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Abstract This paper considers the communication and stor-
age costs of emulating atomic (linearizable) multi-writer
multi-reader shared memory in distributed message-passing
systems. The paper contains three main contributions: (1) we
present an atomic shared-memory emulation algorithm that
we call Coded Atomic Storage (CAS). This algorithm uses
erasure coding methods. In a storage system with N servers
that is resilient to f server failures, we show that the com-
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munication cost of CAS is N
N−2 f . The storage cost of CAS is

unbounded. (2) We present a modification of the CAS algo-
rithm known as CASwith garbage collection (CASGC). The
CASGC algorithm is parameterized by an integer δ and has
a bounded storage cost. We show that the CASGC algorithm
satisfies atomicity. In every execution of CASGC where the
number of server failures is no bigger than f , we show that
every write operation invoked at a non-failing client termi-
nates. We also show that in an execution of CASGC with
parameter δ where the number of server failures is no bigger
than f, a read operation terminates provided that the number
of write operations that are concurrent with the read is no
bigger than δ. We explicitly characterize the storage cost of
CASGC, and show that it has the same communication cost
as CAS. (3)We describe an algorithm known as the Commu-
nication Cost Optimal Atomic Storage (CCOAS) algorithm
that achieves a smaller communication cost than CAS and
CASGC. In particular, CCOAS incurs read and write com-
munication costs of N

N− f measured in terms of number of
object values.We also discuss drawbacks of CCOAS as com-
pared with CAS and CASGC.

Keywords Shared memory emulation · Erasure coding ·
Multi-writer multi-reader atomic register · Concurrent read
and write operations · Storage efficiency

1 Introduction

Since the late 1970s, emulation of shared-memory systems in
distributedmessage-passing environments has been an active
area of research [2–8,10,14–21,28,33,34]. The traditional
approach to building redundancy for distributed systems in
the context of shared memory emulation is replication. In
their seminal paper Attiya et al. [8] presented a replication
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50 V. R. Cadambe et al.

based algorithm for emulating shared memory that achieves
atomic consistency [22,23]. In this paper we consider a sim-
ple multi-writer generalization of their algorithm which we
call the ABD algorithm.1 This algorithm uses a quorum-
based replication scheme [35], combined with read and write
protocols to ensure that the emulated object is atomic [23]
(linearizable [22]), and to ensure liveness, specifically, that
each operation terminates provided that atmost � N−1

2 � server
nodes fail. A critical step in ensuring atomicity in ABD is the
propagate phase of the read protocol, where the readers write
back the value they read to a subset of the server nodes. Since
the read and write protocols require multiple communication
phases where entire replicas are sent, this algorithm has a
high communication cost. In [16], Fan and Lynch introduced
a directory-based replication algorithm known as the LDR
algorithm that, like [8], emulates atomic shared memory in
themessage-passingmodel; however, unlike [8], its read pro-
tocol is required to write only some metadata information to
the directory, rather than the value read. In applicationswhere
the data being replicated is much larger than the metadata,
LDR is less costly than ABD in terms of communication
costs.

The main goal of our paper is to develop shared memory
emulation algorithms, based on the idea of erasure coding,
that are efficient in termsof communication and storage costs.
Erasure coding is a generalization of replication that is well
known in the context of classical storage systems [12,13,
24,32]. Specifically, in erasure coding, each server does not
store the value in its entirety, but only a part of the value
called a coded element. In the classical coding theory frame-
work which studies storage of a single version of a data
object, this approach is well known to lead to smaller storage
costs as compared to replication (see Sect. 3). Algorithms
for shared memory emulation that use the idea of erasure
coding to store multiple versions of a data object consis-
tently have been developed in [2–4,6,7,10,14,15,20,21,33].
In this paper,we develop algorithms that improve on previous
algorithms in terms of communication and storage costs. We
summarize our main contributions and compare them with
previous related work next.

1.1 Contributions

We consider a static distributed message-passing setting
where the universe of nodes is fixed and known, and nodes
communicate using a reliable message-passing network. We
assume that client and server nodes can fail. We define our
systemmodel, and communication and storage costmeasures
in Sect. 2.

1 The algorithm of Attiya et al. [8] allows only a single node to act as
a writer. Also, it did not distinguish between client and server nodes as
we do in our paper.

