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Abstract

This paper considers the communication and storage costs of emulating atomic (linearizable) multi-
writer multi-reader shared memory in distributed message-passing systems. The paper contains three main
contributions:
(1) We present a atomic shared-memory emulation algorithm that we call Coded Atomic Storage (CAS).
This algorithm uses erasure coding methods. In a storage system with N servers that is resilient to f server
failures, we show that the communication cost of CAS is N

N−2f . The storage cost of CAS is unbounded.
(2) We present a modification of the CAS algorithm known as CAS with Garbage Collection (CASGC). The
CASGC algorithm is parametrized by an integer δ and has a bounded storage cost. We show that in every
execution where the number of write operations that are concurrent with a read operation is no bigger than
δ, the CASGC algorithm with parameter δ satisfies atomicity and liveness. We explicitly characterize the
storage cost of CASGC, and show that it has the same communication cost as CASGC.
(3) We describe an algorithm known as the Communication Cost Optimal Atomic Storage (CCOAS) algo-
rithm that achieves a smaller communication cost than CAS and CASGC. In particular, CCOAS incurs read
and write communication costs of N

N−f measured in terms of number of object values. We also discuss
drawbacks of CCOAS as compared with CAS and CASGC.

∗This work was supported by in part by AFOSR contract no. FA9550-13-1-0042, NSF award no.s CCF-1217506 and, and by BAE
Systems National Security Solutions, Inc, award 739532-SLIN 0004.

1



1 Introduction

Since the late 1970s, emulation of shared-memory systems in distributed message-passing environments has
been an active area of research [2–8, 12–18, 24, 29, 30]. The traditional approach to building redundancy for
distributed systems in the context of shared memory emulation is replication. In their seminal paper [7], Attiya,
Bar-Noy, and Dolev presented a replication based algorithm for emulating shared memory that achieves atomic
consistency [19, 20]. In this paper we consider a simple multi-writer generalization of their algorithm which
we call the ABD algorithmi. This algorithm uses a quorum-based replication scheme [31], combined with read
and write protocols to ensure that the emulated object is atomic [20] (linearizable [19]), and to ensure liveness,
specifically, that each operation terminates provided that at most dN−1

2 e server nodes fail. A critical step in
ensuring atomicity in ABD is the propagate phase of the read protocol, where the readers write back the value
they read to a subset of the server nodes. Since the read and write protocols require multiple communication
phases where entire replicas are sent, this algorithm has a high communication cost. In [14], Fan and Lynch
introduced a directory-based replication algorithm known as the LDR algorithm that, like [7], emulates atomic
shared memory in the message-passing model; however, unlike [7], its read protocol is required to write only
some metadata information to the directory, rather than the value read. In applications where the data being
replicated is much larger than the metadata, LDR is less costly than ABD in terms of communication costs.

The main goal of our paper is to develop shared memory emulation algorithms, based on the idea of erasure
coding, that are efficient in terms of communication and storage costs. Erasure coding is a generalization of
replication that is well known in the context of classical storage systems [10,11,21,28]. Specifically, in erasure
coding, each server does not store the value in its entirety, but only a part of the value called a coded element. In
the classical coding theory framework which studies storage of a single version of a data object, this approach
is well known to lead to smaller storage costs as compared to replication (see Section 3). Algorithms for shared
memory emulation that use the idea of erasure coding to store multiple versions of a data object consistently
have been developed in [2–4,6,8,12,13,18,29]. In this paper, we develop algorithms that improve on previous
algorithms in terms of communication and storage costs. We summarize our main contributions and compare
them with previous related work next.

Contributions

We consider a static distributed message-passing setting where the universe of nodes is fixed and known, and
nodes communicate using a reliable message-passing network. We assume that client and server nodes can fail.
We define our system model, and communication and storage cost measures in Sec. 2.

The CAS algorithm: We develop the Coded Atomic Storage (CAS) algorithm presented in Section 4, which
is an erasure coding based shared memory emulation algorithm. We present a brief introduction of the technique
of erasure coding in Section 3. For a storage system with N nodes, we show in Theorem 4.9 that CAS ensures
the following liveness property: all operations that are invoked by a non-failed client terminate provided that
the number of server failures is bounded by a parameter f, where f < dN2 e and regardless of the number of
client failures. We also show in Lemma 4.9 that CAS ensures atomicity regardless of the number of (client or
server) failures. In Theorem 4.10 in Section 4, we also analyze the communication cost of CAS. Specifically, in
a storage system withN servers that is resilient to f server node failures, we show that the communication costs
of CAS are equal to N

N−2f . We note that these communication costs of CAS are smaller than replication based
schemes (see Appendix A for an analysis of communication costs of ABD and LDR algorithms.). The storage
cost of CAS, however, are unbounded because each server stores the value associated with the latest version of
the data object it receives. Note that in comparison, in the ABD algorithm which is based on replication, the
storage cost is bounded because each node stores only the latest version of the data object (see Appendix A for
an explicit characterization of the storage cost incurred by ABD).

iThe algorithm of Attiya, Bar-Noy and Dolev [7] allows only a single node to act as a writer. Also, it did not distinguish between
client and server nodes as we do in our paper.
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The CASGC algorithm: In Section 5, we present a variant of CAS called the CAS with Garbage Collection
(CASGC) algorithm, which achieves a bounded storage cost by garbage collection, i.e., discarding values
associated with sufficiently old versions. CASGC is parametrized by an integer δ which, informally speaking,
controls the number of tuples that each server stores. We show that CASGC satisfies atomicity in Theorem 5.1
by establishing a formal simulation relation [23] between CAS and CASGC. Because of the garbage collection
at the servers, the liveness conditions for CASGC are more stringent than CAS. The liveness property satisfied
by CASGC is described in Theorem 5.5 in Section 5, where we argue that in an execution of CASGC where the
number of write operations concurrent with a read operation is no bigger than a parameter δ, every operation
terminates. The main technical challenge lies in careful design of the CASGC algorithm in order to ensure that
an unbounded number of writes that fail before propagating enough number of coded elements do not prevent
a future read from returning a value of the data object. In particular, failed writes that begin and end before a
read is invoked are not treated as operations that are concurrent with the read, and therefore do not contribute to
the concurrency limit of δ. While CASGC incurs the same communication costs as CAS, it incurs a bounded
storage cost. A non-trivial bound on the storage cost incurred by an execution of CASGC is described in
Theorem 5.11.

Communication Cost Lower Bound: In Section 6 we describe a new algorithm called the Communication
Cost Optimal Atomic Storage (CCOAS) algorithm that satisfies the same correctness conditions as CAS, but
incurs smaller communication costs. However, CCOAS would not be easily generalizable to settings where
channels could incur losses because, unlike CAS and CASGC, it requires that messages from clients to servers
are delivered reliably even after operations associated with the message terminates. While CCOAS is appli-
cable in our model of reliable channels, designing a protocol with this property may not be possible when the
channel has losses especially if the client fails before delivering the messages. We describe CCOAS, analyse
its communication costs, and discuss its drawbacks in Section 6.

Comparison with Related Work

Erasure coding has been used to develop shared memory emulation techniques for systems with crash failures
in [3, 4, 13, 29] and Byzantine failures in [2, 8, 12, 18]ii. In erasure coding, note that each server stores a coded
element, so a reader has to obtain enough coded elements to decode and return the value. The main challenge
in extending replication based algorithms such as ABD to erasure coding lies in handling partially completed
or failed writes. In replication, when a read occurs during a partially completed write, servers simply send
the stored value and the reader returns the latest value obtained from the servers. However, in erasure coding,
the challenge is to ensure that a read that observes the trace of a partially completed or failed write obtains a
enough coded elements corresponding to the same version to return a value. Different algorithms have different
approaches in handling this challenge of ensuring that the reader decodes a value of the data object. As a
consequence, the algorithms differ in the liveness properties satisfied, and the communication and storage costs
incurred. We discuss the differences here briefly.

Among the previous works, [8, 12, 13, 18] have similar correctness requirements as our paper; these refer-
ences aim to emulate an atomic shared memory that supports concurrent operations in asynchronous networks.
We note that the algorithm of [8] cannot be generalized to lossy channel models (see discussion in [13]). We
compare our algorithms with the ORCAS-B algorithm of [13]iii, the algorithm of [18], which we call the HGR
algorithm, and the M-PoWerStore algorithm of [12]. We note that [13] assumes lossy channels and [12, 18]
assume Byzantine failures. Here, we interpret the algorithms of [12, 13, 18] in our model that has lossless
channels and crash failures, and use worst-case costs for comparison.

The CAS and CASGC algorithms resemble the M-PoWerStore and HGR algorithms in their structure.
These algorithms handle partially completed or failed writes by hiding ongoing writes from a read until enough

iiAn earlier version of our work is presented in a technical report [9].
iiiThe ORCAS-A algorithm of [13], although uses erasure coding, has the same worst case communication and storage costs as ABD.
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coded elements have been propagated to the servers. The write communication costs of CAS, CASGC, M-
PoWerStore, HGR and ORCAS-B are all the same. However, there are differences between these algorithms in
the liveness properties, garbage collection strategies and read communication costs.

CAS is essentially a restricted version of the M-PoWerStore algorithm of [12] for the crash failure model.
The main difference between CAS and M-PoWerStore is that in CAS, servers perform gossipiv. However,
M-PoWerStore does not involve garbage collection and therefore incurs an infinite storage cost. The garbage
collection strategies of HGR and ORCAS-B are similar to that of CASGC with the parameter δ set to 1. In
fact, the garbage collection strategy of CASGC may be viewed as a non-trivial generalization of the garbage
collection strategies of ORCAS-B and HGR. We next discuss differences between these algorithms in terms of
their liveness properties and communication costs.

The ORCAS-B algorithm satisfies the same liveness properties as ABD and CAS, which are stronger than
the liveness conditions of CASGC. However, in ORCAS-B, to handle partially completed writes, a server sends
coded elements corresponding to multiple versions to the reader. This is because, in ORCAS-B, a server, on
receiving a request from a reader, registers the clientv and sends all the incoming coded elements to the reader
until the read receives a second message from a client. Therefore, the read communication cost of ORCAS-B
grows with the number of writes that are concurrent with a read. In fact, in ORCAS-B, if a read client fails in
the middle of a read operation, servers may send all the coded elements it receives from future writes to the
reader. In contrast, CAS and CASGC have smaller communication costs because each server sends only one
coded element to a client per read operation, irrespective of the number of writes that are concurrent with the
read.

In HGR, read operations satisfy obstruction freedom, that is, a read returns if there is a period during the
read where no other operation takes steps for sufficiently long. Therefore, in HGR, operations may terminate
even if the number of writes concurrent with a read is arbitrarily large, but it requires a sufficiently long period
where concurrent operations do not take steps. On the contrary, in CASGC, by setting δ to be bigger than 1,
we ensure that read operations terminate even if concurrent operations take steps, albeit at a larger storage cost,
so long as the number of writes concurrent with a read is bounded by δ. Interestingly, the read communication
cost of HGR is larger than CASGC, and increases with the number of writes concurrent to the read to allow for
read termination in presence of a large number of concurrent writes.

