
Global Computation in a Poorly Connected World:
Fast Rumor Spreading with No Dependence on

Conductance∗∗

Keren Censor-Hillel
CSAIL, MIT

ckeren@csail.mit.edu

Bernhard Haeupler
CSAIL, MIT

haeupler@mit.edu

Jonathan A. Kelner
CSAIL, MIT

kelner@mit.edu

Petar Maymounkov
CSAIL, MIT

petar@csail.mit.edu

ABSTRACT
In this paper, we study the question of how efficiently a collec-
tion of interconnected nodes can perform a global computation in
the GOSSIP model of communication. In this model, nodes do
not know the global topology of the network, and they may only
initiate contact with a single neighbor in each round. This model
contrasts with the much less restrictive LOCAL model, where a
node may simultaneously communicate with all of its neighbors in
a single round. A basic question in this setting is how many rounds
of communication are required for the information dissemination
problem, in which each node has some piece of information and is
required to collect all others.

In theLOCALmodel, this is quite simple: each node broadcasts
all of its information in each round, and the number of rounds re-
quired will be equal to the diameter of the underlying communica-
tion graph. In the GOSSIP model, each node must independently
choose a single neighbor to contact, and the lack of global infor-
mation makes it difficult to make any sort of principled choice. As
such, researchers have focused on the uniform gossip algorithm, in
which each node independently selects a neighbor uniformly at ran-
dom. When the graph is well-connected, this works quite well. In a
string of beautiful papers, researchers proved a sequence of succes-
sively stronger bounds on the number of rounds required in terms
of the conductance φ and graph size n, culminating in a bound of
O(φ−1 logn).

In this paper, we show that a fairly simple modification of the
protocol gives an algorithm that solves the information dissemina-
tion problem in at most O(D + polylog(n)) rounds in a network
of diameter D, with no dependence on the conductance. This is

∗This work was partially supported by the Simons Postdoctoral
Fellows Program and NSF grant CCF-0843915.
∗ACM, 2012. This is the authors version of the work. It is posted
here by permission of ACM for your personal use. Not for redistri-
bution. The definitive version was published in STOC 2012.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

at most an additive polylogarithmic factor from the trivial lower
bound of D, which applies even in the LOCAL model.

In fact, we prove that something stronger is true: any algorithm
that requires T rounds in the LOCAL model can be simulated in
O(T+polylog(n)) rounds in the GOSSIP model. We thus prove
that these two models of distributed computation are essentially
equivalent.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathematics—Graph
Theory; F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems

General Terms
Algorithms, Theory

Keywords
Gossip Model, Local Model, Conductance Decomposition, Sparse
Spanners, Information Spreading

1. INTRODUCTION
Many distributed applications require nodes of a network to per-

form a global task using only local knowledge. Typically a node
initially only knows the identity of its neighbors and gets to know a
wider local neighborhood in the underlying communication graph
by repeatedly communicating with its neighbors. Among the most
important questions in distributed computing is how certain global
computation problems, e.g., computing a maximal independent
set [22] or a graph coloring [1], can be performed with such lo-
cal constraints.

Many upper and lower bounds for distributed tasks are given for
the well-known LOCAL model [25, Chapter 2], which operates
in synchronized rounds and allows each node in each round to ex-
change messages of unbounded size with all of its neighbors. It
is fair to say that the LOCAL model is essentially the established
minimal requirement for a distributed algorithm. Indeed, whenever
a distributed algorithm is said to have running time T it is implied
that, at the least, there exists a T -round algorithm in the LOCAL
model.

In many settings, practical system design or physical constraints
do not allow a node to contact all of its (potentially very large num-

ber of) neighbors at once. In this paper we focus on this case and
consider the GOSSIP model, which restricts each node to initiate
at most one bidirectional communication with one of its neighbors
per round. In contrast to computations in the LOCAL model, al-
gorithms for the GOSSIP model have to decide which neighbor
to contact in each round. This is particularly challenging when
the network topology is unknown. Note that, as in the LOCAL
model, messages sizes are unbounded (in fact, O(n) for our pur-
poses, where n is the size of the network) as these models reflect
high-latency networks where round reduction is what counts. Fur-
thermore, while in GOSSIP a node may end up communicating
with many neighbors in a single step, every node “pays” for only
one connection: the one they initiated.

Algorithms with such gossip constraints have been intensively
studied for the so-called RUMOR problem (also known as the rumor
spreading or information dissemination problem), in which each
node has some initial input and is required to collect the informa-
tion of all other nodes. Most previous papers analyzed the simple
UniformGossip algorithm, which chooses a random neighbor
to contact in each round. The uniform gossip mixes well on well-
connected graphs, and good bounds for its convergence in terms
of the graph conductance have been given [3, 14, 24]. For regular
graphs, bounds in terms of vertex expansion are known as well [29].
In general, the gossip has a tendency to repeatedly communicate
between well-connected neighbors while not transmitting informa-
tion across bottlenecks. Only recently have algorithms been de-
signed that try to avoid this behavior. By alternating between ran-
dom and deterministic choices, [2] showed that fast convergence
can be achieved for a wider family of graphs, namely, those which
have large weak conductance (a notion defined therein). However,
while this outperformed existing techniques in many cases, its run-
ning time bound still depended on a notion of the connectivity of
the graph.

1.1 Our results
This paper significantly improves upon previous algorithms

by providing the first information spreading algorithm for the
GOSSIP model that is fast for all graphs, with no dependence
on their conductance. Our algorithm requires at most O(D +
polylog(n)) rounds in a network of size n and diameter D. This
is at most an additive polylogarithmic factor from the trivial lower
bound of Ω(D) rounds even for the LOCAL model. In contrast,
there are many graphs with polylogarithmic diameter on which all
prior algorithms have Ω(n) bounds.

In addition, our results apply more generally to any algorithm
in the LOCAL model. We show how any algorithm that takes
T time in the LOCAL model can be simulated in the GOSSIP
model in O(T + polylog(n)) time, thus incurring only an addi-
tional cost which is polylogarithmic in the size of the network n.
Our main result that leads to this simulation is an algorithm for
the GOSSIP model in which each node exchanges information
(perhaps indirectly) with each of its neighbors within a polyloga-
rithmic number of rounds. This holds for every graph, despite the
possibility of large degrees. A key ingredient in this algorithm is a
recursive decomposition of graphs into clusters of sufficiently large
conductance, allowing fast (possibly indirect) exchange of informa-
tion between nodes inside clusters. The decomposition guarantees
that the number of edges between pairs of nodes that did not ex-
change information decreases by a constant fraction. To convert the
multiplicative polylogarithmic overhead for each simulated round
into the additive overhead in our final simulation result we show
connections between sparse graph spanners and algorithms in the
GOSSIP model. This allows us to simulate known constructions

of nearly-additive sparse spanners [27], which then in turn can be
used in our simulations for even more efficient communication.

1.2 Our Techniques
The key step in our approach is to devise a distributed subrou-

tine in the GOSSIP model to efficiently simulate one round of the
LOCALmodel by a small number of GOSSIP rounds. In partic-
ular, the goal is to deliver each node’s current messages to all of its
neighbors, which we refer to as the NEIGHBOREXCHANGE prob-
lem. Indeed, we exhibit such an algorithm, called Superstep,
which requires at most O(log3 n) rounds in the GOSSIP model
for all graphs:

THEOREM 1.1. The Superstep algorithm solves NEIGH-
BOREXCHANGE in the GOSSIP model in O(log3 n) rounds.