1.1.1 The CAS algorithm

We develop the Coded Atomic Storage (CAS) algorithm pre-
sented in Sect. 4, which is an erasure coding based shared
memory emulation algorithm. We present a brief introduc-
tion of the technique of erasure coding in Sect. 3. For a
storage system with N nodes, we show in Theorem 3 that
CAS ensures the following liveness property: all operations
that are invoked by a non-failed client terminate provided
that the number of server failures is bounded by a parameter
f, where f < � N

2 � and regardless of the number of client
failures. We also show in Theorem 3 that CAS ensures atom-
icity regardless of the number of (client or server) failures.
In Theorem 4 in Sect. 4, we also analyze the communication
cost of CAS. Specifically, in a storage system with N servers
that is resilient to f server node failures, we show that the
communication costs of using CAS to implement a shared
memory object whose values come from a finite set V are
equal to N

N−2 f , measured in terms of the number of object
values. We note that these communication costs of CAS are
smaller than replication based schemes, which incur a com-
munication cost of N (see “Appendix B” for an analysis of
communication costs of ABD and LDR algorithms.). The
storage cost of CAS, however, is unbounded because each
server stores the value associated with the latest version of
the data object it receives. Note that in comparison, in the
ABD algorithm which is based on replication, the storage
cost is bounded because each node stores only the latest ver-
sion of the data object (see “Appendix B” for an explicit
characterization of the storage cost incurred by ABD).

1.1.2 The CASGC algorithm

In Sect. 5, we present a variant of CAS called the CAS with
Garbage Collection (CASGC) algorithm, which achieves a
bounded storage cost by garbage collection, i.e., discard-
ing values associated with sufficiently old versions. CASGC
is parametrized by an integer δ which, informally speaking,
controls the number of tuples that each server stores.We show
that CASGC satisfies atomicity in Theorem 5 by establishing
a simulation relation between CAS and CASGC. Because of
the garbage collection at the servers, the liveness conditions
for CASGC are weaker than CAS. The liveness property sat-
isfied by CASGC is described in Theorem 6 in Sect. 5. In
Theorem 6, we show that every write operation invoked at
a non-failing client terminates provided that the number of
server failures is no bigger than f . We also prove that in
an execution of CASGC with parameter δ, if the number of
server failures is no bigger than f, a read operation invoked
at a non-failing client terminates provided that the number
of write operations concurrent with the read is no bigger
than δ. The main technical challenge lies in careful design of
the CASGC algorithm in order to ensure that an unbounded
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number of writes that fail before propagating enough coded
elements do not prevent a future read from returning a value
of the data object. In particular, failed writes that end before
a read is invoked are not treated as operations that are con-
current with the read, and therefore do not contribute to the
concurrency limit of δ. While CASGC incurs the same com-
munication costs as CAS, it incurs a bounded storage cost. A
larger value of δ results in an algorithm that requires servers
to store a larger number of coded elements, and therefore
results in a larger storage cost. A formal, non-trivial bound
on the storage cost incurred by an execution of CASGC is
described in Theorem 7.

1.1.3 Communication Cost Optimal Atomic Storage
algorithm

In Sect. 6 we describe a new algorithm called the Commu-
nication Cost Optimal Atomic Storage (CCOAS) algorithm
that satisfies the same correctness conditions as CAS, but
incurs smaller communication costs. However, CCOAS
would not be easily generalizable to settings where chan-
nels could incur losses because, unlike CAS and CASGC, it
requires that messages from clients to servers are delivered
reliably even after operations associated with the message
terminates. Therefore, it may not be possible to design a
protocol based on CCOAS in a setting where the channel
has losses. We describe CCOAS, analyse its communication
costs, and discuss its drawbacks in Sect. 6.

1.2 Comparison with related work

Erasure coding has been used to develop shared memory
emulation techniques for systems with crash failures in
[3,4,15,33] and Byzantine failures in [2,7,10,14,20,21]. In
erasure coding, note that each server stores a coded element,
so a reader has to obtain enough coded elements to decode
and return the value. The main challenge in extending repli-
cation based algorithms such as ABD to erasure coding lies
in handling partially completed or failed writes. In replica-
tion, when a read occurs during a partially completed write,
servers simply send the stored value and the reader returns the
latest value obtained from the servers. However, in erasure
coding, the challenge is to ensure that a read that observes the
trace of a partially completed or failed write obtains a enough
coded elements corresponding to the same version to return
a value. Different algorithms have different approaches in
handling this challenge of ensuring that the reader decodes
a value of the data object. As a consequence, the algorithms
differ in the liveness properties satisfied, and the communi-
cation and storage costs incurred. We discuss the differences
here briefly.

