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Abstract

Modeling frameworks such as Probabilistic /0 Automata (PIOA) and Markov Decision Processes per-
mit both probabilistic and nondeterministic choices. In order to use such frameworks to express claims
about probabilities of events, one needs mechanisms for resolving nondeterministic choices. For PIOAs,
nondeterministic choices have traditionally been resolved by schedulers that have perfect information about
the past execution. However, such schedulers are too powerful for certain settings, such as cryptographic
protocol analysis, where information must sometimes be hidden.

Here, we propose a new, less powerful nondeterminism-resolution mechanism for PIOAs, consisting of
tasksandlocal schedulersTasks are equivalence classes of system actions that are scheduled by oblivious,
global task sequences. Local schedulers resolve nondeterminism within system components, based on
local information only. The resulting task-PIOA framework yields simple notions of external behavior and
implementation, and supports simple compositionality results. We also define a new kind of simulation
relation, and show it to be sound for proving implementation. We illustrate the potential of the task-PIOA
framework by outlining its use in verifying an Oblivious Transfer protocol.

*This report presents an extension of the task-PIOA theory first introduced in TOBKCCK'06d]. This extension is used
in [CCK+06e, CCK06c] to carry out a computational analysis of an Oblivious Transfer protocol. An earlier version of the current
report appears as [CCKO6a] and an extended abstract appears as [O@ab].
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1 Introduction

The Probabilistic I/O Automata (PIOAodeling framework [Seg95, SL95] is a simple combination of I/O
Automata [LT89] and Markov Decision Processes (MDP) [Put94]. As demonstrated in [LSS94, SV99,
PSLO00], PIOAs are well suited for modeling and analyzing distributed algorithms that use randomness as
a computational primitive. In this setting, distributed processes use random choices to break symmetry, in
solving problems such as choice coordination [Rab82] and consensus [BO83, AH90]. Each process is mod-
eled as an automaton with random transitions, and an entire protocol is modeled as the parallel composition
of process automata and automata representing communication channels.

This modeling paradigm combines nondeterministic and probabilistic choices in a natural way. Nonde-
terminism is used here for modeling uncertainties in the timing of events in highly unpredictable distributed
environments. It is also used for modeling distributed algorithms at high levels of abstraction, leaving many
details unspecified. This in turn facilitates algorithm verification, because results proved about nondetermin-
istic algorithms apply automatically to an entire family of algorithms, obtained by resolving the nondeter-
ministic choices in particular ways.

In order to formulate and prove probabilistic properties of distributed algorithms, one needs mechanisms
for resolving nondeterministic choices. In the randomized distributed setting, the most common mechanism
is aperfect-informatiorevent scheduler, which has access to local state and history of all system components
and has unlimited computation power. Thus, probabilistic properties of distributed algorithms are typically
asserted with respect to worst-case, adversarial schedulers who can choose the next event based on complete
knowledge of the past (e.g., [Seg95, SL95, PSL00]).

One would expect that a similar modeling paradigm, including both probabilistic and nondeterministic
choices, would also be useful for modeliagyptographic protocols These are special kinds of distributed
algorithms, designed to protect sensitive data when they are transmitted over unreliable channels. Their
correctness typically relies on computational assumptions, which say that certain problems cannot be solved
by an adversarial entity with bounded computation resources [Gol01]. However, a major problem with this
extension is that the perfect-information scheduler mechanism used for distributed algorithms is too powerful
for use in the cryptographic setting. A scheduler that could see all information about the past would, in
particular, see “secret” information hidden in the states of non-corrupted protocol participants, and be able
to “divulge” this information to corrupted participants, e.g., by encoding it in the order in which it schedules
events.

In this paper, we presetask-PIOAs an adaptation of PIOAs, that has new, less powerful mechanisms
for resolving nondeterminism. Task-PIOAs are suitable for modeling and analyzing cryptographic protocols;
they may also be useful for other kinds of distributed systems in which the perfect information assumption is
unrealistically strong.

Task-PIOAs: A task-PIOAis simply a PIOA augmented with a partition of non-input actions into equiva-
lence classes callgdsks as in the original I/O automata framework of Lynch and Tuttle [LT89]. A task is
typically a set of related actions, for example, all the actions of a cryptographic protocol that send a round 1
message. Tasks are units of scheduling, as for /O automata; they are scheduled by simple oblivious, global
task schedulsequences. We define notionsexternal behavioandimplementatiorfor task-PIOAs, based

on the trace distribution semantics proposed by Segala [Seg95]. We define parallel composition in the obvious
way and show that our implementation relation is compositional.

We also define a new type simulation relation which incorporates tasks, and prove that it is sound for
proving implementation relationships between task-PIOAs. This new relation differs from simulation rela-
tions studied earlier [SL95, LSV03], in that it relates probability measures rather than states. In many cases,
including our work on cryptographic protocols (see below), tasks alone suffice for resolving nondeterminism.
However, for extra expressive power, we define a second mechadboisah schedulerswhich can be used
to resolve nondeterminism within system components, based on local information only. This mechanism is
based on earlier work in [CLSV].

Cryptographic protocols: In [CCKT06e], we apply the task-PIOA framework to analyze an Oblivious
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Transfer (OT) protocol of Goldreich, et al. [GMW87]. That analysis requires defining extra structure for
task-PIOAs, in order to express issues involving computational limitations. Thus, we define notions such as
time-bounded task-PIOAandapproximate implementation with respect to time-bounded environm#afets

use these, for example, to express computational hardness assumptions for cryptographic primitives. Details
are beyond the scope of this paper, but we outline our approach in Section 5.

Adversarial scheduling: The standard scheduling mechanism in the cryptographic communityeidvean-

sarial schedulernamely, a resource-bounded algorithmic entity that determines the next move adaptively,
based on its own view of the computation so far. This is weaker thapetiect-information schedulersed

for distributed algorithms, which have access to local state and history of all components and have unlimited
computation power. It is however stronger than our notion of global task schedule sequences, which are
essentiallyoblivious schedulerthat fix the entire schedule of tasks nondeterministically in advance.

In order to capture the adaptivity of adversarial schedulers within our framework, we separate scheduling
concerns into two parts. The adaptive adversarial scheduler is modeled as a system component, for example,
a message delivery service that can eavesdrop on the communications and control the order of message deliv-
ery. Such a system component has access to partial information about the execution: it sees information that
other components communicate to it during execution, but not “secret information” that these components
hide. On the other hand, basic scheduling choices are resolved by a task schedule sequence, chosen nonde-
terministically in advance. These tasks are equivalence classes of actions, independent of actual choices that
are determined during the execution. We believe this separation is conceptually meaningful: The high-level
adversarial scheduler is responsible for choices that are essential in security analysis, such as the ordering
of message deliveries. The low-level schedule of tasks resolves inessential choices. For example, in the OT
protocol, both the transmitter and receiver make random choices, but it is inconsequential which does so first.

Related work: The literature contains numerous models that combine nondeterministic and probabilistic
choices (see [SdV04] for a survey). However, few tackle the issue of partial-information scheduling, as we
do. Exceptions include [CHO5], which models local-oblivious scheduling, and [dA99], which uses partitions
on the state space to obtain partial-information schedules. The latter is essentially within the framework of
partially observable MDPs (POMDPspriginally studied in the context of reinforcement learning [KLC98].
None of these accounts deal with partial information aspects of (parameterized) actions, therefore they are
not suitable in a cryptographic setting.

Our general approach to cryptographic protocol verification was directly inspired by the Interactive Tur-
ing Machine (ITM) framework used in [CanOl1]. There, participants in a protocol are modeled as ITMs
and messages as bit strings written on input and output tapes. ITMs are purely probabilistic, and schedul-
ing nondeterminism is resolved using predefined rules. In principle, this framework could be used to analyze
cryptographic protocols rigorously, including computational complexity issues; typical correctness arguments
reduce the correctness of a protocol to assumptions about its underlying cryptographic primitives. However,
complete analysis of protocols in terms of Turing machines is impractical, because it involves too many
low-level machine details. Indeed, in the computational cryptography community, protocols are typically de-
scribed using an informal high-level language, and proof sketches are given in terms of the informal protocol
descriptions. We aim to provide a framework in which proofs in the ITM style can be carried out formally,
at a high level of abstraction. Also, we aim to exploit the benefits of nondeterminism to a greater extent than
the ITM approach.

Several other research groups have added features for computational cryptographic analysis to conven-
tional abstract concurrency modeling frameworks such as process algebras and variants of PIOAs [LMMS98,
PWO0O0, PW01, BPW04, MMS03, MRSTO06]. However, the semantic foundations of concurrent computation
used in these papers differ from our task-PIOA framework in some fundamental ways.

Backes et al. [PW01, BPW04] use a network of interrupt-driven probabilistic state machines, with special
“buffer” machines to capture message delays, and special “clock ports” to control the scheduling of message
delivery. Each individual machine is purely probabilistic; that is, it is fully-specified up to inputs and/or
random choices during execution. Given a closed system of such machines with no further inputs, a sequential
activation scheme is used to define a unigue probabilistic run for each possible initial state of the system. This
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scheme relies on the presence of a “master scheduler”, which is activated by default if no other machine is
active.

Thus, in order to capture nondeterministic choices using the framework of Backes et al., one must asso-
ciate explicit inputs to each schedulable event and then quantify over different machines that provide these
scheduling inputs. This deeply contrasts our treatment of nondeterminism, where nondeterministic choices
may be present even in closed task-PIOAs and we quantify over task schedules to capture the possible ways
of resolving these choices. As it turns out, such a technical difference in the underlying frameworks has some
important consequences for security definitions. Namely, in the reactive simulatability definitions of Backes
et al., the user and adversary are fixed aaftgr all other machines are determined. In essence, this allows
the worst possible adversary for every schedule of the system. On the other hand, in our security defini-
tions [CCKF06¢c, CCKF06¢e], the environment and adversary are fiketbrethe task schedules. Therefore,
we consider instead the worst possible schedule for each given adversary.

On this issue of concurrency and nondeterminism, our task-PIOA framework is more closely related
to PPC, the process algebraic framework of Mitchell et.aln particular, processes with nondeterministic
choices are definable in PPC using the parallel operator and, in the semantics given in [MRSTO06], a scheduler
function selects probabilistically an action label from a set of available actions. Typically, action labels in
PPC correspond to the types of protocol messages, as opposed to the messages themselves. This is similar
to our distinction between tasks and actions. However, our task schedules are oblivious sequences of tasks,
whereas the scheduling functions of [MRSTO6] are (partially) state-dependent.

The PPC framework differs from our task-PIOA framework in another respect, nhamely, the use of ob-
servational equivalence and probabilistic bisimulation as the main semantic relations. Both of these are
symmetric relations, whereas our implementation and simulation relations are asymmetric, expressing the
idea that a syster® can emulate another systepnbut the converse is not necessarily true. The asymmetry
of our definitions arises from our quantification over schedules: we assert that “for every schefdilbert
is a schedule of) that yields equivalent behavior”. This is analogous to the traditional formulation for non-
probabilistic systems, where implementation means that “every behavigri©a behavior of)”, but not
necessarily vice versa. Experience in the concurrency community shows that such asymmetry can be used
to make specifications more simple, by keeping irrelevant details unspecified. At the same time, it produces
correctness guarantees that are more general, because correctness is preserved no matter how an implementer
chooses to fill in the unspecified details.

Roadmap: Section 2 presents required basic mathematical notions, including definitions and basic results for
PIOAs. Some detailed constructions appear in Appendix A. Section 3 defines task-PIOAs, task schedules,
composition, and implementation, and presents a simple, fundamental compositionality result. Section 4
presents our simulation relation and its soundness theorem. Section 5 summarizes our OT protocol case
study. Section 6 discusses local schedulers, and concluding discussions follow in Section 7.

2 Mathematical Preliminaries

2.1 Sets, functions etc.

We writeR=° andR ™ for the sets of nonnegative real numbers and positive real numbers, respectively.
Let X be a set. We denote the set of finite sequences and infinite sequences of elemenisaiyokit
and X¢, respectively. Ifp is a sequence then we ugg to denote the length gf. We use\ to denote the
empty sequence (over any set).
If p € X*andp’ € X* U X“, then we writep ~ p’ for the concatentation of the sequengesnd o’
Sometimes, when no confusion seems likely, we omitth&/mbol, writing justop’.