We note that the server protocol of the CASGC algorithm is more complicated as compared with previous
algorithms. In particular, unlike ORCAS-B, HGR and M-PoWerStore, the CASGC algorithm requires gossip
among the servers to ensure read termination in presence of concurrent writes at a bounded storage cost and
low communication cost. A distinguishing feature of our work is that we provide formal measures of com-
munication and storage costs of our algorithms. Our contributions also include the CCOAS algorithm, and
complete correctness proofs of all our algorithms through the development of invariants and simulation rela-
tions, which may be of independent interest. The generalization of CAS and CASGC algorithms to the models
of [8, 12, 13, 18] which consider Byzantine failures and lossy channel models is an interesting direction for
future research.

2 System Model

2.1 Deployment setting.

We assume a static asynchronous deployment setting where all the nodes and the network connections are
known a priori and the only sources of dynamic behavior are node stop-failures (or simply, failures) and pro-
cessing and communication delays. We consider a message-passing setting where nodes communicate via

ivAs we shall see later, the server gossip is not essential to correctness of CAS. It is however useful as a theoretical tool to prove
correctness of CASGC.

vThe idea of registering a client’s identity was introduced originally in [25] and plays an important role in our CCOAS algorithm as
well.
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point-to-point reliable channels. We assume a universe of nodes that is the union of server and client nodes,
where the client nodes are reader or writer nodes. N represents the set of server nodes; N denotes the cardi-
nality of N . We assume that server and client nodes can fail (stop execution) at any point. We assume that the
number of server node failures is at most f . There is no bound on the number of client failures.

2.2 Shared memory emulation.

We consider algorithms that emulate multi-writer, multi-reader (MWMR) read/write atomic shared memory
using our deployment platform. We assume that read clients receive read requests (invocations) from some
local external source, and respond with object values. Write clients receive write requests and respond with
acknowledgments. The requests follow a “handshake” discipline, where a new invocation at a client waits for
a response to the preceding invocation at the same client. We require that the overall external behavior of the
algorithm corresponds to atomic (linearizable) memory. For simplicity, in this paper we consider a shared-
memory system that consists of just a single object.

We represent each version of the data object as a (tag, value) pair. When a write client processes a write
request, it assigns a tag to the request. We assume that the tag is an element of a totally ordered set T that has
a minimum element t0. The tag of a write request serves as a unique identifier for that request, and the tags
associated with successive write requests at a particular write client increase monotonically. We assume that
value is a member of a finite set V that represents the set of values that the data object can take on; note that
value can be represented by log2 |V| bitsvi. We assume that all servers are initialized with a default initial state.

2.3 Requirements

The key correctness requirement on the targeted shared memory service is atomicity. A shared atomic object is
one that supports concurrent access by multiple clients and where the observed global external behaviors “look
like” the object is being accessed sequentially. Another requirement is liveness, by which we mean here that an
operation of a non-failed client is guaranteed to terminate provided that the number of server failures is at most
f , and irrespective of the failures of other clientsvii.

2.4 Communication cost

Informally speaking, the communication cost is the number of bits transferred over the point-to-point links
in the message-passing system. For a message that can take any value in some finite set M, we measure its
communication cost as log2 |M| bits. We separate the cost of communicating a value of the data object from
the cost of communicating the tags and other metadata. Specifically, we assume that each message is a triple
(t, w, d) where t ∈ T is a tag, w ∈ W is a component of the triple that depends on the value associated with tag
t, and d ∈ D is any additional metadata that is independent of the value. Here,W is a finite set of values that the
second component of the message can take on, depending on the value of the data object. D is a finite set that
contains all the possible metadata elements for the message. These sets are assumed to be known a priori to the
sender and recipient of the message. In this paper, we make the approximation: log2 |M| ≈ log2 |W|, that is,
the costs of communicating the tags and the metadata are negligible as compared to the cost of communicating
the data object values. We assume that every message is sent on behalf of some read or write operation. We
next define the read and write communication costs of an algorithm.

For a given shared memory algorithm, consider an execution α. The communication cost of a write opera-
tion in α is the sum of the communication costs of all the messages sent over the point-to-point links on behalf
of the operation. The write communication cost of the execution α is the supremum of the costs of all the write

viStrictly speaking, we need dlog2 |V|e bits since the number of bits has to be an integer. We ignore this rounding error.
viiWe assume that N > 2f, since correctness cannot be guaranteed if N ≤ 2f [23].
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operations in α. The write communication cost of the algorithm is the supremum of the write communication
costs taken over all executions. The read communication cost of an algorithm is defined similarly.

2.5 Storage cost

Informally speaking, at any point of an execution of an algorithm, the storage cost is the total number of bits
stored by the servers. Specifically, we assume that a server node stores a set of triples with each triple of the
form (t, w, d), where t ∈ T , w depends on the value of the data object associated with tag t, and d represents
additional metadata that is independent of the values stored. We neglect the cost of storing the tags and the
metadata; so the cost of storing the triple (t, w, d) is measured as log2 |W| bits. The storage cost of a server is
the sum of the storage costs of all the triples stored at the server. For a given shared memory algorithm, consider
an execution α. The storage cost at a particular point of α is the sum of the storage costs of all the non-failed
servers at that point. The storage cost of the execution α is the supremum of the storage costs over all points of
α. The storage cost of an algorithm is the supremum of the storage costs over all executions of the algorithm.

3 Erasure Coding - Background

Erasure coding is a generalization of replication that has been widely studied for purposes of failure-tolerance
in storage systems (see [10, 11, 21, 26, 28]). The key idea of erasure coding involves splitting the data into
several coded elements, each of which is stored at a different server node. As long as a sufficient number of
coded elements can be accessed, the original data can be recovered. Informally speaking, given two positive
integers m, k, k < m, an (m, k) Maximum Distance Separable (MDS) code maps a k-length vector to an m-
length vector, where the input k-length vector can be recovered from any k coordinates of the output m-length
vector. This implies that an (m, k) code, when used to store a k-length vector on m server nodes - each server
node storing one of the m coordinates of the output - can tolerate (m − k) node failures in the absence of any
consistency requirements (for example, see [1]). We proceed to define the notion of an MDS code formally.

Given an arbitrary finite setA and any set S ⊆ {1, 2, . . . ,m}, let πS denote the natural projection mapping
from Am onto the coordinates corresponding to S, i.e., denoting S = {s1, s2, . . . , s|S|}, where s1 < s2 . . . <

s|S|, the function πS : Am → A|S| is defined as πS (x1, x2, . . . , xm) = (xs1 , xs2 , . . . , xs|S|).

Definition 3.1 (Maximum Distance Separable (MDS) code). Let A denote any finite set. For positive integers
k,m such that k < m, an (m, k) code over A is a map Φ : Ak → Am. An (m, k) code Φ over A is said to
be Maximum Distance Separable (MDS) if, for every S ⊆ {1, 2, . . . ,m} where |S| = k, there exists a function
Φ−1
S : Ak → Ak such that: Φ−1

S (πS(Φ(x)) = x for every x ∈ Ak, where πS is the natural projection mapping.

We refer to each of the m coordinates of the output of an (m, k) code Φ as a coded element. Classical
m-way replication, where the input value is repeated m times, is in fact an (m, 1) MDS code. Another example
is the single parity code: an (m,m − 1) MDS code over A = {0, 1} which maps the (m − 1)-bit vector
x1, x2, . . . , xm−1 to the m-bit vector x1, x2, . . . , xm−1, x1 ⊕ x2 ⊕ . . .⊕ xm−1.

We now review the use of an MDS code in the classical coding-theoretic model, where a single version of
a data object with value v ∈ V is stored over N servers using an (N, k) MDS code. We assume that V = Wk

for some finite set W and that an (N, k) MDS code Φ : Wk → WN exists over W (see Appendix B for a
discussion). The value v of the data object can be used as an input to Φ to get N coded elements overW; each
of the N servers, respectively, stores one of these coded elements. Since each coded element belongs to the set

W, whose cardinality satisfies |W| = |V|1/k = 2
log2 |V|

k , each coded element can be represented as a log2 |V|
k

bit-vector, i.e., the number of bits in each coded element is a fraction 1
k of the number of bits in the original

data object. When we employ an (N, k) code in the context of storing multiple versions, the size of a coded
element is closely related to communication and storage costs incurred by our algorithms (see Theorems 4.10
and 5.11).

6



write(value)
query: Send query messages to all servers asking for the highest tag with label ‘fin’; await responses from a quorum.

pre-write: Select the largest tag from the query phase; let its integer component be z. Form a new tag t as (z+1, ‘id’), where ‘id’
is the identifier of the client performing the operation. Apply the (N, k) MDS code Φ (see Sec. 3) to the value to obtain coded
elements w1, w2, . . . , wN . Send (t, ws, ‘pre’) to server s for every s ∈ N . Await responses from a quorum.

finalize: Send a finalize message (t, ‘null’, ‘fin’) to all servers. Terminate after receiving responses from a quorum.

read
query: As in the writer protocol.

finalize: Send a finalize message with tag t to all the servers requesting the associated coded elements. Await responses from
a quorum. If at least k servers include their locally stored coded elements in their responses, then obtain the value from these
coded elements by inverting Φ (see Definition 3.1) and terminate by returning value.

server
state variable: A variable that is a subset of T × (W ∪ {‘null’})× {‘pre’, ‘fin’}
initial state: Store (t0, w0,s, ‘fin’) where s denotes the server and w0,s is the coded element corresponding to server s obtained
by apply Φ to the initial value v0.

On receipt of query message: Respond with the highest locally known tag that has a label ‘fin’, i.e., the highest tag such that the
triple (tag, ∗, ‘fin’) is at the server, where ∗ can be a coded element or ‘null’.

On receipt of pre-write message: If there is no record of the tag of the message in the list of triples stored at the server, then add
the triple in the message to the list of stored triples; otherwise ignore. Send acknowledgment.

On receipt of finalize from a writer: Let t be the tag of the message. If a triple of the form (t, ws, ‘pre’) exists in the list of stored
triples, then update it to (t, ws, ‘fin’). Otherwise add (t, ‘null’, ‘fin’) to list of stored triplesxvi. Send acknowledgment. Send
‘gossip’ message with item (t, ‘fin’) to all other servers.

On receipt of finalize from a reader: Let t be the tag of the message. If a triple of the form (t, ws, ∗) exists in the list of stored
triples where ∗ can be ‘pre’ or ‘fin’, then update it to (t, ws, ‘fin’) and send (t, ws) to the reader. Otherwise add (t, ‘null’, ‘fin’)
to the list of triples at the server and send an acknowledgment. Send ‘gossip’ message with item (t, ‘fin’) to all other servers.

