
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-060 September 5, 2006

Task-Structured Probabilistic I/O Automata
Ran Canetti,, Ling Cheung,, Dilsun Kaynar,, Moses
Liskov,, Nancy Lynch,, Olivier Pereira,, and
Roberto Segala

Task-Structured Probabilistic I/O Automata∗

Ran Canetti
MIT and IBM TJ Watson Research Center

Ling Cheung
Radboud University of Nijmegen

Dilsun Kaynar
MIT

Moses Liskov
College of William and Mary

Nancy Lynch
MIT

Olivier Pereira
Universit́e catholique de Louvain

Roberto Segala
University of Verona

August 31, 2006

Abstract

Modeling frameworks such as Probabilistic I/O Automata (PIOA) and Markov Decision Processes per-
mit both probabilistic and nondeterministic choices. In order to use such frameworks to express claims
about probabilities of events, one needs mechanisms for resolving nondeterministic choices. For PIOAs,
nondeterministic choices have traditionally been resolved by schedulers that have perfect information about
the past execution. However, such schedulers are too powerful for certain settings, such as cryptographic
protocol analysis, where information must sometimes be hidden.

Here, we propose a new, less powerful nondeterminism-resolution mechanism for PIOAs, consisting of
tasksandlocal schedulers. Tasks are equivalence classes of system actions that are scheduled by oblivious,
global task sequences. Local schedulers resolve nondeterminism within system components, based on
local information only. The resulting task-PIOA framework yields simple notions of external behavior and
implementation, and supports simple compositionality results. We also define a new kind of simulation
relation, and show it to be sound for proving implementation. We illustrate the potential of the task-PIOA
framework by outlining its use in verifying an Oblivious Transfer protocol.

∗This report presents an extension of the task-PIOA theory first introduced in [CCK+05, CCK+06d]. This extension is used
in [CCK+06e, CCK+06c] to carry out a computational analysis of an Oblivious Transfer protocol. An earlier version of the current
report appears as [CCK+06a] and an extended abstract appears as [CCK+06b].

1

1 INTRODUCTION 2

1 Introduction

TheProbabilistic I/O Automata (PIOA)modeling framework [Seg95, SL95] is a simple combination of I/O
Automata [LT89] and Markov Decision Processes (MDP) [Put94]. As demonstrated in [LSS94, SV99,
PSL00], PIOAs are well suited for modeling and analyzing distributed algorithms that use randomness as
a computational primitive. In this setting, distributed processes use random choices to break symmetry, in
solving problems such as choice coordination [Rab82] and consensus [BO83, AH90]. Each process is mod-
eled as an automaton with random transitions, and an entire protocol is modeled as the parallel composition
of process automata and automata representing communication channels.

This modeling paradigm combines nondeterministic and probabilistic choices in a natural way. Nonde-
terminism is used here for modeling uncertainties in the timing of events in highly unpredictable distributed
environments. It is also used for modeling distributed algorithms at high levels of abstraction, leaving many
details unspecified. This in turn facilitates algorithm verification, because results proved about nondetermin-
istic algorithms apply automatically to an entire family of algorithms, obtained by resolving the nondeter-
ministic choices in particular ways.

In order to formulate and prove probabilistic properties of distributed algorithms, one needs mechanisms
for resolving nondeterministic choices. In the randomized distributed setting, the most common mechanism
is aperfect-informationevent scheduler, which has access to local state and history of all system components
and has unlimited computation power. Thus, probabilistic properties of distributed algorithms are typically
asserted with respect to worst-case, adversarial schedulers who can choose the next event based on complete
knowledge of the past (e.g., [Seg95, SL95, PSL00]).

One would expect that a similar modeling paradigm, including both probabilistic and nondeterministic
choices, would also be useful for modelingcryptographic protocols. These are special kinds of distributed
algorithms, designed to protect sensitive data when they are transmitted over unreliable channels. Their
correctness typically relies on computational assumptions, which say that certain problems cannot be solved
by an adversarial entity with bounded computation resources [Gol01]. However, a major problem with this
extension is that the perfect-information scheduler mechanism used for distributed algorithms is too powerful
for use in the cryptographic setting. A scheduler that could see all information about the past would, in
particular, see “secret” information hidden in the states of non-corrupted protocol participants, and be able
to “divulge” this information to corrupted participants, e.g., by encoding it in the order in which it schedules
events.

In this paper, we presenttask-PIOAs, an adaptation of PIOAs, that has new, less powerful mechanisms
for resolving nondeterminism. Task-PIOAs are suitable for modeling and analyzing cryptographic protocols;
they may also be useful for other kinds of distributed systems in which the perfect information assumption is
unrealistically strong.

Task-PIOAs: A task-PIOAis simply a PIOA augmented with a partition of non-input actions into equiva-
lence classes calledtasks, as in the original I/O automata framework of Lynch and Tuttle [LT89]. A task is
typically a set of related actions, for example, all the actions of a cryptographic protocol that send a round 1
message. Tasks are units of scheduling, as for I/O automata; they are scheduled by simple oblivious, global
task schedulesequences. We define notions ofexternal behaviorandimplementationfor task-PIOAs, based
on the trace distribution semantics proposed by Segala [Seg95]. We define parallel composition in the obvious
way and show that our implementation relation is compositional.

We also define a new type ofsimulation relation, which incorporates tasks, and prove that it is sound for
proving implementation relationships between task-PIOAs. This new relation differs from simulation rela-
tions studied earlier [SL95, LSV03], in that it relates probability measures rather than states. In many cases,
including our work on cryptographic protocols (see below), tasks alone suffice for resolving nondeterminism.
However, for extra expressive power, we define a second mechanism,local schedulers, which can be used
to resolve nondeterminism within system components, based on local information only. This mechanism is
based on earlier work in [CLSV].

Cryptographic protocols: In [CCK+06e], we apply the task-PIOA framework to analyze an Oblivious

1 INTRODUCTION 3

Transfer (OT) protocol of Goldreich, et al. [GMW87]. That analysis requires defining extra structure for
task-PIOAs, in order to express issues involving computational limitations. Thus, we define notions such as
time-bounded task-PIOAs, andapproximate implementation with respect to time-bounded environments. We
use these, for example, to express computational hardness assumptions for cryptographic primitives. Details
are beyond the scope of this paper, but we outline our approach in Section 5.

Adversarial scheduling: The standard scheduling mechanism in the cryptographic community is anadver-
sarial scheduler, namely, a resource-bounded algorithmic entity that determines the next move adaptively,
based on its own view of the computation so far. This is weaker than theperfect-information schedulerused
for distributed algorithms, which have access to local state and history of all components and have unlimited
computation power. It is however stronger than our notion of global task schedule sequences, which are
essentiallyoblivious schedulersthat fix the entire schedule of tasks nondeterministically in advance.

In order to capture the adaptivity of adversarial schedulers within our framework, we separate scheduling
concerns into two parts. The adaptive adversarial scheduler is modeled as a system component, for example,
a message delivery service that can eavesdrop on the communications and control the order of message deliv-
ery. Such a system component has access to partial information about the execution: it sees information that
other components communicate to it during execution, but not “secret information” that these components
hide. On the other hand, basic scheduling choices are resolved by a task schedule sequence, chosen nonde-
terministically in advance. These tasks are equivalence classes of actions, independent of actual choices that
are determined during the execution. We believe this separation is conceptually meaningful: The high-level
adversarial scheduler is responsible for choices that are essential in security analysis, such as the ordering
of message deliveries. The low-level schedule of tasks resolves inessential choices. For example, in the OT
protocol, both the transmitter and receiver make random choices, but it is inconsequential which does so first.

Related work: The literature contains numerous models that combine nondeterministic and probabilistic
choices (see [SdV04] for a survey). However, few tackle the issue of partial-information scheduling, as we
do. Exceptions include [CH05], which models local-oblivious scheduling, and [dA99], which uses partitions
on the state space to obtain partial-information schedules. The latter is essentially within the framework of
partially observable MDPs (POMDPs), originally studied in the context of reinforcement learning [KLC98].
None of these accounts deal with partial information aspects of (parameterized) actions, therefore they are
not suitable in a cryptographic setting.

Our general approach to cryptographic protocol verification was directly inspired by the Interactive Tur-
ing Machine (ITM) framework used in [Can01]. There, participants in a protocol are modeled as ITMs
and messages as bit strings written on input and output tapes. ITMs are purely probabilistic, and schedul-
ing nondeterminism is resolved using predefined rules. In principle, this framework could be used to analyze
cryptographic protocols rigorously, including computational complexity issues; typical correctness arguments
reduce the correctness of a protocol to assumptions about its underlying cryptographic primitives. However,
complete analysis of protocols in terms of Turing machines is impractical, because it involves too many
low-level machine details. Indeed, in the computational cryptography community, protocols are typically de-
scribed using an informal high-level language, and proof sketches are given in terms of the informal protocol
descriptions. We aim to provide a framework in which proofs in the ITM style can be carried out formally,
at a high level of abstraction. Also, we aim to exploit the benefits of nondeterminism to a greater extent than
the ITM approach.

Several other research groups have added features for computational cryptographic analysis to conven-
tional abstract concurrency modeling frameworks such as process algebras and variants of PIOAs [LMMS98,
PW00, PW01, BPW04, MMS03, MRST06]. However, the semantic foundations of concurrent computation
used in these papers differ from our task-PIOA framework in some fundamental ways.

Backes et al. [PW01, BPW04] use a network of interrupt-driven probabilistic state machines, with special
“buffer” machines to capture message delays, and special “clock ports” to control the scheduling of message
delivery. Each individual machine is purely probabilistic; that is, it is fully-specified up to inputs and/or
random choices during execution. Given a closed system of such machines with no further inputs, a sequential
activation scheme is used to define a unique probabilistic run for each possible initial state of the system. This

2 MATHEMATICAL PRELIMINARIES 4

scheme relies on the presence of a “master scheduler”, which is activated by default if no other machine is
active.

Thus, in order to capture nondeterministic choices using the framework of Backes et al., one must asso-
ciate explicit inputs to each schedulable event and then quantify over different machines that provide these
scheduling inputs. This deeply contrasts our treatment of nondeterminism, where nondeterministic choices
may be present even in closed task-PIOAs and we quantify over task schedules to capture the possible ways
of resolving these choices. As it turns out, such a technical difference in the underlying frameworks has some
important consequences for security definitions. Namely, in the reactive simulatability definitions of Backes
et al., the user and adversary are fixed onlyafter all other machines are determined. In essence, this allows
the worst possible adversary for every schedule of the system. On the other hand, in our security defini-
tions [CCK+06c, CCK+06e], the environment and adversary are fixedbeforethe task schedules. Therefore,
we consider instead the worst possible schedule for each given adversary.

On this issue of concurrency and nondeterminism, our task-PIOA framework is more closely related
to PPC, the process algebraic framework of Mitchell et al1. In particular, processes with nondeterministic
choices are definable in PPC using the parallel operator and, in the semantics given in [MRST06], a scheduler
function selects probabilistically an action label from a set of available actions. Typically, action labels in
PPC correspond to the types of protocol messages, as opposed to the messages themselves. This is similar
to our distinction between tasks and actions. However, our task schedules are oblivious sequences of tasks,
whereas the scheduling functions of [MRST06] are (partially) state-dependent.

The PPC framework differs from our task-PIOA framework in another respect, namely, the use of ob-
servational equivalence and probabilistic bisimulation as the main semantic relations. Both of these are
symmetric relations, whereas our implementation and simulation relations are asymmetric, expressing the
idea that a systemP can emulate another systemQ but the converse is not necessarily true. The asymmetry
of our definitions arises from our quantification over schedules: we assert that “for every schedule ofP , there
is a schedule ofQ that yields equivalent behavior”. This is analogous to the traditional formulation for non-
probabilistic systems, where implementation means that “every behavior ofP is a behavior ofQ”, but not
necessarily vice versa. Experience in the concurrency community shows that such asymmetry can be used
to make specifications more simple, by keeping irrelevant details unspecified. At the same time, it produces
correctness guarantees that are more general, because correctness is preserved no matter how an implementer
chooses to fill in the unspecified details.

Roadmap: Section 2 presents required basic mathematical notions, including definitions and basic results for
PIOAs. Some detailed constructions appear in Appendix A. Section 3 defines task-PIOAs, task schedules,
composition, and implementation, and presents a simple, fundamental compositionality result. Section 4
presents our simulation relation and its soundness theorem. Section 5 summarizes our OT protocol case
study. Section 6 discusses local schedulers, and concluding discussions follow in Section 7.

2 Mathematical Preliminaries

2.1 Sets, functions etc.

We writeR≥0 andR+ for the sets of nonnegative real numbers and positive real numbers, respectively.
Let X be a set. We denote the set of finite sequences and infinite sequences of elements fromX by X∗

andXω, respectively. Ifρ is a sequence then we use|ρ| to denote the length ofρ. We useλ to denote the
empty sequence (over any set).

If ρ ∈ X∗ andρ′ ∈ X∗ ∪ Xω, then we writeρ _ ρ′ for the concatentation of the sequencesρ andρ′.
Sometimes, when no confusion seems likely, we omit the_ symbol, writing justρρ′.

1Although the authors have also developed a sequential version of PPC [DKMR05], with a semantics akin to the framework of
Backes et al.

2 MATHEMATICAL PRELIMINARIES 5

2.2 Probability measures

In this section, we first present basic definitions for probability measures. Then, we define three operations
involving probability measures:flattening, lifting, andexpansion; we will use these in Section 4 to define
our new kind of simulation relation. These three operations have been previously defined in, for exam-
ple, [LSV03].

2.2.1 Basic definitions

A σ-field over a setX is a setF ⊆ 2X that contains the empty set and is closed under complement and
countable union. A pair(X,F) whereF is aσ-field overX, is called ameasurable space. A measure on a
measurable space(X,F) is a functionµ : F → [0,∞] that is countably additive: for each countable family
{Xi}i of pairwise disjoint elements ofF , µ(∪iXi) =

∑
i µ(Xi). A probability measureon (X,F) is a

measure on(X,F) such thatµ(X) = 1. A sub-probability measureon (X,F) is a measure on(X,F) such
thatµ(X) ≤ 1.

