
Implementing and Evaluating

an Eventually-Serializable Data Service

Oleg M. Cheiner

�

Alex A. Shvartsman

y

Replication is used in distributed systems to improve avail-

ability and to increase throughput. The disadvantage of

replication is the additional e�ort required to maintain con-

sistency among replicas when serializing client operations.

Fekete et al. [1] proposed the Eventually-Serializable Data

Service (ESDS) that maintains replicated objects and allows

the clients of the service to relax consistency requirements in

return for improved responsiveness. ESDS guarantees even-

tual consistency of the replicated data, while allowing the

clients to choose between strict operations with guaranteed

consistent responses and non-strict operations that return

responses consistent with some ordering of operations. ESDS

builds on the work of Ladin et al. [3], who de�ned a data

service with relaxed consistency and presented an algorithm

based on lazy replication. The ESDS paper [1] includes a

service speci�cation and an abstract distributed algorithm;

both are given in terms of I/O automata of Lynch and Tut-

tle [2]. The abstract algorithm is shown to implement the

service speci�cation, in the sense of trace inclusion.

The work summarized here aims to extend the formal

foundations of ESDS [1] into the realm of practical system

implementation. We describe implementation and evalua-

tion of a distributed system building block based on the ab-

stract ESDS algorithm. Our contributions are as follows.

(1) We formulate a framework that assists a programmer in

mapping algorithms formally speci�ed using I/O automata

to distributed implementations that use message passing.

(2) Using the framework, we develop an optimized imple-

mentation of ESDS. This implementation is combined with

di�erent data types and clients, thus demonstrating the util-

ity of the service as a building block suitable for serving as

a distributed operating system component. (3) The imple-

mentation has been experimentally evaluated on a network

of workstations. In this setting the implementation scales

well with the number of processors and re
ects a designed

trade-o� between consistency and performance.

We created a distributed implementation of the abstract

ESDS algorithm from [1]. We also designed and imple-

mented an optimized version of the algorithm. Both im-

plementations use a framework for converting I/O automata

to distributed systems that we devised for this purpose.

One of the main design goals was to show that the ESDS

algorithm is suitable for implementation as a building block

�

Carnegie Mellon University, Email: oleg@cmu.edu. The work of

the �rst author was substantially done at the Massachusetts Institute

of Technology.

y

Laboratory for Computer Science, Massachusetts Institute of

Technology, Email: alex@theory.lcs.mit.edu and Department of Com-

puter Science and Engineering, University of Connecticut, Email:

aas@cse.uconn.edu.

from which concrete applications can be build with minimal

e�ort. The algorithm is speci�ed to be independent of the

serial data type of the replicated data object to facilitate its

use as a building block. We built three distinct applications

on top of ESDS to demonstrate that our implementation

preserved this independence.

To make the implementation practical, we re�ned the

ESDS algorithm to include several optimizations. The main

optimizations are as follows. (1) Incremental gossip: Repli-

cas send only new or changed information in gossip messages

used for coordination, signi�cantly reducing communication

cost. (2) Removal of self-gossip: This is a subtle modi�ca-

tion, since the correctness of the abstract algorithm depends

on self-gossip. (3) Memoizing stable state: The ESDS pa-

per [1] suggested an optimization that involves memoizing

stable state at each replica. We implemented a variation

of this optimization that stabilizes operations more aggres-

sively while preserving correctness.

We evaluated the optimized implementation to see how

its response time, throughput, and deviation of responses

from strict consistency depend on the number of replicas

and on the system load. Our data showed a near linear

increase in throughput when the number of replicas is in-

creased from 1 to 10. Due to increased replica coordination

overhead, the throughput using 10 replicas was observed to

be about three times the throughput using 1 replica. On

a system with a constant overall load, the response time

tends to increase with the �rst few additional replicas (due

to coordination overhead), and then level o� as the load on

individual replicas lightens and they are able to keep up with

both coordination activities and user requests.

We also performed tests to observe the intended trade-o�

between response time and consistency when the number of

operations which required strictly consistent responses went

up or down. Predictably, the percentage of inconsistent re-

sponses goes down linearly as the percentage of such strict

operations climbs. On the other hand, the latency of re-

sponses to strict operations is signi�cantly higher than to

non-strict operations. This di�erence between strict and

non-strict operation latencies explains the observed linear

increases of average latency with the increasing percentage

of strict operations. These results con�rmed that ESDS rep-

resents a tradeo� between consistency and performance, and

that it is possible to shift the tradeo� balance in either di-

rection according to the user's needs.

References

[1] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, andA. Shvarts-

man. Eventually-Serializable Data Services. PODC 1996, pp.

300-310.

[2] N. Lynch and M. Tuttle. An introduction to Input/Output

automata. CWI-Quarterly, 2(3):219{246, September 1989.

Centrum voor Wiskunde en Informatica, Amsterdam, The

Netherlands.

[3] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Lazy repli-

cation: Exploiting the semantics of distributed services. ACM

Transactions on Computer Systems, 10(4):360-391,Nov. 1992.


