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1. Introduction

Most interesting problems in concurrent and distributed computing require
processors to coordinate their actions in some way. It can also be important for
protocols solving these problems to tolerate processor failures, and to execute
quickly. Ideally, one would like to optimize all three properties– degree of
coordination, fault-tolerance, and efficiency– but in practice, of course, it is
usually necessary to make trade-offs among them. In this paper, we give a precise
characterization of the trade-offs required by studying a family of basic coordi-
nation problems called k-set agreement.

The k-set agreement problem [Chaudhuri 1993] is defined as follows: Each
processor has a read-only input register and a write-only output register. Each
processor begins with an arbitrary input value in its input register from a set V
containing at least k 1 1 values v0, . . . , vk, and nothing in its output register. A
protocol solves k-set agreement if, in every execution, the nonfaulty processors
halt after writing output values to their output registers that satisfy two condi-
tions:

(1) validity: Every processor’s output value is some processor’s input value, and
(2) agreement: The set of output values chosen must contain at most k distinct

values.

The first condition rules out trivial solutions in which a single value is hard-wired
into the protocol and chosen by all processors in all executions, and the second
condition requires that the processors coordinate their choices to some degree.

This problem is interesting because it defines a family of coordination
problems of increasing difficulty. At one extreme, if n is the number of
processors in the system, then n-set agreement is trivial: each processor simply
chooses its own input value. At the other extreme, 1-set agreement requires that
all processors choose the same output value, a problem equivalent to the
consensus problem.1 Consensus is well known to be the “hardest” problem, in the
sense that all other decision problems can be reduced to it. Consensus arises in
applications as diverse as on-board aircraft control [Wensley et al. 1978],
database transaction commit [Bernstein et al. 1987], and concurrent object
design [Herlihy 1991]. Between these extremes, as we vary the value of k from n
to 1, we gradually increase the degree of processor coordination required.

1 See, for example, Lamport et al. [1982], Pease et al. [1980], Fischer and Lynch [1982], Fischer et al.
[1985], Dolev [1982], and Fischer [1983].
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We consider this family of problems in a synchronous, message-passing model
with crash failures. In this model, n processors communicate by sending messages
over a completely connected network. Computation in this model proceeds in a
sequence of rounds. In each round, processors send messages to other proces-
sors, then receive messages sent to them in the same round, and then perform
some local computation and change state. This means that all processors take
steps at the same rate, and that all messages take the same amount of time to be
delivered. Communication is reliable, but up to f processors can fail by crashing
in the middle of a round. When a processor crashes, it sends some subset of the
messages it is required to send in that round by the protocol, and then sends no
messages in any later round.

The primary contribution of this paper is a tight bound on the amount of time
required to solve k-set agreement. We prove that any protocol solving k-set
agreement requires f/k 1 1 rounds of communication, where f is the bound on
the number of processors allowed to fail in any execution of the protocol, and we
give a protocol that solves k-set agreement in this number of rounds, proving that
this bound is tight. Since consensus is just 1-set agreement, our lower bound
implies the well-known lower bound of f 1 1 rounds for solving consensus
[Fischer and Lynch 1982]. More important, the running time r 5 f/k 1 1
demonstrates that there is a smooth but inescapable tradeoff among the number
f of faults tolerated, the degree k of coordination achieved, and the time r the
protocol must run. This trade-off is illustrated in Figure 1 for a fixed value of f,
and it shows, for example, that 2-set agreement can be achieved in half the time
needed to achieve consensus. The proof of the lower bound is an interesting
geometric proof that combines ideas due to Chaudhuri [1991; 1993], Fischer and
Lynch [1982], Herlihy and Shavit [1999], Dwork and Moses [1990], and Moses
and Tuttle [1988].

Of these ideas, the notion that concepts from topology can be used to analyze
concurrent systems has received a considerable amount of attention. In the past
few years, researchers have developed powerful new tools based on classical
algebraic topology for analyzing tasks in asynchronous models.2 The principal

2 See, for example, Attiya and Rajsbaum [1996], Borowsky and Gafni [1993], Gafni and Koutsoupias
[1999], Herlihy and Rajsbaum [1994; 1995], Herlihy and Shavit [1999], and Saks and Zaharoglou
[2000].

FIG. 1. Trade-off between rounds and degree of coordination.
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innovation of these papers is to model computations as simplicial complexes
(rather than graphs) and to derive connections between computations and the
topological properties of these complexes. Our paper extends this topological
approach in several new ways: it is the first to derive results in the synchronous
model, it derives lower bounds rather than computability results, and it uses
explicit constructions instead of existential arguments. For example, our paper is
closely related to the work of Herlihy and Shavit [1999] and their Asynchronous
Computability Theorem. They work in the asynchronous model, they prove the
existence of a simplicial complex representing the global states of a system at the
end of a protocol, and they prove that this protocol solves k-set agreement if and
only if this simplicial complex is not too highly connected. In contrast, we work in
the synchronous model, and it is not at all clear how to translate their results into
this model. In addition, our proof is constructive and not existential, in the sense
that we explicitly construct a small portion of what would be the synchronous
simplicial complex containing a state violating the requirements of k-set agree-
ment, and hence proving the lower bound. Finally, we prove a lower bound on
time complexity and not an impossibility result.

Although the synchronous model makes some strong (and possibly unrealistic)
assumptions, it is well suited for proving lower bounds. The synchronous model is
a special case of almost every realistic model of a concurrent system we can
imagine, and therefore any lower bound for k-set agreement in this simple model
translates into a lower bound in any more complex model. For example, our
lower bound holds for models that permit messages to be lost, failed processors
to restart, or processor speeds to vary. Moreover, our techniques may be helpful
in understanding how to prove (possibly) stricter lower bounds in more complex
models. Naturally, our protocol for k-set agreement in the synchronous model
does not work in more general models, but it is still useful because it shows that
our lower bound is the best possible in the synchronous model.

This paper is organized as follows: In Section 2, we give an optimal protocol
for k-set agreement, establishing our upper bound for the problem. In Section 3,
we give an informal overview of our matching lower bound, in Section 4 we
define our model of computation, and in Sections 5 through 9 we prove our
lower bound, proving that our bound is tight.

2. An Optimal Protocol for k-Set Agreement

The protocol P given in Figure 2 is an optimal protocol for the k-set agreement
problem. In this protocol, processors repeatedly broadcast input values and keep
track of the least input value received in a local variable best. Initially, a
processor sets best to its own input value. In each of the next f/k 1 1 rounds,

FIG. 2. An optimal protocol P for k-set agreement.
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the processor broadcasts the value of best and then sets best to the smallest value
received in that round from any processor (including itself). In the end, it
chooses the value of best as its output value.

To prove that P is an optimal protocol, we must prove that, in every execution
of P, processors halt in r 5 f/k 1 1 rounds, every processor’s output value is
some processor’s input value, and the set of output values chosen has size at
most k. The first two statements follow immediately from the text of the
protocol, so we need only prove the third. For each time t and processor p, let
bestp,t be the value of best held by p at time t. For each time t, let Best(t) be the
set of values bestq1,t, . . . , bestq,,t where the processors q1, . . . , q, are the
processors active through round t, by which we mean that they send all messages
required by the protocol in all rounds through the end of round t. Notice that
Best(0) is the set of input values, and that Best(r) is the set of chosen output
values. Our first observation is that the set Best(t) never increases from one
round to the next.

LEMMA 1. Best(t) $ Best (t 1 1) for all times t.

PROOF. If b [ Best(t 1 1), then b 5 bestp,t11 for some processor p active
through round t 1 1. Since bestp,t11 is the minimum of the values b1, . . . , b,

sent to p by processors during round t 1 1, we know that b 5 bestq,t for some
processor q that is active through round t. Consequently, b [ Best(t). e

We can use this observation to prove that the only executions in which many
output values are chosen are executions in which many processors fail. We say
that a processor p fails before time t if there is a processor q to which p sends no
message in round t (and p may fail to send to q in earlier rounds as well).

LEMMA 2. If uBest(t)u 5 d 1 1, then at least dt processors fail before time t.

PROOF. We proceed by induction on t. The case of t 5 0 is immediate, so
suppose that t . 0 and that the induction hypothesis holds for t 2 1. Since
uBest(t) u 5 d 1 1 and since Best(t) # Best(t 2 1) by Lemma 1, it follows that
uBest(t 2 1) u $ d 1 1, and the induction hypothesis for t 2 1 implies that there
is a set S of d(t 2 1) processors that fail before time t 2 1. It is enough to show
that there are an additional d processors not contained in S that fail before time
t.

Let b0, . . . , bd be the values of Best(t) written in increasing order. Let q be a
processor with bestq,t set to the largest value bd at time t, and for each value bi

let qi be a processor that sent bi in round t 2 1. The processors q0, . . . , qd are
distinct since the values b0, . . . , bd are distinct, and these processors do not fail
before time t 2 1 since they send a message in round t, so they are not
contained in S. On the other hand, the processors q0, . . . , qd21 sending the
small values b0, . . . , bd21 in round t 2 1 clearly did not send their values to the
processor q setting bestq,t to the large value bd, or q would have set bestq,t to a
smaller value. Consequently, these d processors q0, . . . , qd21 fail in round t and
hence fail before time t. e

Since Best(r) is the set of output values chosen by processors at the end of
round r 5 f/k 1 1, if k 1 1 output values are chosen, then Lemma 2 says that
at least kr processors fail, which is impossible since f , kr. Consequently, the set
of output values chosen has size at most k, and we are done.
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THEOREM 3. The protocol P solves k-set agreement in f/k 1 1 rounds.

