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Abstract—This paper considers the communication and stor-
age costs of emulating atomic (linearizable) multi-writer multi-
reader shared memory in distributed message-passing systems.
The paper contains two main contributions:
(1) We present an atomic shared-memory emulation algorithm
that we call Coded Atomic Storage (CAS). This algorithm uses
erasure coding methods. In a storage system with N servers that
is resilient to f server failures, we show that the communication
cost of CAS is N

N−2f
. The storage cost of CAS is unbounded.

(2) We present a variant of CAS known as CAS with Garbage
Collection (CASGC). The CASGC algorithm is parametrized by
an integer δ and has a bounded storage cost. We show that in
every execution where the number of write operations that are
concurrent with a read operation is no bigger than δ, the CASGC
algorithm with parameter δ satisfies atomicity and liveness. We
explicitly characterize the storage cost of CASGC, and show that
it has the same communication cost as CAS.

I. INTRODUCTION

Since the late 1970s, emulation of shared-memory systems
in distributed message-passing environments has been an active
area of research [1]–[6], [8]–[10], [12]–[14], [19], [22], [23].
The traditional approach to building redundancy for distributed
systems in the context of shared memory emulation is repli-
cation. In their seminal paper [5], Attiya, Bar-Noy, and Dolev
presented a replication based algorithm for emulating shared
memory that achieves atomic consistency [15], [16]. In this
paper we consider a simple multi-writer generalization of their
algorithm which we call the ABD algorithmi. This algorithm
uses a quorum-based replication scheme, combined with read
and write protocols to ensure that the emulated object is atomic
[16] (linearizable [15]), and to ensure liveness, specifically, that
each operation terminates provided that at most dN−12 e server
nodes fail. Since the read and write protocols require multiple
communication phases where entire replicas are sent, the ABD
algorithm has a high communication cost.

The main goal of our paper is to develop shared memory
emulation algorithms, based on the idea of erasure coding,
that are efficient in terms of communication and storage costs.
Erasure coding is a generalization of replication that is well
known in the context of classical storage systems [17], [20],
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[21]. Specifically, in erasure coding, each server does not store
the value in its entirety, but only a part of the value called
a coded element. In the classical coding theory framework
which studies storage of a single version of a data object,
this approach is well known to lead to smaller storage costs
as compared to replication (see Section III). Algorithms for
shared memory emulation that use the idea of erasure coding
to store multiple versions of a data object consistently have
been developed in [1]–[3], [6], [8], [9], [14], [22]. In this
paper, we build on the existing literature by developing new
erasure coding based shared memory emulation algorithms
and formally quantifying their costs. We next summarize our
contributions and compare them with previous related work.

Contributions. We consider a static distributed message-
passing setting where the universe of nodes is fixed and
known, and nodes communicate using a reliable message-
passing network. We assume that client and server nodes can
fail. We define our system model, and communication and
storage cost measures in Section II.

The CAS algorithm: We develop the Coded Atomic Storage
(CAS) algorithm presented in Section IV, which is an erasure
coding based shared memory emulation algorithm. We present
a brief introduction of erasure coding in Section III. For a
storage system with N nodes, we showii in Theorem 6 that
CAS ensures the following liveness property: all operations
that are invoked by a non-failed client terminate provided
that the number of server failures is bounded by a parameter
f, where f < dN2 e and regardless of the number of client
failures. We also show in Lemma 6 that CAS ensures atomicity
regardless of the number of (client or server) failures. In
Theorem 2 in Section IV, we also analyze the communication
cost of CAS. Specifically, in a storage system with N servers
that is resilient to f server node failures, we show that the
communication costs of CAS are equal to N

N−2f . We note that
these communication costs of CAS are smaller than replication
based schemes (see extended version of this paper [7]). The
storage cost of CAS, however, is unbounded because each
server stores the value associated with every version of the
data object it receives. In comparison, in ABD which is based
on replication, the storage cost is bounded because each node
stores only the latest version of the data object (see [7]).

The CASGC algorithm: In Section V, we present a variant
of CAS called the CAS with Garbage Collection (CASGC)
algorithm, which achieves a bounded storage cost by garbage
collection, i.e., discarding values associated with sufficiently
old versions. CASGC is parametrized by an integer δ which,
informally speaking, controls the number of tuples that each
server stores. We show that CASGC satisfies atomicity in

iiWe only provide brief sketches of the proofs of our results here. Full proofs
of our theorems can be found in the extended version of this paper [7].



Theorem 3 by establishing a formal simulation relation [18]
between CAS and CASGC. Because of the garbage collection
at the servers, the liveness conditions for CASGC are more
stringent than CAS. The liveness property satisfied by CASGC
is described in Theorem 4 in Section V, where we argue that in
an execution of CASGC where the number of write operations
concurrent with a read operation is no bigger than a parameter
δ, every operation terminates. The main technical challenge
lies in careful design of the CASGC algorithm in order to
ensure that an unbounded number of writes that fail do not
prevent a future read from returning a value of the data object.
In particular, failed writes that begin and end before a read is
invoked are not treated as operations that are concurrent with
the read, and therefore do not contribute to the concurrency
limit of δ. While CASGC incurs the same communication costs
as CAS, it incurs a bounded storage cost. A non-trivial bound
on the storage cost of CASGC is described in Theorem 5.
In particular, we note that a larger value of the parameter δ
implies a larger storage cost.

