
Fast Increment Registers

Soma Chaudhuri ~

Department of Computer Science
Iowa State University

Ames, IA 50011
chaudhur@cs.iast ate.edu

Mark R. Tutt le

DEC Cambridge Research Lab
One Kendall Square, Bldg 700

Cambridge, MA 02139
tuttle@crl.dec.com

Abstract

We give an optimal, wait-free implementation of an increment register. An increment
register is a concurrent object consisting of an integer-valued register with an incremeni
operation that atomically increments the register and returns the previous value. We
implement this register in a synchronous, message-passing model with crash failures. In
our implementation, an increment operation halts in O(log c) rounds of communication,
where c is the number of concurrently executing increment operations. This is the
first wait-free implementation of any object that matches the f~(log c) lower bound by
IIerlihy and Tuttle for wait-free implementations, and it proves that their lower bound
is tight. The significance of our result is not so much the implementation itself, but
what it says about lower bounds. Our result says that ~(log c) is the best possible
lower bound that applies to so many objects in so many models. The algorithm itself is
interesting, however, because it is based on an optimal solution for strong renaming, a
simple decision problem used by Herlihy and Turtle to prove their lower bound.

1 Introduction

A concurrent object is a data structure that can be accessed by many processes simultane-

ously. Most interesting implementations of concurrent objects are designed for asynchronous
systems of unreliable processes. Most of these implementations depend on some form of

mutual exclusion--involving locks or semaphores--to restrict access to the object. In such
implementations, a process must be inside the critical section before it can perform an

operation on the object, and this guarantees that the process can access and modify the ob-

ject in isolation without interference from other processes. Unfortunately, implementations
based on mutual exclusion can be unacceptable in asynchronous, unreliable systems, since
a process (possibly holding a lock) can fail in the critical section and block other processes
from accessing the object. Even when processes do not fail, processes may be delayed in
the critical section (due to a page fault or being swapped out as the result of the expiration
of a scheduling quantum), and again block other processes from accessing the object. In
addition, if processes run at different speeds, then a fast process can be blocked by a slow
process as it plods through the critical section.

In contrast, an implementation of an object is said to be wait-free if it guarantees
that any nonfanlty process can complete any operation on the object in a finite number
of steps, independent of the failure of other processes or variations in their speed. Wait-
free implementations provide a strong form of concurrency and fault-tolerance since they
guarantee that no process can be prevented from completing an operation by the failure
of other processes, or by differences in their speeds. They also provide a kind of real-time

"Supported in part by NSF grant CCI~-93-08103.

75

guarantee since they guarantee a bound on the number of steps a process must take to
complete an operation.

Concurrent objects are an important part of concurrent algorithms, so it is important to
understand how quickly these objects can be implemented. With this goal in mind, Herlihy
and Turtle [HT90] prove a general-purpose lower bound for walt-free implementations of
concurrent objects. They consider a synchronous, message-passing model with crash fail-
ures, and they prove that any walt-free implementation of any object that can solve strong
renaming must have an operation requiring f~(log c) rounds of communication in the worst
case. 1 Closer examination of their proof technique, however, reveals that their lower bound
holds for a much larger set of objects, including any object with an operation that must
return distinct values on distinct invocations. Notice that since there is no such thing as a
slow process in a synchronous model, the notion of a walt-free implementation in this model
coincides with the simpler notion of an implementation that can tolerate the failure of all
but one process. However, since they prove their lower bound in this restrictive synchronous
model, their lower bound is a general result that applies to any more asynchronous model
in which slow processes do exist.

In this work, we prove that their lower bound is tight. We give an optimal, walt-flee
implementat ion of an increment register. An increment register is a concurrent object con-
sisting of an integer-valued register with an increment operation that atomically increments
the register and returns the previous value. This is a special case of a fetch~add register
since 1 is the only value that can be added to the register. We implement this register in
a synchronous, message-passing system with crash failures, the same model used to prove
the lower bound. In our implementation, an increment operation halts in O(log c) rounds
of communication, where c is the number of concurrently executing increment operations.
This is the first walt-free implementation of any concurrent object to match the ~(log c)
lower bound.

The primary significance of our work is what it has to say about proving lower bounds.
The fact that we implement our increment register in the same powerful, synchronous model
that Herlihy and Tuttle use to prove their lower bound says that their proof technique cannot
be pushed any farther. In particular~ it is not possible to prove a better general-purpose
lower bound that applies to as many objects an~] to as many models of computation. It is
likely that implementing a particular object in a particular model will require more than
O(log e) ~teps. To prove this, however, will require considering a smaller class of objects
(not the class of all objects) or a closer approximation of the model of interest (not the
synchronous model).

