INFORMATION AND COMPUTATION 105, 132-158 (1993)

More Choices Allow More Faults:
Set Consensus Problems in
Totally Asynchronous Systems

Soma CHAUDHURI*

Department of Computer Science,
lIowa State University, Ames, Towa 50011

We define the k-SET CONSENSUS PROBLEM as an extension of the CONSENSUS
problem, where each processor decides on a single value such that the set of decided
values in any run is of size at most k. We require the agreement condition that all
values decided upon are initial values of some processor. We show that the problem
has a simple (k —1)-resilient protocol in a totally asynchronous system. In an
attempt to come up with a matching lower bound on the number of failures, we
study the uncertainty condition, which requires that there must be some initial
configuration from which all possible input values can be decided. We prove using
a combinatorial argument that any k-resilient protocol for the k-set agreement
problem would satisfy the uncertainty condition, while this is not true for any
(k — 1)-resilient protocol. This result seems to strengthen the conjecture that there
is no k-resilient protocol for this problem. We prove this result for a restricted class
of protocols. Our motivation for studying this problem is to test whether the num-
ber of choices allowed to the processors is related to the number of faults. We hope
that this will provide intuition towards achieving better bounds for more practical
problems that arise in distributed computing, e.g., the renaming problem. The
larger goal is to characterize the boundary between possibility and impossibility in
asynchronous systems given multiple faults. © 1993 Academic Press, Inc.

1. INTRODUCTION

The CONSENSUS PROBLEM that has been studied in the literature involves
a set of n processors, each with an initial bit (0 or 1), where all these
processors have to decide on a common value among themselves. If the
initial values of all the processors are 0, they have to decide on 0, while if
all the initial values are 1, they have to decide on 1. Additionally, this has
to be done in the presence of a number of faults. In a surprising result,
Fischer et al. [FLP83] showed that in a totally asynchronous system, the

* Supported by NSF Grant CCR-8714782. Most of this work was done while the author
was a student in the Department of Computer Science and Engineering at the University of
Washington, Seattle, WA 98195.

132

0890-5401/93 $5.00

Copyright 1 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 133

CONSENSUS PROBLEM could not be solved deterministically even in the
presence of one fault. This is true even though the type of failure considered
is the benign form of fail-stop fault, where a processor fails by suddenly
stopping to function.

Spurred by this negative result, further resecarch focussed on either
weakening the model by restricting the asynchrony [ADG84, DDSS83,
DLS84] or strengthening the protocols by allowing randomization { BO§3,
Bra85, Rab83]. In both cases, consensus protocols were found. But the
[FLP83] negative result still seemed to imply that no decision could be
reached by a deterministic protocol in a totally asynchronous system.

However, a more recent result [ABND *87] shows that the RENAMING
PROBLEM, where each non-faulty processor is making an irrevocable deci-
sion, can be solved in the presence of multiple faulty processors. This would
seem very surprising until one realizes that while the CONSENSUS PROBLEM
requires decision and termination by all the processors, in the RENAMING
PROBLEM the processors are allowed to continue being active forever even
after they have reached decision. This additional power is useful in solving
the RENAMING PROBLEM while it is of no use in solving the CONSENSUS
PROBLEM. This leads to the question of identifying specific properties of
problems that make them unsolvable in a totally asynchronous system
which is subject to faults, to further understand the power of these systems.
Other research that has addressed this question is described in [BW87,
BMZ88, TKMS89]. The first paper studies resource allocation problems
and shows that some variants of these problems are solvable in the
presence of failures. The second paper arrives at a combinatorial charac-
terization of problems that can be solved given a single faulty processor.
The third paper studies problems that are solvable in the face of multiple
failures. It shows that restricting the set of possible inputs to a problem
appropriately would make it solvable in the presence of a larger number of
faults.

The [FLP83] proof of impossibility was based on the importance of a
“critical event,” which, once past, left only one choice to the undecided
processors. In the CONSENSUS PROBLEM, this happened when some processor
had reached a decision state. In the RENAMING PROBLEM of [ABND *87],
this happens when there are exactly n names and n—1 processors have
decided on names. Both scenarios seem to imply that in the presence of one
fault, it is important to have two choices available to the undecided
processors. Can this idea be extended to multiple faults? In the RENAMING
PROBLEM, it seems that the size of the name space from which the names are
chosen needs to increase with the number of allowable faults, though this
1s yet to be proven.

The k-SET CONSENSUS PROBLEM that is introduced in this paper is an
attempt at testing the idea that the number of choices allowed to the

134 SOMA CHAUDHURI

processors is directly related to the number of allowable faults. It is the
natural extension of the CONSENSUS PROBLEM, where, instead of all pro-
cessors deciding on the same value, they have to decide on at most & dif-
ferent values and terminate. We state the problem below. We have »n pro-
Cessors Py, P,, -, P, and each processor p, has an initial value x, from a set
V=1{0, 1,..,m—1}. Each processor p, will have to decide on a single value
y; from V such that the collective set of decided values Y= {y,| i<n} will
be of size at most k.

We need some kind of non-triviality condition to make the problem
interesting. The non-triviality condition for the consensus problem was that
if the initial values of all the processors are the same, that value has to be
decided upon by all the processors. Actually, a weaker condition is suf-
ficient for the impossibility proof of [FLP83], that some run must decide
0 and some run must decide 1. This eliminates the possibility that any
default value is decided upon. The specific non-triviality condition we
choose here is the agreement condition that a value decided upon in
any run must be an initial value of some processor. More formally, we
require that ¥ = X, where X = {x,|i<n}. We call the variant of the k-set
consensus problem including this agreement condition the k-SET
AGREEMENT PROBLEM. This seems like a natural, and perhaps more useful
variant of the set-consensus problem to solve in practice.

We obtain a simple (k — 1)-resilient protocol for the k-set agreement
problem. We conjecture the impossibility of k-resilient protocols for this
problem. This result would give credence to our intuition that the number
of choices allowed in a problem is related to the number of faults. We have
proved this result for a restricted class of protocols, called stable-vector
protocols. For the unrestricted case, we have only shown the relatively
trivial lower bound of the impossibility of a nk/(k + 1)-resilient protocol for
k-set agreement.

In an attempt at proving the general impossibility result, we introduce
an additional uncertainty condition on any protocol solving the k-set-
consensus problem, which says that for some vector (x,, x,, ..., x,,) of initial
values of the processors, there are at least £ + 1 different values in V such
that each is decided upon in some run of that protocol starting at the
initial values specified by the vector. That is, the set of values decided upon
is not always pre-determined given the set of initial values of the
processors, but is determined in the course of the run. This uncertainty
condition exists in the canonical consensus problem, and was important in
obtaining the impossibility result in [FLP83]. We introduce it here to see
if it exists in the k-set agreement problem, and to see if it helps us in
obtaining our impossibility result.

We prove, by a non-trivial combinatorial argument involving Sperner’s
Lemma [Spe28], that any k-resilient protocol for k-set agreement must

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 135

satisfy the uncertainty condition. This is, however, not true for any
t-resilient protocol, where ¢ < k. This is the main result of the paper, and
we believe this is a first step towards proving our key conjecture that no
k-resilient protocol exists for the problem in a totally asynchronous system.

While the [FLP83] result is based on the asynchronous message-passing
model, Loui and Abu-Amara [LAA87] showed the same impossibility
result in the shared-memory model. Our result does not assume either the
message-passing or the shared-memory paradigm, and holds in either case.
It is a general result based only on the possibility of fail-stop faults. In fact,
it does not even assume a totally asynchronous system, and holds for both
synchronous and asynchronous systems.