Comparison with Related Work. Erasure coding has been
used to develop shared memory emulation techniques for
systems with crash failures in [2], [3], [9], [22] and Byzantine
failures in [1], [6], [8], [14]. In erasure coding, note that each
server stores a coded element, so a reader has to obtain enough
coded elements to decode and return the value. The main
challenge in extending replication based algorithms such as
ABD to erasure coding lies in handling partially completed
or failed writes. In replication, when a read occurs during
a partially completed write, servers simply send the stored
value and the reader returns the latest value obtained from the
servers. However, in erasure coding, the challenge is to ensure
that a read that observes the trace of a partially completed or
failed write obtains a enough coded elements corresponding to
the same version to return a value. Different algorithms have
different approaches in handling this challenge of ensuring
that the reader decodes a value of the data object. As a
consequence, the algorithms differ in the liveness properties
satisfied, and the communication and storage costs incurred.
We discuss the differences here briefly.

Among the previous works, [6], [8], [9], [14] have similar
correctness requirements as our paper; these references aim
to emulate an atomic shared memory that supports concurrent
operations in asynchronous networks. We note that the algo-
rithm of [6] cannot be generalized to lossy channel models
(see discussion in [9]). We compare our algorithms with the
ORCAS-B algorithm of [9]iii, the algorithm of [14], which we
call the HGR algorithm, and the M-PoWerStore algorithm of
[8]. We note that [9] assumes lossy channels and [8], [14]
assume Byzantine failures. Here, we interpret the algorithms
of [8], [9], [14] in our model that has lossless channels and
crash failures, and use worst-case costs for comparison.

The CAS and CASGC algorithms resemble the M-
PoWerStore and HGR algorithms in their structure. These
algorithms handle partially completed or failed writes by
hiding ongoing writes from a read until enough number of
coded elements have been propagated to the servers. The write
communication costs of CAS, CASGC, M-PoWerStore, HGR
and ORCAS-B are all the same. However, there are differences

iiiThe ORCAS-A algorithm of [9], although uses erasure coding, has the
same worst case communication and storage costs as ABD.

between these algorithms in the liveness properties, garbage
collection strategies and read communication costs.

CAS is essentially a restricted version of the M-PoWerStore
algorithm of [8] for the crash failure model. The main differ-
ence between CAS and M-PoWerStore is that in CAS, servers
perform gossipiv. However, M-PoWerStore does not involve
garbage collection and therefore incurs an infinite storage cost.
The garbage collection strategies of HGR and ORCAS-B are
similar to that of CASGC with the parameter δ set to 1.
In fact, the garbage collection strategy of CASGC may be
viewed as a non-trivial generalization of the garbage collection
strategies of ORCAS-B and HGR. We next discuss differences
between these algorithms in terms of their liveness properties
and communication costs.

The ORCAS-B algorithm satisfies the same liveness prop-
erties as ABD and CAS, which are stronger than the liveness
conditions of CASGC. However, in ORCAS-B, to handle
partially completed writes, a server sends coded elements
corresponding to multiple versions to the reader. This is
because, in ORCAS-B, a server, on receiving a request from
a reader, registers the client and sends all the incoming coded
elements to the reader until the read receives a second message
from a client. Therefore, the read communication cost of
ORCAS-B grows with the number of writes that are concurrent
with a read. In fact, in ORCAS-B, if a read client fails in
the middle of a read operation, servers may send all the
coded elements it receives from future writes to the reader.
In contrast, CAS and CASGC have smaller communication
costs because each server sends only one coded element to a
client per read operation, irrespective of the number of writes
that are concurrent with the read.

In HGR, read operations satisfy obstruction freedom, that
is, a read returns if there is a period during the read where no
other operation takes steps for sufficiently long. Therefore, in
HGR, operations may terminate even if the number of writes
concurrent with a read is arbitrarily large, but it requires a
sufficiently long period where concurrent operations do not
take steps. On the contrary, in CASGC, by setting δ to be
bigger than 1, we ensure that read operations terminate even
if concurrent operations take steps, albeit at a larger storage
cost, so long as the number of writes concurrent with a read
is bounded by δ. Interestingly, the read communication cost of
HGR is larger than CASGC, and increases with the number
of writes concurrent to the read to allow for read termination
in presence of a large number of concurrent writes.

We note that the server protocol of the CASGC algorithm
is more complicated as compared with previous algorithms.
In particular, unlike ORCAS-B, HGR and M-PoWerStore,
the CASGC algorithm requires gossip among the servers to
ensure operation termination in presence of multiple writes at
a bounded storage cost and low communication cost. Another
feature that distinguishes our paper is that we provide rigorous
definitions and analysis of communication and storage costs.
We also include correctness proofs of our algorithms through
the development of invariants and simulation relations, which
may be of independent interest.

ivAs we shall see later, the server gossip is not essential to correctness of
CAS. It is however useful as a theoretical tool to prove correctness of CASGC.



II. PROBLEM STATEMENT

Deployment setting. We assume a static asynchronous deploy-
ment setting where all the nodes and the network connections
are known a priori and the only sources of dynamic behavior
are node stop-failures (or simply, failures) and processing and
communication delays. We consider a message-passing setting
where nodes communicate via point-to-point reliable channels.
We assume a universe of nodes that is the union of server and
client nodes, where the client nodes are reader or writer nodes.
N represents the set of server nodes; N denotes the cardinality
of N . We assume that server and client nodes can fail (stop
execution) at any pointv. We assume that the number of server
node failures is at most f . There is no bound on the number
of client failures.

Shared memory emulation. We consider algorithms that em-
ulate multi-writer, multi-reader (MWMR) read/write atomic
shared memory using our deployment platform. We assume
that read clients receive read requests (invocations) from some
local external source, and respond with object values. Write
clients receive write requests and respond with acknowledg-
ments. The requests follow a “handshake” discipline, where a
new invocation at a client waits for a response to the preceding
invocation at the same client. We require that the overall
external behavior of the algorithm corresponds to atomic
(linearizable) memory. For simplicity, in this paper we consider
a shared-memory system that consists of just a single object.