Among the previousworks, [7,10,14,15,20,21] have sim-
ilar correctness requirements as our paper; these references

aim to emulate an atomic shared memory that supports
concurrent operations in asynchronous networks. We com-
pare our algorithms with the ORCAS-A and ORCAS-B
algorithms of [15], the algorithm of [20], which we call
the GWGR algorithm, the algorithm of [21], which we
call the HGR algorithm, the M-PoWerStore algorithm of
[14], the algorithm of [10], which we call the CT algo-
rithm, and the AWE algorithm of [7]. We note that [15]
assumes lossy channels and [10,14,21] assume Byzantine
failures. Here, we interpret the algorithms of [10,14,15,21]
in our model that has lossless channels and crash fail-
ures.

We measure the storage cost at a point of an execu-
tion as the total number of bits stored by all the non-failed
servers at the point. The storage cost of an execution is
measured as the supremum of the storage costs over all
points of the execution. The worst-case storage cost of a
class of executions is the supremum of the storage costs
over all possible executions in the class. The communica-
tion cost of an operation is the total number of bits sent
on the channels on behalf of the operation. The worst-
case communication cost of an algorithm over a class of
executions is defined as the supremum of the communi-
cation costs, over every operation in every execution of
the class. For our comparison here, we study three scenar-
ios:

– worst-case communication and storage costs over all pos-
sible executions of the algorithm,

– worst-case communication and storage costs among a
restricted class of executions, specifically, communica-
tion and storage costs for executions where the number
of ongoing write operations2 at any point, the message
delays and the rate of client failures are all bounded, and

– the storage costs at a point of an execution when there is
no ongoing write operation.

The storage and communication costs and the liveness prop-
erties satisfied by the various algorithms are tabulated in
Table 1. As noted in the table, a distinguishing feature
of CASGC is that it simultaneously has small worst-case
communication cost, a bounded storage cost and desir-
able liveness properties when we consider the class of
executions where the number of ongoing write opera-
tions, message delays and the rate of client failures are
bounded. Here, we make some remarks comparing the
storage costs, liveness properties and communication costs
of our algorithms with the algorithms of [7,10,14,15,20,
21].

2 Informally, an operation π is ongoing at a point P in an execution β

if the point P is after the invocation of the operation π , and there are
steps taken on behalf of the operation π after point P in β.
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Table 1 Comparison of various algorithms over (i) worst case execu-
tions, and (ii) over the worst case execution in the class of executions
where the number of ongoing write operations, message delays and
rate of client failures are all bounded, and (iii) at points of the execution

where there are no ongoing write operations. The costs are expressed in
terms of the number of object values. We only consider algorithms that
perform garbage collection in the above table, and so we omit compar-
isons with CAS (Sect. 4), MPowerStore, and GWGR algorithms

Algorithm Worst-case among all executions Worst case among executions with bounded num-
ber of ongoing write operations, message delays,
and rate of client failures

Storage cost when
there is no ongoing
write operationa

Liveness Comm. cost Storage cost Liveness Comm. cost Storage cost

CASGC Operations
may not
terminate

N
N−2 f Infinite Operations

terminate if
parameter δ is
sufficiently
large

N
N−2 f Bounded (δ + 1) N

N−2 f

AWE Always N
N−2 f Infinite Always N

N−2 f Infinite Proportional to the
number of readers
and writers

HGR Operations
may not
terminate,
(obstruction
freedom)

Infinite Infinite Operations may
not terminate
(obstruction
freedom)

Bounded Bounded N
N−2 f

CT Always Infinite N Always Bounded N N
N− f

ORCAS-B Always Infinite Infinite Always Infinite Bounded N
N−2 f

ORCAS-A Always N N Always N N N
N−2 f

ABD Always N N Always N N N

a In the storage costs shown in this column of the table, we assume that every failed operation has been garbage collected previously in the execution

1.2.1 Comparisons in terms of storage cost

The GWGR algorithm of [20] develops an erasure coding
based algorithm which does not perform garbage collection,
and therefore incurs an infinite storage cost, like our CAS
algorithm. CAS is essentially a restricted version of the M-
PoWerStore algorithmof [14] for the crash failuremodel. The
main difference between CAS and M-PoWerStore is that in
CAS, servers perform gossip.3 M-PoWerStore and CAS do
not perform garbage collection and therefore incur infinite
storage costs.

