
Faster than Optimal Snapshots (for a While)∗

Preliminary Version

James Aspnes
†

Department of Computer
Science, Yale University
aspnes@cs.yale.edu

Hagit Attiya
‡

Department of Computer
Science, Technion

hagit@cs.technion.ac.il

Keren Censor-Hillel
§

Computer Science and
Artificial Intelligence Lab, MIT

ckeren@csail.mit.edu

Faith Ellen
¶

Department of Computer
Science, University of Toronto

faith@cs.toronto.edu

ABSTRACT
This paper presents a novel implementation of a snapshot
object for n processes, with O(log2 b logn) step complexity
for update operations and O(log b) step complexity for scan
operations, where b is the number of updates. The algorithm
uses only reads and writes.

For polynomially many updates, this is an exponential
improvement on previous snapshot algorithms, which have
linear step complexity. It overcomes the existing Ω(n) lower
bound on step complexity by having the step complexity
depend on the number of updates. The key to this imple-
mentation is the construction of a new object consisting of
a pair of max registers that supports a scan operation.

Applications of this construction include an implemen-
tation of a limited-use generalized counter with polyloga-
rithmic step complexity. This can be used, for example, to
monitor the number of active processes, which is crucial to
adaptive algorithms.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; F.2.2 [Analysis of Algo-

∗ACM, 2012. This is the authors version of the work. It
is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published
in PODC 2012.
†Supported in part by NSF grant CCF-0916389.
‡Supported in part by the Israel Science Foundation (grant
number 1227/10).
§Supported by the Simons Postdoctoral Fellows Program.
¶Supported in part by the Natural Science and Engineering
Research Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’12, July 16–18, 2012, Madeira, Portugal.
Copyright 2012 ACM 978-1-4503-1450-3/12/07 ...$10.00.

rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms
Theory, Algorithms

Keywords
Concurrent objects, restricted-use objects, atomic snapshot,
generalized counters

1. INTRODUCTION
Atomic snapshots [1] are fundamental data structures in

shared memory computations. They allow processes to scan
and update shared arrays so that the operations seem to
take effect atomically.

Atomic snapshots provide a crucial tool for many shared-
memory algorithms, as they simplify coordination between
processes. A typical example is a generalized counter, which
supports the addition of arbitrary positive or negative inte-
gers. This is a very useful concurrent data structure: It can
be used for keeping track of the number of participants in
an algorithm, as is done for mutual exclusion [9], where pro-
cesses join and leave the competition for the critical section.
With atomic snapshots, each process can store its “contribu-
tion” (the sum of the values by which it has incremented and
decremented) in its component. Using a scan, a process gets
an instantaneous view of the contributions, which it sums to
obtain the value of the counter.

The best previously-known algorithms for atomic snap-
shots using only reads and writes [7, 12] have step complex-
ity that is linear in the number of processes n. For a long
time, this was taken to be the inherent cost of atomic snap-
shots, in light of the linear lower bound proved by Jayanti,
Tan, and Toueg [15].

Recently, it was shown that a counter, which only allows
updates that add one to the counter value, can be imple-
mented with polylogarithmic (in n) step complexity using
only reads and writes, assuming the number of increments
is polynomial (in n) [4]. This is indeed the case for many
applications of a counter. The construction is based on an
implementation of a bounded max register. It extends to
other concurrent data structures, provided that they can



be represented by monotone circuits. However, it critically
depends on the facts that the value of the counter is mono-
tonically increasing and that all increment operations have
the same effect. Therefore, the construction cannot be used
to implement a generalized counter or an atomic snapshot.

In this paper, we present a linearizable implementation
of atomic snapshots with O(log3 n) step complexity, as long
as the number of update operations that are performed is
polynomial in n. Obtaining an implementation of a snap-
shot object with polylogarithmic step complexity using only
reads and writes is particularly surprising, since all previous
implementations had a process directly read a linear num-
ber of registers to perform an operation. Instead, our im-
plementation allows processes performing scans and updates
to cooperate to reduce the cost exponentially, provided the
snapshot object is only updated polynomially many times,
as is the case in many important applications. This implies
implementations with polylogarithmic step complexity using
only reads and writes for a wide variety of shared-memory
objects, including generalized counters.

The key technical development behind our results is the
definition and implementation of a linearizable 2-component
max array, a new data structure consisting of two compo-
nents, each of which is a max register that may be updated
independently, and which supports a scan operation that re-
turns the values of both components. The pairs (x0, x1) and
(y0, y1) returned by different scans are always comparable
in the sense that either x0 ≤ y0 and x1 ≤ y1 or y0 ≤ x0 and
y1 ≤ x1. The implementation of the 2-component max array
is based on inserting copies of the first component at all lev-
els of a tree of registers implementing the second component
using the construction of [4].

The 2-component max array is exactly the tool we need to
coordinate the recursive construction of atomic snapshots.
We use a binary tree of 2-component max arrays to man-
age the combination of increasingly wide snapshots of parts
of an array of n values. The max registers store increasing
indices into a table of partial snapshot values. The scan of
a max array is used to guarantee that the two halves of a
partial snapshot are consistent with each other. By requir-
ing updaters to propagate their new values up the tree, we
amortize the cost of constructing an updated snapshot of
all n components across the updates that modify it. This
allows a process to obtain a precomputed snapshot in sub-
linear time.