A discrete probability measureon a setX is a probability measureµ on (X, 2X), such that, for each
C ⊆ X, µ(C) =

∑
c∈C µ({c}). A discrete sub-probability measureon a setX, is a sub-probability measure

µ on (X, 2X), such that for eachC ⊆ X, µ(C) =
∑

c∈C µ({c}). We defineDisc(X) andSubDisc(X) to
be, respectively, the set of discrete probability measures and discrete sub-probability measures onX. In the
sequel, we often omit the set notation when we refer to the measure of a singleton set.

A supportof a probability measureµ is a measurable setC such thatµ(C) = 1. If µ is a discrete
probability measure, then we denote bysupp(µ) the set of elements that have non-zero measure (thussupp(µ)
is a support ofµ). We letδ(x) denote theDirac measurefor x, the discrete probability measure that assigns
probability 1 to{x}.

Given two discrete measuresµ1, µ2 on (X, 2X) and (Y, 2Y), respectively, we denote byµ1 × µ2 the
product measure, that is, the measure on(X × Y, 2X×Y) such thatµ1 × µ2(x, y) = µ1(x) · µ2(y) for each
x ∈ X, y ∈ Y .

If {ρi}i∈I is a countable family of measures on(X,FX) and{pi}i∈I is a family of non-negative values,
then the expression

∑
i∈I piρi denotes a measureρ on (X,FX) such that, for eachC ∈ FX , ρ(C) =∑

i∈I pi · ρi(C).
A function f : X → Y is said to be measurable from(X,FX) → (Y,FY) if the inverse image of each

element ofFY is an element ofFX ; that is, for eachC ∈ FY , f−1(C) ∈ FX . Note that, ifFX is 2X , then
any functionf : X → Y is measurable from(X,FX) → (Y,FY) for anyFY .

Given measurablef from (X,FX) → (Y,FY) and a measureµ on (X,FX), the functionf(µ) defined
onFY by f(µ)(C) = µ(f−1(C)) for eachC ∈ Y is a measure on(Y,FY) and is called theimage measure
of µ underf . If FX = 2X , FY = 2Y , andµ is a sub-probability measure, then the image measuref(µ) is a
sub-probability satisfyingf(µ)(Y) = µ(X).

2.2.2 Flattening

In this and the following two subsections, we define our three operations involving probability measures. The
first operation, which we callflattening, takes a discrete probability measure over probability measures and
“flattens” it into a single probability measure.

Definition 2.1 Let η be a discrete probability measure onDisc(X). Then theflatteningof η, denoted by
flatten(η), is the discrete probability measure onX defined byflatten(η) =

∑
µ∈Disc(X) η(µ)µ.

Lemma 2.2 Let η be a discrete probability measure onDisc(X) and letf be a function fromX to Y . Then
f(flatten(η)) = flatten(f(η)).

2 MATHEMATICAL PRELIMINARIES 6

Proof. Recall thatflatten(η) is defined to be
∑

µ∈Disc(X) η(µ)µ. Using the definition of image mea-
sures, it is easy to check thatf distributes through the summation, so we have

f(flatten(η)) = f(
∑

µ∈Disc(X)

η(µ)µ) =
∑

µ∈Disc(X)

η(µ)f(µ) =
∑

σ∈Disc(Y)

∑
µ∈f−1(σ)

η(µ)σ.

Again by the definition of image measures, we havef(η)(σ) = η(f−1(σ)) =
∑

µ∈f−1(σ) η(µ). This implies
thatf(flatten(η)) equals

∑
σ∈Disc(Y) f(η)(σ)σ, which is preciselyflatten(f(η)). 2

Lemma 2.3 Let {ηi}i∈I be a countable family of measures onDisc(X), and let{pi}i∈I be a family of
probabilities such that

∑
i∈I pi = 1. Then we haveflatten(

∑
i∈I piηi) =

∑
i∈I piflatten(ηi).

Proof. By the definition offlatten and by rearranging sums. 2

2.2.3 Lifting

The second operation, which we calllifting, takes a relationR between two domainsX andY and “lifts” it
to a relation between discrete measures overX andY . Informally speaking, a measureµ1 onX is related to
a measureµ2 on Y if µ2 can be obtained by “redistributing” the probability masses assigned byµ1, in such
a way that relationR is respected.

Definition 2.4 The lifting of R, denoted byL(R), is the relation fromDisc(X) to Disc(Y) defined by:
µ1 L(R) µ2 iff there exists aweighting functionw : X × Y → R≥0 such that the following hold:

1. For eachx ∈ X andy ∈ Y , w(x, y) > 0 impliesx R y.

2. For eachx ∈ X,
∑

y∈Y w(x, y) = µ1(x).

3. For eachy ∈ Y ,
∑

x∈X w(x, y) = µ2(y).

2.2.4 Expansion

Finally, we define our third operation, calledexpansion. Expansion is defined in terms of flattening and
lifting, and is used directly in our new definition of simulation relations. Theexpansionoperation takes a
relation between discrete measures on two domainsX andY , and returns a relation of the same kind that
relates two measures whenever they can be decomposed into twoL(R)-related measures.

Definition 2.5 Let R be a relation fromDisc(X) to Disc(Y). Theexpansionof R, denoted byE(R), is a
relation fromDisc(X) to Disc(Y). It is defined by:µ1 E(R) µ2 iff there exist two discrete measuresη1 and
η2 onDisc(X) andDisc(Y), respectively, such that the following hold:

1. µ1 = flatten(η1).

2. µ2 = flatten(η2).

3. η1 L(R) η2.

Informally speaking, we enlargeR by adding pairs of measures that can be “decomposed” into weighted
sums of measures, in such a way that the weights can be “redistributed” in anR-respecting manner. Tak-
ing this intuition one step further, the following lemma provides a useful characterization of the expansion
relation.

Lemma 2.6 LetR be a relation onDisc(X)× Disc(Y). Thenµ1 E(R) µ2 iff there exists a countable index
setI, a discrete probability measurep onI, and two collections of probability measures,{µ1,i}I and{µ2,i}I ,
such that

2 MATHEMATICAL PRELIMINARIES 7

1. µ1 =
∑

i∈I p(i)µ1,i.

2. µ2 =
∑

i∈I p(i)µ2,i.

3. For eachi ∈ I, µ1,i R µ2,i.

Proof. Suppose thatµ1 E(R) µ2, and letη1, η2 andw be the measures and weighting function used in
the definition ofE(R). Let {(µ1,i, µ2,i)}i∈I be an enumeration of the pairs for whichw(µ1,i, µ2,i) > 0, and
let p(i) bew(µ1,i, µ2,i). Thenp, {(µ1,i)}i∈I , and{(µ2,i)}i∈I satisfy Items 1, 2, and 3.

Conversely, givenp, {(µ1,i)}i∈I , and{(µ2,i)}i∈I , we defineη1(µ) to be the sum
∑

i|µ=µ1,i
p(i) and

η2(µ) to be
∑

i|µ=µ2,i
p(i). Moreover, definew(µ′1, µ

′
2) to be

∑
i|µ′1=µ1,i,µ′2=µ2,i

p(i). Then,η1, η2 andw

satisfy the properties required in the definition ofE(R). 2

The next, rather technical lemma gives us a sufficient condition for showing that a pair of functionsf and
g preserve the relationE(R); that is, ifµ1 E(R) µ2, thenf(µ1) E(R) f(µ2). The required condition is that,
whenµ1 andµ2 are decomposed into weighted sums of measures as in the definition ofµ1 E(R) µ2, f and
g convert each pair(ρ1, ρ2) of R-related probability measures toE(R)-related probability measures. We will
use this lemma in the soundness proof for our new kind of simulation relation (Lemma 4.5), where the two
functionsf andg apply corresponding sequences of tasks to corresponding measures on executions.

Lemma 2.7 Let R be a relation fromDisc(X) to Disc(Y), and letf, g be two endo-functions onDisc(X)
andDisc(Y), respectively. Suppose thatf distributes over convex combinations of measures; that is, for each
countable family{ρi}i of discrete measures onX and each countable family of probabilities{pi}i such that∑

i pi = 1, f(
∑

i piρi) =
∑

i pif(ρi). Similarly forg. Letµ1 andµ2 be measures onX andY , respectively,
such thatµ1 E(R) µ2. Letη1, η2, andw be a pair of measures and a weighting function witnessing the fact
that µ1 E(R) µ2. Suppose further that, for any two distributionsρ1 ∈ supp(η1) andρ2 ∈ supp(η2) with
w(ρ1, ρ2) > 0, we havef(ρ1) E(R) g(ρ2).
Thenf(µ1) E(R) g(µ2).

Proof. Let W denote the set of pairs(ρ1, ρ2) such thatw(ρ1, ρ2) > 0. Note that, by the definition
of lifting, (ρ1, ρ2) ∈ W implies ρ1 ∈ supp(η1) andρ2 ∈ supp(η2). Therefore, by assumption, we have
f(ρ1) E(R) g(ρ2) whenever(ρ1, ρ2) ∈ W .

Now, for each(ρ1, ρ2) ∈ W , choose a pair of measures(η1)ρ1,ρ2 , (η2)ρ1,ρ2 and a weighting function
wρ1ρ2 as guaranteed by the definition off(ρ1) E(R) g(ρ2). Letη′1 =

∑
(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2 and let

η′2 =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η2)ρ1,ρ2 . Let w′ =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)wρ1,ρ2 .
We show thatη′1, η′2, andw′ satisfy the conditions forf(µ1) E(R) g(µ2).

1. f(µ1) = flatten(η′1).

By the definition ofη′1, flatten(η′1) = flatten(
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2). By Lemma 2.3, this is
in turn equal to

∑
(ρ1,ρ2)∈W w(ρ1, ρ2)flatten((η1)(ρ1,ρ2)). By the choice of(η1)(ρ1,ρ2), we know that

flatten((η1)(ρ1,ρ2)) = f(ρ1), so we obtain thatflatten(η′1) =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1).

We claim that the right side is equal tof(µ1): Sinceµ1 = flatten(η1), by the definition of flattening,
µ1 =

∑
ρ1∈Disc(X) η1(ρ1)ρ1. Then, by distributivity off , f(µ1) =

∑
ρ1∈Disc(X) η1(ρ1)f(ρ1). By

definition of lifting, η1(ρ1) =
∑

ρ2∈Disc(Y) w(ρ1, ρ2).
Therefore,f(µ1) =

∑
ρ1∈Disc(X)

∑
ρ2∈Disc(Y) w(ρ1, ρ2)f(ρ1), and this last expression is equal to∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1), as needed.

2. g(µ2) = flatten(η′2).

Analogous to the previous case.

3. η′1 L(R) η′2 usingw′ as a weighting function.

We verify thatw′ satisfies the three conditions in the definition of a weighting function:

2 MATHEMATICAL PRELIMINARIES 8

(a) Letρ′1, ρ
′
2 be such thatw′(ρ′1, ρ

′
2) > 0. Then, by definition ofw′, there exists at least one pair

(ρ1, ρ2) ∈R such thatwρ1,ρ2(ρ
′
1, ρ

′
2) > 0. Sincewρ1,ρ2 is a weighting function,ρ′1 R ρ′2 as

needed.

(b) By the definition ofw′, we have∑
ρ′2∈Disc(Y)

w′(ρ′1, ρ
′
2) =

∑
ρ′2∈Disc(Y)

∑
(ρ1,ρ2)∈W

w(ρ1, ρ2)wρ1,ρ2(ρ
′
1, ρ

′
2)

=
∑

(ρ1,ρ2)∈W

∑
ρ′2∈Disc(Y)

w(ρ1, ρ2)wρ1,ρ2(ρ
′
1, ρ

′
2)

=
∑

(ρ1,ρ2)∈W

(w(ρ1, ρ2) ·
∑

ρ′2∈Disc(Y)

wρ1,ρ2(ρ
′
1, ρ

′
2)).

Sincewρ1,ρ2 is a weighting function, we also have
∑

ρ′2∈Disc(Y) wρ1,ρ2(ρ
′
1, ρ

′
2) = (η1)ρ1,ρ2(ρ

′
1).

This implies
∑

ρ′2∈Disc(Y) w′(ρ′1, ρ
′
2) equals

∑
(ρ1,ρ2)

w(ρ1, ρ2)(η1)ρ1,ρ2(ρ
′
1), which is precisely

η′1(ρ
′
1).

(c) Symmetric to the previous case.

2

2.3 Probabilistic I/O Automata

In this subsection, we review basic definitions for Probabilistic I/O Automata.

2.3.1 PIOAs and their executions

A probabilistic I/O automaton (PIOA), P, is a tuple(Q, q̄, I, O,H,D) where:

• Q is a countable set ofstates, with start stateq̄ ∈ Q;

• I, O andH are countable and pairwise disjoint sets of actions, referred to asinput, output and internal
(hidden) actions, respectively; and

• D ⊆ (Q × (I ∪ O ∪ H) × Disc(Q)) is a transition relation, whereDisc(Q) is the set of discrete
probability measures onQ.

An actiona is enabledin a stateq if (q, a, µ) ∈ D for someµ. The setA := I ∪ O ∪H is called theaction
alphabetof P. If I = ∅, thenP is closed. The set ofexternalactions ofP is E := I ∪ O, and the set of
locally controlledactions isL := O ∪H.

We assume thatP satisfies the following conditions:

• Input enabling:For every stateq ∈ Q and input actiona ∈ I, a is enabled inq.

• Transition determinism:For everyq ∈ Q anda ∈ A, there is at most oneµ ∈ Disc(Q) such that
(q, a, µ) ∈ D. If there is exactly one suchµ, it is denoted byµq,a, and we writetranq,a for the
transition(q, a, µq,a).

A (non-probabilistic)execution fragmentof P is a finite or infinite sequenceα = q0 a1 q1 a2 . . . of
alternating states and actions, such that:

• If α is finite, then it ends with a state.

• For every non-finali, there is a transition(qi, ai+1, µ) ∈ D with qi+1 ∈ supp(µ).

2 MATHEMATICAL PRELIMINARIES 9

We write fstate(α) for q0, and, if α is finite, we writelstate(α) for the last state ofα. We useFrags(P)
(resp.,Frags∗(P)) to denote the set of all (resp., all finite) execution fragments ofP. An executionof P is an
execution fragment beginning from the start stateq̄. Execs(P) (resp.,Execs∗(P)) denotes the set of all (resp.,
finite) executions ofP.

Thetraceof an execution fragmentα, writtentrace(α), is the restriction ofα to the set of external actions
of P. We say thatβ is atraceof P if there is an executionα of P with trace(α) = β. The symbol≤ denotes
the prefix relation on sequences, which applies in particular to execution fragments and traces.

