
initiate a reconfiguration, recon, resulting in a recon-ack. The
network sends and recvs messages, and the node may be caused
to fail. Finally, a leader election service may occasionally notify a
node as to whether it is currently the leader.

4.2. State

The state of the algorithm is described in Fig. 2. The value ∈ V of
node i indicates the value of the object from the standpoint of i. A
tag ∈ T is maintained by each node as a unique pair of counter and
id. The counter denotes the version of the value of the object from
a local point-of-view, while the id is the node identifier and serves
as a tie-breaker, when two nodes have the same counter for two
different values. The value and the tag are simultaneously sent and
updatedwhen a larger tag is discovered, or when awrite operation
occurs.
The status of node i expresses the current state of i. A node may

participate fully in the algorithm only if its status is active. The
set of identifiers of nodes known to i to have joined the service is
maintained locally in a set called world. Each processor maintains
a list of configurations in a configuration map. A configuration
map is denoted cmap ∈ CMap, a mapping from integer indices
to C ∪ {⊥,±}, and initially maps every integer, except 0, to
⊥. The index 0 is mapped to the default configuration c0 that is
used at the beginning of the algorithm. This default configuration
can be arbitrarily set by the designer of the application depending
on its needs: e.g., since the system is reconfigurable, the default
configuration can be chosen as a single node known to be reliable
a sufficiently long period of time for the system to bootstrap. The
configuration map tracks which configurations are active, which
have not yet been created, indicated by⊥, and which have already
been removed, indicated by±. The total ordering on configurations
determined by the reconfiguration ensures that all nodes agree on
which configuration is stored in each position in cmap. We define
c(k) to be the configuration associated with index k.
Read and write operations are divided into phases; in each

phase a node exchanges information with all the replicas in some
set of quorums. Each phase is initiated by some node that we
refer to as the phase initiator. When a new phase starts, the
pnum1 field records the corresponding phase number, allowing the
client to determine which responses correspond to its phase. The
pnum 2 field maps an identifier j to an integer pnum2(j)i indicating
that i has heard about the pnum2(j)thi phase of node j. The three
records op, pxs, and ballot store the information about read/write
operations, reconfiguration, and ballots used in reconfiguration,
respectively. We describe their subfields in the following:

– The record op is used to store information about the current
phase of an ongoing read or write operation. The op.cmap ∈
CMap subfield records the configuration map associated with
a read/write operation. This consists of the node’s cmap when
a phase begins. It is augmented by any new configuration
discovered during the phase in the case of a read or write
operation. A phase completes when the initiator has exchanged
information with quorums from every valid configuration
in op.cmap. The op.pnum subfield records the read or write
phase number when the phase begins, allowing the initiator
to determine which responses correspond to the phase. The
op.acc subfield records which nodes from which quorums have
responded during the current phase.

– The record pxs stores information about the paxos subprotocol.
It is used as soon as a reconfiguration request has been
received. The pxs.pnum subfield records the reconfiguration
phase number, the pxs.phase indicates if the current phase is
idle, prepare, propose, or propagate. The pxs.conf-index subfield
is the index of cmap for the last installed configuration, while
the pxs.old-conf subfield is the last installed configuration.
Therefore, pxs.conf-index + 1 represents the index of cmap
where the new configuration, denoted by the subfield pxs.conf ,
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Fig. 2. State.

will be installed (in case reconfiguration succeeds). The pxs.acc
subfield records which nodes from which quorums have
responded during the current phase.

– Record ballot stores the information about the current bal-
lot. This is used once the reconfiguration is initiated. The
ballot.id subfield records the unique ballot identifier. The
ballot.conf-index and the ballot.conf subfields record
pxs.conf-index and pxs.conf , respectively, when the reconfigu-
ration is initiated.

Finally, the voted-ballot set records the set of ballots that have
been voted by the participants of a read quorumof the last installed
configuration. In the remaining, a state field indexed by i indicates
a field of the state of node i, e.g. tag i refers to field tag of node i.

4.3. Read and write operations

The pseudocode for read andwrite operations appears in Figs. 3
and 4. Read and write operations proceed by accessing quorums
of the currently active configurations. Each replica maintains
a tag and a value for the data being replicated. Each read or
write operation potentially requires two phases: one to query the
replicas, learning the most up-to-date tag and value, and a second
to propagate the tag and value to the replicas. First, the query phase
starts when a read (Fig. 3, Line 1) or a write (Fig. 3, Line 11) event
occurs and ends when a query-fix event occurs (Fig. 3, Line 22).
In a query phase, the initiator contacts one read quorum from
each active configuration, and remembers the largest tag and its
associated value by possibly updating its own tag-value pair, as
detailed in Section 4.4. Second, the propagatephase startswhen the
aforementioned query-fix event occurs and ends when a prop-fix
(Fig. 3, Line 42) event occurs. In a propagate phase, read operations
andwrite operations behave differently: a write operation chooses
a new tag (Fig. 3, Line 35) that is strictly larger than the one
discovered in the query phase, and sends the new tag and new
value to a write quorum; a read operation sends the tag and value
discovered in the query phase to a write quorum.
Sometimes, a read operation can avoid performing the prop-

agation phase, if some prior read or write operation has already
propagated that particular tag and value. Once a tag and value
has been propagated, be it by a read or a write operation, it is
marked confirmed (Fig. 3, Line 51). If a read operation discovers
that a tag has been confirmed, it can skip the second phase (Fig. 3,
Lines 62–70).
One complication arises when during a phase, a new configura-

tion becomes active. In this case, the read or write operation must
access the new configuration as well as the old one. In order to ac-
complish this, read or write operations save the set of currently ac-
tive configurations, op.cmap, when a phase begins (Fig. 3, Lines 8,
18, 40); a reconfiguration can only add configurations to this set—
none are removed during the phase. Even if a reconfiguration fin-
ishes with a configuration, the read or write phase must continue
to use it.

4.4. Communication and independent transitions

In this section, we describe the transitions that propagate
information betweenprocesses. Those appear in Fig. 4. Information
is propagated in the background via point-to-point channels that
are accessed using send and recv actions. In addition, we present
the join and join-ack actions which describe the way a node joins
the system. The join input sets the current node into the joining
status and indicates a set of nodes denotedW that it can contact to
start being active. Finally, a leader election service informs a node
that it is currently the leader, through a leader action, and the fail
action models a disconnection.
The most tricky transitions are the communication transitions.