Our algorithms, on the other hand, assume a totally asynchronous
system, and either the message-passing or the shared-memory model of
communication.

2. PRELIMINARIES

We first define our problem and describe the model. The k-set consensus
problem is as follows: In an asynchronous system of n processors p,, pa, ...,
P., €ach processor p, starts with an input value x;e V. It follows a deter-
ministic transition function by which it communicates with other
processors, and eventually decides on an output value y;e V. We define the
set of possible input/output values V= {0, 1, .., m— 1}, where m > k. Each
processor p; is modeled as an infinite-state machine with state set &. There
are m possible initial states, 1, I1,, ..., I,,_, € Z, denoting the initial values.
Processor p, starts in initial state 7. There are m sets of decision states
Fos s Fy_ 1 < Z. Each processor p; eventually enters a decision state in
Z,,, eflectively deciding on the value y,. Once a processor enters a state in
%,, for some v, further transitions can only lead to other states in .%,. This
models the requirement that a decision once reached by a processor is
irrevocable. Moreover, modelling a set of decision states (rather than one
state) for each decision value allows the processors to perform non-trivial
actions even after reaching a decision.

There are two fundamental models for processor communication, shared
memory and message passing. Our impossibility result is valid in both
models, and we describe them below. In the message-passing model,
processors communicate by receiving and sending messages. Each pro-
cessor has a buffer associated with it, which contains all the messages that
have been sent to it but have not yet been received.

There are two possible operations supported by the buffers:

1. Send (p, m) places message m in processor p’s buffer.

136 SOMA CHAUDHURI

2. Receive (p) deletes some subset of messages 4 from p’s buffer and
delivers it to p. The subset of messages delivered may be empty even if the
buffer is non-empty.

In the shared-memory model, processors communicate by reading
and writing into shared memory registers. Given registers X, .., X, the
operations are as follows:

1. Read,(X;) is the read operation by processor p from register X,
returning the value of the register.

2. Write,(X;, v) is the write operation by processor p that writes
value v into register X,.

A configuration of the system consists of the state of each processor. In
a message-passing system it also includes the contents of each message
buffer. In a shared-memory system it also includes the values of each
shared register. The initial configuration consists of the initial states of each
processor (I, for all i), the empty message buffers in the case of message
passing, and the initial values of the registers in the case of shared memory.

A step is defined to be the primitive step of a single processor p,
changing the configuration of the system. In a message-passing system, the
step occurs in two phases. First, receive (p) is performed, which causes a
(possibly empty) set of messages p to be delivered to p. Based on the
messages received, processor p changes state and executes its protocol,
sending messages to the other processors using the operation send (g, m).
In a shared-memory system, either a read or a write operation by a
processor, followed by a change in state, constitutes a step.

Our asynchronous model can be described as follows. Since we allow the
processors to be completely asynchronous, each processor can wait an
arbitrary amount of time before performing a step. However, every reliable
processor will perform a step an infinite number of times or until it ter-
minates. Also, since communication is reliable, though asynchronous, in
the message-passing model, a given message placed in processor p’s buffer
will be eventually delivered given that receive (p) is performed an infinite
number of times, though it may not be delivered after any given finite num-
ber of receive (p) executions. In other words, any reliable processor will
eventually receive all the messages sent to it. It is important to note that
message order is not preserved; a message that was placed in the message
buffer earlier could be delivered later. In the shared-memory model, no
additional conditions are placed on the system.

A few more definitions are necessary to formalize the model. Note that
while each processor behaves deterministically, the non-determinism or
uncertainty is introduced by the relative order of steps among the
processors, and the message delivery system in the case of message passing.

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 137

DerFINITION 2.1. A configuration D is reachable in one step from
configuration C, if a step taken by some processor in configuration C
results in configuration D.

DerFNITION 2.2. A configuration C, is reachable from Cj if there is a
finite sequence C - -- C, such that for all 0 <i<k, C,, is reachable in one
step from C,.

A run describes the sequence of configurations that the system goes
through as it executes the protocol:

DEFINITION 2.3. A run is a sequence (finite or infinite) of configurations
CyCy-+-Cy---, where C, is an initial configuration and for all i20, C,,
is reachable in one step from C,.

We say that a processor is non-faulty in an infinite run if it performs a
step infinitely many times in that run. Otherwise, it is faulty. Note that the
type of faults we consider here are fail-stop faults. A processor, if it takes
a step, behaves as specified by its protocol.

A run of a k-resilient protocol can have at most k faults. We label each
configuration by the possible values that can be decided (by any processor)
in any configuration reachable from it. We define the k-valent property
of a configuration along the same lines as the univalent and bivalent
properties of [FLP83].

DerFmNITION 2.4, The set L=V is the label of a configuration C: ie,
L =label(C), where

L= {ve V| thereis a configuration reachable from C

where some processor decides v}.

DEFINITION 2.5. A configuration C is said to be k-valent if |label(C)| = k.

Note that for non-triviality we required that |}| 2k + 1. Any protocol
for the k-set consensus problem satisfies the following validity condition:

k-validity. The set of values Y decided upon in any run is such that
Y Vand |Y| <k

A further non-triviality condition that we introduce is the agreement
condition, which requires that any value decided in a run be an input value
of some processor in that run. We discuss in Section 5 why this particular
condition, apart from being useful and natural, is essential for our
purposes. We define the k-SET AGREEMENT PROBLEM to be the k-set

138 SOMA CHAUDHURI

consensus problem with the agreement condition, and this is the problem
we will concentrate on.

Agreement. If the set of initial values in a given run is X < V, the set of
decided values is Y= X.

The k-set agreement problem seems to be a good candidate to test our
intuition that the number of choices allowed to the processors in a problem
is related to the number of faults that can be tolerated by a protocol for
the problem. The k-set agreement problem allows k choices. If our intuition
were correct, there should be a (k — 1)-resilient protocol for the problem,
but no k-resilient protocol should exist.

In Section 4, we present a (k — 1)-resilient protocol for k-set agreement.
We define a restricted class of protocols, called stable-vector protocols. Our
{k — 1)-resilient protocol is such a protocol. We then prove that no
k-resilient stable-vector protocol exists for k-set agreement.

While the lower bound result referred to above holds for a restricted
class of protocols, we would like to achieve the same lower bound for
all protocols. Towards proving this general matching lower bound, we
introduce the uncertainty condition, given below.

Uncertainty. There exists a (k + 1)-valent initial configuration.

In Section 3, we prove that any k-resilient protocol for the k-set agree-
ment problem satisfies the uncertainty condition. The result requires a
combinatorial proof involving Sperner’s Lemma [Spe28].

Why is this result interesting? Our goal is to prove the impossibility of
a k-resilient protocol for k-set agreement. Showing that any k-resilient
protocol for k-set agreement must satisfy the uncertainty condition, i.e., it
must have a (k + 1)-valent initial configuration, is one step towards this
goal. Recall that the impossibility proof in [FLP83] involved a similar
step. It first proved that any Il-resilient protocol for consensus must have
a bivalent initial configuration. It then proved inductively that it was
possible to remain in a bivalent configuration indefinitely, while taking
all the legal steps of the protocol. The hope is that a similar inductive
argument might prove useful to show impossibility of the k-set agreement
problem in the presence of k faults.

3. AGREEMENT IMPLIES UNCERTAINTY WITH k& FAULTS

We come to our main technical result, which shows that any k-resilient
protocol for k-set agreement must satisfy the uncertainty condition. As we
stated earlier, this result holds for both synchronous and asynchronous
systems.