The proof of Lemma 2 gives us some idea of how long chains of processor
failures can force the protocol to run for f/k 1 1 rounds, and we have
illustrated one of these long executions in Figure 3, where k 5 2 and f 5 4 and
the protocol must run for f/k 1 1 5 3 rounds. In this figure, the processor IDs
and initial inputs are indicated on the left, time is indicated on the bottom, and
each node representing the state of a processor q at a time t is labeled with the
value bestq,t in that state. In this figure, we illustrate only the messages sent by
faulty processors during their failing rounds, and leave implicit the fact that
processors broadcast messages to all other processors in all other rounds before
they crash.

In this execution, all processors begin with input value 3, except that proces-
sors p1 and p2 start with 1 and 2. Initially, each processor q sets bestq,0 to its
input value. Processors p1 and p2 crash during round one and send their values 1
and 2 only to processors p3 and p4, respectively. At the end of the first round, all
processors q set bestq,1 to 3, except for p3 and p4 that set bestq,1 to 1 and 2.
Processors p3 and p4 crash during round two and send their values 1 and 2 only
to processors p5 and p6. If the processors were to halt at the end of the second
round, they would end up choosing three distinct values instead of two, since the
two failure chains have effectively hidden the two input values 1 and 2 from the
last processor p7. Since the processors are supposed to be solving k-set agree-
ment for k 5 2, the processors must continue for one more round, in which all
processors will broadcast to each other (no processor can fail in the last round
since all f 5 4 failures have occurred) and choose 1 as their final value.

With this example in mind, turning our attention to the lower bound, if an
adversary controlling the failure of processors were to try to disrupt a k-set
agreement protocol by using f failures to hide k of the input values, how long
could the adversary keep these values hidden? It is clear that the adversary can
maintain k distinct failure chains for at most f/k rounds, since it must fail k
processors each round, allowing the protocol to halt after just f/k 1 1 rounds.
With this intuition, we now turn our attention to proving that any protocol for
k-set agreement requires f/k 1 1 rounds of communication, assuming n $

FIG. 3. An illustration of how chains of processor failures can force the optimal protocol for k-set
agreement to run for f/k 1 1 rounds, where k 5 2 and f 5 4.
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f 1 k 1 1 to rule out the degenerate case where k or fewer processors remain in
the last round and can solve k-set agreement simply by choosing any of the input
values as their output value.

3. An Overview of the Lower Bound Proof

We start with an informal overview of the ideas used in the lower bound proof.
For the remainder of this paper, suppose P is a protocol that solves k-set
agreement and tolerates the failure of f out of n processors, and suppose P halts
in r , f/k 1 1 rounds. This means that all nonfaulty processors have chosen
an output value at time r in every execution of P. In addition, suppose n $
f 1 k 1 1, which means that at least k 1 1 processors never fail. Our goal is to
consider the global states that occur at time r in executions of P, and to show that
in one of these states there are k 1 1 processors that have chosen k 1 1 distinct
values, violating k-set agreement. Our strategy is to consider the local states of
processors that occur at time r in executions of P, and to investigate the
combinations of these local states that occur in global states. This investigation
depends on the construction of a geometric object. In this section, we use a
simplified version of this object to illustrate the general ideas in our proof.

Since consensus is a special case of k-set agreement, it is helpful to review the
standard proof of the f 1 1 round lower bound for consensus3 to see why new
ideas are needed for k-set agreement. Suppose that the protocol P is a consensus
protocol, which means that in all executions of P all nonfaulty processors have
chosen the same output value at time r. Two global states g1 and g2 at time r are
said to be similar if some nonfaulty processor p has the same local state in both
global states. The crucial property of similarity is that the decision value of any
processor in one global state completely determines the decision value for any
processor in all similar global states. For example, if all processors decide v in g1,
then certainly p decides v in g1. Since p has the same local state in g1 and g2, and
since p’s decision value is a function of its local state, processor p also decides v
in g2. Since all processors agree with p in g2, all processors decide v in g2, and it
follows that the decision value in g1 determines the decision value in g2. A
similarity chain is a sequence of global states, g1, . . . , g,, such that gi is similar to
gi11. A simple inductive argument shows that the decision value in g1 determines
the decision value in g,. The lower bound proof involves showing that two time r
global states of P, one in which all processors start with 0 and one in which all
processors start with 1, lie on a single similarity chain. Since there is a similarity
chain from one state to the other, processors must choose the same value in both
states, violating the definition of consensus.

The problem with k-set agreement is that the decision values in one global
state do not determine the decision values in similar global states. If p has the
same local state in g1 and g2, then p must choose the same value in both states,
but the values chosen by the other processors are not determined. Even if n 2 1
processors have the same local state in g1 and g2, the decision value of the last
processor is still not determined. The fundamental insight in this paper is that
k-set agreement requires considering all “degrees” of similarity at once, focusing

3 See, for example, Fischer and Lynch [1982], Dolev and Strong [1983], Merritt [1985], and Dwork
and Moses [1990].
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on the number and identity of local states common to two global states. While
this seems difficult–if not impossible–to do using conventional graph theoretic
techniques like similarity chains, there is a geometric generalization of similarity
chains that provides a compact way of capturing all degrees of similarity
simultaneously, and it is the basis of our proof.

A simplex is just the natural generalization of a triangle to n dimensions: for
example, a 0-dimensional simplex is a vertex, a 1-dimensional simplex is an edge
linking two vertices, a 2-dimensional simplex is a solid triangle, and a 3-dimen-
sional simplex is a solid tetrahedron. We can represent a global state for an
n-processor protocol as an (n 2 1)-dimensional simplex [Chaudhuri 1993;
Herlihy and Shavit 1999], where each vertex is labeled with a processor ID and
local state. If g1 and g2 are global states in which p1 has the same local state, then
we “glue together” the vertices of g1 and g2 labeled with p1. Figure 4 shows how
these global states glue together in a simple protocol in which each of three
processors repeatedly sends its state to the others. Each processor begins with a
binary input. The first picture shows the possible global states after zero rounds:
since no communication has occurred, each processor’s state consists only of its
input. It is easy to check that the simplexes corresponding to these global states
form an octahedron. The next picture shows the complex after one round. Each
triangle corresponds to a failure-free execution, each free-standing edge to a
single-failure execution, and so on. The third picture shows the possible global
states after three rounds.

The set of global states after an r-round protocol is quite complicated (Figure
5), but it contains a well-behaved subset of global states, which we call the
Bermuda Triangle B, since all fast protocols vanish somewhere in its interior. The

FIG. 4. Global states for zero-, one-, and two-round protocols.
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Bermuda Triangle (Figure 6) is constructed by starting with a large k-dimen-
sional simplex, and triangulating it into a collection of smaller k-dimensional
simplexes. We then label each vertex with an ordered pair ( p, s) consisting of a
processor identifier p and a local state s in such a way that for each simplex T in
the triangulation there is a global state g consistent with the labeling of the
simplex: for each ordered pair ( p, s) labeling a corner of T, processor p has local
state s in global state g.

To illustrate the process of labeling vertices, Figure 7 shows a simplified
representation of a two-dimensional Bermuda Triangle B. It is the Bermuda
Triangle for a protocol P for 5 processors solving 2-set agreement in 1 round. We
have labeled grid points with local states, but we have omitted processor IDs and
many intermediate nodes for clarity. The local states in the figure are repre-
sented by expressions such as bb?aa. Given three distinct input values a, b, c,
we write bb?aa to denote the local state of a processor p at the end of a round in
which the first two processors have input value b and send messages to p, the
middle processor fails to send a message to p, and the last two processors have
input value a and send messages to p. In Figure 7, following any horizontal line
from left to right across B, the input values are changed from a to b. The input
value of each processor is changed– one after another– by first silencing the
processor, and then reviving the processor with the input value b. Similarly,
moving along any vertical line from bottom to top, processors’ input values
change from b to c.

The complete labeling of the Bermuda Triangle B shown in Figure 7–which
would include processor IDs– has the following property. Let ( p, s) be the label
of a grid point x. If x is a corner of B, then s specifies that each processor starts
with the same input value, so p must choose this value if it finishes protocol P in
local state s. If x is on an edge of B, then s specifies that each processor starts
with one of the two input values labeling the ends of the edge, so p must choose

FIG. 5. The Bermuda Triangle is a highly structured subcomplex of the simplicial complex
representing all global states of an r-round protocol, such as the simplicial complexes illustrated in
Figure 4 for the cases of zero-, one-, and two-round protocols.
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one of these values if it halts in state s. Similarly, if x is in the interior of B, then
s specifies that each processor starts with one of the three values labeling the
corners of B, so p must choose one of these three values if it halts in state s.