Our implementation is also interesting on purely algorithmic grounds, since our optimal
implementat ion of an increment register is based on an optimal solution to the strong re-
naming problem [HT90]. We find it remarkable that both the upper and lower bound for
increment registers arise from considering the same decision problem. In general, imple-
menting long-lived objects is inherently more difficult than solving decision problems. In
the first place, a decision problem is solved once whereas the same operation can be invoked
on an object repeatedly. In the second place, processes solving a decision problem start
together simultaneously at time 0, whereas processes invoking operations on an object can
arrive at different and unpredictable times. The major technical difficulty in this work has
been to guarantee that processes invoking increment operations on the register at different
times do not interfere with each other.

1Strong renaming is a decision problem in which processes begin with process ids taken from a totally-
ordered set, and choose new names for themselves. The problem requires that if c processes participate in
the protocol then these processes end up with distinct names in the range 1,..., c. This is a strong form
of the general renaming problem [ABND+87, ABND+90] since the range of names chosen must equal the
number of participants, which is known to be impossible in asynchronous systems.

76

Of course, there are many ways to implement an increment register. In fact, there are
general-purpose techniques for constructing a wait-free implementation of any concurrent
object. They are based on atomic broadcast [Lam78, Lain89, Sch87] and consensus [Her91b],
so they yield implementations requiring O(n) rounds where n is the number of processes.
On the other hand, it is well-known that type-specific techniques often yield more efficient
implementations than general-purpose techniques [tier86], but our implementation shows
that this in complexity can be substantially greater than previously known. Prior to this,
a O(v~) round implementation of an increment register [HT90] was the closest that any
walt-free implementation of any object had come to meeting the fl(log c) lower bound.

Finally we note that an active area of research concerns asynchronous, wait-free data
structures called counting networks [AHS91], and that counting networks yield easy imple-
mentations of increment registers. A counting network resembles a sorting network, except
that the comparators in the sorting network are replaced with constructs called balancers.

Counting networks can be used to construct fast increment registers, but counting networks
are designed for asynchronous systems in which processes do not fail, and in the absence of
failures an increment register can be implemented with a single round of communication in
our synchronous model. On the other hand, in the presence of failures, comparing execution
times is difficult since simulating the balancers seems to require attaining some degree of
consensus, resulting in increment registers requiring a linear number of rounds rather than
O(log c) rounds as required by our implementation.

The rest of this paper is organized as follows. In Section 2 we define our model of
computation, and in Section 3 we define concurrent objects and their implementation. In
Section 4, we give our optimal wait-free implementation of an increment register. The
correctness of our algorithm is proven in Section 5, and its running time is analyzed in
Section 6.

2 M o d e l

Our model of computation is a standard synchronous, message-passing model with crash
failures. We sketch the model here, and refer the reader to other papers [MT88, HM90,
ITF89] for details. A system consists of n unreliable processes Pl ,pn and an external
environment Po. We refer to Pl , . . .~Pn as system processes, and to p0 as the environment
process, which we consider identical to the system processes with three exceptions noted
below. We assume that all processes share a global clock, which starts at 0 and advances in
increments of 1. Computation proceeds in a sequence of rounds, with round k lasting from
time k - 1 to time k on the global clock. Every round, every process sends messages to
other processes, then receives the messages sent to it in that round, and then performs some
local computation. We assume that any process can send a message to any other process.
Communication is reliable, in that a message sent in one round is guaranteed to be delivered
in the same round. Processes, however, may crash at any time, possibly in the middle of
sending messages. The environment is not allowed to crash (exception number one).

A global state is a tuple (so, s l , . . . , sn) of local states, one local state sl for each process
p~. A local state for process pi contains its id, the time on the global clock, and the entire
history of messages it has sent and received so far. In addition, the local state of the
environment contains the failure information and any other information of relevance to the
system that cannot be deduced from processes' local states (exception number two).

A message sequence M is a sequence moo, tool, �9 �9 �9 mon, mlo, � 9 � 9 mnn o f messages de-
scribing one round of communication. The interpretation of M is that mij is the message
sent by pi to pj during the round, or .l_ if no message wan sent. An execution e is an infinite
sequence g o M l g l M 2 . . , of alternating global states and message sequences, where gi is the

77

global state at time i and Mi is the sequence of messages sent in round i.
We assume that every system process is following a deterministic protocol that deter-

mines what actions it performs and what messages it sends. A process follows its protocol
in every round, except that a process may crash (or fail) in the middle of a round. If pi
fails in round k, then it sends all messages in rounds j < k as required by the protocol, it
sends a proper subset of its messages in round k, and it sends no messages in rounds j > k.
A process is considered faulty in an execution if it fails in some round of that execution,
and nonfaulty otherwise. The environment process need not follow a protocol (exception
number three).