On receipt of ‘gossip’ message: Let t be the tag of the message. If a triple of the form (t, x, ∗) exists in the list of stored triples
where ∗ is ‘pre’ or ‘fin’ and x is a coded element of ‘null’, then update it to (t, x, ‘fin’). Otherwise add (t, ‘null’, ‘fin’) to the
list of triples at the server.

Figure 1: Write, read, and server protocols of the CAS algorithm.

4 Coded Atomic Storage

We now present the Coded Atomic Storage (CAS) algorithm, which takes advantage of erasure coding tech-
niques to reduce the communication cost for emulating atomic shared memory. CAS is parameterized by an
integer k, 1 ≤ k ≤ N − 2f ; we denote the algorithm with parameter value k by CAS(k). CAS, like ABD and
LDR, is a quorum-based algorithm. Later, in Sec. 5, we present a variant of CAS that has efficient storage costs
as well (in addition to having the same communication costs as CAS).

Handling of incomplete writes is not as simple when erasure coding is used because, unlike in replication
based techniques, no single server has a complete replica of the value being written. In CAS, we solve this
problem by hiding ongoing write operations from reads until enough information has been stored at servers.
Our approach essentially mimics [12], projected to the setting of crash failures. We describe CAS in detail next.
Quorum specification. We define our quorum system, Q, to be the set of all subsets of N that have at least
dN+k

2 e elements (server nodes). We refer to the members of Q, as quorum sets. We show in Apppendix C that
Q satisfies the following property:

Lemma 4.1. Suppose that 1 ≤ k ≤ N − 2f. (i) If Q1, Q2 ∈ Q, then |Q1 ∩Q2| ≥ k. (ii) If the number of failed
servers is at most f , then Q contains at least one quorum set Q of non-failed servers.

The CAS algorithm can, in fact, use any quorum system that satisfies properties (i) and (ii) of Lemma 4.1.
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4.1 Algorithm description

In CAS, we assume that tags are tuples of the form (z, ‘id’), where z is an integer and ‘id’ is an identifier of
a client node. The ordering on the set of tags T is defined lexicographically, using the usual ordering on the
integers and a predefined ordering on the client identifiers. We add a ‘gossip’ protocol to CAS, whereby each
server sends each item from T × {‘fin’} that it ever receives once (immediately) to every other server. As a
consequence, in any fair execution, if a non-failed server initiates ‘gossip’ or receives ‘gossip’ message with
item (t, ‘fin’), then, every non-failed server receives a ‘gossip’ message with this item at some point of the
execution. Fig. 1 contains a description of the read and write protocols, and the server actions of CAS. Here,
we provide an overview of the algorithm.

Each server node maintains a set of (tag, coded-element, label)viii triples, where we specialize the meta-
data to label ∈ {‘pre’, ‘fin’}. The different phases of the write and read protocols are executed sequentially.
In each phase, a client sends messages to servers to which the non-failed servers respond. Termination of each
phase depends on getting responses from at least one quorum.

The query phase is identical in both protocols and it allows clients to discover a recent finalized object
version, i.e., a recent version with a ‘fin’ tag. The goal of the pre-write phase of a write is to ensure that each
server gets a tag and a coded element with label ‘pre’. Tags associated with label ‘pre’ are not visible to the
readers, since the servers respond to query messages only with finalized tags. Once a quorum, say Qpw, has
acknowledged receipt of the coded elements to the pre-write phase, the writer proceeds to its finalize phase. In
this phase, it propagates a finalize (‘fin’) label with the tag and waits for a response from a quorum of servers,
say Qfw. The purpose of propagating the ‘fin’ label is to record that the coded elements associated with the
tag have been propagated to a quorumix. In fact, when a tag appears anywhere in the system associated with a
‘fin’ label, it means that the corresponding coded elements reached a quorum Qpw with a ‘pre’ label at some
previous point. The operation of a writer in the two phases following its query phase helps overcome the
challenge of handling writer failures. In particular, notice that only tags with the ‘fin’ label are visible to the
reader. This ensures that the reader gets at least k unique coded elements from any quorum of non-failed nodes
in response to its finalize messages, because such a quorum has an intersection of at least k nodes with Qpw.
Finally, the reader helps propagate the tag to a quorum, and this helps complete possibly failed writes as well.

We note that the server gossip is not necessary for correctness of CAS. We use ‘gossip’ in CAS mainly
because it simplifies the proof of atomicity of the CASGC algorithm, which is presented in Section 5.

4.2 Statements and proofs of correctness

We next state the main result of this section.

Theorem 4.2. CAS emulates shared atomic read/write memory.

To prove Theorem 4.2, we show atomicity, Lemma 4.3, and liveness, Lemma 4.9.

4.2.1 Atomicity

Lemma 4.3. CAS(k) is atomic.

The main idea of our proof of atomicity involves defining, on the operations of any execution β of CAS, a
partial order ≺ that satisfies the sufficient conditions for atomicity described by Lemma 13.16 of [23]. We state
these sufficient conditions in Lemma 4.4 next.

Lemma 4.4 (Paraphrased Lemma 13.16 [23].). Suppose that the environment is well-behaved, meaning that an
operation is invoked at a client only if no other operation was performed by the client, or the client received a

viiiThe ‘null’ entry indicates that no coded element is stored; the storage cost associated storing a null coded element is negligible.
ixIt is worth noting that Qfw and Qpw need not be the same quorum.
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response to the last operation it initiated. Let β be a (finite or infinite) execution of a read/write object, where
β consists of invocations and responses of read and write operations and where all operations terminate. Let
Π be the set of all operations in β.

Suppose that ≺ is an irreflexive partial ordering of all the operations in Π, satisfying the following proper-
ties: (1) If the response for π1 precedes the invocation for π2 in β, then it cannot be the case that π2 ≺ π1. (2)
If π1 is a write operation in Π and π2 is any operation in Π, then either π1 ≺ π2 or π2 ≺ π1. (3) The value
returned by each read operation is the value written by the last preceding write operation according to ≺ (or
v0, if there is no such write).

The following definition will be useful in defining a partial order on operations in an execution of CAS that
satisfies the conditions of Lemma 4.4.

Definition 4.5. Consider an execution β of CAS and consider an operation π that terminates in β. The tag of
operation π, denoted as T (π), is defined as follows: If π is a read, then, T (π) is the highest tag received in its
query phase. If π is a write, then, T (π) is the new tag formed in its pre-write phase.

We define our partial order≺ as follows: In any execution β of CAS, we order operations π1, π2 as π1 ≺ π2

if (i) T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a write and π2 is a read. We next argue that the partial
ordering ≺ satisfies the conditions of 4.4. We first show in Lemma 4.6 that, in any execution β of CAS, at
any point after an operation π terminates, the tag T (π) has been propagated with the ‘fin’ label to at least one
quorum of servers. Intuitively speaking, Lemma 4.6 means that if an operation π terminates, the tag T (π) is
visible to any operation that is invoked after π terminates. We crystallize this intuition in Lemma 4.7, where
we show that any operation that is invoked after an operation π terminates acquires a tag that is at least as large
as T (π). Using Lemma 4.7 we show Lemma 4.8, which states that the tag acquired by each write operation
is unique. Then we show that Lemma 4.7 and Lemma 4.8 imply conditions (1) and (2) of Lemma 4.4. By
examination of the algorithm, we show that CAS also satisfies condition (3) of Lemma 4.4.

Lemma 4.6. In any execution β of CAS, for an operation π that terminates in β, there exists a quorum Qfw(π)
such that the following is true at every point of the execution β after π terminates: Every server of Qfw(π) has
(t, ∗, ‘fin’) in its set of stored triples, where ∗ is either a coded element or ‘null’, and t = T (π).

Proof. The proof is the same whether π is a read or a write operation. The operation π terminates after complet-
ing its finalize phase, during which it receives responses from a quorum, say Qfw(π), to its finalize message.
This means that every server s in Qfw(π) responded to the finalize message from π at some point before the
point of termination of π. From the server protocol, we can observe that every server s in Qfw(π) stores the
triple (t, ∗, ‘fin’) at the point of responding to the finalize message of π, where ∗ is either a coded element or
‘null’. Furthermore, the server s stores the triple at every point after the point of responding to the finalize
message of π and hence at every point after the point of termination of π.

Lemma 4.7. Consider any execution β of CAS, and let π1, π2 be two operations that terminate in β. Suppose
that π1 returns before π2 is invoked. Then T (π2) ≥ T (π1). Furthermore, if π2 is a write, then T (π2) > T (π1).

Proof. To establish the lemma, it suffices to show that the tag acquired in the query phase of π2, denoted
as T̂ (π2), is at least as big as T (π1), that is, it suffices to show that T̂ (π2) ≥ T (π1). This is because, by
examination of the client protocols, we can observe that if π2 is a read, T (π2) = T̂ (π2), and if π2 is a write,
T (π2) > T̂ (π2).

To show that T̂ (π2) ≥ T (π1) we use Lemma 4.6. We denote the quorum of servers that respond to the
query phase of π2 as Q̂(π2). We now argue that every server s in Q̂(π2)∩Qfw(π1) responds to the query phase
of π2 with a tag that is at least as large as T (π1). To see this, since s is in Qfw(π1), Lemma 4.6 implies that
s has a tag T (π1) with label ‘fin’ at the point of termination of π1. Since s is in Q̂(π), it also responds to the
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query message of π2, and this happens at some point after the termination of π1 because π2 is invoked after π1

responds. From the server protocol, we infer that server s responds to the query message of π2 with a tag that is
no smaller than T (π1). Because of Lemma 4.1, there is at least one server s in Q̂(π2)∩Qfw(π1) implying that
operation π2 receives at least one response in its query phase with a tag that is no smaller than T (π1). Therefore
T̂ (π2) ≥ T (π1).

Lemma 4.8. Let π1, π2 be write operations that terminate in an execution β of CAS. Then T (π1) 6= T (π2).

Proof. Let π1, π2 be two write operations that terminate in execution β. Let C1, C2 respectively indicate the
identifiers of the client nodes at which operations π1, π2 are invoked. We consider two cases.
Case 1, C1 6= C2: From the write protocol, we note that T (πi) = (zi, Ci). Since C1 6= C2, we have
T (π1) 6= T (π2).
Case 2, C1 = C2 : Recall that operations at the same client follow a “handshake” discipline, where a new
invocation awaits the response of a preceding invocation. This means that one of the two operations π1, π2

should complete before the other starts. Suppose that, without loss of generality, the write operation π1 com-
pletes before the write operation π2 starts. Then, Lemma 4.7 implies that T (π2) > T (π1). This implies that
T (π2) 6= T (π1).

Proof of Lemma 4.3. Recall that we define our ordering ≺ as follows: In any execution β of CAS, we order
operations π1, π2 as π1 ≺ π2 if (i) T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a write and π2 is a read.