FIG. 6. Bermuda Triangle with simplex representing typical global state.

FIG. 7. A simplified representation of the Bermuda Triangle for 5 processors and a 1-round
protocol for 2-set agreement. This representation omits the processor IDs labeling the vertices to
focus on how the local states change along each dimension of the Bermuda Triangle.
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Now let us “color” each grid point with output values (Figure 8). Given a grid
point x labeled with ( p, s), let us color x with the value v that p chooses in local
state s at the end of P. This coloring of B has the property that the color of each
of the corners is determined uniquely, the color of each point on an edge
between two corners is forced to be the color of one of the corners, and the color
of each interior point can be the color of any corner. Colorings with this property
are called Sperner colorings, and have been studied extensively in the field of
algebraic topology. At this point, we exploit a remarkable combinatorial result
first proved in 1928: Sperner’s Lemma [Spanier 1966, p. 151] states that any
Sperner coloring of any triangulated k-dimensional simplex must include at least
one simplex whose corners are colored with all k 1 1 colors. In our case,
however, this simplex corresponds to a global state in which k 1 1 processors
choose k 1 1 distinct values, which contradicts the definition of k-set agreement.
Thus, in the case illustrated above, there is no protocol for 2-set agreement
halting in 1 round.

We note that the basic structure of the Bermuda Triangle and the idea of
coloring the vertices with decision values and applying Sperner’s Lemma have
appeared in previous work by Chaudhuri [1991; 1993]. In that work, she also
proved a lower bound of f/k 1 1 rounds for k-set agreement, but for a very
restricted class of protocols. In particular, a protocol’s decision function can
depend only on vectors giving partial information about which processors started
with which input values, but cannot depend on any other information in a
processor’s local state, such as processor identities or message histories. The
proof of her lower bound depends on this restriction to a specific class of
protocols. The technical challenge in this paper is to construct a labeling of
vertices with processor IDs and local states that will allow us to prove a lower
bound for k-set agreement for arbitrary protocols.

Our approach consists of four parts. First, we construct long sequences of
global states that we call similarity chains, one chain for each pair of input values.
For example, for the pair of values a and b, we construct a long sequence of
global states that begins with a global state in which all input values are a, ends
with a global state in which all input values are b, and in between systematically

FIG. 8. Sperner’s Lemma.
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changes input values from a to b. These changes are made so gradually, however,
that for any two adjacent global states in the sequence, at most one processor can
distinguish them; that is, they are similar to all other processors. Second, we label
the points of B with global states. We label the points on each edge of B with a
similarity chain of global states. For example, consider the edge between the
corner where all processors start with input value a and the corner where all
processors start with b. We label this edge with the similarity chain for a and b,
as described above. We label each remaining point using a combination of the
global states on the edges. Third, we assign nonfaulty processors to points in such
a way that the processor labeling a point has the same local state in the global
states labeling all adjacent points. Finally, we project each global state onto the
associated nonfaulty processor’s local state, and label the point with the resulting
processor-state pair.

4. The Model

We use a synchronous, message-passing model with crash failures. The system
consists of n processors, p1, . . . , pn. Processors share a global clock that starts
at 0 and advances in increments of 1. Computation proceeds in a sequence of
rounds, with round r lasting from time r 2 1 to time r. Computation in a round
consists of three phases: first each processor p sends messages to some of the
processors in the system, possibly including itself, then it receives the messages
sent to it during the round, and finally it performs some local computation and
changes state. We assume that the communication network is totally connected:
every processor is able to send distinct messages to every other processor in every
round. We also assume that communication is reliable (although processors can
fail): if p sends a message to q in round r, then the message is delivered to q in
round r.

Processors follow a deterministic protocol that determines what messages a
processor should send and what output a processor should generate. A protocol
has two components: a message component that maps a processor’s local state to
the list of messages it should send in the next round, and an output component
that maps a processor’s local state to the output value (if any) that it should
choose. Processors can be faulty, however, and any processor p can simply stop in
any round r. In this case, processor p follows its protocol and sends all messages
the protocol requires in rounds 1 through r 2 1, sends some subset of the
messages it is required to send in round r, and sends no messages in rounds after
r. We say that p is silent from round r if p sends no messages in round r or later.
We say that p is active through round r if p sends all messages required by the
protocol in round r and earlier.

A full-information protocol is one in which every processor broadcasts its entire
local state to every processor, including itself, in every round [Pease et al. 1980;
Fischer and Lynch 1982; Hadzilacos 1983]. One nice property of full-information
protocols is that every execution of a full-information protocol P has a compact
representation called a communication graph [Moses and Tuttle 1988]. The
communication graph & for an r-round execution of P is a two-dimensional
two-colored graph. The vertices form an n 3 r grid, with processor names 1
through n labeling the vertical axis and times 0 through r labeling the horizontal
axis. The node representing processor p at time i is labeled with the pair ^p, i&.
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Given any pair of processors p and q and any round i, there is an edge between
^p, i 2 1& and ^q, i& whose color determines whether p successfully sends a
message to q in round i: the edge is green if p succeeds, and red otherwise. In
addition, each node ^p, 0& is labeled with p’s input value. Figure 9 illustrates a
three round communication graph. In this figure, green edges are denoted by
solid lines and red edges by dashed lines. We refer to the edge between ^p, i 2 1&
and ^q, i& as the round i edge from p to q , and we refer to the node ^p, i 2 1& as
the round i node for p since it represents the point at which p sends its round i
messages. We define what it means for a processor to be silent or active in terms
of communication graphs in the obvious way.

In the crash failure model, a processor is silent in all rounds following the
round in which it stops. This means that all communication graphs representing
executions in this model have the property that if a round i edge from p is red,
then all round j $ i 1 1 edges from p are red, which means that p is silent from
round i 1 1. We assume that all communication graphs in this paper have this
property, and we note that every r-round graph with this property corresponds to
an r-round execution of P.

Since a communication graph & describes an execution of P, it also determines
the global state at the end of P, so we sometimes refer to & as a global
communication graph. In addition, for each processor p and time t, there is a
subgraph of & that corresponds to the local state of p at the end of round t, and
we refer to this subgraph as a local communication graph. The local communica-
tion graph for p at time t is the subgraph &( p, t) of & containing all the
information visible to p at the end of round t. Namely, &( p, t) is the subgraph
induced by the node ^p, t& and all prior nodes ^q, t9& such that t9 , t and there
is a path from ^q, t9& to ^p, t& consisting of 0 or 1 red edges followed by 0 or
more green edges.

In the remainder of this paper, we use graphs to represent states. Wherever we
used “state” in the informal overview of Section 3, we now substitute the word
“graph.” Furthermore, we defined a full-information protocol to be a protocol in
which processors broadcast their local states in every round, but we now assume
that processors broadcast the local communication graphs representing these
local states instead (as in Moses and Tuttle [1988]). In addition, we assume that
all executions of a full-information protocol run for exactly r rounds and produce
output at exactly time r. All local and global communication graphs are graphs at
time r, unless otherwise specified.

The crucial property of a full-information protocol is that every protocol can
be simulated by a full-information protocol, and hence that we can restrict
attention to full-information protocols when proving the lower bound in this
paper:

FIG. 9. A three-round communication graph.
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LEMMA 4. If there is an n-processor protocol solving k-set agreement with f
failures in r rounds, then there is an n-processor full-information protocol solving
k-set agreement with f failures in r rounds.

5. Constructing the Bermuda Triangle

In this section, we define the basic geometric constructs used in our lower bound
proof. We begin with some preliminary definitions. A simplex S is the convex hull
of k 1 1 affinely-independent4 points x0, . . . , xk in Euclidean space. This
simplex is a k-dimensional volume, the k-dimensional analogue of a solid triangle
or tetrahedron. The points x0, . . . , xk are called the vertices of S, and k is the
dimension of S. We sometimes call S a k-simplex when we wish to emphasize its
dimension. A simplex F is a face of S if the vertices of F form a subset of the
vertices of S (which means that the dimension of F is at most the dimension of
S). A set of k-simplexes S1, . . . , S, is a triangulation of S if S 5 S1 ø . . . ø S,

and the intersection of Si and Sj is a face of each5 for all pairs i and j. The
vertices of a triangulation are the vertices of the Si. Any triangulation of S
induces triangulations of its faces in the obvious way.

The construction of the Bermuda Triangle is illustrated in Figure 10. Let @ be
the k-simplex in k-dimensional Euclidean space with vertices

~0, . . . , 0! , ~N, 0, . . . , 0! , ~N, N, 0, . . . , 0! , . . . , ~N, . . . , N! ,

where N is a huge integer defined later in Section 6.3. The Bermuda Triangle B is
a triangulation of @ defined as follows. The vertices of B are the grid points
contained in @: these are the points of the form x 5 ( x1, . . . , xk), where the xi

are integers between 0 and N satisfying x1 $ x2 $ . . . $ xk.