3 Concurrent Objects

An object is a data structure that can be accessed concurrently by all processes. It has a
type, which defines the set of possible values the object can assume, and a set of operations
that provide the only means to access or modify the object. A process invokes an operation
by sending an invoke message to the object, and the operation returns with a matching
response message from the object. A history is a sequence of invoke/response messages. A
sequential history is a history in which every invoke message is followed immediately by a
matching response message, meaning that the operations are invoked sequentially one after
another. In addition to a type, an object has a sequential specification which is just a set of
sequential histories describing the sequential behavior of the object.

As an example, an increment register is just a register with an increment operation. The
value of the register is an integer, iuitial]y 0. The increment operation atomically increments
the value of the register and returns the previous value. The sequential behaviors for an
increment register are the sequential histories of increment operations returning values in
the order 0, 1, 2,. . . .

We are interested in concurrent implementations of such objects. To us, given an object
O intended to be used by n processes P1,..., Pn, an implementation of O will be a collection
of n processes F1, . . . , Fn called front ends [Her91a] that process the invocations from the
P1,... ,Pn and return the responses from O. In our model, we assume that the system
processes Pl,... ,Pn are really the front ends F1, . . . ,F~. We assume that the invoking
processes P1, . - . , Pn are part of the environment process P0, and we ignore them completely.
With this in mind, we define a history of a system (Po,Pl,...,Pn) to be the history h
obtained by projecting an execution of the system onto the subsequence of invoke/response
messages appearing in the execution.

An object's sequential specification defines its sequential behavior, and we must now de-
fine its concurrent behavior. An object is linearizable [HW90] if each operation appears to
take effect instantaneously at some point between the operation's invocation and response.
Linearizabllity implies that operations on the object appear to be interleaved at the granu-
larity of complete operations, and that the order of nonoverlapping operations is preserved.
The precise definition of linearizability is well-known [HW90], so we will not repeat it here.

Finally, an implementation is said to be wait-free if no front end is blocked by the
failure of other front ends. Specifically, for every history h of the implementation and every
nonfaulty system process p~ in h, every invocation of an operation by p~ in h has a matching
response.

4 The Increment Register

In this section, we give our optimal wait-free implementation of an increment register.

7B

A process p can invoke an increment o~eration multiple times in a single execution, and
each invocation can take multiple rounds to complete. We refer to the set of increment
operations invoked during round k as generation k increments, and we refer to the processes
invoking these increments as generation k processes. We refer to the rounds of a generation
as phases, and we number the phases of generation k starting with 0 so that phase ~ of
generation k occurs during round k + t.

Since a process p can invoke the increment operation more than once, it identifies itself
during generation k with an ordered pair (p, k) called its increment process id. We assume
each process p maintains a set IncSe t of all the increment process ids that it knows about,
and continues to maintain this set in the background even when it is not actually performing
an increment operation. Every round, it broadcasts this set to other processes, and merges
the sets it receives from other processes into its own set. For notational simplicity, however,
since the generation k will always be clear from context, we will frequently write p in place
of (p, k).

Understanding our implementation requires understanding the notions of ranges, inter-
vals, splitting, and chopping, so let us begin with these concepts.

Ranges Our implementation has the property that increments in one generation are ef-
fectively isolated from increments in other generations, in the sense that increments in one
generation can choose return values by communicating among themselves, ignoring incre-
ments in other generations. This isolation is achieved by partitioning the return values into
ranges.

As illustrated in Figure 1, each process p maintains a range R = [R.ib, R.ub] of return
values. Initially, using the set IncSe t of increment process ids known to p, process p sets its
lower bound lb to the number of increments invoked by previous generations, and its upper
bound ub to the total number of increments invoked by previous and current generations.
Every phase, process p exchanges ranges with other processes in its generation, and extends
its range by dropping its lower bound to the smallest lower bound received from any of these
processes.

Intuitively, by setting its initial lower bound to lb, process p is reserving lower values
v < Ib as return values for increments in previous generations recorded in IncSet . Later, if
p hears that another process q in the same generation set its initial lower bound to Ib' < lb,

79

then p knows some of these earlier increments have failed, so p ceases to reserve return
values for them and drops its lower bound to lb ~.

Our algorithm guarantees that if a nonfaulty process sets its upper bound to ub, then
all processes in all later generations set their initial lower bounds to lb > ub, so their lower
bounds remain above ub forever. In this sense, the upper bounds of the nonfaulty processes
part i t ion the return values. Nonfaulty processes in different generations have disjoint ranges,
allowing them to ignore each other once their initial ranges have been chosen.