2.3.2 Schedulers and probabilistic executions

Nondeterministic choices inP are resolved using ascheduler:

Definition 2.8 A schedulerfor P is a functionσ : Frags∗(P) −→ SubDisc(D) such that(q, a, µ) ∈
supp(σ(α)) impliesq = lstate(α).

Thus,σ decides (probabilistically) which transition (if any) to take after each finite execution fragmentα.
Since this decision is a discrete sub-probability measure, it may be the case thatσ chooses tohalt afterα with
non-zero probability:1− σ(α)(D) > 0.

A schedulerσ and a finite execution fragmentα generatea measureεσ,α on theσ-fieldFP generated by
cones of execution fragments, where the coneCα′ of a finite execution fragmentα′ is the set of execution
fragments that haveα′ as a prefix. The construction of theσ-field is standard and is presented in Appendix A.

Definition 2.9 The measure of a cone,εσ,α(Cα′), is defined recursively, as:

1. 0, if α′ 6≤ α andα 6≤ α′;

2. 1, if α′ ≤ α; and

3. εσ,α(Cα′′)µσ(α′′)(a, q), if α′ is of the formα′′ a q andα ≤ α′′. Here,µσ(α′′)(a, q) is defined to be
σ(α′′)(tranlstate(α′′),a)µlstate(α′′),a(q), that is, the probability thatσ(α′′) chooses a transition labeled
bya and that the new state isq.

Standard measure theoretic arguments ensure thatεσ,α is well-defined. We call the statefstate(α) the first
stateof εσ,α and denote it byfstate(εσ,α). If α consists of the start statēq only, we callεσ,α a probabilistic
executionof P.

Let µ be a discrete probability measure overFrags∗(P). We denote byεσ,µ the measure
∑

α µ(α)εσ,α

and we say thatεσ,µ is generated byσ andµ. We call the measureεσ,µ a generalized probabilistic execu-
tion fragmentof P. If every execution fragment insupp(µ) consists of a single state, then we callεσ,µ a
probabilistic execution fragmentof P.

We note that thetrace function is a measurable function fromFP to theσ-field generated by cones of
traces. Thus, given a probability measureε onFP , we define thetrace distributionof ε, denotedtdist(ε),
to be the image measure ofε undertrace. We extend thetdist() notation to arbitrary measures on execution
fragments ofP. We denote bytdists(P) the set of trace distributions of (probabilistic executions of)P.

Next we present some basic results about probabilistic executions and trace distributions of PIOAs. In par-
ticular, Lemmas 2.10-2.14 give some useful equations involving the probabilities of various sets of execution
fragments.

Lemma 2.10 Let σ be a scheduler for PIOAP, µ be a discrete probability measure on finite execution
fragments ofP, andα be a finite execution fragment ofP. Then

εσ,µ(Cα) = µ(Cα) +
∑

α′<α

µ(α′)εσ,α′(Cα).

2 MATHEMATICAL PRELIMINARIES 10

Proof. By definition of εσ,µ, εσ,µ(Cα) =
∑

α′ µ(α′)εσ,α′(Cα). Since, by definition,εσ,α′(Cα) = 1
wheneverα ≤ α′, this can be rewritten as

εσ,µ(Cα) =
∑

α′:α≤α′

µ(α′) +
∑

α′<α

µ(α′)εσ,α′(Cα).

Observe that
∑

α′:α≤α′ µ(α′) = µ(Cα). Thus, by substitution, we get the statement of the lemma. 2

Lemma 2.11 Let σ be a scheduler for PIOAP, µ be a discrete probability measure on finite execution
fragments ofP, andα be a finite execution fragment ofP. Then

εσ,µ(Cα) = µ(Cα − {α}) +
∑

α′≤α

µ(α′)εσ,α′(Cα).

Proof. Follows directly from Lemma 2.10 after observing thatεσ,α(Cα) = 1. 2

Lemma 2.12 Letσ be a scheduler for PIOAP, andµ be a discrete measure on finite execution fragments of
P. Letα = α̃aq be a finite execution fragment ofP. Then

εσ,µ(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).

Proof. By Lemma 2.10 and the definitions ofεσ,α′(Cα) andµσ(α̃)(a, q), we have

εσ,µ(Cα) = µ(Cα) +
∑

α′<α

µ(α′)εσ,α′(Cα̃)σ(α̃)(tranα̃,a)µα̃,a(q)

= µ(Cα) + (
∑

α′<α

µ(α′)εσ,α′(Cα̃))(σ(α̃)(tranα̃,a)µα̃,a(q)).

Sinceα′ ≤ α̃ if and only if α′ < α, this yields

εσ,µ(Cα) = µ(Cα) + (
∑

α′≤α̃

µ(α′)εσ,α′(Cα̃))(σ(α̃)(tranα̃,a)µα̃,a(q)).

It suffices to show that
∑

α′≤α̃ µ(α′)εσ,α′(Cα̃) = εσ,µ(Cα̃)−µ(Cα̃−{α̃}). But this follows immediately
from Lemma 2.11 (withα instantiated as̃α). 2

As a notational convention we introduce a new symbol⊥ to denote termination. Given schedulerσ
and finite execution fragmentα, we writeσ(α)(⊥) for the probability of terminating afterα (namely,1 −
σ(α)(D)).

Lemma 2.13 Let σ be a scheduler for PIOAP, µ be a discrete probability measure on finite execution
fragments ofP, andα be a finite execution fragment ofP. Then

εσ,µ(α) = (εσ,µ(Cα)− µ(Cα − {α}))(σ(α)(⊥)).

Proof. By definition ofεσ,µ, εσ,µ(α) =
∑

α′ µ(α′)εσ,α′(α). The sum can be restricted toα′ ≤ α since
for all otherα′, εσ,α′(α) = 0. Then, since for eachα′ ≤ α, εσ,α′(α) = εσ,α′(Cα)σ(α)(⊥), we derive
εσ,µ(α) =

∑
α′≤α µ(α′)εσ,α′(Cα)σ(α)(⊥). Observe thatσ(α)(⊥) is a constant with respect toα′, and thus

can be moved out of the sum, yieldingεσ,µ(α) = (
∑

α′≤α µ(α′)εσ,α′(Cα))(σ(α)(⊥)).
It suffices to show that

∑
α′≤α µ(α′)εσ,α′(Cα) = εσ,µ(Cα)−µ(Cα−{α}). But this follows immediately

from Lemma 2.11. 2

Lemma 2.14 Let σ be a scheduler for PIOAP, andµ be a discrete probability measure on finite execution
fragments ofP. Letα be a finite execution fragment ofP anda be an action ofP that is enabled inlstate(α).
Then

εσ,µ(Cαa) = µ(Cαa) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(tranα,a).

2 MATHEMATICAL PRELIMINARIES 11

Proof. Observe thatCαa = ∪qCαaq, where the conesC − αaq are pairwise . Thus,εσ,µ(Cαa) =∑
q εσ,µ(Cαaq). By Lemma 2.12, the right-hand side is equal to∑

q

(µ(Cαaq) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(tranα,a)µα,a(q)) .

Since
∑

q µ(Cαaq) = µ(Cαa) and
∑

q µα,a(q) = 1, this is in turn equal to

µ(Cαa) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(tranα,a).

Combining the equations yields the result. 2

Finally, we present a lemma about limits of generalized probabilistic execution fragments.

Proposition 2.15 Let ε1, ε2, . . . be a chain of generalized probabilistic execution fragments of a PIOAP, all
generated from the same discrete probability measureµ on finite execution fragments. Thenlimi→∞ εi is a
generalized probabilistic execution fragment ofP generated fromµ.

Proof. Let ε denotelimi→∞ εi. For eachi ≥ 1, let σi be a scheduler such thatεi = εσi,µ, and for each
finite execution fragmentα, let pi

α = εσi,µ(Cα)− µ(Cα −{α}). For each finite executionα and each action
a, let pi

αa = εσi,µ(Cαa)− µ(Cαa).
By Lemma 2.14, ifa is enabled inlstate(α) thenpi

ασi(α)(tranα,a) = pi
αa. Moreover, ifpi

αa 6= 0, then
σi(α)(tranα,a) = pi

αa/pi
α.

For each finite execution fragmentα, letpα = ε(Cα)−µ(Cα−{α}). For each finite execution fragment
α and each actiona, let pαa = ε(Cαa) − µ(Cαa). Defineσ(α)(tranα,a) to bepαa/pα if pα > 0; otherwise
defineσ(α)(tranα,a) = 0. By definition ofε and simple manipulations,limi→∞ pi

α = pα andlimi→∞ pi
αa =

pαa. It follows that, ifpα > 0, thenσ(α)(tranα,a) = limi→∞ σi(α)(tranα,a).
It remains to show thatσ is a scheduler and thatεσ,µ = ε. To show thatσ is a scheduler, we must show

that, for each finite execution fragmentα, σ(α) is a sub-probability measure. Observe that, for eachi ≥ 1,∑
tran σi(α)(tran) =

∑
a σi(α)(tranαa). Similarly,

∑
tran σ(α)(tran) =

∑
a σ(α)(tranαa). Since eachσi is

a scheduler, it follows that, for eachi ≥ 0,
∑

a σi(α)(tranαa) ≤ 1. Thus,

lim
i→∞

∑
a

σi(α)(tranαa) ≤
∑

a

lim
i→∞

σi(α)(tranαa) ≤ 1.

We claim thatσ(α)(tranα,a) ≤ limi→∞ σi(α)(tranα,a), which implies thatσ(α)(tranαa) ≤ 1, as
needed. To see this claim, we consider two cases: Ifpα > 0, then as shown earlier,σ(α)(tranα,a) =
limi→∞ σi(α)(tranα,a). On the other hand, ifpα = 0, thenσ(α)(tranα,a) is defined to be zero, so that
σ(α)(tranα,a) = 0 ≤ limi→∞ σi(α)(tranα,a).

To show thatεσ,µ = ε, we show by induction on the length of a finite execution fragmentα that
εσ,µ(Cα) = ε(Cα). For the base case, letα consist of a single stateq. By Lemma 2.10,εσ,µ(Cq) = µ(Cq),
and for eachi ≥ 1, εσi,µ(Cq) = µ(Cq). Thus,ε(Cq) = limi→∞ εσi,µ(Cq) = µ(Cq), as needed.

For the inductive step, letα = α̃aq. By Lemma 2.12,

lim
i→∞

εσi,µ(Cα) = lim
i→∞

(µ(Cα) + (εσi,µ(Cα̃)− µ(Cα̃ − {α̃}))σi(α̃)(tranα̃,a)µα̃,a(q)) .

Observe that the left-hand side isε(Cα). By algebraic manipulation, the right-hand side becomes

µ(Cα) +
((

lim
i→∞

εσi,µ(Cα̃)
)
− µ(Cα̃ − {α̃})

) (
lim

i→∞
σi(α̃)(tranα̃,a)

)
µα̃,a(q).

By definition ofε, limi→∞ εσi,µ(Cα̃) = ε(Cα̃), and by inductive hypothesis,ε(Cα̃) = εσ,µ(Cα̃). Therefore,

ε(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))
(

lim
i→∞

σi(α̃)(tranα̃,a)
)

µα̃,a(q).

3 TASK-PIOAS 12

Also by Lemma 2.12, we obtain that

εσ,µ(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).

We claim that the right-hand sides of the last two equations are equal. To see this, consider two cases.
First, if pα̃ > 0, then we have already shown thatlimi→∞ σi(α̃)(tranα̃,a) = σ(α̃(tranα̃,a)). Since these two
terms are the only difference between the two expressions, the expressions are equal.

On the other hand, ifpα̃ = 0, then by definition ofpα̃, we get thatε(Cα̃) = µ(Cα̃ − {α̃}). Then by the
induction hypothesis the second terms of the two right-hand sides are both equal to zero, which implies that
both expressions are equal to the first termµ(Cα). Again, the two right-hand sides are equal.

Since the right-hand sides are equal, so are the left-hand sides, that is,εσ,µ(Cα) = ε(Cα), as needed to
complete the inductive step. 2

2.3.3 Composition

We define composition of PIOAs as follows.

Definition 2.16 Two PIOAsPi = (Qi, q̄i, Ii, Oi,Hi, Di), i ∈ {1, 2}, are said to becompatibleif Ai ∩Hj =
Oi ∩ Oj = ∅ wheneveri 6= j. In that case, we define theircompositionP1‖P2 to be the PIOA(Q1 ×
Q2, (q̄1, q̄2), (I1∪I2)\(O1∪O2), O1∪O2, H1∪H2, D), whereD is the set of triples((q1, q2), a, µ1×µ2)
such that

1. a is enabled in someqi.

2. For everyi, if a ∈ Ai then(qi, a, µi) ∈ Di, otherwiseµi = δ(qi).

Given a stateq = (q1, q2) in the composition andi ∈ {1, 2}, we useqdPi to denoteqi. Note that these
definitions can be extended to any finite number of PIOAs rather than just two.

2.3.4 Hiding

We define a hiding operation for PIOAs, which hides output actions.

Definition 2.17 LetP = (Q, q̄, I, O,H,D) be a PIOA and letS ⊆ O. Thenhide(P, S) is the PIOAP ′ that
is the same asP except thatOP′ = OP − S andHP′ = HP ∪ S.

3 Task-PIOAs

In this section, we present our definition for task-PIOAs. We introduce task schedules, which are used to
generate probabilistic executions. We define composition and hiding operations. We define an implementa-
tion relation, which we call≤0. And finally, we state and prove a simple compositionality result. In the next
section, Section 4, we define our new simulation relation for task-PIOAs and prove that it is sound.

3.1 Task-PIOA definition

We now augment the PIOA framework with task partitions, our main mechanism for resolving nondetermin-
ism.

Definition 3.1 A task-PIOAis a pairT = (P, R) where

• P = (Q, q̄, I, O,H,D) is a PIOA (satisfying transition determinism).

• R is an equivalence relation on the locally-controlled actions (O ∪H).

3 TASK-PIOAS 13

For clarity, we sometimes writeRT for R.
The equivalence classes ofR are calledtasks. A taskT is enabledin a stateq if somea ∈ T is enabled

in q. It is enabledin a setS of states provided it is enabled in everyq ∈ S.

Unless otherwise stated, technical notions for task-PIOAs are inherited from those for PIOAs. Exceptions
include the notions of probabilistic executions and trace distributions.