4 Points x0, . . . , xk are affinely independent if x1 2 x0, . . . , xk 2 x0 are linearly independent.
5 Notice that the intersection of two arbitrary k-dimensional simplexes Si and Sj will be a volume of
some dimension, but it need not be a face of either simplex.

FIG. 10. Construction of Bermuda Triangle.

925Tight Bounds for k-Set Agreement



Informally, the simplexes of the triangulation are defined as follows: pick any
grid point and walk one step in the positive direction along each dimension. The
k 1 1 points visited by this walk define the vertices of a simplex, one of the six
simplexes illustrated in Figure 11 that can be glued together to form a unit cube.
The triangulation B consists of all such simplexes filling the interior of B. For
example, the 2-dimensional Bermuda Triangle is illustrated in Figure 7. This
triangulation, known as Kuhn’s triangulation, is defined formally as follows
[Chaudhuri 1993]. Let e1, . . . , ek be the unit vectors; that is, ei is the vector
(0, . . . , 1, . . . , 0) with a single 1 in the ith coordinate. A simplex is determined
by a point y0 and an arbitrary permutation f1, . . . , fk of the unit vectors e1, . . . ,
ek: the vertices of the simplex are the points yi 5 yi21 1 f i for all i . 0. When
we list the vertices of a simplex, we always write them in the order y0, . . . , yk in
which they are visited by the walk.

For brevity, we refer to the vertices of @ as the corners of B. The “edges” of @
are partitioned to form the edges of B. More formally, the triangulation B
induces triangulations of the one-dimensional faces (line segments connecting
the vertices) of @, and these induced triangulations are called the edges of B.
The simplexes of B are called primitive simplexes.

Each vertex of B is labeled with an ordered pair ( p, +) consisting of a
processor ID p and a local communication graph +. As illustrated in the
overview in Section 3, the crucial property of this labeling is that if S is a
primitive simplex with vertices y0, . . . , yk, and if each vertex yi is labeled with a
pair (qi, + i), then there is a global communication graph & such that each qi is
nonfaulty in & and has local communication graph + i in &.

Constructing this processor-graph labeling is the primary technical challenge
confronted in this paper, and the subject of the next three sections. We give a
three-step procedure for labeling each vertex with a processor p and a global
communication graph &, and then we simply replace & with p’s local communi-
cation graph + in & to obtain the final labeling. In Section 6, we show how to
construct long chains of global communication graphs in which adjacent graphs
are nearly indistinguishable, and we use these sequences of graphs to label the
vertices along the edges of the Bermuda Triangle. In Section 7, we show how to
merge these graphs labeling vertices along the edges to obtain the graphs
labeling the interior vertices. Finally, in Section 8, we show how to assign
processors to vertices.

FIG. 11. Simplex generation in Kuhn’s triangulation.
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6. Step 1: Similarity Chain Construction

In this section, we show how to construct exponentially long sequences of global
communication graphs in which processor input values are slowly changed from
one value to another as we move along the sequence. These chains are called
similarity chains since each pair of adjacent graphs in the sequence differ so little
that the two graphs are indistinguishable (or similar) to all but perhaps one
processor. Our technique for constructing these sequences is essentially that of
Dwork and Moses [1990] and Moses and Tuttle [1988], with two important
differences. First, we augment the definition of a communication graph to
include tokens on nodes of the graph to represent processor failures. By shifting
these tokens among the nodes as we move from graph to graph in the similarity
chain, we can simplify some bookkeeping required to assign processor IDs to
vertices of the Bermuda Triangle in Section 8. Second, instead of defining
sequences of graphs directly, we define a small collection of graph operations
that make minor changes to a graph, so that adjacent graphs in the sequence are
the result of applying a graph operation to the first graph to generate the second.
This additional machinery helps us reason about the graphs appearing in
similarity chains when we use these graphs to compute the graphs assigned to
nodes on the interior of the Bermuda Triangle in Section 7. Because our
operations make changes that are so small and because of the token shifting, our
similarity chains are even longer and the difference between adjacent graphs are
even more minute than in similarity chains used in prior work.

6.1. AUGMENTED COMMUNICATION GRAPHS. We augment the definition of a
communication graph by placing tokens on the nodes of a graph so that if
processor p fails in round i, then there is a token on the node ^p, j 2 1& for
processor p in some round j # i no later than round i (Figure 12). In this sense,
every processor failure is “covered” by a token, and the number of processors
failing in the graph is bounded from above by the number of tokens. In the next
few sections, when we construct long sequences of these graphs, tokens will be
moved between adjacent processors within a round, and used to guarantee that
processor failures in adjacent graphs change in a orderly fashion. For every value
of ,, we define graphs with exactly , tokens placed on nodes in each round, but
we will be most interested in the two cases with , equal to 1 and k.

For each value , . 0, we define an ,-graph &, an augmented communication
graph, to be a communication graph with zero or more tokens placed on each
node of the graph in a way that satisfies the following conditions for each round
i, 1 # i # r:

(1) The total number of tokens on round i nodes is exactly ,.

FIG. 12. Three-round communication graph with one token per round.
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(2) If a round i edge from p is red, then there is a token on a round j # i node
for p.

(3) If a round i edge from p is red, then p is silent from round i 1 1.

We say that p is covered by a round i token if there is a token on the round i node
for p, we say that p is covered in round i if p is covered by a round j # i token,
and we say that p is covered in a graph if p is covered in any round. Similarly, we
say that a round i edge from p is covered if p is covered in round i. The second
condition says that every red edge is covered by a token, and this together with
the first condition implies that at most ,r processors fail in an ,-graph. In
particular, when r # f/k, at most kr # f processors fail in a k-graph. We often
refer to an ,-graph as a graph when the value of , is clear from context or
unimportant. We emphasize that the tokens are simply an accounting trick, and
have no meaning as part of the global or local state in the underlying communi-
cation graph.

We define a failure-free ,-graph to be an ,-graph in which all edges are green,
and all round i tokens are on processor p1 in all rounds i.

6.2. GRAPH OPERATIONS. We now define four operations on augmented
graphs that make only minor changes to a graph. In particular, the only change
an operation makes is to change the color of a single edge, to change the value of
a single processor’s input, or to move a single token between adjacent processors
within the same round. The operations are defined as follows (see Figure 13):

(1) delete(i, p, q): This operation changes the color of the round i edge from p
to q to red, and has no effect if the edge is already red. This makes the
delivery of the round i message from p to q unsuccessful. It can only be
applied to a graph if p and q are silent from round i 1 1, and p is covered in
round i.

(2) add(i, p, q): This operation changes the color of the round i edge from p to
q to green, and has no effect if the edge is already green. This makes the
delivery of the round i message from p to q successful. It can only be applied
to a graph if p and q are silent from round i 1 1, processor p is active
through round i 2 1, and p is covered in round i.

(3) change( p, v): This operation changes the input value for processor p to v,
and has no effect if the value is already v. It can only be applied to a graph if
p is silent from round 1, and p is covered in round 1.

(4) move(i, p, q): This operation moves a round i token from ^p, i 2 1& to
^q, i 2 1&, and is defined only for adjacent processors p and q (that is,
{ p, q} 5 { pj, pj11} for some j). It can only be applied to a graph if p is
covered by a round i token, and all red edges are covered by other tokens.

It is obvious from the definition of these operations that they preserve the
property of being an ,-graph: if & is an ,-graph and t is a graph operation, then
t(&) is an ,-graph. We define delete, add, and change operations on communica-
tion graphs in exactly the same way, except that the conditions of the form “p is
covered in round i” are omitted.

6.3. GRAPH SEQUENCES. We now define a sequence s[v] of graph operations
that can be applied to any failure-free graph & to transform it into the

928 S. CHAUDHURI ET AL.



failure-free graph &[v] in which all processors have input v. It is crucial to our
construction that these sequences s[v] differ only in the value v to which the
input values are being changed by the sequence. For example, we might have two
sequences

s@a# 5 · · ·delete~1, p, pn!change~ p, a!add~1, p, pn! · · ·

s@b# 5 · · ·delete~1, p, pn!change~ p, b!add~1, p, pn! · · ·

changing input values to a and b, respectively, but these sequences are identical
except for the fact that the value a appears in one exactly where the value b
appears in the other. For this reason, it is convenient to be able to replace the
values a and b appearing in the two sequences with a single symbol V and define
a parameterized sequence

s@V# 5 · · ·delete~1, p, pn!change~ p, V!add~1, p, pn! · · ·

so that the two sequences s[a] and s[b] can be obtained simply by replacing the
symbol V with a and b, respectively. We define a parameterized sequence s[V] to

FIG. 13. Operations on augmented communication graphs.
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be a sequence of graph operations with the symbol V appearing as a parameter to
some of the graph operations in the sequence. In what follows, we will construct
a parameterized sequence s[V] with the property that for all values v and all
graphs &, the sequence s[v] transforms & into &[v].

Given a graph &, let red(&, p, m) and green(&, p, m) be graphs identical to
& except that all edges from p in rounds m, . . . , r are red and green,
respectively. We define these graphs only if

(1) p is covered in round m in &,
(2) all faulty processors are silent from round m (or earlier) in &, and
(3) all tokens are on p1 in rounds m 1 1, . . . , r in &.