We represent each version of the data object as a
(tag, value) pair. When a write client processes a write
request, it assigns a tag to the request. We assume that the tag
is an element of a totally ordered set T that has a minimum
element t0. The tag of a write request serves as a unique
identifier for that request, and tags associated with successive
write requests at a particular client increase monotonically. We
assume that value is a member of a finite set V that represents
the set of values that the data object can take on; note that
value can be represented by log2 |V| bitsvi. We assume that
all servers are initialized with a default initial state.

Requirements. The key correctness requirement on the tar-
geted shared memory service is atomicity. A shared atomic
object is one that supports concurrent access by multiple clients
and where the observed global external behaviors “look like”
the object is being accessed sequentially. Another requirement
is liveness, by which we mean here that an operation of a
non-failed client is guaranteed to terminate provided that the
number of server failures is at most f , and irrespective of the
failures of other clientsvii.

Communication cost. Informally speaking, the communica-
tion cost is the number of bits transferred over the point-
to-point links in the message-passing system. For a message
that can take any value in some finite set M, we measure
its communication cost as log2 |M| bits. We separate the cost
of communicating a value of the data object from the cost of
communicating the tags and other metadata. Specifically, we
assume that each message is a triple (t, w, d) where t ∈ T is a

vOur model can be formally described as an I/O automaton by composing
the automata of all the nodes and channels in the system. Our notions of an
execution, a fair execution, etc. follow from the standard definitions [18].

viStrictly speaking, we need dlog2 |V|e bits since the number of bits has to
be an integer. We ignore this rounding error.

viiWe assume N > 2f, since correctness cannot be ensured if N ≤ 2f [18].

tag, w ∈ W is the (only) component of the triple that depends
on the value associated with tag t, and d ∈ D is any additional
metadata that is independent of the value. Here, W is a finite
set of values that the second component of the message can
take on, depending on the value of the data object. D is a
finite set that contains all the possible metadata elements for
the message. These sets are assumed to be known a priori to the
sender and recipient of the message. In this paper, we make
the approximation: log2 |M| ≈ log2 |W|, that is, the costs
of communicating the tags and the metadata are negligible
as compared to the cost of communicating the data object
values. We assume that every message is sent on behalf of
some read or write operation. We next define the read and
write communication costs of an algorithm.

For a given shared memory algorithm, consider an exe-
cution α. The communication cost of a write operation in α
is the sum of the communication costs of all the messages
sent over the point-to-point links on behalf of the operation.
The write communication cost of the execution α is the
supremum of the costs of all the write operations in α. The
write communication cost of the algorithm is the supremum of
the write communication costs taken over all executions. The
read communication cost of an algorithm is defined similarly.

Storage cost. Informally speaking, at any point of an execution
of an algorithm, the storage cost is the total number of bits
stored by the servers. Specifically, we assume that a server
node stores a set of triples with each triple of the form (t, w, d),
where t ∈ T , w depends on the value of the data object
associated with tag t, and d represents additional metadata
that is independent of the values stored. We neglect the cost
of storing the tags and the metadata; so the cost of storing the
triple (t, w, d) is measured as log2 |W| bits. The storage cost of
a server is the sum of the storage costs of all the triples stored
at the server. For a given shared memory algorithm, consider
an execution α. The storage cost at a particular point of α
is the sum of the storage costs of all the non-failed servers at
that point. The storage cost of the execution α is the supremum
of the storage costs over all points of α. The storage cost of
an algorithm is the supremum of the storage costs over all
executions of the algorithm.

III. ERASURE CODING - BACKGROUND
Erasure coding is a generalization of replication that has

been widely studied for purposes of failure-tolerance in storage
systems (see [17], [20], [21]). The key idea of erasure coding
involves splitting the data into several coded elements, each
of which is stored at a different server node. As long as
a sufficient number of coded elements can be accessed, the
original data can be recovered. Informally speaking, given two
positive integers m, k, k < m, an (m, k) Maximum Distance
Separable (MDS) code maps a k-length vector to an m-length
vector, where the input k-length vector can be recovered from
any k coordinates of the output m-length vector. This implies
that an (m, k) code, when used to store a k-length vector
on m server nodes - each server node storing one of the m
coordinates of the output - can tolerate (m−k) node failures in
the absence of any consistency requirements. We next define
the notion of an MDS code formally.

Given an arbitrary finite set A and any set S ⊆
{1, 2, . . . ,m}, let πS denote the natural projection mapping
from Am onto the coordinates corresponding to S, i.e., de-
noting S = {s1, s2, . . . , s|S|}, where s1 < s2 . . . < s|S|, the



function πS : Am → A|S| is defined as πS (x1, x2, . . . , xm) =
(xs1 , xs2 , . . . , xs|S|).
Definition 1 (Maximum Distance Separable (MDS) code). Let
A denote any finite set. For positive integers k,m such that
k < m, an (m, k) code over A is a map Φ : Ak → Am.
An (m, k) code Φ over A is said to be Maximum Distance
Separable (MDS) if, for every S ⊆ {1, 2, . . . ,m} where
|S| = k, there exists a function Φ−1S : Ak → Ak such that:
Φ−1S (πS(Φ(x)) = x for every x ∈ Ak, where πS is the natural
projection mapping.