Our design for the Superstep algorithm was inspired by ideas
from [2] and started with an attempt to analyze the following very
natural algorithm for the NEIGHBOREXCHANGE problem: In each
round each node contacts a random neighbor whose message is not
yet known to it. While this algorithm works well on most graphs,
there exist graphs on which it requires a long time to complete due
to asymmetric propagation of messages. We give an explicit exam-
ple and discuss this issue in Section 6.

The Superstep algorithm is simple and operates by repeat-
edly performing log3 n rounds of the UniformGossip algorithm
while eliminating some edges after each round. During a round,
UniformGossip has each node choose a random neighbor to
contact and exchange messages for a few steps, followed by a re-
versal of the message exchanges to maintain symmetry. From [3]
or its strengthening [14], it is known that all pairs of vertices (and in
particular all pairs of neighbors) that lie inside a high-conductance
subset of the underlying graph exchange each other’s messages
within a single iteration. An existential graph decomposition re-
sult, given in Corollary 3.4, shows that for any graph there is a
decomposition into high-conductance clusters with at least a con-
stant fraction of intra-cluster edges. This implies that the number
of remaining message exchanges required decreases by a constant
factor in each iteration, which results in a logarithmic number of
iterations until NEIGHBOREXCHANGE is solved.

This gives a simple algorithm for solving the RUMOR prob-
lem, which requires all nodes to receive the messages of all other
nodes: By iterating Superstep D times, where D is the diame-
ter of the network, one obtains an O(D · log3 n) round algorithm.
This is at most an O(log3 n)-factor slower than the trivial diameter
lower bound and is a drastic improvement compared to prior upper
bounds [2,3,14,24], which can be of orderO(n) even for networks
with constant or logarithmic D.

Beyond the RUMOR problem, it is immediate that the NEIGH-
BOREXCHANGE problem bridges the gap between the LOCAL
and GOSSIP models in general. Indeed, we can simply trans-
late a single round of a LOCAL algorithm into the GOSSIP
model by first using any algorithm for NEIGHBOREXCHANGE to
achieve the local broadcast and then performing the same local
computations. We call this a simulation and more generally de-
fine an (α(G), β(G))-simulator as a transformation that takes any
algorithm in the LOCAL model that runs in T (G) rounds if the
underlying topology is G, and outputs an equivalent algorithm in
the GOSSIP model that runs in On(α(G)) · T (G) +On(β(G))
rounds. Thus, the simulation based on the Superstep algorithm
gives a (log3 n, 0)-simulator.

In many natural graph classes, like graphs with bounded genus
or excluded minors, one can do better. Indeed we give a simple ar-
gument that on any (sparse) graph with hereditary density δ there is

a schedule of direct message exchanges such that NEIGHBOREX-
CHANGE is achieved in 2δ rounds. Furthermore an order-optimal
schedule can be computed in δ logn rounds of the GOSSIP
model even if δ is not known. This leads to a (δ, δ logn)-simulator.

Another way to look at this is that communicating over any
hereditary sparse graph remains fast in the GOSSIP model. Thus,
for a general graph, if one knows a sparse subgraph that has short
paths from any node to its neighbors, one can solve the NEIGH-
BOREXCHANGE problem by communicating via these paths. Such
graphs have been intensely studied and are known as spanners. We
show interesting connections between simulators and spanners. For
one, any fast algorithm for the NEIGHBOREXCHANGE problem in-
duces a sparse low-stretch spanner. The Superstep algorithm
can thus be seen as a new spanner construction in the GOSSIP
model with the interesting property that the total number of mes-
sages used is at most O(n log3 n). To our knowledge this is the
first such construction. This also implies that, in general, NEIGH-
BOREXCHANGE requires a logarithmic number of rounds (up to
log logn factors perhaps) in the GOSSIP model. Considering in
the other direction, we show that any fast spanner construction in
the LOCAL model can be used to further decrease the multiplica-
tive overhead of our (log3 n, 0)-simulator. Applying this insight
to several known spanner constructions [6, 11, 27, 28] leads to our
second main theorem:

THEOREM 1.2. Every algorithm in the LOCAL model which
completes with high probability in T = T (G) rounds when run on
the topology G can be simulated in the GOSSIP model in

O(1) ·min
{

T · log3 n,

T · 2log∗ n logn + log4 n,

T · logn + 2log∗ n log4 n,

T + logO(1) n,
T · δ + δ logn,

T · ∆
}

rounds with high probability, where n is the number of nodes, ∆
the maximum degree and δ the hereditary density of G.

When we apply this result to the greedy algorithm for the RU-
MOR problem, where T = D, we obtain an algorithm whose
O(D + polylogn) rounds are optimal up to the additive polyloga-
rithmic term, essentially closing the gap to the known trivial lower
bound of Ω(D).

1.3 Related Work
The problem of spreading information in a distributed system

was introduced by Demers et al. [5] for the purpose of replicated
database maintenance, and it has been extensively studied there-
after.

One fundamental property of the distributed system that affects
the number of rounds required for information spreading is the
communication model. The random phone call model was intro-
duced by Karp et al. [16], allowing every node to contact one other
node in each round. In our setting, this corresponds to the com-
plete graph. This model alone received much attention, such as in
bounding the number of calls [7], bounding the number of random
bits used [15], bounding the total number of bits [13], and more.

The number of rounds it takes to spread information for the
randomized algorithm UniformGossip, in which every node
chooses its communication partner for the next round uniformly at
random from its set of neighbors, was analyzed in terms of the con-
ductance of the underlying graph by Mosk-Aoyama and Shah [24],

by Chierichetti et al. [3], and later by Giakkoupis [14], whose work
currently has the best bound in terms of conductance, of O(logn

Φ(G)
)

rounds, with high probability.
Apart from the uniform randomized algorithm, additional al-

gorithms were suggested for spreading information. We shortly
overview some of these approaches. Doerr et al. [9] introduce
quasi-random rumor spreading, in which a node chooses its next
communication partner by deterministically going over its list of
neighbors, but the starting point of the list is chosen at random. Re-
sults are O(logn) rounds for a complete graph and the hypercube,
as well as improved complexities for other families of graphs com-
pared to the randomized rumor spreading algorithm with uniform
distribution over neighbors. This was followed by further analy-
sis of the quasi-random algorithm [10, 12]. A hybrid algorithm,
alternating between deterministic and randomized choices [2], was
shown to achieve information spreading inO(c(logn

Φc(G)
+c)) round,

with high probability, where Φc(G) is the weak conductance of the
graph, a measure of connectivity of subsets in the graph. Distance-
based bounds were given for nodes placed with uniform density in
Rd [17, 18], which also address gossip-based solutions to specific
problems such as resource location and minimum spanning tree.
Doerr et al. [8] have recently presented an algorithm for fast infor-
mation spreading in preferential attachment graphs, which model
social networks.

The LOCAL model of communication, where each node com-
municates with each of its neighbors in every round, was formal-
ized by Peleg [25]. Information spreading in this model requires
a number of rounds which is equal to the diameter of the commu-
nication graph. Many other distributed tasks have been studied in
this model, and below we mention a few in order to give a sense of
the variety of problems studied. These include computing maximal
independent sets and graph colorings [1], computing capacitated
dominating sets [20], general covering and packing problems [21],
and general techniques for distributed symmetry breaking [30].