1Although the authors have also developed a sequential version of PPC [DKMRO5], with a semantics akin to the framework of
Backes et al.
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2.2 Probability measures

In this section, we first present basic definitions for probability measures. Then, we define three operations
involving probability measuredflattening lifting, andexpansionwe will use these in Section 4 to define

our new kind of simulation relation. These three operations have been previously defined in, for exam-
ple, [LSVO3].

2.2.1 Basic definitions

A o-field over a setX is a setF C 2% that contains the empty set and is closed under complement and
countable union. A paitX, F) whereF is ac-field overX, is called aneasurable spaceA measure on a
measurable spadeX, F) is a functionu : F — [0, oo] that is countably additive: for each countable family
{X;}: of pairwise disjoint elements of, u(U; X;) = . u(X;). A probability measureon (X, F) is a
measure ofiX, F) such thatu(X) = 1. A sub-probability measuren (X, F) is a measure ofiX, F) such
thatu(X) < 1.

A discrete probability measuren a setX is a probability measurg on (X, 2%), such that, for each
C CX,u(C) =23 ccnr{c}). Adiscrete sub-probability measuom a setX, is a sub-probability measure
1 on (X, 2%), such that for eact’ C X, u(C) = 3 .. n({c}). We defineDisc(X) andSubDisc(X) to
be, respectively, the set of discrete probability measures and discrete sub-probability measrés tire
sequel, we often omit the set notation when we refer to the measure of a singleton set.

A supportof a probability measure is a measurable sé&t such thatu(C) = 1. If u is a discrete
probability measure, then we denotesdopp (1) the set of elements that have non-zero measure §tipps )
is a support of:). We leté(x) denote thedirac measurdor x, the discrete probability measure that assigns
probability 1 to{z}.

Given two discrete measures, 2 on (X, 2%) and (Y, 2Y), respectively, we denote by; x uo the
product measurethat is, the measure dik’ x Y, 2X*Y) such thatu; x us(x,y) = pu1(x) - ua(y) for each
reX,yeyY.

If {p;}ics is a countable family of measures G, Fx) and{p; }.cs is a family of non-negative values,
then the expressiod,_; p;p; denotes a measureon (X, Fx) such that, for eacl’ € Fx, p(C) =
icrPi pi(C).

A function f : X — Y is said to be measurable frofX, Fx) — (Y, Fy) if the inverse image of each
element ofFy is an element ofFx; that is, for eactC € Fy, f~(C) € Fx. Note that, if Fy is 2%, then
any functionf : X — Y is measurable froniX, Fx) — (Y, Fy) for any Fy.

Given measurabl¢ from (X, Fx) — (Y, Fy) and a measurg on (X, Fx), the functionf () defined
onFy by f(p)(C) = u(f~1(C)) for eachC € Y is a measure ofY, Fy ) and is called thémage measure
of uunderf. If Fx = 2%, 7 = 2Y, andy is a sub-probability measure, then the image meag(igis a
sub-probability satisfying (1) (Y) = p(X).

2.2.2 Flattening

In this and the following two subsections, we define our three operations involving probability measures. The
first operation, which we caflattening takes a discrete probability measure over probability measures and
“flattens” it into a single probability measure.

Definition 2.1 Letn be a discrete probability measure d@isc(X). Then theflatteningof n, denoted by
flatten(n), is the discrete probability measure éhdefined byflatten(n) = >° , c pisc(x) M(1) -

Lemma 2.2 Letn be a discrete probability measure @isc(X) and letf be a function fromX to Y. Then
f(flatten(n)) = flatten(f(n)).
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Proof. Recall thatflatten(n) is defined to bezueDisc(X) n(w)p. Using the definition of image mea-
sures, it is easy to check thAdistributes through the summation, so we have

fatten(n) = f( Y nwp) = > nwfw= >, >  «@e
p€eDisc(X) p€EDisc(X) o€Disc(Y) pef—1(o)
Again by the definition of image measures, we hfvg) (o) = n(f (o)) = 2pef-1(o) N(p). This implies
that f (flatten(n)) equals)_ , cpisc (v f (1) ()0, Which is preciselflatten(f(n)). |

Lemma 2.3 Let {n;}:c; be a countable family of measures Bisc(X), and let{p;};c; be a family of
probabilities such thap ;. ; p; = 1. Then we havélatten( ., pini) = D, piflatten(n;).

Proof. By the definition offlatten and by rearranging sums. a

2.2.3 Lifting

The second operation, which we chiling, takes a relatior® between two domainX andY and “lifts” it
to a relation between discrete measures &emdY . Informally speaking, a measurg on X is related to
a measurei, onY if uy can be obtained by “redistributing” the probability masses assigned by such
a way that relatiorR is respected.

Definition 2.4 Thellifting of R, denoted byL(R), is the relation fromDisc(X) to Disc(Y") defined by:
p1 L(R) s iff there exists aveighting functionw : X x ¥ — R=° such that the following hold:

1. Foreachr € X andy € Y, w(z,y) > 0 impliesz R y.
2. Foreachr € X, ) oy w(z,y) = p1(2).

3. Foreachy e Y, > .y w(z,y) = pa(y).

2.2.4 Expansion

Finally, we define our third operation, callexXpansion Expansion is defined in terms of flattening and
lifting, and is used directly in our new definition of simulation relations. ERpansioroperation takes a
relation between discrete measures on two domAirendY’, and returns a relation of the same kind that
relates two measures whenever they can be decomposed int fjerelated measures.

Definition 2.5 Let R be a relation fromDisc(X) to Disc(Y). Theexpansiorof R, denoted by (R), is a
relation fromDisc(X) to Disc(Y"). Itis defined by:; £(R) po iff there exist two discrete measurgsand
12 on Disc(X) andDisc(Y'), respectively, such that the following hold:

1. pq = flatten(ny).
2. po = flatten(nz).
3. m L(R) n2.

Informally speaking, we enlarge by adding pairs of measures that can be “decomposed” into weighted
sums of measures, in such a way that the weights can be “redistributed” Rarespecting manner. Tak-
ing this intuition one step further, the following lemma provides a useful characterization of the expansion
relation.

Lemma 2.6 Let R be a relation orDisc(X) x Disc(Y'). Thenu; E(R) uo iff there exists a countable index
setl, a discrete probability measugeon I, and two collections of probability measurég, ; }y and{ 2} 1,
such that
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1o = e P
2. po = Zie[p(i)ﬂz,i-
3. Foreachi € I, u1; R po ;.

Proof. Suppose that; £(R) e, and letn;, 7, andw be the measures and weighting function used in
the definition of€ (R). Let {(p1.4, p2.i) }ier be an enumeration of the pairs for whietfy, ;, p2,;) > 0, and
letp(i) bew (i, p2,:). Thenp, {(u1,i) bier, and{(uz,;) }ier satisfy ltems 1, 2, and 3.

Conversely, givem, {(u1,i)}ier, and{(uz,:)}ier, we definen: (1) to be the sund_, - p(i) and
n2(p) to be} ;. p(i). Moreover, defineu(u}, 1i3) to bezimi:mi%zw’i p(2). Then,n;,n2 andw
satisfy the properties required in the definitionfgf?). O

The next, rather technical lemma gives us a sufficient condition for showing that a pair of funttods
g preserve the relatiofi( R); that is, if u1 £(R) pe, thenf(u1) E(R) f(ue2). The required condition is that,
whenyu; andps are decomposed into weighted sums of measures as in the definitignéd?) p2, f and
g convert each paifp;, p2) of R-related probability measures £ R)-related probability measures. We will
use this lemma in the soundness proof for our new kind of simulation relation (Lemma 4.5), where the two
functionsf andg apply corresponding sequences of tasks to corresponding measures on executions.

Lemma 2.7 Let R be a relation fromDisc(X) to Disc(Y'), and letf, g be two endo-functions oRisc(X)
andDisc(Y), respectively. Suppose thatlistributes over convex combinations of measures; that is, for each
countable family{ p; }; of discrete measures a¥i and each countable family of probabiliti§p; }; such that

Yo =1,f(Opipi) = >, pif(pi). Similarly forg. Lety, andy, be measures oX andY’, respectively,
such thatu; £(R) pe. Letny, n2, andw be a pair of measures and a weighting function witnessing the fact
that u1 £(R) us. Suppose further that, for any two distributiops € supp(n;) and ps € supp(n2) with
w(p1, p2) > 0, we havef(p1) E(R) g(p2).

Thenf(u1) E(R) g(p2).

Proof. Let W denote the set of pairgs, p2) such thatw(p1, p2) > 0. Note that, by the definition
of lifting, (p1,p2) € W impliesp; € supp(m) andps € supp(n2). Therefore, by assumption, we have

f(p1) E(R) g(p2) whenever(p1, p2) € W.
Now, for each(pi, p2) € W, choose a pair of measurés),, .., (12),,,0. and a weighting function

wp, p, @s guaranteed by the definition tfo1) £(R) g(p2). Letny =3, . ew w(p1, p2) (1), 0, @and let

M = 2 (pype)ew W(P1:P2)(M2) 1 po- LELW =37 ey w(p1, p2)Wor o
We show that)], 75, andw’ satisfy the conditions fof (u1) E(R) g(p2).

1. f(p1) = flatten(ny).
By the definition of}, flatten(n}) = flatten(3_,, ,,)ew w(p1,P2)(M)p1,p.)- By Lemma 2.3, this is
inturn equal toy S, ey w(p1, p2)flatten((m1)(p,,p,)). By the choice ofn1)(,, p,), We know that
flatten((11) (,,p2)) = f(p1), SO We obtain thallatten(n;) = >, ,.)ew w(p1,p2)f(p1).
We claim that the right side is equal gy ): Sinceu; = flatten(n; ), by the definition of flattening,
f = 3, episc(x) M(p1)p1. Then, by distributivity off, f(11) = 3=, cpisc(x) m(p1)f(p1). By
definition of lifting, n1(p1) = >_ ,, cpiscy) w(P1, p2)-
Therefore, f(11) = >_, episc(x) 2o paebisc(v) W(P1, p2) f(p1), and this last expression is equal to
2 (or.pa)ew W(p1, p2) f(p1), as needed.

2. g(pz2) = flatten(n}).
Analogous to the previous case.

3. n} L(R) n4 usingw’ as a weighting function.
We verify thatw’ satisfies the three conditions in the definition of a weighting function:
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(a) Letp], p, be such thatv'(p), p5) > 0. Then, by definition ofw’, there exists at least one pair
(p1,p2) €R such thatw,, ,,(p},ps) > 0. Sincew,, ,, is a weighting functionp] R pf as
needed.

(b) By the definition ofw’, we have

Z w'(ph, py) = Z Z w(p1, p2)Wp, 5 (P, P3)
Z

p5€Disc(Y) sc(Y) (p1,p2)EW

Z (P17P2)wp1,pz (pllapIQ)
€Dis

- Z plap2 Z wp1,;02(p1’p/2))'

(p1,p2) ph€Disc(Y)

Sincew,, ,, is a weighting function, we also ha\Ep'ZeDisc(Y) Wy oo (P15 P5) = (M) p1.pa (P1)-
This ImpllesZp’QeDsc(Y) w/(pllﬂ pl2) equalsz(phpQ) w(pla P2)(771)P17P2 (pll)’ which is preC|se|y
m(ph)-

(c) Symmetric to the previous case.

2.3 Probabilistic I/O Automata

In this subsection, we review basic definitions for Probabilistic I/O Automata.

2.3.1 PIOAs and their executions
A probabilistic I/0 automaton (PIOA)P, is a tuple(Q, 4, I, O, H, D) where:
e () is a countable set aftates with start stateg € Q;

e [, O andH are countable and pairwise disjoint sets of actions, referreditgpas output and internal
(hidden) actionsrespectively; and

e D C (@ x (ITUOUH) x Disc(Q)) is atransition relation whereDisc(Q) is the set of discrete
probability measures of).

An actiona is enabledin a statey if (¢, a, 1) € D for somepu. The setd := I U O U H is called theaction
alphabetof P. If I = (), thenP is closed The set ofexternalactions ofP is £ := I U O, and the set of
locally controlledactions isL := O U H.