I n t e r v a l s a n d S p l i t t i n g Given a range R of acceptable return values, however, p still
has to choose one of them to return. To do so, we modify the fundamental idea in the
optimal algorithm for strong renaming [HT90]. The basic idea is that if the values in p's
range R are b bits long, then p chooses a b-bit value from R one bit at a time, starting
with the high-order bit and worldng down to the low-order bit. To implement this idea,
process p maintains an interval I = [I.Ib, I.ub] of return values that contains its range R
(see Figure 2). The size of the interval is always a power of 2. Process p's initial interval
is the smallest interval of the form [0, 2 k - 1] that contains p's initial range. During an
increment', process p repeatedly splits its interval in half until the interval contains a single
value, and this is the value that p returns. It is easy to see that all of the intervals generated
by p are of the form [a2~,a2 k + (2 ~ - 1)] for some b - k bit value a, and such intervals are
called well-formed intervals. Intuitively, this interval represents the fact that p has chosen
a as the high-order b - k bits of its return value, but must still choose the low-order k bits.

The procedure that p uses to split its interval in half is important (see Figure 2). Every
round, process p exchanges intervals with other processes, and p maintains a set C of all
processes sending p an interval intersecting its current interval I . The processes in C are
p's competitors since they include the processes considering return values in p's range. To
avoid returning the same value as one of its competitors, process p at tempts to predict what
values its competitors will choose. To predict accurately, however, p must wait until I is
maximal among the intervals received from its competitors; this means that p's competitors
are considering only values in I . Once I is maximal, p assigns return values from its range
to its competitors, starting at the bottom of its range and assigning values to competitors
in order of increasing process id. Eventually, p assigns a value v to itself. Process p then
replaces I with its top half top(I) or its bottom half bot(I)--whichever half contains v - -and
then replaces its range R with the intersection of R and I . Continuing in this way every
round, process p's interval eventually contains a single value v, at which point p chooses v

80

but continues exchanging its interval with other processes until all processes in its generation
have chosen a value.

C h o p p i n g It is easy to see that the sprit operation is what gives rise to the algorithm's
logarithmic nature: in any given round, a maximal interval is guaranteed to sprit in half, so
the size of the maximal intervals decreases by a factor of 2 with every round. Unfortunately,
this logarithmic nature is logarithmic in the size of the initial interval, which can be as large
as the total number of increments ever invoked, and we want the algorithm to run in time
logarithmic in the number of concurrently executing increments. Fortunately, we can speed
up the algorithm dramatically by introducing a new operation called a chop, illustrated in
Figure 3. For example, if p's range R is just the top few values in its interval I , then it is
dear that p is going to split up repeatedly for many rounds. We accelerate this splitting
by allowing p to chop in a single round from I up to the smallest well-formed interval I '
containing R. We say that p chops up in this case, and chopping down is similar. Since
chopping is just an accelerated form of splitting, process p must walt until I is maximal
among the intervals received from its competitors before chopping. On the other hand, it
is important that we do not allow p to sprit and chop in the same round: if p splits down
and then immediately chops up to a smaller interval containing its new range, then it runs
the risk of chopping away the bot tom of its interval before learning that it can extend its
range by lowering the lower bound of its range, so it runs the risk of reaching a state in
which its interval and range are too small to assign distinct values from its range to all of
its competitors.

A l g o r i t h m With this, we have introduced the notions of ranges, intervals, splitting, and
chopping, and we can turn our at tention to the increment register implementation 27 itself.
The main loop of the algorithm is given in Figure 4, the definitions of splitting and chopping
are given in Figure 5, and the definitions of some initialization steps are given in Figure 6.

During the initial phases of generation k, an incrementing process p starts by adding its
increment process id (p, k / to IncSet; it exchanges IncSet with other processes and uses the
result to choose its initial range R as described above; it exchanges R with other processes,
extends R by dropping its lower bound as described above, and uses the result to choose
its initial interval. In all later phases, process p exchanges its interval and range with other

81

begin /* a generation k increment by process p */

initialize(); /* add <p,k> to IncSe~ */

phaseO(); /* bcast IncSet, choose initial range R */

phasel(); /* bcas~ E, extend R, choose initial interval I */

repeat

broadcast <p,R,l,lb>

receive <p',R',I',Ib'> from generation k processes p'

/* collect names and inZervais of competitors */

C <- {p' : <p',R',I',ib'> received and I' intersects I}

N <- {I' : <p',R',I',ib'> received and I' intersects I}

/* extend range by dropping the lower bound */

R.Ib <- Ib <- min{ib' : <p',R',I',ib'> received}

R <- E <- R intersect I /* E is used only in the proof */

if I is maximal in N then

if R is contained in either top(I) or bot(I)

then chop()

else split()

until II'I = i for all I' in N

v <- I.ib

return(v);

end.

/* I = Iv,v] */

Figure 4: The increment register :l-.

chop ()
begin

I <- smalles~ well-formed interval containing K

end.

split()

begin

rank <- rank of p in C /* 0 is the lowest rank */

value <- K.Ib § rank

if value in top(I) then

I.ib <- R.lb <- I.ib + IIj/2

else

I.ub <- R.ub <- I.ub - III/2

fi

end.

Figure 5: Chopping and splitting an interval.