The reason our results do not contradict the linear lower
bound [15] is because the proof uses executions that are ex-
ponentially long as a function of n. Specifically, it has been
shown [5] that collect objects and, hence, snapshot objects
have Ω(min(log b, n)) step complexity, where b is the number
of updates performed. This indicates that our implementa-
tion is close to optimal.

Due to their importance, there have been other implemen-
tations of atomic snapshots, e.g., [2, 10, 16]. An interesting
implementation of atomic snapshots using f -arrays takes one
step for a scan and O(logn) steps for an update, but it uses
LL/SC [13]. There are also atomic snapshot implementa-
tions using CAS [14, 18], which take one step for an update
and O(n) steps for a scan.

2. MODEL AND PRELIMINARIES
Consider a deterministic asynchronous shared-memory

system comprised of n processes, which communicate

through shared registers that support read and write. We
assume that any number of processes can fail by crashing.

An implementation of a shared object in this system pro-
vides a representation of the object using shared registers
and an algorithm for each type of operation supported by
the object. The implementation is linearizable [11] if, for
every execution, there is a total order of all completed op-
erations and a subset of the uncompleted operations in the
execution that satisfies the sequential specifications of the
object and is consistent with the real-time ordering of these
operations (i.e. if an operation is completed before another
operation begins, then the former operation occurs earlier
in the total order).

There are a number of different shared objects we con-
sider. A counter, r, supports two operations, Read(r) and
Increment(r). If r is a generalized counter, then it also sup-
ports Add(r, v), where v ∈ Z, i.e. it allows the value of r
to be atomically changed by an arbitrary integer, instead of
simply being incremented by 1.

An atomic snapshot object consists of a finite array of m
components. Update(r, i, v) sets the value of component i
of snapshot r to v. Scan(r) atomically reads the values of
all m components. In a single-writer snapshot, the number
of components, m, is equal to the number processes, n, and
only process i can update component i.

A max register r is an object that supports two operations,
ReadMax(r), which returns the value of r, and WriteMax(r, v),
which sets the value of r to v ∈ N, if its value was less than
v. Thus, a ReadMax(r) operation returns the largest value of
v in any WriteMax(r, v) operation that is linearized before it.
For any positive integer k, a bounded max register object of
type MaxRegk is a max register whose values are restricted
to {0, . . . , k − 1}; we say that it has range k.

A 2-component max array consists of a pair of MaxReg ob-
jects, with an atomic operation that returns the values of
both of them. Specifically, an object r of type MaxArrayk×h

supports three linearizable operations: MaxUpdate0(r, v),
where v ∈ {0, . . . , k − 1}, MaxUpdate1(r, v), where v ∈
{0, . . . , h−1}, and MaxScan(r), with the following properties:

— MaxUpdate0(r, v) sets the value of the first component
of r to v.

— MaxUpdate1(r, v) sets the value of the second compo-
nent of r to v.

— MaxScan(r) returns the value of r, i.e. it returns a
pair (v, v′) such that v and v′ are the largest values in
any MaxUpdate0(r, v) and MaxUpdate1(r, v′) operations
that are linearized before it.

The results of two MaxScan(r) operations in a linearizable
execution are never incomparable under the componentwise
≤ partial order, i.e., it is never the case that u < v and
u′ > v′, for any pair of MaxScan operations returning (u, u′)
and (v, v′).

A b-limited-use object limits the total number of update
operations (e.g. Increment, Add, or Update) that can be ap-
plied to it during an execution to at most b. Operations
that do not change the value of the object can be applied
an unlimited number of times.

3. IMPLEMENTING A 2-COMPONENT
MAX ARRAY



We begin with the description of the implementation of
a MaxRegk object from registers [4], since our implementa-
tion of a MaxArrayk×h object is based on it. The smallest
max register, the trivial MaxReg1 object, requires no reads or
writes and uses no space: WriteMax(r, 0) does nothing and
ReadMax(r) simply returns 0. To get larger max registers,
smaller ones are combined recursively.

A max register r with range k consists of a single bit
register, r.switch, and two smaller max registers, r.left with
range m = dk/2e and r.right with range k − m. When
r.switch = 0, the value of r is the value of r.left; when
r.switch = 1, the value of r is m plus the value of r.right.
This gives a simple recursive algorithm for ReadMax. If
v ≥ m, a process performs WriteMax(r, v) by recursively
calling WriteMax(r.right, v−m) and then setting r.switch to
1. Otherwise, it first checks that r.switch = 0 and, if so, re-
cursively calls WriteMax(r.left, v). If r.switch = 1, the value
of r is already at least m, so no recursive call is needed. The
construction results in a tree of depth dlog2 ke.

Pseudocode for this implementation of a MaxRegk object
is presented in Algorithm 1.

Next, we turn attention to the implementation of a
MaxArray2×2 object, r. Suppose we use two MaxReg2 ob-
jects, r0 and r1, one storing the value of each compo-
nent. Then MaxUpdate0(r, v) can be performed by perform-
ing WriteMax(r0, v) and MaxUpdate1(r, v) can be performed
by performing WriteMax(r1, v). However, it is incorrect to
perform MaxScan(r) by simply collecting the values of both
components, i.e., by performing ReadMax(r0) followed by
ReadMax(r1). For example, consider the execution in Fig-
ure 1.