We assume thgP satisfies the following conditions:

o Input enabling:For every state € Q and input actior € I, a is enabled iny.

e Transition determinism¥or everyq € @@ anda € A, there is at most ong € Disc(Q) such that
(g,a,p) € D. If there is exactly one such, it is denoted by, ., and we writetran, , for the
transition(q, a, 14,4 )-

A (non-probabilistic)execution fragmentof P is a finite or infinite sequence = qg ay q1 as ... of
alternating states and actions, such that:

o If «is finite, then it ends with a state.

e For every non-final, there is a transitio(y;, a;+1, 1) € D with ¢; 11 € supp(u).
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We write fstate(a) for qo, and, if« is finite, we writelstate(«) for the last state ofv. We useFrags(P)
(resp.,Frags™(P)) to denote the set of all (resp., all finite) execution fragmenf8.ofn executiorof P is an
execution fragment beginning from the start statBxecs(P) (resp.,Execs*(P)) denotes the set of all (resp.,
finite) executions ofP.

Thetraceof an execution fragment, writtentrace(«), is the restriction of: to the set of external actions
of P. We say thafj is atraceof P if there is an execution of P with trace(a)) = 3. The symboK denotes
the prefix relation on sequences, which applies in particular to execution fragments and traces.

2.3.2 Schedulers and probabilistic executions
Nondeterministic choices iR are resolved using scheduler

Definition 2.8 A schedulerfor P is a functiono : Frags®(P) — SubDisc(D) such that(q,a,u) €
supp(o(a)) impliesq = Istate(«).

Thus, o decides (probabilistically) which transition (if any) to take after each finite execution fragment
Since this decision is a discrete sub-probability measure, it may be the casetiwaises thalt aftera with
non-zero probabilityl — o(a)(D) > 0.

A schedulew and a finite execution fragmeatgeneratea measure, ., on theo-field 7p generated by
cones of execution fragments, where the coie of a finite execution fragment’ is the set of execution
fragments that have’ as a prefix. The construction of thefield is standard and is presented in Appendix A.

Definition 2.9 The measure of a cone, (Cy ), is defined recursively, as:
1.0,ifd’ £ aanda £ o;
2. 1,ifd <a;and

3. €5,0(Car )iy (a, q), if o is of the forma” a g anda < . Here, u, (4 (a, q) is defined to be
o () (tranigate(ar),a) Histate(ar),a (@), that is, the probability that-(a’) chooses a transition labeled
by a and that the new state is

Standard measure theoretic arguments ensure thats well-defined. We call the stafstate(«) thefirst
stateof ¢, , and denote it bystate(e, o). If o consists of the start stateonly, we calle, ., aprobabilistic
executiorof P.

Let 1 be a discrete probability measure oVesgs” (7). We denote by, , the measurg_  p(a)eq o
and we say that, , is generated by andn.. We call the measure, ,, a generalized probabilistic execu-
tion fragmentof P. If every execution fragment isupp(y) consists of a single state, then we call, a
probabilistic execution fragmeraf P.

We note that therace function is a measurable function frofi> to the o-field generated by cones of
traces. Thus, given a probability measdren F», we define thdrace distributionof ¢, denoteddist(e),
to be the image measure otindertrace. We extend thedist() notation to arbitrary measures on execution
fragments ofP. We denote bydists(P) the set of trace distributions of (probabilistic executions7af)

Next we present some basic results about probabilistic executions and trace distributions of PIOAs. In par-
ticular, Lemmas 2.10-2.14 give some useful equations involving the probabilities of various sets of execution
fragments.

Lemma 2.10 Let o be a scheduler for PIOAP, 1 be a discrete probability measure on finite execution
fragments ofP, and« be a finite execution fragment ®f Then

ea,u(coc) = U(Ooz) + Z .U(O/)me’ (Ca)

a'<a
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Proof. By definition ofe, ,, €5,,(Ca) = >,/ p(a')ésa(Co). Since, by definitiong, o (Co) = 1
whenever < o, this can be rewritten as

cou(Ca) = Y pla)+ Y u(a')egar(Ca)-
a:a<la’l a'<a
Observe thad_ .., (a’) = u(Cq). Thus, by substitution, we get the statement of the lemma. O

Lemma 2.11 Let o be a scheduler for PIOAP, 1 be a discrete probability measure on finite execution
fragments ofP, and« be a finite execution fragment ®f Then

60»#(Ca) = w(Coq —{a}) + Z ﬂ(a/)%,a/(ca)~
o' <a
Proof.  Follows directly from Lemma 2.10 after observing that,(C,) = 1. O

Lemma 2.12 Leto be a scheduler for PIO#&, and . be a discrete measure on finite execution fragments of
P. Leta = aaq be a finite execution fragment Bt Then

€o.u(Ca) = (Ca) + (€5,4(Ca) — p(Ca — {a})) o(@)(trana, o) pa.q(q)-

Proof. By Lemma 2.10 and the definitions €f .- (C) andp,(s)(a, ¢), we have

eo.u(Ca) = 1(Ca) + D pla))eq,ar(Ca)o(@)(trang o) pa,a(4)

= u(Ca) + () 1(a)eoa(Ca))(o(@) (trana,o)na.a(a)).

a'<a

Sincea’ < aifand only if o/ < «, this yields

eo.u(Ca) = 1(Ca) + (Y 1(a')eq.ar(Ca))(0(@)(trang a)ua.a(9))-

o' <&

It suffices to show that , _ ; (& )er,a (Ca) = €0,.(Ca) — n(Cs —{a}). But this follows immediately
from Lemma 2.11 (withy instantiated ag). O

As a notational convention we introduce a new symhoto denote termination. Given scheduter
and finite execution fragmeit, we write o (a)(_L) for the probability of terminating aftet (namely,1 —

a(a)(D))-

Lemma 2.13 Let o be a scheduler for PIOAP, 1 be a discrete probability measure on finite execution
fragments ofP, and« be a finite execution fragment 8 Then

€ou(@) = (€5,(Ca) — u(Ca —{a}))(o(a)(L)).

Proof. By definition ofe, ,,, €5, (o) = >, p1(a’)€s s (). The sum can be restricted 46 < « since
for all othero/, €, o/ (a) = 0. Then, since for each’/ < «, €, o/ (@) = €50/ (Co)o(a)(L), we derive
€ou(0) =D cq M )eq,a (Co)o(a)(L). Observe that (o) (L) is a constant with respect td, and thus
can be moved out of the sum, yieldiag,, (o) = (3, <, #(/)er,0 (Ca)) (o () (L)).

It suffices to show tha}" , -, 11(&)era (Ca) = €5, (Ca) — 1(Co —{a}). But this follows immediately
from Lemma 2.11. |

Lemma 2.14 Let o be a scheduler for PIO&, and i be a discrete probability measure on finite execution
fragments ofP. Leta be a finite execution fragmentBfanda be an action of that is enabled ifstate(«).
Then

ea,u(caa) = 1(Caa) + (EG,M(COA) —w(Co —{a})) () (trana,a)~
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Proof. Observe that’,, = U;Cqaq, Where the cone€’ — aaq are pairwise . Thuss, ,(Coa) =
Zq €o,1(Caaq). By Lemma 2.12, the right-hand side is equal to

Z (1(Caaq) + (€0,u(Ca) — p(Ca — {a})) o(a)(trana,a)ta,a(q)) -

q

Since}_, 1(Caaq) = (Caa) aNd3 - f1a o(g) = 1, this is in turn equal to
1#(Caa) + (€0,u(Ca) — u(Ca — {a})) o(a)(trang,q).
Combining the equations yields the result. ]
Finally, we present a lemma about limits of generalized probabilistic execution fragments.

Proposition 2.15 Letey, €9, . . . be a chain of generalized probabilistic execution fragments of a PROAll
generated from the same discrete probability meaguom finite execution fragments. ThBm,; ., ¢; IS a
generalized probabilistic execution fragmentdfienerated fromu.

Proof. Lete denotelim;_., ¢;. For eachi > 1, leto; be a scheduler such that= ¢,, ,, and for each
finite execution fragment, letp?, = €, ,(Co) — u(Co — {a}). For each finite executiom and each action
a, 1etpl,, = €0,,u(Caa) = 1(Caa)-

By Lemma 2.14, ifa is enabled irstate(«) thenp? o;(a)(tran, o) = pt,,. Moreover, ifp:,, # 0, then
oi(@)(trana o) = Pha/Ph-

For each finite execution fragmentletp, = ¢(C,) — u(Cy, — {a}). For each finite execution fragment
a and each action, let po, = €(Caq) — 1(Caq). Defines(a)(trang,q) 10 bepaq/pa if po > 0; otherwise
defines(a)(tran,,,) = 0. By definition ofe and simple manipulationim; . p, = p andlim; . p,, =
Daq- Itfollows that, ifp, > 0, theno (o) (trang,q) = lim; o o; (@) (trang 4).

It remains to show that is a scheduler and thag, , = e. To show thaw is a scheduler, we must show
that, for each finite execution fragmemto(«) is a sub-probability measure. Observe that, for eaghi,

Y tran Ti(@)(tran) = > oi(a)(trany,). Similarly, >, . o(a)(tran) = > o(a)(tran,,). Since eacly; is
a scheduler, it follows that, for ea¢h> 0, > 0;()(trany,) < 1. Thus,

lim Y " oy(a)(trana) < Y | lim oi(a)(trang,) < 1.

We claim thato(a)(trang,,) < lim;_,o oi(@)(trang q), Which implies thato(a)(tran,,) < 1, as
needed. To see this claim, we consider two casesgi, It> 0, then as shown earlieg(«)(tran, ) =
lim;_,o 0;(a)(trang,,). On the other hand, ib, = 0, theno(«)(tran,,,) is defined to be zero, so that
o(a)(trang,q) = 0 < lim;_,o 0;(a)(trang,q).

To show thate,, = ¢, we show by induction on the length of a finite execution fragmerthat
€0..(Co) = €(Cy). For the base case, letconsist of a single staig By Lemma 2.10¢, ,(Cy) = 1(Cy),
and for eachi > 1, e,, ,,(Cq) = u(Cy). Thus,e(Cy) = lim; . €5,,,(Cy) = n(Cy), as needed.

For the inductive step, let = daq. By Lemma 2.12,

lim €5,,,(Ca) = lim (1u(Ca) + (66,,u(Ca) = p(Ca — {a})) 0:(@) (trana. o )pta.a(4)) -

71— 00

Observe that the left-hand sideeig”,, ). By algebraic manipulation, the right-hand side becomes

u(Ca) + ((lim ., (Ca)) = u(Ca — {a}) ) ( fim o3(@) (trana.o) ) pa.ala).

By definition ofe, lim; .« €5, .,(Ca) = €(Cs), and by inductive hypothesis(Cs) = ¢, ,,(Cs). Therefore,

€(Ca) = H(Ca) + (€u(Ca) = 1(Ca — {a}) (Jim 0.(@) (trana.a) ) p1a.a(a).
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Also by Lemma 2.12, we obtain that

€o.u(Ca) = p(Ca) + (€5,4(Ca) — (Ca — {a})) o(a)(trana,a)pa,q(q)-

We claim that the right-hand sides of the last two equations are equal. To see this, consider two cases.
First, if p;z > 0, then we have already shown thah; .., 0;(&)(trang,,) = o(&(trans 4)). Since these two
terms are the only difference between the two expressions, the expressions are equal.

On the other hand, iz = 0, then by definition ops, we get that(Cs) = 1(Cs — {a}). Then by the
induction hypothesis the second terms of the two right-hand sides are both equal to zero, which implies that
both expressions are equal to the first terfd', ). Again, the two right-hand sides are equal.

Since the right-hand sides are equal, so are the left-hand sides, that (€i.) = €(C,), as needed to
complete the inductive step. ]

2.3.3 Composition
We define composition of PIOAs as follows.

Definition 2.16 Two PIOASP; = (Q, q;, L;, O;, H;, D;), © € {1,2}, are said to becompatibleif A, N H; =
O, N O; = ( wheneveri # j. In that case, we define thelompositionP; || P, to be the PIOAQ: x
Q2, (G1,32), ([1UI2)\(O1UO2), O1UO2, H1UH,, D), whereD is the set of triple$(q1, g2), a, p1 X u2)
such that

1. a is enabled in some;.
2. Foreveryi, if a € A, then(q;, a, u;) € D;, otherwiseu; = 6(q;).