82

initialize()

begin

k <- current round number

p <- <process id, k>

IncSet <- IncSeZ union {p}

end.

/* choose generation */
/* choose id */

/* set of incrementors */

phas eO ()
begin

broadcasr <p,lncSet>

receive <p',IncSet'> from all processes p'

IncSet <- union of all IncSe%' received

GenSet <- se% of generation k' < k processes p' in IncSet

K.ub <- IIncSetl - I

K.ib <- ib <- IGenSetl

end.

phasel()

begin

broadcast <p,K,ib>

receive all <p',K',ib'>

K. ib

I

end.

<- ib <- min generation k lower bound ib' received

<- smallest well-formed interval containing K

Figure 6: The inltiMization phases.

processes, extends its range if possible, and splits or chops its interval and range whenever it
finds that its interval is maximal among its competitors. When process p's interval contains
a single value, it continues broadcasting its interval and range until all competing intervals
contain a single value, then p chooses its value and halts.

5 Cor rec tnes s

Proving the correctness of this algorithm consists of proving two properties.
The first property we must prove is that given two nonoverlapping increments, the value

returned by the first is less than the value returned by the second. This will imply that the
implementation is linearizable. In fact, this is very easy to prove, using the observation that
the ranges effectively isolate distinct generations, a fact mentioned in the previous section's
discussion of ranges:

Lemma 1: Suppose p and q are generation i and j processes returning values v and w,
respectively. If i < j , then v < w.

For the the second property, remember that C is the set of competitors, and notice that
E (a history variable used only in the proof) is the extended range (the result of dropping the

83

lower bound of the real range R) that is used by a process to assign values to its competitors
(including itself). The second property we must prove is that/CI _<]E t for every process p
in every phase. This invariant says that p can always assign distinct values from E to its
competitors. This will imply that the algorithm terminates: whenever a process finds that
its interval is maximal, it can assign itself a value and split or chop to a smaller interval
containing this value. This wilt also imply that distinct processes choose distinct values: if p
and q return the same value v, then at some point they both have the same extended range
E consisting of the single value v and they both have a set of competitors C including p
and q, but ICt = 2 ~ 1 = IEI.

Proving that ICI _< IEJ requires reasoning about the interactions between the splits
and chops performed by different processes in different phases, and we prove two claims
(Claims 4 and 5 below) about these interactions. Let us fix a generation k for the rest of
this paper. We denote the values of I and R broadcast by p during phase r of an execution
e by Ie,p,r and -R~,p,r, and we denote the values of E and C held by p at the end of phase
r of execution e by E~,px and Ce,p,~. We often omit subscripts like e and p when they are
clear from context.

We say that p splits to I in phase i if p sends I in phase i - 1 and I in phase i, where
p changes from] to I by splitting. We say that p splits up or splits down depending on
whether I = top(I) or [= bot(]). We say-that p chops into I in phase i if p sends j ~ I in
phase i - 1 and J C I in phase i, where p changes from j to J by chopping. We say that
p chops up or chops down depending on whether J C_ top(J) or J C_ bot(J). Two simple
properties about splitting and chopping are often useful.

Fact 2: ff p splits from Ii-1 to Ii, then the upper bounds of Ri __ E~ C Ii are equal if p
splits down, and the lower bounds are equal if p splits up.

Fact 3: If p chops from I;-i to Ii, then the upper bounds of Ei-1 = Ri C_ Ei C Ii C [~-1
are equal if p chops up, and the lower bounds are equal if p chops down.

The first property follows from the fact that the range spans the midpoint of the interval
during a split (so the split truncates the range and interval at the same point). The second
property follows from the fact that the initial range always spans the midpoint of the initial
interval, so a split must occur before a chop (and again the split truncates the range and
interval at the same point).

Reasoning about one process p's splitting and chopping usually involves reasoning about
another process q's behavior in earlier phases. The first claim below argues that whenever
a process p with interval I has to find room for its competitors C in its extended range E,
each of these competitors themselves had to find room for C in their extended ranges when
they split or chopped into the interval I.

Cla im 4: If Iq,j D_ Ip,i for some j < i and Iq,j appears maximal to q in phase j , then
cq,j ~ c,,,,.

P r o o f Sketch: If r sends p an interval intersecting Ip,i in phase i, then r sends q an interval
intersecting Ivd and hence intersecting lq,j D Ip,i in the earlier phase j < i. V7

The second claim we prove concerns the fact that a process p may split into an interval
I in an orderly sequence of splits while another process q may chop into f in a chaotic
interleaving of splits and chops. The claim states that the moment this happens, p's extended
range E spans its entire interval I from that moment on. This means that if chopping
complicates our analysis in one way, it simplifies our analysis in another since we no longer
have to be careful to distinguish between intervals and ranges.