We refer to each of the m coordinates of the output
of an (m, k) code Φ as a coded element. Classical m-way
replication, where the input value is repeated m times, is in
fact an (m, 1) MDS code. Another example is the single parity
code: an (m,m− 1) MDS code over A = {0, 1} which maps
the (m − 1)-bit vector x1, x2, . . . , xm−1 to the m-bit vector
x1, x2, . . . , xm−1, x1 ⊕ x2 ⊕ . . .⊕ xm−1.

We review the classical coding-theoretic model, where a
single version of a data object with value v ∈ V is stored
over N servers using an (N, k) MDS code. We assume that
V =Wk for some finite set W and that an (N, k) MDS code
Φ : Wk → WN exists over W (see [7] for a discussion).
The value v of the data object can be used as an input
to Φ to get N coded elements over W; each of the N
servers, respectively, stores one of these coded elements. Since
each coded element belongs to the set W, whose cardinality
satisfies |W| = |V|1/k = 2

log2 |V|
k , each coded element can be

represented as a log2 |V|
k bit-vector, i.e., the number of bits in

each coded element is a fraction 1
k of the number of bits in

the original data object. When we employ an (N, k) code in
the context of storing multiple versions, the size of a coded
element is closely related to communication and storage costs
incurred by our algorithms (see Theorems 2 and 5).

IV. CODED ATOMIC STORAGE

We now present the Coded Atomic Storage (CAS) algo-
rithm which takes advantage of erasure coding techniques to
reduce the communication cost for emulating atomic shared
memory. CAS is parameterized by an integer k, 1 ≤ k ≤
N − 2f ; we denote the algorithm with parameter value k
by CAS(k). CAS, like ABD and LDR, is a quorum-based
algorithm. Later, in Sec. V, we present a variant of CAS that
has efficient storage costs as well (in addition to having the
same communication costs as CAS). We next describe CAS.

Quorum specification. We define our quorum system, Q, to
be the set of all subsets ofN that have at least dN+k

2 e elements
(server nodes). We refer to the members of Q, as quorum sets.
The following property is shown in [7], [11]:
Lemma 1. Suppose that 1 ≤ k ≤ N − 2f. (i) If Q1, Q2 ∈ Q,
then |Q1 ∩ Q2| ≥ k. (ii) If the number of failed servers is at
most f , then Q contains at least one quorum set Q of non-
failed servers.

The CAS algorithm can, in fact, use any quorum system
that satisfies properties (i) and (ii) of Lemma 1.

Algorithm description. In CAS, we assume that tags are
tuples of the form (z, ‘id’), where z is an integer and ‘id’ is
an identifier of a client node. The ordering on the set of tags
T is defined lexicographically, using the usual ordering on the
integers and a predefined ordering on the client identifiers.

We add a ‘gossip’ protocol to CAS, whereby each server
sends each item from T × {‘fin’} that it ever receives once
(immediately) to every other server. As a consequence, in
any fair execution, if a non-failed server initiates ‘gossip’ or
receives ‘gossip’ message with item (t, ‘fin’), then, every non-
failed server receives a ‘gossip’ message with this item at some
point of the execution. Fig. 1 contains a description of the read
and write protocols, and the server actions of CAS. Here, we
provide an overview of the algorithm.

Each server node maintains a set of
(tag, coded-element, label)viii triples, where we specialize
the metadata to label ∈ {‘pre’, ‘fin’}. The different phases
of the write and read protocols are executed sequentially.
In each phase, a client sends messages to servers to which
the non-failed servers respond. Termination of each phase
depends on getting responses from at least one quorum.

The query phase is identical in both protocols and it allows
clients to discover a recent finalized object version, i.e., a
recent version with a ‘fin’ tag. The goal of the pre-write
phase of a write is to ensure that each server gets a tag and
a coded element with label ‘pre’. Tags associated with label
‘pre’ are not visible to the readers, since the servers respond
to query messages only with finalized tags. Once a quorum,
say Qpw, has acknowledged receipt of the coded elements to
the pre-write phase, the writer proceeds to its finalize phase.
In this phase, it propagates a finalize (‘fin’) label with the
tag and waits for a response from a quorum, say Qfw. The
purpose of propagating the ‘fin’ label is to record that the
coded elements associated with the tag have been propagated to
a quorumix. In fact, when a tag appears anywhere in the system
associated with a ‘fin’ label, it means that the corresponding
coded elements reached a quorum Qpw with a ‘pre’ label at
some previous point. The operation of a writer in the two
phases following its query phase helps overcome the challenge
of handling writer failures. In particular, notice that only tags
with the ‘fin’ label are visible to the reader. This ensures
that the reader gets at least k unique coded elements from
any quorum of non-failed nodes in response to its finalize
messages, because such a quorum has an intersection of at
least k nodes with Qpw. Finally, the reader helps propagate
the tag to a quorum, and this helps complete possibly failed
writes as well.

We note that the server gossip is not necessary for cor-
rectness of CAS. We use ‘gossip’ in CAS mainly because
it simplifies the proof of atomicity of the CASGC algorithm,
which is presented in Section V. We next state the main result
of this section.

Theorem 1. CAS emulates shared atomic read/write memory.

To prove Theorem 1, we show atomicity, Lemma 2, and
liveness, Lemma 6.

Lemma 2. CAS(k) is atomic.