We first verify that the above ordering is a partial order, that is, if π1 ≺ π2, then it cannot be that π2 ≺ π1.
We prove this by contradiction. Suppose that π1 ≺ π1 and π2 ≺ π1. Then, by definition of the ordering, we
have that T (π1) ≤ T (π2) and vice-versa, implying that T (π1) = T (π2). Since π1 ≺ π2 and T (π1) = T (π2),
we have that π1 is a write and π2 is a read. But a symmetric argument implies that π2 is a write and π1 is a read,
which is a contradiction. Therefore ≺ is a partial order.

With the ordering ≺ defined as above, we now show that the three properties of Lemma 4.4 are satisfied.
For property (1), consider an execution β and two distinct operations π1, π2 in β such that π1 returns before
π2 is invoked. If π2 is a read, then Lemma 4.7 implies that T (π2) ≥ T (π1). By definition of the ordering, it
cannot be the case that π2 ≺ π1. If π1 is a write, then Lemma 4.7 implies that T (π2) > T (π1) and so, π1 ≺ π2.
Since ≺ is a partial order, it cannot be the case that π2 ≺ π1.

Property (2) follows from the definition of the ≺ in conjunction with Lemma 4.8.
Now we show property (3): The value returned by each read operation is the value written by the last

preceding write operation according to ≺, or v0 if there is no such write. Note that every version of the data
object written in execution β is uniquely associated with a write operation in β. Lemma 4.8 implies that every
version of the data object being written can be uniquely associated with tag. Therefore, to show that a read
π returns the last preceding write, we only need to argue that the read returns the value associated with T (π).
From the write, read, and server protocols, it is clear that a value and/or its coded elements are always paired
together with the corresponding tags at every state of every component of the system. In particular, the read
returns the value from k coded elements by inverting the MDS code Φ; these k coded elements were obtained
at some previous point by applying Φ to the value associated with T (π). Therefore Definition 3.1 implies that
the read returns the value associated with T (π).

4.2.2 Liveness

We now state the liveness condition satisfied by CAS.

Lemma 4.9 (Liveness). CAS(k) satisfies the following liveness condition: If 1 ≤ k ≤ N − 2f , then every
non-failingx operation terminates in every fair execution of CAS(k) where the number of server failures is no
bigger than f .

xAn operation is said to have failed if the client performing the operation fails after its invocation but before its termination.
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Proof. By examination of the algorithm we observe that termination of any operation depends on termination
of its phases. So, to show liveness, we need to show that each phase of each operation terminates. Let us
first examine the query phase of a read/write operation; note that termination of the query phase of a client
is contingent on receiving responses from a quorum. Every non-failed server responds to a query message
with the highest locally available tag marked ‘fin’. Since every server is initialized with (t0, v0, ‘fin’), every
non-failed server has at least one tag associated with the label ‘fin’ and hence responds to the client’s query
message. Since the client receives responses from every non-failed server, property (ii) of Lemma 4.1 ensures
that the query phase receives responses from at least one quorum, and hence terminates. We can similarly show
that the pre-write phase and finalize phase of a writer terminate. In particular, termination of each of these
phases is contingent on receiving responses from a quorum. Their termination is guaranteed from property (ii)
of Lemma 4.1 in conjunction with the fact that every non-failed server responds, at some point, to a pre-write
message and a finalize message from a write with an acknowledgment.

It remains to show the termination of a reader’s finalize phase. By using property (ii) of Lemma 4.1, we
can show that a quorum, say Qfw of servers responds to a reader’s finalize message. For the finalize phase of
a read to terminate, there is an additional requirement that at least k servers include coded elements in their
responses. To show that this requirement is satisfied, suppose that the read acquired a tag t in its query phase.
From examination of CAS, we infer that, at some point before the point of termination of the read’s query phase,
a writer propagated a finalize message with tag t. Let us denote by Qpw(t), the set of servers that responded to
this write’s pre-write phase. We argue that all servers in Qpw(t)∩Qfw respond to the reader’s finalize message
with a coded element. To see this, let s be any server inQpw(t)∩Qfw. Since s is inQpw(t), the server protocol
for responding to a pre-write message implies that s has a coded element, ws, at the point where it responds
to that message. Since s is in Qfw, it also responds to the reader’s finalize message, and this happens at some
point after it responds to the pre-write message. So it responds with its coded element ws. From Lemma 4.1, it
is clear that |Qpw(t)∩Qfw| ≥ k implying that the reader receives at least k coded elements in its finalize phase
and hence terminates.

4.3 Cost Analysis

We analyze the communication costs of CAS in Theorem 4.10. The theorem implies that the read and write
communication costs can be made as small as N

N−2f log2 |V| bits by choosing k = N − 2f.

Theorem 4.10. The write and read communication costs of the CAS(k) are equal to N/k log2 |V| bits.

Proof. For either protocol, observe that messages carry coded elements which have size log2 |V|
k bits. More

formally, each message is an element from T ×W×{‘pre’, ‘fin’}, where,W is a coded element corresponding
to one of the N outputs of the MDS code Φ. As described in Sec. 3, log2 |W| = log2 |V|

k . The only messages
that incur communication costs are the messages sent from the client to the servers in the pre-write phase of a
write and the messages sent from the servers to a client in the finalize phase of a read. It can be seen that the
total communication cost of read and write operations of the CAS algorithm are N

k log2 |V| bits, that is, they
are upper bounded by this quantity and the said costs are incurred in certain worst-case executions.

5 Storage-Optimized Variant of CAS

Although CAS is efficient in terms of communication costs, it incurs an infinite storage cost because servers
can store coded elements corresponding to an arbitrarily large number of versions. We here present a variant of
the CAS algorithm called CAS with Garbage Collection (CASGC), which has the same communication costs
as CAS and incurs a bounded storage cost under certain reasonable conditions. CASGC achieves a bounded
storage cost by using garbage collection, i.e., by discarding coded elements with sufficiently small tags at the
servers. CASGC is parametrized by two positive integers denoted as k and δ, where 1 ≤ k ≤ N − 2f ; we
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servers
state variable: A variable that is a subset of T × (W ∪ {‘null’})× {‘pre’, ‘fin’, (‘pre’, ‘gc’), (‘fin’, ‘gc’)}
initial state: Same as in Fig. 1.
On receipt of query message: Similar to Fig. 1, respond with the highest locally available tag labeled ‘fin’, i.e., respond with
the highest tag such that the triple (tag, x, ‘fin’) or (tag, ‘null’, (‘fin’, ‘gc’)) is at the server, where x can be a coded element or
‘null’.

On receipt of a pre-write message: Perform the actions as described in Fig. 1 except the sending of an acknowledgement.
Perform garbage collection. Then send an acknowledgement.

On receipt of a finalize from a writer: Let t be the tag of the message. If a triple of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)) is
stored in the set of locally stored triples where x can be a coded element or ‘null’, then ignore the incoming message. Otherwise,
if a triple of the form (t, ws, ‘pre’) or (t, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it to (t, ws, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)).
Otherwise, add a triple of the form (t, ‘null’, ‘fin’) to the set of locally stored triples. Perform garbage collection. Send ‘gossip’
message with item (t, ‘fin’) to all other servers.

On receipt of a finalize message from a reader: Let t be the tag of the message. If a triple of the form (t, ws, ∗) exists in the list
of stored triples where ∗ can be ‘pre’ or ‘fin’, then update it to (t, ws, ‘fin’), perform garbage collection, and send (t, ws) to the
reader. If (t, ‘null’, (∗, ‘gc’)) exists in the list of locally available triples where ∗ can be either ‘fin’ or ‘pre’, then update it to
(t, ‘null’, (‘fin’, ‘gc’)) and perform garbage collection, but do not send a response. Otherwise add (t, ‘null’, ‘fin’) to the list of
triples at the server, perform garbage collection, and send an acknowledgment. Send ‘gossip’ message with item (t, ‘fin’) to all
other servers.

On receipt of a ‘gossip’ message: Let t denote the tag of the message. If a triple of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’))
is stored in the set of locally stored triples where x can be a coded element or ‘null’, then ignore the incoming message.
Otherwise, if a triple of the form (t, ws, ‘pre’) or (t, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it to (t, ws, ‘fin’) or
(t, ‘null’, (‘fin’, ‘gc’)). Otherwise, add a triple of the form (t, ‘null’, ‘fin’) to the set of locally stored triples. Perform garbage
collection.

garbage collection: If the total number of tags of the set {t : (t, x, ∗) is stored at the server, where x ∈ W ∪ {‘null’} and ∗ ∈
{‘fin’, (‘fin’, ‘gc’)}} is no bigger than δ + 1, then return. Otherwise, let t1, t2, . . . tδ+1 denote the highest δ + 1 tags from the
set, sorted in descending order. Replace every element of the form (t′, x, ∗) where t′ is smaller than tδ+1 by (t′, ‘null’, (∗, ‘gc’))
where ∗ can be either ‘pre’ or ‘fin’ and x ∈ W ∪ {‘null’}.

Figure 2: Server Actions for CASGC(k, δ).

denote the algorithm with parameter values k, δ by CASGC(k, δ). Like CAS(k), we use an (N, k) MDS code in
CASGC(k, δ). The parameter δ is related to the number of coded elements stored at each server under “normal
conditions”, that is, if all operations terminate and there are no ongoing write operations.

5.1 Algorithm description

The CASGC(k, δ) algorithm is essentially the same as CAS(k) with an additional garbage collection step at
the servers. In particular, the only differences between the two algorithms lie in the server actions on receiving
a finalize message from a writer or a reader or ‘gossip’. The server actions in the CASGC algorithm are
described in Fig. 2. In CASGC(k, δ), each server stores the latest δ + 1 triples with the ‘fin’ label plus
the triples corresponding to later and intervening operations with the ‘pre’ label. For the tags that are older
(smaller) than the latest δ + 1 finalized tags received by the server, it stores only the metadata, not the data
itself. On receiving a finalize message either from a writer or a reader, the server performs a garbage collection
step before responding to the client. The garbage collection step checks whether the server has more than δ+ 1
triples with the ‘fin’ label. If so, it replaces the triple (t′, x, ∗) by (t′, ‘null’, (∗, ‘gc’)) for every tag t′ that is
smaller than all the δ + 1 highest tags labeled ‘fin’, where ∗ is ‘pre’ or ‘fin’, and x can be a coded element or
‘null’. If a reader requests, through a finalize message, a coded element that is already garbage collected, the
server simply ignores this request.
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5.2 Statements and proofs of correctness

We next describe the correctness conditions satisfied by CASGC. We begin with a formal statement of atomicity.
Later, we describe the liveness properties of CASGC.

5.2.1 Atomicity

Theorem 5.1 (Atomicity). CASGC is atomic.

To show the above theorem, we observe that, from the perspective of the clients, the only difference between
CAS and CASGC is in the server response to a read’s finalize message. In CASGC, when a coded element has
been garbage collected, a server ignores a read’s finalize message. Atomicity follows similarly to CAS, since,
in any execution of CASGC, operations acquire essentially the same tags as they would in an execution of CAS.
We show this formally next.