For now, we impose the following action-determinism assumption, which implies that tasks alone are
enough to resolve all nondeterministic choices. We will remove this assumption when we introduce local
schedulers, in Section 6. To make it easier to remove the action-determinism hypothesis later, we will indicate
explicitly, before Section 6, where we are using the action-determinism hypothesis.

• Action determinism:For every stateq ∈ Q and taskT ∈ R, at most one actiona ∈ T is enabled inq.

3.2 Task schedules and theapply function

Definition 3.2 If T = (P, R) is a task-PIOA, then atask schedulefor T is any finite or infinite sequence
ρ = T1T2 . . . of tasks inR.

Thus, a task schedule isstatic(or oblivious), in the sense that it does not depend on dynamic information
generated during execution. Under the action-determinism assumption, a task schedule can be used to gener-
ate a unique probabilistic execution, and hence, a unique trace distribution, of the underlying PIOAP. One
can do this by repeatedly scheduling tasks, each of which determines at most one transition ofP.

In general, one could define various classes of task schedules by specifying what dynamic information
may be used in choosing the next task. Here, however, we opt for the oblivious version because we intend to
model system dynamics separately, via high-level nondeterministic choices (cf. Section 1).

Formally, we define an operation that “applies” a task schedule to a task-PIOA:

Definition 3.3 LetT = (P, R) be an action-deterministic task-PIOA whereP = (Q, q̄, I, O,H,D). Given
µ ∈ Disc(Frags∗(P)) and a task scheduleρ, apply(µ, ρ) is the probability measure onFrags(P) defined
recursively by:

1. apply(µ, λ) := µ. (λ denotes the empty sequence.)

2. For T ∈ R, apply(µ, T) is defined as follows. For everyα ∈ Frags∗(P), apply(µ, T)(α) := p1(α) +
p2(α), where:

• p1(α) = µ(α′)η(q) if α is of the formα′ a q, wherea ∈ T and(lstate(α′), a, η) ∈ D; p1(α) = 0
otherwise.

• p2(α) = µ(α) if T is not enabled inlstate(α); p2(α) = 0 otherwise.

3. For ρ of the formρ′ T , T ∈ R, apply(µ, ρ) := apply(apply(µ, ρ′), T).

4. For ρ infinite,apply(µ, ρ) := limi→∞(apply(µ, ρi)), whereρi denotes the length-i prefix ofρ.

In Case (2) above,p1 represents the probability thatα is executed when applying taskT at the end of
α′. Because of transition-determinism and action-determinism, the transition(lstate(α′), a, η) is unique, and
so p1 is well-defined. The termp2 represents the original probabilityµ(α), which is relevant ifT is not
enabled afterα. It is routine to check that the limit in Case (4) is well-defined. The other two cases are
straightforward.

3 TASK-PIOAS 14

3.3 Properties of theapply function

In this subsection, we give some basic properties of the probabilities that arise from theapply(,) function.

Lemma 3.4 LetT = (P, R) be an action-deterministic task-PIOA. Letµ be a discrete probability measure
over finite execution fragments ofP and letT be a task. Letp1 andp2 be the functions used in the definition
of apply(µ, T). Then:

1. for each stateq, p1(q) = 0;

2. for each finite execution fragmentα,

µ(α) = p2(α) +
∑

(a,q):αaq∈Frags∗(P)

p1(αaq).

Proof. Item (1) follows trivially from the definition ofp1(q).
For Item (2), we observe the following facts.

• If T is not enabled fromlstate(α), then, by definition ofp2, µ(α) = p2(α). Furthermore, for each
actiona and each stateq such thatαaq is an execution fragment, we claim thatp1(αaq) = 0. Indeed,
if a /∈ T , then the first case of the definition ofp1(α) trivially does not apply; ifa ∈ T , then, sinceT
is not enabled fromlstate(α), there is noρ such that(lstate(α), a, ρ) ∈ DP , and thus, again, the first
case of the definition ofp1(α) does not apply.

• If T is enabled fromlstate(α), then trivially p2(α) = 0. Furthermore, we claim thatµ(α) =∑
(a,q) p1(αaq). By action determinism, only one actionb ∈ T is enabled fromlstate(α). By defini-

tion of p1, p1(αaq) = 0 if a 6= b (eithera /∈ T or a is not enabled fromlstate(α)). Thus,∑
(a,q)

p1(αaq) =
∑

q

p1(αbq) =
∑

q

µ(α)µα,b(q).

This in turn is equal toµ(α) since
∑

q µα,b(q) = 1.

In each case, we getµ(α) = p2(α) +
∑

(a,q) p1(αaq), as needed. 2

Lemma 3.5 LetT = (P, R) be an action-deterministic task-PIOA. Letµ be a discrete probability measure
over finite execution fragments andρ be a finite sequence of tasks. Thenapply(µ, ρ) is a discrete probability
measure over finite execution fragments.

Proof. By a simple inductive argument on the length ofρ. The base case is trivial. For the inductive
step, it suffices to show that, for each measureε on finite executions fragments and each taskT , apply(ε, T)
is a probability measure over finite execution fragments.

Let ε′ be apply(ε, T). The fact thatε′ is a measure on finite execution fragments follows directly by
Item (2) of Definition 3.3. To show thatε′ is in fact a probability measure, we show that

∑
α∈Frags∗(P) ε′(α) =

1. By Item (2) of Definition 3.3,∑
α∈Frags∗(P)

ε′(α) =
∑

α∈Frags∗(P)

(p1(α) + p2(α)).

Rearranging terms, we obtain∑
α∈Frags∗(P)

ε′(α) =
∑

q

p1(q) +
∑

α∈Frags∗(P)

(p2(α) +
∑

(a,q):αaq∈Frags∗(P)

p1(αaq)).

By Lemma 3.4, the right side becomes
∑

α∈Frags∗(P) ε(α), which equals 1 sinceε is by assumption a proba-
bility measure. Therefore

∑
α∈Frags∗(P) ε′(α) = 1, as needed. 2

3 TASK-PIOAS 15

Lemma 3.6 Let T = (P, R) be an action-deterministic task-PIOA and letT be a task inR. Defineµ′ =
apply(µ, T). Then, for each finite execution fragmentα:

1. If α consists of a single stateq, thenµ′(Cα) = µ(Cα).

2. If α = α̃aq anda /∈ T , thenµ′(Cα) = µ(Cα).

3. If α = α̃aq anda ∈ T , thenµ′(Cα) = µ(Cα) + µ(α̃)µα̃,a(q).

Proof. Letp1 andp2 be the functions used in the definition ofapply(µ, T), and letα be a finite execution
fragment. By definition of a cone and ofµ′, µ′(Cα) =

∑
α′|α≤α′(p1(α′) + p2(α′)). By definition of a cone

and Lemma 3.4,

µ(Cα) =
∑

α′|α≤α′

(p2(α′) +
∑

(a,q):α′aq∈Frags∗(P)

p1(α′aq)) =
∑

α′|α≤α′

(p1(α′) + p2(α′))− p1(α).

Thus,µ′(Cα) = µ(Cα) + p1(α). We distinguish three cases. Ifα consists of a single state, thenp1(α) = 0
by Lemma 3.4, yieldingµ′(Cα) = µ(Cα). If α = α̃aq anda /∈ T , thenp1(α) = 0 by definition, yielding
µ′(Cα) = µ(Cα). Finally, if α = α̃aq anda ∈ T , thenp1(α) = µ(α̃)µα̃,a(q) by definition, yielding
µ′(Cα) = µ(Cα) + µ(α̃)µα̃,a(q). 2

Lemma 3.7 LetT = (P, R) be an action-deterministic task-PIOA. Letµ be a discrete probability measure
over finite execution fragments,T a task, andµ′ = apply(µ, T). Thenµ ≤ µ′.

Proof. Follows directly by Lemma 3.6. 2

Lemma 3.8 Let T = (P, R) be an action-deterministic task-PIOA. Letµ be a discrete measure over finite
execution fragments and letρ1 andρ2 be two finite sequences of tasks such thatρ1 is a prefix ofρ2. Then
apply(µ, ρ1) ≤ apply(µ, ρ2).

Proof. Simple inductive argument using Lemma 3.7 for the inductive step. 2

The next lemma relates the probability measures on execution fragments that arise as a result when ap-
plying a sequence of tasks to a given probability measureµ on execution fragments.

Lemma 3.9 Let T = (P, R) be an action-deterministic task-PIOA. Letρ1, ρ2, · · · be a finite or infinite
sequence of finite task schedules, and letρ = ρ1ρ2 · · · (where juxtaposition denotes concatenation of finite
sequences).
Let µ be a discrete probability measure on finite execution fragments. For each integeri, 1 ≤ i ≤ |ρ|, let
εi = apply(µ, ρ1ρ2 · · · ρi), whereρ1 · · · ρi denotes the concatenation of the sequencesρ1 throughρi. Let
ε = apply(µ, ρ). Then theεi’s form a chain andε = limi→∞ εi.

Proof. The fact that theεi’s form a chain follows from Lemma 3.7. For the limit property, if the sequence
ρ1, ρ2, . . . is finite, then the result is immediate. Otherwise, simply observe that the sequenceε1, ε2, . . . is a
subsequence of the sequence used in the definition ofapply(µ, ρ1ρ2 . . .), and therefore, they have the same
limit. 2

Lemma 3.10 LetT = (P, R) be an action-deterministic task-PIOA. Letµ be a discrete probability measure
over finite execution fragments ofP, ρ a task scheduler forT , andq a state ofT . Thenapply(µ, ρ)(Cq) =
µ(Cq).

Proof. We prove the result for finiteρ’s by induction on the length ofρ. The infinite case then follows
immediately. The base case is trivial since, by definition,apply(µ, ρ) = µ. For the inductive step, letρ = ρ′T ,
and letε be apply(µ, ρ′). By Definition 3.3,apply(µ, ρ) = apply(ε, T). By induction,ε(Cq) = µ(Cq).
Therefore it suffices to showapply(ε, T)(Cq) = ε(Cq).

3 TASK-PIOAS 16

Let ε′ be apply(ε, T). By definition of cone,ε′(Cq) =
∑

α:q≤α ε′(α). By Lemma 3.5, bothε and
ε′ are measures over finite execution fragments; therefore we can restrict the sum to finite execution frag-
ments. Letp1 andp2 be the two functions used for the computation ofε′(α) according to Item (2) in Def-
inition 3.3. Thenε′(Cq) =

∑
α∈Execs∗(P):q≤α(p1(α) + p2(α)). By rearranging terms, we getε′(Cq) =

p1(q) +
∑

α∈Execs∗(P):q≤α(p2(α) +
∑

(a,s) p1(Cαas)). By Lemma 3.4, the right side of the equation above
is

∑
α:q≤α ε(α), which is preciselyε(Cq). 2

The next proposition states thatapply(·, ρ) distributes over convex combinations of probability measures.
This requires a preliminary lemma.

Lemma 3.11 Let {µi}i be a countable family of discrete probability measures on finite execution frag-
ments and let{pi}i be a countable family of probabilities such that

∑
i pi = 1. Let T be a task. Then

apply(
∑

i piµi, T) =
∑

i pi apply(µi, T).

Proof. Let p1 andp2 be the functions used in the definition ofapply(
∑

i piµi, T), and let, for eachi, pi
1

andpi
2 be the functions used in the definition ofapply(µi, T). Let α be a finite execution fragment. We show

thatp1(α) =
∑

i pip
i
1(α) andp2(α) =

∑
i pip

i
2(α). Then

apply(
∑

i

piµi, T)(α) = p1(α) + p2(α) definition ofapply(
∑

i

piµi, T)

=
∑

i

pip
i
1(α) +

∑
i

pip
i
2(α) claims proven below

=
∑

i

pi(pi
1(α) + pi

2(α))

=
∑

i

pi apply(µi, T)(α) definition ofapply(µi, T)

To prove our claim aboutp1 we distinguish two cases. Ifα can be written asα′ a q, whereα′ ∈
supp(µ), a ∈ T , and(lstate(α′), a, ρ) ∈ DP , then, by Definition 3.3,p1(α) = (

∑
i piµi)(α′)ρ(q), and,

for eachi, pi
1(α) = µi(α′)ρ(q). Thus,p1(α) =

∑
i pip

i
1(α) trivially. Otherwise, again by Definition 3.3,

p1(α) = 0, and, for eachi, pi
1(α) = 0. Thus,p1(α) =

∑
i pip

i
1(α) trivially.

To prove our claim aboutp2 we also distinguish two cases. IfT is not enabled inlstate(α), then, by
Definition 3.3,p2(α) = (

∑
i piµi)(α), and, for eachi, pi

2(α) = µi(α). Thus,p2(α) =
∑

i pip
i
2(α) trivially.

Otherwise, again by Definition 3.3,p2(α) = 0, and, for eachi, pi
2(α) = 0. Thus,p2(α) =

∑
i pip

i
2(α)

trivially. 2

Proposition 3.12 Let {µi}i be a countable family of discrete probability measures on finite execution frag-
ments and let{pi}i be a countable family of probabilities such that

∑
i pi = 1. Letρ be a finite sequence of

tasks. Then,apply(
∑

i piµi, ρ) =
∑

i pi apply(µi, ρ).

Proof. We proceed by induction on the length ofρ. If ρ = λ, then the result is trivial sinceapply(·, λ) is
defined to be the identity function, which distributes over convex combinations of probability measures. For
the inductive step, letρ beρ′T . By Definition 3.3 and the induction hypothesis,

apply(
∑

i

piµi, ρ
′T) = apply(apply(

∑
i

piµi, ρ
′), T) = apply(

∑
i

pi apply(µi, ρ
′), T).

By Lemma 3.5, eachapply(µi, ρ
′) is a discrete probability measure over finite execution fragments. By

Lemma 3.11,apply(
∑

i pi apply(µi, ρ
′), T) =

∑
i pi apply(apply(µi, ρ

′), T), and by Definition 3.3, for each
i, apply(apply(µi, ρ

′), T) = apply(µi, ρ
′T). Thus,apply(

∑
i piµi, ρ

′T) =
∑

i pi apply(µi, ρ
′T) as needed.

2

3 TASK-PIOAS 17

3.4 Task schedules vs. standard PIOA schedulers

Here, we show thatapply(µ, ρ) is a generalized probabilistic execution fragment generated byµ and a sched-
uler forP, in the usual sense. Thus, a task schedule for a task-PIOA is a special case of a scheduler for the
underlying PIOA.