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 139

THEOREM 3.1 (Uncertainty Theorem). In a distributed system with fail-
stop faults, for any k-resilient protocol which solves the k-set agreement
problem, there exists a (k + 1)-valent initial configuration.

The notion of a k-orbit is important in our proof. We define it here.

DerFmNITION 3.1, A k-orbit is a set of initial configurations which differ
in the initial values of at most k processors.

LemMma 32, For any k-resilient protocol, let {Cy, .., C,.} be a k-orbir,
and for all i<m, let L, be the label of C,. Then, L, L, --- nL,, is non-

empty.

Proof. Let p,, .., p, be the processors whose values differ in the initial
configurations in the k-orbit. Consider an identical run starting from each
of these configurations in which these k& processors are initially dead. The
remaining processors should all decide in these runs since our protocol is
k-resilient. Furthermore, the same set of values L must be decided in all
these runs since they are identical. Therefore, L is contained in L;, for all
i<m, and it follows that L, n L, --- n L,, must be non-empty. ||

We prove the theorem for the case k=2. This gives a flavor of the
general proof, while retaining some simplicity. The proof for £ > 2 is sub-
stantially more complicated, and will be dealt with in a separate subsection.
Our proof makes use of Sperner’s Lemma [Spe28], which we state below.

LemMa 3.3 (Sperner’s Lemma). Given a triangle with arbitrary points in
the interior and boundaries, color each vertex of the triangle and all interior
and boundary points with three colors following the coloring restriction given
below:

» The three vertices of the triangle must be colored with the three
different colors.

o FEvery point on an edge of the triangle must take on the color of one
of the two vertices adjacent to that edge.

Given any triangulation of the triangle with respect to its interior and
boundary points, consider the unit triangles it forms. There are an odd
number of such unit triangles whose vertices are colored with three distinct
colors. In particular, there exists at least one such unit triangle.

Proof of Theorem 3.1 for the Case k=2. Let P be a 2-resilient protocol
for the problem. We form a triangle on a grid whose vertices and interior
and boundary points represent initial configurations of the protocol. Each
initial configuration is defined by an n-tuple of initial values (x,, .., x,
where each entry x; is some value in V= {a, b, c}. Note that without loss

140 SOMA CHAUDHURI

aabbd aaaab
abbbb aaa! aaaaa
bbbbb Y ¢ P
ahbhe

bbbbe § 4 aeaac

bbbee g [aaacc
bbeee aacce
beece -

acece

ceeee

FiG. 1. A triangle illustrating the application of Sperner’s Lemma.

of generality, we can assume that |V| =3, since impossibility in this case
would imply impossibility in general. (An algorithm that works if | V]| =m
will clearly work if | V| <m.) The case for n=>5 is illustrated in Fig. 1.

Not all the initial configurations are represented in this triangle. The
configuration (xi, .., x,) is represented if there exist some i, j, where
0<i<j<n, suchthat x,=afori<i, x,=bfori<iI<j,and x,=cfor /> .
The point (i, j) in our grid is occupied by that initial configuration. Note
that the initial configuration (b, ..., b) occupies the (0, n) position, (c, ..., ¢)
occupies the (0, 0) position, and (a, ..., a) occupies the (n, n) position. These
are the three vertices of the triangle and all other points (i, /) where
0<i<j<n are interior or boundary points of the triangle. Intuitively,
every move up on the y-axis corresponds to a change of one entry from ¢
to b, and every move to the right on the x-axis corresponds to a change
of one entry from b to a.

Consider the simple triangulation of this triangle formed by bisecting
each unit square, as shown in Fig. I. We claim that each unit triangle
defines a 2-orbit. This is obvious, since any three initial configurations C,,
C,, C, which form a unit triangle clearly differ in the values of at most two
processors. Let the labels of these configurations be L,, L,, L;. By
Lemma 3.2. we know that L, n L, n L, is non-empty.

Now, to continue with the proof of the theorem, suppose there is no
3-valent initial configuration. Then, each configuration represented in the
triangle has a label from the set {a, b, c, ab, ac, bc}. We color the triangle
with the three colors K,, K,, and K, in the following manner. Any
configuration with label ¢ or bc is colored K|, those with label a or ac are
colored K, and those with labels b or ab are colored K,. We need to check
if our coloring satisfies the conditions of Sperner’s Lemma. Since the three

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 141

vertices of the triangle must have labels a, b, and ¢, by the agreement
condition, they are colored with the three different colors K, K,, and Xj,.
Any point on the edge joining the vertices colored K, and K, must have the
label a, b, or ab, again by the agreement condition. Therefore, such a point
would be colored either K, or K,. The same holds for the other edges.
Now, applying Sperner’s Lemma, we have the result that there exists some
unit triangle which is colored by K,, K,, and K;. Then, the labels of the
three corresponding configurations have an empty intersection. This leads
to a contradiction since we claimed earlier that the intersection of the labels
must be non-empty. §

3.1. The Generalized Proof of the Uncertainty Theorem

To prove the result in general for all values of &, we need the general
form of Sperner’s Lemma [Spe28]. The one listed above is for the case
where k=2. The general form argues about k-simplices rather than
triangles (which are 2-simplices) and (k + 1) colors instead of three. While
for the k =2 case, the lemma was directly applicable to obtain our result,
this is not true for larger values of k. The intuitive reason for this added
complexity is that while for k=2, a simple triangulation gave rise to unit
triangles which could be shown to be 2-orbits, it is harder to argue for
k>2 that a simplicial decomposition exists which produces unit
k-simplices which correspond to k-orbits.

We first describe some definitions relating to simplices. A k-simplex is
a convex hull of k+1 affinely independent points, which are called its
vertices. Note that a O-simplex is a point, a 1-simplex is a line segment, a
2-simplex is a triangle, and a 3-simplex is a tetrahedron.

For all / <k, an [-simplex is a face of a k-simplex if all the vertices of the
l-simplex are vertices of the k-simplex. This is consistent with the geometric
notion that the faces of a tetrahedron are triangles.

We now proceed to give the general proof of the theorem. First we state
the generalized form of Sperner’s Lemma [Spe28].

LEMMA 3.4 (Generalized form of Sperner’s Lemma). Given a k-simplex
with arbitrary points in its interior and boundaries, color each vertex of the
k-simplex and all interior and boundary points with k + 1 colors following the
coloring restriction given below:

o The k+1 vertices of the k-simplex must be colored by the k + 1
different colors.

e If a point is contained in an I-simplex which is a face of the
k-simplex, where 1< k, it must take on the color of one of the |+ 1 vertices
of the l-simplex.

142 SOMA CHAUDHURI

Given any simplicial decomposition of the k-simplex with respect to its inte-
rior and boundary points, consider the unit k-simplices it forms. There are an
odd number of such unit simplices whose k + 1 vertices are colored with k + 1
distinct colors. In particular, there exists at least one such unit k-simplex.

Generalized Proof of the Uncertainty Theorem. Let P be a k-resilient
protocol for the problem. We prove, by contradiction, that a (k + 1)-valent
initial configuration must exist.

We form a k-simplex in the Cartesian Coordinate System whose vertices
and interior and boundary points represent initial configurations of the
protocol. Without loss of generality, we can assume that |V| =k + 1, since
an impossibility result in this case would imply impossibility whenever
IVI>k. So we define the set of initial values of the processors to be
V=1{0, .., k}. Each initial configuration is defined by an n-tuple of initial
values (x|, .., x,,), where each entry x; is in V.