The main idea of our proof of atomicity involves defining,
on the operations of any execution β of CAS, a partial order ≺
that satisfies the sufficient conditions for atomicity described
by Lemma 13.16 of [18]. Specifically, if β is an execution
where every operation terminates, then, for any two operations

viiiThe ‘null’ entry indicates that no coded element is stored; the storage
cost associated storing a null coded element is negligible.

ixIt is worth noting that Qfw and Qpw need not be the same quorum.



write(value)
query: Send query messages to all servers asking for the highest tag with label ‘fin’; await responses from a quorum.
pre-write: Select the largest tag from the query phase; let its integer component be z. Form a new tag t as (z + 1, ‘id’), where ‘id’ is the identifier of the
client performing the operation. Apply the (N, k) MDS code Φ (see Sec. III) to the value to obtain coded elements w1, w2, . . . , wN . Send (t, ws, ‘pre’) to
server s for every s ∈ N . Await responses from a quorum.
finalize: Send a finalize message (t, ‘null’, ‘fin’) to all servers. Terminate after receiving responses from a quorum.

read
query: As in the writer protocol.
finalize: Send a finalize message with tag t to all the servers requesting the associated coded elements. Await responses from a quorum. If at least k servers
include their locally stored coded elements in their responses, then obtain the value from these coded elements by inverting Φ (see Definition 1) and terminate
by returning value.

server
state variable: A variable that is a subset of T × (W ∪ {‘null’})× {‘pre’, ‘fin’}
initial state: Store (t0, w0,s, ‘fin’) where s denotes the server and w0,s is the coded element corresponding to server s obtained by apply Φ to the initial
value v0.
On receipt of query message: Respond with the highest locally known tag that has a label ‘fin’, i.e., the highest tag such that the triple (tag, ∗, ‘fin’) is at the
server, where ∗ can be a coded element or ‘null’.
On receipt of pre-write message: If there is no record of the tag of the message in the list of triples stored at the server, then add the triple in the message to
the list of stored triples; otherwise ignore. Send acknowledgment.
On receipt of finalize from a writer: Let t be the tag of the message. If a triple of the form (t, ws, ‘pre’) exists in the list of stored triples, then update it to
(t, ws, ‘fin’). Otherwise add (t, ‘null’, ‘fin’) to list of stored triplesxvi. Send acknowledgment. Send ‘gossip’ message with item (t, ‘fin’) to all other servers.
On receipt of finalize from a reader: Let t be the tag of the message. If a triple of the form (t, ws, ∗) exists in the list of stored triples where ∗ can be
‘pre’ or ‘fin’, then update it to (t, ws, ‘fin’) and send (t, ws) to the reader. Otherwise add (t, ‘null’, ‘fin’) to the list of triples at the server and send an
acknowledgment. Send ‘gossip’ message with item (t, ‘fin’) to all other servers.
On receipt of ‘gossip’ message: Let t be the tag of the message. If a triple of the form (t, x, ∗) exists in the list of stored triples where ∗ is ‘pre’ or ‘fin’ and
x is a coded element of ‘null’, then update it to (t, x, ‘fin’). Otherwise add (t, ‘null’, ‘fin’) to the list of triples at the server.

Fig. 1. Write, read, and server protocols of the CAS algorithm.

π1, π2 in β, we define a partial ordering ≺ satisfies the
following three conditions: (1) If the response for π1 precedes
the invocation for π2 in β, then it cannot be the case that
π2 ≺ π1. (2) If π1 is a write operation π2 is any operation,
then either π1 ≺ π2 or π2 ≺ π1. (3) The value returned by
each read operation is the value written by the last preceding
write operation according to ≺ (or an initial value v0, if there
is no such write). To define a partial order that satisfies these
sufficient conditions, we use the following definition.

Definition 2. Consider an execution β of CAS and consider
an operation π that terminates in β. The tag of operation π,
denoted as T (π), is defined as follows: If π is a read, then,
T (π) is the highest tag received in its query phase. If π is a
write, then, T (π) is the new tag formed in its pre-write phase.

We define our partial order ≺ as follows: In any execution
β of CAS, we order operations π1, π2 as π1 ≺ π2 if (i)
T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a write and π2 is
a read. In [7], we formally state the three sufficient conditions
for atomicity and prove that ≺ satisfies them. Here we provide
a brief sketch of the arguments involved. We first show in
Lem. 3 that, in any execution β of CAS, at any point after
an operation π terminates, the tag T (π) has been propagated
with the ‘fin’ label to at least one quorum of servers. Intuitively
speaking, Lem. 3 means that if an operation π terminates, the
tag T (π) is visible to any operation that is invoked after π
terminates. We crystallize this intuition in Lem. 4, where we
show that any operation that is invoked after an operation π
terminates acquires a tag that is at least as large as T (π). Using
Lem. 4 we show Lem. 5, which states that the tag acquired
by each write operation is unique. Then we show that Lem. 4
and Lem. 5 imply conditions (1) and (2). By examination of
the algorithm, we show that CAS satisfies (3) also. We state
Lemmas 3, 4, 5, and 2 here, and prove them in [7].

Lemma 3. In any execution β of CAS, for an operation π
that terminates in β, there exists a quorum Qfw(π) such that

the following is true at every point of the execution β after π
terminates: Every server of Qfw(π) has (t, ∗, ‘fin’) in its set
of stored triples, where ∗ is either a coded element or ‘null’,
and t = T (π).

Lemma 4. Consider any execution β of CAS, and let π1, π2
be two operations that terminate in β. Suppose that π1 returns
before π2 is invoked. Then T (π2) ≥ T (π1). Furthermore, if
π2 is a write, then T (π2) > T (π1).

Lemma 5. Let π1, π2 be write operations that terminate in an
execution β of CAS. Then T (π1) 6= T (π2).

We now state the liveness condition satisfied by CAS.

Lemma 6 (Liveness). CAS(k) satisfies the following liveness
condition: If 1 ≤ k ≤ N−2f , then every non-failed operation
terminates in every fair execution of CAS(k) where the number
of failed server nodes is no bigger than f .