This is due to the piggybacking of information in messages:
each message conveys not only information related to the read
and write operations (e.g. tag , value, cmap, confirmed) but also
information related to the reconfiguration process (e.g. ballot , pxs,
voted-ballot).
Moreover, all messages contain fields common to operations

and reconfiguration: the set of nodes ids world the sender node
knows of, and the current configuration map cmap. When node i
receives a message, provided i is not failed or idle, it sets its status
to active—completing the join protocol, if it has not already done
so. It also updates its information with the message content: i
starts participating in a new reconfiguration if the ballot received
is larger than its ballot, i updates some of its pxs subfield (Lines
60–64) if i discovers that a pending consensus focuses on a larger
indexed configuration than the one it is aware of (Line 58). That
is, during a stale reconfiguration i might catch up with the actual
reconfiguration, while aborting the stale one. The receiver also
progresses in the reconfiguration (adding the sender id to its
pxs.acc subfield, Lines 68, 71,74) if the sender uses the same ballot
(Line 70), and responds to the right message of i (Line 67). Observe
that if i discovers another consensus instance aiming at installing a
configuration at a larger index, or if i discovers a larger ballot than
its, then i sets its pxs.phase to idle. Thus, i stops participating in the
reconfiguration.
In the meantime, i updates fields related to the read/write

operations and either continues the phase of the current operation,
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Fig. 3. Read/write transitions.
or restarts it depending on the current phase and the incoming
phase number (Lines 47–53). Node i compares the incoming tag
t to its own tag . If t is strictly greater, it represents a more recent
version of the object; in this case, i sets its tag to t and its value
to the incoming value v. Node i updates its configuration map
cmap with the incoming cm, using the update operator defined in
Section 2. Furthermore, node i updates its pnum2(j) component for
the sender j to reflect new information about the phase number of
the sender, which appears in the pns component of the message. If
node i is currently conducting a phase of a read or write operation,
it verifies that the incoming message is ‘‘recent’’, in the sense that
the sender j sent it after j received a message from i that was sent
after i began the current phase. Node i uses the phase number to
perform this check: if the incoming phase number pnr is at least
as large as the current operation phase number (op.pnum), then
process i knows that the message is recent.
If i is currently in a query or propagate phase and the message

effectively corresponds to a fresh response from the sender (Line
47) then i extends its op.cmap record used for its current read and
write operations with the cmap received from the sender. Next, if
there is no gap in the sequence of configurations of the extended
op.cmap, meaning that op.cmap ∈ Truncated, then node i takes
notice of the response of j (Lines 49 and 50). In contrast, if there
is a gap in the sequence of configuration of the extended op.cmap,
then i infers that it was running a phase using an out-of-date
configuration and restarts the current phase by emptying its field
op.acc and updating its op.cmap field (Lines 51–53).

4.5. Reconfiguration

The pseudocode for reconfiguration appears in Figs. 4–8.
When a client wants to change the set of replicas, it initiates
a reconfiguration, specifying a new configuration. The nodes
then initiate a consensus protocol, ensuring that everyone agrees
on the active configuration, and that there is a total ordering
on configurations. The resulting protocol is somewhat more
complicated than typical consensus, however, since at the same
time, the reconfiguration operation propagates information from
the old configuration to the new configuration.
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Fig. 4. Send/receive/other transitions.
Fig. 5. Initiate reconfiguration.
The reconfiguration protocol uses an optimized variant of
Paxos [16,18]. The reconfiguration initialization is presented in
Fig. 5. The reconfiguration is requested at some node through
the recon action. If the requested node is not the leader the
request is forwarded to the leader via the generic information
exchange. Then, the leader starts the reconfiguration by executing
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Fig. 6. Prepare.
Fig. 7. Propose.
Fig. 8. Propagate.
an init event, and the reconfiguration completes by a recon-ack
event. More precisely, the recon(c, c ′) event is executed at some
node i starting the reconfiguration aiming to replace configuration
c by c ′. To this end, this event records the reconfiguration
information in the pxs field. That is, node i records the c and c ′
in pxs.old-conf and pxs.conf , respectively. Node i selects the index
of its cmap that immediately succeeds the index of the latest
installed configuration and records it in pxs.conf-index as a possible
index for c ′ (Fig. 5, Line 4). Finally, i starts participating in the
reconfiguration by reinitializing its pxs.acc field. The leader ` sets
its reconfiguration information either during a recon event orwhen
it receives this information from another node, as described in
Section 4.4. The leader executes an init event and starts a new
consensus instance to decide upon the kth configuration, only if
the pxs field is correctly set (e.g. pxs.old-conf must be equal to
cmap(k− 1)). If so, the pxs.acc is emptied, the configuration of this
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consensus instance is recorded as the ballot configuration with k,
its index.
The leader coordinates the reconfiguration, which consists of

three phases: a prepare phase in which a ballot is made ready
(Fig. 6), a propose phase (Fig. 7), in which the new configuration
is proposed, and a propagate phase (Fig. 8), in which the results
are distributed. The prepare phase, appearing in Fig. 6, sets a new
ballot identifier larger than any previously seen ballot identifier,
accesses a read quorum of the old configuration (Fig. 6, Line 22),
thus learning about any earlier ballots, and associates the largest
encountered ballot to this consensus instance. But, if a larger ballot
is encountered, then pxs.phase becomes idle (Fig. 4, Line 56). When
the leader concludes the prepare phase, it chooses a configuration
to propose through an init-propose event: if no configurations
have been proposed to replace the current old configuration, the
leader can propose its own preferred configuration; otherwise, the
leader must choose the previously proposed configuration with
the largest ballot (Fig. 6, Line 13). The propose phase, appearing
in Fig. 7, then begins by a propose event, accessing both a
read and a write quorum of the old configuration (Fig. 7, Lines
33–36). This serves two purposes: it requires that the nodes in the
old configuration vote on the new configuration, and it collects
information on the tag and value from the old configuration.
Finally, the propagate phase, appearing in Fig. 8, begins by a
propagate event and accesses a read and a write quorum from the
old configuration (Fig. 8, Lines 20–21); this ensures that enough
nodes are aware of the new configuration to ensure that any
concurrent reconfiguration requests obtain the desired result.
There are two optimizations included in the protocol. First,

if a node has already prepared a ballot as part of a prior
reconfiguration, it can continue to use the same ballot for the new
reconfiguration, without redoing the prepare phase. This means
that if the same node initiates multiple reconfigurations, only the
first reconfiguration has to perform the prepare phase. Second,
the propose phase can terminate when any node, even if it is
not the leader, discovers that an appropriate set of quorums has
voted for the new configuration. If all the nodes in a quorum
send their responses to the propose phase to all the nodes in the
old configuration, then all the replicas can terminate the propose
phase at the same time, immediately sending out propagate
messages. Again, when any node receives a propagate response
from enough nodes, it can terminate the propagate phase. This
saves the reconfiguration one message delay. Together, these
optimizations mean that when the same node is performing
repeated reconfigurations, it only requires three message delays:
the leader sending the propose message to the old configuration,
the nodes in the old configuration sending the responses to
the nodes in the old configuration, and the nodes in the old
configuration sending a propagate message to the initiator, which
can then terminate the reconfiguration.