84

C l a i m 5: Suppose p splits to I in phase i, and suppose q chops into I in phase j . If i <_
and j < ~, then Ip,~ = Ev,z at the end of phase ~.

P r o o f Ske tch : If p splits down from f to I , then q chops down into I , and its new interval
J has the same lower bound as I . Since p splits down, its interval I and range have the same
upper bound. Since q chops down, its interval J and range have the same lower bound, so
p's interval I and extended range will have the same lower bound at the end of that phase.

If p splits up from I to I , then q must chop up into I . Since p splits up, its interval I
and range have the same lower bound. Suppose, however, that the top of its range is lower
than the top of its interval. We can argue that p's initial range must extend below I (or p
would have chosen I as its initial interval), so q's early ranges must extend below I , so q
would never be able to chop up into I , a contradiction. []

These two claims give us the tools we need to prove that [C t _<]E l is an invariant. We
prove this invariant by defining the condition

Ze: ICe,v,r[<_ IEe,p,~l in all executions e for all processes p and generation k phases r =
2 , . . . , s

and then proceeding by induction on e _> 2 to prove that I t holds for all ~. Fix some
execution e and process p, and let I , R, E, and C denote I~,p,t, R~,v,t, E~,p,t, and C~,p,e.

As the basis of our induction; we show that the inwriant is true initially. We actually
prove two results. The first concerns the simple case where p~s range contains some other
processes initial range, and the second concerns the more common case where p's interval
(which is bigger than the range) contains some other process's initial interval.

C l a i m 6: If R contains some process q's initial range Rq,1, then IC[<]E t,

C l a i m 7: If I contains some process q's initial interval Iq,2, then ICI _]El.

As for the inductive step itself, if I does not contain the initial interval of any process,
then all of p's competitors have chopped or split into I . The next result concerns the
chopping case. It says that if I is p's interval and if any process q has chopped into I at any
time in the past--regardless of whether p and q are now competitors--then the invariant
is preserved. It is a strong statement that chopping quickly brings distinct intervals and
ranges into synch.

C l a i m 8: Suppose Zr is true. If any process has chopped into I by phase ~, then]C[_<]E].

P r o o f Ske tch : If I contains the initial interval of any process, we are done by Claim 7. If
p chopped into I in phase i < e, then C C Cp,~-i and Ep,i-1 C E, and the result folJows
from Z~-I. If p split into I , then some process q chopped to J C I in phase j _< l. We can
prove that C C Cq,j-1 and Eq,j-1 C J C I = E, and the result follows from Z~-I. []

The difficult cases, thereiore, are the cases in which p and all its competitors sprit from
] to I . The case of splitting down is easy, but the case of splitting up is difficult. In fact,
understanding how to choose and manipulate ranges to make the case of splitting up go
through is the most important way in which our increment register algorithm differs from
the strong renaming algorithm it is based on.

C l a i m 9: Suppose Zt-1 is true. If p and all its competitors have split down to I by phase
e, then]C] _<]E[.

85

P r o o f Sketch: Let q be the greatest competitor in C, meaning q is the greatest process to
send an interval contained in I to p in phase t. Consider the phase j in which q split from

to I , and notice that C C_ Cq,j-1 by Claim 4. Since q is the greatest process in C and
since q split down from I to I , process q found that all processes in C C Cq,j could choose
distinct values from the bottom half of its extended range. Since E is at least this big, we
have ICl _< IEI. []

C l a i m 10: Suppose ~s iS true. If p and all its competitors have split up to I by phase E,
then ICl < IE[.

P r o o f Sketch: Let q be the least competitor in C, meaning q is the least process to send
an interval contained in I to p in phase *. Consider the phases i <_ l and j < ~ in which p
and q split up from/~ to I , respectively. Notice that since p and q split their intervals at the
ends of phases i - 1 and j - 1, Claim 4 implies that C C_ Cp,~-I and C _C Cq,j-1.

Suppose that i ~ j (the case with j < i is similar, and easier). Let e t be the execution
differing from e only in that in each phase k > i - 1 of e ~ the processes p and q receive messages
from exactly the same set of processes that p receives messages from in the corresponding
phase of e. Notice that this does not change the set of messages p receives in phase i - 1,
and hence does not change the fact that p splits up to I in phase i, but it might change the
messages and splitting of q.