Our algorithm Superstep implicitly constructs a sparsifier
(sparse subgraph) of G that itself is a graph that has low vertex
degree and hence supports fast UniformGossip whose runtime
depends mainly on the diameter (module some log-factors), which
essentially meets the lower bound. It is worth noting a related, but
different, observation of [4] that the Spielman-Teng sparsifier has
roughly the same UniformGossip runtime as that of the original
graph.

2. PRELIMINARIES AND DEFINITIONS

2.1 The UniformGossip Algorithm
The UniformGossip algorithm is a common algorithm for

RUMOR. (It is also known as the PUSH-PULL algorithm in some
papers, such as [14].) Initially, each vertex u has some message
Mu. At each step, every vertex chooses a random incident edge
(u, v) at which point u and v exchange all messages currently
known to them. The process stops when all vertices know every-
one’s initial messages. In order to treat this process formally, for
any fixed vertex v and its message Mv , we treat the set of vertices
that know Mv as a set that evolves probabilistically over time, as
we explain next.

We begin by fixing an ambient graph G = (V,E), which is
unweighted and directed. The UniformGossip process is a
Markov chain over 2V , the set of vertex subsets of G. Given a
current state S ⊆ V , one transition is defined as follows. Every
vertex u picks an incident outgoing edge au = (u,w) ∈ E uni-
formly at random from all such candidates. Let us call the set of

all chosen edges A = {au : u ∈ V } an activated set. Further let
A◦ = {(u,w) : (u,w) ∈ A or (w, u) ∈ A} be the symmetric
closure of A. The new state of the chain is given by S ∪ B, where
by definition a vertex v is in the boundary set B if and only if there
exists u ∈ S such that (u, v) ∈ A◦. Note that V is the unique
absorbing state, assuming a non-empty start.

We say that an edge (u,w) is activated if (u,w) ∈ A◦. If we
let S model the set of nodes in possession of the message Mv of
some fixed vertex v and we assume bidirectional message exchange
along activated edges, the new state S ∪B (of the Markov process)
actually describes the set of nodes in possession of the messageMv

after one distributed step of the UniformGossip algorithm.
Consider a τ -step Markov process K, whose activated sets at

each step are respectively A1, . . . , Aτ . Let the reverse of K,
written Krev, be the τ -step process defined by the activated sets
Aτ , . . . , A1, in this order. For a process K, let K(S) denote the
end state when started from S.

Without loss of generality, for our analysis we will assume
that only a single “starting” vertex s has an initial message Ms.
We will be interested in analyzing the number of rounds of
UniformGossip that ensure that all other vertices learn Ms,
which we call the broadcast time. Clearly, when more than one
vertex has an initial message, the broadcast time is the same since
all messages are exchanged in parallel.

LEMMA 2.1 (REVERSAL LEMMA). If u ∈ K({w}), then
w ∈ Krev({u}).

PROOF. The condition u ∈ K({w}) holds if and only if there
exists a sequence of edges (ei1 , . . . , eir) such that eij ∈ A◦ij for all
j, the indices are increasing in that i1 < · · · < ir , and the sequence
forms a path from w to u. The presence of the reversed sequence
in Krev implies w ∈ Krev({u}).

In communication terms, the lemma says that if u receives a mes-
sage originating at w after τ rounds determined by K, then w will
receive a message originating at u after τ rounds determined by
Krev.

2.2 Conductance
The notion of graph conductance was introduced by Sin-

clair [31]. We require a more general version, which we intro-
duce here. We begin with the requisite notation on edge-weighted
graphs. We assume that each edge (u, v) has a weightwuv ∈ [0, 1].
For an unweighted graph G = (V,E) and any u, v ∈ V , we de-
fine wuv = 1 if (u, v) ∈ E and wuv = 0 otherwise. Now we set
w(S, T) =

∑
u∈S,v∈T wuv . Note that in this definition it need not

be the case that S ∩ T = ∅, so, e.g., w(S, S), when applied to an
unweighted graph, counts every edge in S twice. The volume of
a set S ⊆ V with respect to V is written as vol(S) = w(S, V).
Sometimes we will have different graphs defined over the same ver-
tex set. In such cases, we will write the identity of the graph as a
subscript, as in volG(S), in order to clarify which is the ambient
graph (and hence the ambient edge set). Further, we allow self-
loops at the vertices. A single loop at v of weight α is modeled by
setting wvv = 2α, because both ends of the edge contribute α.

For a graph G = (V,E) and a cut (S, T) where S, T ⊆ V and
S ∩ T = ∅ (but where T ∪ S does not necessarily equal all of V),
the cut conductance is given by

ϕ(S, T) =
w(S, T)

min
{

volG(S), volG(T)
} . (1)

For a subset H ⊆ V we need to define the conductance of H
(embedded) in V . We will use this quantity to measure how quickly

the UniformGossip algorithm proceeds in H , while accounting
for the fact that edges in (H,V −H) may slow down the process.
The conductance of H in G is defined by

Φ(H) = min
S⊆H

ϕ(S,H − S) (2)

Note that the classical notion of conductance of G (according to
Sinclair [31]) equals Φ(V) in our notation. When we want toem-
phasize the ambient graphG within whichH resides, we will write
ΦG(H).

A few arguments in this paper will benefit from the notion of a
“strongly induced” graph of a vertex subset of an ambient graphG.

DEFINITION 2.2. Let U ⊆ V be a vertex subset of G. The
strongly induced graph of U in G is a (new) graph H with vertex
set U , whose edge weight function h : U × U → R is defined by

huv =

{
wuv, if u 6= v,

wuu +
∑
x∈V−U wux, if u = v.

Note that by construction we have ΦH(U) = ΦG(U). The sig-
nificance of this notion is the fact that the Markov process, describ-
ing the vertex set in possession of some message Ms for a starting
vertex s ∈ U in the UniformGossip algorithm executed on the
strongly induced H , behaves identically to the respective process
in G observed only on U . In particular, this definition allows us to
use Theorem 1 of [14] in the following form:

THEOREM 2.3. For any graph G = (V,E), a vertex subset
U ⊆ V and any start vertex in U , the broadcast time of the
UniformGossip algorithm on the strongly induced subgraph U
is O(ΦG(U)−1 logn) rounds with high probability

3. NEIGHBOREXCHANGE IN log3 N ROUNDS
The idea behind our algorithm for solving the NEIGHBOREX-

CHANGE problem is as follows. For every graph there exists a
partition into clusters whose conductance is high, and therefore the
UniformGossip algorithm allows information to spread quickly
in each cluster. The latter further implies that pairs of neighbors in-
side a cluster exchange their messages quickly (perhaps indirectly).
What remains is to exchange messages across inter-cluster edges.
This is done recursively. In the following subsection we describe
the conductance decomposition and then in Subsection 3.2 we give
the details for the algorithm together with the proof of correctness.

3.1 Conductance Decomposition of a Graph
As described, our first goal is to partition the graph into clusters

with large conductance. The challenge here is to do so while lim-
iting the number of inter-cluster edges, so that we can efficiently
apply this argument recursively. (Otherwise, this could be trivially
done in any graph, for example by having each node as a separate
cluster.) We are going to achieve this in the following lemma whose
proof is very similar to that of Theorem 7.1 in [32]. Note that for
our eventual algorithm, we are only going to need an existential
proof of this clustering and not an actual algorithm for finding it.

LEMMA 3.1. Let S ⊆ V be of maximum volume such that
vol(S) ≤ vol(V)/2 and ϕ(S, V − S) ≤ ξ, for a fixed parame-
ter ξ ≥ Φ(G). If vol(S) ≤ vol(V)/4, then Φ(V − S) ≥ ξ/3.