4.6. Good executions

We consider good executions of RDS, whose traces satisfy a set
of environment assumptions. Those environment assumptions are
the simple following well-formedness conditions:
Well-formedness for RDS:

– For every x and i:
· No join(∗)i, readi, write(∗)i or recon(∗, ∗)i event is preceded
by a faili event.
· At most one join(∗)i event occurs.
· Any readi, write(∗)i or recon(∗, ∗)i is preceded by a join-ack
(rds)i event.
· Any readi,write(∗)i or recon(∗, ∗)i is preceded by a -ack event
for any preceding event of any of these kind.
– For every c , at most one recon(∗, c)i event occurs. Uniqueness
of configuration identifier is achievable using local process
identifier and sequence numbers.

– For every c , c ′, and i, if a recon(c, c ′)i event occurs, then it is
preceded by:
· A recon-ack(c)i event, and
· A join-ackj event for every j ∈ members(c ′).

5. Proof of correctness (atomic consistency)

In this section, we show that the algorithm is correct. That is,
we show that the read and write operations are linearizable. We
depend on two lemmas commonly used to show linearizability:
Lemmas 13.10 and 13.16 in [20]. This requires that there exists
a partial ordering on all completed operations satisfying certain
properties.1

Theorem 5.1. Let S be an algorithm for read/write shared memory.
Assume that for every execution, α, in which every operation
completes, there exists a partial ordering,≺, on all the operations in α
with the following properties:

(i) all write operations are totally ordered, and every read operation
is ordered with respect to all the writes,

(ii) the partial order is consistent with the external order of
invocations and responses, that is, there do not exist read or write
operationsπ1 andπ2 such that π1 completes beforeπ2 starts, yet
π2 ≺ π1, and

(iii) every read operation that is ordered after any writes returns the
value of the last write preceding it in the partial order; any read
operation ordered before all writes returns v0.

Then S guarantees that operations are linearizable.

First, fix α such that every operation initiated by any node i
completes, i.e., for each operation readi and writei event in α there
is a corresponding read-acki andwrite-acki event, respectively, later
in α. For each operation π in α at node i, we define the query-fix
event (resp. prop-fix event) for π as the last query-fix event (resp.
prop-fix event) that occurs during operation π and tag(π) as the
tag of i right after the query-fix event for π occurs. If query-fix for
π never occurs, then tag(π) is undefined. Moreover, we define
a partial order, ≺, in terms of the tags: the write operations are
totally ordered in terms of their (unique) tags, and each read
operation is ordered immediately following the write operation
identified by the same tag. This ordering immediately satisfies
conditions (i) and (iii). The main purpose of this section, then, is
to show that this order satisfies condition (ii).

5.1. Ordering configurations

Before we can reason about the consistency of the operations,
however, we must show that nodes agree on the active configura-
tions. Observe that there is a single default configuration c0 in the
cmap field of every node of the system when the algorithm starts,
as indicated at Line 7 of Fig. 2. For index `, we say that the con-
figuration of index ` is well-defined if there exists a configuration,
config , such that for all nodes i, at all points in α, cmap(`)i is ei-
ther undefined (⊥), removed (±), or equal to config . In particular,
no other configuration is ever installed in slot ` of the cmap. We
first show, inductively, that configuration ` is well-defined for all `.
The following proof, at its heart, is an extension of the proof in [16]

1 In [20], a fourth property is included, assuming that each operation is preceded
by only finitely many other operation. This is unnecessary, as it is implied by the
other properties.
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showing that Paxos ensures agreement. It has been modified to fit
the presented pseudocode and to be compatible with the rest of
the algorithm; it has been extended to handle changing configu-
rations. (The original proof in [16] assumes a single quorum sys-
tem/configuration, and shows that the participants can agree on a
sequence of values.)

Theorem 5.2. For all executions, for all `, for any i, j ∈ I , if
cmap(`)i, cmap(`)j ∈ C then cmap(`)i = cmap(`)j at any point
in α.

Proof. First, initially cmap(0)i = cmap(0)j = c0 for any i, j ∈ I ,
by definition. We proceed by induction: assume that for all `′ < `,
cmap(`′)i = cmap(`′)j (so that we can omit the index i and j and
denote this by cmap(`′)). We show that cmap(`)i = cmap(`)j.
Assume, by contradiction, that there exist two propose-done(`)

events, ρ1 and ρ2 at nodes i and j, respectively, that install two
different configurations in slot ` of i and j’s cmap in Fig. 7, Line 39.
Let b = ballot i immediately after ρ1 occurs and b′ = ballot j
immediately after ρ2 occurs. The ballot when the two operations
complete must refer to different configurations: b.conf 6= b′.conf .
Without loss of generality, assume that b.id < b′.id. (Ballot
identifiers are uniquely associated with configurations, so the two
ballots cannot have the same identifier.)
At some point, a prepare(b′) action must have occurred at

some node—we say in this case that ballot b′ has been prepared.
First, consider the case where b′ was prepared as part of a recon
operation installing configuration `. Let R be a read-quorum of
configuration cmap(` − 1) accessed by the prepare-done of ballot
b′, and let W1 be a write-quorum of cmap(` − 1) accessed by the
propose-done associatedwith b. Since cmap(`−1)i = cmap(`−1)j
for any i, j ∈ I by the inductive hypothesis, there is some node
i′ ∈ R∩W1. There are two sub-cases to consider: i′ processed either
the prepare first or the propose first. If i′ processed the prepare first,
then the propose would have been aware of ballot b′, and hence
the ballot identifier at the end of the proposal could have been no
smaller than b′.id, contradicting the assumption that b.id < b′.id.
Otherwise, if i′ processed the propose first, then ballot b ends up
in voted-ballotsi′ , and eventually in voted-ballotsj. This ensures that
j proposes the same configuration as i, again contradicting our
assumption that ρ1 and ρ2 result in differing configurations for `.
Consider the case, then,where b′was prepared as part of a recon