Prove that Ee,,q,i-l.lb = E,,,p,i_l.lb > Ee,q,j-l.lb and C C Ce,q,j-1 C Ce,,q,i-1, meaning
that at the end of phase i - 1 in e ~ process q's lower bound is higher and set of competitors
is larger than at the end of phase j - 1 in e. Since q splits up at the end of phase j - 1 in
e, it will split up at the end of phase i - 1 in e r, assuming its interval _T is maximal among
the intervals it receives in e ~. It must be maximal, however, because q receives precisely the
same intervals in phase i - 1 of e J as p does, and p splits up. In fact, since p and q have
extended ranges with the same lower bound and receive the same intervals at the end of
phase i - 1 in e ~, they must assign the same values to the same processes at the end of phase
i - 1 of e ~. It follows from Zl-1 that p and q can assign distinct values from E~,,p,i_l and
Ee,,q,~-i to all processes in Ce,,p,i-1 = C,,,q,~-l, and we have already noted that they assign
the same values. Since q is the smallest process in C C C,,,q,i-1 and q splits up, this means
that both p and q can find values for all processes in C in the top halves of their extended
ranges. Since the top half of p's extended range is E- - remember that upper bounds never
change---it follows that [C] <]El, as desired. []

The invariant IC] ~ IEI follows by ~.nduction on *, and the correctness of our implemen-
tat ion follows by this invariant and Lemma 1:

T h e o r e m 11: ~-is a linearizable, walt-free implementation of an increment register.

6 T i m e c o m p l e x i t y

We now show that increment operations halt in O(logc) rounds, where c is the number
of concurrent operations. Technically speaking, a failed operation is concurrent with (or
overlaps) every following operation~ so c can grow artificially large. Fortunately, we can
prove a tighter bound, depending on a set of concurrent operations that is generally a much
smaller set. 2 Our algorithm has the nice property that the invocation of an increment
operation delays at most one generation. If the invoking process is nonfaulty, then the
increment delays its own generation. If the invoking process is faulty, then it may delay

2This does not mean tha t our algorithm runs faster than the f~(log c) worst-case lower bound, because
these t w o sets are equal in tha t single worst-case execution.

86

a later generation, but it will delay at most one. In fact, we can identify exactly which
generation an operation delays.

For each generation k, we define the active set of processes, namely those processes or
invocations that contribute to the generation's running time. We show that the largest
range chosen by any generation k process is bounded in size by the size of the active set,
and we show that a generation halts in time logarithmic in the size of the largest range.
From this it follows that all generation k increment operations halt in time log ck, where ck
is the size of the active set for generation k.

6.1 A c t i v e Sets

We begin by defining activek, the active set of processes for generation k.
Loosely speaking, the active set for generation k consists of all processes that the "good"

processes learn about for the first time in round k. Remember that all processes choose
their initial range at the end of phase 0, exchange their ranges, and then choose their initial
intervals at the end of phase 1 based on the ranges they receive. The "good" processes
for generation k are the generation k processes that survive these initialization phases and
begin broadcasting intervals.

Let gen~ be the set of generation k processes. FormaLly, we define good k to be the set of
generation k processes that are nonfanlty in phases 0 and 1 of generation k (that is, they
do not fail in rounds k and k + 1). For any good process p, the set of processes that p has
learned about in the first k rounds is exactly the value of its ~et IncSe t at the end of round
k, which we denote by IncSetp,k. The set knownk of all processes the good processes know
about at the end of round k is given by

knownk= [._J IncSetp,k,
pE good k

and the set active~ of all processes that the good processes learn about for the first time in
round k is

activek = knownk - k nownk_l

(where " - " denotes set difference).
It is clear that the set of known processes increases with every round:

Cla im 12: knownk_l C knownk for all k.

Using this observation, we can show that the set activek has two desirable properties:
every nonfanlty generation k process belongs to activek, and every process belongs to at
most one set activek.

Claim 13: good k C_ activek for all k, and activej n activek = 0 for all j r k.

6.2 M a x i m a l R a n g e

For each generation k, we can bound the size of the ranges sent by good processes with
aetivek. Since we are trying to bound the execution time of generation k increments, we
need only consider the ranges of the good processes, since all other processes fail by the end
of phase 1.

Consider the largest range a good process p can send. Every process p chooses upper
and lower bounds up and/p at the end of phase 0, but then p decreases its lower bound in
every round. At any given time, a process p's lower bound is the minimum of the lower

87

bounds lq chosen by some subset of the generation k processes. In the worst case, a good
process p's largest range Rv,i is contained in max_range k = [lbk, ubk], where

ubk = max{up : p e goodk}
Ibk = m J n { ~ : p e ge~k}

In other words,

C l a i m 14: Rp,i C max_range k for every good process p E goodk and every phase i.

The next result shows that the size of max_range~ is bounded by the size of activek, and
hence so is the size of any range used by any good process in generation k.

C la im 15: Imax.rangek] g lactivekt.