Given a statey = (¢1,¢2) in the composition and € {1,2}, we useg[P; to denoteg;. Note that these
definitions can be extended to any finite number of PIOAs rather than just two.

2.3.4 Hiding

We define a hiding operation for PIOAs, which hides output actions.

Definition 2.17 LetP = (Q,q, 1,0, H, D) be a PIOA and leS C O. Thenhide(P, S) is the PIOAP’ that
is the same a® exceptthaDp = Op — SandHp, = Hp U S.

3 Task-PIOAs

In this section, we present our definition for task-PIOAs. We introduce task schedules, which are used to
generate probabilistic executions. We define composition and hiding operations. We define an implementa-
tion relation, which we calK,. And finally, we state and prove a simple compositionality result. In the next
section, Section 4, we define our new simulation relation for task-PIOAs and prove that it is sound.

3.1 Task-PIOA definition

We now augment the PIOA framework with task partitions, our main mechanism for resolving nondetermin-
ism.

Definition 3.1 Atask-PIOAis a pair7 = (P, R) where
e P=(Q,q1,0,H,D)is aPIOA (satisfying transition determinism).

e Ris an equivalence relation on the locally-controlled actio6s{ H).
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For clarity, we sometimes writ&; for R.
The equivalence classes Bfare calledtasks A taskT is enabledn a stateq if somea € T is enabled
in ¢. Itis enabledn a setS of states provided it is enabled in everg S.

Unless otherwise stated, technical notions for task-PIOAs are inherited from those for PIOAs. Exceptions
include the notions of probabilistic executions and trace distributions.

For now, we impose the following action-determinism assumption, which implies that tasks alone are
enough to resolve all nondeterministic choices. We will remove this assumption when we introduce local
schedulers, in Section 6. To make it easier to remove the action-determinism hypothesis later, we will indicate
explicitly, before Section 6, where we are using the action-determinism hypothesis.

e Action determinismFor every state € @ and taskl” € R, at most one action € T is enabled iny.

3.2 Task schedules and thepply function

Definition 3.2 If 7 = (P, R) is a task-PIOA, then gask scheduléor 7 is any finite or infinite sequence
p="TT;...oftasks inR.

Thus, a task schedulessatic (or oblivious, in the sense that it does not depend on dynamic information
generated during execution. Under the action-determinism assumption, a task schedule can be used to gener-
ate a unique probabilistic execution, and hence, a unique trace distribution, of the underlyin@®P@#e
can do this by repeatedly scheduling tasks, each of which determines at most one trangttion of

In general, one could define various classes of task schedules by specifying what dynamic information
may be used in choosing the next task. Here, however, we opt for the oblivious version because we intend to
model system dynamics separately, via high-level nondeterministic choices (cf. Section 1).

Formally, we define an operation that “applies” a task schedule to a task-PIOA:

Definition 3.3 Let7 = (P, R) be an action-deterministic task-PIOA whéPe= (Q, g, I, O, H, D). Given
p € Disc(Frags™(P)) and a task schedulg, apply(u, p) is the probability measure oRrags(P) defined
recursively by:

1. apply(i, A) := p. (A denotes the empty sequence.)

2. ForT € R, apply(u, T) is defined as follows. For evety € Frags*(P), apply(u, T)(a) := p1(a) +
p2(a), where:

e pi(a) = pu(a')n(q) if ais of the formn’ a ¢, wherea € T and(Istate(’), a,n) € D; p1(a) =0
otherwise.
e po(a) = p(a) if T is not enabled indstate(a); pa(«) = 0 otherwise.

3. Forpof the formp’ T, T € R, apply(u, p) := apply(apply(u, p'), T).
4. For pinfinite, apply(x, p) := lim; . (apply(k, p;)), wherep; denotes the lengthprefix ofp.

In Case (2) abovey, represents the probability thatis executed when applying tagk at the end of
o/. Because of transition-determinism and action-determinism, the trangitiete(’), a, ) is unique, and
so p; is well-defined. The ternp, represents the original probabilify(«), which is relevant ifT" is not
enabled afterv. It is routine to check that the limit in Case (4) is well-defined. The other two cases are
straightforward.



3 TASK-PIOAS 14

3.3 Properties of theapply function

In this subsection, we give some basic properties of the probabilities that arise frapptirg ) function.

Lemma 3.4 Let7 = (P, R) be an action-deterministic task-PIOA. Ligbe a discrete probability measure
over finite execution fragments Bfand let7T" be a task. Lep; andp, be the functions used in the definition
of apply(u, T'). Then:

1. for each state, p1(¢) = 0;

2. for each finite execution fragmennt

p(er) = pa(a) + > p1(aaq).

(a,q):ccaq€Frags* (P)

Proof. Item (1) follows trivially from the definition op; (q).
For Item (2), we observe the following facts.

e If T is not enabled frontstate(«), then, by definition of, u(a) = p2(a). Furthermore, for each
actiona and each state such thatvaq is an execution fragment, we claim that «ag) = 0. Indeed,
if a ¢ T, then the first case of the definition pf(«) trivially does not apply; ifa € T, then, sincel’
is not enabled frontstate(«x), there is ng such thaf(Istate(a), a, p) € Dp, and thus, again, the first
case of the definition gf; («) does not apply.

e If T is enabled fromistate(«), then trivially po(or) = 0. Furthermore, we claim that(a) =
>_(a,q) P1(ag). By action determinism, only one actiéne 7 is enabled fromistate(a). By defini-
tion of p1, p1(aaq) = 0if a # b (eithera ¢ T or a is not enabled fronfstate(«)). Thus,

> pi(aag) =Y pi(abg) =Y pla)pan(q)-
(a,q) q q

This in turn is equal tgu(«v) since) o ,b(q) = 1.
In each case, we get(«) = pa() + >, ,) P1(aaqg), as needed. |
Lemma 3.5 Let7 = (P, R) be an action-deterministic task-PIOA. Ligbe a discrete probability measure

over finite execution fragments apde a finite sequence of tasks. Theply(u, p) is a discrete probability
measure over finite execution fragments.

Proof. By a simple inductive argument on the lengthpof The base case is trivial. For the inductive
step, it suffices to show that, for each measuoa finite executions fragments and each t&skpply(e, T)
is a probability measure over finite execution fragments.

Let ¢ be apply(e, 7). The fact that’ is a measure on finite execution fragments follows directly by
Item (2) of Definition 3.3. To show that s in fact a probability measure, we show thaf, ., ..e- (p) €' (@) =
1. By Item (2) of Definition 3.3,

Yoo dl)= Y (p(e) +pa(e).
a€Frags* (P) a€Frags* (P)
Rearranging terms, we obtain
Z e(a) = Zpl(Q) + Z (p2(a) + Z pi(aaq)).
a€EFrags* (P) q a€Frags* (P) (a,q):aaqEFrags* (P)

By Lemma 3.4, the right side becomEaeFmgs*(P) e(a), which equals 1 sinceis by assumption a proba-
bility measure. Therefor®’ , ... (p) € (@) = 1, as needed. ]
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Lemma 3.6 Let7 = (P, R) be an action-deterministic task-PIOA and [Etbe a task inR. Definey’ =
apply(u, T'). Then, for each finite execution fragment

1. If a consists of a single statg theny'(Cy,) = u(Cy).
2. Ifa=aaqanda ¢ T, theny' (Cy) = u(Cyp).
3. Ifa=aaganda € T, theny/(Cy) = u(Co) + p(&)pha,a(q)-

Proof. Letp; andp, be the functions used in the definitionagdply (i, T'), and letx be a finite execution
fragment. By definition of a cone and pf, 1//(Co) = >_,/|0<n (P1(a') + p2(’)). By definition of a cone
and Lemma 3.4, B

wCa) = Y (pa(a) + > pi(dag)) = > (p(a)) +p2(e)) — pi().

o' |la<a’ (a,q):a’ agEFrags* (P) o |a<a’

Thus, /' (Cy) = p(Cq) + p1(a). We distinguish three cases.dfconsists of a single state, thep(a) = 0
by Lemma 3.4, yielding/' (C,) = u(Cq). If & = dag anda ¢ T, thenp; () = 0 by definition, yielding
W (Cq) = u(Cy). Finally, if « = @ag anda € T, thenp;(a) = p(@)pa.a(q) by definition, yielding
#(Ca) = u(Ca) + (@) pa,a(a)- O

Lemma 3.7 Let7 = (P, R) be an action-deterministic task-PIOA. Ligbe a discrete probability measure
over finite execution fragments,a task, and:’ = apply(u, T'). Thenu < u'.

Proof. Follows directly by Lemma 3.6. ]

Lemma 3.8 Let7 = (P, R) be an action-deterministic task-PIOA. Letbe a discrete measure over finite
execution fragments and Igt and p, be two finite sequences of tasks such fhais a prefix ofp,. Then

apply(u, p1) < apply (i, p2).

Proof. Simple inductive argument using Lemma 3.7 for the inductive step. m|

The next lemma relates the probability measures on execution fragments that arise as a result when ap-
plying a sequence of tasks to a given probability meagwe execution fragments.

Lemma 3.9 Let7 = (P, R) be an action-deterministic task-PIOA. Lgt, p2,--- be a finite or infinite
sequence of finite task schedules, anclet p;p - - - (Where juxtaposition denotes concatenation of finite
sequences).

Let 1 be a discrete probability measure on finite execution fragments. For each intebet ¢ < |p|, let

e; = apply(u, p1p2 - -+ p;), Wherep; - - - p; denotes the concatenation of the sequengethrough p;. Let

e = apply(u, p). Then the:;’s form a chain and = lim;_, « €;.

Proof. The factthatthe;’s form a chain follows from Lemma 3.7. For the limit property, if the sequence
p1, P2, - - . is finite, then the result is immediate. Otherwise, simply observe that the seqyeage. . is a
subsequence of the sequence used in the definitiappd§ (1, p1p2 . . .), and therefore, they have the same
limit. |

Lemma 3.10 Let7 = (P, R) be an action-deterministic task-PIOA. Lebe a discrete probability measure
over finite execution fragments B, p a task scheduler fof’, andq a state of7. Thenapply(y, p)(Cy) =

H(Cq)-

Proof. We prove the result for finitg’s by induction on the length gi. The infinite case then follows
immediately. The base case is trivial since, by definitipply (1, p) = u. For the inductive step, let= p'T,
and lete be apply(y, p'). By Definition 3.3,apply(x, p) = apply(e, 7). By induction,e(Cy) = p(Cy).
Therefore it suffices to showpply (e, T')(Cy) = €(Cy).
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Let ¢’ be apply(e, 7). By definition of cone’(Cy) = >, <, € (o). By Lemma 3.5, botk and
¢’ are measures over finite execution fragments; therefore we can restrict the sum to finite execution frag-
ments. Letp; andps be the two functions used for the computatione@fy) according to Item (2) in Def-
inition 3.3. Thene'(Cy) = X cpecs* (P)g<a(P1() + p2(a)). By rearranging terms, we get(C,) =
P1(a) + X perecs (P)g<a (P2() + 204 5) P1(Caas)). By Lemma 3.4, the right side of the equation above
IS ,.4<a €(@), Which is precisely(C). O

The next proposition states thadply(-, p) distributes over convex combinations of probability measures.
This requires a preliminary lemma.

Lemma 3.11 Let {u;}; be a countable family of discrete probability measures on finite execution frag-
ments and lefp;}; be a countable family of probabilities such that, p;, = 1. LetT be a task. Then

apply (Y2, pipi, T) = >, pi apply(pi, T).