operation installing a configuration `′ < `. In this case, we can
show that b.id ≥ b′.id, contradicting our assumption. In particular,
some recon for `′ must terminate prior to the ρ1 and ρ2 beginning
reconfiguration for `. By examining the quorum intersections, we
can show that the identifier associated with ballot b′ must have
been passed to the propose for this recon for `′, and from there to
the propose of a recon for `′ + 1, and so on, until it reaches the
propose for ρ1, leading to the contradiction.
We can therefore conclude that if two recon s complete for

configuration `, theymust both install the same configuration, and
hence cmap(`− 1)i = cmap(`− 1)j for any i, j ∈ I . �

5.2. Ordering operations

We now proceed to show that tags induce a valid ordering on
the operations, that is, if operation π1 completes before π2 begins,
then tag(π1) ≤ tag(π2), and if π2 is a write operation then the
inequality is strict. We first focus on the case where π1 is a two-
phase operation; that is, π1 is not a read operation that short-
circuits the second phase due to a tag being previously confirmed.
If both operations ‘‘use’’ the same configuration, then this

property is easy to see: operation π1 propagates its tag to a write
quorum, and π2 discovers the tag when reading from a read
quorum. The difficult case occurs when π1 and π2 use differing
configurations. In this case, the reconfigurations propagate the tag
from one configuration to the next.
In order to formalize this, we define the tag(`), for reconfigura-

tion `, as the smallest tag found at any node i immediately after a
propose-done(`)i event occurs. If no propose-done(`) event occurs
in reconfiguration `, then tag(`) is undefined. We first notice that
any node that has received information on configuration c(`) has
a tag at least as large as tag(`):

Invariant 5.3. If cmap(`)i ∈ C ∪{±} (i.e., node i has information on
configuration c(`)), then tag i ≥ tag(`).

Proof. The proof is done by induction on events in α. The base
case is immediate since a propose-done(`) must have occurred
by definition of cmap. Assume that prior to some point in α, the
invariant holds. There are twoways that cmap(`)i is set 6= ⊥: either
as a result of a propose-done event, in which case the invariant
follows by definition, or by receiving amessage from another node,
j, in which case j must have previously been in a state where
cmap(`)j ∈ C∪{±}, and by the inductive hypothesis tag j ≥ tag(`).
Since i received a message from j, the result follows from Lines 43
and 44 of Fig. 4. �

This invariant allows us to conclude two facts about how
information is propagated by reconfiguration operations: first,
each reconfiguration has at least as large a tag as the prior
reconfiguration, and second, an operation has at least as large a tag
as the previous reconfiguration.

Corollary 5.4. For all ` > 0 such that tag(`) is defined, tag(`) ≤
tag(`+ 1).

Proof. A reconi event where k is set to ` + 1 can occur only
after i has received information about configuration `, i.e., only
if cmap(`)i ∈ C due to the precondition at Fig. 5, Line 4. Thus
Invariant 5.3 implies that tag i ≥ tag(`) when the reconi occurs.
Any node that receives a message relating to the reconfiguration
also receives the tag, implying that any node j that performs a
propose-done(`+ 1) also has a tag at least that large. �

Corollary 5.5. Let π be a read or write operation at node i in α and
assume that cmap(`) ∈ C immediately prior to any query-fix event
for π . Then tag(`) ≤ tag(π), and if π is a write operation then
tag(`) < tag(π).

Proof. Invariant 5.3 implies that by the time the query-fix event
occurs, tag i ≥ tag(`). In the case of a read, the corollary follows
immediately. In the case of a write operation, notice that the
query-fix event increments the tag. �

We next need to consider the relationship between a read or
write operation and the following reconfiguration. The next lemma
shows that a read or write operation correctly propagates its tag to
the reconfiguration operation.

Lemma 5.6. Let π be a read or write operation at node i, and let `
be the largest entry in cmapi not equal to ⊥ at the time immediately
preceding the query-fix event for π . Then tag(π) ≤ tag(`+ 1).

Proof. Consider the prop-fixi event for π and the propose-done
(`+ 1)j event at node j. Note that we have not yet shown anything
about the ordering of these two events. LetW be a write quorum
associated with the prop-fix and let R be a read quorum associated
with the propose-done(` + 1)—i.e., such that W ⊆ op.acc and
R ⊆ op.acc immediately prior to the prop-fix event. Let i′ ∈ R∩W .
This follows from Theorem 5.2, in that both refer to quorums of the
same configuration, and the assumption that every read quorum
intersects every write quorum in a configuration. First, we show
that i′ must receive the message from i associated with π before
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sending the message to j associated with the reconfiguration.
Otherwise, node i′ would have sent a message to node i including
information about configuration ` + 1. However, by assumption,
configuration ` is the largest configuration known by i. Since i′

receives the message from i before sending the message to j, node
i′ includes the tag fromπ in themessage to j, leading to the desired
result. �

We can now show that for any execution, α, it is possible
to determine a linearization of the operations. As discussed
previously, we need to show that if operation π1 precedes
operation π2, then tag(π1) ≤ tag(π2); if π1 is a write operation,
then tag(π1) < tag(π2).

Theorem 5.7. If operation π1 completes before operation π2 begins,
then

– tag(π1) ≤ tag(π2) in any case and
– tag(π1) < tag(π2) if π1 is a write operation.

Proof. On the one hand, assume that π1 is not a one phase read
operation but a two phase operation. Let i be the node initiating
operation π1 while j is the node initiating π2. There are three cases
to consider.

(i) First, assume there exists k such that op.cmap(k)i =

op.cmap(k)j ∈ C meaning that π1 and π2 use a common
configuration. With no loss of generality, let c denote
this common configuration. Then the write quorum(s) of c
accessed in action prop-fixi for π1 (write quorum(s) W ⊆

op.acc i) intersects the read quorum(s) accessed in action
query-fixj for π2 (read quorum(s) R ⊆ op.acc j) ensuring that
tag j right after the query-fixj for operation π2 is larger than
tag i right after the query-fixi for operation π1. By definition of
tag(π1) and tag(π2), the result follows.