Theorem 3.13 Let T = (P, R) be an action-deterministic task-PIOA. For each probability measureµ on
Frags∗(P) and task scheduleρ, there is schedulerσ for P such thatapply(µ, ρ) is the generalized proba-
bilistic execution fragmentεσ,µ.

The proof of Theorem 3.13 uses several auxiliary lemmas. The first talks about applyingλ, the empty
sequence of tasks. It is used in the base case of the inductive proof for Lemma 3.16, which involves applying
any finite sequence of tasks.

Lemma 3.14 LetT = (P, R) be an action-deterministic task-PIOA. Letµ be a discrete probability measure
over finite execution fragments. Thenapply(µ, λ) is a generalized probabilistic execution fragment generated
byµ.

Proof. Follows directly from the definitions, by defining a schedulerσ such thatσ(α)(tran) = 0 for
each finite execution fragmentα and each transitiontran. 2

The next lemma provides the inductive step needed for Lemma 3.16.

Lemma 3.15 Let T = (P, R) be an action-deterministic task-PIOA. Ifε is a generalized probabilistic exe-
cution fragment generated by a measureµ, then, for each taskT , apply(ε, T) is a generalized probabilistic
execution fragment generated byµ.

Proof. Supposeε is generated byµ together with a schedulerσ (that is,εσ,µ = ε). Let ε′ beapply(ε, T).
For each finite execution fragmentα, let D(lstate(α)) denote the set of transitions ofD with source state
lstate(α). For eachtran ∈ D, let act(tran) denote the action that occurs intran. Now we define a new
schedulerσ′ as follows: given finite execution fragmentα andtran ∈ D,

• if ε′(Cα)− µ(Cα − {α}) = 0, thenσ′(α)(tran) = 0;

• otherwise, iftran ∈ D(lstate(α)) andact(tran) ∈ T , then

σ′(α)(tran) =
ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

(σ(α)(tran) + σ(α)(⊥));

• otherwise,

σ′(α)(tran) =
ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

σ(α)(tran).

We first argue thatσ′, thus defined, is a scheduler. Let a finite execution fragmentα be given. If the
first clause applies, thenσ′(α) is 0 everywhere, hence is a sub-probability measure. Assume otherwise. By
action- and transition-determinism, there is at most onetran with tran ∈ D(lstate(α)) andact(tran) ∈ T .
Let Y denote{tran} if suchtran exists and∅ otherwise. Then we have the following.∑

tran6∈Y

σ(α)(tran) +
∑

tran∈Y

(σ(α)(tran) + σ(α)(⊥))

= (
∑

tran∈D

σ(α)(tran)) + σ(α)(⊥) Y is either empty or a singleton

= 1 σ is a scheduler

3 TASK-PIOAS 18

Furthermore, by Lemma 3.7, we know thatε(Cα) ≤ ε′(Cα), thus the fractionε(Cα)−µ(Cα−{α})
ε′(Cα)−µ(Cα−{α}) is at most

1. Putting the pieces together, we have∑
tran∈D

σ′(α)(tran) =
ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

· (
∑

tran6∈Y

σ(α)(tran) +
∑

tran∈Y

(σ(α)(tran) + σ(α)(⊥))) ≤ 1.

Next, we prove by induction on the length of a finite execution fragmentα thatεσ′,µ(Cα) = ε′(Cα).
For the base case, letα = q. By Lemma 2.10,

εσ′,µ(Cq) = µ(Cq) = εσ,µ(Cq).

By the choice ofσ, the last expression equalsε(Cq), which in turn is equal to toε′(Cq) by virtue of
Lemma 3.10. Thus,εσ′,µ(Cq) = ε′(Cq), as needed.

For the inductive step, letα = α̃aq. By Lemma 2.10 and the definition of the measure of a cone, we get

εσ′,µ(Cα) = µ(Cα) +
∑

α′<α

µ(α′)εσ′,α′(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)µσ′(α̃)(a, q).

We know thata is enabled fromlstate(α̃), becauseα is an execution fragment ofP. Thus,tranα̃,a and
µα̃,a are defined. By expandingµσ′(α̃)(a, q) in the equation above, we get

εσ′,µ(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)σ′(α̃)(tranα̃,a)µα̃,a(q). (1)

We distinguish three cases.

1. ε′(Cα̃)− µ(Cα̃ − {α̃}) = 0.

By inductive hypothesis,εσ′,µ(Cα̃) = ε′(Cα̃). Then by Lemma 2.12,εσ′,µ(Cα) = µ(Cα). It is
therefore sufficient to show thatε′(Cα) = µ(Cα).

By Lemma 3.7,ε(Cα̃) ≤ ε′(Cα̃). Thus, usingε′(Cα̃) − µ(Cα̃ − {α̃}) = 0, we getε(Cα̃) − µ(Cα̃ −
{α̃}) ≤ 0. On the other hand, from Lemma 2.11 and the fact thatε = εσ,µ, we haveε(Cα̃)− µ(Cα̃ −
{α̃}) ≥ 0. Thus,ε(Cα̃) − µ(Cα̃ − {α̃}) = 0. Now, using Lemma 2.12 and the fact thatεσ,µ = ε and
ε(Cα̃)− µ(Cα̃ − {α̃}) = 0, we getε(Cα) = µ(Cα).

SinceCα̃ − {α̃} is a union of cones, we may use Lemma 3.7 to obtainµ(Cα̃ − {α̃}) ≤ ε(Cα̃ − {α̃}).
Adding ε({α̃}) on both sides, we getµ(Cα̃ − {α̃}) + ε({α̃}) ≤ ε(Cα̃ − {α̃}) + ε({α̃}) = ε(Cα̃).
Sinceε(Cα̃) = µ(Cα̃ − {α̃}), the previous inequalities implyε(Cα̃) + ε({α̃}) ≤ ε(Cα̃), therefore
ε({α̃}) = 0. By Lemma 3.6 (Items (2) and (3)), we haveε′(Cα) = ε(Cα) = µ(Cα), as needed.

2. ε′(Cα̃)− µ(Cα̃ − {α̃}) > 0 anda 6∈ T .

By Equation (1) and the definition ofσ′, we know thatεσ′,µ(Cα) equals

µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)
ε(Cα̃)− µ(Cα̃ − {α̃})
ε′(Cα̃)− µ(Cα̃ − {α̃})

σ(α̃)(tranα̃,a)µα̃,a(q).

Observe that in the sum above only the factorsµ(α′)εσ′,α′(Cα̃) are not constant with respect to the
choice ofα′. By Lemma 2.11,

∑
α′≤α̃ µ(α′)εσ′,α′(Cα̃) = εσ′,µ(Cα̃)−µ(Cα̃−{α̃}). By the inductive

hypothesis,εσ′,µ(Cα̃) = ε′(Cα̃). Thus, replacing
∑

α′≤α̃ µ(α′)εσ′,α′(Cα̃) with ε′(Cα̃)−µ(Cα̃−{α̃})
and simplifying the resulting expression, we obtain

εσ′,µ(Cα) = µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).

By definition, ε = εσ,µ. Therefore, by Lemma 2.12, the right side of the equation above isε(Cα).
Moreover,ε(Cα) = ε′(Cα) by Lemma 3.6, Item (2). Thus,εσ′,µ(Cα) = ε′(Cα), as needed.

3 TASK-PIOAS 19

3. ε′(Cα̃)− µ(Cα̃ − {α̃}) > 0 anda ∈ T .

As in the previous case,εσ′,µ(Cα) equals

µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))(σ(α̃)(tranα̃,a) + σ(α̃)(⊥))µα̃,a(q).

Also shown in the previous case, we have

ε(Cα) = µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tranα̃,a)µα̃,a(q).

Therefore,
εσ′,µ(Cα) = ε(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(⊥)µα̃,a(q).

By definition,ε = εσ,µ. Applying Lemma 2.13, we substituteε(α̃) for (ε(Cα̃)−µ(Cα̃−{α̃}))σ(α̃)(⊥).
Now we have

εσ′,µ(Cα) = ε(Cα) + ε(α̃)µα̃,a(q).

The desired result now follows from Lemma 3.6, Item (3).

2

Now we can show that applying any finite sequences of tasks to a probability measure on finite execution
fragments leads to a generalized probabilistic execution fragment.

Lemma 3.16 LetT = (P, R) be an action-deterministic task-PIOA. For each probability measureµ on finite
execution fragments and each finite sequence of tasksρ, apply(µ, ρ) is a generalized probabilistic execution
fragment generated byµ.

Proof. Simple inductive argument using Lemma 3.14 for the base case and Lemma 3.15 for the inductive
step. 2

And now we consider infinite sequences of tasks.

Lemma 3.17 LetT = (P, R) be an action-deterministic task-PIOA. For each measureµ on finite execution
fragments and each infinite sequence of tasksρ, apply(µ, ρ) is a generalized probabilistic execution fragment
generated byµ.

Proof. For eachi ≥ 0, let ρi denote the length-i prefix ofρ and letεi beapply(µ, ρi). By Lemmas 3.16
and 3.8, the sequenceε0, ε1, . . . is a chain of generalized probabilistic execution fragments generated by
µ. By Proposition 2.15,limi→∞ εi is a generalized probabilistic execution fragment generated byµ. This
suffices, sinceapply(µ, ρ) is limi→∞ εi by definition. 2

This completes the proof of Theorem 3.13.

Proof (Theorem 3.13). Follows directly from Lemmas 3.16 and 3.17. 2

The idea here is, for any measureµ and task sequenceρ, the probability measure on execution fragments
generated byapply(µ, ρ) is “standard”, in the sense that it can be obtained fromµ and a scheduler as defined in
Section 3 for basic PIOAs. Any suchapply(µ, ρ) is said to be ageneralized probabilistic execution fragment
of the task-PIOAT . Probabilistic execution fragmentsand probabilistic executionsare then defined by
making the same restrictions as for basic PIOAs. We writetdist(µ, ρ) as shorthand fortdist(apply(µ, ρ)), the
trace distribution obtained by applying task scheduleρ starting from the measureµ on execution fragments.
We writetdist(ρ) for tdist(apply(δ(q̄), ρ)) the trace distribution obtained by applyingρ from the unique start
state. (Recall thatδ(q̄) denotes the Dirac measure onq̄.) A trace distributionof T is anytdist(ρ). We use
tdists(T) to denote the set{tdist(ρ) : ρ is a task schedule forT }.

3 TASK-PIOAS 20

3.5 Composition

We define composition of task-PIOAs:

Definition 3.18 Two task-PIOAsTi = (Pi, Ri), i ∈ {1, 2}, are said to becompatibleprovided the underlying
PIOAs are compatible. Then we define theircompositionT1‖T2 to be the task-PIOA(P1‖P2, R1 ∪ R2).

It is easy to see thatT1‖T2 is in fact a task-PIOA. In particular, since compatibility ensures disjoint sets of
locally-controlled actions,R1 ∪ R2 is an equivalence relation on the locally-controlled actions ofP1‖P2. It
is also easy to see that action determinism is preserved under composition. Note that, when two task-PIOAs
are composed, no new mechanisms are required to schedule actions of the two components—the tasks alone
are enough.

3.6 Hiding

We also define a hiding operator for task-PIOAs. It simply hides output actions:

Definition 3.19 Let T = (P, R) be any task-PIOA, whereP = (Q, q̄, I, O,H,D), and letS ⊆ O. Then
hide(T , S) is the task-PIOA(hide(P, S), R), that is, the task-PIOA obtained by hidingS in the underlying
PIOAP, without any change to the task equivalence relation.

Note that, in the special case where tasks respect the output vs. internal action classification, one can also
define a hiding operation that hides all output actions in a set of tasks. We omit the details here.

3.7 Implementation

We now define the notion of external behavior for a task-PIOA and the induced implementation relation
between task-PIOAs. Unlike previous definitions of external behavior, the one we use here is not simply a set
of trace distributions. Rather, it is a mapping that specifies, for every possible “environment”E for the given
task-PIOAT , the set of trace distributions that can arise whenT is composed withE .

Definition 3.20 Let T be any task-PIOA andE be an action-deterministic task-PIOA. We say thatE is an
environmentfor T if the following hold:

1. E is compatible withT .

2. The compositionT ‖E is closed.

Note thatE is allowed to have output actions that are not inputs ofT .

Definition 3.21 The external behaviorof T , denoted byextbeh(T), is the total function that maps each
environmentE to the set of trace distributionstdists(T ‖E).

Thus, for each environment, we consider the set of trace distributions that arise from all task schedules.
Note that these traces may include new output actions ofE , in addition to the external actions already present
in T .

Our definition ofimplementationsays that the lower-level system must “look like” the higher-level sys-
tem from the perspective of every possible environment. The style of this definition is influenced by common
notions in the security protocol literature (e.g., [LMMS98, Can01, PW01]). An advantage of this style of def-
inition is that it yields simple compositionality results (Theorem 3.24). In our case, “looks like” is formalized
in terms of inclusion of sets of trace distributions, that is, of external behavior sets.

Definition 3.22 Let T1 = (P1, R1) andT2 = (P2, R2) be task-PIOAs, andIi andOi the input and output
actions sets forPi, i ∈ {1, 2}. ThenT1 andT2 arecomparableif I1 = I2 andO1 = O2.

4 SIMULATION RELATIONS 21

Definition 3.23 Let T1 andT2 becomparableaction-deterministic task-PIOAs. Then we say thatT1 imple-
mentsT2, writtenT1 ≤0 T2, if extbeh(T1)(E) ⊆ extbeh(T2)(E) for every environmentE for bothT1 andT2.
In other words, we requiretdists(T1||E) ⊆ tdists(T2||E) for everyE .

The subscript0 in the relation symbol≤0 refers to the requirement that every trace distribution in
tdists(T1||E) must have an identical match intdists(T2||E). For security analysis, we also define another
relation≤neg,pt, which allows “negligible” discrepancies between matching trace distributions [CCK+06e].

3.8 Compositionality

Because external behavior and implementation are defined in terms of mappings from environments to sets
of trace distributions, a compositionality result for≤0 follows easily:

Theorem 3.24 LetT1, T2 be comparable action-deterministic task-PIOAs such thatT1 ≤0 T2, and letT3 be
an action-deterministic task-PIOA compatible with each ofT1 andT2. ThenT1‖T3 ≤0 T2‖T3.