Proof (Sketch). Note that, formally, CAS is an I/O automaton formed by composing the automata of all the
nodes and communication channels in the system. We show atomicity in two steps. In the first step, we
construct a I/O automaton CAS′ which differs from CAS in that some of the actions of the servers in CAS′ are
non-deterministic. However, we show that from the perspective of its external behavior (i.e., its invocations,
responses and failure events), any execution of CAS′ can be extended to an execution of CAS implying that
CAS′ satisfies atomicity. In the second step, we will show that CASGC simulates CAS′. These two steps suffice
to show that CASGC satisfies atomicity.

We now describe CAS′. The CAS′ automaton is identical to CAS with respect to the client actions, and to
the server actions on receipt of query and pre-write messages and finalize messages from writers. A server’s
response to a finalize message from a read operation can be different in CAS′ as compared to CAS. In CAS′,
at the point of the receipt of the finalize message at the server, the server could respond either with the coded
element, or not respond at all (even if it has the coded element).The server performs ‘gossip’ in CAS′ as in
CAS.

We note that CAS′ “simulates” CAS. Formally speaking, for every execution α′ of CAS′, there is a natural
corresponding execution α of CAS with an identical sequence of actions of all the components with one ex-
ception; when a server ignores a read’s finalize message in α′, we assume that the corresponding message in α
is indefinitely delayed. Therefore, from the perspective of client actions, for any execution α′ of CAS′, there
is an α of CAS with the same set of external actions. Since CAS satisfies atomicity, α has atomic behavior.
Therefore α′ is atomic, and implying that CAS′ satisfies atomicity.

Now, we show that CASGC “simulates” CAS′. That is, for every execution αgc of CASGC, we construct
a corresponding execution α′ of CAS′ such that α′ has the same external behavior (i.e., the same invocations,
responses and failure events) as that of αgc. We first describe the execution α′ step-by-step, that is, we consider
a step of αgc and describe the corresponding step of α′. We then show that the execution α′ that we have
constructed is consistent with the CAS′ automaton.

We construct α′ as follows. We first set the initial states of all the components of α′ to be the same as they
are in αgc. At every step, the states of the client nodes and the message passing system in α′ are the same as
the states of the corresponding components in the corresponding step of αgc. A server’s responses on receipt
of a message is the same in α′ as that of the corresponding server’s response in αgc. In particular, we note
that a server’s external responses are the same in αgc and α′ even on receipt of a reader’s finalize message, that
is, if a server ignores a reader’s finalize message in αgc, it ignores the reader’s finalize message in α′ as well.
Similarly, if a server sends a message as a part of ‘gossip’ in αgc, it sends a message in α′ as well. The only
difference between αgc and α′ is in the change to the server’s internal state at a point of receipt of a finalize
message from a reader or a writer. At such a point, the server may perform garbage collection in αgc, whereas it
does not perform garbage collection in α′. Note that the initial state, the server’s response, and the client states
at every step of α′ are the same as the corresponding step of αgc. Also note that a server that fails at a step of
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αgc fails at the corresponding step of α′ (even though the server states could be different in general because of
the garbage collection). Hence, at every step, the external behavior of α′ and αgc are the same. This implies
that the external behavior of the entire execution α′ is the same as the external behavior of αgc.

We complete the proof by noting that execution α′ consistent with the CAS′ automaton. In particular, since
the initial states of all the components are the same in the CAS′ and CASGC algorithms, the initial state of
α′ is consistent with the CAS′ automaton. Also, every step of α′ is consistent with CAS′. Therefore, CASGC
simulates CAS′. Since CAS′ is atomic, αgc has atomic behavior. So CASGC is atomic.

5.2.2 Liveness

Showing operation termination in CASGC is more complicated than CAS. This is because, in CASGC, when
a reader requests a coded element, the server may have garbage collected it. The liveness property we show
essentially articulates conditions under which read operations terminate in spite of the garbage collection. In-
formally speaking, we show that CASGC satisfies the following liveness property: every operation terminates
in an execution where the number of failed servers is no bigger than f and the number of writes concurrent with
a read is bounded by δ + 1. Before we proceed to formally state our liveness conditions, we give a formal defi-
nition of the notion of concurrent operations in an execution of CASGC. For any operation π that completes its
query phase, the tag of the operation T (π) is defined as in Definition 4.5. We begin with defining the end-point
of an operation.

Definition 5.2 (End-point of a write operation). In an execution β of CASGC, the end point of a write operation
π in β is defined to be

(a) the first point of β at which a quorum of servers that do not fail in β has tag T (π) with the ‘fin’ label,
where T (π) is the tag of the operation π, if such a point exists,

(b) the point of failure of operation π, if operation π fails and (a) is not satisfied.

Note that if neither condition (a) nor (b) is satisfied, then the write operation has no end-point.

Definition 5.3 (End-point of a read operation). The end point of a read operation in β is defined to be the point
of termination if the read returns in β. The end-point of a failed read operation is defined to be the point of
failure.

A read that does not fail or terminate has no end-point.

Definition 5.4 (Concurrent Operations). One operation is defined to be concurrent with another operation if it
is not the case that the end point of either of the two operations is before the point of invocation of the other
operation.

Note that if both operations do not have end points, then they are concurrent with each other. We next
describe the liveness property satisfied by CASGC.

Theorem 5.5 (Liveness). Let 1 ≤ k ≤ N − 2f . Consider a fair execution β of CASGC(k, δ) where the number
of write operations concurrent to any read operation is at most δ, and the number of server node failures is at
most f . Then, every non-failing operation terminates in β.

The main challenge in proving Theorem 5.5 lies in showing termination of read operations. In Lemma 5.6,
we show that if a read operation does not terminate in an execution of CASGC(k, δ), then the number of write
operations that are concurrent with the read is larger than δ. We then use the lemma to show Theorem 5.5 later
in this section. We begin by stating and proving Lemma 5.6.
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Lemma 5.6. Let 1 ≤ k ≤ N − 2f . Consider any fair execution β of CASGC(k, δ) where the number of server
failures is upper bounded by f . Let π be a non-failing read operation in β that does not terminate. Then, the
number of writes that are concurrent with π is at least δ + 1.

To prove Lemma 5.6, we prove Lemmas 5.7 and 5.8. Lemma 5.7 implies that if a non-failing server receives
a finalize message corresponding to a tag at some point, then, eventually every non-failing server receives a
finalize message with that tag. We note that the server gossip plays a crucial role in showing Lemma 5.7. Using
Lemma 5.7, we then show Lemma 5.8 which states that if the finalize message of an operation π reaches any
non-failing server in a fair execution, then any non-failing operation that begins after the endpoint of π acquires
a tag at least as large as the tag of π. Then, using Lemma 5.8, we show Lemma 5.6.

Lemma 5.7. Let 1 ≤ k ≤ N − 2f . Consider any fair execution β of CASGC(k, δ) where the number of server
failures is no bigger than f . Consider a write operation π that acquires tag t. If at some point of β, at least one
non-failing server has a triple of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)) where x ∈ W ∪ {‘null’}, then
operation π has an end-point in β.

Proof. Notice that every server that receives a finalize message with tag t invokes the ‘gossip’ protocol. If a
non-failing server s stores tag t with the ‘fin’ label at some point of β, then from the server protocol we infer
that it received a finalize message with tag t from a client or another server at some previous point. Since server
s receives the finalize message with tag t, every non-failing server also receives a finalize message with tag t
at some point of the execution because of ‘gossip’. Since a server that receives a finalize message with tag t
stores the ‘fin’ label after receiving the message, and the server does not delete the label associated with the tag
at any point, eventually, every non-failing server stores the ‘fin’ label with the tag t. Since the number of server
failures is no bigger than f , there is a quorum of non-failing servers that stores tag t with the ‘fin’ label at some
point of β. Therefore, operation π has an end-point in β, with the end-point being the first point of β where a
quorum of non-failing servers have the tag t with the ‘fin’ label.

Lemma 5.8. Consider any execution β of CASGC(k, δ). If write operation π with tag t has an end-point in β,
then the tag of any operation that begins after the end point of π is at least as large as t.

Proof. Consider a write operation π that has an end-point in β. By definition, at the end-point of π, there
exists at least one quorum Q(π) of non-failing servers such that each server has the tag t with the ‘fin’ label.
Furthermore, from the server protocol, we infer that each server in quorum Q(π) has the tag t with the ‘fin’
label at every point after the end point of the operation π.

Now, suppose operation π′ is invoked after the end point of π. We show that the tag acquired by operation
π′ is at least as large as t. Denote the quorum of servers that respond to the query phase of π′ as Q(π′). We
now argue that every server s in Q(π) ∩ Q(π′) responds to the query phase of π′ with a tag that is at least as
large as t. To see this, since s is in Q(π), it has a tag t with label ‘fin’ at the end-point of π. Since s is in Q(π′),
it also responds to the query message of π′, and this happens at some point after the end-point of π because π′

is invoked after the end-point of π. Therefore server s responds with a tag that is at least as large as t. This
completes the proof.

Proof of Lemma 5.6. Note that the termination of the query phase of the read is contingent on receiving a
quorum of responses. By noting that every non-failing server responds to the read’s query message, we infer
from Lemma 4.1 that the query phase terminates. It remains to consider termination of the read’s finalize phase.
Consider an operation π whose finalize phase does not terminate. We argue that there are at least δ + 1 write
operations that are concurrent with π.

Let t be the tag acquired by operation π. By property (ii) of Lemma 4.1, we infer that a quorum, say Qfw
of non-failing servers receives the read’s finalize message. There are only two possibilities.

(i) There is no server s in Qfw such that, at the point of receipt of the read’s finalize message at server s, a
triple of the form (t, ‘null’, (∗, ‘gc’)) exists at the server.
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(ii) There is at least one server s in Qfw such that, at the point of receipt of the read’s finalize message at
server s, a triple of the form (t, ‘null’, (∗, ‘gc’)) exists at the server.

In case (i), we argue in a manner that is similar to Lemma 4.9 that the read receives responses to its finalize
message from quorum Qfw of which at least k responses include coded elements. We repeat the argument here
for completeness. From examination of CASGC, we infer that, at some point before the point of termination
of the read’s query phase, a writer propagated a finalize message with tag t. Let us denote by Qpw(t), the set
of servers that responded to this write’s pre-write phase. We argue that all servers in Qpw(t) ∩ Qfw respond
to the reader’s finalize message with a coded element. To see this, let s′ be any server in Qpw(t) ∩Qfw. Since
s′ is in Qpw(t), the server protocol for responding to a pre-write message implies that s′ has a coded element,
ws′ , at the point where it responds to that message. Since s′ is in Qfw, it does not contain an element of the
form (t, ‘null’, (∗, ‘gc’)) implying that it has not garbage collected the coded element at the point of receipt of
the reader’s finalize message. Therefore, it responds to the reader’s finalize message, and this happens at some
point after it responds to the pre-write message. So it responds with its coded element ws′ . From Lemma 4.1,
it is clear that |Qpw(t) ∩ Qfw| ≥ k implying that the reader receives at least k coded elements in its finalize
phase and hence terminates. Therefore the finalize phase of π terminates, contradicting our assumption that it
does not. Therefore (i) is impossible.