Proof (Sketch.): By examination of the algorithm we observe
that termination of any operation depends on termination of
its phases. So, to show liveness, we need to show that each
phase of each operation terminates. Termination of a write
operation and the query phase of a read are contingent on
receiving responses from a quorum of non-failed servers in the
execution; property (ii) of Lemma 1 guarantees the existence
of such a quorum, and thus ensures their termination (see [7]
for formal arguments).

We show the termination of a reader’s finalize phase here
since it is more challenging. By using property (ii) of Lem.
1, we can show that a quorum, say Qfw of servers responds
to a reader’s finalize message. We show that at least k servers
include coded elements in their responses implying that the
finalize phase terminates. Suppose that the read acquired a tag
t in its query phase. From examination of CAS, we infer that,
at some point before the point of termination of the read’s
query phase, a writer propagated a finalize message with tag



t. Denote by Qpw(t), the set of servers that responded to this
write’s pre-write phase. We argue that all servers in Qpw(t)∩
Qfw respond to the reader’s finalize message with a coded
element. To see this, let s be any server in Qpw(t)∩Qfw. Since
s is in Qpw(t), the server protocol for responding to a pre-write
message implies that s has a coded element, ws, at the point
where it responds to that message. Since s is in Qfw, it also
responds to the reader’s finalize message, and this happens
at some point after it responds to the pre-write message. So
it responds with coded element ws. From Lem. 1, we know
|Qpw(t)∩Qfw| ≥ k implying that the read receives at least k
coded elements in its finalize phase and hence terminates.

Cost analysis. We analyze the communication costs of CAS
in Theorem 2. The theorem implies that the read and write
communication costs can be made as small as N

N−2f log2 |V|
bits by choosing k = N − 2f.

Theorem 2. The write and read communication costs of the
CAS(k) are equal to N/k log2 |V| bits.

V. STORAGE-OPTIMIZED VARIANT OF CAS

Although CAS is efficient in terms of communication costs,
it incurs an infinite storage cost because a server can store
coded elements corresponding to an arbitrarily large number of
versions. We here present a variant of the CAS algorithm called
CAS with Garbage Collection (CASGC), which has the same
communication costs as CAS and incurs a bounded storage
cost under reasonable conditions. CASGC achieves a bounded
storage cost by using garbage collection, i.e., by discarding
coded elements with sufficiently small tags at the servers.
CASGC is parametrized by two positive integers denoted as
k and δ, where 1 ≤ k ≤ N − 2f ; we denote the algorithm
with parameter values k, δ by CASGC(k, δ). Like CAS(k), we
use an (N, k) MDS code in CASGC(k, δ). The parameter δ is
related to the number of coded elements stored at each server.

Algorithm description. The CASGC(k, δ) algorithm is
essentially the same as CAS(k) with an additional garbage
collection step at the servers. In particular, the only differences
between the two algorithms lie in the server actions on receiv-
ing a finalize message from a writer or a reader or ‘gossip’.
The server actions in the CASGC algorithm are described in
Fig. 2. In CASGC(k, δ), each server stores the latest δ + 1
triples with the ‘fin’ label plus the triples corresponding to
later and intervening operations with the ‘pre’ label. For the
tags that are older (smaller) than the latest δ + 1 finalized
tags received by the server, it stores only the metadata, not
the data itself. On receiving a finalize message either from a
writer or a reader, the server performs a garbage collection
step before responding to the client. The garbage collection
step checks whether the server has more than δ + 1 triples
with the ‘fin’ label. If so, it replaces the triple (t′, x, ∗) by
(t′, ‘null’, (∗, ‘gc’)) for every tag t′ that is smaller than all the
δ+1 highest tags labeled ‘fin’, where ∗ is ‘pre’ or ‘fin’, and x
can be a coded element or ‘null’. If a reader requests, through
a finalize message, a coded element that is already garbage
collected, the server simply ignores this request.

Statements and proofs of correctness. We begin with a
formal statement of atomicity of CASGC. Later, we describe
the liveness properties of CASGC.

Theorem 3 (Atomicity). CASGC is atomic.

To show the above theorem, we observe that, from the
perspective of the clients, the only difference between CAS
and CASGC is in the server response to a read’s finalize
message. In CASGC, when a coded element has been garbage
collected, a server ignores a read’s finalize message. Atomicity
follows similarly to CAS, since, in any execution of CASGC,
operations acquire essentially the same tags as they would in
an execution of CAS. We show this formally in [7] using a
simulation relation between CASGC and CAS.

Showing operation termination in CASGC is more com-
plicated than CAS. This is because, in CASGC, when a
reader requests a coded element, the server may have garbage
collected it. The liveness property we show essentially artic-
ulates conditions under which read operations terminate in
spite of the garbage collection. Informally speaking, we show
that CASGC satisfies the following liveness property: every
operation terminates in an execution where the number of
failed servers is no bigger than f and the number of writes
concurrent with a read is bounded by δ+1. Before we proceed
to formally state our liveness conditions, we begin with some
definitions. For any operation π that completes its query phase,
the tag of the operation T (π) is defined as in Definition 2. We
next define the end-point of an operation.

Definition 3 (End-point of a write operation). In an execution
β of CASGC, the end point of a write operation π in β is
defined to be
(a) the first point of β at which a quorum of servers that

do not fail in β has tag T (π) with the ‘fin’ label, where
T (π) is the tag of the operation π, if such a point exists,

(b) the point of failure of operation π, if operation π fails
and (a) is not satisfied.

Note that if neither condition (a) nor (b) is satisfied, then
the write operation has no end-point.

Definition 4 (End-point of a read operation). The end point of
a read operation in β is defined to be the point of termination if
the read returns in β. The end-point of a failed read operation
is defined to be the point of failure.