Proof. Let T4 = (P4, R4) be any environment (action-deterministic) task-PIOA for bothT1‖T3 and
T2‖T3. Fix any task scheduleρ1 for (T1‖T3)‖T4. Let τ be the trace distribution of(T1‖T3)‖T4 generated by
ρ1. It suffices to show thatτ is also generated by some task scheduleρ2 for (T2‖T3)‖T4.

Note thatρ1 is also a task schedule forT1‖(T3‖T4), and thatρ1 generates the same trace distributionτ in
the composed task-PIOAT1‖(T3‖T4).

Now,T3‖T4 is an (action-deterministic) environment task-PIOA for each ofT1 andT2. Since, by assump-
tion, T1 ≤0 T2, we infer the existence of a task scheduleρ2 for T2‖(T3‖T4) such thatρ2 generates trace
distributionτ in the task-PIOAT2‖(T3‖T4). Sinceρ2 is also a task schedule for(T2‖T3)‖T4 andρ2 generates
τ , this suffices. 2

4 Simulation Relations

Now we define a new notion of simulation relations for closed, action-deterministic task-PIOAs, and show
that it is sound for proving≤0. Our definition is based on the three operations defined in Section 2.2:
flattening, lifting, and expansion.

4.1 Simulation relation definition

We begin with two auxiliary definitions. The first expresses consistency between a probability measure over
finite executions and a task schedule. Informally, a measureε over finite executions is said to be consistent
with a task scheduleρ if it assigns non-zero probability only to those executions that are possible under the
task scheduleρ. We use this condition to avoid extraneous proof obligations in our definition of simulation
relation.

Definition 4.1 LetT = (P, R) be a closed, action-deterministic task-PIOA and letε be a discrete probability
measure over finite executions ofP. Also, let a finite task scheduleρ for T be given. Thenε is consistent with
ρ provided thatsupp(ε) ⊆ supp(apply(δ(q̄), ρ)), whereq̄ is the start state ofP.

For the second definition, suppose we have two task-PIOAsT1 andT2, and a mappingc that takes a finite
task scheduleρ and a taskT of T1 to a task schedule ofT2. The idea is thatc(ρ, T) describes howT2 matches
taskT , given that it has already matched the task scheduleρ. Usingc, we define a new functionfull(c) that,
given a task scheduleρ, iteratesc on all the elements ofρ, thus producing a “full” task schsedule ofT2 that
matches all ofρ.

Definition 4.2 LetT1 = (P1, R1) andT2 = (P2, R2) be two task-PIOAs, and letc : (R1
∗ ×R1) → R2

∗ be
given. Definefull(c) : R1

∗ → R2
∗ recursively as follows:full(c)(λ) := λ, andfull(c)(ρT) := full(c)(ρ) _

c(ρ, T) (that is, the concatenation offull(c)(ρ) andc(ρ, T)).

4 SIMULATION RELATIONS 22

Next, we define our new notion of simulation for task-PIOAs. Note that our simulation relations are
relations between probability measures on executions, as opposed to relations between states. Here the use
of measures on executions is motivated by certain cases that arise in our OT protocol proof. For example, we
wish to match random choices that are made at different points in the low-level and high-level models (see
Section 4.3).

Definition 4.3 Let T1 = (P1, R1) andT2 = (P2, R2) be two comparable task-PIOAs that are closed and
action-deterministic. LetR be a relation fromDisc(Execs∗(P1)) to Disc(Execs∗(P2)), such that, ifε1 R ε2,
thentdist(ε1) = tdist(ε2). (That is, the two measures on finite executions yield the same measure on traces.)
ThenR is asimulationfromT1 to T2 if there existsc : (R1

∗ ×R1) → R2
∗ such that the following properties

hold:

1. Start condition:δ(q̄1) R δ(q̄2).

2. Step condition:If ε1 R ε2, ρ1 ∈ R1
∗, ε1 is consistent withρ1, ε2 is consistent withfull(c)(ρ1), and

T ∈R1, thenε′1 E(R) ε′2 whereε′1 = apply(ε1, T) andε′2 = apply(ε2, c(ρ1, T)).

Intuitively, ε1 R ε2 means that it is possible to simulate fromε2 anything that can happen fromε1.
Furthermore,ε′1 E(R) ε′2 means that we can decomposeε′1 andε′2 into pieces that can simulate each other,
and so we can also say that it is possible to simulate fromε′2 anything that can happen fromε′1. This rough
intuition is at the base of the proof of our soundness result, Theorem 4.6.

The next three subsections establish the soundness of our simulation relations with respect to the≤0

relation.

4.2 Soundness

In this section, we state and prove two soundness results. The first result, Theorem 4.6, says that, for closed
task-PIOAs, the existence of a simulation relation implies inclusion of sets of trace distributions.

The proof requires two lemmas. Recall that the definition of simulation relations requires that any two
R-related execution distributions must have the same trace distribution. Lemma 4.4 extends this property to
the claim that any pair of execution distributions that are related by the expansion of the relationR, E(R),
must also have the same trace distribution. (For the proof, the only property of simulation relations we need
is that related execution distributions have the same trace distribution.)

Lemma 4.4 LetT1 andT2 be comparable closed action-deterministic task-PIOAs and letR be a simulation
fromT1 to T2. Letε1 andε2 be discrete probability measures over finite executions ofT1 andT2, respectively,
such thatε1 E(R) ε2. Thentdist(ε1) = tdist(ε2).

Proof. Sinceε1 E(R) ε2, we may choose measuresη1, η2 and a weighting functionsw as in the defi-
nition of expansion. Then for allρ1 ∈ supp(η1), we haveη1(ρ1) =

∑
ρ2∈supp(η2)

w(ρ1, ρ2). Moreover, we
haveε1 = flatten(η1), therefore

tdist(ε1) =
∑

ρ1∈supp(η1)

η1(ρ1) tdist(ρ1) =
∑

ρ1∈supp(η1)

∑
ρ2∈supp(η2)

w(ρ1, ρ2) tdist(ρ1).

Now consider anyρ1 andρ2 with w(ρ1, ρ2) > 0. By the definition of a weighting function, we may conclude
thatρ1 R ρ2. SinceR is a simulation relation, we havetdist(ρ1) = tdist(ρ2). Thus we may replacetdist(ρ1)
by tdist(ρ2) in the summation above. This yields:

tdist(ε1) =
∑

ρ1∈supp(η1)

∑
ρ2∈supp(η2)

w(ρ1, ρ2) tdist(ρ2) =
∑

ρ2∈supp(η2)

∑
ρ1∈supp(η1)

w(ρ1, ρ2) tdist(ρ2).

4 SIMULATION RELATIONS 23

Using again the fact thatw is a weighting function, we can simplify the inner sum above to obtain

tdist(ε1) =
∑

ρ2∈supp(η2)

η2(ρ2) tdist(ρ2).

This equalstdist(ε2) because, by the choice ofη2, we know thatε2 = flatten(η2). 2

The second lemma provides the inductive step needed in the proof of Theorem 4.6.

Lemma 4.5 LetT1 andT2 be two comparable closed task-PIOAs and letR be a simulation relation fromT1

to T2. Furthermore, letc be a mapping witnessing the fact thatR is a simulation relation. Let a finite task
schedulerρ1 of T1 be given and setρ2 = full(c)(ρ1). (Thenρ2 is a finite task scheduler ofT2.) Letε1 denote
apply(δ(q̄1), ρ1) and letε2 denoteapply(δ(q̄2), ρ2). Suppose thatε1 E(R) ε2.

Now letT be a task ofT1. Letε′1 = apply(δ(q̄1), ρ1T) and letε′2 = apply(δ(q̄2), ρ2 c(ρ1, T)).
Thenε′1 E(R) ε′2.

Proof. Let η1, η2 andw be the measures and weighting function that witnessε1 E(R) ε2. Observe that
ε′1 = apply(ε1, T) andε′2 = apply(ε2, c(ρ1, T)).

We apply Lemma 2.7: define the functionf on discrete distributions on finite executions ofT1 by
f(ε) = apply(ε, T), and the functiong on discrete distributions on finite executions ofT2 by g(ε) =
apply(ε, c(ρ1, T)). We show that the hypothesis of Lemma 2.7 is satisfied, so we can invoke Lemma 2.7
to conclude thatε′1 E(R) ε′2.

Distributivity of f andg follows directly by Proposition 3.12. Letµ1, µ2 be two measures such that
w(µ1, µ2) > 0. We must show thatf(µ1) E(R) g(µ2). Sincew is a weighting function forε1 E(R) ε2,
µ1 R µ2. Observe thatsupp(µ1) ⊆ supp(ε1) andsupp(µ2) ⊆ supp(ε2); thus,µ1 is consistent withρ1 and
µ2 is consistent withρ2. By the step condition forR, apply(µ1, T) E(R) apply(µ2, c(ρ1, T)). Observe that
apply(µ1, T) = f(µ1) and thatapply(µ2, c(ρ1, T)) = g(µ2). Thus,f(µ1) E(R) g(µ2), as needed. 2

The following theorem, Theorem 4.6, is the main soundness result. The proof simply puts the pieces
together, using Lemma 3.9 (which says that the probabilistic execution generated by an infinite task scheduler
can be seen as the limit of the probabilistic executions generated by some of the finite prefixes of the task
scheduler), Lemma 4.5 (the step condition), Lemma 4.4 (related probabilistic executions have the same trace
distribution), and Lemma A.9 (limit commutes withtdist).

Theorem 4.6 Let T1 and T2 be comparable task-PIOAs that are closed and action-deterministic. If there
exists a simulation relation fromT1 to T2, thentdists(T1) ⊆ tdists(T2).

Proof (Theorem 4.6). LetR be the assumed simulation relation fromT1 toT2. Letε1 be the probabilistic
execution ofT1 generated bȳq1 and a (finite or infinite) task schedule,T1T2 · · · . For eachi > 0, defineρi to
bec(T1 · · ·Ti−1, Ti). Let ε2 be the probabilistic execution generated byq̄2 and the concatenationρ1ρ2 · · · .
It is sufficient to provetdist(ε1) = tdist(ε2).

For eachj ≥ 0, let ε1,j = apply(q̄1, T1 · · ·Tj), andε2,j = apply(q̄2, ρ1 · · · ρj). Then by Lemma 3.9, for
eachj ≥ 0, ε1,j ≤ ε1,j+1 andε2,j ≤ ε2,j+1; moreover,limj→∞ ε1,j = ε1 andlimj→∞ ε2,j = ε2. Also, for
everyj ≥ 0, apply(ε1,j , Tj+1) = ε1,j+1 andapply(ε2,j , ρj+1) = ε2,j+1.

Observe thatε1,0 = δ(q̄1) andε2,0 = δ(q̄2). The start condition for a simulation relation and a trivial
expansion imply thatε1,0 E(R) ε2,0. Then by induction, using Lemma 4.5 for the definition of a simulation
relation in proving the inductive step, for eachj ≥ 0, ε1,j E(R) ε2,j . Then, by Lemma 4.4, for eachj ≥ 0,
tdist(ε1,j) = tdist(ε2,j).

By Lemma A.9,tdist(ε1) = limj→∞ tdist(ε1,j), andtdist(ε2) = limj→∞ tdist(ε2,j). Since for each
j ≥ 0, tdist(ε1,j) = tdist(ε2,j), we conclude thattdist(ε1) = tdist(ε2), as needed. 2

The second soundness result, Corollary 4.7, asserts soundness for (not necessarily closed) task-PIOAs,
with respect to the≤0 relation.

4 SIMULATION RELATIONS 24

Corollary 4.7 Let T1 andT2 be two comparable action-deterministic task-PIOAs. Suppose that, for every
environmentE for bothT1 andT2, there exists a simulation relationR fromT1‖E to T2‖E . ThenT1 ≤0 T2.

Proof. Immediate by Theorem 4.6 and the definition of≤0. 2

4.3 Example:Trapdoor vs. Rand

The following example, taken from our Oblivious Transfer case study, is a key motivation for generalizing
prior notions of simulation relations. We consider two closed task-PIOAs,Trapdoor andRand. Rand
simply chooses a number in{1, . . . , n} randomly, from the uniform distribution (using achoose internal
action), and then outputs the chosen valuek (using areport(k) output action).Trapdoor, on the other hand,
first chooses a random number, then applies a known permutationf to the chosen number, and then outputs
the result. (The nameTrapdoor refers to the type of permutationf that is used in the OT protocol.)

More precisely, neitherRand norTrapdoor has any input actions.Rand has output actionsreport(k),
k ∈ [n] = {1, . . . , n} and internal actionchoose. It has tasksReport = {report(k) : k ∈ [n]}, and
Choose = {choose}. Its state contains one variablezval, which assumes values in[n] ∪ {⊥}, initially ⊥.
Thechoose action is enabled whenzval = ⊥, and has the effect of settingzval to a number in[n], chosen
uniformly at random. Thereport(k) action is enabled whenzval = k, and has no effect on the state (so it
may happen repeatedly). Precondition/effect code forRand appears in Figure 1, and a diagram appears in
Figure 2.

Rand:
Signature:

Input:
none

Output:
report(k), k ∈ {1, . . . , n}

Internal:
choose

Tasks:
Report = {report(k) : k ∈ {1, . . . , n}}, Choose = {choose}
States:
zval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥

Transitions:

choose
Precondition:

zval = ⊥
Effect:

zval := random(uniform({1, . . . , n}))

report(k)
Precondition:

zval = k
Effect:

none

Figure 1: Code for Task-PIOARand

z = 1

z = n

z = 2
choose

report(1)

report(2)

report(n)

Figure 2: Task-PIOARand

4 SIMULATION RELATIONS 25

Trapdoor has the same actions asRand, plus internal actioncompute. It has the same tasks asRand,
plus the taskCompute = {compute}. Trapdoor’s state contains two variables,y andz, each of which
takes on values in[n] ∪ {⊥}, initially ⊥. The choose action is enabled wheny = ⊥, and setsy to a
number in[n], chosen uniformly at random. Thecompute action is enabled wheny 6= ⊥ andz = ⊥, and
setsz := f(y). Thereport(k) action behaves exactly as inRand. Precondition/effect code forTrapdoor
appears in Figure 3, and a diagram appears in Figure 4.