PROOF. Assume, towards a contradiction, that Φ(V − S) <
ξ/3. Then, there exists a cut (P,Q) of V −S with ϕ(P,Q) < ξ/3
and specifically

max

{
w(P,Q)

vol(P)
,
w(P,Q)

vol(Q)

}
≤ ξ

3
(3)

Henceforth, letQ be the smaller of the two, i.e. vol(Q) ≤ vol(V −
S)/2.

We are going to show that ϕ(S ∪Q,P) ≤ ξ and either S ∪Q or
P should have been chosen instead of S.

Consider the case vol(S ∪Q) ≤ vol(V)/2. In this case,

ϕ(S ∪Q,P) =
w(S, P) + w(Q,P)

vol(S ∪Q)
=
w(S, P) + w(Q,P)

vol(S) + vol(Q)

≤ max

{
w(S, P)

vol(S)
,
w(Q,P)

vol(Q)

}

≤ max

{
w(S, P) + w(S,Q)

vol(S)
,
w(Q,P)

vol(Q)

}
≤ max

{
ξ, ξ/3

}
= ξ

This establishes a contradiction, because ϕ(S ∪ Q,P) ≤ ξ and
vol(S) < vol(S ∪Q) ≤ vol(V)/2.

Now let’s consider the case vol(S ∪ Q) > vol(V)/2. First, we
argue that vol(S ∪ Q) cannot be too large. We use that vol(Q) ≤
1
2

vol(V − S) = 1
2
(vol(V)− vol(S)).

vol(S ∪Q) = vol(S) + vol(Q) ≤ vol(S) +
vol(V)− vol(S)

2

=
vol(V) + vol(S)

2
≤ 5

8
vol(V)

Hence, vol(P) ≥ 3
8

vol(V). In addition, for the cut size, we have

w(S ∪Q,P) = w(S, P) + w(Q,P)

≤ ξ vol(S) +
ξ

3
vol(Q)

≤ ξ vol(S) +
ξ

3

vol(V)− vol(S)

2

≤ 5

6
ξ vol(S) +

1

6
ξ vol(V)

≤ 3

8
ξ vol(V)

And now we can bound the cut conductance:

ϕ(S ∪Q,P) =
w(S ∪Q,P)

vol(P)
≤

3
8
ξ vol(V)

3
8

vol(V)
= ξ (4)

This also establishes a contradiction because ϕ(S ∪ Q,P) ≤
ξ while vol(S) ≤ 1

4
vol(V) < 3

8
vol(V) ≤ vol(P) ≤

1
2

vol(V).

Lemma 3.1 says that if a graph has no sparse balanced cuts, then
it has a large subgraph which has no sparse cuts. The following
corollary establishes that Lemma 3.1 holds even in the case when
the ambient graph is itself a subgraph of a larger graph.

COROLLARY 3.2. Let U ⊆ V and let S ⊆ U be of maximum
volume such that vol(S) ≤ vol(U)/2 and ϕ(S,U − S) ≤ ξ,
for a fixed parameter ξ ≥ Φ(U). If vol(S) ≤ vol(U)/4, then
Φ(U − S) ≥ ξ/3.

PROOF. Observe that the proof of Lemma 3.1 holds when the
graph has loops, i.e. wuu 6= 0 for some u’s. Let H be the strongly
induced graph of U . It follows from the definition that for any
two disjoint sets A,B ⊆ U we have volG(A) = volH(A) and
w(A,B) = h(A,B). We can therefore apply Lemma 3.1 toH and
deduce that the statement holds for the respective sets in G.

We are now ready to state and analyze the strong clustering algo-
rithm. We emphasize that this is not a distributed algorithm, but an

algorithm that only serves as a proof of existence of the partition.
First, consider the following subroutine:

Cluster(G,U,ξ):

The inputs are a graph G = (V,E), a subset U ⊆ V
and a parameter 0 < ξ < 1.

1. Find a subset S ⊆ U of maximum volume such that
vol(S) ≤ vol(U)/2 and ϕ(S,U − S) ≤ ξ.

2. If no such S exists, then stop and output a single cluster
{U}. Otherwise,

3a. If vol(S) ≤ vol(U)/4, output {U − S} ∪
Cluster(G,S,ξ).

3b. If vol(S) > vol(U)/4, output Cluster(G,S,ξ)∪
Cluster(G,U − S,ξ).

The clustering algorithm for a graph G = (V,E) is simply a call
to Cluster(G,V ,ξ).

THEOREM 3.3. For every 0 < ζ < 1, every graph G = (V,E)
with edge weights wuv ∈ {0} ∪ [1,+∞) has a partition V =
V1 ∪ · · · ∪ Vk such that Φ(Vi) ≥ ζ

log4/3 vol(V)
, for all i, and∑

i<j w(Vi, Vj) ≤ 3ζ
2

vol(V).

PROOF. The depth K of the recursion is, by construction, at
most log4/3 vol(V) assuming that the smallest non-zero weight is
1. LetRi ⊆ 2V be a collection of the U -parameters of invocations
of Cluster at depth 0 ≤ i ≤ K of the recursion. (So, for ex-
ample, R0 = {V }.) For a set U let S(U) be the small side of the
cut produced by Cluster(G,U,ξ), or ∅ if no eligible cut was
found. We can then bound the total weight of cut edges as∑
0≤i≤K

∑
U∈Ri

w
(
S(U), U − S(U)

)
≤

∑
0≤i≤K

∑
U∈Ri

ξ vol
(
S(U)

)
≤

∑
0≤i≤K

∑
U∈Ri

ξ

2
vol(U) ≤ ξ

2

∑
0≤i≤K

∑
U∈Ri

vol(U)

≤ ξ

2

∑
0≤i≤K

vol(V) ≤
ξ log4/3 vol(V)

2
vol(V),

Where we use the convention w(∅, S) = 0. If we set ξ =
3ζ

log4/3 vol(V)
, for some 0 < ζ < 1, then Corollary 3.2 establishes

the theorem.

In this paper, we are going to use the following specialization of
this theorem, obtained by plugging in ζ = 1/3:

COROLLARY 3.4. Every unweighted graph on m edges has a
clustering that cuts at most m

2
edges and each cluster has conduc-

tance at least 1
3 log4/3 2m

.

3.2 The Superstep Algorithm for the
NEIGHBOREXCHANGE Problem

In this section, we will describe the Superstep algorithm,
which solves the NEIGHBOREXCHANGE problem. Recall that, for
this problem, all vertices v are assumed to possess an initial mes-
sage Mv , and the goal is for every pair of neighbors to know each
other’s initial messages.

We now describe our communication protocol, which specifies
a local, per-vertex rule that tells a node which edge to choose for
communication at any given round. It is assumed that the node
will greedily transmit all messages known to it whenever an edge
is chosen for communication. The protocol described here will em-
ploy some auxiliary messages, which are needed exclusively for its
internal workings.

Superstep(G,τ):
The parameter G = (V,E) is an unweighted, undirected
graph, and τ is a positive integer.
Set F0 := ~E and i := 0. While Fi 6= ∅, repeat:

1. (First half)

1a. Initialize every vertex v with a new auxiliary mes-
sage a(v), unique to v. (This message is added to
the set of initial messages that v happens to know
currently.)