(ii) Second, assume that the smallest k such that op.cmap(k)i ∈ C
when prop-fixi for π1 occurs (i.e., k is the smallest index of
configuration accessed during π1), is larger than the largest `
such that op.cmap(`)j ∈ C when query-fixi for π2 occurs (i.e., `
is the largest index of configuration accessed during π2). This
case cannot occur. Prior to π1, some reconfiguration installing
configuration ` + 1 must occur. During the final phase of the
reconfiguration, a read quorum of configuration ` is notified
of the new configuration. Therefore, during the query phase
of π2, the new configuration for ` + 1 would be discovered,
contradicting our assumption.

(iii) Third, assume that the largest k such that op.cmap(k)i ∈ C is
accessed by π1 during prop-fixi, is smaller than the smallest `
such that op.cmap(`)j ∈ C is accessed by π2 during query-fixj.
Then, Lemma 5.6 shows that tag(π1) ≤ tag(`); Corollary 5.4
shows that tag(`) ≤ tag(`′); finally, Corollary 5.5 shows
that tag(`′) ≤ tag(π2) and if π2 is a write operation then
the inequality is strict. Together, these show the required
relationship of the tags.

On the other hand, consider the case where π1 is a one-phase
read operation. A one-phase read operation occurs at node i only
if the op.tag i belongs to confirmedi. In order for the tag to be
confirmed, there must exist some prior two-phase operation, π ′,
that put the tag in the confirmed set. This operation must have
completed prior to π1, and hence prior to π2 beginning. Since π ′

is a two-phase operation, we have already shown that tag(π ′) ≤
tag(π2). Moreover, it is clear that tag(π ′) = tag(π1), implying the
desired result. �
6. Conditional performance analysis

Here we examine the performance of RDS, focusing on the
efficiency of reconfiguration, and how the algorithm responds to
instability in the network. To ensure that the algorithm makes
progress in an otherwise asynchronous system, we make a series
of assumptions about the network delays, the connectivity, and
the failure patterns. In particular, we assume that, eventually,
the network stabilizes and delivers messages with a delay of d.
The main results in this section are as follows: (i) We show that
the algorithm ‘‘stabilizes’’ within e + 2d time after the network
stabilizes, where e is the time required for new nodes to fully
join the system and notify old nodes about their existence. (By
contrast, the original Rambo algorithm [21] might take arbitrarily
long to stabilize under these conditions.) (ii) We show that after
the algorithm stabilizes, every reconfiguration completes in 5d
time; if a single node performs repeated reconfigurations, then
after the first, each subsequent reconfiguration completes in 3d
time. (iii) We show that after the algorithm stabilizes, reads and
writes complete in 8d time; reads complete in 4d time if there is no
interference from ongoing writes, and in 2d if no reconfiguration is
pending.

6.1. Assumptions

Our goal is to model a system that becomes stable at some
(unknown) point during the execution. Formally, let α be a (timed)
execution and α′ a finite prefix of α during which the network
may be unreliable and unstable. After α′ the network is stable and
delivers messages in a timely fashion.
We refer to `time(α′) as the time of the last event of α′. In

particular, we assume that following `time(α′):
(i) All local clocks progress at the same rate;
(ii) Messages are not lost and are received in atmost d time,where
d is a constant unknown to the algorithm;

(iii) Nodes respond to protocol messages as soon as they receive
them and they broadcast messages every d time to all
participants;

(iv) All other enabled actions are processedwith zero time passing
on the local clock.

Generally, in quorum-based algorithms, operations are guaranteed
to terminate provided that at least one quorum does not fail.
In contrast, for a reconfigurable quorum system we assume
that at least one quorum does not fail prior to a successful
reconfiguration replacing it. For example, in the case of majority
quorums, this means that only a minority of nodes fail in between
reconfigurations. Formally, we refer to this as configuration-
viability: at least one read quorumandonewrite quorum fromeach
installed configuration survive 4d after (i) the network stabilizes,
i.e., `time(α′) (ii) a reconfiguration operation.
We place some easily satisfied restrictions on reconfiguration.

First, we assume that each node in a new configuration has
completed the join protocol at least time e prior to the
configuration being proposed, for a fixed constant e. We call
this recon-readiness. Second, we assume that after stabilization,
reconfigurations are not too frequent: recon-spacing saying that for
any k, the propose-done(k) events and the propose-done(k+1) are
at least 5d apart.
Also, after stabilization, we assume that nodes, once they have

joined, learn about each other quickly, within time e. We refer to
this as join-connectivity.
Finally, we assume that a leader election service chooses a

single leader ` among the joined nodes at time `time(α′) + e and
that ` remains alive forever. For example, a leader may be chosen
among the members of a configuration based on the value of an
identifier, however, the leader does not need to belong to any
configuration.
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6.2. Bounding reconfiguration delays

We now show that reconfiguration attempts complete within
at most fivemessage delays after the system stabilizes. Let ` be the
node identified as the leader when the reconfiguration begins.
The following lemma describes a preliminary delay in recon-

figuration when a non-leader node forwards the reconfiguration
request to the leader.

Lemma 6.1. Let γ be the first reconi for all i ∈ I , let t be the time γ
occurs, and let t ′ = max(`time(α′), t)+ e. Then, the leader ` starts
the reconfiguration process at the latest at time t ′ + 2d.

Proof. With no loss of generality, let γ = recon(c, c ′)i. In the
following we show that the preconditions of the init(c ′)` event
are satisfied before time t ′ + 2d. Denote k by k = argmax(k′ :
∀ j ∈ I, cmapj(k′) ∈ C) at time t. That is c = c(k). First, since
no recon(c, c ′) occurs prior to time t , c ′ is not installed yet and
cmap(k+ 1) = ⊥ at time t .
Second, we show that if k > 0 then cmap(k − 1) = ± at any

node at time t + d. Assume that k > 0 and some recon-ack(ok),
installing c(k) occurs before time t in the system, and let γk be the
last of these events. Since a matching recon(c(k − 1), c) precedes
γk, recon-readiness and join-connectivity imply that members of
c(k − 1) and c know each other plus the leader at time t ′. That is,
less than 2d time after (before time t ′ + 2d), a propagate-done(k)
event occurs and cmap(k− 1) is set to± at any of these nodes.
Next, by examination of the code, just after the recon(c, c ′)

event, pxs.conf-indexi = k + 1, pxs.conf i = c ′ 6= ⊥ and
pxs.old-conf i = c 6= ⊥. Prior to time t ′+d, a send(∗, cm, ∗, p, ∗)i,`
event occurs with cm = cmapi and p = pxsi. That is, before t ′+2d,
the corresponding recv(∗, cm, ∗, p, ∗)i,` event occurs. Therefore,
the p.conf-index = k + 1 subfield received is larger than `’s
pxs.conf-index`, and subfields pxs.conf ` and pxs.old-conf ` are set to
the received ones, c ′ and c , respectively.
Consequently, d time after the recon(c, c ′)i event occurs with

k = pxs.conf-index` − 1, preconditions of event init(c ′)` are
satisfied and therefore this event occurs at the latest at time t ′+2d.