Trapdoor:
Signature:

Input:
none

Output:
report(k), k ∈ {1, . . . , n}

Internal:
choose, compute

Tasks:
Report = {report(k) : k ∈ {1, . . . , n}}, Choose = {choose}, Compute = {compute}
States:
yval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥
zval ∈ {1, . . . , n} ∪ {⊥}, initially ⊥

Transitions:

choose
Precondition:

yval = ⊥
Effect:

yval := random(uniform({1, . . . , n}))

compute
Precondition:

yval 6= ⊥; zval = ⊥
Effect:

zval := f(yval)

report(k)
Precondition:

zval = k
Effect:

none

Figure 3: Code for Task-PIOATrapdoor

choose

y = 1

y = 2

y = n

compute

compute

compute

z = f (1)

z = f (2)

z = f (n)

report(f (1))

report(f (2))

report(f (n))

Figure 4: Task-PIOATrapdoor

We want to use a simulation relation to prove thattdists(Trapdoor) ⊆ tdists(Random). To do so, it is
natural to allow the steps that definez to correspond in the two automata, which means thechoose steps of
Trapdoor (which definey) do not have corresponding steps inRand. Note that, between thechoose and
compute in Trapdoor, a randomly-chosen value appears in they component of the state ofTrapdoor, but
no such value appears in the corresponding state ofRand. Thus, the desired simulation relation should allow
the correspondence between a probability measure on states ofTrapdoor and a single state ofRand.

We are able to express this correspondence using simulation relations in the sense of Definition 4.3: Ifε1

5 APPLICATION TO SECURITY PROTOCOLS 26

andε2 are discrete measures over finite execution fragments ofTrapdoor andRand, respectively, then we
say thatε1 andε2 are related byR whenever the following conditions hold:

1. For everys ∈ supp (lstate(ε1)) andu ∈ supp (lstate(ε2)), s.z = u.z.

2. For everyu ∈ supp (lstate(ε2)), if u.z = ⊥ then eitherlstate(ε1).y is everywhere undefined or else it
is the uniform distribution on[n].

The task correspondence mappingc is defined by2

• c(ρ,Choose) = λ.

• If ρ contains theChoose action, thenc(ρ,Compute) = Choose; otherwise,c(ρ,Compute) = λ.

• c(ρ,Report) = Report.

5 Application to Security Protocols

In [CCK+06e], we use the task-PIOAs of this paper to model and analyze the Oblivious Transfer (OT)
protocol of Goldreich et al. [GMW87].

In the OT problem, two input bits(x0, x1) are submitted to a TransmitterTrans and a single input biti
to a ReceiverRec. After engaging in an OT protocol,Rec should output only the single bitxi. Rec should
not learn the other bitx1−i, andTrans should not learni; moreover, an eavesdropping adversary should not,
by observing the protocol messages, be able to learn anything about the inputs or the progress of the protocol.
OT has been shown to be “complete” for multi-party secure computation, in the sense that, using OT as the
only cryptographic primitive, one can construct protocols that securely realize any functionality.

The protocol of [GMW87] uses trap-door permutations (and hard-core predicates) as an underlying
cryptographic primitive. It uses three rounds of communication: First,Trans chooses a random trap-door
permutationf and sends it toRec. Second,Rec chooses two random numbers(y0, y1) and sends(z0, z1) to
Trans, wherezi for the input indexi is f(yi) andz1−i = y1−i. Third,Trans applies the same transforma-
tion to each ofz0 andz1 and sends the results back as(b0, b1) Finally, Rec decodes and outputs the correct
bit. The protocol uses cryptographic primitives and computational hardness in an essential way. Its security
is inherently only computational, so its analysis requires modeling computational assumptions.

Our analysis follows thetrusted partyparadigm of [GMW87], with a formalization that is close in spirit
to [PW00, Can01]. We first define task-PIOAs representing thereal system (RS)(the protocol) and the
ideal system (IS)(the requirements). InRS, typical tasks include “choose random(y0, y1)”, “send round 1
message”, and “deliver round 1 message”, as well as arbitrary tasks of environment and adversary automata.
(The environment and adversary automata are purposely under-specified, so that our results are as general as
possible.) Note that these tasks do not specify exactly what transition occurs. For example, the “choose” task
does not specify the chosen values of(y0, y1). And the “send” task does not specify the message contents—
these are computed byTrans, based on its own internal state.

Then we prove thatRS implementsIS. The proof consists of four cases, depending on which parties
are corrupted3. In the two cases whereTrans is corrupted, we can show thatRS implementsIS uncon-
ditionally, using≤0. In the cases whereTrans is not corrupted, we can show implementation only in a
“computational” sense, namely, (i) for resource-bounded adversaries, (ii) up to negligible differences, and
(iii) under computational hardness assumptions. Modeling these aspects requires additions to the task-PIOA
framework of this paper, namely, defining atime-boundedversion of task-PIOAs, and defining a variation,

2In an extended abstract of this report[CCK+06b], the definition ofc contains a small error. Namely, in the second clause,
c(ρ, Compute) is set toChoose regardless of the condition onρ.

3In [CCK+06e], only one case is treated in full detail—when onlyRec is corrupted. We prove all four cases in [CCK+05], but using
a less general definition of task-PIOAs than the one used here and in [CCK+06e], and with non-branching adversaries.

6 LOCAL SCHEDULERS 27

≤neg,pt, on the≤0 relation, which describes approximate implementation with respect to polynomial-time-
bounded environments. Similar relations were defined in [LMMS98, PW01]. Our simulation relations are
also sound with respect to≤neg,pt.

We also provide models for the cryptographic primitives (trap-door functions and hard-core predicates).
Part of the specification for such primitives is that their behavior should look “approximately random” to
outside observers; we formalize this in terms of≤neg,pt.

The correctness proofs proceed by levels of abstraction, relating each pair of models at successive levels
using≤neg,pt. In the case where onlyRec is corrupted, all but one of the relationships between levels are
proved using simulation relations as defined in this paper (and so, they guarantee≤0). The only exception
relates a level in which the cryptographic primitive is used, with a higher level in which the use of the
primitive is replaced by a random choice. Showing this correspondence relies on our≤neg,pt-based definition
of the cryptographic primitive, and on composition results for time-bounded task-PIOAs. Since this type of
reasoning is isolated to one correspondence, the methods of this paper in fact suffice to accomplish most of
the work of verifying OT.

Each of our system models, at each level, includes an explicit adversary component automaton, which
acts as a message delivery service that can eavesdrop on communications and control the order of message
delivery. The behavior of this adversary is arbitrary, subject to general constraints on its capabilities. In
our models, the adversary is the same at all levels, so our simulation relations relate the adversary states
at consecutive levels directly, using the identity function. This treatment allows us to consider arbitrary
adversaries without examining their structure in detail (they can do anything, but must do the same thing at
all levels).

Certain patterns that arise in our simulation relation proofs led us to extend earlier definitions of simulation
relations [SL95, LSV03], by adding the expansion capability and by corresponding measures to measures:

1. We often correspond random choices at two levels of abstraction—for instance, when the adversary
makes a random choice, from the same state, at both levels. We would like our simulation relation
to relate the individual outcomes of the choices at the two levels, matching up the states in which the
same result is obtained. Modeling this correspondence uses the expansion feature.

2. TheTrapdoor vs. Rand example described in Section 4 occurs in our OT proof. Here, the low-level
system chooses a randomy and then computesz = f(y) using a trap-door permutationf . The higher
level system simply chooses the value ofz randomly, without using valuey or permutationf . This
correspondence relates measures to measures and uses expansion.

3. In another case, a lower-level system chooses a random valuey and then computes a new value by ap-
plying XOR toy and an input value. The higher level system just chooses a random value. We establish
a correspondence between the two levels using the fact that XOR preserves the uniform distribution.
This correspondence again relates measures to measures and uses expansion.

6 Local Schedulers

With the action-determinism assumption, our task mechanism is enough to resolve all nondeterminism. How-
ever, action determinism limits expressive power. Now we remove this assumption and add a second mech-
anism for resolving the resulting additional nondeterminism, namely, alocal schedulerfor each component
task-PIOA. A local scheduler for a given component can be used to resolve nondeterministic choices among
actions in the same task, using only information about the past history of that component. Here, we define
one type of local scheduler, which uses only the current state, and indicate how our results for the action-
deterministic case carry over to this setting.

Our notion of local scheduler is simply a “sub-automaton”: We could add more expressive power by
allowing the local scheduler to depend on the past execution. This could be formalized in terms of an explicit
function of the past execution, or perhaps in terms of a refinement mapping or other kind of simulation
relation.

6 LOCAL SCHEDULERS 28

Definition 6.1 We say that task-PIOAT ′ = (P ′, R′) is asub-task-PIOAof task-PIOAT = (P, R) provided
that all components are identical except thatD′ ⊆ D, whereD andD′ are the sets of discrete transitions of
P andP ′, respectively. Thus, the only difference is thatT ′ may have a smaller set of transitions.

Definition 6.2 A local schedulerfor a task-PIOAT is any action-deterministic sub-task-PIOA ofT . A prob-
abilistic systemis a pairM = (T ,S), whereT is a task-PIOA andS is a set of local schedulers forT .

Definition 6.3 A probabilistic executionof a probabilistic systemM = (T ,S) is defined to be any proba-
bilistic execution of any task-PIOAS ∈ S.

We next define composition for probabilistic systems.

Definition 6.4 If M1 = (T1,S1) andM2 = (T2,S2) are two probabilistic systems, andT1 and T2 are
compatible, then theircompositionM1‖M2 is the probabilistic system(T1‖T2,S), whereS is the set of
local schedulers forT1‖T2 of the formS1‖S2, for someS1 ∈ S1 andS2 ∈ S2.

Definition 6.5 If M = (T ,S) is a probabilistic system, then anenvironmentfor M is any environment
(action-deterministic task-PIOA) forT . If M = (T ,S) is a probabilistic system, then theexternal be-
havior of M, extbeh(M), is the total function that maps each environment task-PIOAE for M to the set⋃

S∈S tdists(S‖E).

Thus, for each environment, we consider the set of trace distributions that arise from two choices: of a
local scheduler ofM and of a global task scheduleρ.

Definition 6.6 Two probabilistic systems(T1,S1) and(T2,S2) arecomparableif T1 andT2 are comparable
task-PIOAs.

We define an implementation relation for comparable probabilistic systems in terms of inclusion of sets
of trace distributions for each probabilistic system based on an environment task-PIOA:

Definition 6.7 If M1 = (T1,S1) andM2 = (T2,S2) are comparable probabilistic systems (i.e.,T1 and
T2 are comparable), thenM1 implementsM2, written M1 ≤0 M2, provided thatextbeh(M1)(E) ⊆
extbeh(M2)(E) for every environment (action-deterministic) task-PIOAE for bothM1 andM2.

We obtain a sufficient condition for implementation of probabilistic systems, in which each local sched-
uler for the low-level system always corresponds to the same local scheduler of the high-level system.

Theorem 6.8 LetM1 = (T1,S1) andM2 = (T2,S2) be two comparable probabilistic systems. Suppose
there is a total functionf fromS1 to S2 such that, for everyS1 ∈ S1, S1 ≤0 f(S1). ThenM1 ≤0 M2.

We also obtain a compositionality result for probabilistic systems. The proof is similar to that of Theo-
rem 3.24, for the action-deterministic case.

Theorem 6.9 LetM1, M2 be comparable probabilistic systems such thatM1 ≤0 M2, and letM3 be a
probabilistic system compatible with each ofM1 andM2. ThenM1‖M3 ≤0 M2‖M3.

Proof. Let T4 = (P4, R4) be any environment (action-deterministic) task-PIOA for bothM1‖M3 and
M2‖M3. LetM4 be the trivial probabilistic system(T4, {T4}). Fix any task scheduleρ1 for (T1‖T3)‖T4

and local schedulerP ′13 of M1‖M3. Let τ be the trace distribution of(T1‖T3)‖T4 generated byρ1 andP ′13.
It suffices to show thatτ is also generated by some task scheduleρ2 for (T2‖T3)‖T4, local schedulerP ′23 of
M2‖M3, andP4.

Note thatρ1 is also a task schedule forT1‖(T3‖T4). SinceP ′13 is a local scheduler ofM1‖M3, it is
(by definition) of the formP ′1‖P ′3, whereP ′1 ∈ S1 andP ′3 ∈ S3. Let P ′34 = P ′3‖P4. ThenP ′34 is a

7 CONCLUSIONS 29

local scheduler ofM3‖M4. Then,ρ1, P ′1, andP ′34 generate the same trace distributionτ in the composed
task-PIOAT1‖(T3‖T4).

DefineT5 to be the task-PIOAT3‖T4. Note thatT5 is an environment task-PIOA for each ofT1 and
T2. Define the probabilistic systemM5 to be(T5, {P ′34}), that is, we consider just a singleton set of local
schedulers, containing the one scheduler we are actually interested in.

Now, by assumption,M1 ≤0 M2. Therefore, there exists a task scheduleρ2 for T2‖T5 and a local
schedulerP ′2 for P2 such thatρ2,P ′2, andP ′34 generate the same trace distributionτ in the task-PIOAT2‖T5.
Note thatρ2 is also a task schedule for(T2‖T3)‖T4. Let P ′23 = P ′2‖P ′3. ThenP ′23 is a local scheduler of
M2‖M3. Also,P ′4 is a local scheduler ofM4. Thenρ2, P ′23 andP ′4 also generateτ , which suffices to show
the required implementation relationship. 2

7 Conclusions

We have extended the traditional PIOA model with a task mechanism, which provides a systematic way of re-
solving nondeterministic scheduling choices without using information about past history. We have provided
basic machinery for using the resulting task-PIOA framework for verification, including a compositional
trace-based semantics and a new kind of simulation relation. We have proposed extending the framework to
allow additional nondeterminism, resolved by schedulers that use only local information. We have illustrated
the utility of these tools with a case study involving analysis of an Oblivious Transfer cryptographic protocol.

Although our development was motivated by concerns of cryptographic protocol analysis, the notion
of partial-information scheduling is interesting in other settings. For example, some distributed algorithms
work with partial-information adversarial schedulers, in part because the problems they address are provably
unsolvable with perfect-information adversaries [Cha96, Asp03]. Also, partial-information scheduling is
realistic for modeling large distributed systems, in which basic scheduling decisions are made locally, and
not by any centralized mechanism.

Many questions remain in our study of task-PIOAs: First, our notions of external behavior and of im-
plementation (≤) for task-PIOAs are defined by considering the behavior of the task-PIOAs in all envi-
ronments. It would be interesting to characterize this implementation relation using a smaller subclass
of environments, that is, to find a small (perhaps minimal) subclass such thatT1 ≤0 T2 if and only if
extbeh(T1)(E) ⊆ extbeh(T2)(E) for everyE in the subclass.