The ORCAS-A algorithm of [15] stores, during a write
operation, the entire value beingwritten in each server. There-
fore ORCAS-A incurs a worst-case storage cost that is as
large as the cost of a replication based algorithm such as
ABD. The CT algorithm of [10] uses the message disper-
sal primitive of [9] and a reliable broadcast primitive using
server gossip to ensure that servers store only one coded ele-
ment when there is no ongoing write operation. During the
write operation, the storage cost of implementing the mes-
sage dispersal primitive during an operation can be as large
as the storage cost of replication. The storage and garbage

3 As we shall see later, the server gossip is not essential to correctness
of CAS. It is however useful as a theoretical tool to prove correctness
of CASGC.

collection strategies of HGR [21] and ORCAS-B of [15] are
similar to that ofCASGCwith the parameter δ set to 0. In fact,
the garbage collection strategy of CASGCmay be viewed as
a generalization of the garbage collection strategies of HGR
and ORCAS-B. It is instructive to note that the storage costs
of CASGC, HGR and ORCAS-B are all bounded if the num-
ber of ongoing write operations, the message delays and the
rate of client failures are bounded. The storage costs of these
algorithms can be much smaller than the cost of replication
based algorithms depending on the parameters that bound
the number of ongoing write operations, the message delays
and the rate of client failures.

For the ORCAS-A, ORCAS-B, HGR, CT algorithms and
the CASGC algorithm when δ = 0, every server stores
one coded element at a point of the execution when there
is no ongoing write operation, assuming that all the coded
elements corresponding to failed writes have been garbage
collected. In fact, as noted in Table 1, the storage cost of the
CT algorithm can be slightly smaller than the storage cost of
other algorithms when there is no ongoing write operation.

The AWE algorithm of [7] presents a novel approach to
garbage collection. In the AWE algorithm, the servers keep
track of read operations in progress, and preserve the coded
elements corresponding to these read operations until com-
pletion of the read operation. The worst case storage cost is
analyzed in [7] to be proportional to the product of the num-
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ber of read clients and the number of write clients. In the
case where there are an unbounded number of read or write
clients, however, the storage cost of [7] is infinite. In fact, in
AWE, the coded element of a failed write or read operation
may never be removed (garbage collected) from the system;
therefore, a large number of failed read or write operations
could result in a correspondingly large storage cost even if
the rate of client failures is small. Unlike AWE, the coded
elements of failed operations are garbage collected in the
CASGC algorithm so long as a future read or write opera-
tions terminate. Therefore, CASGC can store a finite number
of coded elements, even if the number of failed clients is infi-
nite, so long as failed write operations are interspersed with
a sufficient number of terminating operations. We anticipate
that the approach of [7] is desirable when the number of read
and write clients is small, since it provides strong guarantees
on operation termination even in the presence of unbounded
number of concurrent read/write operations. The CASGC
algorithm is desirable in the presence of a large number of
read/write clients, since the storage cost is bounded and oper-
ations terminate so long as the number of write operations
that are concurrent with a read operation is limited.

1.2.2 Comparisons in terms of communication cost

In the HGR, CT, GWGR and ORCAS-B algorithms, the
coded elements fromongoingwrite operations are not hidden
from read operations. As a consequence, servers may send
several coded elements per read operation to a reader. In fact,
in these algorithms, the number of coded elements sent to the
readers grows with the number of write operations that are
concurrent with the read operation. The message dispersal
algorithm of [9] involves the transmission of coded elements
via server gossip, and therefore, the CT algorithm incurs a
significantly higher communication cost as compared to even
theHGR andCT algorithms. In contrast toHGR, CT,GWGR
and ORCAS-B algorithms, in CAS and CASGC, the com-
munication cost an operation is exactly one coded element
per server. The MPowerStore and AWE algorithms incur the
same communication cost as CAS and CASGC.