In this execution, the steps of two scanners, p and p′, are
interleaved with those of an updater q, such that p returns
(0,1) and p′ returns (1,0), which are incomparable. Thus,
it is impossible to linearize both these operations with this
naive implementation.

However, since the only possible values are 0 and 1,
there is a correct implementation of MaxScan(r) that is only
slightly more complicated: If a process obtains (0,0) from a
collect, it can return (0,0) and its operation can be linearized

Algorithm 1 An implementation of a MaxRegk object

Shared data:
switch: a single bit multi-writer register, initially 0
left: a MaxRegm object, where m = dk/2e, initially 0,
right: a MaxRegk−m object, initially 0

1: WriteMax(r, v):
2: if v < m
3: if r.switch = 0
4: WriteMax(r.left, v)
5: else
6: WriteMax(r.right, v −m)
7: r.switch← 1

8: ReadMax(r):
9: if r.switch = 0
10: return ReadMax(r.left)
11: else
12: return ReadMax(r.right) + m

at its first step. Similarly, a process that obtains (1,1) can
always return (1,1) and be linearized at its last step. When
a process obtains either (0,1) or (1,0), it can return the
pair of values resulting from performing ReadMax(r0) and
ReadMax(r1) again. Since the value of each component is
nondecreasing, its second collect will either return (1,1) or
the same pair as its first collect. In the latter case, we have
an identical double collect [1], and the operation can be lin-
earized between the two collects.

More generally, if r is a MaxArrayk×h object, then
MaxScan(r) can be performed by repeatedly performing
ReadMax(r0) followed by ReadMax(r1) until the result is ei-
ther (0,0), (k, h), or the same pair twice in a row. Unfortu-
nately, the worst case step complexity of this implementa-
tion is Θ((k +h)(log k + log h)), since the values can change
k + h times.

The challenge in implementing a significantly faster
MaxArrayk×h object is to ensure that, in each execution,
all pairs returned by the MaxScan operations are compara-
ble. Our approach is to make the MaxScan operations be
responsible for this coordination. For the first component,
we use the same binary tree as in the preceding implemen-
tation of a MaxRegk object. In addition, we insert a MaxRegh
object for the second component at every node in the tree.
To perform MaxUpdate0(r, v), a process uses the algorithm
for WriteMax, ignoring these additional objects. To perform
MaxUpdate1(r, v), a process simply performs WriteMax on
the MaxRegh object at the root of the tree, ignoring the rest
of the MaxRegh objects at other nodes of the tree.

The MaxScan operation uses a subtle helping mechanism
that propagates values of the second component down the
path in the tree, while it is being traversed to obtain the
value of the first component. Specifically, a process per-
forming MaxScan(r) begins by performing ReadMax on the
MaxRegh object at the root of the tree. If the switch bit at
the root of the tree is 0, it updates the MaxRegh object at
the left child of the root with the value it obtained from the
MaxRegh object at the root and recursively performs MaxScan
on the left subtree. If the bit at the root of the tree is 1,
it repeats the ReadMax on the MaxRegh object at the root
of the tree before updating the MaxRegh object at the right
child of the root with the value it receives and then recur-
sively performs MaxScan on the right subtree (and adds m
to the first component of the result). Because the value of
the MaxRegh object is nondecreasing, the value returned by
the second ReadMax is guaranteed to be at least as large as
the value returned by the ReadMax to any process that goes
to the left subtree.

Formally, our implementation of a MaxArrayk×h object r
is recursive. When k = 1, we use a single MaxRegh object,
r.second. MaxScan(r) returns (0, x), where x is the result
of performing ReadMax(r.second). MaxUpdate1(r, v) performs
WriteMax on this object. MaxUpdate0(r, v) does nothing.

When k > 1, r consists of a MaxArraym×h object r.left,
where m = dk/2e, a MaxArray(k−m)×h object r.right, a bi-
nary register r.switch, and a MaxRegh object r.second.

Pseudocode for these operations is presented in Algo-
rithm 2.

3.1 Linearizability
We show that our implementation is linearizable. We do

this by showing that, in any execution, the pairs returned by
MaxScan(r) operations are comparable under componentwise



p: ReadMax(r0) ReadMax(r1)
p′: ReadMax(r0) ReadMax(r1)
q: MaxUpdate0(r, 1) MaxUpdate1(r, 1)

Figure 1: An execution of an incorrect implementation of a MaxArray2×2 object

≤ and use this total ordering to linearize these operations.
Then we linearize the MaxUpdate0(r, v) and MaxUpdate1(r, v)
operations in a consistent manner before, after, and between
them. We begin with some technical lemmas.

Lemma 1. For any execution, if v is the value of x
the first time WriteMax(r.right.second, x) is performed on
Line 18, then at all points in the execution, r.left.second ≤ v.

Proof. Consider the MaxScan(r) operation op that first
performs WriteMax(r.right.second, x) on Line 17. Prior to
this step, op read r.switch = 1 on Line 12 and then received
value v when it performed ReadMax(r.second) on Line 16.

The value of r.left.second is initially 0 and is
changed only when a MaxScan(r) operation op′ per-
forms WriteMax(r.left.second, x) on Line 13, provided
r.left.second < x. The value of x at this step is the value
v′ that op′ obtained by performing ReadMax(r.second) on
Line 11, prior to reading r.switch = 0 on Line 12.