A read that does not fail or terminate has no end-point.

Definition 5 (Concurrent Operations). One operation is de-
fined to be concurrent with another operation if it is not the
case that the end point of either of the two operations is before
the point of invocation of the other operation.

Note that if both operations do not have end points, then
they are concurrent with each other. We next describe the
liveness property satisfied by CASGC.

Theorem 4 (Liveness). Let 1 ≤ k ≤ N − 2f . Consider a
fair execution β of CASGC(k, δ) where the number of write
operations concurrent to any read operation is at most δ, and
the number of server node failures is at most f . Then, every
non-failing operation terminates in β.

The main challenge in proving Theorem 4 lies in showing
termination of read operations. In Lemma 7, we show that
if a read operation does not terminate in an execution of
CASGC(k, δ), then the number of write operations that are
concurrent with the read is larger than δ. We provide a
statement and proof sketch for Lemma 7 here. We use the
lemma to show Theorem 4 in [7].



servers
state variable: A variable that is a subset of T × (W ∪ {‘null’})× {‘pre’, ‘fin’, (‘pre’, ‘gc’), (‘fin’, ‘gc’)}
initial state: Same as in Fig. 1.
On receipt of query message: Similar to Fig. 1, respond with the highest locally available tag labeled ‘fin’, i.e., respond with the highest tag such that the
triple (tag, x, ‘fin’) or (tag, ‘null’, (‘fin’, ‘gc’)) is at the server, where x can be a coded element or ‘null’.
On receipt of a pre-write message: Perform the actions as described in Fig. 1 except the sending of an acknowledgement. Perform garbage collection. Then
send an acknowledgement.
On receipt of a finalize from a writer: Let t be the tag of the message. If a triple of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)) is stored in the set
of locally stored triples where x can be a coded element or ‘null’, then ignore the incoming message. Otherwise, if a triple of the form (t, ws, ‘pre’) or
(t, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it to (t, ws, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)). Otherwise, add a triple of the form (t, ‘null’, ‘fin’) to the set of
locally stored triples. Perform garbage collection. Send ‘gossip’ message with item (t, ‘fin’) to all other servers.
On receipt of a finalize message from a reader: Let t be the tag of the message. If a triple of the form (t, ws, ∗) exists in the list of stored triples where ∗ can
be ‘pre’ or ‘fin’, then update it to (t, ws, ‘fin’), perform garbage collection, and send (t, ws) to the reader. If (t, ‘null’, (∗, ‘gc’)) exists in the list of locally
available triples where ∗ can be either ‘fin’ or ‘pre’, then update it to (t, ‘null’, (‘fin’, ‘gc’)) and perform garbage collection, but do not send a response.
Otherwise add (t, ‘null’, ‘fin’) to the list of triples at the server, perform garbage collection, and send an acknowledgment. Send ‘gossip’ message with item
(t, ‘fin’) to all other servers.
On receipt of a ‘gossip’ message: Let t denote the tag of the message. If a triple of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)) is stored in the set
of locally stored triples where x can be a coded element or ‘null’, then ignore the incoming message. Otherwise, if a triple of the form (t, ws, ‘pre’) or
(t, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it to (t, ws, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)). Otherwise, add a triple of the form (t, ‘null’, ‘fin’) to the set of
locally stored triples. Perform garbage collection.
garbage collection: If the total number of tags of the set {t : (t, x, ∗) is stored at the server, where x ∈ W ∪ {‘null’} and ∗ ∈ {‘fin’, (‘fin’, ‘gc’)}} is no
bigger than δ+ 1, then return. Otherwise, let t1, t2, . . . tδ+1 denote the highest δ+ 1 tags from the set, sorted in descending order. Replace every element of
the form (t′, x, ∗) where t′ is smaller than tδ+1 by (t′, ‘null’, (∗, ‘gc’)) where ∗ can be either ‘pre’ or ‘fin’ and x ∈ W ∪ {‘null’}.

Fig. 2. Server Actions for CASGC(k, δ).

Lemma 7. Let 1 ≤ k ≤ N−2f . Consider any fair execution β
of CASGC(k, δ) where the number of server failures is upper
bounded by f . Let π be a non-failing read operation in β
that does not terminate. Then, the number of writes that are
concurrent with π is at least δ + 1.

To prove Lemma 7, we prove Lemmas 8 and 9. Lemma
8 implies that in a fair execution where the number of server
failures is bounded by f , if a non-failing server receives a
finalize message corresponding to a tag at some point, then
the write operation corresponding to that tag has an end-point
in the execution. We note that the server gossip plays a crucial
role in showing Lemma 8. We then show Lemma 9 which
states that in an execution, if a write operation π has an end-
point, then every operation that begins after the end-point of
π acquires a tag that is at least as large as the tag of π. Using
Lemmas 8 and 9, we then show Lemma 7. Here, we state
Lemmas 8 and 9 and provide a sketch of the proof of Lemma
7. We provide proofs of Lemmas 7, 8 and 9 in [7].

Lemma 8. Let 1 ≤ k ≤ N − 2f . Consider any fair execution
β of CASGC(k, δ) where the number of server failures is no
bigger than f . Consider a write operation π that acquires tag
t. If at some point of β, at least one non-failing server has a
triple of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)) where
x ∈ W ∪ {‘null’}, then operation π has an end-point in β.

Lemma 9. Consider any execution β of CASGC(k, δ). If write
operation π with tag t has an end-point in β, then the tag of
any operation that begins after the end point of π is at least
as large as t.