In the ORCAS-A algorithm, the writers send the entire
value to the servers, and, in certain scenarios, the servers
may send entire values to the readers. Therefore, the com-
munication cost of ORCAS-A is much larger than the cost
of CASGC, even if the number of writes that are concur-
rent with a read operation are bounded. In the ORCAS-B
algorithm, a server, on receiving a request from a reader, reg-
isters the client4 and sends all the incoming coded elements
to the reader until the read receives a second message from a
client. Therefore, the read communication cost of ORCAS-B

4 The idea of registering a client’s identity was introduced originally in
[29] and plays an important role in our CCOAS algorithm as well.

grows with the number of writes that are concurrent with a
read. In fact, in ORCAS-B, if a read client fails in the middle
of a read operation, servers may send all the coded elements
it receives from future writes to the reader. Therefore, the
communication cost of a read operation in ORCAS-B can
be infinite even in executions where the number of ongoing
write operations, the message delays, and the rates of client
failure are bounded.

1.2.3 Comparisons in terms of liveness properties

It is worth noting that HGR, CT, GWGR, ORCAS-A,
ORCAS-B and AWE all satisfy the same liveness proper-
ties as ABD and CAS, which are stronger than the liveness
properties of CASGC. CASGC with parameter δ can satisfy
desirable liveness properties for executions where the num-
ber of write operations that are concurrent with every read
operation is bounded by δ. In HGR, read operations satisfy
obstruction freedom, that is, a read returns if there is a period
during the read where no other operation takes steps for suf-
ficiently long. Therefore, in HGR, operations may terminate
even if the number of writes concurrent with a read is arbi-
trarily large, but it requires a sufficiently long period where
concurrent operations do not take steps. On the contrary, in
CASGC, by setting δ to be bigger than 1, we ensure that
read operations terminate even if concurrent operations take
steps, albeit at a larger storage cost, so long as the number of
writes concurrent with a read is bounded by δ.

From a technical standpoint, our liveness guarantee uses a
new notion of concurrency that is carefully crafted to ensure
that failed operations are not treated as concurrent with every
future operation. Our contributions also include the CCOAS
algorithm, complete correctness proofs of all our algorithms
through the development of invariants and simulation rela-
tions, and careful characterizations of communication and
storage costs, which may be of independent interest. Gener-
alizations of CAS and CASGC algorithms to the models of
[10,14,15,21], which consider Byzantine failures and lossy
channelmodels, is an interestingdirection for future research.

2 System model

2.1 Deployment setting

We assume a static asynchronous deployment setting where
all the nodes and the network connections are known a
priori and the only sources of dynamic behavior are node
stop-failures (or simply, failures) and processing and com-
munication delays. We consider a message-passing setting
where nodes communicate via point-to-point reliable chan-
nels.We assume a universe of nodes that is the union of server
and client nodes, where the client nodes are reader or writer
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nodes. N represents the set of server nodes; N denotes the
cardinality ofN . We assume that server and client nodes can
fail (stop execution) at any point. We assume that the number
of server node failures is at most f . There is no bound on the
number of client failures.

2.2 Shared memory emulation

We consider algorithms that emulate multi-writer, multi-
reader (MWMR) read/write atomic sharedmemory using our
deployment platform. We assume that read clients receive
read requests (invocations) from some local external source,
and respond with object values. Write clients receive write
requests and respond with acknowledgments. The requests
follow a “handshake” discipline, where a new invocation at a
client waits for a response to the preceding invocation at the
same client. We require that the overall external behavior of
the algorithm corresponds to atomic (linearizable) memory.
For simplicity, in this paper we consider a shared-memory
system that consists of just a single object.

We represent each version of the data object as a
(tag, value) pair. When a write client processes a write
request, it assigns a tag to the request. We assume that the tag
is an element of a totally ordered set T that has a minimum
element t0. The tag of a write request serves as a unique iden-
tifier for that request, and the tags associated with successive
write requests at a particular write client increase monoton-
ically. We assume that value is a member of a finite set V
that represents the set of values that the data object can take
on; note that value can be represented by log2 |V| bits.5 We
assume that all servers are initialized with a default initial
state.

2.3 Requirements

The key correctness requirement on the targeted sharedmem-
ory service is atomicity. Briefly, an atomic shared memory
object is onewhere the invocations and response look like the
object is and where the observed global external behaviors
“look like” the object is being accessed sequentially.

Informally, an atomic shared memory object is one that
supports concurrentwrite and read operationswhere, in every
execution it is possible to do all of the following:

1. for each completed operation π , to insert a serialization
point∗π somewhere between the invocation and response
of π ,

2. to select a subset Φ of incomplete operations,
3. for each operation in Φ, to select a response,

5 Strictly speaking, we need �log2 |V|� bits since the number of bits
has to be an integer. We ignore this rounding error.