Not all the initial configurations are represented in the k-simplex. The set
of initial configurations [, represented have the following property. For
all 4, j such that 0<i<j<n, x;<x;. In other words, there is a monotonic
order in the initial values of the processors.

We define a one-to-one mapping f between the initial configurations and
the points in the k-dimensional Cartesian grid. For every initial configura-
tion x = (X, .., X,) € lon» f(X)=2z=(z2,, ..., 2;), Where for all i<k, z,=,
such that x; </ and x,, , > i In other words, z, is the number of processors
whose values in the initial configuration x are less than i.

These points define a k-simplex. Note that the point (0, ..., 0) represents
the configuration (%, ..., k), while the point (n, .., n) represents the con-
figuration (0, ..., 0). Each configuration of the form (/, ..., /), where 0 </ <k,
is represented by the point (z,, ..., z;), where for all i</, z,=0, and for all
i>1I z;,=n. These k+1 points are the vertices of the k-simplex. Each
dimension of the k-simplex is of length #. The interior and boundary points
correspond to the points on the grid. Let 2 be the set of integers. Note
that the k-simplex contains all points (z,, .., z,) such that for all i, z,e Z,
and for all 7, j where i< j<k 0<z,<z;<n.

We define a triangulation [Tod76] over &%= {(z|, .., z,) | z,€ 2}, the
k-dimensional space, where % is the set of integers. This is known as the
Kuhn triangulation. For all j<k, let « = (u, .., u,) such that «,=1 and
for all i# j, u;=0. In other words, «’ is the jth unit vector of length k. Let
n be any permutation function of k, ie, a one-to-one function from
{1,..,k} to itself. For each point y°e Z* and each permutation =, we
define the unit k-simplex with vertices y° y',.., y*, where, for all i,
y' =y~ +u™?. The collection of all such unit k-simplices defined over all
points y°e Z* and all permutation functions n of k corresponds to our
triangulation.

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 143

The following lemma states that Kuhn’s simplicial decomposition of the
k-simplex creates unit k-simplices, each of which corresponds to a k-orbit.
The lemma will be proven later.

LeMMa 3.5. Kuhn's triangulation divides the k-simplex into unit
k-simplices such that each unit k-simplex corresponds to a set of k + 1 initial
configurations which defines a k-orbit.

Now, suppose, for contradiction, that there exists no initial (k+1)-
valent configuration. Then for each initial congifuration C in I,
|label(C)| <k, where label(C)< V and V= {0, .., k}.

Consider the set of k+1 colors J# = {K,, .., K, }. The color function
maps each initial configuration in 7_,,, i.e., each point in the k-simplex,
to a color in). We define it below. First, for all ie V, define next(i) =
(i+1) mod(k + 1). Now, let next-label(C) = {next(i) | ie label(C)}. Also,

label(C) = V —label(C). Then color(C) = K|, 4., Where
index = min(label(C) m next-label(C)).

Note that label(C) n next-label(C) is always non-empty. This is because,
since label(C) # V, there exists some value i label(C) such that next(i) ¢
label(C). Also, index can be defined to be any value in the set; we
arbitrarily define it to be the minimum value.

Note that our proof for the special case k=2 follows this coloring
scheme with the value set V= {a, b, ¢} renamed to {0, 1,2}, where a
corresponds to 0, b to 1, and ¢ to 2. We state the following lemmas related
to the color mapping, which will be proven later.

LeMMma 3.6. The mapping color is a coloring of the k-simplex which
satisfies the conditions of Sperner’s Lemma.

LemMa 3.7. If a unit k-simplex contains all the colors in X, then
the intersection of the labels of the corresponding ser of k+ 1 initial
configurations is empty.

By Lemma 3.6, the coloring satisfies the conditions of Sperner’s Lemma.
By Lemma 3.7, if a unit k-simplex contains all the colors in ¢", then the
intersection of the labels of the corresponding set of k + 1 initial configura-
tions is empty. But this set of initial configurations corresponds to an orbit
by Lemma 3.5, and by Lemma 3.2, the intersection of the labels is non-
empty. Therefore, no unit k-simplex can have all the colors in #". Since the
coloring satisfies the conditions of Sperner’s Lemma, this contradicts
the lemma, which states that at least one unit k-simplex must contain
all the K+ 1 colors. Therefore, there must exist an initial (k + 1)-valent
configuration. |

144 SOMA CHAUDHURI

We now prove the lemmas required in proving the theorem.

Proof of Lemma 3.5. Note that Kuhn’s triangulation divides each unit
k-hypercube independently into k! unit k-simplices. Each unit k-simplex is
part of exactly one unit k-hypercube. We label each k-hypercube by its
lowest point. The unit hypercube defined by the vertices z=(z,, ..., z;), for
all z such that for all i, z;e {y,, y,+ 1}, has the label (y, .., y,}, which is
its lowest point. The hypercube labeled y° is divided into k! unit simplices
defined by y° and each of the k! permutations of k.

We call the set of unit k-simplices defined by Kuhn’s triangulation SIM.
Kuhn [Kuh60] shows that the set S/M of unit k-simplices is indeed a
simplicial decomposition of Z*. Since our k-simplex is a convex subset of
Z*, we prove that a subset of the set SIM of unit k-simplices form a
triangulation of our k-simplex X. Clearly, any two unit simplices are
mutually exclusive; ie., they do not share any internal points, but only
boundary points. To prove that there exists a subset of unit simplices such
that the union of the unit simplices equals our k-simplex X, it is sufficient
to prove that every unit simplex in S/M is either completely contained in
X or is completely outside X. In other words, for every point re £% which
is contained in X, if r is not contained in any face of a unit £-simplex, then
all the vertices of the unit simplex containing it must be in X. We prove this
in the following.

Cramm 38. If a point r e R* is contained in X, but is not contained in any
Jace of a unit k-simplex in SIM, then all the vertices of the unit k-simplex
containing it must be in X.

Proof. Let r=(r,,r,,..,r,)€%#* be a point in X. Note that the fact
that r is not contained in any face of a unit k-simplex implies that for all
i, r;¢ Z. Therefore, for all i, | r, J<r,<[r,]

The point r belongs to the unit k-hypercube H labeled »°=(Lr, |,
L#3], s L7]). Let sim be the unigue unit simplex containing r, defined by
the vertices y°, .., y*. For all I<k, define for all i, [y'],e#® such that
¥ =([¥Jo, ..» [']1¢) Note that, by the definition of the decomposition,
for all , I, i such that I<!' <k, [y'], <[],

If H is completely contained in X, clearly all the vertices of sim must be
in X. Suppose H is not completely contained in X. We suppose, for
contradiction, that there exists some i<k such that y’ is not contained
in X. Let b <k be the smallest integer such that y® is not contained in X.

Suppose that »=0. Then »° is not in X. Recall that X contains all points
(zy, . 2;)such that for all §, z,e &, and for all i, j where i< j<k, 0<z, <
z;<n. This implies that for some i<k, [y°],>[»°],,,. But this would
imply that r,>r,, , which is a contradiction of the fact that r is in X.

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 145

Therefore, b> 0. Recall that for all /, m<k, [y'},.€{Lrn). [7.1} and
Lrn |+ 1=[r,T] So, for all i, the ith bit takes on one of two consecutive
values in each of the vectors y'.

For all /, m such that I<m, r,<r,,. Also, for all /, r,<n. This follows
from the definition of our k-simplex X and of r. Therefore, it follows that
for all [, m, {y'],,<n, since r,, < [¥'],., for all , m.