In addition, we define the graph green(&, p, m) only if

(4) p is active through round m 2 1 in &.

If & is an ,-graph and red(&, p, m) and green(&, p, m) are both defined, then
these conditions ensure that red(&, p, m) and green(&, p, m) are both
,-graphs.

In the case of ordinary communication graphs, a result by Moses and Tuttle
[1988] implies that there is a sequence of graphs called a “similarity chain” from
& to red(&, p, m) and from & to green(&, p, m). In their proof–a refinement of
similar proofs by Dwork and Moses [1990] and others–the sequence of graphs
they construct has the property that each graph in the chain can be obtained
from the preceding graph by applying a sequence of the add, delete, and change
graph operations defined above. Essentially the same proof works for augmented
communication graphs, provided we expand the sequence of graph operations by
inserting move operations between the add, delete, and change operations to
move the tokens among the nodes appropriately. With this modification, we can
prove the following. Let faulty(&) be the set of processors that fail in &.

LEMMA 5. For every processor p, round m, and set p of processors, there are
sequences silencep( p, m) and revivep( p, m) such that for all graphs &:

(1) If red(&, p, m) is defined and p 5 faulty(&), then silencep( p, m)
(&) 5 red(&, p, m).

(2) If green(&, p, m) is defined and p 5 faulty(&), then revivep( p, m)
(&) 5 green(&, p, m).

PROOF. We proceed by reverse induction on m. Suppose m 5 r. Define

silencep~ p, r! 5 delete~r, p, p1! · · ·delete~r, p, pn!

revivep~ p, r! 5 add~r, p, p1! · · ·add~r, p, pn! .

For part (1), let & be any graph and suppose red(&, p, r) is defined. For each i
with 0 # i # n, let & i be the graph identical to & except that the round r edges
from p to p1, . . . , pi are red. Since red(&, p, r) is defined, condition 1 implies
that p is covered in round r in &. Since p is covered in round r, each & i21 is a
graph since it differs from & only in some new red edges from p in round r, and
delete(r, p, pi) can be applied to & i21 to transform it to & i. Since & 5 &0 and
&n 5 red(&, p, r), it follows that silencep( p, r) transforms & to red(&, p, r).
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For part (2), let & be any graph and suppose green(&, p, r) is defined. The proof
of this part is the direct analogue of the proof of part (1). The only difference is
that since we are coloring round r edges from p green instead of red, we must
verify that p is active through round r 2 1 in &, but this follows immediately
from condition 4.

Suppose m , r and the induction hypothesis holds for m 1 1. Define p9 5 p
ø { p} and define

set~m 1 1, pi! 5 move~m 1 1, p1, p2! · · ·move~m 1 1, pi21, pi!

reset~m 1 1, pi! 5 move~m 1 1, pi, pi21! · · ·move~m 1 1, p2, p1! .

The set function moves the token from p1 to pi and the reset function moves the
token back from pi to p1.

Define block(m, p, pi) to be delete(m, p, pi) if pi [ p9, and otherwise

silencep9~ pi, m 1 1!

set~m 1 1, pi!

delete~m, p, pi!

reset~m 1 1, pi! .
revivep9ø{ pi}~ pi, m 1 1! .

Define unblock(m, p, pi) to be add(m, p, pi) if pi [ p9, and otherwise

silencep9~ pi, m 1 1!

set~m 1 1, pi!

add~m, p, pi!

reset~m 1 1, pi! .
revivep9ø{ pi}~ pi, m 1 1! .

Finally, define

block~m, p! 5 block~m, p, p1! · · ·block~m, p, pn!

unblock~m, p! 5 unblock~m, p, p1! · · ·unblock~m, p, pn!

and define

silencep~ p, m! 5 silencep~ p, m 1 1!block~m, p!

revivep~ p, m! 5 silencep~ p, m 1 1!unblock~m, p!revivep9~ p, m 1 1! .

For part (1), let & be any graph, and suppose red(&, p, m) is defined and p 5
faulty(&). Since red(&, p, m) is defined, the graph red(&, p, m 1 1) is also
defined, and the induction hypothesis for m 1 1 states that silencep( p, m 1 1)
transforms & to red(&, p, m 1 1). We will now show that block(m, p)
transforms red(&, p, m 1 1) to red(&, p, m), and we will be done. For each i
with 0 # i # n, let & i be the graph identical to & except that p is silent from
round m 1 1 and the round m edges from p to p1, . . . , pi are red in & i. Since
red(&, p, m) is defined, condition 1 implies that p is covered in round m in &.
For each i with 0 # i # n, it follows that & i really is a graph and that p9 5
faulty(& i). Since red(&, p, m 1 1) 5 &0 and &n 5 red(&, p, m), it is enough
to show that block(m, p, pi) transforms & i21 to & i for each i with 1 # i # n.
The proof of this fact depends on whether pi [ p9, so we consider two cases.
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Consider the easy case with pi [ p9. We know that p is covered in round m in
& i21 since it is covered in & by condition 1. We know that p is silent from round
m 1 1 in & i21 since it is silent in &0 5 red(&, p, m 1 1). We know that pi is
silent from round m 1 1 in & i21 since pi [ p9 implies (assuming that pi is not
just p again) that pi fails in &, and hence is silent from round m 1 1 in & by
condition 2. This means that block(m, p, pi) 5 delete(m, p, pi) can be applied
to & i21 to transform & i21 to & i.

Now consider the difficult case when pi [y p9. Let * i21 and * i be graphs
identical to & i21 and & i, except that a single round m 1 1 token is on pi in * i21

and * i. Condition 3 guarantees that all round m 1 1 tokens are on p1 in &, and
hence in & i21 and & i, so * i21 and * i really are graphs. In addition, set(m 1 1,
pi) transforms & i21 to * i21, and reset(m 1 1, pi) transforms * i to & i. Let ( i21

and ( i be identical to * i21 and * i except that pi is silent from round m 1 1 in
( i21 and ( i. Processor pi is covered in round m 1 1 in * i21 and * i, so ( i21

and ( i really are graphs. In fact, pi does not fail in & since pi [y p9, so pi is active
through round m in ( i21 and ( i, so ( i21 5 red(* i21, pi, m 1 1) and * i 5
green(( i, pi, m 1 1). The inductive hypothesis for m 1 1 states that
silencep9( pi, m 1 1) transforms * i21 to ( i21, and revivep9ø{ pi}( pi, m 1 1)
transforms ( i to * i. Finally, notice that the only difference between ( i21 and ( i

is the color of the round m edge from p to pi. Since p is covered in round m and
p and pi are silent from round m 1 1 in both graphs, we know that
delete(m, p, pi) transforms ( i21 to ( i. It follows that block(m, p, pi)
transforms & i21 to & i, and we are done.

For part (2), let & be any graph and suppose green(&, p, m) is defined and
p 5 faulty(&). Since green(&, p, m) is defined, let &9 5 green(&, p, m). Now
let * and *9 be graphs identical to & and &9 except that p is silent from round
m 1 1 in * and *9. Since green(&, p, m) is defined, processor p is covered in
round m in & by condition 1 and hence in &9, so * and *9 really are graphs. In
addition, since green(&, p, m) is defined, processor p is active through round
m 2 1 in & by condition 4, so processor p is active through round m in &9 and
*9. This means that green(*9, p, m 1 1) is defined, and in fact we have * 5
red(&, p, m 1 1) and &9 5 green(*9, p, m 1 1). The induction hypothesis for
m 1 1 states that silencep( p, m 1 1) transforms & to * and that revivep9

( p, m 1 1) transforms *9 to &9. To complete the proof, we need only show that
unblock(m, p) transforms * to *9. The proof of this fact is the direct analogue
of the proof in part (1) that block(m, p) transforms red(&, p, m 1 1) to
red(&, p, m). The only difference is that since we are coloring round m edges
from p with green instead of red, we must verify that p is active through round
m 2 1 in the graphs * i analogous to & i in the proof of part (1), but this follows
immediately from condition 4. e

Given a graph &, let & i[v] be a graph identical to &, except that processor pi

has input v. Using the preceding result, we can transform & to & i[v].

LEMMA 6. For each i, there is a parameterized sequence si[V] with the property
that for all values v and failure-free graphs &, the sequence si[v] transforms & to
&i[v].
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PROOF. Define

set~1, pi! 5 move~1, p1, p2! · · ·move~1, pi21, pi!

reset~1, pi! 5 move~1, pi, pi21! · · ·move~1, p2, p1!

and define

s i@V# 5 set~1, pi!silenceÀ~ pi, 1!change~ pi,V!revive{ pi}~ pi, 1!reset~1, pi!

where À denotes the empty set. Now consider any value v and any failure-free
graph &, and let &9 5 & i[v]. Since & and &9 are failure-free graphs, all round 1
tokens are on p1, so let * and *9 be graphs identical to & and &9 except that a
single round 1 token is on pi in * and *9. We know that * and *9 are graphs,
and that set(1, pi) transforms & to * and reset(1, pi) transforms *9 to &9.
Since pi is covered in * and *9, let ( and (9 be identical to * and *9 except that
pi is silent from round 1. We know that ( and (9 are graphs, and it follows by
Lemma 5 that silenceÀ( pi, 1) transforms * to ( and that revive{ pi}( pi, 1)
transforms (9 to *9. Finally, notice that ( and (9 differ only in the input value
for pi. Since pi is covered and silent from round 1 in both graphs, the operation
change( pi, v) can be applied to ( and transforms it to (9. Concatenating these
transformations, it follows that s i[v] transforms & to &9 5 & i[v]. e

By concatenating such operation sequences, we can transform & into &[v] by
changing processors’ input values one at a time:

LEMMA 7. Let s[V] 5 s1[V] . . . sn[V]. For every value v and failure-free graph
&, the sequence s[v] transforms & to &[v].