Proof. Letp; andp, be the functions used in the definitionafply (>, piu;, T'), and let, for each, p}
andp’, be the functions used in the definitionafply(u.;, T'). Leta be a finite execution fragment. We show

thatp; (o) = 3=, pipi (o) andpa(a) = 32, piph(a). Then

apply (> pigui; T)() = pa(a) + pa(@) definition ofapply (> pifus, T)
= pipi(a) + Y piph(a) claims proven below
= pi(pi(@) + pi(e))
= Zpi apply (g, T') () definition ofapply(p;, T')

To prove our claim aboup; we distinguish two cases. H can be written as/’ a ¢, wherea’ €
supp(p),a € T, and(Istate(o’), a, p) € Dp, then, by Definition 3.3p;(«) = (3, piri)(a’)p(q), and,
for eachi, pi(a) = pi(a’)p(q). Thus,pi(a) = 3, pipt () trivially. Otherwise, again by Definition 3.3,
p1(a) = 0, and, for each, pi (o) = 0. Thus,p(a) = 3, pip} () trivially.

To prove our claim abouyt, we also distinguish two cases. Tf is not enabled ifstate(«), then, by
Definition 3.3,p2(r) = (3, pirs) (), and, for each, ph(a) = p; (). Thus,pa(a) = Y, piph(e) trivially.
Otherwise, again by Definition 3.32(a) = 0, and, for each, pi(a) = 0. Thus,ps(a) = 3, pips(a)
trivially. ]

Proposition 3.12 Let {u; }; be a countable family of discrete probability measures on finite execution frag-
ments and le{p; }; be a countable family of probabilities such tha}, p, = 1. Letp be a finite sequence of

tasks. Thenapply(>_, pijti, p) = >, pi apply (1, p)-

Proof. We proceed by induction on the lengthoflf p = A, then the result is trivial sincgpply(-, \) is
defined to be the identity function, which distributes over convex combinations of probability measures. For
the inductive step, let be p’T. By Definition 3.3 and the induction hypothesis,

apply (> pipsi, p'T) = apply(apply(>_ piguir '), T) = apply(>_ ps apply(ui, p'), T).-

(2

By Lemma 3.5, eachpply(u;, p') is a discrete probability measure over finite execution fragments. By
Lemma 3.11apply(>, pi apply (14, p'), T) = Y, pi apply(apply (1, '), T'), and by Definition 3.3, for each

i, apply(apply (s, p'), T) = apply(ui, p'T). Thus,apply(3>-, pipi, p'T) = >, pi apply(ui, p'T) as needed.
[}
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3.4 Task schedules vs. standard PIOA schedulers

Here, we show thatpply(u, p) is a generalized probabilistic execution fragment generateddnd a sched-
uler for P, in the usual sense. Thus, a task schedule for a task-PIOA is a special case of a scheduler for the
underlying PIOA.

Theorem 3.13Let 7 = (P, R) be an action-deterministic task-PIOA. For each probability meaguon
Frags®(P) and task schedulg, there is schedules for P such thatapply(y, p) is the generalized proba-
bilistic execution fragmery, ..

The proof of Theorem 3.13 uses several auxiliary lemmas. The first talks about applytimg empty
sequence of tasks. Itis used in the base case of the inductive proof for Lemma 3.16, which involves applying
any finite sequence of tasks.

Lemma 3.14 Let7 = (P, R) be an action-deterministic task-PIOA. Liebe a discrete probability measure
over finite execution fragments. Thasply(u, A) is a generalized probabilistic execution fragment generated

by 1.

Proof. Follows directly from the definitions, by defining a schedutesuch thatr(a)(tran) = 0 for
each finite execution fragmeantand each transitiotran. |

The next lemma provides the inductive step needed for Lemma 3.16.

Lemma 3.15 Let7 = (P, R) be an action-deterministic task-PIOA.€lis a generalized probabilistic exe-
cution fragment generated by a measurethen, for each task’, apply(e, T') is a generalized probabilistic
execution fragment generated by

Proof. Suppose is generated by together with a scheduler (that is,e, ,, = €). Lete’ beapply(e, T').
For each finite execution fragment let D(Istate(«)) denote the set of transitions &f with source state
Istate(a). For eachtran € D, let act(tran) denote the action that occurstran. Now we define a new
schedulew’ as follows: given finite execution fragmentandtran € D,

o if €(Cy) — u(Cy — {a}) =0, theno’(a)(tran) = 0;
e otherwise, iftran € D(Istate(«)) andact(tran) € T, then

6(Ca) - N(Ca — {a})

o' (a)(tran) = ¢ (Co) — u(Co — {a})

(o(@)(tran) + o (a)(L));

e otherwise,

€(Ca) — p(Ca —A{a})

€ (Ca) — p(Ca = {a})
We first argue that”’, thus defined, is a scheduler. Let a finite execution fragmebe given. If the

first clause applies, therf(«) is 0 everywhere, hence is a sub-probability measure. Assume otherwise. By

action- and transition-determinism, there is at most wae with tran € D(Istate(«)) andact(tran) € T'.
LetY denote{tran} if suchtran exists and) otherwise. Then we have the following.

Z o(a)(tran) + Z (o(a)(tran) + o(a)(L))

o'(a)(tran) =

o(a)(tran).

trang€Y traneY
=( Y o(a)(tran)) + o(a)(L) Y is either empty or a singleton
trane D

=1 o is a scheduler
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Furthermore, by Lemma 3.7, we know th&C,,) < € (C,), thus the fractionm% is at most
1. Putting the pieces together, we have

€(Co) — u(Co — {a})
€(Co) — (Co — {a})

Z o' (a)(tran) =

trane D

(Y o(@)(tran)+ > (o(a)(tran) + o(a)(L)) < L.

trangyY trancY

Next, we prove by induction on the length of a finite execution fragmethiate,: ,(Cy) = €' (Ca).
For the base case, let= ¢q. By Lemma 2.10,

60’,M(Cq) = M(Cq) = €U7M(Cq)'

By the choice ofo, the last expression equadéC,;), which in turn is equal to ta’(C,) by virtue of
Lemma 3.10. Thus,- ,(C,) = €'(Cy), as needed.
For the inductive step, let = aaq. By Lemma 2.10 and the definition of the measure of a cone, we get

€ (Ca) = 1(Ca) + 3 0 Ve (Ca) = p(Ca) + 37 a0Vt (C oy (@, 9).

a’'<a a'<a&

We know thata is enabled fronistate(&), becauser is an execution fragment @?. Thus,trans , and
1a,q are defined. By expanding, 4)(a, ¢) in the equation above, we get

coru(Ca) = u(Ca) + D 1(@')egr,0r(Ca)o’ (@) (trans,a) a,a(q)- @)

o' <&
We distinguish three cases.
1. €(Ca) —u(Ca —{a}) = 0.
By inductive hypothesis¢, ,(Cs) = €(Cs). Then by Lemma 2.12%, ,(Cy) = p(Cy). Itis
therefore sufficient to show that(C,,) = u(Cl).
By Lemma 3.7¢(Cs) < €/(Cg). Thus, using’(Cz) — u(Csz — {a}) = 0, we gete(Cs) — u(Cs —
{&}) < 0. On the other hand, from Lemma 2.11 and the fact thate, ,,, we haves(Cy) — u(Cs —

{a}) > 0. Thus,e(Cs) — n(Cs — {a}) = 0. Now, using Lemma 2.12 and the fact thgf, = ¢ and
€(Cs) — u(Cs — {a}) =0, we gete(Cy,) = pu(Cy).
SinceCj; — {a} is a union of cones, we may use Lemma 3.7 to obidifi; — {a}) < ¢(Cs — {a}).
Adding e({a}) on both sides, we get(Csy — {a}) + e({a}) < e(Ca — {a}) + e({a}) = €(Ca).
Sincee(Cs) = u(Ca — {a}), the previous inequalities imply(Cz) + e({a}) < ¢(Ca), therefore
e({a}) = 0. By Lemma 3.6 (Items (2) and (3)), we haa/éC,,) = ¢(C,) = u(Cy), as needed.

2. €(Cs) — p(Cs —{a}) >0anda ¢ T.
By Equation (1) and the definition of , we know thak, ,(C,) equals

, €(Ca) — p(Ca —{a)) -
1(Ca) + Z p(a')eq o (Ca) '(Ca) — p(Cs — {d})a(a)(tran&ﬂ)ud)a(q).

€

a'<a

Observe that in the sum above only the facte(a’)e, .- (Cs) are not constant with respect to the
choice ofa/. By Lemma 2.11%" , .~ p(a')esr .0 (Ca) = €57,,,(Ca) — 1(Cs — {@}). By the inductive
hypothesis¢, ,(Cz) = € (Cs). Thus, replacing ", . u(a’)eor o (Ca) With € (Ca) — n(Ca — {a})
and simplifying the resulting expression, we obtain

€ 1u(Ca) = p(Ca) + ((Ca) — p(Ca — {a})) o(@)(trana,a)pa.q(q)-

By definition,e = ¢, ,. Therefore, by Lemma 2.12, the right side of the equation abov&(s).
Moreover,e(C,,) = €' (Cy) by Lemma 3.6, Item (2). Thus, ,,(C,) = € (C,), as needed.
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3. ¢(Ca) —u(Csqz —{a}) >0anda € T.
As in the previous case, ,(C,) equals
1(Ca) + (e(Ca) — u(Ca —{a}))(o(a)(trang,q) + o (@) (L))ra.q(q)-

Also shown in the previous case, we have

€(Ca) = n(Ca) + (e(Ca) — n(Cs — {a})) o (&) (trana,a) ta,a(q)-
Therefore,
€or,u(Ca) = €(Ca) + (e(Ca) — u(Ca — {a}))o(a)(L)na,a(q).

By definition,e = €, ,. Applying Lemma 2.13, we substitut¢é) for (e(Cs)—pu(Ca—{a}))o(a)(L).
Now we have
60’,H(Ca) = e(Ca) + 6(6‘):“&,&(‘1)'

The desired result now follows from Lemma 3.6, Item (3).

O

Now we can show that applying any finite sequences of tasks to a probability measure on finite execution
fragments leads to a generalized probabilistic execution fragment.

Lemma 3.16 Let7 = (P, R) be an action-deterministic task-PIOA. For each probability meagioa finite
execution fragments and each finite sequence of tasksly (1, p) is a generalized probabilistic execution
fragment generated hy.

Proof. Simple inductive argument using Lemma 3.14 for the base case and Lemma 3.15 for the inductive
step. O

And now we consider infinite sequences of tasks.

Lemma 3.17 Let7T = (P, R) be an action-deterministic task-PIOA. For each meaguom finite execution
fragments and each infinite sequence of taskeply (i, p) is a generalized probabilistic execution fragment
generated by:.

Proof. Foreach > 0, let p; denote the lengthprefix of p and lete; beapply (i, p;). By Lemmas 3.16

and 3.8, the sequeneg, €1, ... is a chain of generalized probabilistic execution fragments generated by
1. By Proposition 2.15lim;_, . €; is a generalized probabilistic execution fragment generated. byhis
suffices, sincepply(u, p) islim; .« €; by definition. ]

This completes the proof of Theorem 3.13.
Proof (Theorem 3.13). Follows directly from Lemmas 3.16 and 3.17. m|

The idea here is, for any measur@nd task sequenge the probability measure on execution fragments
generated bypply(u, p) is “standard”, in the sense that it can be obtained froand a scheduler as defined in
Section 3 for basic PIOAs. Any suelpply(i, p) is said to be @eneralized probabilistic execution fragment
of the task-PIOA7. Probabilistic execution fragment@nd probabilistic executiongre then defined by
making the same restrictions as for basic PIOAs. We wditet (11, p) as shorthand fordist(apply (i, p)), the
trace distribution obtained by applying task schequstarting from the measuge on execution fragments.
We writetdist(p) for tdist(apply(5(g), p)) the trace distribution obtained by applyipgrom the unique start
state. (Recall thai(g) denotes the Dirac measure gn A trace distributionof 7 is anytdist(p). We use
tdists(7) to denote the sefttdist(p) : p is a task schedule far}.
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3.5 Composition
We define composition of task-PIOAs:

Definition 3.18 Two task-PIOAS; = (P;, R;), ¢ € {1, 2}, are said to beompatibleprovided the underlying
PIOAs are compatible. Then we define thempositionT; || 7; to be the task-PIOAP, ||Ps, R U Ry).