Let n(b)=a, where 7 is the permutation used in computing the vertices
% .., ¥* of the unit simplex sim. Then, y,=y’ '+4u“. Note that
[y '].+1=[»%],, and for all m#a, [y* '],.=[»"].. So, the two
vectors differ at only the ath bit.

Since y*~!is in X, it follows that for all /, m such that I<m, {y* '],<
[»*~1],.. Now, since y” is not in X, and y® and y®~! differ in only the ath
bit, and we know that [y®],<n, it follows that [y°],> [}* 1. .1

Now, by the relationship of »” and r, we have | r,|+1=[y"],.
Therefore, |r,]+1>[»*1,,1, and |r,]=[»%].,,. We know that
Lrad<Lras1] Therefore, [r,,)2 [y°)., . However, |r,. J<[»" 1.
Therefore, it follows that [r,, , {={»*],,:. So, we have that [r, [+ 1>
Lrasid Since [r, | <,y it follows that [7, {=|r,. |

It follows that for all i<b, [y']),=[»T,.;, and for all i>b,
(V1= [V 1w

Now, by a fact of linear algebra, we know that r must be a positive
linear (convex) combination of y° .., y*. In other words, there exist
positive constants cy, ..., ¢;, such that

r=coc‘y0+ +Ckc}’k.

Given a defined above, we have

* ra=coo[y0]a+"'+cko[yk]u
o ragr=coo[Y0laiit o [V

We showed above that [p®],>[»"]..., and for all i#b, [y'],>
[»1.,,. Therefore, r,>r,, ,, which is a contradiction. |

The result of the lemma follows from the claim. |

We now prove two properties about the coloring, stated in Lemmas 3.6
and 3.7.

Proof of Lemma 3.6. The two conditions of Sperner’s Lemma are as
follows. First, the k + 1 vertices of the k-simplex must be colored with & + 1
distinct colors. We prove this fact. The labels of the k + 1 vertices are {0},
{1}, ... {k}. By the definitions of next and color, their corresponding
colors in ¥ will therefore be K, K>, ..., K., K,, respectively. Therefore, the
first condition is satisfied.

146 SOMA CHAUDHURI

The second condition of Sperner’s Lemma states that if a point in the
k-simplex is contained in an /-simplex which is a face of the k-simplex, then
its color must be the color of one of the vertices of the /~simplex. Let C be
a configuration that lies in an /-simplex, where /<k. Let color(C)=K,,
where je V. By the definition of color, it follows that je next-label(C).
Let ie VV be such that next(i)=,. By the definition of next-label, this
implies that ielabel(C). Now, by the agreement condition, there exists a
configuration D which corresponds to a vertex of the /-simplex such that
label(D) = {i}. Therefore, next-label(D)= {;j} and color(D)=K,. So D is
a vertex of the /-simplex with the same color as C and we have our
result. |1

Proof of Lemma 3.7. Suppose there is a unit k-simplex containing all
the colors in . Let the set of configurations that defines the unit
k-simplex be {C,, C,, ..., C,}, where, for all i, C; has the color K,.

We define a one-to-one correspondence between each color K; e ¥ and
a set of values of size k. For all i, K; corresponds to the set L,=V — {i}.

Now, for all i, label(C;) is the label of C,. We claim that the intersection
of all the label(C;)’s is empty. We first prove that for all i, label(C,)< L,.

Note that by definition of color, for all i, the fact that C; has color K,
implies that i¢label(C;). Since i is the only element of ¥ which is not
contained in L,, it follows that label(C;,)< L,.

Clearly, N, L,=¢. Since for all i label(C,)=L,, it follows that
N label(C))=. 1

This completes our proof of the Uncertainty Theorem.

3.2. Other Impossibility Results

We define the EXACTLY-K-SET CONSENSUS PROBLEM to be the problem
where a set of n processors start with an input value within the set V,
where V' > k. Each processor p; decides on a value y;, such that the set of
decided values Y= {y,,.., y,] is of cardinality exactly k. In addition, all
values must be decided in some run. We claim that the exactly-k-set con-
sensus problem does not even have a 1-resilient protocol. We conclude this
section by giving an obvious lower bound for the k-set agreement problem
in the asynchronous message-passing model.

THEOREM 3.9. There is no l-resilient protocol for the exactly-k-set
consensus problem.

The proof follows along similar lines to [FLP83], and is omitted here
for brevity.

THEOREM 3.10. There is no [nk/(k + 1)]-resilient protocol for k-set
agreement in the message-passing model.

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 147

Proof. Suppose there exists such a protocol. Divide the set of
processors into k+ 1 groups Gy, .., G,, so that each group has either
(n/(k +1)7 processors or | n/(k + 1}] processors. Now, consider an initiai
configuration in which all the processors in group G, have input value i, for
all i< k. Given a run where each processor only hears from (either directly
or indirectly) other processors which share its initial value, every processor
must decide on its own value. Then, (k + 1) different values are decided
upon, which violates k-set agreement. [

4. STABLE VECTOR PROTOCOLS FOR k-SET AGREEMENT

We present a simple (k— 1)-resilient protocol which solves the k-set
agreement problem, in a totally asynchronous system with fail-stop faults.
It has some similarity to the algorithm for the renaming problem presented
in [ABND *87]. We present this protocol in the message passing model.
We will later present a few protocols in the shared memory model.

THEOREM 4.1. There exists a (k — 1)-resilient protocol for the k-set
agreement problem, where n>2(k—1) and n is the total number of
Processors.

The algorithm is as follows. Each processor maintains a vector of size n,
where the ith entry corresponds to the initial value of processor i, if it
knows it, and the value ¢, if it does not. Initially, the vector of each
processor only contains its own initial value. In each round, each processor
broadcasts its vector and then receives the vectors of other processors and
incorporates the new information into its own vector. Note that since & — 1
processors may be faulty, a processor can only wait for n —k + 1 vectors in
each round. When a processor reaches a round in which it receives
n—k+ 1 vectors that are identical to its own vector, it stops and decides
on a value based on this vector. It then broadcasts this vector, labeling it
as a decider vector.

Before we can state the algorithm in more formal terms, some notation
has to be clarified. Let 7(i) be the ith entry of the vector 7. We can define
partial orders < and < on the vector as follows:

DerINITION 4.1, Given vectors T, and T, T'<XT; if Vi<n, T\(i)=
¢ \4 Tl(l)= Tz(i). AlSO, Tl < T2 if]-'] < T2 A Tl # T2.

Intuitively, 7, has all the information of T, and perhaps more. We also
define the notion of a complete vector and a t-eligible vector.

DEerFINITION 4.2. A vector T is complete if Vi< n, T(i)# ¢. A vector T is
t-eligible if it has at most ¢ entries with value 4.

643/105:1-11

148 SOMA CHAUDHURI

For processor p,:
1. Construct initial vector T, such that T,(i) = z, and ¥j # i, T,(j) = ¢
2. Broadcast T; to all processors and set r := 1.

3. If a vector T for some j which is not a decider vector is received,

(a) ¥T; < T;, goto 3.
(b) WT; = T;, then

i.setri=r+1

ii. if r < n—k+1then goto 3, else goto 5.

(¢) WT; 2 T; T; := update (T;,T,) and goto 2.
4. Otherwise, if a decider vector T} is received, set T;:= T;.

5. Decide on y; where y; = compute (T;). Broadcast a message containing T, labeled as a decider

vector to all processors and terminate

FiG. 2. The k-set agreement algorithm.

We describe the Set-Agreement Algorithm for processor p; (see Fig. 2).