Now we can define the parameter N used in defining the shape of B: N is the
length of the sequence s[V], which is exponential in r.

7. Step 2: Graph Assignment

In this section, we label each vertex of B with an augmented global communica-
tion graph. Speaking informally, we use each sequence s[vi] of graph operations
to generate a sequence of graphs, and then use this sequence of graphs to label
the vertices along the edge of the Bermuda Triangle in the ith dimension. To
label the vertices on the interior of the Bermuda Triangle, we define an
operation to “merge” graphs labeling the edges into a single graph.

7.1. GRAPH MERGE. We begin with the definition of the operation merging a
sequence of graphs into a single graph.

The merge of a sequence *1, . . . , *k of graphs is a graph defined as follows:

(1) An edge e is colored red if it is red in any of the graphs *1, . . . , *k, and
green otherwise,

(2) An initial node ^p, 0& is labeled with the value vi where i is the maximum
index such that ^p, 0& is labeled with vi in * i, or v0 if no suchi exists,

(3) The number of tokens on a node ^p, i& is the sum of the number of tokens on
the node in the graphs *1, . . . , *k.
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The first condition says that a message is missing in the resulting graph if and
only if it is missing in any of the merged graphs. To understand the second
condition, let x 5 ( x1, . . . , xk) be a vertex of B and let * i be the result of
applying the first xi operations in s[vi] to some fixed graph &. It follows from the
construction of s[V] that there is a single integer c with the property that it is the
cth graph operation in s[vi] that changes p’s input to vi for each i. Since x 5
( x1, . . . , xk) is a vertex of B, the indices xi are ordered by x1 $ x2 $ . . . $ xk.
It follows that p’s input has been changed to vi in * i for those i 5 1, . . . , j
satisfying xi $ c and not in * i for those i 5 j 1 1, . . . , k satisfying c . xi. The
second condition above is just a compact way of identifying this final value vj.

One important property of the merge operator is that merging a sequence of
1-graphs yields a k-graph, where k is the length of the sequence of 1-graphs:

LEMMA 8. Let * be the merge of the graphs *1, . . . , *k. If *1, . . . , *k are
1-graphs, then * is a k-graph.

PROOF. We consider the three conditions required of a k-graph in turn. First,
there are k tokens in each round of * since there is 1 token in each round of
each graph *1, . . . , *k. Second, every red edge in * is covered by a token since
every red edge in * corresponds to a red edge in one of the graphs * j, and this
edge is covered by a token in * j. Third, if there is a red edge from p in round i
in *, then there is a red edge from p in round i of one of the graphs * j. In this
graph, p is silent from round i 1 1, so the same is true in *. Thus, * is a
k-graph. e

Remember that at most kr # f processors fail in a k-graph like *.

7.2. GRAPH ASSIGNMENT. Now we can define the assignment of graphs to
vertices of B. For each input value vi, let ^ i be the failure-free 1-graph in which
all processors have input vi. Let x 5 ( x1, . . . , xk) be an arbitrary vertex of B.
For each coordinate xj, let s j be the prefix of s[vj] consisting of the first xj

operations, and let * j be the 1-graph resulting from the application of s j to
^ j21. This means that in * j, some set p1, . . . , pi of adjacent processors have
had their inputs changed from vj21 to vj. The graph & labeling x is defined to be
the merge of *1, . . . , *k. We know that & is a k-graph by Lemma 8, and hence
that at most rk # f processors fail in &.

Remember that we always write the vertices of a primitive simplex in a
canonical order y0, . . . , yk. In the same way, we always write the graphs labeling
the vertices of a primitive simplex in the canonical order &0, . . . , &k, where & i is
the graph labeling yi.

7.3. GRAPH CONSISTENCY. The graphs labeling the vertices of a primitive
simplex have some convenient properties. For this section, fix a primitive simplex
S, let y0, . . . , yk be the vertices of S, and let &0, . . . , &k be the graphs labeling
the corresponding vertices of S. Our first result says that any processor that is
uncovered at a vertex of S is nonfaulty at all vertices of S.

LEMMA 9. If processor q is not covered in the graph labeling a vertex of S, then
q is nonfaulty in the graph labeling every vertex of S.

PROOF. Suppose to the contrary that q is faulty in some graph labeling a
vertex of S. Let y0 5 (a1, . . . , ak) be the first vertex of S. For each i, let s i and
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s it i be the prefixes of s[vi] consisting of the first ai and ai 1 1 operations, and
let * i and *9i be the result of applying s i and s it i to ^ i21. For each i, we know
that the graph & i labeling the vertex yi of S is the merge of graphs (1

i , . . . , (k
i

where ( j
i is either * j or *9j. Suppose q is faulty in & i. Then q must be faulty in

some graph ( j
i in the sequence of graphs (1

i , . . . , (n
i merged to form & i, so q

must fail in one of the graphs * j or *9j. Since s j and s jt j are prefixes of s[vj], it
is easy to see from the definition of s[vj] that the fact that q fails in one of the
graphs * j and *9j implies that q is covered in both graphs. Since one of these
graphs is contained in the sequence of graphs merged to form &a for each a, it
follows that q is covered in each &a. This contradicts the fact that q is uncovered
in a graph labeling a vertex of S. e

Our next result shows that we can use the bound on the number of tokens to
bound the number of processors failing at any vertex of S.

LEMMA 10. If Fi is the set of processors failing in &i and F 5 øiFi, then uFu #
rk # f.

PROOF. If q [ F, then q [ Fi for some i and q fails in & i, so q is covered in
every graph labeling every vertex of S by Lemma 9. It follows that each processor
in F is covered in each graph labeling S. Since there are at most rk tokens to
cover processors in any graph, there are at most rk processors in F. e

We have assigned graphs to S, and now we must assign processors to S. A local
processor labeling of S is an assignment of distinct processors q0, . . . , qk to the
vertices y0, . . . , yk of S so that qi is uncovered in & i for each yi. A global
processor labeling of B is an assignment of processors to vertices of B that induces
a local processor labeling at each primitive simplex. The final important property
of the graphs labeling S is that if we use a processor labeling to label S with
processors, then S is consistent with a single global communication graph. The
proof of this requires a few preliminary results.

LEMMA 11. If &i21 and &i differ in p’s input value, then p is silent from round 1
in &0, . . . , &k. If &i21 and &i differ in the color of an edge from q to p in round t,
then p and q are silent from round t 1 1 in &0, . . . , &k.

PROOF. Suppose the two graphs & i21 and & i labeling vertices yi21 and yi

differ in the input to p at time t 5 0 or in the color of an edge from q to p in
round t. The vertices differ in exactly one coordinate j, so yi21 5 (a1, . . . ,
aj, . . . , ak) and yi 5 (a1, . . . , aj 1 1, . . . , ak). For each ,, let s, be the prefix
of s[v,] consisting of the first a, operations, and let *,

0 be the result of applying
s, to ^,21. Furthermore, in the special case of , 5 j, let s jt j be the prefix of
s[vj] consisting of the first aj 1 1 operations, and let * j

1 be the result of
applying s jt j to ^ j21.

We know that & i21 is the merge of *1
0, . . . , * j

0, . . . , *k
0, and that & i is the

merge of *1
0, . . . , * j

1, . . . , *k
0. If * j

0 and * j
1 are equal, then & i21 and & i are

equal. Thus, * j
0 and * j

1 must differ in the input to p at time t 5 0 or in the color
of an edge between q and p in round t, exactly as & i21 and & i differ. Since * j

0

and * j
1 are the result of applying s j and s jt j to ^ j21, this change at time t must

be caused by the operation t j. It is easy to see from the definition of a graph
operation like t j that (1) if t j changes p’s input value, then p is silent from round
1 in * j

0 and * j
1, and (2) if t j changes the color of an edge from q to p in round
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t, then p and q are silent from round t 1 1 in * j
0 and * j

1. Consequently, the
same is true in the merged graphs & i21 and & i. e

LEMMA 12. If &i21 and &i differ in the local communication graph of p at time
t, then p is silent from round t 1 1 in &0, . . . , &k.