�

The next lemma implies that after some time following a
reconfiguration request, there is a communication roundwhere all
messages include the same ballot.

Lemma 6.2. After time `time(α′) + e + 2d, ` knows always about
the largest ballot in the system.

Proof. Let b be the largest ballot in the system at time `time(α′)+
e+2d, we show that ` knows it.We know that after `time(α′), only
` can create a newballot. Therefore ballot bmust have been created
before `time(α′) or ` is aware of b at the time it creates it. Since ` is
the leader at time `time(α′)+e, we know that ` has started joining
before time `time(α′). If ballot b still exists after `time(α′) (the case
we are interested in), then there are two possible scenarios. Either
ballot b is conveyed by an in-transit message or it exists an active
node i aware of it at time `time(α′)+ e.
In the former case, assumption (ii) implies that the in-transit

message is received at time t , such that `time(α′) + e < t <
`time(α′)+e+d. However, it might happen that ` does not receive
it, if the sender ignored its identity at the time the send event
occurred. Thus, at this time one of the receiver sends a message
containing b to `. Its receipt occurs before time `time(α′)+ e+ 2d
and ` learns about b.
In the latter case, by join-connectivity assumption at time

`time(α′) + e, i knows about `. Assumption (iii) implies i sends a
message to ` before `time(α′)+ e+ d and this message is received
by ` before `time(α′)+ e+ 2d, informing it of ballot b. �
Next theorem says that any reconfiguration completes in at
most 5d time, following the algorithm stabilization. In Theorem6.4
we show that when the leader node has successfully completed
the previous reconfiguration request, then it is possible for the
subsequent reconfiguration to complete in at most 3d.

Theorem 6.3. Assume that ` starts the reconfiguration process, initi-
ated by recon(c, c ′), at time t. Then the corresponding reconfiguration
completes no later thanmax(t, `time(α′)+ e+ 2d)+ 5d.

Proof. First-of-all, observe by assumption (iv) that any internal
enabled action is executed with no time passing. As a result, if at
time `time(α′) + e + 2d, ` knows that a reconfiguration should
have been executed pxs.conf-index` 6= ⊥ (Fig. 5, Line 15) but the
reconfiguration is not complete yet cmap(pxs.conf-index)` = ⊥
(Fig. 5, Line 16), then the reconfiguration restarts immediately.
In case, ` the reconfiguration request is received at time t ′ >
`time(α′) + e + 2d, the reconfiguration starts immediately. Let
t ′′ = max(t ′, `time(α′)+ e+ 2d).
Next, we subsequently show a bound on each of the three

phases of the reconfiguration started at time t ′′. Observe that if
an init(c)` event occurs at time t ′, then a prepare` occurs too. By
Lemma 6.2 and since t ′′ ≥ `time(α′)+ e+ 2d, ballot` augmented
by this event is at this time, the strictly highest one. By join-
connectivity and recon-readiness, messages are sent from ` to every
member of configuration c(k − 1) where k = argmax(k′ :
cmap(k′)` ∈ C). Therefore they update their ballot before time t ′′+
d, and ` receives their answer no later than time t ′′ + 2d. Because
of the prepare-done` occurring, the prepare phase completes in 2d.
For the propose phase, observe that init-propose(k)` and

propose(k)` occur successively with no time passing. Next, all
members of configuration c(k−1) receive amessage from i, update
their voted-ballot field, execute their propose(k) event and send
in turn a message no later than time t ′′ + 3d. Consequently the
participation of the members of c(k − 1) completes the propose
phase before time t + 4d.
Since cmap(k) = pxs.conf at time t ′′ + 4d at all members of

c(k− 1) and c(k), recon-ack(ok) occurs without any time passing.
Notice that at time t+4d, allmembers of configuration c(k−1) and
c(k) have set their cmap(k) to ballot.conf by the propose-done(k)
effect. Thus, propagate(k) occurs at all these nodes at time t ′′ + 4d
or earlier and no more than d time later, they all have exchanged
messages of the propagate phase. That is, the propagate phase
completes in one message delay and the whole reconfiguration
ends no later than time t ′′ + 5d. �

Theorem 6.4. Let ` be the leader node that successfully conducted
the reconfiguration process from c to c ′. Assume that ` starts a new
reconfiguration process from c ′ to c ′′ at time t ≥ `time(α′)+ e+ 2d.
Then the corresponding reconfiguration from c ′ to c ′′ completes at the
latest at time t + 3d.

Proof. This proof shows that the prepare phase of the recon-
figuration can be skipped under the present conditions. Let γk′′
and γk′ be the reconfigurations that aim at installing configura-
tion c ′′ and configuration c ′, respectively. After γk′ , ballot.id` =
pxs.prepared-id`, since by Lemma 6.2 ballot` remains unchanged.
That is, after the init(c ′′)` event the init-propose(k′′)` occurs with-
out any timepassing. From this point on, the propose phase and the
propagation phase are executed like mentioned in proof of Theo-
rem 6.3. Since the propose phase is done in 2d and the propagation
phase requires d time, γk′′ completes successfully by time t + 3d.

�
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Fig. 9. Time complexity of Rambo, Rambo II, and RDS. Letter δ refers to a lower-bound on message delay, letter d refers to an upper-bound on message delay, s refers to the
number of active configurations, and ε = O(1) is a constant independent from message delay.
6.3. Bounding read–write delays

In this section, we present bounds on the duration of read/write
operations under the assumptions stated in the previous section.
Recall from Section 4 that both the read and the write operations
are conducted in two phases, first the query phase and second
the propagate phase. We begin by first showing that each phase
requires at most 4d time. However, if the operation is a read
operation and no reconfiguration and no write propagation phase
is concurrent, then it is possible for this operation to terminate in
only 2d—seeproof of Lemma6.5. The final result is a general bound
of 8d on the duration of any read/write operation.