We need to define the two functions, update and compute, used in this
algorithm. The function update takes as input two consistent vectors 7, and
T,, each of length », and outputs a new vector T such that Vi<n,

1. if Ty(iy=¢ A Tr(i)=¢ then T(i)=¢.
2. if T(i)=x, v T,{i)=x, then T(i)=x,.

Note that 7, T,< update(T;, T)).

The function compute maps each (k — 1)-eligible vector S into a value in
V. We define compute(S) to satisfy the agreement condition as follows.
Every vector is mapped arbitrarily to any value present in the vector. This
is enough to guarantee agreement.

It is notable here that depending on the specific mapping of the vectors,
the algorithm may or may not satisfy the uncertainty condition. This shows
that the Uncertainty Theorem does not hold for (k — 1)-resilient protocols.

We need to argue the correctness and termination of his protocol. First,
we show termination. The protocol for a processor p, terminates when,
after broadcasting some vector 7, either it receives n—k + 1 messages
identical to T, or it receives a decider vector. Once one processor sends a
decider vector, every processor will eventually receive it, unless it has
already terminated. So it is sufficient to show that some processor must
decide. For sake of contradiction, we assume that none of the processors
terminate.

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 149

LEMMA 4.2. Some processor will eventually receive n—k+ 1 messages
identical to its own vector in every run.

Proof. Suppose, in some run, no processor ever receives n—k + 1
identical messages. Consider processor p; and let T, be the maximal vector
broadcast by p; over the course of this run. Note that such a maximal
vector must exist. Let p, broadcast 7,. Since, by assumption, none of the
non-faulty processors have terminated, they all eventually receive 7;. Each
processor p; then broadcasts a vector T; such that 7,<XT,. For all j, p,
receives 7;. Since T, was p/s maximal vector, T; K T;. Therefore, for all j,
T;=T,. Since there are at least n —k + 1 non-faulty processors, we have a
contradiction. J

Before we prove correctness, we first define the concept of a stable vector
associated with a run. For any given run, a vector T is a stable vector if
some processor p; has received n—k+ 1 copies of T in that run of the
protocol. While there is a partial order defined on the set of all vectors, we
will show that the set of stable vectors constitute a total order. The idea of
a stable vector was earlier shown in [ABND *87].

Each processor computes its decision value based on the vector it
terminates with, and each of these vectors is a stable vector. Therefore, it
is sufficient to prove that there can be at most £ possible stable vectors in
any run, since that implies that there are at most k& different decisions
made.

First we state a lemma, showing that = defines a total order on the set
of stable vectors.

LEMMA 4.3. < defines a total order between all stable vectors in a given
run.

Proof. Consider two stable vectors 7) and 7, in run R. We show that
either T\ < T, or T, > T,. By definition, a set P, of n —k + 1 distinct pro-
cessors broadcast T, and a set P, of n —k + 1 distinct processors broadcast
T,. Since n>2(k—1), this implies that P, P,# . Consider some
processor pe P, n P,. Since p broadcasts both 7, and T7,, it must have
broadcast one first. Suppose, without loss of generality, T, is broadcast
before 7,. Then T, is computed by a series of applications of update and
therefore 7, <X 7,. If T, is broadcast first, then T, = T5. So, some processor
forces the total order between any pair of stable vectors. |}

LEMMA 4.4, There are at most k possible stable vectors in any run of the
protocol.

Proof. We claim two facts, which together imply the preceding
statement.

150 SOMA CHAUDHURI

1. A stable vector in any run is a (k — 1)-eligible vector.

2. For any ¢, there is at most one stable vector in any run with
exactly t entries with value ¢.

To prove the first fact, note that a stable vector is broadcast by at least
n—k+ 1 distinct processors. Therefore, it will contain an initial value for
at least all these processors. This leaves at most & — 1 entries with value ¢.
To prove the second fact, suppose there are two distinct stable vectors each
with ¢ entries with value ¢. This contradicts the fact that there is a total
order between the two vectors. So there cannot be two stable vectors with
the same number of entries with value ¢.

Now, proving the lemma is straightforward. We just note that there can
be at most one stable vector with ¢ entries with value ¢, where ¢ ranges
from 0 to k — 1 inclusive. That gives at most & stable vectors in any run. ||

Since there can be at most k different stable vectors, there can be at most
k different decisions in any run. So we have shown the existence of a
(k — 1)-resilient protocol for k-set agreement.

What we have presented here is really a class of algorithms which we call
“stable vector” algorithms. We extend the definition of a stable vector for
t-resilient protocols to be a vector, n— t copies of which have been received
by a processor in a run of that protocol. Each processor maintains a vector
which it broadcasts to all processors and updates according to information
received from other processors, in each round. Once it obtains a stable
vector, it uses the coMPUTE function to decide and then terminates. By
varying our COMPUTE function, we can make the algorithm satisfy different
properties. In the above, we showed that we can define COMPUTE so as to
satisfy agreement in the presence of (k —1) faults. In the following, we
prove that no k-resilient stable-vector algorithm exists for the k-set
agreement problem. In other words, no COMPUTE function exists w:hich
would satisfy agreement in the presence of & faults. Note that for a
k-resilient stable vector algorithm, any k-eligible vector may be a stable
vector.

THEOREM 4.5. There exists no k-resilient “‘stable vector” algorithm for
the k-set agreement problem.

Proof Sketch. Suppose a k-resilient stable-vector protocol exists for
k-set agreement. Any set of k-eligible vectors Ty, .., T,, where for all i
T;<T,,, could be stable vectors for a run of the protocol. Then, the
decision set Y of the run is {compute(T,) | 0<i<k}. Now, |Y| <k if and
only if for some i, j, i # j, compute(T,) = compute(T;).

Therefore, there must exist a COMPUTE function satisfying agreement such
that for any set of k + 1 k-eligible vectors T, ..., T, where T, < T,, ,, there

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 151

exists 7, j, i # j, such that compute(T;) = compute(7;). We prove below that
no such COMPUTE functions exists.

This proof has the same flavor as that of the Uncertainty Theorem. To
avoid repetition, we only prove the result for the case k=2 (and
V={a, b, c}) here, to illustrate the main differences.

We construct a triangle on a grid whose vertices and interior and
boundary points represent 2-eligible vectors. Each vector therefore has at
most 2 “blank” entries. The three vertices of the triangle represent the
complete vectors (with no “blank” entries) (q, ..., a), (b, ..., b), and (c, ..., ¢).

We now informally describe the enumeration of vectors on the grid.
Figure 3 below illustrates this for n=4. Every alternate row contains
complete vectors (the other rows do not contain any). In these rows,
complete vectors appear in every alternate point. To decide which complete
vector occupies each space, note that, in the vertical dimension, two
consecutive complete vectors differ in exactly one entry; the upper vector
contains an “a” while the lower vector contains a “54.” In the horizontal
dimension, too, two consecutive complete vectors differ in exactly one
entry; the left vector contains a “b” while the right vector contains a “c.”
This places all complete vectors on the grid. The relative positioning of the
complete vectors here is identical to that in the proof of the Uncertainty
Theorem. The difference here is that partial vectors are placed between
these complete vectors, as explained below.

Between each pair of complete vectors which differ in position i, a partial
vector is inserted which is identical to both vectors except that it has a
“blank” in position i. This still leaves some empty slots between partial
vectors, e.g, a—bc and a—cc. Here again, we insert a partial vector
with a “blank” in the differing position, e.g., a— —c. So, the triangle is
constructed incrementally by filling in all the complete vectors in each
alternate row and column. Then the partial vectors with one “blank’ are
inserted between complete vectors, and last, the partial vectors with two
“blank’’s are inserted between partial vectors with one “blank.”