4. and for each operation π in Φ, to insert a serialization
point ∗π somewhere after the invocation of π.

The operations and responses must be selected, and the
serialization points must be inserted so that, if we move the
invocation and response of each completed operation and
each operation in Φ to its serialization point, and remove all
the incomplete operations that are not in Φ, then the trace
corresponds to the trace of a read-write variable type. We
refer the reader to Chapter 13 in [26] for a formal definition
of atomicity.

We require our algorithms to satisfy liveness properties
related to termination of operations. To describe the liveness
properties of our algorithms, we define the tasks for each
component of the system [26,27]. A fair execution is defined
in the standard manner (see reference [26], p. 212). In that
definition, a fair execution is one where every automaton in
the composition gets infinitely many turns to perform each
of its tasks.

In this case, a fair execution is one where every message
on every channel is eventually delivered, and every message
that non-failing server or client prepares to send is eventually
sent, and every response that a non-failing client prepares to
send is eventually sent to the environment. Formally, every
client, server and channel is an I/O automaton, and the system
is a composition of all the client, server and channels. The
tasks are as follows:

(i) Client automaton Each individual channel input action
corresponding to a message send to a channel, and each
individual invocation is a singleton task.

(ii) Server automatonEachchannel input action is a singleton
task.

(iii) Channel automaton For every message in the channel,
the corresponding channel output action is a singleton
task.

A client or server failure is modeled as a fail input action that
disables every non-input action at the node.

The liveness properties of our algorithms are related to
termination of operations invoked at a non-failing client in a
fair executionwhere the number of server failures is no larger
than f .6 The precise statements of the liveness properties of
our algorithms are provided in Theorems 3, 6, and 10.

Remark 1 In a fair execution, a channel gets infinitely many
turns to deliver a message, even if the node that sent the mes-
sage fails. As a consequence, in a fair execution, the channels
eventually deliver all their messages, even if a node that sent

6 We assume that N > 2 f, since correctness cannot be guaranteed if
N ≤ 2 f [26].
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some of the messages fails before the points of their deliv-
ery. Although the reliable channel assumption is an implicit
consequence of the usual shared memory emulation model,
we expose some of its drawbacks later in Sect. 6.

2.4 Communication cost

Informally speaking, the communication cost is the num-
ber of bits transferred over the point-to-point links in the
message-passing system. For a message that can take any
value in some finite set M, we measure its communication
cost as log2 |M| bits.We separate the cost of communicating
a value of the data object from the cost of communicating the
tags and other metadata. Specifically, we assume that each
message is a triple (t, w, d)where t ∈ T is a tag,w ∈ W is a
component of the triple that depends on the value associated
with tag t , and d ∈ D is any additional metadata that is inde-
pendent of the value. Here,W is a finite set of values that the
second component of the message can take on, depending on
the value of the data object. D is a finite set that contains all
the possible metadata elements for the message. These sets
are assumed to be known a priori to the sender and recipient
of the message. In this paper, we make the approximation:
log2 |M| ≈ log2 |W|, that is, the costs of communicating
the tags and the metadata are negligible as compared to the
cost of communicating the data object values. We assume
that every message is sent on behalf of some read or write
operation. We next define the read and write communication
costs of an algorithm.

For a given shared memory algorithm, consider an execu-
tion α. The communication cost of a write operation in α is
the sum of the communication costs of all the messages sent
over the point-to-point links on behalf of the operation. The
write communication cost of the execution α is the supre-
mum of the costs of all the write operations in α. The write
communication cost of the algorithm is the supremum of the
write communication costs taken over all executions. The
read communication cost of an algorithm is defined similarly.

2.5 Storage cost

Informally speaking, at any point of an execution of an algo-
rithm, the storage cost is the total number of bits stored by
the servers. Specifically, we assume that a server node stores
a set of triples with each triple of the form (t, w, d), where
t ∈ T , w depends on the value of the data object associated
with tag t , and d represents additional metadata that is inde-
pendent of the values stored. We neglect the cost of storing
the tags and the metadata; so the cost of storing the triple
(t, w, d) is measured as log2 |W| bits. The storage cost of a
server is the sum of the storage costs of all the triples stored at
the server. For a given sharedmemory algorithm, consider an
execution α. The storage cost at a particular point of α is the

sum of the storage costs of all the non-failed servers at that
point. The storage cost of the execution α is the supremum
of the storage costs over all points of α. The storage cost of
an algorithm is the supremum of the storage costs over all
executions of the algorithm.