Lemma 6.5. Consider a single phase of a read or a write operation
initiated at node i at time t, where i is a node that joined the system
no later than at time max(t − e − 2d, `time(α′)) and denote t ′ by
max(t, `time(α′) + e + 2d). Then this phase completes at the latest
at time t ′ + 4d.

Proof. Let k = argmax{` : ∀j ∈ I, cmap(`)j ∈ C} at time
t ′− d. First we show that any of these j knows about configuration
c(k) at time t ′. Because of configuration-viability, members of c(k)
are active during the reconfiguration. Moreover because of join-
connectivity and since join-ackj occurs prior to time t ′ − e − d, we
know that j is connected tomembers of c(k) at time t ′−d. Because
of assumption (ii), d time later j receives a message frommembers
of c(k). That is at time t ′, j knows about configuration c(k).
For the phase to complete, node i sends a message to all the

nodes in its worldi set (the set of nodes i knows of). Next, node
i has to wait until the accurate response of some members of
the active configurations. Hence each phase needs at least two
message delays to complete.
From now on, assume that some recon-ack occurs setting

cmap(k+ 1) to an element of C after time t ′ − d and prior to time
t ′+ 2d. That is jmight learn about this new configuration c(k+ 1)
and the phase might be delayed an additional 2d time since j has
now to contact a quorum of configuration c(k+ 1).
Since a recon-ack event occurs after time t , recon-spacing

ensures that no further recon-ack occurs before time t ′+5d, and the
phase completes at most at time t ′ + 4d. Especially, the phase can
complete in only 2d if no recon-ack event occurs after time t ′ − d
and before t ′ + 2d. �

Theorem 6.6. Consider a read operation that starts at node i at time
t and denote t ′ bymax(t, `time(α′)+ e+ 2d):

(i) If no write propagation is pending at any node and no
reconfiguration is ongoing, then it completes at the latest at time
t ′ + 2d.

(ii) If no write propagation is pending, then it completes no later than
time t ′ + 8d.

Consider a write operation that starts at node i at time t. Then it
completes at the latest at time t ′ + 8d.
Proof. When a readi or writei event occurs at time t ′, the phase is
set to query. From now on, by Lemma 6.5, we know that the query
fix-point is reached and the current phasei becomes prop no later
than time t ′ + 4d. If the operation is a write, then a new tag i is set
that does not belong to the exchanged confirmed tags set yet. If the
operation is a read, the tag i is the highest received one. This tag
was maintained by a member of the read quorum queried, and it
was confirmed only if the phase that propagated it to this member
has completed.
From this point on, if the tag appears not to be confirmed to

i, then in any operation the propagation phase fix-point has to be
reached. But, if the tag is already confirmed and i learns it (either by
receiving a confirmed set containing it or by having propagated it
itself) then the read operation can terminate directly by executing
a read-acki event without any time passing, after a single phase. By
Lemma 6.5, this occurs prior to time t ′ + 4d; and at time t ′ + 2d if
no reconfiguration is concurrent.
Likewise by Lemma 6.5, the propagation phase fix-point is

reached in at most 4d time. That is, any operation terminates at
the latest at time t ′ + 8d. �

7. Complexity improvements

Here we explain how RDS improves on Rambo [21] and Rambo
II, [11]. The time complexity is given as a function of the message
delays.Rambo andRambo IIuse an external consensus algorithm to
install new configurations, and a separated mechanism to remove
old configurations. As previously said, coupling the installation of
new configurations with the removal of old configurations makes
the RDS reconfiguration mechanism more efficient. We denote by
s the number of active configurations and by ε = O(1) a constant
independent from message delay.

7.1. Configuration installation

Rambo and Rambo II time complexities have previously been
measured after system stabilization where message delay is upper
bounded by d [23,21,12,11]. These results are compared in Fig. 9.
As far as we know, when the system stabilizes installing a new
configuration may take 10d + ε, not only in Rambo but also
in Rambo II, since both algorithms use the same installation
mechanism. In contrast, we know by Theorems 6.3 and 6.4 that
the installation of a new configuration is upper bounded by 5d+ ε
and can even complete in 3d + ε in RDS. Hence, RDS speeds up
configuration installation by at least a factor of 2.

7.2. Configuration removal

An even more significant improvement relies on the time
needed to remove old configurations from the list of active
configurations. This represents a critical period of time, during
which the system reliability depends on the non-faultiness of all
old configurations. The configuration removal of Rambo, called
garbage collection, removes each old configuration successively
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in 4d + ε leading to 4(s − 1)d + ε time to remove s − 1 old
configurations. The configuration removal mechanism of Rambo II,
called configuration upgrade, removes all s−1old configurations in
a row in 4d+ε time. Conversely, RDS does not need any additional
configuration removal process since the configuration removal is
already integrated in the installation mechanism. That is, no old
configurations can make RDS fail: its reliability relies only on the
one or two current configurations at any time.

7.3. Operations

Furthermore, it has been shown that operations complete
within 8d + ε in Rambo and Rambo II, however, it is easy to
see that they require at least 4δ to complete, where δ is a lower
bound on the message delay, since each operation consists in two
successive message exchanges with quorums. Finally, although
the time needed for writing is the same in Rambo, Rambo II, and
RDS, in some cases the read operations of RDS are twice faster
than the read operations of Rambo and Rambo II (cf. Theorem 6.6).
Thus, the best read operation time complexity that RDS achieves is
optimal [6].

7.4. Communication complexity

Finally, we can not measure the detailed message complexity,
since the amount of messages depends on the number of
active configurations and the number of members by quorum.
Nevertheless, since RDS limits the number of active configurations
s to 2 while neither Rambo nor Rambo II bound explicitly the
number s of active configurations, seemingly RDS presents lower
message complexity. Finally, some improvements on the message
complexity of Rambo appeared in [14] and rely on the manner
nodes gossip among each other, but these improvements require
a strong additional assumption and adapting these improvements
in RDS remains an open question.