Given any coMpUTE function, we define the color of each point repre-
sented by vector vec to be the value coMPUTE(vec)e {a, b, c}. We now
show that our triangle satisfies the conditions of Sperner’s Lemma. Note
that the three vertices of the triangle have the “colors” a, b, and ¢. To
satisfy the validity condition, each vector appearing on the side of the
triangle between aaaa and bbbb must have the color a or b. A similar
statement is true for the other sides of the triangle, and so the conditions
of Sperner’s Lemma are satisfied.

Now, we can triangulate this triangle by bisecting each unit square on
the grid with the diagonal containing the complete vector. It is easy to
verify that each unit triangle formed corresponds to a set of three 2-eligible
vectors Ty, T, T,, where T;< T, ,. By Sperner’s Lemma, there exists a

152 SOMA CHAUDHURI

aaaa

aa

aa

e
<
&
[
o

- FF---rF---

¥
I
£

Fig. 3. Enumeration of vectors on a grid.

unit triangle with all three colors. Therefore, the corresponding set of
2-eligible vectors is such that each vector is mapped to a different value by
coMpPUTE. This proves our result for the case k=2. |

This impossibility result is based on a very restricted class of protocols
which may not be interesting by itself. We conjecture, however, that the
“stable-vector” model can be extended to a more general class of “full
information” message-passing protocols for which a similar proof technique
would be applicable. Attiya, Bar-noy, and Dolev [ABND90] proved that
any shared-memory protocol could be translated into a message-passing
protocol. Therefore, if we can prove an impossibility result for all message-
passing protocols, this would extend to all shared-memory protocols as
well.

While the protocols we studied so far were in the message-passing model,
we can show the existence of simple (k — 1)-resilient protocols for k-set
agreement in the shared-memory (read/write) model.

In any shared-memory model, there are two parameters that can be
varied. One is the number of shared-memory cells we use, and the other is
the number of different values that can be written into each cell.

We have the following simple (k — 1)-resilient protocol for k-set agree-
ment in the shared-memory (read/write) model using 1 (|V]+ 1)-valued
cell. The set of input/output values is V= {1, 2, .., m}, where m> k.

SET CONSENSUS IN ASYNCHRONOQUS SYSTEMS 153

The memory cell is initialized to 0. Each processor p;, for
ie{1,2, .., k} writes its initial value x, in the memory cell,
and decides on x;. Each processor p;, where j> k, reads
the memory cell repeatedly until it reads a non-zero value.
It then decides on that value.

Clearly, a non-zero value will be eventually written into the memory
cell as long as at most k — 1 processors die. Also, at most & values will be
written. Therefore, at most & different values will be decided upon.

Now, we propose a different algorithm which uses m 2-valued memory
cells, where | V| =m.

The memory cells X,, X,, ..., X, are all initialized to O.
Each processor p,, for ie{1,2, ..k}, writes 1 into
memory cell X, if its initial value x; is /. It then decides on
x,;. Each of the remaining processors reads all the memory
cells in turn until it reads the value 1 in some memory cell
m;. It then decides the value /.

Clearly, one of the memory cells will eventually have a non-zero value,
and at most k of them will. Therefore, every non-faulty processor will
eventually decide and at most k values will be decided upon.

Both these protocols allow exactly k processors to make independent
decisions while all other processors decide based on those decisions. This
is important in satisfying k-set agreement, since it guarantees that at most
k decisions will be made. Unfortunately, the protocols are not k-resilient
since if all of these k deciding processors die without making a decision, the
other processors will not be able to decide. This seems to suggest the
absence of k-resilient protocols for this problem in the shared-memory
model as well.

These two protocols suggest that we can get some kind of trade-off
between the number of memory cells and the number of values that can be
written into each memory cell. It also gives rise to a number of different
models which vary in strength depending on the number of values allowed
in each memory cell and the number of memory cells. We can also measure
the complexity of any problem by the weakest model in which a protocol
for it exists.

In this paper, we have considered only the most basic primitives for
shared memory, namely read and write. The whole problem takes a new
dimension if one considers strong wait-free primitives such as read-modify-
write, sticky bits, or compare-and-swap. We can compare consensus and
set agreement in each of these stronger models in an attempt to get a
separation between the problems. In particular, while {LAA87] showed
that there is no 2-resilient consensus protocol in the fest-and-set shared

154 SOMA CHAUDHURI

memory model, we can show the existence of a (2k — 1)-resilient k-set
agreement protocol. We conjecture that no 2k-resilient k-set agreement
protocol exists in this model.

5. NON-TRIVIALITY CONDITIONS FOR SET-CONSENSUS

In this section, we discuss our motivation for choosing the agreement
condition as our necessary non-triviality condition. Our intention was to
define the k-set consensus problem so that it was resilient to k — 1 faults
but was not resilient to & faults. With this in mind, we study a number of
different non-triviality conditions. The non-triviality condition for the
canonical consensus problem was that if the initial values of all the
processors are the same, that value has to be decided by all non-faulty
processors. Actually, a weaker condition is sufficient for the impossibility
proof of [FLP83], that some run must decide 0 and some run must
decide 1. This eliminates the possibility that any default value is decided
upon. Consider the following non-triviality conditions, all of which are
natural extensions of the [FLP83] condition:

N1 All values ve V are decided by some processor in some run.

N2 There exist two different subsets of V" such that each of them is
the set of decided values in some run.

N3 For all processors p;, y, (the value decided by p;) is not the same
in every run.

N4 For all values ve ¥V, if the initial value of every processor is v in
a run, v is the only possible decided value.

Unfortunately, none of these conditions are desirable non-triviality
conditions for the set consensus problem. Remember that our intent was to
formulate a problem which would capture some of the complexity of the
renaming problem. These conditions turn out to be insufficient. We
describe some trivial message-passing protocols below which solve the k-set
consensus problem for k£ > 1, satisfying the above conditions.

ProTOCOL 1.

Given a set of processors {p,, ... p,}, p, decides on its
own value x, and broadcasts it. All other processors wait
to receive from p, and decides on its value. If they do not
hear from p, in one step, they decide on a default value v’

SET CONSENSUS IN ASYNCHRONOUS SYSTEMS 155

Since p, can take any initial value, the different sets of decision values
possible would be {{v}|veV}u {{v,v'}|veV}. This satisfies all three
conditions N1, N2, and N3. Furthermore, the protocol is n-resilient for
2-set consensus!

The following is a t-resilient protocol for k-set consensus, where
t < n{k — 1)/k, which also satisfies condition N4. In particular, the protocol
solves 2-set consensus as long as ¢ < n/2, where ¢ is the number of faults.

ProTOCOL 2.

Each processor performs a receive repeatedly until it
receives the values of n—t processors. If all the values it
receives are the same, it decides on that value. Otherwise,
it decides on v’

What is wrong with these protocols? One reason they are uninteresting
is that the set of possible decisions is trimmed down to size two just based
on the initial values of all the processors. So in some sense the decision is
pre-determined before a single step of the protocol is taken. We can
formalize this using labels by saying that each initial configuration has a
label of size at most two. In Protocol 1, the default value, v', is in the label
of each initial configuration. In Protocol 2, this is not the case for initial
configurations where all processors have the same initial value. However,
for all other initial configurations, there is still a default value decided
upon, and some values are eliminated independent of the actions based on
the protocol.

What we need is an “uncertain” &-set consensus problem, where the set
of decided values from the initial configurations does not already satisfy the
validity condition before any action of the protocol. We would like
the actions of the protocol to eliminate the uncertainty. So we let the
uncertainty condition defined in Section2 be our new non-triviality
condition.