3 Erasure coding: background

Erasure coding is a generalization of replication that has been
widely studied for purposes of failure-tolerance in storage
systems (see [12,13,24,30,32]). The key idea of erasure cod-
ing involves splitting the data into several coded elements,
each of which is stored at a different server node. As long as
a sufficient number of coded elements can be accessed, the
original data can be recovered. Informally speaking, given
two positive integers m, k, k < m, an (m, k) Maximum
Distance Separable (MDS) code maps a k-length vector to
an m-length vector, where the input k-length vector can be
recovered from any k coordinates of the output m-length vec-
tor. This implies that an (m, k) code, when used to store a
k-length vector on m server nodes - each server node storing
one of the m coordinates of the output - can tolerate (m − k)
node failures in the absence of any consistency requirements
(for example, see [1]). We proceed to define the notion of an
MDS code formally.

Given an arbitrary finite set A and any set S ⊆
{1, 2, . . . ,m}, let πS denote the natural projection mapping
fromAm onto the coordinates corresponding to S, i.e., denot-
ing S = {s1, s2, . . . , s|S|},where s1 < s2 . . . < s|S|, the func-
tion πS : Am → A|S| is defined as πS (x1, x2, . . . , xm) =
(xs1 , xs2 , . . . , xs|S|).

Definition 3.1 (Maximum Distance Separable (MDS) code)
Let A denote any finite set. For positive integers k,m such
that k < m, an (m, k) code over A is a map Φ : Ak → Am .
An (m, k) code Φ over A is said to be Maximum Distance
Separable (MDS) if, for every S ⊆ {1, 2, . . . ,m} where
|S| = k, there exists a function Φ−1

S : Ak → Ak such
that: Φ−1

S (πS(Φ(x)) = x for every x ∈ Ak , where πS is the
natural projection mapping.

We refer to each of the m coordinates of the output of an
(m, k) code Φ as a coded element. Classical m-way repli-
cation, where the input value is repeated m times, is in fact
an (m, 1) MDS code. Another example is the single parity
code: an (m,m−1) MDS code overA = {0, 1} which maps
the (m − 1)-bit vector x1, x2, . . . , xm−1 to the m-bit vector
x1, x2, . . . , xm−1, x1 ⊕ x2 ⊕ . . . ⊕ xm−1.

We now review the use of an MDS code in the classi-
cal coding-theoretic model, where a single version of a data
object with value v ∈ V is stored over N servers using an
(N , k) MDS code. We assume that V = Wk for some finite
set W and that an (N , k) MDS code Φ : Wk → WN
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exists over W (see “Appendix A” for a discussion). The
value v of the data object can be used as an input to Φ

to get N coded elements over W; each of the N servers,
respectively, stores one of these coded elements. Since each
coded element belongs to the set W, whose cardinality sat-

isfies |W| = |V|1/k = 2
log2 |V|

k , each coded element can
be represented as a log2 |V |

k bit-vector, i.e., the number of
bits in each coded element is a fraction 1

k of the number of
bits in the original data object. When we employ an (N , k)
code in the context of storing multiple versions, the size of
a coded element is closely related to communication and
storage costs incurred by our algorithms (see Theorems 4
and 7).

4 Coded Atomic Storage

We now present theCoded Atomic Storage (CAS) algorithm,
which takes advantage of erasure coding techniques to reduce
the communication cost for emulating atomic shared mem-
ory. CAS is parameterized by an integer k, 1 ≤ k ≤ N −2 f ;
we denote the algorithm with parameter value k by CAS(k).
CAS, like ABD and LDR, is a quorum-based algorithm.
Later, in Sect. 5, we present a variant of CAS that has effi-
cient storage costs as well (in addition to having the same
communication costs as CAS).