Proof of Lemma 7: The query phase of the read finishes
if the reader receives a quorum of responses. Since every non-
failed server responds to the reads query message, we infer
from Lemma 1 that the query phase terminates. It remains to
consider termination of the read’s finalize phase. We argue that,
if the finalize phase of a read operation π does not terminate,
then there are at least δ+ 1 writes that are concurrent with π.

Let t be the tag acquired by operation π. By property (ii)
of Lemma 1, we infer that a quorum, say Qfw of non-failing

servers receives the read’s finalize message. There are only two
possibilities. (i) There is no server s in Qfw such that, at the
point of receipt of the read’s finalize message at server s, a
triple of the form (t, ‘null’, (∗, ‘gc’)) exists at the server. (ii)
There is at least one server s in Qfw such that, at the point
of receipt of the read’s finalize message at server s, a triple of
the form (t, ‘null’, (∗, ‘gc’)) exists at the server.

In case (i), we argue in [7] in a manner that is similar
to Lemma 6 that the read receives responses to its finalize
message from quorum Qfw of which at least k responses
include coded elements. Therefore the finalize phase of π
terminates, contradicting our assumption that it does not.
Therefore (i) is impossible. We next argue that in case (ii),
there are at least δ+1 write operations that are concurrent with
the read operation π. In case (ii), from the server protocol of
CASGC, we infer that at the point of receipt of the reader’s
finalize message at server s, there exist tags t1, t2, . . . , tδ+1,
each bigger than t, such that a triple of the form (ti, x, ‘fin’) or
(ti, ‘null’, (‘fin’, ‘gc’)) exists at the server. We infer from the
write and server protocols that, for every i in {1, 2, . . . , δ+1},
a write operation, say πi, must have committed to tag ti
in its pre-write phase before this point in β. Because s is
non-failing in β, we infer from Lemma 8 that operation
πi has an end-point in β for every i ∈ {1, 2, . . . , δ + 1}.
Since t < ti for every i ∈ {1, 2, . . . , δ + 1}, we infer from
Lemma 9 that the end point of write operation πi is after
the point of invocation of operation π. Therefore operations
π1, π2, . . . , πδ+1 are concurrent with π.

Bound on storage cost. We bound the storage cost of an
execution of CASGC by providing a bound on the number of
coded elements stored at a server at any particular point of the
execution. In particular, in Lemma 10, we describe conditions
under which coded elements corresponding to the value of a
write operation are garbage collected at all the servers. Lemma
10 naturally leads to a storage cost bound in Theorem 5. We
begin with a definition of an ω-superseded write operation for
a point in an execution, for a positive integer ω.

Definition 6 (ω-superseded write operation). In an execution
β of CASGC, consider a write operation π that completes



its query phase. Let T (π) denote the tag of the write. Then,
the write operation is said to be ω-superseded at a point
P of the execution if there are at least ω terminating write
operations, each with a tag that is bigger than T (π), such that
every message on behalf of each of these operations (including
‘gossip’ messages) has been delivered by point P .

We next show in Lemma 10 that in an execution of
CASGC(k, δ), if a write operation is (δ + 1)-superseded at
a point, then, no server stores a coded element corresponding
to the operation at that point because of garbage collection.
We then use Lemma 10 to describe a bound on the storage
cost of any execution of CASGC(k, δ) in Theorem 5.

Lemma 10. Consider an execution β of CASGC(k, δ) and
consider any point P of β. If a write operation π is (δ + 1)-
superseded at point P , then no non-failed server has a coded
element corresponding to the value of operation π at point P .

Proof: Consider an execution β of CASGC(k, δ) and a
point P in β. Consider a write operation π that is (δ + 1)-
superseded at point P . Consider an arbitrary server s that has
not failed at point P . We show that server s does not have a
coded element corresponding to operation π at point P. Since
operation π is (δ + 1)-superseded at point P , there exist at
least δ + 1 write operations π1, π2, . . . , πδ+1 such that, for
every i ∈ {1, 2, . . . , δ + 1},
• operation πi terminates in β,
• the tag T (πi) acquired by πi is larger than T (π), and
• every message on behalf of πi is delivered by point P .

Since operation πi terminates, it completes its finalize phase
where it sends a finalize message with tag T (πi) to server s.
Furthermore, the finalize message with tag T (πi) arrives at
server s by point P . Therefore, by P , server s has received
at least δ + 1 finalize messages, one from each operation in
{πi : i = 1, 2, . . . , δ+ 1}. The garbage collection executed by
the server on the receipt of the last of these finalize messages
ensures that the coded element corresponding to tag T (π) does
not exist at server s at point P . This completes the proof.

Theorem 5. Consider an execution β of CASGC(k, δ) such
that, at any point of the execution, the number of writes that
have completed their query phase by that point and are not
(δ + 1)-superseded at that point is upper bounded by w. The
storage cost of the execution is at most wN

k log2 |V|.

We refer the reader to [7] for a proof of Theorem 5. We
note that the theorem can be used to obtain a bound on the
storage cost of executions in terms of various parameters of
the system components. For instance, the theorem can be used
to obtain a bound on the storage cost in terms of an upper
bound on the delay of every message, the number of steps for
the nodes to take actions, the rate of write operations, and the
rate of failure. In particular, the above parameters can be used
to bound the writes that are not (δ+ 1)-superseded, which can
then be used to bound the storage cost.

VI. CONCLUSIONS

We have proposed low-cost algorithms for atomic shared
memory emulation in asynchronous message-passing systems.
We also contribute to this body of work through rigorous
definitions and analysis of (worst-case) communication and
storage costs. Among the open questions in this topic, we

emphasize the need for lower bounds on storage costs, general-
izations of CASGC to lossy channels, and to dynamic settings
possibly through modifications of RAMBO [13].
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