We next argue that in case (ii), there are at least δ + 1 write operations that are concurrent with the read
operation π. In case (ii), from the server protocol of CASGC, we infer that at the point of receipt of the reader’s
finalize message at server s, there exist tags t1, t2, . . . , tδ+1, each bigger than t, such that a triple of the form
(ti, x, ‘fin’) or (ti, ‘null’, (‘fin’, ‘gc’)) exists at the server. We infer from the write and server protocols that, for
every i in {1, 2, . . . , δ+1}, a write operation, say πi,must have committed to tag ti in its pre-write phase before
this point in β. Because s is non-failing in β, we infer from Lemma 5.7 that operation πi has an end-point in
β for every i ∈ {1, 2, . . . , δ + 1}. Since t < ti for every i ∈ {1, 2, . . . , δ + 1}, we infer from Lemma 5.8
that the end point of write operation πi is after the point of invocation of operation π. Therefore operations
π1, π2, . . . , πδ+1 are concurrent with read operation π.

A proof of Theorem 5.5 follows from Lemma 5.6 in a manner that is similar to Lemma 4.9. We briefly
sketch the argument here.

Proof Sketch of Theorem 5.5. By examination of the algorithm we observe that termination of any operation
depends on termination of its phases. So, to show liveness, we need to show that each phase of each operation
terminates. We first consider a write operation. Note that termination of the query phase of a write operation
is contingent on receiving responses from a quorum. Every non-failed server responds to a query message
with the highest locally available tag marked ‘fin’. Since every server is initialized with (t0, v0, ‘fin’), every
non-failed server has at least one tag associated with the label ‘fin’ and hence responds to the writer’s query
message. Since the writer receives responses from every non-failed server, property (ii) of Lemma 4.1 ensures
that the query phase receives responses from at least one quorum, and hence terminates. We can similarly show
that the pre-write phase and finalize phase of a writer terminate.

It remains to consider the termination of a read operation. Suppose that a non-failing read operation does
not terminate. Then, from Lemma 5.6, we infer that there are at least δ + 1 writes that are concurrent with the
read. This contradicts our assumption that the number of write operations that are concurrent with a read is no
bigger than δ. Therefore every non-failing read operation terminates.

5.3 Bound on storage cost

We bound the storage cost of an execution of CASGC by providing a bound on the number of coded elements
stored at a server at any particular point of the execution. In particular, in Lemma 5.10, we describe conditions
under which coded elements corresponding to the value of a write operation are garbage collected at all the
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servers. Lemma 5.10 naturally leads to a storage cost bound in Theorem 5.11. We begin with a definition of an
ω-superseded write operation for a point in an execution, for a positive integer ω.

Definition 5.9 (ω-superseded write operation). In an execution β of CASGC, consider a write operation π
that completes its query phase. Let T (π) denote the tag of the write. Then, the write operation is said to be
ω-superseded at a point P of the execution if there are at least ω terminating write operations, each with a
tag that is bigger than T (π), such that every message on behalf of each of these operations (including ‘gossip’
messages) has been delivered by point P .

We show in Lemma 5.10 that in an execution of CASGC(k, δ), if a write operation is (δ+ 1)-superseded at
a point, then, no server stores a coded element corresponding to the operation at that point because of garbage
collection. We state and prove Lemma 5.10 next. We then use Lemma 5.10 to describe a bound on the storage
cost of any execution of CASGC(k, δ) in Theorem 5.11.

Lemma 5.10. Consider an execution β of CASGC(k, δ) and consider any point P of β. If a write operation π
is (δ + 1)-superseded at point P , then no non-failed server has a coded element corresponding to the value of
the write operation π at point P .

Proof. Consider an execution β of CASGC(k, δ) and a point P in β. Consider a write operation π that is (δ+1)-
superseded at point P . Consider an arbitrary server s that has not failed at point P . We show that server s does
not have a coded element corresponding to operation π at point P. Since operation π is (δ + 1)-superseded at
point P , there exist at least δ + 1 write operations π1, π2, . . . , πδ+1 such that, for every i ∈ {1, 2, . . . , δ + 1},
• operation πi terminates in β,
• the tag T (πi) acquired by operation πi is larger than T (π), and
• every message on behalf of operation πi is delivered by point P .

Since operation πi terminates, it completes its finalize phase where it sends a finalize message with tag T (πi)
to server s. Furthermore, the finalize message with tag T (πi) arrives at server s by point P . Therefore, by point
P , server s has received at least δ + 1 finalize messages, one from each operation in {πi : i = 1, 2, . . . , δ + 1}.
The garbage collection executed by the server on the receipt of the last of these finalize messages ensures that
the coded element corresponding to tag t does not exist at server s at point P . This completes the proof.

Theorem 5.11. Consider an execution β of CASGC(k, δ) such that, at any point of the execution, the number
of writes that have completed their query phase by that point and are not (δ + 1)-superseded at that point is
upper bounded by w. The storage cost of the execution is at most wNk log2 |V|.
Proof. Consider an execution β where at any point of the execution, the number of writes that have completed
their query phase by that point and are not (δ + 1)-superseded at that point is upper bounded by w. Consider
an arbitrary point P of the execution β, and consider a server s that is non-failed at point P . We infer from the
write and server protocols that, at point P , server s does not store a coded element corresponding to any write
operation that has not completed its query phase by point P . We also infer from Lemma 5.10 that server s does
not store a coded element corresponding to an operation that is (δ + 1)-superseded at point P . Therefore, if
server s stores a coded element corresponding to a write operation at point P , we infer that the write operation
has completed its query phase but is not (δ+ 1)-superseded by point P . By assumption on the execution β, the
number of coded elements at point P of β at server s is upper bounded by w. Since each coded element has a
size of 1

k log2 |V| bits and we considered an arbitrary server s, the storage cost at point P, summed over all the
non-failed servers, is upper bounded by wN

k log2 |V| bits. Since we considered an arbitrary point P , the storage
cost of the execution is upper bounded by wN

k log2 |V| bits.
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write(value)
query: Same as in CAS(N − 2f ).
pre-write: Select the largest tag from the query phase; form a new tag t by incrementing integer by 1 and adding its ‘id’. Apply an
(N,N−f) MDS code Φ to value and obtain coded elements w1, . . . , wN . Send (t, ws, ‘pre’) to every server s. Await responses
from a quorum.
finalize: Same as in CAS(N − 2f ).

read
query: Same as in CAS(N − 2f ).
finalize: Select largest tag t from the query phase. Send finalize message (t, ‘null’, ‘fin’) to all servers requesting the associated
coded elements. Await responses with coded elements from a quorum. Obtain the value by inverting Φ, and terminate by
returning value.

server
state variables: State is a subset of T × (W ∪ {‘null’})× {‘pre’, ‘fin’} × 2C .
initial state: (t0, w0,s, ‘fin’, {}).
Response to query: Send highest locally known tag that has label ‘fin’.
Response to pre-write: If the tag t of the message is not available in the locally stored set of tuples, add the tuple (t, ws, ‘pre’, {})
to the locally stored set. If (t, ‘null’, ‘fin’, C0) exists in the locally stored set of tuple for some set of clients C0, then send (t, ws)
to every client in C0 and modify the locally stored tuple to (t, ws, ‘fin’, {}). Send acknowledgement to the writer.
Response to finalize of write: Let t denote the tag of the message. If (t, ws, ‘pre’, {}) exists in the locally stored set of tuple where
∗ can be ‘pre’ or ‘fin’, update to (t, ws, ‘fin’, {}). If no tuple exists in the locally stored set with tag t, add (t, ‘null’, ‘fin’, {}) to
the locally stored set. Send acknowledgement.
Response to finalize of read: Let t denote the tag of the message and C ∈ C denote the identifier of the client sending the
message. If (t, ws, ∗, C0) exists in the locally stored set, update the tuple as (t, ws, ‘fin’, C0) and send (t, ws) to reader. If
(t, ‘null’, ‘fin’, C0) exists at the server, update it as (t, ‘null’, ‘fin’, C0 ∪ {C}). Otherwise, add (t, ‘null’, ‘fin’, {C}) to the list of
locally stored tags.

Figure 3: The CCOAS algorithm. We denote the (possibly infinite) set of clients by C. The notation 2C denotes
the power set of the set of clients C.

We note that Theorem 5.11 can be used to obtain a bound on the storage cost of executions in terms of
various parameters of the system components. For instance, the theorem can be used to obtain a bound on the
storage cost in terms of an upper bound on the delay of every message, the number of steps for the nodes to
take actions, the rate of write operations, and the rate of failure. In particular, the above parameters can be used
to bound the number of (δ + 1)-active writes in the system, which can then be used to bound the storage cost.

6 Communication Cost Optimal Algorithm

A natural question is whether one might be able to prove a lower bound to show that communication costs of
CAS and CASGC are optimal. Here, we describe a new “counterexample algorithm” called Communication
Cost Optimal Atomic Storage (CCOAS) algorithm, which shows that such a lower bound cannot be proved.
We show in Theorem 6.5 that CCOAS has write and read communication costs of N

N−f log2 |V| bits, which
is smaller than the communication costs of CAS and CASGC. Because elementary coding theoretic bounds
imply that these costs can be no smaller than N

N−f log2 |V| bits, CCOAS is optimal from the perspective of
communication costs. CCOAS, however, is infeasible in practice because of certain drawbacks described later
in this section.

6.1 Algorithm description

CCOAS resembles CAS in its structure. Like CAS(N − 2f ), its quorum Q consists of the set of all subsets of
N that have at least N − f elements. We also use terms “query”, “pre-write”, and “finalize” for the various
phases of operations. We provide a formal description of CCOAS in Fig. 3. Here, we informally describe the
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differences between CAS and CCOAS.

• In CCOAS, the writer uses an (N,N − f) MDS code to generate coded elements. Note the contrast
with CAS(k) which uses an (N, k) code, where the parameter k is at most N − 2f. Because we use an
(N,N−f) code in CCOAS, the size of each coded element is equal to log2 |V|

N−f bits, and as a consequence,
the read and write communication costs are equal to N

N−f log2 |V| bits.
• In CCOAS, a reader requires N − f responses with coded elements for termination of its finalize phase.

In CAS, in general, at most N − 2f responses with coded elements are required.
• In CCOAS, the servers respond to finalize messages from a read with coded elements only. This is unlike

CAS, where a server that does not have a coded element corresponding to the tag of a reader’s finalize
message at the point of reception responds simply with an acknowledgement. In CCOAS, if a server
does not have a coded element corresponding to the tag t of a reader’s finalize message at the point of
reception, then, in addition to adding a triple of the form (t, ‘null’, ‘fin’) to its local storage, the server
registers this read along with tag t in its logs. When the corresponding coded element with tag t arrives at
a later point, the server, in addition to storing the coded element, sends it to every reader that is registered
with tag t. We show in our proofs of correctness that, in CCOAS, every non-failing server responds to a
finalize message from a read with a coded element at some point.