Since r.switch only changes from 0 to 1, the
ReadMax(r.second) by op′ on Line 11 occurred before the
ReadMax(r.second) by op on Line 16. Since r.second is a
max register, v′ ≤ v. Thus, at all points in the execution,
r.left.second ≤ v.

Algorithm 2 An implementation of a MaxArrayk×h object
for k > 1

Shared data:
switch: a 1-bit multi-writer register, initially 0
left: a MaxArraym×h object, where m = dk/2e,

initially (0,0)
right: a MaxArray(k−m)×h object, initially (0,0)

second: a MaxRegh object, initially 0

1: MaxUpdate0(r, v): // write to the first component
2: if v < m
3: if r.switch = 0
4: MaxUpdate0(r.left, v)
5: else
6: MaxUpdate0(r.right, v −m)
7: r.switch← 1

8: MaxUpdate1(r, v): // write to the second component
9: WriteMax(r.second, v)

10: MaxScan(r):
11: x← ReadMax(r.second)
12: if r.switch = 0
13: WriteMax(r.left.second, x)
14: return MaxScan(r.left)
15: else
16: x← ReadMax(r.second)
17: WriteMax(r.right.second, x)
18: return ((m, 0) + MaxScan(r.right))

Lemma 2. The second component of the pair returned by
a MaxScan(r) operation is at most the value of r.second.

Proof. By induction on the range of the first compo-
nent. If r is a MaxArray1×h object, then the second com-
ponent returned by a MaxScan(r) operation is the result of
ReadMax(r.second), which is the value of r.second.

Now let r be a MaxArrayk×h object, where k > 1. Suppose
the claim is true for r.left and r.right.

The second component of the pair returned by a
MaxScan(r) operation on Line 14 is the second component of
the pair returned by MaxScan(r.left), which, by the induction
hypothesis, is at most the value of r.left.second. Similarly,
the second component of the pair returned by a MaxScan(r)
operation on Line 18 is the second component of the pair
returned by MaxScan(r.right), which, by the induction hy-
pothesis, is at most the value of r.right.second.

Whenever WriteMax(r.left.second, x) is performed
on Line 13 or WriteMax(r.right.second, x) is per-
formed on Line 17, the value of x is the result
of a preceding ReadMax(r.second) operation. Thus
r.left.second, r.right.second ≤ r.second.

Lemma 3. The second component of the pair returned by
a MaxScan(r) operation is at least the value of r.second when
the operation was invoked.

Proof. By induction on the range of the first compo-
nent. If r is a MaxArray1×h object, then the second com-
ponent returned by a MaxScan(r) operation is the result of
ReadMax(r.second). Then the claim follows from the fact that
the value of the MaxRegh object r.second does not decrease.

Now let r be a MaxArrayk×h object, where k > 1. Sup-
pose the claim is true for r.left and r.right. Let v′ be the
value of r.second when a MaxScan(r) operation op′ is in-
voked. Then the value of x immediately after op′ performs
ReadMax(r.second) on Line 11 is at least v′.

If op′ performs WriteMax(r.left.second, x) on Line 13, then
the value of r.left.second will be at least v′ when op′ in-
vokes MaxScan(r.left) on Line 14. Then, by the induction
hypothesis, the second component of the pair returned by
this operation (and, hence by MaxScan(r)) is at least v′.

Otherwise, on Line 16, op′ sets x to the result of
ReadMax(r.second), which is still at least v′. Then op′ per-
forms WriteMax(r.right.second, x) on Line 17. Hence, the
value of r.right.second will be at least v′ when op′ invokes
MaxScan(r.right) on Line 18. By the induction hypothesis,
the second component of the pair returned by this operation
(and, hence by MaxScan(r)) is at least v′.

Theorem 4. The MaxArrayk×h implementation in Algo-
rithm 2 is linearizable.

Proof. By induction on k. The linearizability of the
MaxArray1×h implementation follows immediately from the
linearizability of the MaxRegh object that represents it.



Now let k > 1. Suppose that 1 ≤ m < k, r.left is a lin-
earizable MaxArraym×h object, and r.right is a linearizable
MaxArray(k−m)×h object. We will show that r is a lineariz-
able MaxArrayk×h object.

Consider any execution and let (x0, x1) and (x′0, x
′
1) be

the pairs returned by two MaxScan(r) operations op and op′.
If both are the result of MaxScan(r.left) on Line 14, then, by
the induction hypothesis, they can be ordered in a consistent
manner. The same is true if both are (m, 0) plus the result
of MaxScan(r.right) on Line 18. Otherwise, one of the pairs,
say (x0, x1), is the result of MaxScan(r.left) on Line 14 and
(x′0, x

′
1) is equal to (m, 0) plus the result of MaxScan(r.right)

on Line 18.
The only instruction that updates the first component of

r.left is MaxUpdate0(r.left, v) on Line 4. By Line 2, v < m.
Hence x0 < m. Initially, r.right = 0, so, by Line 18, x′0 ≥ m.
Thus x0 < x′0.

By Lemma 2, x1 ≤ r.left.second. Let v be the value
of x the first time that WriteMax(r.right.second, x) is per-
formed on Line 17 during the execution. Then, by Lemma 1,
r.left.second ≤ v.