Second, it would be interesting to develop other kinds of simulation relations, perhaps simpler than the
one defined here. For example, we would like to reformulate our current simulation relation notion in terms
of states rather than finite executions, and to understand whether there are simulation relations for task-PIOAs
that have the power ofbackward simulations[LV95]. It will also be useful to identify a class of simulation
relations that iscompletefor showing implementation (≤0) of task-PIOAs.

Third, our notion of local schedulers needs further development. Perhaps it can be generalized to allow
history-dependence. We would like better connections between the results on local schedulers and the rest
of the basic theory of action-deterministic task-PIOAs; in particular, we would like to be able to use results
from the action-deterministic case to help prove results for the case with local schedulers. Finally, it remains
to apply the model with local schedulers to interesting distributed algorithm or security protocol examples.

In general, it remains to consider more applications of task-PIOAs, for cryptographic protocol analysis
and for other applications. A next step in cryptographic protocol analysis is to formulate and prove protocol
composition results like those of [PW01, Can01] in terms of task-PIOAs. In particular, we would like to
pursue a full treatment of Canetti’s Universal Composability results [Can01] in terms of task-PIOAs. This
would provide a full-featured modeling framework for security protocols, which can express computational
notions as in [Can01], while inheriting the simplicity and modularity of the task-PIOAs foundation.

It would also be interesting to try to model perfect-information schedulers, as used for analyzing random-
ized distributed algorithms, using task-PIOAs. Finally, it remains to extend the definitions in this paper to
incorporate timing-dependent behavior and hybrid continuous/discrete behavior, and to prove theorems anal-
ogous to the ones in this paper for those extensions. Preliminary results in this direction appear in [ML06].

REFERENCES 30

Acknowledgments:We thank Frits Vaandrager for collaboration in early stages of this project, and Michael
Backes, Anupam Datta, Joshua Guttman, Jon Herzog, Susan Hohenberger, Ralf Kuesters, John Mitchell,
Birgit Pfitzmann, and Andre Scedrov for technical discussions that helped us in clarifying our ideas and their
connections to other work in analysis of cryptographic protocols. We thank Silvio Micali for impressing upon
us the importance of adaptive adversarial schedulers in the cryptographic setting. We thank Sayan Mitra both
for technical discussions and for help in producing the paper.

References

[AH90] J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory.Journal of Algo-
rithms, 11(3):441–461, 1990.

[Asp03] J. Aspnes. Randomized protocols for asynchronous consensus.Distributed Computing, 16(2-
3):165–175, 2003.

[BO83] M. Ben-Or. Another advantage of free choice: completely asynchronous agreement protocols.
In Proc. 2nd ACM Symposium on Principles of Distributed Computing, pages 27–30, Montreal,
Quebec, Canada, August 1983.

[BPW04] M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems. Cryptology
ePrint Archive Report 2004/082, 2004.

[Can01] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols. In
Proc. 42nd IEEE Symposium on Foundations of Computing, pages 136–145, 2001.

[CCK+05] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Using
probabilistic I/O automata to analyze an oblivious transfer protocol. Technical Report MIT-
LCS-TR-1001a or MIT-CSAIL-TR-2005-055, MIT CSAIL, 2005.

[CCK+06a] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-
structured probabilistic I/O automata. Technical Report MIT-CSAIL-TR-2006-023, MIT
CSAIL, 2006.

[CCK+06b] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Task-
structured probabilistic I/O automata. InProceedings of the 8th International Workshop on
Discrete Event Systems (WODES’06), 2006. Ann Arbor, Michigan, July 2006.

[CCK+06c] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Time-
bounded task-PIOAs: a framework for analyzing security protocols. InProceedings of the 20th
International Symposium on Distributed Computing (DISC ’06), 2006. Stockholm, Sweden,
September 2006.

[CCK+06d] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Using
probabilistic I/O automata to analyze an oblivious transfer protocol. Technical Report MIT-
CSAIL-TR-2006-046, MIT CSAIL, 2006.

[CCK+06e] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala. Using
task-structured probabilistic I/O automata to analyze an oblivious transfer protocol. Technical
Report MIT-CSAIL-TR-2006-047, MIT CSAIL, 2006.

[CH05] L. Cheung and M. Hendriks. Causal dependencies in parallel composition of stochastic pro-
cesses. Technical Report ICIS-R05020, Institute for Computing and Information Sciences,
University of Nijmegen, 2005.

REFERENCES 31

[Cha96] T.D. Chandra. Polylog randomized wait-free consensus. InProc. 15th ACM Symposium on
Principles of Distributed Computing, pages 166–175, 1996.

[CLSV] L. Cheung, N. Lynch, R. Segala, and F. Vaandrager. Switched PIOA: Parallel composition via
distributed scheduling. To appear inTCS, Special Issue onFMCO 2004.

[dA99] L. de Alfaro. The verification of probabilistic systems under memoryless partial-information
policies is hard. InProc. PROBMIV 99, pages 19–32, 1999.

[DKMR05] A. Datta, R. K̈usters, J.C. Mitchell, and A. Ramanathan. On the relationships between notions
of simulation-based security. InProceedings TCC 2005, pages 476–494, 2005.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. InProc. 19th ACM
Symposium on Theory of Computing (STOC), pages 218–229, 1987.

[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools, volume I. Cambridge University
Press, 2001.

[KLC98] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observable
stochastic domains.Artificial Intelligence, 101:99–134, 1998.

[LMMS98] P. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. InACM Conference on Computer and Communications Security, pages
112–121, 1998.

[LSS94] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed algorithms.
In Proc. 13th ACM Symposium on the Principles of Distributed Computing, pages 314–323,
1994.

[LSV03] N.A. Lynch, R. Segala, and F.W. Vaandrager. Compositionality for probabilistic automata. In
Proc. 14th International Conference on Concurrency Theory (CONCUR 2003), volume 2761
of LNCS, pages 208–221. Springer-Verlag, 2003.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.CWI Quarterly,
2(3):219–246, September 1989.

[LV95] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations Part I: untimed systems.
Information and Computation, 121(2):214–233, September 1995.

[ML06] S. Mitra and N.A. Lynch. Probabilistic timed I/O automata with continuous state spaces. Pre-
liminary version available athttp://theory.lcs.mit.edu/˜mitras/research/
csptioa_preprint.pdf , May 2006.

[MMS03] P. Mateus, J.C. Mitchell, and A. Scedrov. Composition of cryptographic protocols in a proba-
bilistic polynomial-time process calculus. InProc. 14th International Conference on Concur-
rency Theory (CONCUR 2003), pages 323–345, 2003.

[MRST06] J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time
process calculus for the analysis of cryptographic protocols.Theoretical Computer Science,
353:118–164, 2006.

[PSL00] A. Pogosyants, R. Segala, and N.A. Lynch. Verification of the randomized consensus algorithm
of Aspnes and Herlihy: a case study.Distributed Computing, 13(3):155–186, 2000.

[Put94] M.L. Puterman.Markov Decision Process – Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., New York, NY, 1994.

A σ-FIELDS OF EXECUTION FRAGMENTS AND TRACES 32

[PW00] B. Pfitzman and M. Waidner. Composition and integrity preservation of secure reactive systems.
In Proc. 7th ACM Conference on Computer and Communications Security (CCS 2000), pages
245–254, 2000.

[PW01] B. Pfitzman and M. Waidner. A model for asynchronous reactive systems and its application to
secure message transmission. InProc. IEEE Symposium on Research in Security and Privacy,
pages 184–200, 2001.

[Rab82] M. Rabin. The choice coordination problem.Acta Informatica, 17:121–134, 1982.

[SdV04] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, parallel composition and
comparison. InValidation of Stochastic Systems, volume 2925 ofLNCS, pages 1–43. Springer-
Verlag, 2004.

[Seg95] R. Segala.Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, June 1995. Available as Technical Report MIT/LCS/TR-676.

[SL95] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.Nordic Journal
of Computing, 2(2):250–273, 1995.

[SV99] M.I.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. InProc. 5th International
AMAST Workshop on Formal Methods for Real-Time and Probabilistic Systems, volume 1601
of LNCS, pages 53–74. Springer-Verlag, 1999.

A σ-Fields of Execution Fragments and Traces

In order to define probability measures on executions and traces, we need appropriateσ-fields. We begin with
aσ-field over the set of execution fragments of a PIOAP:

Definition A.1 Theconeof a finite execution fragmentα, denoted byCα, is the set{α′ ∈ Frags(P) |α ≤
α′}. ThenFP is theσ-field generated by the set of cones of finite execution fragments ofP.

A probability measure on execution fragments ofP is then simply a probability measure on theσ-field
FP .

SinceQ, I, O, andH are countable,Frags∗(P) is countable, and hence the set of cones of finite execution
fragments ofP is countable. Therefore, any union of cones is measurable. Moreover, for each finite execution
fragmentα, the set{α} is measurable since it can be expressed as the intersection ofCα with the complement
of ∪α′:α<α′Cα′ . Thus, any set of finite execution fragments is measurable; in other words, the discreteσ-field
of finite executions is included inFP .

We often restrict our attention to probability measures on finite execution fragments, rather than those on
arbitrary execution fragments. Thus, we define:

Definition A.2 Let ε be a probability measure on execution fragments ofP. We say thatε is finite if
Frags∗(P) is a support forε.

Since any set of finite execution fragments is measurable, any finite probability measure on execution
fragments ofP can also be viewed as a discrete probability measure onFrags∗(PP). Formally, given any
finite probability measureε on execution fragments ofP, we obtain a discrete probability measurefinite(ε)
on Frags∗(P) by simply definingfinite(ε)(α) = ε({α}) for every finite execution fragmentα of P. The
difference betweenfinite(ε) andε is simply that the domain ofε is FP , whereas the domain offinite(ε) is
Execs∗(P). Henceforth, we will ignore the distinction betweenfinite(ε) andε.

Definition A.3 Let ε andε′ be probability measures on execution fragments of PIOAP. Then we say thatε
is aprefixof ε′, denoted byε ≤ ε′, if, for each finite execution fragmentα ofP, ε(Cα) ≤ ε′(Cα).

A σ-FIELDS OF EXECUTION FRAGMENTS AND TRACES 33

Definition A.4 A chainof probability measures on execution fragments of PIOAP is an infinite sequence,
ε1, ε2, · · · of probability measures on execution fragments ofP such that, for eachi ≥ 0, εi ≤ εi+1. Given
a chainε1, ε2, . . . of probability measures on execution fragments ofP, we define a new functionε on the
σ-field generated by cones of execution fragments ofP as follows: for each finite execution fragmentα,

ε(Cα) = lim
i→∞

εi(Cα).

Standard measure theoretic arguments ensure thatε can be extended uniquely to a probability measure on
theσ-field generated by the cones of finite execution fragments. Furthermore, for eachi ≥ 0, εi ≤ ε. We call
ε the limit of the chain, and we denote it bylimi→∞ εi.

If α is a finite execution fragment of a PIOAP anda is an action ofP, thenCαa denotes the set of
execution fragments ofP that start withαa. The cone construction can also be used to define aσ-field of
traces:

Definition A.5 Theconeof a finite traceβ, denoted byCβ , is the set{β′ ∈ E∗ ∪ Eω | β ≤ β′}, where≤
denotes the prefix ordering on sequences. Theσ-field of traces ofP is simply theσ-field generated by the set
of cones of finite traces ofP.

Again, the set of cones is countable and the discreteσ-field on finite traces is included in theσ-field
generated by cones of traces. We often refer to a probability measure on theσ-field generated by cones of
traces of a PIOAP as simply aprobability measure on traces ofP.

Definition A.6 Let τ be a probability measure on traces ofP. We say thatτ is finite if the set of finite traces
is a support forτ . Any finite probability measure on traces ofP can also be viewed as a discrete probability
measure on the set of finite traces.

Definition A.7 Let τ andτ ′ be probability measures on traces of PIOAP. Then we say thatτ is a prefix of
τ ′, denoted byτ ≤ τ ′, if, for each finite traceβ ofP, τ(Cβ) ≤ τ ′(Cβ).

Definition A.8 A chainof probability measures on traces of PIOAP is an infinite sequence,τ1, τ2, · · · of
probability measures on traces ofP such that, for eachi ≥ 0, τi ≤ τi+1. Given a chainτ1, τ2, . . . of
probability measures on traces ofP, we define a new functionτ on theσ-field generated by cones of traces
ofP as follows: for each finite traceβ,

τ(Cβ) = lim
i→∞

τi(Cβ).

Thenτ can be extended uniquely to a probability measure on theσ-field of cones of finite traces. Furthermore,
for eachi ≥ 0, τi ≤ τ . We callτ the limit of the chain, and we denote it bylimi→∞ τi.

Recall from Section 2.3 the definition of the trace distributiontdist(ε) of a probability measureε on
execution fragments. Namely,tdist(ε) is the image measure ofε under the measurable functiontrace.

Lemma A.9 Let ε1, ε2, · · · be a chain of measures on execution fragments, and letε be limi→∞ εi. Then
limi→∞ tdist(εi) = tdist(ε).

Proof. It suffices to show that, for any finite traceβ, limi→∞ tdist(εi)(Cβ) = tdist(ε)(Cβ). Fix a finite
traceβ.

Let Θ be the set of minimal execution fragments whose trace is inCβ . Thentrace−1(Cβ) = ∪α∈ΘCα,
where all the cones are pairwise disjoint. Therefore, fori ≥ 0, tdist(εi)(Cβ) =

∑
α∈Θ εi(Cα), and

tdist(ε)(Cβ) =
∑

α∈Θ ε(Cα).
Since we have monotone limits here (that is, our limit are also suprema), limits commute with sums and

our goal can be restated as showing:∑
α∈Θ

lim
i→∞

εi(Cα) =
∑
α∈Θ

ε(Cα).

A σ-FIELDS OF EXECUTION FRAGMENTS AND TRACES 34

Sincelimi→∞ εi = ε, we havelimi→∞ εi(Cα) = ε(Cα) for each finite execution fragmentα. Therefore, the
two sums above are in fact equal. 2

The lstate function is a measurable function from the discreteσ-field of finite execution fragments ofP
to the discreteσ-field of states ofP. If ε is a probability measure on execution fragments ofP, then we define
the lstate distribution ofε, lstate(ε), to be the image measure ofε under the functionlstate.