1b. Perform the UniformGossip algorithm with
respect to Fi for τ rounds. And denote the out-
come of the random activated edge choices byKi

1c. For every vertex u and neighbor w, let Xuw be
the indicator that u received a(w)

2. (Second half)

2a. Initialize every vertex v with a fresh auxiliary
message b(v), unique to v

2b. Perform Krev
i , the reverse process of the one re-

alized in Step 1b
2c. For every vertex u and neighbor w, let Yuw be

the indicator that u received b(w)

3. (Pruning) Compute the set of pruned directed edges
Pi =

{
(u,w) : Xuw + Yuw > 0

}
4. Set Fi+1 := Fi − Pi and i := i+ 1

Figure 1: Code for Superstep algorithm. It is easily verified
that the above algorithm can be implemented in the GOSSIP
model of communication.

The Superstep subroutine described in Figure 1 is designed
to ensure that, after a single invocation, all neighbors (u,w) in an
undirected graph G have exchanged each other’s initial messages.
Clearly then, D invocations of Superstep, where D is the di-
ameter of G, ensure that a message starting at vertex v reaches
all u ∈ V , and this holds for all messages. D invocations of
Superstep thus resolve the RUMOR problem.

THEOREM 3.5. Let G = (V,E) be an undirected, unweighted
graph with |V | = n and |E| = m. Then, after one invocation of
Superstep(G,τ), where τ = Θ

(
log2 m

)
, the following hold

with probability 1− 1/nΩ(1):

(i) Every pair of neighbors {u,w} ∈ E receive each other’s
messages.

(ii) The algorithm performs Θ
(

log3 m
)

distributed rounds.

Finally, our main result, Theorem 1.1, follows as a corollary of
Theorem 3.5.

Our proof of Theorem 3.5 is structured as follows. If E is a
set of undirected edges, let ~E = {(u,w) : {u,w} ∈ E} be the
corresponding directed graph. Let ~E = F0, . . . , Fd = ∅ be the
respective edge sets of each iteration in Superstep. We are going
to show that, with probability 1−1/nΩ(1), the following invariants
are maintained at each iteration:

(a) The directed edge set Fi is symmetric in the sense that
(u,w) ∈ Fi ⇒ (w, u) ∈ Fi,

(b) The size of Fi reduces by a constant factor at each iteration.
Formally, |Fi+1| ≤ 1

2
|Fi|, and

(c) After the i-th iteration, for every (u,w) ∈ ~E − Fi+1, vertex
u has received the message of vertex w and vice-versa.

Since Fd = ∅, claim (c) implies part (i) of Theorem 3.5. Claim
(b) implies that the maximum number of iterations is log 2m. Not-
ing that every iteration entails 2τ distributed rounds, establishes
part (ii) of Theorem 3.5.

PROOF PROOF OF CLAIM (A):. Initially, F0 is symmetric by
construction. Inductively, assume that Fi is symmetric. The Re-
versal Lemma applied toKi andKrev

i impliesXuw = Ywu, for all
u,w ∈ V . This in turn implies that Xuw + Yuw = Xwu + Ywu,
so Pi is symmetric. Since Fi is symmetric by hypothesis, we can
conclude that Fi+1 = Fi − Pi is symmetric as well.

PROOF PROOF OF CLAIM (B):. Consider the graph Gi =
(V, Fi) on the edge set Fi. Since Fi is symmetric, by Claim (a),
we can treat Gi as undirected for the purposes of analyzing the
UniformGossip algorithm. Let V1 ∪ · · · ∪ Vk be the decom-
position of Gi promised by Corollary 3.4. (Note that the corollary
holds for disconnected graphs, which may arise.) We thus have
Φ(Vj) ≥ 1

3 log4/3 2m
, for all 1 ≤ j ≤ k.

The choice τ = O
(
3 log4/3 2m · logm

)
ensures, via Theo-

rem 2.3, that the first UniformGossip execution in every it-
eration mixes on all Vj with probability 1−1/nΩ(1). Mixing in Vj
implies that for every internal edge (u,w), where u,w ∈ Vj and
(u,w) ∈ Fi, the vertices (u,w) receive each other’s auxiliary mes-
sages. The latter is summarized asXuw = Xwu = 1. Applying the
Reversal Lemma to the second execution of the UniformGossip
algorithm, we deduce that Yuw = Ywu = 1 as well. These two
equalities imply, by the definition of Pi, that Pi is a superset of
the edges not cut by the decomposition V1 ∪ · · · ∪ Vk. Equiva-
lently, Fi+1 is a subset of the cut edges. Corollary 3.4, however,
bounds the volume of the cut edges by 1

2
vol(Fi), which concludes

the proof of Claim (b).

PROOF PROOF OF CLAIM (C):. Initially, ~E − F0 = ∅ and so
the claim holds trivially. By induction, the claim holds for edges in
~E − Fi. And so it suffices to establish that u and v exchange their
respective payload messages for all (u,w) ∈ Pi. However, this is
equivalent to the conditions Xuw + Yuw > 0, which are enforced
by the definition of Pi.

4. SOLVING NEIGHBOREXCHANGE IN
HEREDITARY SPARSE GRAPHS

Next, we ask what can be achieved if instead of exchanging in-
formation indirectly as done in the Superstep algorithm, we
exchange information only directly between neighbors. We will
show in this section that this results in very simple deterministic
algorithms for an important class of graphs that includes bounded
genus graphs and all graphs that can be characterized by excluded
minors [19, 23]. The results here will be used for the more general
simulators in Section 5.

As before we will focus on solving the NEIGHBOREXCHANGE
problem. One trivial way to solve this problem is for each node to
contact its neighbors directly, e.g., by using a simple round robin
method. This takes at most ∆ time, where ∆ is the maximum-
degree of the network. However, in some cases direct message
exchanges work better. One graph that exemplifies this is the star
graph on n nodes. While it takes ∆ = n time to complete a round
robin in the center, after just a single round of message exchanges
each leaf has initiated a bidirectional link to the center and thus ex-
changed its messages. On the other hand, scheduling edges cannot
be fast on dense graphs with many more edges than nodes. The
following lemma shows that the hereditary density captures how
efficient direct message exchanges can be on a given graph. Let the
hereditary density δ of a graph G be the minimal integer such that

for every subset of nodes S the subgraph induced by S has at most
density δ, i.e., at most δ|S| edges.

LEMMA 4.1. The following holds for a graph G with heredi-
tary density δ:

1. Any schedule of direct message exchanges that solves the
NEIGHBOREXCHANGE problem on G takes at least δ
rounds.

2. There exists a schedule of the edges ofG such that each node
needs only 2δ direct message exchanges to solve the NEIGH-
BOREXCHANGE problem.

PROOF. Since the hereditary density of G is δ, there is a subset
of nodes S ⊆ V with at least δ|S| edges between nodes in S. In
each round, each of the |S| nodes is allowed to schedule at most
one message exchange, so a simple pigeonhole principle argument
shows that at least one node needs to initiate at least δ message
exchanges.

For the second claim, we are going to show that for any ε > 0
there is anO(ε−1 logn)-time deterministic distributed algorithm in
the LOCAL model that assigns the edges of G to nodes such that
each node is assigned at most 2(1 + ε)δ edges. Then setting ε <
(3n2)−1 makes the algorithm inefficient but finishes the existential
proof since every node is assigned at most b2δ + 1/2nc = b2δc
edges.