Itis easy to see thaf || 75 is in fact a task-PIOA. In particular, since compatibility ensures disjoint sets of
locally-controlled actionsR; U R; is an equivalence relation on the locally-controlled action®dfP-. It
is also easy to see that action determinism is preserved under composition. Note that, when two task-PIOAs
are composed, no new mechanisms are required to schedule actions of the two components—the tasks alone
are enough.

3.6 Hiding
We also define a hiding operator for task-PIOAs. It simply hides output actions:

Definition 3.19 Let7 = (P, R) be any task-PIOA, wher® = (Q,q,I,0,H, D), and letS C O. Then
hide(7,.S) is the task-PIOAXhide(P, S), R), that is, the task-PIOA obtained by hidiiggin the underlying
PIOA P, without any change to the task equivalence relation.

Note that, in the special case where tasks respect the output vs. internal action classification, one can also
define a hiding operation that hides all output actions in a set of tasks. We omit the details here.

3.7 Implementation

We now define the notion of external behavior for a task-PIOA and the induced implementation relation
between task-PIOAs. Unlike previous definitions of external behavior, the one we use here is not simply a set
of trace distributions. Rather, it is a mapping that specifies, for every possible “environfntemtthe given
task-PIOAT, the set of trace distributions that can arise wifeis composed witlf .

Definition 3.20 Let7 be any task-PIOA and be an action-deterministic task-PIOA. We say thdt an
environmenfor 7 if the following hold:

1. £ is compatible with7".
2. The compositiof ||€ is closed.

Note that¢ is allowed to have output actions that are not input§ of

Definition 3.21 The external behavioof 7, denoted byextbeh(7), is the total function that maps each
environment to the set of trace distributionslists(7||£).

Thus, for each environment, we consider the set of trace distributions that arise from all task schedules.
Note that these traces may include new output actiods iof addition to the external actions already present
in7T.

Our definition ofimplementatiorsays that the lower-level system must “look like” the higher-level sys-
tem from the perspective of every possible environment. The style of this definition is influenced by common
notions in the security protocol literature (e.g., [LMMS98, Can01, PWO01]). An advantage of this style of def-
inition is that it yields simple compositionality results (Theorem 3.24). In our case, “looks like” is formalized
in terms of inclusion of sets of trace distributions, that is, of external behavior sets.

Definition 3.22 Let7; = (Py, R1) and7; = (P2, R2) be task-PIOAs, and; and O; the input and output
actions sets foP;, i € {1,2}. Then7; and7; are comparabléf I; = I, andO; = O-.
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Definition 3.23 Let 7; and7; be comparableaction-deterministic task-PIOAs. Then we say thatmple-
mentsTs,, written7; <g Ts, if extbeh(77)(E) C extbeh(73)(E) for every environmerf for both7; and7s.
In other words, we requiredists(77]|€) C tdists(73||E) for every€.

The subscrip®) in the relation symbok, refers to the requirement that every trace distribution in
tdists(77/|€) must have an identical match idists(73||€). For security analysis, we also define another
relation<,,., ,:, which allows “negligible” discrepancies between matching trace distributions {Q©G#].

3.8 Compositionality

Because external behavior and implementation are defined in terms of mappings from environments to sets
of trace distributions, a compositionality result fog follows easily:

Theorem 3.24 Let 7y, 75 be comparable action-deterministic task-PIOAs such fhat, 73, and let7; be
an action-deterministic task-PIOA compatible with eacfpénd7;. Then7y |75 <o 72|/ 7s.

Proof. Let7; = (P4, R4) be any environment (action-deterministic) task-PIOA for bilj7; and
T>||75. Fix any task schedule; for (71]|73)||7s. Let be the trace distribution f7;||73)|| 74 generated by
p1. It suffices to show that is also generated by some task scheguléor (72(|73)|| 7.

Note thatp, is also a task schedule f@ || (73]|74), and thafp; generates the same trace distributian
the composed task-PIOA || (75| 74).

Now, 73|74 is an (action-deterministic) environment task-PIOA for eactcdind7;. Since, by assump-
tion, 77 <o 72, we infer the existence of a task schedplefor 75||(75]|74) such thatp, generates trace
distributionr in the task-PIOAT; ||(73||74). Sinceps is also a task schedule f¢1: || 73) (|7, andp2 generates
T, this suffices. O

4 Simulation Relations

Now we define a new notion of simulation relations for closed, action-deterministic task-PIOAs, and show
that it is sound for proving<y. Our definition is based on the three operations defined in Section 2.2:
flattening, lifting, and expansion.

4.1 Simulation relation definition

We begin with two auxiliary definitions. The first expresses consistency between a probability measure over
finite executions and a task schedule. Informally, a measoxer finite executions is said to be consistent
with a task schedulg if it assigns non-zero probability only to those executions that are possible under the
task schedule. We use this condition to avoid extraneous proof obligations in our definition of simulation
relation.

Definition 4.1 Let7 = (P, R) be a closed, action-deterministic task-PIOA anctlee a discrete probability
measure over finite executions/f Also, let a finite task scheduytfor 7 be given. Theais consistent with
p provided thasupp(e) C supp(apply(§(q), p)), whereg is the start state oP.

For the second definition, suppose we have two task-PIRQAsd7,, and a mapping that takes a finite
task schedule and a task” of 7; to a task schedule &;. The idea is that(p, T') describes how; matches
taskT, given that it has already matched the task schepluldsingc, we define a new functiofull(c) that,
given a task schedule iteratesc on all the elements gf, thus producing a “full” task schsedule @§ that
matches all op.

Definition 4.2 Let7; = (P1, R1) and 7y = (P2, Ry) be two task-PIOAs, and let: (R;* x R;) — Ro" be
given. Defindull(c) : R;* — R»" recursively as followsfull(c)(A) := X, andfull(c)(pT") := full(c)(p) ~
c(p,T) (that is, the concatenation éill(c)(p) andc(p, T)).
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Next, we define our new notion of simulation for task-PIOAs. Note that our simulation relations are
relations between probability measures on executions, as opposed to relations between states. Here the use
of measures on executions is motivated by certain cases that arise in our OT protocol proof. For example, we
wish to match random choices that are made at different points in the low-level and high-level models (see
Section 4.3).

Definition 4.3 Let7; = (P1, R1) and 72 = (P2, R2) be two comparable task-PIOAs that are closed and
action-deterministic. Lek be a relation fromDisc(Execs™ (P;)) to Disc(Execs™(P2)), such that, ife; R e,
thentdist(e;) = tdist(e2). (That is, the two measures on finite executions yield the same measure on traces.)
ThenR is asimulationfrom 7; to 75 if there exists : (R1* x R1) — Ry™ such that the following properties

hold:

1. Start condition:d(q1) R 6(Gz).

2. Step condition:If ¢; R €2, p1 € R1™, € is consistent withpy, €2 is consistent witHull(c)(p;), and
T €Ry, thene] E(R) €, wheree] = apply(e1,T) ande,, = apply(ea, c(p1,T)).

Intuitively, e; R e means that it is possible to simulate fram anything that can happen from.
Furthermoreg] £(R) €, means that we can decompageande), into pieces that can simulate each other,
and so we can also say that it is possible to simulate flpamything that can happen froeh. This rough
intuition is at the base of the proof of our soundness result, Theorem 4.6.

The next three subsections establish the soundness of our simulation relations with respegtto the
relation.

4.2 Soundness

In this section, we state and prove two soundness results. The first result, Theorem 4.6, says that, for closed
task-PIOAs, the existence of a simulation relation implies inclusion of sets of trace distributions.

The proof requires two lemmas. Recall that the definition of simulation relations requires that any two
R-related execution distributions must have the same trace distribution. Lemma 4.4 extends this property to
the claim that any pair of execution distributions that are related by the expansion of the ré&lafi¢R),
must also have the same trace distribution. (For the proof, the only property of simulation relations we need
is that related execution distributions have the same trace distribution.)

Lemma 4.4 Let7; and7, be comparable closed action-deterministic task-PIOAs ané& le¢ a simulation
from7; to 75. Lete; ande, be discrete probability measures over finite executiorig aend 75, respectively,
such thate; £(R) e3. Thentdist(e;) = tdist(ea).

Proof. Sincee; £(R) €2, we may choose measurgs, 1. and a weighting functions as in the defi-
nition of expansion. Then for all; € supp(m1), we haven;(p1) = szesupp(m) w(p1, p2). Moreover, we
havee; = flatten(, ), therefore

tdist(e1) = Z n1(p1) tdist(p1) = Z Z w(p1, p2) tdist(py).

p1Esupp(n1) p1E€supp(n1) p2E€supp(n2)

Now consider any; andp, with w(p1, p2) > 0. By the definition of a weighting function, we may conclude
thatp; R po. SinceR is a simulation relation, we haweist(p;) = tdist(p2). Thus we may replacelist(p;)
by tdist(p2) in the summation above. This yields:

tdist(e;) = Z Z w(p1, p2) tdist(pa) = Z Z w(p1, p2) tdist(p2).

p1Esupp(n1) p2Esupp(n2) p2€supp(n2) p1Esupp(n1)
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Using again the fact that is a weighting function, we can simplify the inner sum above to obtain

tdist(er) = Y ma(p2) tdist(ps).

p2Esupp(nz2)
This equalgadist(es) because, by the choice 9f, we know thak, = flatten(ns). m|
The second lemma provides the inductive step needed in the proof of Theorem 4.6.

Lemma 4.5 Let7; and7; be two comparable closed task-PIOAs andRdbe a simulation relation froni;
to 7. Furthermore, let be a mapping witnessing the fact thitis a simulation relation. Let a finite task
schedulerp, of 7; be given and sei; = full(c)(p1). (Thenps is a finite task scheduler @.) Lete; denote
apply(d(q1), p1) and lete; denoteapply((g2), p2). Suppose that; E(R) eo.

Now letT be a task off;. Lete] = apply(6(q1), p1T) and lete,, = apply(6(q2), p2 <(p1,T)).
Thene) E(R) ¢,.

Proof. Letn;,n, andw be the measures and weighting function that witresS(R) e2. Observe that
€y = apply(e1, T) ande,, = apply(ea, c(p1,T)).

We apply Lemma 2.7: define the functighon discrete distributions on finite executions Bf by
f(e) = apply(¢,T), and the functiorny on discrete distributions on finite executions Bf by g(¢) =
apply(e,c(p1,T)). We show that the hypothesis of Lemma 2.7 is satisfied, so we can invoke Lemma 2.7
to conclude that] £(R) €.

Distributivity of f and g follows directly by Proposition 3.12. Lei;, uo be two measures such that
w(p1, p2) > 0. We must show thaf (1) E(R) g(ue). Sincew is a weighting function fog; £(R) ea,
w1 R pe. Observe thasupp(ui) C supp(er) andsupp(ue) C supp(e2); thus,uy is consistent withp; and
w2 is consistent withp,. By the step condition foR, apply(u1,T) E(R) apply(ue, c(p1,T)). Observe that
apply(u1, T) = f(p1) and thatapply(uz, ¢(p1, 1)) = g(p2)- Thus,f (1) E(R) g(p2), as needed. m

The following theorem, Theorem 4.6, is the main soundness result. The proof simply puts the pieces
together, using Lemma 3.9 (which says that the probabilistic execution generated by an infinite task scheduler
can be seen as the limit of the probabilistic executions generated by some of the finite prefixes of the task
scheduler), Lemma 4.5 (the step condition), Lemma 4.4 (related probabilistic executions have the same trace
distribution), and Lemma A.9 (limit commutes withii st).

Theorem 4.6 Let 7; and 7; be comparable task-PIOAs that are closed and action-deterministic. If there
exists a simulation relation fror; to 73, thentdists(7;) C tdists(73).

Proof (Theorem 4.6). LeR be the assumed simulation relation fr@ito 75. Lete; be the probabilistic
execution of7; generated byj; and a (finite or infinite) task schedulg,T5 - - - . For each > 0, definep; to
bec(T)---T;—1,T;). Letes be the probabilistic execution generatedggyand the concatenatign ps - - - .

It is sufficient to provetdist(e; ) = tdist(ez).