Since r.right.second is a MaxRegh object, which never de-
creases in value, r.right.second ≥ v when op′ invokes Line 18.
By Lemma 3, x′1 ≥ v. Hence x1 ≤ x′1 and op is linearized
before op′.

The only step performed by a MaxUpdate1(r, v) operation
is WriteMax(r.second, v) on Line 9. It follows from Lem-
mas 2 and 3 that it can be linearized among the MaxScan(r)
operations.

Provided r.switch = 0, the MaxUpdate0(r, v) operations
with v < m can be linearized where the MaxUpdate0(r.left, v)
operations on Line 4 are linearized, which, by the induction
hypothesis, can be linearized among the MaxScan(r.left) op-
erations. When r.switch = 1, the MaxUpdate0(r, v) opera-
tions with v < m have no effect and they can be linearized
when they return.

Similarly, each MaxUpdate0(r, v) operation with v ≥ m
performs a MaxUpdate0(r.right, v −m) operation on Line 6.
By the induction hypothesis, these operations can be lin-
earized among the MaxScan(r.right) operations, each of
which corresponds to a MaxScan(r) operation that reads
r.switch = 1 on Line 12. The MaxScan(r.right) operations all
occur after r.switch becomes 1. Any MaxUpdate0(r, v) opera-
tion with v ≥ m that performs Line 6 when r.switch = 0 can
be linearized when r.switch is changed to 1, which occurs at
or before it performs Line 7.

3.2 Step complexity
Our MaxArrayk×h implementation has step complexity

that is polylogarithmic in h and k.

Lemma 5. For the MaxArrayk×h implementation in Al-
gorithm 2, the step complexity of MaxUpdate0 is O(log k),
the step complexity of MaxUpdate1 is O(log h), and the step
complexity of MaxScan is O(log k log h).

Proof. A MaxUpdate1(r, v) operation performs one
WriteMax operation on a MaxRegh object, which has step
complexity O(log h). A MaxUpdate0(r, v) operation ac-
cesses the binary register r.switch once and performs one
MaxUpdate0(r′, v′) operation, where r′ is a MaxArraym×h ob-
ject or a MaxArray(k−m)×h object, and m = dk/2e. If T (k) is

the step complexity of MaxUpdate0(r, v) for a MaxArrayk×h

object r, it follows that T (1) = 1 and T (k) = T (dk/2e) + 1.
Hence T (k) is O(log k).

A MaxScan(r) operation reads r.switch once, performs
at most two ReadMax(r.second) operations, performs one
MaxUpdate1(r′, v′) operation, and performs one MaxScan(r′)
operation, where m = dk/2e and r′ is a MaxArraym×h object
or a MaxArray(k−m)×h object. If Th(k) is the step complex-
ity of a MaxScan operation on a MaxArrayk×h object, then
Th(k) = Th(dk/2e)+1+3 ·O(log h). Since Th(1) is O(log h),
it follows that Th(k) is O(log k log h).

4. SINGLE-WRITER SNAPSHOTS FROM
2-COMPONENT MAX ARRAYS

We build a (b − 1)-limited-use snapshot object from
MaxArrayb×b objects, registers, and a MaxRegb object. To do
so, we construct a strict, balanced, binary tree in which each
leaf holds a pointer to the value of one component and each
internal node holds a pointer to a partial snapshot contain-
ing the values of all the components in the subtree of which
it is the root. The pointers held by each pair of siblings in
the tree are stored at their parent in a 2-component max ar-
ray. The pointer held by the root is stored in a max register.
Each pointer is a nondecreasing index into a different array
of b registers. The initial value of component j is stored
in leafj .view[0], for j = 0, . . . , n − 1. The concatenation of
these values, for each leaf in the substree rooted at an in-
ternal node u, is stored in u.view[0]. Figure 2 depicts this
structure, with an Update(4, s) operation in progress.

To perform a Scan, a process simply takes the result of a
ReadMax of the MaxRegb stored at the root and, if nonzero,
uses it to index the array at the root. The step complexity
of Scan is dominated by the step complexity of ReadMax,
which is O(log b).

When a process updates its component of the snapshot
object, it writes the new value to the first empty location in
the array at its leaf and increases the value of the pointer
held in its leaf to point to the location of this new value.
Then it propagates this new value up the tree, combining
partial snapshots. Specifically, at an internal node, a pro-
cess performs a MaxScan of ma, the 2-component max array
containing the pointers held at its children, and reads the
array elements to which they point to obtain a partial snap-
shot. Its new pointer is the sum of the two pointers held at
its children. The process stores the partial snapshot at the
location in the array to which it points. The 2-component
max arrays ensure linearizability. Since each MaxScan oper-
ation takes O(log2 b) steps and the tree has O(logn) height,
the step complexity of Update is O(log2 b logn).

Pseudocode for our implementation is given in Algo-
rithm 3.

The resulting algorithm is similar to the lattice agreement
procedure of Inoue et al. [12], except that we use MaxScan

in place of double collects and we allow processes to update
their values more than once.

The length of the array at a node is one greater than the
total number of updates that can be performed by processes
whose components are in the subtree rooted at that node.
The pointer to this array is initially 0 and its maximum
value is one less than the length of the array. Thus, if the
arrays at a pair of siblings have length k and h, respectively,
a MaxArrayk×h object can be used to store the pointers held
by those nodes.