The algorithm runs in phases in which, iteratively, a node takes
responsibility for some of the remaining edges connected to it. All
edges that are assigned are then eliminated and so are nodes that
have no unassigned incident edges. In each phase, every node of
degree at most 2(1 + ε)δ takes responsibility for all of its incident
edges (breaking ties arbitrarily). At least a 1/(1 + 1

ε
) fraction of

the remaining nodes fall under this category in every phase. This
is because otherwise, the number of edges in the subgraph would
be more than

(
|S| − |S|/(1 + 1

ε
)
)(

2(1 + ε)δ
)
/2 = |S|δ, which

would contradict the fact that the hereditary density of the graph
equals δ. What remains after each phase is an induced subgraph
which, by definition of the hereditary density, continues to have
hereditary density at most δ. The number of remaining nodes thus
decreases by a factor of 1− 1/(1 + 1

ε
) in every phase and it takes

at most O(log1+ε n) phases until no more nodes remain, at which
point all edges have been assigned to a node.

We note that the lower bound of Lemma 4.1 is tight in all graphs,
i.e., the upper bound of 2δ can be improved to δ. Graphs with
hereditary density δ, also known as (0, δ)-sparse graphs, are thus
exactly the graphs in which δ is the minimum number such that
the edges can be oriented to form a directed graph with outdegree
at most δ. This in turn is equivalent to the pseudoarboricity of
the graph, i.e., the minimum number of pseudoforests needed to
cover the graph. Due to the matroid structure of pseudoforests,
the pseudoarboricity can be computed in polynomial time. For our
purposes the (non-distributed) algorithms to compute these opti-
mal direct message exchange schedule are too slow. Instead, we
present a simple and fast algorithm, based on the LOCAL algo-
rithm in Lemma 4.1, which computes a schedule that is within a
factor of 2+ε of the optimal. We note that the DirectExchange
algorithm presented here works in the GOSSIP model and fur-
thermore does not require the hereditary density δ to be known a
priori. The algorithm for an individual node v is given in Figure 2.
Its properties are stated in Theorem 4.2.

THEOREM 4.2. For any constant ε > 0, the deterministic al-
gorithm DirectExchange solves the NEIGHBOREXCHANGE

Set δ′ = 1 and H = ∅. H is the subset of neighbors in Γ(v)
that node v has exchanged messages with. Repeat:

δ′ = (1 + ε)δ′

for O(1
ε
· logn) rounds do

if |Γ(v) \H| ≤ δ′
in the next δ′ rounds exchange messages
with all neighbors in Γ(v) \H
terminate

else
wait for δ′ rounds

update H

Figure 2: Code for DirectExchange algorithm.

problem in the GOSSIP model using O(δ logn
ε2

) rounds, where
δ is the hereditary density of the underlying topology. During the
algorithm, each node initiates at most 2(1 + ε)2δ exchanges.

PROOF. Let δ be the hereditary density of the underlying topol-
ogy. We know from the proof of Lemma 4.1 that the algorithm
terminates during the for-loop if δ′ is at least 2(1 + ε)δ. Thus,
when the algorithm terminates, δ′ is at most 2(1 + ε)2δ which
is also an upper bound on the number of neighbors contacted by
any node. In the (i + 1)th-to-last iteration of the outer loop, δ′

is at most 2(1 + ε)2δ/(1 + ε)i, and the running time for this
phase is thus at most 2(1 + ε)2δ/(1 + ε)i · O(1

ε
logn). Sum-

ming up over these powers of 1/(1 + ε) results in a total of at most
δ/((1 + ε)− 1) ·O(1

ε
logn) = O(δ logn

ε2
) rounds.

5. SIMULATORS AND GRAPH SPANNERS
In this section we generalize our results to arbitrary simulations

of LOCAL algorithms in the GOSSIP model and point out con-
nections to graph spanners, another well-studied subject.

Recall that we defined the NEIGHBOREXCHANGE problem ex-
actly in such a way that it simulates in the GOSSIP model what
is done in one round of the LOCAL model. With our solutions,
an O(δ logn)-round algorithm and an O(log3 n)-round algorithm
for the NEIGHBOREXCHANGE problem in the GOSSIP model,
it is obvious that we can now easily convert any T -round algo-
rithm for the LOCAL model to an algorithm in the GOSSIP
model, e.g., by T times applying the Superstep algorithm. In
the case of the DirectExchange algorithm we can do even bet-
ter. While it takes O(δ logn) rounds to compute a good schedul-
ing, once it is known it can be reused and each node can simply
exchange messages with the same O(δ) nodes without incurring
an additional overhead. Thus, simulating the second and any fur-
ther rounds can be easily done in O(δ) rounds in the GOSSIP
model. This means that any algorithm that takes O(T) rounds to
complete in the LOCAL model can be converted to an algorithm
that takes O(δT + δ logn) rounds in the GOSSIP model. We
call this a simulation and define simulators formally as follows.

DEFINITION 5.1. An (α, β)-simulator is a way to transform
any algorithm A in the LOCAL model to an algorithm A′ in the
GOSSIP model such that A′ computes the same output as A and
if A takes O(T) rounds then A′ takes at most O(αT + β) rounds.

Phrasing our results from Section 3.2 and Section 4 in terms of
simulators we get the following corollary.

COROLLARY 5.2. For a graphG of n nodes, hereditary density
δ, and maximum degree ∆, the following hold: (a) There is a ran-
domized (log3 n, 0)-simulator; (b) There is a deterministic (∆, 0)-
simulator; (c) There is a deterministic (2(1+ε)2δ,O(δε−2 logn))-
simulator for any ε > 0 or, simply, there is a (δ, δ logn)-simulator.

Note that for computations that require many rounds
in the LOCAL model the (2(1 + ε)2δ,O(δε−2 logn))-
simulator is a logn-factor faster than repeatedly applying the
DirectExchange algorithm. This raises the question whether
we can similarly improve our (log3 n, 0)-simulator to obtain a
smaller multiplicative overhead for the simulation.

What we would need for this is to compute, e.g., using the
Superstep algorithm, a schedule that can then be repeated to
exchange messages between every node and its neighbors. What
we are essentially asking for is a short sequence of neighbors for
each node over which each node can indirectly get in contact with
all its neighbors. Note that any such schedule of length t must at
least fulfill the property that the union of all edges used by any node
is connected (if the original graph G is connected) and even more
that each node is connected to all its neighbors via a path of length
at most t. Subgraphs with this property are called spanners. Span-
ners are well-studied objects, due to their extremely useful property
that they approximately preserve distances while potentially being
much sparser than the original graph. The quality of a spanner is
described by two parameters, its number of edges and its stretch,
which measures how well it preserves distances.

DEFINITION 5.3 (SPANNERS). A subgraph S = (V,E′) of a
graph G = (V,E) is called an (α, β)-stretch spanner if any two
nodes u, v with distance d in G have distance at most αd+β in S.

From the discussion above it is also clear that any solution to
the NEIGHBOREXCHANGE problem in the GOSSIP model also
computes a spanner as a byproduct.

LEMMA 5.4. If A is an algorithm in the GOSSIP model
that solves the NEIGHBOREXCHANGE problem in any graph G
in T rounds then this algorithm can be used to compute a (T, 0)-
stretch spanner with hereditary density T in O(T) rounds in the
GOSSIP model.