Even the uncertainty condition fails to give any added complexity to the
set consensus problem. We present a simple protocol which solves the k-set
consensus problem with the uncertainty condition, given as many as
(n—1) faults.

ProT1OCOL 3.

Each processor broadcasts its value. Processor p, decides
on the first value it receives, and broadcasts its decision.
Every other processor waits for p,’s decision. If it receives
the value in a certain time, it decides on that value.
Otherwise, it decides on v'.

156 SOMA CHAUDHURI

Note that the above protocol satisfies the uncertainty condition since
any initial configuration such that |X| > & + 1 is (k + 1)-valent, where X is
the set of input values of the configuration. In addition, every run reaches
2-set consensus. However, the presence of a default value still makes the
problem trivial.

We need a stronger property to make the k-set consensus problem more
difficult. Our goal was to formulate a problem which is not resilient to k
faults. The agreement condition is a natural property which seems to
eliminate the possibility of a default value. Note that we did not need the
stronger agreement condition to achieve non-triviality for the canonical
consensus problem in [FLP83]. However, for set consensus, the agreement
condition is imperative in achieving non-triviality.

6. CONCLUSION AND OPEN PROBLEMS

The main question that we have yet to answer is if there exists a
k-resilient protocol for k-set agreement in a totally asynchronous system.
We have shown that the problem does have a (k — 1)-resilient protocol.
We have also shown that any &-resilient protocol for the problem must
have a (k + 1)-valent initial configuration [FLP83] proves impossibility of
1-resilient protocols for consensus by showing the existence of a bivalent
initial configuration, and then showing that it is always possible to create
a valid run which remains in a bivalent configuration. It is unclear whether
a similar inductive proof could be used to show that there exists a run in
the protocol which is forever (k+ 1)-valent. So far our attempts at
generalizing the inductive proof have failed. We have shown that for a
restricted class of protocols (defined for the message-passing model),
namely the stable-vector protocols, no k-resilient protocols exist, but have
not been able to extend this result to all protocols. We still believe that
there is no k-resilient protocol for the problem, but it is possible that any
impossibility proof might require a totally new approach.

It would be interesting to see if the intuitive similarities between the k-set
agreement problem and the renaming problem could be formalized. In
other words, we would like to see if any reductions were possible from one
problem to the other. The same goes for other practical problems that arise
in distributed computing, such as mutual exclusion. The ultimate goal
would be to understand and characterize the boundary between possible
and impossible in asynchronous systems with multiple faults.

SET CONSENSUS IN ASYNCHRONOQUS SYSTEMS 157

ACKNOWLEDGMENTS

I thank Richard Ladner, whose advice and insight were critical throughout this work.
Protocol 3 was suggested by Michael Fischer. Michael Saks pointed out Sperner’s Lemma to
me, which really simplified the proof of the impossibility result for the k=2 case. I also
benefitted from a number of discussions with him to come up with the general proof. I also
thank Hagit Attiya, Akhilesh Tyagi, and Jennifer Welch for some very helpful comments and
suggestions. Jennifer Welch noticed that the impossibility result was independent of the
synchrony assumptions. Last, but not least, I thank the referees, whose sometimes caustic
criticism helped to improve the paper greatly.

I am grateful to the Department of Computer Science at the University of North Carolina
at Chapel Hill for providing me with the resources and the environment to conduct this
research.

RECEIVED January 14, 1992; FINAL MANUSCRIPT RECEIVED September 9, 1992

REFERENCES

[ABND*87] ATtiva, H., BAR-Novy, A., DoLev, D., KOLLER, D., PELEG, D., AND REISCHUK,
R. (1987), Achievable cases in an asynchronous environment, in “IEEE Sym-
posium on Foundations of Computer Science,” IEEE, New York.

[ABND90] ArtTiva, H., BaAR-Noy, A, anp Dotev, D. (1990), Sharing memory robustly
in message-passing systems, in “ACM Symposium on Principles of Distributed
Computing,” Assoc. Comput. Mach., New York.

[ADGS84] ATTIYA, H., DOLEV, D., AND GIL, J. (1984), Asynchronous Byzantine consen-
sus, in “ACM Symposium on Principles of Distributed Computing,” Assoc.
Comput. Mach., New York.

[BMZ88] BiraN, O., MoRraN, S., AND ZaKs, S. (1988}, A combinatorial characterization
of the distributed tasks solvable in the presence of one faulty processor, in
“ACM Symposium on Principles of Distributed Computing,” Assoc. Comput.
Mach., New York.

[BO83) BEN-OR, M. (1983), Another advantage of free choice: Completely
asynchronous agreement protocols, in “ACM Symposium on Principles of
Distributed Computing,” Assoc. Comput. Mach., New York.

[Bra85] BracHA, G. (1985), An O(logn) expected rounds randomized Byzantine
generals algorithm, in “ACM Symposium on Theory of Computing,” Assoc.
Comput. Mach., New York.

[BW87] BrIDGLAND, M.F., AND WaTRO, R.J. (1987), Fault tolerant decision making
in totally asynchronous systems, in “ACM Symposium on Principles of
Distributed Computing,” Assoc. Comput. Mach., New York.

[DDS83] Dorev, D., Dwork, C., AND STOCKMEYER, L. (1983), On the minimal
synchronism needed for distributed consensus, in “IEEE Symposium on
Foundations of Computer Science,” IEEE, New York; revised version (January
1987), J. Assoc. Comput. Mach. 34.

[DLS84] Dwork, C., LYyNCH. N., AND STOCKMEYER, L. (1984), Consensus in the
presence of partial synchrony, in “ACM Symposium on Principles of
Distributed Computing,” Assoc. Comput. Mach.. New York.

[FLP83] FiscHER, M., LyNCH, N., AND PATERSON, M. Impossibility of distributed
consensus with one faulty process, in “ACM Symposium on Principles of

158

[Kuh60]
[LAA87]
[Rab83]
[Spe28]

[TKMS89]

[Tod76]

Printed in Belgium

SOMA CHAUDHURI

Database Systems,” Assoc. Comput. Mach., New York; revised version (April
1985), J. Assoc. Comput. Mach. 32.

Kunn, H. W. (1960), Some combinatorial lemmas in topology, IBM J. Res.
Dev. 4, No. 5, 518-524.

Lout, M. C., AND ABU-AMARA, H. H. (1987), Memory requirements for agree-
ment among unreliable asynchronous processes, 4dv. Comput. Res. 4, 163-183.
RaBIN, M. (1983), Randomized Byzantine generals, in “IEEE Symposium on
Foundations of Computer Science,” IEEE, New York.

SPERNER, E. (1928), Neuer Beweis fiir die Invarianz der Dimensionszahl und
des Gebietes, Abh. Math. Sem. Univ. Hamburg 6, 265-272.

TauBenreLD, G., Katz, S., anpD MoORaN, S. Impossibility results in the
presence of multiple faulty processes, in “Proceedings of the Symposium on
Foundations of Software Technology and Theoretical Computer Science,”
Lecture Notes in Computer Science, Springer-Verlag, Berlin/New York.
Toop, M. J. (1976), The computation of fixed points and applications, in
“Lecture Notes in Economics and Mathematical Systems,” p. 124, Springer-
Verlag, Berlin/New York.

Ulitgever. Academic Press, Inc.
Verantwoordelijke uitgever voor Belgié:

Hubert Van Maele

Altenastraat 20, B-8310 Sint-Kruis