For eachy > 0, lete; ; = apply(q1, T4 - - - Tj), andea ; = apply(gz, p1 - - - pj). Then by Lemma 3.9, for
eachj > 0, €1 ; < €1 11 andes; < ey j41; Moreoverlim; . €1 ; = € andlim;_,o, €2 ; = €2. Also, for
everyj > 0, apply(e1,;, Tjy1) = €1,5+1 andapply(ez j, pj+1) = €241

Observe that; o = 0(q1) andez o = d(g2). The start condition for a simulation relation and a trivial
expansion imply that; o £(R) e2,0. Then by induction, using Lemma 4.5 for the definition of a simulation
relation in proving the inductive step, for eagh> 0, ¢; ; £(R) €2 ;. Then, by Lemma 4.4, for eagh> 0,
tdiSt(El,j) = tdist(ﬁgd‘).

By Lemma A.9,tdist(e1) = lim,;_ tdist(e1 ;), andtdist(es) = lim;_. tdist(ez ;). Since for each
J >0, tdist(e1 ;) = tdist(e ;), we conclude thatdist(e;) = tdist(e2), as needed. O

The second soundness result, Corollary 4.7, asserts soundness for (not necessarily closed) task-PIOAsS,
with respect to the, relation.
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Corollary 4.7 Let7; and7; be two comparable action-deterministic task-PIOAs. Suppose that, for every
environment for both7; and 75, there exists a simulation relatioR from 7; ||€ to 73||€. ThenT; < 7s.

Proof. Immediate by Theorem 4.6 and the definition<gf. a

4.3 Example: Trapdoor vs. Rand

The following example, taken from our Oblivious Transfer case study, is a key motivation for generalizing
prior notions of simulation relations. We consider two closed task-PlGAgspdoor and Rand. Rand
simply chooses a number i, ..., n} randomly, from the uniform distribution (usingoose internal
action), and then outputs the chosen valasing areport(k) output action) T'rapdoor, on the other hand,
first chooses a random number, then applies a known permutitmthe chosen number, and then outputs
the result. (The namé&rapdoor refers to the type of permutatighthat is used in the OT protocol.)

More precisely, neitheRand nor Trapdoor has any input actionsRand has output actionseport(k),
k € [n] = {1,...,n} and internal actiorthoose. It has tasksReport = {report(k) : k € [n]}, and
Choose = {choose}. Its state contains one variableal, which assumes values jn] U { L}, initially L.
The choose action is enabled whetwal = L, and has the effect of settingal to a number ir[n], chosen
uniformly at random. Theeport(k) action is enabled whetwal = k, and has no effect on the state (so it
may happen repeatedly). Precondition/effect codeHfend appears in Figure 1, and a diagram appears in
Figure 2.

Rand
Signature:

Input:

none
Output:

report(k), k € {1,...,n}
Internal:

choose

Tasks:

Report = {report(k) : k € {1,...,n}}, Choose = {choose}
States:

zval € {1,...,n} U{L}, initially L

Transitions:
choose report(k)
Precondition: Precondition:
zval = L zval = k
Effect: Effect:
zval := random(uniform({1,...,n})) none

Figure 1: Code for Task-PIORand

report(1) o
——

choose

o\ report(2)
z=2

report(n)
—————————

O

Figure 2: Task-PIOARand
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Trapdoor has the same actions &and, plus internal actiomompute. It has the same tasks &und,
plus the taskCompute = {compute}. Trapdoor's state contains two variableg,and z, each of which
takes on values ifn] U {L}, initially L. The choose action is enabled whep = L, and setgy to a
number in[n], chosen uniformly at random. Thempute action is enabled whep # L andz = 1, and
setsz := f(y). Thereport(k) action behaves exactly as Rund. Precondition/effect code f&Frapdoor
appears in Figure 3, and a diagram appears in Figure 4.

Trapdoor.
Signature:

Input:

none
Output:

report(k), k € {1,...,n}
Internal:

choose, compute

Tasks:

Report = {report(k) : k € {1,...,n}}, Choose = {choose}, Compute = {compute}
States:

yval € {1,...,n} U{L}, initially L

zval € {1,...,n} U {L}, initially L

Transitions:
choose report(k)
Precondition: Precondition:
yval = L zval = k
Effect: Effect:
yval := random(uniform{1, ..., n})) none
compute

Precondition:

yval # L; zval = L
Effect:

zval := f(yval)

Figure 3: Code for Task-PIOArapdoor

compute report(f (1))

O

z=f(1)

choose

Hf (2
compute @repor (f(2) o

- 1(F
compute mrepor(f(n)) o

Figure 4: Task-PIOAl'rapdoor

We want to use a simulation relation to prove ttdists(Trapdoor) C tdists(Random). To do so, it is
natural to allow the steps that defingo correspond in the two automata, which meanscthese steps of
Trapdoor (which definey) do not have corresponding stepsRand. Note that, between théhoose and
compute in Trapdoor, a randomly-chosen value appears in gheomponent of the state @frapdoor, but
no such value appears in the corresponding statenafl. Thus, the desired simulation relation should allow
the correspondence between a probability measure on stdfespdoor and a single state dRand.

We are able to express this correspondence using simulation relations in the sense of Definition 4.3: If
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ande, are discrete measures over finite execution fragmeni&-apdoor and Rand, respectively, then we
say thate; ande, are related byR whenever the following conditions hold:

1. For everys € supp (Istate(e1)) andu € supp (Istate(esz)), 5.2 = u.z.

2. For everyu € supp (Istate(ez)), if u.z = L then eithellstate(e; ).y is everywhere undefined or else it
is the uniform distribution offin).

The task correspondence mapping defined by
e c(p,Choose) = .
e If p contains the'hoose action, therc(p, Compute) = Choose; otherwise¢(p, Compute) = A.

e ¢(p, Report) = Report.

5 Application to Security Protocols

In [CCKT06e], we use the task-PIOAs of this paper to model and analyze the Oblivious Transfer (OT)
protocol of Goldreich et al. [GMW87].

In the OT problem, two input bitézg, z1) are submitted to a Transmitt&rans and a single input bit
to a ReceiverRec. After engaging in an OT protocoRec should output only the single hit;. Rec should
not learn the other bit, _;, andT'rans should not learr; moreover, an eavesdropping adversary should not,
by observing the protocol messages, be able to learn anything about the inputs or the progress of the protocol.
OT has been shown to be “complete” for multi-party secure computation, in the sense that, using OT as the
only cryptographic primitive, one can construct protocols that securely realize any functionality.

The protocol of [GMW87] uses trap-door permutations (and hard-core predicates) as an underlying
cryptographic primitive. It uses three rounds of communication: First,ns chooses a random trap-door
permutationf and sends it tdRec. Second Rec chooses two random numbeéig, y1) and send$zg, z1) to
Trans, wherez; for the input index is f(y;) andz,_; = y1_;. Third, Trans applies the same transforma-
tion to each ok, andz; and sends the results back(és, ;) Finally, Rec decodes and outputs the correct
bit. The protocol uses cryptographic primitives and computational hardness in an essential way. Its security
is inherently only computational, so its analysis requires modeling computational assumptions.

Our analysis follows thérusted partyparadigm of [GMW87], with a formalization that is close in spirit
to [PWO00, Can01]. We first define task-PIOAs representingréag system (RSfthe protocol) and the
ideal system (ISjthe requirements). IRS, typical tasks include “choose randdmy, 1)”, “send round 1
message”, and “deliver round 1 message”, as well as arbitrary tasks of environment and adversary automata.
(The environment and adversary automata are purposely under-specified, so that our results are as general as
possible.) Note that these tasks do not specify exactly what transition occurs. For example, the “choose” task
does not specify the chosen valueg@f, y1). And the “send” task does not specify the message contents—
these are computed Byrans, based on its own internal state.

Then we prove thaRS implementsl.S. The proof consists of four cases, depending on which parties
are corruptetl In the two cases wherErans is corrupted, we can show th&tS implements/ S uncon-
ditionally, using<g. In the cases wher&rans is not corrupted, we can show implementation only in a
“computational” sense, namely, (i) for resource-bounded adversaries, (ii) up to negligible differences, and
(i) under computational hardness assumptions. Modeling these aspects requires additions to the task-PIOA
framework of this paper, namely, definingime-bounded/ersion of task-PIOAs, and defining a variation,

2|n an extended abstract of this report{CEB6b], the definition ofc contains a small error. Namely, in the second clause,
¢(p, Compute) is set toChoose regardless of the condition gn

3In [CCKt06¢], only one case is treated in full detail—when oRlyc is corrupted. We prove all four cases in [CERS5], but using
a less general definition of task-PIOAs than the one used here and inf{G&H, and with non-branching adversaries.
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<neg,pt, ON the<, relation, which describes approximate implementation with respect to polynomial-time-
bounded environments. Similar relations were defined in [LMMS98, PW01]. Our simulation relations are
also sound with respect 9,,.¢ p:.

We also provide models for the cryptographic primitives (trap-door functions and hard-core predicates).
Part of the specification for such primitives is that their behavior should look “approximately random” to
outside observers; we formalize this in termsQf., .+

The correctness proofs proceed by levels of abstraction, relating each pair of models at successive levels
using <,¢4 p:- In the case where onlizec is corrupted, all but one of the relationships between levels are
proved using simulation relations as defined in this paper (and so, they guagaiteEhe only exception
relates a level in which the cryptographic primitive is used, with a higher level in which the use of the
primitive is replaced by a random choice. Showing this correspondence relies € Quy;-based definition
of the cryptographic primitive, and on composition results for time-bounded task-PIOAs. Since this type of
reasoning is isolated to one correspondence, the methods of this paper in fact suffice to accomplish most of
the work of verifying OT.

Each of our system models, at each level, includes an explicit adversary component automaton, which
acts as a message delivery service that can eavesdrop on communications and control the order of message
delivery. The behavior of this adversary is arbitrary, subject to general constraints on its capabilities. In
our models, the adversary is the same at all levels, so our simulation relations relate the adversary states
at consecutive levels directly, using the identity function. This treatment allows us to consider arbitrary
adversaries without examining their structure in detail (they can do anything, but must do the same thing at
all levels).

Certain patterns that arise in our simulation relation proofs led us to extend earlier definitions of simulation
relations [SL95, LSV03], by adding the expansion capability and by corresponding measures to measures:

1. We often correspond random choices at two levels of abstraction—for instance, when the adversary
makes a random choice, from the same state, at both levels. We would like our simulation relation
to relate the individual outcomes of the choices at the two levels, matching up the states in which the
same result is obtained. Modeling this correspondence uses the expansion feature.

2. TheTrapdoor vs. Rand example described in Section 4 occurs in our OT proof. Here, the low-level
system chooses a randgnand then computes = f(y) using a trap-door permutatiofi The higher
level system simply chooses the valuezofandomly, without using valug or permutationf. This
correspondence relates measures to measures and uses expansion.

3. In another case, a lower-level system chooses a randomgyalug then computes a new value by ap-
plying XOR toy and an input value. The higher level system just chooses a random value. We establish
a correspondence between the two levels using the fact that XOR preserves the uniform distribution.
This correspondence again relates measures to measures and uses expansion.

6 Local Schedulers

With the action-determinism assumption, our task mechanism is enough to resolve all nondeterminism. How-
ever, action determinism limits expressive power. Now we remove this assumption and add a second mech-
anism for resolving the resulting additional nondeterminism, namebca schedulerfor each component
task-PIOA. A local scheduler for a given component can be used to resolve nondeterministic choices among
actions in the same task, using only information about the past history of that component. Here, we define
one type of local scheduler, which uses only the current state, and indicate how our results for the action-
deterministic case carry over to this setting.

Our notion of local scheduler is simply a “sub-automaton”: We could add more expressive power by
allowing the local scheduler to depend on the past execution. This could be formalized in terms of an explicit
function of the past execution, or perhaps in terms of a refinement mapping or other kind of simulation
relation.
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Definition 6.1 We say that task-PIO&” = (P’, R') is asub-task-PIOAof task-PIOAT = (P, R) provided
that all components are identical except thia2t C D, whereD and D’ are the sets of discrete transitions of
P andP’, respectively. Thus, the only difference is thatmay have a smaller set of transitions.

Definition 6.2 Alocal schedulefor a task-PIOAT is any action-deterministic sub-task-PIOADf A prob-
abilistic systenis a pair M = (7, S), whereT is a task-PIOA and is a set of local schedulers far.