6.2 Proof of correctness and communication cost

We next describe a formal proof of the correctness of CCOAS.

6.2.1 Atomicity

Theorem 6.1. CCOAS emulates shared atomic read/write memory.

The main challenge in showing Theorem 6.1 lies in showing termination of read operations, specifically
to show that every non-failing server sends a coded element in response to a reader’s finalize message. The
theorem follows from Lemmas 6.3 and 6.2, which are stated next.

Lemma 6.2. The CCOAS algorithm satisfies atomicity.

Proof. Atomicity can be shown via a simulation relation with CAS. We provide a brief informal sketch of the
relation here. We argue that for every execution β of CCOAS, there is an execution β′ of CAS with the same
trace. To see this, we note that the write protocol of CCOAS is essentially identical to the write protocol in
CAS, with the only difference between the two algorithms being the erasure code used in the pre-write phase.
Similarly, the query phase of the read protocols of both algorithms are the same. Also note that the server
responses to messages from a writer and query messages from a reader are identical in both CAS and CCOAS.
The main differences between CCOAS and CAS in the server actions. The first difference is that, in CCOAS,
the servers do not perform ‘gossip’. The second difference is that in CCOAS, if the server does not have a
coded element corresponding to the tag of the reader’s finalize message, then the server does not respond at this
point. Instead, the server sends a coded element to the reader at the point of receipt of the pre-write message
with this tag. We essentially create β′ from β by delaying all messages ‘gossip’ messages indefinitely, and
delaying reader’s finalize messages so that they arrive at each server at the point of, or after the receipt of the
corresponding pre-write message by the server. This delaying ensures that the server actions are identical in
both β and β′.

Specifically, we create β′ as follows. In β′ the points of

• invocations of operations,
• sending and receipt of messages between writers and servers,
• sending and receipt of query messages between readers and servers,
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• and sending of finalize messages from the readers

are identical to β. The server ‘gossip’ messages in β′ are delayed indefinitely. A crucial difference between
β and β′ lies in the points of receipt of reader’s finalize messages at the servers. Consider a read operation
that acquired tag t in β and let P denote the point of receipt of a reader’s finalize message to server s. Let P ′

denote the point of receipt of a pre-write message with tag t at server s in β. Now, consider the corresponding
read operation that acquired tag t in β′. Now, if P precedes P ′ in β, then the reader’s finalize message with
tag t arrives at server s at P ′ in β′, else, it arrives at point P in β′. This implies that server s responds to
reader’s finalize messages at the same points in β and β′. Finally, we complete our specification of β′ by letting
a server’s response to the reader’s finalize message arrive at the client at the same point in β′ as in β.

Note that if an operation acquires tag t in β, the corresponding operation in β′ also acquires tag t. Also
note that the points of invocation, responses of operations and the values returned by read operations are the
same in both β and β′. Therefore, there exists an execution β′ of CAS with the same trace as an arbitrary
execution β of CCOAS. Since CAS is atomic, β′ has atomic behavior, and so does β. Therefore, CCOAS
satisfies atomicity.

6.2.2 Liveness

We next state the liveness condition of CCOAS.

Lemma 6.3. CCOAS satisfies the liveness condition: in every fair execution where the number of failed servers
is no bigger than f , every non-failing operation terminates.

To show Lemma 6.3, we first state and prove Lemma 6.4. Informally speaking, Lemma 6.4 implies that
every non-failing server responds to a reader’s finalize message with a coded element. As a consequence, every
read operation gets N − f coded elements in response to its finalize messages. Therefore its finalize phase
implying that the operation returns implying Lemma 6.3. We first state and prove Lemma 6.4. Then we prove
Lemma 6.3.

Lemma 6.4. Consider any fair execution α of CCOAS and a server s that does not fail in α. Then, for any
read operation in α with tag t, the server s responds to the read’s finalize message with the coded element
corresponding to tag t at some point of α.

Proof sketch. Consider a server s that does not fail in α and consider the point P of α where server s receives a
finalize message with tag t from a reader. Since the read operation at the reader acquired tag t, from examination
of the algorithm we can infer that a write with tag t completed its pre-write phase at some point of α. From
the write protocol, note that this implies that the writer sent a coded element with tag t to every server in its
pre-write phase. In particular, the writer sent coded element ws to server s. Since the channels are reliable and
since s does not fail in α, this means that at some point P ′ of α, the server s receives the coded element ws.
There are only two possible scenarios. First, P ′ precedes P in α, and second, P precedes P ′. To complete the
proof, we show that, in the first scenario the server responds to the reader’s finalize message with ws at point
P , and in the second scenarioxi, the server responds to the reader’s finalize message with ws at point P ′.

In the first scenario, note that the server has a coded element ws at the point P . By examining the server
protocol, we observe that server s responds to the reader’s finalize message with a coded element ws.

In the second second scenario, point P ′ comes after P in α. Because of the server protocol on receipt of
the reader’s finalize message, server s adds a tuple of the form (t, ‘null’, ‘fin’, C0), where C ∈ C0, to the local
state at point P . Also, note that, at point P ′, the server stores a tuple of the form (t, ‘null’, ‘fin’, C1), where
C ∈ C1. Finally, based on the server protocol on receipt of a pre-write message, we note that at point P ′, the
server sends ws to all the clients in C1 including client C. This completes the proof.

xiNote that in this second scenario, the server does not respond with a coded element in CAS, where the server only sends an
acknowledgement. In contrast to the proof here, the liveness proof of CAS involved showing that at least k servers satisfy the condition
imposed by the first scenario.
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We next prove Lemma 6.3.

Proof of Lemma 6.3. To prove liveness, it suffices to show that in any fair execution α where at most f servers
fail, every phase of every operation terminates. The proof of termination of a write operation, and the query
phase of a read operation is similar to CAS and omitted here for brevity. Here, we present a proof of termination
of the finalize phase of a read in any fair execution α where at most f servers fail.

To show the termination of a read, note from Lemma 6.4 that in execution α, every non-failed server s
responds to a reader’s finalize message with a coded element. Because the number of servers that fail in α is at
most f , this implies that reader obtains at least N − f messages with coded elements in response to its finalize
message. From the read protocol, we observe that this suffices for termination of the finalize phase of a read.
This completes the proof.

6.2.3 Communication cost

We next state the communication cost of CCOAS.

Theorem 6.5. The write and read communication costs of CCOAS are both equal to N
N−f log |V|.

The proof of Theorem 6.5 is similar to the proof of Theorem 4.10 and is omitted here for brevity.

6.3 Drawbacks of CCOAS

CCOAS incurs a smaller communication cost mainly because the reader acquires N − f coded elements, thus
allowing the writer to use an (N,N − f) MDS code. Since a write operation returns after getting responses
from some quorum, there are executions of our algorithm where, at the point of termination of a write operation,
only a quorum Qpw containing N − f servers have received its pre-write messages. Now, if one of the servers
in Qpw fails after the termination of the write, then, since a reader that intends to acquire the value written
requires N − f coded elements, it is important that at least one of the pre-write messages sent by the writer to
a server outside of Qpw reaches the server. In other words, it is crucial for liveness of read operations that the
pre-write messages sent by the write operation are delivered to every non-failing server, even if some of these
messages have not been delivered at the point of termination of the write. We use this assumption implicitly in
the proof of correctness of CCOAS.

Although, in our model, channels deliver messages of operations that have terminated, the dependence of
liveness on this assumption is a significant drawback of CCOAS. The modeling assumption of reliable channels
is often an implicit abstraction of a lossy channel and an underlying primitive that retransmits lost messages
until they are delivered. From a practical point of view, however, it is not well-motivated to assume that this
underlying primitive retransmits lost messages corresponding to operations that have terminated, especially if
the client performing the operation fails. We note that CAS and CASGC do not share this drawback of CCOAS.
An interesting future exercise is to generalize CAS and CASGC to lossy channel models (see, for example, the
model used in [13]).

7 Conclusions

We have proposed low-cost algorithms for atomic shared memory emulation in asynchronous message-passing
systems. We also contribute to this body of work through rigorous definitions and analysis of (worst-case) com-
munication and storage costs. We show that our algorithms have desirable properties in terms of the amount
of communication and storage costs. There are several relevant follow up research directions in this topic. An
interesting question is whether the storage cost can be reduced through a more sophisticated coding strategy,
for instance, using the code constructions of [32]. We note that when erasure coding is used for shared memory
emulation, the communication and storage costs of various algorithms seem to depend on the number of parallel
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operations in the system. For instance, in all the erasure coding-based algorithms, servers store coded elements
corresponding to multiple versions at the servers. Similarly, in ORCAS-B and HGR, servers send coded ele-
ments corresponding to multiple versions to the reader. A natural question is whether there exist fundamental
lower bounds that capture this behavior, or whether there exist algorithms that can achieve low communication
and storage costs which do not grow with the extent of parallelism in the system. Among the remaining ques-
tions, we emphasize the need for generalizing of CAS and CASGC to lossy channels, and to dynamic settings
possibly through modifications of RAMBO [17].
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A Descriptions of the ABD and LDR Algorithms

As baselines for our work we use the MWMR versions of the ABD and LDR algorithms [7, 14]. Here, we
describe the ABD and LDR algorithms, and evaluate their communication and storage costs. We present the
ABD and LDR algorithms in Fig. 4 and Fig. 5 respectively. The costs of these algorithms are stated in
Theorems A.1 and A.2.

write(value)
get: Send query request to all servers, await (tag) responses from a majority of server nodes. Select the largest tag; let its integer
component be z. Form a new tag t as (z + 1, ‘id’), where ‘id’ is the identifier of the client performing the operation.

put: Send the pair (t, value) to all servers, await acknowledgment from a majority of server nodes, and then terminate.

read
get: Send query request to all servers, await (tag, value) responses from a majority. Select a tuple with the largest tag, say (t, v).

put: Send (t, v) to all servers, await acknowledgment from a majority, and then terminate by returning the value v.

server
state variable: A variable which contains an element of T × V
initial state: Store the default (tag, value) pair (t0, v0).

On receipt of get message from a read: Respond with the locally available (tag, value) pair.

On receipt of get message from a write: Respond with the locally available tag.

On receipt of put message: If the tag of the message is higher than the locally available tag, store the (tag, value) pair of the
message at the server. In any case, send an acknowledgment.

Figure 4: Write, read, and server protocols of the ABD algorithm.

Theorem A.1. The write and read communication costs of ABD are respectively equal to N log |V| and
2N log |V| bits. The storage cost is equal to N log2 |V| bits.