8. Experimental results

In this section we attempt to understand the cost of recon-
figuration by comparing RDS to a non-reconfigurable distributed
shared memory. There is an inherent trade-off between reliability
– here, a result of quorums and reconfiguration – and performance.
These results illustrate this trade-off.
We implemented the new algorithm based on the existing

Rambo codebase [8] on a network of workstations. The primary
goal of our experiments was to gauge the cost introduced
by reconfiguration. When reconfiguration is unnecessary, there
are simple and efficient algorithms to implement a replicated
distributed shared memory. Our goal is to achieve performance
similar to the simple algorithms while using reconfiguration to
tolerate dynamic changes.
To this end, we designed three series of experiments, where the

performance of RDS is compared against the performance of an
atomic memory service which has no reconfiguration capability—
essentially the algorithm of Attiya, Bar-Noy, and Dolev [2] (the
‘‘ABDprotocol’’). In this sectionwedescribe these implementations
and present our initial experimental results. The results primarily
illustrate the impact of reconfiguration on the performance of read
and write operations.
For the implementation we manually translated the IOA

specification into Java code. To mitigate the introduction of errors
during translation, the implementers followed a set of precise rules
to guide the derivation of Java code [24]. The target platform is
a cluster of eleven machines running Linux. The machines are
various Pentium processors up to 900 MHz interconnected via a
100 Mbps Ethernet switch.
Fig. 10. Average operation latency as size of quorums changes.

Each instance of the algorithm uses a single socket to
receive messages over TCP/IP, and maintains a list of open,
outgoing connections to the other participants of the service.
The nondeterminism of the I/O Automata model is resolved by
scheduling locally controlled actions in a round-robin fashion.
The ABD and RDS algorithm share parts of the code unrelated to
reconfiguration, in particular that related to joining the system and
accessing quorums. As a result, performance differences directly
indicate the costs of reconfiguration. While these experiments
are effective at demonstrating comparative costs, actual latencies
most likely have little reflection on the operation costs in a fully-
optimized implementation. Each point on the graphs represents
an average of ten scenario runs. One hundred read and write
operations each (implemented as reads and writes of a Java
Integer) are performed independently and the latency is an average
of time intervals from operation invocation to corresponding
acknowledgment.

8.1. Quorum size

In the first experiment, we examine how the RDS algorithm
responds to different size quorums (and hence different levels of
fault-tolerance). We measure the average operation latency while
varying the size of the quorums. Results are depicted in Fig. 10.
In all experiments, we use configurations with majority

quorums. We designate a single machine to continuously perform
read andwrite operations, and compute average operation latency
for different configuration sizes, ranging from 1 to 5. The ratio of
read operations towrite operations is set to 1. In the tests involving
the RDS algorithm, we chose a separate machine to continuously
perform reconfiguration of the system –when one reconfiguration
request successfully terminates another is immediately submitted.
For ABD, there is no reconfiguration.

8.2. Load

In the second set of experiments, we test how the RDS
algorithm responds to varying load. Fig. 11 presents results of
the second experiment, where we compute the average operation
latency for a fixed-size configuration of five members, varying
the number of nodes performing read/write operations from 1 to
10. Again, in the experiments involving RDS algorithm, a single
machine is designated to reconfigure the system. Since we only
have eleven machines to our disposal, nodes that are members
of configurations also perform read/write operations. The local
minimum at four reader/writers can be explained by increased
messaging activity that is associatedwith quorum communication.
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Fig. 11. Average operation latency as number of nodes performing read/write
operations changes.

Fig. 12. Average operation latency as the reconfiguration and the number of
participants changes.

8.3. Reconfiguration

In the last experiment we test the effects of reconfiguration
frequency. Two nodes continuously perform read and write
operations, and the experiments were run, varying the number
of instances of the algorithm. Results of this test are depicted in
Fig. 12. For each of the sample points on the x-axis, the size of
configuration used is half of the algorithm instances. As in the
previous experiments, a single node is dedicated to reconfigure the
system. However, here we insert a delay between the successful
termination of a reconfiguration request and the submission of
another. The delays used are 0, 500, 1000, and 2000 ms. Since
we only have eleven machines to our disposal, in the experiment
involving 16 algorithm instances, some of the machines run two
instances of the algorithm.

8.4. Interpretation

We begin with the obvious. In all three series of experiments,
the latency of read/write operations for RDS is competitive with
that of the simpler less robust ABD algorithm. Also, the frequency
of reconfiguration has little effect on the operation latency. These
observations lead us to conclude that the increased cost of
reconfiguration is only modest.
This is consistent with the theoretical operation of the

algorithm. It is only when a reconfiguration exactly intersects an
operation in a particularly bad way that operations are delayed.
This is unlikely to occur, and hence most read/write operations
suffer only a modest delay.
Also, note that the messages that are generated during
reconfiguration, and read and write operations include replica
information as well as the reconfiguration information. Since
the actions are scheduled using a round-robin method, it is
likely that in some instances, a single communication phase
might contribute to the termination of both the read/write and
the reconfiguration operation. Hence, we suspect that the dual
functionality of messages helps to keep the system latency
low.
A final observation is that the latency does grow with the size

of the configuration and the number of participating nodes. Both of
these require increased communication, and result in larger delays
in the underlying networkwhenmany nodes try simultaneously to
broadcast data to all others. Some of this increase can be mitigated
by using an improved multicast implementation; some can be
mitigated by choosing quorums optimized specifically for read or
write operations. An interesting open question might be adapting
these techniques to probabilistic quorum systems that use less
communication [15].

9. Conclusion

We have presented RDS, a new distributed algorithm for
implementing a reconfigurable shared memory in dynamic,
asynchronous networks.
Prior solutions (e.g., [21,11]) used a separate new configuration

selection service, that did not incorporate the removal of obsolete
configurations. This resulted in longer delays between the time
of new-configuration installation and old configuration removal,
hence requiring configurations to remain viable for longer periods
of time and decreasing algorithm’s resilience to failures.
In this work we capitalized on the fact that Rambo and Paxos

solve two different problems using a similar mechanism, namely
round-trip communication phases involving sets of quorums. This
observation led to the development of RDS, that allows rapid
reconfiguration and removal of obsolete configurations, hence
reducing the window of vulnerability. Finally, our experiments
show that reconfiguration is inexpensive, since performance of
our algorithm closely mimics that of an algorithm that has
no reconfiguration functionality. However, our experiments are
limited to a small number of machines and a controlled lab
setting. Therefore, as future work we would like to extend
the experimental study to a wide area network, where many
machines participate, thereby allowing us to capture a more
realistic behavior of this algorithm for arbitrary configuration sizes
and network delays.
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