PROOF. We proceed by induction on t. If t 5 0, then the two graphs must
differ in the input to p at time 0, and Lemma 11 implies that p is silent from
round 1 in the graphs &0, . . . , &k labeling the simplex. Suppose t . 0 and the
inductive hypothesis holds for t 2 1. Processor p’s local communication graph at
time t can differ in the two graphs for one of two reasons: either p hears from
some processor q in round t in one graph and not in the other, or p hears from
some processor q in both graphs but q has different local communication graphs
at time t 2 1 in the two graphs. In the first case, Lemma 11 implies that p is
silent from round t 1 1 in the graphs &0, . . . , &k. In the second case, the
induction hypothesis for t 2 1 implies that q is silent from round t in the graphs
&0, . . . , &k. In particular, q is silent in round t in & i21 and & i, so it is not
possible for p to hear from q in round t in both graphs, and this case is
impossible. e

LEMMA 13. If p sends a message in round r in any of the graphs &0, . . . , &k,
then p has the same local communication graph at time r 2 1 in all of the graphs
&0, . . . , &k.

PROOF. If p has different local communication graphs at time r 2 1 in two of
the graphs &0, . . . , &k, then there are two adjacent graphs & i21 and & i in which
p has different local communication graphs at time r 2 1. By Lemma 12, p is
silent in round r in all of the graphs &0, . . . , &k, contradicting the hypothesis
that p sent a round r message in one of them. e

Finally, we can prove the crucial property of primitive simplexes in the
Bermuda Triangle:

LEMMA 14. Given a local processor labeling, let q0, . . . , qk be the processors
labeling the vertices of S, and let +i be the local communication graph of qi in &i.
There is a global communication graph & with the property that each qi is nonfaulty
in & and has the local communication graph +i in &.

PROOF. Let Q be the set of processors that send a round r message in any of
the graphs &0, . . . , &k. Notice that this set includes the uncovered processors
q0, . . . , qk, since Lemma 9 says that these processors are nonfaulty in each of
these graphs. For each processor q [ Q, Lemma 13 says that q has the same
local communication graph at time r 2 1 in each graph &0, . . . , &k.

Let * be the global communication graph underlying any one of these graphs.
Notice that each processor q [ Q is active through round r 2 1 in *. To see
this, notice that since q sends a message in round r in one of the graphs labeling
S, it sends all messages in round r 2 1 in that graph. On the other hand, if q fails
to send a message in round r 2 1 in *, then the same is true for the
corresponding graph labeling S. Thus, there are adjacent graphs & i21 and & i

labeling S where p sends a round r 2 1 message in one and not in the other.
Consequently, Lemma 11 says q is silent in round r in all graphs labeling S, but
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this contradicts the fact that q does send a round r message in one of these
graphs.

Now let & be the global communication graph obtained from * by coloring
green each round r edge from each processor q [ Q, unless the edge is red in
one of the local communication graphs +0, . . . , +k in which case we color it red
in & as well. Notice that since the processors q [ Q are active through round
r 2 1 in *, changing the color of a round r edge from a processor q [ Q to
either red or green is acceptable, provided we do not cause more that f
processors to fail in the process. Fortunately, Lemma 10 implies that there are at
least n 2 rk $ n 2 f processors that do not fail in any of the graphs &0, . . . , &k.
This means that there is a set of n 2 f processors that send to every processor in
round r of every graph & i, and in particular that the round r edges from these
processors are green in every local communication graph + i. It follows that for at
least n 2 f processors, all round r edges from these processors are green in &, so
at most f processors fail in &.

Each processor qi is nonfaulty in &, since qi is nonfaulty in each &0, . . . , &k,
which means that each edge from qi is green in each &0, . . . , &k and +0, . . . ,
+k, and therefore in &. In addition, each processor qi has the local communica-
tion graph + i in &. To see this, notice that + i consists of a round r edge from pj

to qi for each j, and the local communication graph for pj at time r 2 1 if this
edge is green. This edge is green in + i if and only if it is green in &. In addition,
if this edge is green in + i, then it is green in & i. In this case, Lemma 13 says that
pj has the same local communication graph at time r 2 1 in each graph &0, . . . ,
&k, and therefore in &. Consequently, qi has the local communication graph + i

in &. e

8. Step 3: Processor Assignment

What Lemma 14 at the end of the preceding section tells us is that all we have
left to do is to construct a global processor labeling. In this section, we show how
to do this. We first associate a set of “live” processors with each communication
graph labeling a vertex of B, and then we choose one processor from each set to
label each vertex of B.

8.1. LIVE PROCESSORS. Given a graph &, we construct a set of c 5 n 2 rk $
k 1 1 uncovered (and hence nonfaulty) processors. We refer to these processors
as the live processors in &, and we denote this set by live(&). These live sets have
one crucial property: if & and &9 are two graphs labeling adjacent vertices, and if
p is in both live(&) and live(&9), then p has the same rank in both sets. As
usual, we define the rank of pi in a set R of processors to be the number of
processors pj [ R with j # i.

Given a graph &, we now show how to construct live(&). This construction has
one goal: if & and &9 are graphs labeling adjacent vertices, then the construction
should minimize the number of processors whose rank differs in the sets live(&)
and live(&9). The construction of live(&) begins with the set of all processors,
and removes a set of rk processors, one for each token. This set of removed
processors includes the covered processors, but may include other processors as
well. For example, suppose pi and pi11 are covered with one token each in &, but
suppose pi is uncovered and pi11 is covered by two tokens in &9. For simplicity,
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let us assume these are the only tokens on the graphs. When constructing the set
live(&), we remove both pi and pi11 since they are both covered. When
constructing the set live(&9), we remove pi11, but we must also remove a second
processor corresponding to the second token covering pi11. Which processor
should we remove? If we choose a low processor like p1, then we have changed
the rank of a low processor like p2 from 2 to 1. If we choose a high processor like
pn, then we have changed the rank of a high processor like pn21 from n 2 3 to
n 2 2. On the other hand, if we choose to remove pi again, then no processors
change rank. In general, the construction of live(&) considers each processor p
in turn. If p is covered by mp tokens in &, then the construction removes mp

processors by starting with p, working down the list of remaining processors
smaller than p, and then working up the list of processors larger than p if
necessary.

Specifically, given a graph &, the multiplicity of p is the number mp of tokens
appearing on nodes for p in &, and the multiplicity of & is the vector m 5
^mp1

, . . . , mpn
&. Given the multiplicity of & as input, the algorithm given in

Figure 14 computes live(&). In this algorithm, processor pi is denoted by its
index i. We refer to the ith iteration of the main loop as the ith step of the
construction. This construction has two obvious properties:

LEMMA 15. If i [ live(&), then

(1) i is uncovered: mi 5 0
(2) room exists under i: ( j51

i21 mj # i 2 1.

PROOF. Suppose i [ live(&). For part (1), if mi . 0, then i will be removed
by step i if it has not already removed by an earlier step, contradicting i [
live(&). For part 2, notice that steps 1 through i 2 1 remove a total of ( j51

i21 mj

values. If this sum is greater than i 2 1, then it is not possible for all of these
values to be contained in 1, . . . , i 2 1, so i will be removed within the first i 2
1 steps, contradicting i [ live(&). e

The assignment of graphs to the corners of a simplex has the property that
once p becomes covered on one corner of S, it remains covered on the following
corners of S:

LEMMA 16. If p is uncovered in the graphs &i and &j, where i , j, then p is
uncovered in each graph &i, &i11, . . . , &j.

PROOF. If p is covered in &, for some , between i and j, then p is uncovered
in &,21 and covered in &, for some , between i and j. Since &,21 and &, are on

FIG. 14. The construction of live(&).
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adjacent vertices of the simplex, the sequences of graphs merged to construct
them are of the form *1, . . . , *m, . . . , *k and *1, . . . , *9m, . . . , *k,
respectively, for some m. Since p is uncovered in &,21 and covered in &,, it must
be that p is uncovered in *m and covered in *9m. Notice, however, that *9m is
used in the construction of each graph &,, &,11, . . . , & j. This means that p
is covered in each of these graphs, contradicting the fact that p is uncovered in
& j. e

Finally, because token placements in adjacent graphs on a simplex differ in at
most the movement of one token from one processor to an adjacent processor,
we can use the preceding lemma to prove the following:

LEMMA 17. If p [ live(&i) and p [ live(&j), then p has the same rank in
live(&i) and live(&j).

PROOF. Assume without loss of generality that i , j. Since p [ live(& i) and
p [ live(& j), Lemma 15 implies that p is uncovered in the graphs & i and & j, and
Lemma 16 implies that p is uncovered in & i, & i11, . . . , & j. Since token
placements in adjacent graphs differ in at most the movement of one token from
one processor to an adjacent processor, and since p is uncovered in all of these
graphs, this means that the number of tokens on processors smaller than p is the
same in all of these graphs. Specifically, the sum (,51

p21 m, of multiplicities of
processors smaller than p is the same in & i, & i11, . . . , & j. In particular, Lemma
15 implies that this sum is the same value s # p 2 1 in & i and & j, so p has the
same rank p 2 s in live(& i) and live(& j). e

8.2. PROCESSOR ASSIGNMENT. We now choose one processor from each set
live(&) to label the vertex with graph &. Given a vertex x 5 ( x1, . . . , xk), we
define

plane~ x! 5 O
i51

k

xi ~mod k 1 1! .