Definition 6.3 A probabilistic executiomf a probabilistic systemM = (7, S) is defined to be any proba-
bilistic execution of any task-PIO& € S.

We next define composition for probabilistic systems.

Definition 6.4 If M; = (7;,51) and My = (73, S,) are two probabilistic systems, arii and 7, are
compatible, then theicompositionM; || M, is the probabilistic systen(i7; | 72, S), whereS is the set of
local schedulers fof; || 7 of the formS, || Sz, for someS; € S; and S, € Ss.

Definition 6.5 If M = (7,S) is a probabilistic system, then anvironmentfor M is any environment
(action-deterministic task-PIOA) foF. If M = (7,S) is a probabilistic system, then thexternal be-
havior of M, extbeh(M), is the total function that maps each environment task-P&ar M to the set

Uges tdists(S]|E).

Thus, for each environment, we consider the set of trace distributions that arise from two choices: of a
local scheduler ofM and of a global task scheduyte

Definition 6.6 Two probabilistic system;, S;) and (72, S;) are comparablef 7; and 7, are comparable
task-PIOAs.

We define an implementation relation for comparable probabilistic systems in terms of inclusion of sets
of trace distributions for each probabilistic system based on an environment task-PIOA:

Definition 6.7 If M; = (71,51) and My = (73, S») are comparable probabilistic systems (i.&;, and
T, are comparable), theo\; implementsMs, written M; <, M, provided thatextbeh(M;)(E) C
extbeh(M3)(&) for every environment (action-deterministic) task-Pl©for both M, and M.

We obtain a sufficient condition for implementation of probabilistic systems, in which each local sched-
uler for the low-level system always corresponds to the same local scheduler of the high-level system.

Theorem 6.8 Let M, = (71, S1) and My = (73, S,) be two comparable probabilistic systems. Suppose
there is a total functiory from S; to S, such that, for eveng; € S1, S1 <o f(S1). ThenM; <g M,.

We also obtain a compositionality result for probabilistic systems. The proof is similar to that of Theo-
rem 3.24, for the action-deterministic case.

Theorem 6.9 Let M;, M, be comparable probabilistic systems such thdf <, M., and letM3 be a
probabilistic system compatible with each/ef; and Ms. ThenM; || M3 <o Ma||Ms.

Proof. Let7; = (P4, R4) be any environment (action-deterministic) task-PIOA for héth || M3 and
Ma||M3. Let M, be the trivial probabilistic systertiZy, {7,}). Fix any task schedule; for (71]|73)(|74
and local scheduleP;; of M, || Ms5. Letr be the trace distribution df7; || 73)|| 7, generated by; andP;;.
It suffices to show that is also generated by some task scheguléor (73|/73) |74, local scheduleP;; of
MQHMg, and7>4.

Note thatp, is also a task schedule @ ||(73]|74). SinceP;, is a local scheduler oM || M3, it is
(by definition) of the formP; | P;, whereP; € S; andP; € Ss. Let Py, = Pi||Ps. ThenPi, is a
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local scheduler of\3||My4. Then,p;, P}, andP;, generate the same trace distributiomn the composed
task-PIOAT, || (T3 7a).

Define 75 to be the task-PIOA/5||7,. Note thatZ; is an environment task-PIOA for each @f and
7,. Define the probabilistic systeriv; to be (75, {P%,}), that is, we consider just a singleton set of local
schedulers, containing the one scheduler we are actually interested in.

Now, by assumptionM; <, M. Therefore, there exists a task schedulefor 73||75 and a local
schedulefP;, for P, such thaps, P4, andP;, generate the same trace distributioim the task-PIOAT; || 75.
Note thatp. is also a task schedule f¢%,||75)||7;. Let P5s = PL||P. ThenPl, is a local scheduler of
Ms||Ms. Also, Py is alocal scheduler of1,4. Thenps, Pj; andP; also generate, which suffices to show
the required implementation relationship. ]

7 Conclusions

We have extended the traditional PIOA model with a task mechanism, which provides a systematic way of re-
solving nondeterministic scheduling choices without using information about past history. We have provided
basic machinery for using the resulting task-PIOA framework for verification, including a compositional
trace-based semantics and a new kind of simulation relation. We have proposed extending the framework to
allow additional nondeterminism, resolved by schedulers that use only local information. We have illustrated
the utility of these tools with a case study involving analysis of an Oblivious Transfer cryptographic protocol.

Although our development was motivated by concerns of cryptographic protocol analysis, the notion
of partial-information scheduling is interesting in other settings. For example, some distributed algorithms
work with partial-information adversarial schedulers, in part because the problems they address are provably
unsolvable with perfect-information adversaries [Cha96, Asp03]. Also, partial-information scheduling is
realistic for modeling large distributed systems, in which basic scheduling decisions are made locally, and
not by any centralized mechanism.

Many questions remain in our study of task-PIOAs: First, our notions of external behavior and of im-
plementation €) for task-PIOAs are defined by considering the behavior of the task-PIOAs in all envi-
ronments. It would be interesting to characterize this implementation relation using a smaller subclass
of environments, that is, to find a small (perhaps minimal) subclass suclyithaty 7; if and only if
extbeh(77)(€) C extbeh(73)(&) for every€ in the subclass.

Second, it would be interesting to develop other kinds of simulation relations, perhaps simpler than the
one defined here. For example, we would like to reformulate our current simulation relation notion in terms
of states rather than finite executions, and to understand whether there are simulation relations for task-PIOAs
that have the power dfackward simulationfL V95]. It will also be useful to identify a class of simulation
relations that icompletdfor showing implementationg) of task-PIOAs.

Third, our notion of local schedulers needs further development. Perhaps it can be generalized to allow
history-dependence. We would like better connections between the results on local schedulers and the rest
of the basic theory of action-deterministic task-PIOAs; in particular, we would like to be able to use results
from the action-deterministic case to help prove results for the case with local schedulers. Finally, it remains
to apply the model with local schedulers to interesting distributed algorithm or security protocol examples.

In general, it remains to consider more applications of task-PIOAs, for cryptographic protocol analysis
and for other applications. A next step in cryptographic protocol analysis is to formulate and prove protocol
composition results like those of [PWO01, Can01] in terms of task-PIOAs. In particular, we would like to
pursue a full treatment of Canetti’s Universal Composability results [Can01] in terms of task-PIOAs. This
would provide a full-featured modeling framework for security protocols, which can express computational
notions as in [Can01], while inheriting the simplicity and modularity of the task-PIOAs foundation.

It would also be interesting to try to model perfect-information schedulers, as used for analyzing random-
ized distributed algorithms, using task-PIOAs. Finally, it remains to extend the definitions in this paper to
incorporate timing-dependent behavior and hybrid continuous/discrete behavior, and to prove theorems anal-
ogous to the ones in this paper for those extensions. Preliminary results in this direction appear in [ML06].
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A o-Fields of Execution Fragments and Traces

In order to define probability measures on executions and traces, we need appeofigkie. We begin with
ao-field over the set of execution fragments of a PIDA

Definition A.1 Theconeof a finite execution fragment, denoted by, is the set{a’ € Frags(P)|a <
o'}. ThenFp is theo-field generated by the set of cones of finite execution fragmefits of

A probability measure on execution fragmentsffs then simply a probability measure on thdield
Fp.

SinceQ, I, O, andH are countablekrags™(P) is countable, and hence the set of cones of finite execution
fragments ofP is countable. Therefore, any union of cones is measurable. Moreover, for each finite execution
fragmenty, the sef{a} is measurable since it can be expressed as the intersectibnvaith the complement
of Uy .a<arCor- Thus, any set of finite execution fragments is measurable; in other words, the distisdte
of finite executions is included ifip.

We often restrict our attention to probability measures on finite execution fragments, rather than those on
arbitrary execution fragments. Thus, we define:

Definition A.2 Let ¢ be a probability measure on execution fragmentsPof We say thak is finite if
Frags™(P) is a support fore.

Since any set of finite execution fragments is measurable, any finite probability measure on execution
fragments ofP can also be viewed as a discrete probability measurérags™ (P P). Formally, given any
finite probability measure on execution fragments @, we obtain a discrete probability meastiréte(e)
on Frags™(P) by simply definingdfinite(e)(a) = e({a}) for every finite execution fragment of P. The
difference betweefinite(e) ande is simply that the domain of is Fp, whereas the domain dinite(e) is
Execs™(P). Henceforth, we will ignore the distinction betwegnite(e) ande.

Definition A.3 Lete and¢’ be probability measures on execution fragments of PROA'hen we say that
is aprefixof ¢, denoted by < ¢, if, for each finite execution fragmentof P, e(C,,) < €'(C,).
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Definition A.4 A chainof probability measures on execution fragments of P& an infinite sequence,
€1, €2, - - - Of probability measures on execution fragment®dfuch that, for eacl > 0, ¢; < ¢;41. Given
a chainey, g, ... Of probability measures on execution fragment$ofwe define a new functionon the
o-field generated by cones of execution fragmenf® a8 follows: for each finite execution fragment

€(Cy) = lim €(Cy).

Standard measure theoretic arguments ensure dltan be extended uniquely to a probability measure on
theo-field generated by the cones of finite execution fragments. Furthermore, foi eathe; < e. We call
e thelimit of the chain, and we denote it biyn; .. €;.

If « is a finite execution fragment of a PIOR anda is an action ofP, thenC,, denotes the set of
execution fragments dP that start withaa. The cone construction can also be used to defiadiald of
traces:

Definition A.5 Theconeof a finite traces, denoted byCj, is the sef{s’ € E* UE“ | 8 < ('}, where<
denotes the prefix ordering on sequences. dfield of traces ofP is simply thes-field generated by the set
of cones of finite traces @.

Again, the set of cones is countable and the discsetield on finite traces is included in thefield
generated by cones of traces. We often refer to a probability measure oHitid generated by cones of
traces of a PIOAP as simply gprobability measure on traces G?.

Definition A.6 Letr be a probability measure on tracesBf We say that is finite if the set of finite traces
is a support forr. Any finite probability measure on tracesfcan also be viewed as a discrete probability
measure on the set of finite traces.

Definition A.7 Letr and7’ be probability measures on traces of PIGA Then we say that is a prefix of
7/, denoted by < 7, if, for each finite traces of P, 7(Cj) < 7/(Cp).

Definition A.8 A chainof probability measures on traces of PIJAIs an infinite sequence;, 7o, - - - of
probability measures on traces &f such that, for eacli > 0, 7; < 7;41. Given a chainr, 7s,... of
probability measures on traces &, we define a new functionon thec-field generated by cones of traces
of P as follows: for each finite tracg,

7(Cp) = lim 7:(Cp).

Thenr can be extended uniquely to a probability measure omrtfield of cones of finite traces. Furthermore,
for eachi > 0, 7; < 7. We callr thelimit of the chain, and we denote it biyn; . 7;.

Recall from Section 2.3 the definition of the trace distributidist(e¢) of a probability measure on
execution fragments. Nameblyist(¢) is the image measure efunder the measurable functiorace.

Lemma A.9 Letey,ea,--- be a chain of measures on execution fragments, and betlim; ., ¢;. Then
lim;_, o, tdist(e;) = tdist(e).

Proof. It suffices to show that, for any finite tradelim; . tdist(e;)(Cg) = tdist(e)(Cg). Fix a finite
traceg.

Let © be the set of minimal execution fragments whose trace (SsnThentrace ! (C) = UacoCa,
where all the cones are pairwise disjoint. Therefore, ifar 0, tdist(e;)(Cp) = > . €i(Ca), and
tdist(€) (Cp) = X pce €(Ca)-

Since we have monotone limits here (that is, our limit are also suprema), limits commute with sums and
our goal can be restated as showing:

> Jim i(Ca) = 3 e(Ca).
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Sincelim; ., ¢; = ¢, we havdim; ., ¢;,(C,) = ¢(C,,) for each finite execution fragmeat Therefore, the
two sums above are in fact equal. ]

Thelstate function is a measurable function from the discretBeld of finite execution fragments ¢?
to the discrete-field of states ofP. If ¢ is a probability measure on execution fragment®pfhen we define
the Istate distribution of, Istate(¢), to be the image measure ofinder the functionstate.