The size of each register in an array is the sum of the
maximum sizes of the components in the partial snapshot



3

21

3

5

5

00

0

c

b

m

-

s

r

-

m-

--

mr

ms

cmr

cms

bmr

am-

a--

3

2

1

0 -

a

1

0

2

1

0

1,2

1,1

1,0

0,0

2,1,1

1,1,0

1,0,0

0,0,0---

3,1,1

3,1,2

Figure 2: A limited-use single-writer snapshot object shared by 5 processes. Grayed values correspond to an
update operation in progress. Sequences outside the view arrays represent entries of the seq arrays from the
proof of correctness. Not all array locations are shown.

it stores. This may be impractical, unless it is possible to
represent the important information in a partial snapshot
in a condensed manner. For example, a generalized counter
can be implemented using a single-writer snapshot in which
component i contains the sum of the values process i has
added to the counter. Then each partial snapshot stored
in a register (in an array) can be replaced by the sum of
its components. The upper bound on the number of Add

operations that can be performed by each process in the
generalized counter is the number of times that process can
update its component in the single-writer snapshot. This
construction is similar to Jayanti’s f -arrays [13] for efficient
computation of aggregate functions (such as max and sum)
of the elements of an array. Because the pointers are non-
decreasing, we can use 2-component max arrays instead of
the more powerful primitives used in that paper.

4.1 Linearizability
Now we show that our implementation is lineariz-

able. A Scan operation is linearized when it performs
ReadMax(root.mr) on Line 20. If ptr = d when an Update

operation performs Line 16 with u = root, then the Update

operation is linearized the first time any process performs
WriteMax(root.mr, ptr) on Line 18 with ptr ≥ d. The Update

operation performs Line 18 with ptr = d before it returns,
so its linearization point occurs before it returns. The fol-
lowing lemma shows that its linearization point occurs after
it begins.

Lemma 6. If d is the index stored at root.mr when an
Update operation begins, then ptr > d when the operation
performs WriteMax(root.mr, ptr) on Line 18.

Proof. We also prove that, when an Update operation
tries to update a pointer stored in a component of a MaxAr-

ray to ptr on Line 8 or 10, ptr is greater than the index
stored at the component when the Update began.

The proof is by induction. The claim is true for a pointer
held at a leaf. This is because only one process updates the
pointer, it is intially 0, and counti is incremented on Line 2
before it is assigned to ptr on Line 5.

Suppose the claim is true for a pointer held at a non-root
node. The pointer held at its sibling never decreases. Since
ptr is the sum of these two indices, the claim is true at the
parent of this node, whether or not it is the root.

Now, we prove that our linearization satisfies the spec-
ifications of a snapshot object. For the purpose of the
proof, we introduce an auxiliary array, seq[0..b − 1], stored
at each node. We imagine that, when Line 4 is performed,
leafi.seq[ptr] ← ptr is performed at the same time and,
when Line 15 is performed, u.seq[ptr] ← u.left.seq[lptr] ·
u.right.seq[rptr] is performed at the same time. Thus, each
element of u.seq is a sequence of pointers, one into the ar-
ray at each leaf of the subtree rooted at u. The following
invariants are maintained:

— ptr is the sum of the elements in the sequence
u.seq[ptr],

— if ptr ≤ ptr′, then each component of u.seq[ptr] is
less than or equal to the corresponding component of
u.seq[ptr′], and

— the j’th component of u.view[ptr] is equal to the ele-
ment of view in the j’th leaf of the subtree rooted at
node u pointed to by the j’th component of u.seq[ptr],
i.e. (u.view[ptr])j = `.view[(u.seq[ptr])j ], where ` is the
j’th leaf of the subtree rooted at node u.

The second of these follows inductively from Line 12 and the
fact that u.ma is a linearizable max array.

Consider an Update operation by process i that is lin-
earized when process j performs Line 18. Suppose that



ptr = c when process j performs Line 18 and suppose that
ptr = d when the Update operation by process i performs
Line 18. By the definition of the linearization points, c ≥ d.
Hence (root.seq[c])i ≥ (root.seq[d])i. Only process i modifies
the pointer at leafi (setting it to counti) and its operation
is linearized before it returns, so (root.seq[c])i ≤ counti ≤
(root.seq[d])i. Therefore (root.seq[c])i = (root.seq[d])i =
counti. Similarly, any other Update operation that is
linearized after this Update operation by process i is lin-
earized, but before any other Update operation by process i
is linearized, has (root.seq[ptr])i = counti when it performs
Line 18.

Consider any linearized Scan operation op. Suppose that

Algorithm 3 An implementation of a (b − 1)-limited-use
single-writer snapshot, code for process i.

Shared data:
leafj , for j ∈ {0, . . . , n− 1}:

the leaf node corresponding to process j, with fields:
parent: the parent of this leaf in the tree
view[0..b− 1]: an array, each of whose entries contains

a partial snapshot,
view[0] contains the initial value of component j

root: the root of the tree
Each internal node has the fields:

left: the left child of the node in the tree
right: the right child of the node in the tree
view[0..b− 1]: an array, each of whose entries contains

a partial snapshot, view[0] contains the
concatenation of leafj .view[0] for all leaves
leafj in the subtree rooted at this node

ma: a MaxArrayb×b object, initially (0,0)
The root also has the field:
mr: a MaxRegb object, initially 0
Each non-root internal node also has the field:

parent: the parent of the node in the tree
Persistent local data: counti, initially 0.