The LDR algorithm divides its servers into directory servers that store metadata, and replica servers that
store object values. The write protocol of LDR involves the sending of object values to 2f + 1 replica servers.
The read protocol is less taxing since in the worst-case, it involves retrieving the data object values from f + 1
replica servers. We state the communication costs of LDR next (for formal proof, see Appendix A.)

Theorem A.2. In LDR, the write communication cost is (2f + 1) log2 |V| bits, and the read communication
cost is (f + 1) log2 |V| bits.

In the LDR algorithm, each replica server stores every version of the data object it receivesxii. Therefore,
the (worst-case) storage cost of the LDR algorithm is unbounded.
Communication and Storage costs of ABD and LDR algorithms.
Proof of Theorem A.1. We first present arguments that upper bound the communication and storage cost for
every execution of the ABD algorithm. The ABD algorithm presented here is fitted to our model. Specifically
in [7,22] there is no clear cut separation between clients and servers. However, this separation does not change
the costs of the algorithm. Then we present worst-case executions that incur the costs as stated in the theorem.
Upper bounds: First consider the write protocol. It has two phases, get and put. The get phase of a write
involves transfer of a tag, but not of actual data, and therefore has negligible communication cost. In the put
phase of a write, the client sends a value from the set T ×V to every server node; the total communication cost
of this phase is at most N log2 |V| bits. Therefore the total write communication cost is at most N log2 |V| bits.
In the get phase of the read protocol, the message from the client to the servers contains only metadata, and
therefore has negligible communication cost. However, in this phase, each of the N servers could respond to

xiiThis is unlike ABD where the servers store only the latest version of the data object received.
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write(value)
get-metadata: Send query request to directory servers, and await (tag, location) responses from a majority of directory servers.
Select the largest tag; let its integer component be z. Form a new tag t as (z + 1, ‘id’), where ‘id’ represents the identifier of the
client performing the operation.

put: Send (t, value) to 2f + 1 replica servers, await acknowledgment from f + 1. Record identifiers of the first f + 1 replica
servers that respond, call this set of identifiers S.

put-metadata: Send (t,S) to all directory servers, await acknowledgment from a majority, and then terminate.

read
get-metadata: Send query request to directory servers, and await (tag, location) responses from a majority of directory servers.
Choose a (tag, location) pair with the largest tag, let this pair be (t,S).

put-metadata: Send (t,S) to all directory servers, await acknowledgment from a majority.

get: Send get object request to any f + 1 replica servers recorded in S for tag t. Await a single response and terminate by
returning a value.

replica server
state variable: A variable that is subset of T × V
initial state: Store the default (tag, value) pair (t0, v0).

On receipt of put message: Add the (tag, value) pair in the message to the set of locally available pairs. Send an acknowledg-
ment.

On receipt of get message: If the value associated with the requested tag is in the set of pairs stored locally, respond with the
value. Otherwise ignore.

directory server
state variable: A variable that is an element of T × 2R where 2R is the set of all subsets ofR.
initial state: Store (t0,R), whereR is the set of all replica servers.

On receipt of get-metadata message: Send the (tag,S) be the pair stored locally.

On receipt of put-metadata message: Let (t,S) be the incoming message. At the point of reception of the message, let (tag,S1)
be the pair stored locally at the server. If t is equal to the tag stored locally, then store (t,S ∪ S1) locally. If t is bigger than tag
and if |S| ≥ f + 1, then store (t,S) locally. Send an acknowledgment.

Figure 5: Write, read, and server protocols of the LDR algorithm

the client with a message from T × V; therefore the total communication cost of the messages involved in the
get phase is upper bounded by N log2 |V| bits. In the put phase of the read protocol, the read sends an element
of T × V to N servers. Therefore, this phase incurs a communication cost of at most N log2 |V| bits. The total
communication cost of a read is therefore upper bounded by 2N log2 |V| bits.

The storage cost of ABD is no bigger than N log2 |V| bits because each server stores at most one value -
the latest value it receives.
Worst-case executions: Informally speaking, due to asynchrony and the possibility of failures, clients always
send requests to all servers and in the worst case, all servers respond. Therefore the upper bounds described
above are tight.

For the write protocol, the client sends the value to allN nodes in its put phase. So the write communication
cost in an execution where at least one write terminates is N log2 |V| bits. For the read protocol, consider the
following execution, where there is one read operation, and one write operation that is concurrent with this
read. We will assume that none of the N servers fail in this execution. Suppose that the writer completes its
get phase, and commits to a tag t. Note that t is the highest tag in the system at this point. Suppose that among
the N messages that the writer sends in its put phase with the value and tag t, Now the writer begins its put
phase where it sends N messages with the value and tag t. At least one of these messages, say the message
to server 1, arrives.the remaining messages are delayed, i.e., they are assumed to reach after the portion of the
execution segment described here. At this point, the read operation begins and receives (tag, value) pairs from
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all the N server nodes in its get phase. Of these N messages, at least one message contains the tag t and the
corresponding value. Note that t is the highest tag it receives. Therefore, the put phase of the read has to sends
N messages with the tag t and the corresponding value - one message to each of the N servers that which
responded to the read in the get phase with an older tag.

The read protocol has two phases. The cost of a read operation in an execution is the sum of the com-
munication costs of the messages sent in its get phase and those sent in its put phase. The get phase involves
communication of N messages from T × V , one message from each server to the client, and therefore incurs
a communication cost of N log2 |V| bits provided that every server is active. The put phase involves the com-
munication of a message in T × V from the client to every server thereby incurring a communication cost of
N log2 |V| bits as well. Therefore, in any execution where all N servers are active, the communication cost of
a read operation is 2N log2 |V| bits and therefore the upper bound is tight.

The storage cost is equal to N log2 |V| bits since each of the N servers store exactly one value from V .
Proof of Theorem A.2.
Upper bounds: In LDR servers are divided into two groups: directory servers used to manage object metadata,
and replication servers used for object replication. Read and write protocols have three sequentially executed
phases. The get-metadata and put-metadata phases incur negligible communication cost since only metadata
is sent over the message-passing system. In the put phase, the writer sends its messages, each of which is an
element from T × V, to 2f + 1 replica servers and awaits f + 1 responses; since the responses have negligible
communication cost, this phase incurs a total communication cost of at most (2f + 1) log2 |V| bits. The read
protocol is less taxing, where the reader during the get phase queries f +1 replica servers and in the worst case,
all respond with a message containing an element from T × V thereby incurring a total communication cost of
at most (f + 1) log2 |V| bits.
Worst-case executions: It is clear that in every execution where at least one writer terminates, the writer sends
out (2f + 1) messages to replica servers that contain the value, thus incurring a write communication cost of
(2f + 1) log2 |V| bits. Similarly, for a read, in certain executions, all (f + 1) replica servers that are selected
in the put phase of the read respond to the get request from the client. So the upper bounds derived above are
tight.

B Discussion on Erasure Codes

For an (N, k) code, the ratio N
k - also known as the redundancy factor of the code - represents the storage

cost overhead in the classical erasure coding model. Much literature in coding theory involves the design of
(N, k) codes for which the redundancy factorxiii can be made as small as possible. In the classical erasure
coding model, the extent to which the redundancy factor can be reduced depends on f - the maximum number
of server failures that are to be tolerated. In particular, an (N, k) MDS code, when employed to store the value
of the data object, tolerates N − k server node failures; this is because the definition of an MDS code implies
that the data can be recovered from any k surviving nodes. Thus, for an N -server system that uses an MDS
code, we must have k ≤ N − f , meaning that the redundancy factor is at least N

N−f . It is well known [28]
that, given N and f , the parameter k cannot be made larger than N − f so that the redundancy factor is lower
bounded by N

N−f for any code even if it is not an MDS code; In fact, an MDS code can equivalently be defined
as one which attains this lower bound on the redundancy factor. In coding theory, this lower bound is known as
the Singleton bound [28]. Given parameters N, k, the question of whether an (N, k) MDS code exists depends
on the alphabet of codeW . We next discuss some of the relevant assumptions that we (implicitly) make in this
paper to enable the use of an (N, k) MDS code in our algorithms.

xiiiLiterature in coding theory literature often studies the rate N
k

of a code, which is the reciprocal of the redundancy factor, i.e., the
rate of an (N, k) code is k

N
. In this paper, we use the redundancy factor in our discussions since it enables a somewhat more intuitive

connection with the costs of our algorithms in Theorems A.1, A.2, 4.10, 5.11.
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Assumption on |V| due to Erasure Coding

Recall that, in our model, each value v of a data object belongs to a finite set V . In our system, for the use of
coding, we assume that V = Wk for some finite set W and that Φ : Wk → WN is an MDS code. Here we
refine these assumptions using classical results from erasure coding theory. In particular, the following result is
useful.

Theorem B.1. Consider a finite setW such that |W| ≥ N. Then, for any integer k < N , there exists an (N, k)
MDS code Φ :Wk →WN .

One proof for the above in coding theory literature is constructive. Specifically, it is well known that when
|W| ≥ N , then Φ can be constructed using the Reed-Solomon code construction [21,27,28]. The above theorem
implies that, to employ a Reed-Solomon code over our system, we shall need the following two assumptions:

• k divides log2 |V|, and

• log2 |V|/k ≥ log2N .

Thus all our results are applicable under the above assumptions.
In fact, the first assumption above can be replaced by a different assumption with only a negligible effect on

the communication and storage costs. Specifically, if log2 |V| were not a multiple of k then, one could pad the
value with

(
d log2 |V|

k ek − log2 |V|
)

“dummy” bits, all set to 0, to ensure that the (padded) object has a size that

is multiple of k; note that this padding is an overhead. The size of the padded object would be d log2 |V|
k ek bits and

the size of each coded element would be d log2 |V|
k e bits. If we assume that log2 |V| � k then, d log2 |V|

k e ≈ log2 |V|
k

meaning that the padding overhead can be neglected. Consequently, the first assumption can be replaced by the
assumption that log2 |V| � k with only a negligible effect on the communication and storage costs.

C Proof of Lemma 4.1

Proof of property (i): By the definition, eachQ ∈ Q has cardinality at least dN+k
2 e. Therefore, forQ1, Q2 ∈ Q,

we have

|Q1 ∩Q2| = |Q1|+ |Q2| − |Q1 ∪Q2|
≥ 2

⌈
N + k

2

⌉
− |Q1 ∪Q2|

(a)

≥ 2
⌈
N + k

2

⌉
−N ≥ k,

where we have used the fact that |Q1 ∪Q2| ≤ N in (a).
Proof of property (ii): LetB be the set of all the server nodes that fail in an execution, where |B| ≤ f . We need to
show that there exists at least one quorum setQ ∈ Q such thatQ ⊆ N−B, that is, at least one quorum survives.
To show this, because of the definition of our quorum system, it suffices to show that |N − B| ≥ dN+k

2 e. We
show this as follows:

|N − B| ≥ N − f
(b)

≥ N −
⌊
N − k

2

⌋
=

⌈
N + k

2

⌉
,

where, (b) follows because k ≤ N − 2f implies that f ≤ bN−k2 c.
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