P r o o f Ske tch : We prove that]known~] > ubk + 1 and that Iknownk_t] < lbk, so

I max-rangekI= ubk - lbk + 1 <_ [knownkl- I knownk_l[= t knownk- knownk_l[= [activek[

since knownk_l C knownk by Claim 12. []

6.3 R u n n i n g T i m e A n a l y s i s

For each generation k, we can bound the size of intervals sent by good processes with
max_range k. Consider any telescoping chain 11 D 12 D . . ' D Ii of intervals sent during
phase 2, where Ii strictly contains Ii+l, and suppose the sequence is of maximal length.
Since 11 is maximal, we know that it will split in half immediately at the end of phase 2,
leaving 12 D . . . D It as a maximal chain. We now prove that the size of 12 is roughly the
size of rnax_range~. Since the size of the maximal interval interval reduces by half in each
round, the running time is clearly logarithmic in the size of the largest interval, and it will
follow that the running time is roughly logarithmic in Irnax_rangekI < [activekl.

Cla im 16: Given any sequence of intervals 11 D_/2-D "" D It sent in phase 2 of generation
k, we have 1121 < 21rnax_rang%l.

P r o o f Ske tch : Since the intervals Ii in the chain are sent in phase 2, they are sent by good
processes in good k (processes surviving phases 0 and 1), and their ranges Ri are contained
in max_range k by Claim 14. The upper and lower bounds R 1.ub and Rl.lb of R1 are clearly
in the top half and bottom half of 11, respectively. Since 12 is strictly contained in 13, we
know tha t /2 is either in the top or bottom half of I3. We consider the two cases separately.

Suppose I2 is in the top half of /1 . Then since the lower bound Rl.lb of R1 at the
end of phase 1 is in the bottom half of 11, the lower bound R2.lb of R2 will drop to the
bottom of /2 at the end of phase 2. Since the upper bound R2.ub of R2 is in the top half
of 12, the range R2 will be at least half o f /2 by the end of phase 2. This means that
Ihl <_ 21R~[<__ 21max_range~ [.

Suppose 12 is in the bottom half of I1. This means that at the end of phase 1 the upper
bound Rl.ub of R1 is in the top half of I~, and the lower bound R2.lb of R2 is in the bottom
half of/2. At the end of phase 2, therefore, the lower bound Rl.lb of R1 wilt be in the bottom
half o f / ~ - - o r lower--so R1 wig span the top half of h : Ihl -< 2[Rll _< 21maz-rangekl. []

Combining these results, we are done:

T h e o r e m 17: Every generation k increment operation completes within O(log]activek])
rounds.

88

Acknowledgments: We thank Maurice Iterlihy for his insights and interest.

References

[ABND+87] Hagit Attiya, Amotz Bar-Nay, Danny Dolev, Daphne Koller, David Peleg,
and Rudiger Reischuk. Achievable cases in an asynchronous environment. In
Proceedings of the 28th IEEE Symposium on Foundations of Computer Science,
pages 337-346, October 1987.

[ABND+90] ttagit Attiya, Amotz Bar-Nay, Danny Dolev, David Peleg, and Rudiger Reis-
chuk. Renaming in an asynchronous environment. Journal of the ACM, July
1990.

[AHS91] James Aspnes, Maurice P. Ilerlihy, and Nit Shavit. Counting networks and
multi-processor coordination. In Proceedings o/ the 23th ACM Symposium on
Theory of Computing, May 1991.

[Her86] Maurice Herlihy. A quorum-consensus replication method for abstract data
types. A CM Transactions on Computer Systems, 4(1):32-53, February 1986.

[tter91b] Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 13(1):124-149, January 1991.

[tter91a] Maurice Herlihy. Randomized wait-free concurrent objects. In Proceedings
o/the lOth Annual A CM Symposium on Principles of Distributed Computing,
pages 11-22. ACM, August 1991.

Joesph Y. Halpern and Ronald Fagin. Modelling knowledge and action in
distributed systems. Distributed Computing, 3(4):159-t79, 1989.

Joseph Y. Ita~pern and Yoram Moses. Knowledge and common knowledge in
a distributed environment. Journal of the ACM, 37(3):549-587, July 1990.

Maurice P. Herlihy and Mark R.. Tuttle. Wait-free computation in message-
passing systems: Preliminary report. In Proceedings of the 9th Annual ACM
Symposium on Principles of Distributed Computing, pages 347-362. ACM, Au-
gust 1990.

Maurice P. Herilhy and Jeannette M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463-492, July 1990.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications o.f the ACM, 21(7):558-564, July 1978.

Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690,
September 1979.

Leslie Lamport. The part-time parliament. Technical Report 49, DEC Systems
Research Center, September 1989.

Yoram Moses and Mark R. Tuttle. Programming simultaneous actions using
common knowledge. Algorithmica, 3(1):121-169, 1988.

Christos H. Papadinfitriou. The serializability of concurrent database updates.
Journal of the ACM~ 26(4):631-653, October 1979.

Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. Technical report, Cornell University, Computer Science
Department, November 1987.

[~FSg]

[~M90]

[HT90]

[HW90]

[Lam78]

[Lam79]

[Lam89]

[MTSS]

[Pap79]

[SehST]