While there are spanners with better properties than the
(log3 n, 0)-stretch and log3 n-density implied by Lemma 5.4 and
Theorem 3.5, our construction has the interesting property that the
number of messages exchanged during the algorithm is at most
O(n log3 n), whereas all prior algorithms rely on the broadcast na-
ture of the LOCAL model and therefore use already O(n2) mes-
sages in one round on a dense graph. Lemma 5.4 furthermore im-
plies a nearly logarithmic lower bound on the time that is needed in
the GOSSIP model to solve the NEIGHBOREXCHANGE problem
since a significantly sub-logarithmic simulator would imply the ex-
istence of a too good spanner:

COROLLARY 5.5. For any algorithm in the GOSSIP model
that solves the NEIGHBOREXCHANGE problem there is a graph
G on n nodes on which this algorithm takes at least Ω(logn

log logn
)

rounds.

PROOF. Assume an algorithm takes at most T (n) rounds on any
graph with n nodes. The edges used by the algorithm form a T (n)-
stretch spanner with density T (n), as stated in Lemma 5.4. For
values of T (n) which are too small it is known that such span-
ners do not exist [26]. More specifically it is known that there are
graphs with n nodes, density at least 1/4n1/r and girth r, i.e., the

length of the smallest cycle is r. In such a graph any (r − 2)-
stretch spanner has to be the original graph itself, since remov-
ing a single edge causes its end-points to have distance at least
r − 1, and thus the spanner also have density 1/4n1/r . Therefore
T (n) ≥ argminr{r − 2, 1/4n1/r} = Ω(logn

log logn
).

Interestingly, it is not only the case that efficient simulators imply
good spanners but the next theorem shows as a converse that good
existing spanner constructions for the LOCAL model can be used
to improve the performance of simulators.

THEOREM 5.6. If there is an algorithm that computes an
(α, β)-stretch spanner with hereditary density δ in O(T) rounds
in the LOCAL model then this can be combined with an (α′, β′)-
simulator to an (αδ, Tα′ + β′ + δ logn+ δβ)-simulator.

PROOF. For simplicity we first assume that β = 0, i.e., the span-
ner S computed by the algorithm in the LOCAL model has purely
multiplicative stretch α and hereditary density δ. Our strategy is
simple: We are first going to compute the good spanner by simulat-
ing the spanner creation algorithm from the LOCAL model using
the given simulator. This takes Tα′ + β′ rounds in the GOSSIP
model. Once this spanner S is computed we are only going to com-
municate via the edges in this spanner. Note that for any node there
is a path of length at most α to any of its neighbors. Thus if we per-
formα rounds ofLOCAL-flooding rounds in which each node for-
wards all messages it knows of to all its neighbors in S each node
obtains the messages of all its neighbors in G. This corresponds
exactly to a NEIGHBOREXCHANGE in G. Therefore if we want
to simulate T ′ rounds of an algorithm A in the LOCAL model
on G we can alternatively perform αT ′ LOCAL computation
rounds on S while doing the LOCAL computations of A every α
rounds. This is a computation in theLOCALmodel but on a sparse
graph. We are therefore going to use the (O(δ), O(δ logn))-
simulator from Corollary 5.2 to simulate this computation which
takes O(δαT ′ + δ logn) rounds in the GOSSIP model. Putting
this together with the Tα′+β′ rounds it takes to compute the span-
ner S we end up with δαT ′ + δ logn+ Tα′ + β′ rounds in total.

In general (i.e., for β > α) it is not possible (see, e.g., Corol-
lary 5.5) to simulate the LOCAL algorithm step by step. Instead
we rely on the fact that any LOCAL computation over T rounds
can be performed by each node first gathering information of all
nodes in a T -neighborhood and then doing LOCAL computations
to determine the output. For this all nodes simply include all their
initial knowledge (and for a randomized algorithm all the random
bits they might use throughout the algorithm) in a message and
flood this in T rounds to all node in their T -neighborhood. Because
a node now knows all information that can influence its output over
a T -round computation it can now locally simulate the algorithm
for itself and its neighbors to the extend that its output can be de-
termined. Having this we simulate the transformed algorithm as
before: We first precomute S in Tα′ + β′ time and then simulate
the T ′ rounds of flooding in G by performing αT ′ + β rounds of
LOCAL-flooding in S. Using the (O(δ), O(δ logn))-simulator
this takes O(δ(αT ′ + β) + δ logn) rounds in the GOSSIP
model.

COROLLARY 5.7. There is a (2log∗ n logn, log4 n)-simulator,
a (logn, 2log∗ n log4 n)-simulator and a (O(1), polylogn)-
simulator.

PROOF. We are going to construct the simulators with increas-
ingly better multiplicative overhead by applying Theorem 5.6 to ex-
isting spanner constructions [6, 11, 27, 28] for the LOCAL model.
We first construct a (log2 n, log4 n)-simulator by combining our

new (log3 n, 0)-simulator with the deterministic spanner construc-
tion in [6]. The construction in [6] takes O(logn) rounds in the
LOCALmodel and adds at most one edge to each node per round.
Using α = T = δ = O(logn), α′ = log3 n and β = β′ = 0
in Theorem 5.6 gives the desired (log2 n, log4 n)-simulator. Hav-
ing this simulator, we can use [28] to improve the multiplicative
overhead while keeping the additive simulation overhead the same.
In [28] an α = (2log∗ n logn)-stretch spanner with constant hered-
itary density δ = O(1) is constructed in T = O(2log∗ n logn)-
time in the LOCAL model. Using these parameters and the
(log2 n, log4 n)-simulator in Theorem 5.6 leads to the strictly bet-
ter (2log∗ n logn, log4 n)-simulator claimed here. Having this sim-
ulator, we can use it with the randomized spanner construction
in [11]. There, an α-stretch spanner, with α = O(logn), is con-
structed in T = O(log3 n)-time in the LOCAL model by ex-
tracting a subgraph with Ω(logn) girth. Such a graph has con-
stant hereditary density δ = O(1), as argued in [26]. Using
these parameters and the (2log∗ n logn, log4 n)-simulator in The-
orem 5.6 leads to the (logn, 2log∗ n log4 n)-simulator. Finally, we
can use any of these simulators together with the nearly-additive
(5 + ε, polylogn)-spanner construction from [27] to obtain our
last simulator. It is easy to verify that the randomized construction
namedADlog logn in [27] can be computed in a distributed fashion
in the LOCALmodel in polylogn time and has hereditary density
δ = O(1). This together with any of the previous simulators and
Theorem 5.6 results in a (O(1), polylogn)-simulator.

With these various simulators it is possible to simulate a compu-
tation in theLOCALmodel with very little (polylogarithmic) mul-
tiplicative or additive overhead in the GOSSIP model. Note that
while the complexity of the presented simulators is incomparable,
one can interleave their executions (or the executions of the sim-
ulated algorithms) and thus get the best runtime for any instance.
This, together with Corollaries 5.7 and 5.2, proves our main result
of Theorem 1.2.

6. DISCUSSION
This paper presents a more efficient alternative to the

UniformGossip algorithm that allows fast rumor spreading on
all graphs, with no dependence on their conductance. We then show
how this leads to fast simulation in the GOSSIP model of any al-
gorithm designed for the LOCAL model by constructing sparse
spanners. This work leaves some interesting directions for future
work, which we discuss below.

First, as mentioned in the introduction, there are cases in which
the algorithm where each node chooses a neighbor uniformly at
random only from among those it has not yet heard from (directly
or indirectly), performs slower than the optimal. An example is
the graph in Figure 3, where Ci stands for a clique of size O(1) in
which every node is also connected to the node vi. In this example,
it takes 2 rounds for the node w to hear about the node v (through
nodes in {z1, . . . , zO(logn)}). During these rounds there is a high
probability that a constant fraction of the nodes in {u1, . . . , uO(n)}
did not yet hear from neither v nor w. With high probability, a
constant fraction of these will contact w before contacting v, after
which they will not contact v anymore because they will have heard
from it through w. This leaves O(n) nodes which v has to contact
directly (since nodes in {z1, . . . , zO(logn)} are no longer active
since they already heard from both of their neighbors), resulting
in a linear number of rounds for NEIGHBOREXCHANGE.