LEMMA 18. plane(x) Þ plane( y) if x and y are distinct vertices of the same
simplex.

PROOF. Since x and y are in the same simplex, we can write y 5 x 1 f1 1 . . .
1 f j for some distinct unit vectors f1, . . . , f j and some 1 # j # k. If x 5
( x1, . . . , xk) and y 5 ( y1, . . . , yk), then the sums ( i51

k xi and ( i51
k yi differ by

exactly j. Since 1 # j # k and since planes are defined as sums modulo k 1 1,
we have plane( x) Þ plane( y). e

We define a global processor labeling p as follows: given a vertex x labeled
with a graph &, we define p to map x to the processor having rank plane( x) in
live(&).

LEMMA 19. The mapping p is a global processor labeling.

PROOF. First, it is clear that p maps each vertex x labeled with a graph &x to
a processor qx that is uncovered in &x. Second, p maps distinct vertices of a
simplex to distinct processors. To see this, suppose to the contrary that both x
and y are labeled with p, and let &x and &y be the graphs labeling x and y. We
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know that the rank of p in live(&x) is plane( x) and that the rank of p in live(&y)
is plane( y), and we know that p has the same rank in live(&x) and live(&y) by
Lemma 17. Consequently, plane( x) 5 plane( y), contradicting Lemma 18. e

We label the vertices of B with processors according to the processor labeling p.
Now that we have assigned a global communication graph & and a processor p

to each vertex x of the Bermuda Triangle, let us replace the pair ( p, &) labeling
x with the pair ( p, +) where + is processor p’s local communication graph in &.
The following result is a direct consequence of Lemmas 14 and 19. It says that
the local communication graphs of processors labeling the corners of a simplex
are consistent with a single global communication graph.

LEMMA 20. Let q0, . . . , qk and +0, . . . , +k be the processors and local
communication graphs labeling the vertices of a simplex. There is a global commu-
nication graph & with the property that each qi is nonfaulty in & and has the local
communication graph +i in &.

9. Finishing the Proof with Sperner’s Lemma

We now state Sperner’s Lemma, and use it to prove a lower bound on the
number of rounds required to solve k-set agreement.

Notice that the corners of B are points ci of the form (N, . . . , N, 0, . . . , 0)
with i indices of value N for 0 # i # k. For example, c0 5 (0, . . . , 0), c1 5
(N, 0, . . . , 0), and ck 5 (N, . . . , N). Informally, a Sperner coloring of B
assigns a color to each vertex so that each corner vertex ci is given a distinct color
wi, each vertex on the edge between ci and cj is given either wi or wj, and so on.

More formally, let S be a simplex and let F be a face of S. Any triangulation of
S induces a triangulation of F in the obvious way. Let T be a triangulation of S.
A Sperner coloring of T assigns a color to each vertex of T so that each corner of
T has a distinct color, and so that the vertices contained in a face F are colored
with the colors on the corners of F, for each face F of T. Sperner colorings have
a remarkable property: at least one simplex in the triangulation must be given all
possible colors.

LEMMA 21. (SPERNER’S LEMMA). If B is a triangulation of a k-simplex, then
for any Sperner coloring of B, there exists at least one k-simplex in B whose vertices
are all given distinct colors.

Let P be the protocol whose existence we assumed in the previous section.
Define a coloring xP of B as follows. Given a vertex x labeled with processor p
and local communication graph +, color x with the value v that P requires
processor p to choose when its local communication graph is +. This coloring is
clearly well defined, since P is a protocol in which all processors chose an output
value at the end of round r. We will now expand the argument sketched in the
introduction to show that xP is a Sperner coloring.

We first prove a simple claim. Recall that @ is the simplex whose vertices are
the corner vertices c0, . . . , ck, and that B is a triangulation of @. Let ^ be some
face of @ not containing the corner ci, and let F denote the triangulation of ^
induced by B. We prove the following technical statement about vertices in F.

CLAIM 22. If x 5 (x1, . . . , xk) is a vertex of a face F not containing ci, then
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(1) if i 5 0, then x1 5 N,
(2) if 0 , i , k, then xi11 5 xi, and
(3) if i 5 k, then xk 5 0.

PROOF. Each vertex x of B can be expressed using barycentric coordinates with
respect to the corner vertices: that is, x 5 a0c0 1 . . . 1 akck, where 0 # a j #
1 for 0 # j # k and ( i50

k a i 5 1. Since x is a vertex of a face F not containing
the corner ci, it follows that a i 5 0. We consider the three cases.

Case 1. i 5 0. Each corner c1, . . . , ck has the value N in the first position.
Since a0 5 0, the value in the first position of a0c0 1 . . . 1 akck is (a1 1 . . . 1
ak) N 5 N.

Case 2. 0 , i , k. Each corner c0, . . . , ci21 has 0 in positions i and i 1 1,
and each corner ci11, . . . , ck has N in positions i and i 1 1. Since a i 5 0, the
linear combination a0c0 1 . . . 1 akck will have the same value (a i11 1 . . . 1
ak) N in positions i and i 1 1. Thus, xi 5 xi11.

Case 3. i 5 k. Each corner c0, . . . , ck21 has 0 in position k. Since ak 5 0,
the value in the kth position of a0c0 1 . . . 1 akck is 0. Thus, xk 5 0. e

LEMMA 23. If P is a protocol for k-set agreement tolerating f faults and halting
in r # f/k rounds, then xP is a Sperner coloring of B.

PROOF. We must show that xP satisfies the two conditions of a Sperner
coloring.

For the first condition, consider any corner vertex ci. Remember that ci was
originally labeled with the 1-graph ^ i describing a failure-free execution in which
all processors start with input vi, and that the local communication graph +
labeling ci is a subgraph of ^ i. Since the validity condition of the k-set
agreement problem requires that any value chosen by a processor must be an
input value of some processor, all processors must choose vi in ^ i, and it follows
that the vertex ci must be colored with vi. This means that each corner ci is
colored with a distinct value vi.

For the second condition, consider any face F of B, and let us prove that
vertices in F are colored with the colors on the corners of F. Equivalently,
suppose that ci is not a corner of F, and let us prove that no vertex in F is
colored with vi.

Consider the global communication graph & originally labeling a vertex x of F,
and the graphs *1, . . . , *k used in the merge defining &. The definition of this
merge says that the input value labeling a node ^p, 0& in & is vm where m is the
maximum m such that ^p, 0& is labeled with vm in *m, or v0 if no such m exists.
Again, we consider three cases. In each case, we show that no processor in & has
the input value vi.

Suppose i 5 0. Since x1 5 N by Claim 22, we know that *1 5 ^1, where the
input value of every processor is v1. By the definition of the merge operation, it
follows immediately that no processor in & can have input value v0.

Suppose 1 , i , k. Again, xi11 5 xi by Claim 22. Now, * i is the result of
applying s i, the first xi operations of s[vi], to the graph ^ i21. Similarly, * i11 is
the result of applying s i11, the first xi11 operations of s[vi11], to the graph ^ i.
Since xi11 5 xi, both s i and s i11 are of the same length, and it follows that s i
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contains an operation of the form change( p, vi) if and only if s i11 contains an
operation of the form change( p, vi11). This implies that for any processor,
either its input value is vi21 in * i and vi in * i11, or its input value is vi in * i

and vi11 in * i11. In both cases, vi is not the input value of this processor.
Suppose i 5 k. Since xk 5 0 by Claim 22, we know that *k 5 ^k21, where

the input value of every processor is vk21. By the definition of merge, it follows
immediately that no processor in & can have input value vk.

Therefore, we have shown that if x is a vertex of a face F of B, and ci is not a
corner vertex of F, then the communication graph & corresponding to x contains
no processor with input value vi. Therefore, by the validity condition, the value
chosen at this vertex cannot be vi, and it follows that x is assigned a color other
than vi. So, x must be colored by a color vj such that cj is a corner vertex of F.
Since cj is colored vj, the second condition of Sperner’s Lemma holds. So xP is a
Sperner coloring. e

Sperner’s Lemma guarantees that some primitive simplex is colored by k 1 1
distinct values, and this simplex corresponds to a global state in which k 1 1
processors choose k 1 1 distinct values, contradicting the definition of k-set
agreement:

THEOREM 24. If n $ f 1 k 1 1, then no protocol for k-set agreement can halt in
fewer than f/k 1 1 rounds.

PROOF. Suppose P is a protocol for k-set agreement tolerating f faults and
halting in r # f/k rounds, and consider the corresponding Bermuda Triangle
B. Lemma 23 says that xP is a Sperner coloring of B, so Sperner’s Lemma says
that there is a simplex S whose vertices are colored with k 1 1 distinct values v0,
. . . , vk. Let q0, . . . , qk and +0, . . . , +k be the processors and local
communication graphs labeling the corners of S. By Lemma 20, there exists a
communication graph & in which qi is nonfaulty and has local communication
graph + i. This means that & is a time r global communication graph of P in
which each qi must choose the value vi. In other words, k 1 1 processors must
choose k 1 1 distinct values, contradicting the fact that P solves k-set agreement
in r rounds. e
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