1: Update(s, v)
2: counti ← counti + 1
3: u← leafi
4: ptr ← counti
5: u.view[ptr]← v
6: repeat
7: if u = u.parent.left
8: MaxUpdate0(u.parent.ma, ptr)
9: if u = u.parent.right
10: MaxUpdate1(u.parent.ma, ptr)
11: u← u.parent
12: (lptr, rptr)← MaxScan(u.ma)
13: lview ← u.left.view[lptr]
14: rview ← u.right.view[rptr]
15: ptr ← lptr + rptr
16: u.view[ptr]← lview · rview
17: until u = root
18: WriteMax(root.mr, ptr)

19: Scan(s)
20: ptr ← ReadMax(root.mr)
21: return root.view[ptr]

root.seq[ptr] = (f0, . . . , fn−1) when it performs Line 20.
Then root.view[f ] = (v0, . . . , vn−1) is the view it returns,
where f = f0 + · · · + fn−1 and vj = leafj .view[fj ] for
j = 0, . . . , n − 1. We need to show that vj is the value
written by process j in its last Update operation, opj , lin-
earized before op. Suppose that ptr = c when opj is lin-
earized. From the preceding paragraph, it follows that
(root.seq[f ])j = (root.seq[c])j = countj . Since every Update

by process j sets countj to a new value on Line 2, opj up-
dated component j with value vj in leafj .view[countj ]. Sim-
ilarly, if there is no Update operation by process j that is
linearized before op, countj = 0 and vj = leafj .view[0] is the
initial value of component j.

Thus, we have proved:

Theorem 7. The (b − 1)-limited-use single-writer snap-
shot implementation in Algorithm 3 is linearizable.

4.2 Step Complexity

Lemma 8. The step complexity of a Scan operation is
O(log b) and the step complexity of an Update operation is
O(log2 b logn), where b−1 is an upper bound on the number
of Update operations it supports.

Proof. A Scan operation performs one ReadMax on a
MaxRegb object and reads one entry from the array root.view.
Hence it has step complexity O(log b).

An Update operation performs at most dlog2 ne iterations,
one for each ancestor of leafi. In each iteration, there is one
MaxUpdate operation and one MaxScan operation applied to
MaxArrayb×b objects and a constant number of accesses to
entries of view arrays. Finally, one WriteMax operation is
performed on the MaxRegb at root. This implies the claimed
step complexity of O(log2 b logn).

This immediately gives us an O(log3 n) implementation
of any object that can be built from a snapshot object, in-
cluding counters, generalized counters, and (by [3, 6]) any
object with the property that for each pair of operations,
either the operations always commute or one always over-
writes the other—provided we only want to use the imple-
mentation polynomially many times.

5. MULTI-WRITER SNAPSHOTS
The previous section considered a single-writer snapshot

object, that is, each component can be updated by a single
process. Here, we extend this to implement a multi-writer
snapshot object, where each component can be updated by
every process. This is done by using a single-writer snapshot
object and having each process record its own updates to
each multi-writer component along with a timestamp. When
these records are scanned, the value for each multi-writer
component is the value written with the largest timestamp.
Ties are broken using process ids. To produce a timestamp,
Lamport’s linearizable timestamp algorithm [17] is used: a
process scans the single-writer snapshot object and adds one
to the largest timestamp for the corresponding multi-writer
component. The creation of timestamps can be linearized
in increasing order, with ties broken using process ids.

It is easy to see that the step complexity of MW-Scan(s) is
the same as that of Scan(snp), and that the step complexity
of MW-Update(s, j, v) is the sum of the step complexities of
Scan(snp) and Update(snp, v).



We linearize a MW-Scan(s) operation at Line 7, which is the
linearization point of the Scan(snp) operation. We linearize
a MW-Update(s, j, v) operation which uses timestamp t the
first time after it performs Line 2 at which the timestamp of
the j’th pair of the component of some process is updated
on Line 5 with a timestamp t′ ≥ t, with ties broken by
process id. This is at or before the linearization point of
the Update(snp, record) operation. Since every operation is
linearized after it begins and before it returns, the order of
non-overlapping operations is preserved.

If a MW-Scan(s) operation op returns a view (v0, . . . , vc−1),
then, for 0 ≤ j < c, the last MW-Update(s, j, v) operation opj
linearized before op has v = vj . This follows because we are
using a linearizable single-writer snapshot object, because
the timestamps are linearized in increasing order, and be-
cause of the linearization points we chose for MW-Update op-
erations. Thus, the linearization satisfies the specifications
of a multi-writer snapshot object.

Theorem 9. The (b − 1)-limited-use multi-writer snap-
shot implementation in Algorithm 4 is linearizable. The
step complexity of a MW-Scan(s) operation is O(log b) and
the step complexity of a MW-Update(s, j, v) operation is
O(log2 b logn).

6. DISCUSSION
This paper gives a linearizable implementation of a snap-

shot object with O(log3 n) step complexity, as long as the
number of update operations is at most polynomial in the
number of processes, n. This is an exponential improvement
over the best previously known algorithms, which have step
complexity linear in n.