We note, however, that this specific example can be solved by
requiring nodes that have heard from all their neighbors to continue

… … …

v

w u1

uO(n) CO(n)

C1

z1

zO(logn)

w u1 C1

Figure 3: An example illustrating the behavior of the algo-
rithm choosing a random neighbor whose information is still
unknown.

the algorithm after resetting their state, in the sense that they now
consider all their neighbors to be such that they have not heard
from (this is only for the sake of choosing the next neighbor to
contact, the messages they send can include previous information
they received). Therefore, we do not rule out the possibility that
this algorithm works well, but our example suggests that this may
not be trivial to prove.

Second, regarding our solution to the RUMOR problem, the
Superstep algorithm, as presented, can be implemented in syn-
chronous environments in a straightforward manner. To convert our
algorithm to the asynchronous setting, one needs to synchronize the
reversal step. Synchronization is a heavy-handed approach and not
desirable in general.

To alleviate this problem, we believe, it is possible to get rid of
the reversal step altogether. The basic idea is to do away with the
hard decisions to “remove” edges once a message from a neigh-
bor has been received. And instead to multiplicatively decrease
the weight of such edges for the next round. This approach would
introduce a slight asymmetry in each edge’s weight in both direc-
tions. In order to analyze such an algorithm, it is needed to under-
stand the behavior of UniformGossip in an asymmetric setting.
In this setting, each vertex uses its own distribution over outgoing
links when choosing a communication partner at each step. We be-
lieve that understanding the asymmetric RandomNeighbor is an
interesting open problem. It should be mentioned, in general, that
solving RUMOR asynchronously in the LOCAL model is a well-
known, open problem.

7. REFERENCES
[1] L. Barenboim and M. Elkin. Distributed (δ + 1)-coloring in

linear (in δ) time. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing (STOC), pages
111–120, New York, NY, USA, 2009. ACM.

[2] K. Censor-Hillel and H. Shachnai. Fast information
spreading in graphs with large weak conductance. In
Proceedings of the 22nd ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 440–448, 2011.

[3] F. Chierichetti, S. Lattanzi, and A. Panconesi. Almost tight
bounds for rumour spreading with conductance. In
Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC), pages 399–408, 2010.

[4] F. Chierichetti, S. Lattanzi, and A. Panconesi. Rumour
spreading and graph conductance. In Proceedings of the

Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1657–1663, 2010.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
algorithms for replicated database maintenance. In
Proceedings of the sixth Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 1–12,
1987.

[6] B. Derbel, C. Gavoille, D. Peleg, and L. Viennot. On the
locality of distributed sparse spanner construction. In
Proceedings of the twenty-seventh ACM Symposium on
Principles of Distributed Computing (PODC), pages
273–282, New York, NY, USA, 2008. ACM.

[7] B. Doerr and M. Fouz. Asymptotically optimal randomized
rumor spreading. CoRR, abs/1011.1868, 2010.

[8] B. Doerr, M. Fouz, and T. Friedrich. Social networks spread
rumors in sublogarithmic time. In Proceedings of the 43rd
Annual ACM Symposium on Theory of Computing (STOC),
pages 21–30, 2011.

[9] B. Doerr, T. Friedrich, and T. Sauerwald. Quasirandom
rumor spreading. In Proceedings of the nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 773–781, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

[10] B. Doerr, T. Friedrich, and T. Sauerwald. Quasirandom
rumor spreading: Expanders, push vs. pull, and robustness.
In 36th International Colloquium on Automata, Languages
and Programming (ICALP)(1), pages 366–377, 2009.

[11] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and
A. Srinivasan. Fast distributed algorithms for (weakly)
connected dominating sets and linear-size skeletons. J.
Comput. Syst. Sci., 71:467–479, November 2005.

[12] N. Fountoulakis and A. Huber. Quasirandom rumor
spreading on the complete graph is as fast as randomized
rumor spreading. SIAM Journal on Discrete Mathematics,
23(4):1964–1991, 2009.

[13] P. Fraigniaud and G. Giakkoupis. On the bit communication
complexity of randomized rumor spreading. In Proceedings
of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 134–143, New York, NY,
USA, 2010. ACM.

[14] G. Giakkoupis. Tight bounds for rumor spreading in graphs
of a given conductance. In 28th International Symposium on
Theoretical Aspects of Computer Science (STACS), pages
57–68, Dagstuhl, Germany, 2011. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[15] G. Giakkoupis and P. Woelfel. On the randomness
requirements of rumor spreading. In Proceedings of the 22nd
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 449–461, 2011.

[16] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking.
Randomized rumor spreading. In Proceedings of the 41st
Annual Symposium on Foundations of Computer Science
(FOCS), page 565, Washington, DC, USA, 2000. IEEE
Computer Society.

[17] D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and
resource location protocols. In Proceedings of the thirty-third
Annual ACM Symposium on Theory of Computing (STOC),
pages 163–172, New York, NY, USA, 2001. ACM.

[18] D. Kempe and J. M. Kleinberg. Protocols and impossibility
results for gossip-based communication mechanisms. In
Proceedings of the 43rd Symposium on Foundations of

Computer Science (FOCS), pages 471–480, Washington,
DC, USA, 2002. IEEE Computer Society.

[19] A. Kostochka. Lower bound of the hadwiger number of
graphs by their average degree. Combinatorica, 4:307–316,
1984. 10.1007/BF02579141.

[20] F. Kuhn and T. Moscibroda. Distributed approximation of
capacitated dominating sets. Theor. Comp. Sys., 47:811–836,
November 2010.

[21] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of
being near-sighted. In Proceedings of the seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 980–989, New York, NY, USA, 2006. ACM.

[22] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on Computing,
15(4):1036–1053, 1986.

[23] W. Mader. Homomorphieeigenschaften und mittlere
kantendichte von graphen. Mathematische Annalen,
174:265–268, 1967. 10.1007/BF01364272.

[24] D. Mosk-Aoyama and D. Shah. Computing separable
functions via gossip. In Proceedings of the twenty-fifth
Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 113–122, New York, NY, USA,
2006. ACM.

[25] D. Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[26] D. Peleg and A. Schäffer. Graph spanners. Journal of graph
theory, 13(1):99–116, 1989.

[27] S. Pettie. Low distortion spanners. ACM Transactions on
Algorithms (TALG), 6:7:1–7:22, December 2009.

[28] S. Pettie. Distributed algorithms for ultrasparse spanners and
linear size skeletons. Distributed Computing, 22(3):147–166,
2010.

[29] T. Sauerwald and A. Stauffer. Rumor spreading and vertex
expansion on regular graphs. In D. Randall, editor, SODA,
pages 462–475. SIAM, 2011.

[30] J. Schneider and R. Wattenhofer. A new technique for
distributed symmetry breaking. In Proceeding of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 257–266, New York,
NY, USA, 2010. ACM.

[31] A. Sinclair. Algorithms for random generation and counting:
a Markov chain approach. Birkhauser Verlag, Basel,
Switzerland, Switzerland, 1993.

[32] D. A. Spielman and S.-H. Teng. Spectral sparsification of
graphs. CoRR, abs/0808.4134, 2008.