In [4], an implementation is given for an unbounded max
register that can support an unbounded number of values
and has a step complexity of O(min (log v, n)), where v is the

Algorithm 4 An implementation of a (b − 1)-limited-use
c-component multi-writer snapshot, code for process i.

Shared data:
snp: a single-writer snapshot object,

each component is an array of c pairs (val,ts),
each pair is initialized to (−, 0)

Persistent local data:
record[0..c− 1]: an array of pairs (val,ts),

each is initialized to (−, 0)

1: MW-Update(s, j, v)
2: view ← Scan(snp)
3: t← 1 + max{viewk[j].ts | 0 ≤ k < n}
4: record[j]← (v, t)
5: Update(snp, record)

6: MW-Scan(s)
7: view ← Scan(snp)
8: for 0 ≤ j < c do
9: k ← argmax{(viewk[j].ts)× n + k | 0 ≤ k < n}

// find process with largest timestamp for
// component j, use process id to break ties

10: resultj ← viewk[j].val
// use its value for component j

11: return result

value written or read. It may be possible to implement 2-
component max arrays that support unbounded values and
use them to construct unbounded snapshot objects whose
step complexity is both O(n) and polylogarithmic in the
number of update operations. However, direct use of the
unbounded tree construction from [4] seems to give worse
complexity bounds. We leave this for future research.

Our 2-component max array implementation easily ex-
tends to c-component max arrays in a recursive manner,
by having r.second be a (c− 1)-component max array. The
complexity of a MaxUpdate operation is then O(log k), where
k is the range of each component, and the complexity of
a MaxScan operation is O(logc k). As with 2-component
max arrays, this can also support components with differ-
ent ranges, as well as unbounded ranges, with corresponding
step complexities.

Our constructions use multi-writer registers. A very in-
triguing question is to extend them to obtain a snapshot
object with O(n) step complexity using only single-writer
registers, improving on the O(n logn) best previously-known
upper bound [8].

7. REFERENCES
[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,

and N. Shavit. Atomic snapshots of shared memory. J.
ACM, 40(4):873–890, 1993.

[2] J. H. Anderson. Composite registers. Distributed
Computing, 6(3):141–154, 1993.

[3] J. H. Anderson and M. Moir. Towards a necessary and
sufficient condition for wait-free synchronization
(extended abstract). In A. Schiper, editor, Distributed
Algorithms, 7th International Workshop, WDAG ’93,
Lausanne, Switzerland, September 27-29, 1993,
Proceedings, volume 725 of Lecture Notes in Computer
Science, pages 39–53. Springer, 1993.

[4] J. Aspnes, H. Attiya, and K. Censor-Hillel.
Polylogarithmic concurrent data structures from
monotone circuits. J. ACM, 59(1):2:1–2:24, Mar. 2012.

[5] J. Aspnes, H. Attiya, K. Censor-Hillel, and
D. Hendler. Lower bounds for resricted-use objects. In
The 24th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2012. to
appear.

[6] J. Aspnes and M. Herlihy. Wait-free data structures in
the asynchronous PRAM model. In Second Annual
ACM Symposium on Parallel Algorithms and
Architectures, pages 340–349, July 1990.

[7] H. Attiya and A. Fouren. Adaptive and efficient
algorithms for lattice agreement and renaming. SIAM
J. Comput., 31(2):642–664, 2001.

[8] H. Attiya and O. Rachman. Atomic snapshots in
O(n logn) operations. SIAM J. Comput.,
27(2):319–340, 1998.

[9] M. A. Bender and S. Gilbert. Mutual exclusion with
O(log2 logn) amortized work. In IEEE 52nd Annual
Symposium on Foundations of Computer Science,
(FOCS), pages 728–737, 2011.

[10] F. E. Fich. How hard is it to take a snapshot? In
Proceedings of 31st Annual Conference on Current
Trends in Theory and Practice of Informatics, volume
3381, pages 27–35. LNCS, 2005.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a



correctness condition for concurrent objects. ACM
Transactions on Programming Languages and
Systems, 12(3):463–492, July 1990.

[12] M. Inoue and W. Chen. Linear-time snapshot using
multi-writer multi-reader registers. In WDAG ’94:
Proceedings of the 8th International Workshop on
Distributed Algorithms, pages 130–140, London, UK,
1994. Springer-Verlag.

[13] P. Jayanti. f -arrays: implementation and applications.
In Proceedings of the twenty-first annual symposium
on Principles of distributed computing, PODC ’02,
pages 270–279, New York, NY, USA, 2002. ACM.

[14] P. Jayanti. An optimal multi-writer snapshot
algorithm. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing (STOC), pages
723–732, 2005.

[15] P. Jayanti, K. Tan, and S. Toueg. Time and space
lower bounds for nonblocking implementations. SIAM
J. Comput., 30(2):438–456, 2000.

[16] L. Kirousis, P. Spirakis, and P. Tsigas. Reading many
variables in one atomic operation: Solutions with
linear or sublinear complexity. IEEE Trans. on
Parallel and Distributed Systems, 5(7):688–696, July
1994.

[17] L. Lamport. A new solution of Dijkstra’s concurrent
programming problem. Commun. ACM,
17(8):453–455, Aug. 1974.

[18] Y. Riany, N. Shavit, and D. Touitou. Towards a
practical snapshot algorithm. Theor. Comput. Sci.,
269(1-2):163–201, 2001.