Handling of incomplete writes is not as simple when
erasure coding is used because, unlike in replication based
techniques, no single server has a complete replica of the
value being written. In CAS, we solve this problem by hiding
ongoing write operations from reads until enough informa-
tion has been stored at servers. Our approach essentially
mimics [14], projected to the setting of crash failures. We
describe CAS in detail next.
Quorum specificationWedefine our quorum system,Q, to be
the set of all subsets ofN that have at least � N+k

2 � elements
(server nodes). We refer to the members of Q, as quorum
sets. We show in “Appendix C” thatQ satisfies the following
property:

Lemma 1 Suppose that 1 ≤ k ≤ N−2 f. (i) If Q1, Q2 ∈ Q,

then |Q1 ∩ Q2| ≥ k. (ii) If the number of failed servers is
at most f , then Q contains at least one quorum set Q of
non-failed servers.

The CAS algorithm can, in fact, use any quorum system
that satisfies properties (i) and (ii) of Lemma 1.

4.1 Algorithm description

In CAS, we assume that tags are tuples of the form (z, ‘id’),
where z is an integer and ‘id’ is an identifier of a client node.
The ordering on the set of tags T is defined lexicographically,

using the usual ordering on the integers and a predefined
ordering on the client identifiers. We add a ‘gossip’ pro-
tocol to CAS, whereby each server sends each item from
T × {‘fin’} that it ever receives once (immediately) to every
other server. As a consequence, in any fair execution, if a non-
failed server initiates ‘gossip’ or receives ‘gossip’ message
with item (t, ‘fin’), then, every non-failed server receives a
‘gossip’ message with this item at some point of the execu-
tion. Figures 1, 2 and 3 respectively contain descriptions of
the read, write and server protocols of CAS.Here, we provide
an overview of the algorithm.

Each server node maintains a set of (tag, coded-element ,
label)7 triples, where we specialize the metadata to label ∈
{‘pre’, ‘fin’}. The different phases of the write and read pro-
tocols are executed sequentially. In each phase, a client sends
messages to servers to which the non-failed servers respond.
Termination of each phase depends on getting responses from
at least one quorum.

The query phase is identical in both protocols and it allows
clients to discover a recent finalized object version, i.e., a
recent version with a ‘fin’ tag. The goal of the pre-write
phase of a write is to ensure that each server gets a tag and
a coded element with label ‘pre’. Tags associated with label
‘pre’ are not visible to the readers, since the servers respond
to query messages only with finalized tags. Once a quorum,
say Qpw, has acknowledged receipt of the coded elements to
the pre-write phase, the writer proceeds to its finalize phase.
In this phase, it propagates a finalize (‘fin’) label with the tag
and waits for a response from a quorum of servers, say Q f w.

The purpose of propagating the ‘fin’ label is to record that
the coded elements associated with the tag have been prop-
agated to a quorum.8 In fact, when a tag appears anywhere
in the system associated with a ‘fin’ label, it means that the
corresponding coded elements reached a quorum Qpw with
a ‘pre’ label at some previous point. The operation of a writer
in the two phases following its query phase helps overcome
the challenge of handling writer failures. In particular, notice
that only tagswith the ‘fin’ label are visible to the reader. This
ensures that the reader gets at least k unique coded elements
from any quorum of non-failed nodes in response to its final-
ize messages, because such a quorum has an intersection of
at least k nodes with Qpw. Finally, the reader helps propagate
the tag to a quorum, and this helps complete possibly failed
writes as well.

We note that the server gossip is not necessary for cor-
rectness of CAS. We use ‘gossip’ in CAS mainly because it
simplifies the proof of atomicity of the CASGC algorithm,
where server gossip plays a critical role. The CASGC algo-
rithm is presented in Sect. 5.

7 The ‘null’ entry indicates that no coded element is stored; the storage
cost associated storing a null coded element is negligible.
8 It is worth noting that Q f w and Qpw need not be the same quorum.
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write(value)
query: Send query messages to all servers asking for the highest tag with label ‘fin’; await responses from a quorum.

pre-write: Select the largest tag from the query phase; let its integer component be z. Form a new tag t as (z + 1, ‘id’), where ‘id’
is the identifier of the client performing the operation. Apply the (N, k) MDS code Φ (see Section 3) to the value to obtain coded
elements w1, w2, . . . , wN . Send (t, ws, ‘pre’) to server s for every s ∈ N . Await responses from a quorum.

finalize: Send a finalize message (t, ‘null’, ‘fin’) to all servers. Terminate after receiving responses from a quorum.

Fig. 1 Write protocol of the CAS algorithm

read
query: As in the writer protocol.

finalize: Send a finalize message with tag t to all the servers requesting the associated coded elements. Await responses from a
quorum. If at least k servers include their locally stored coded elements in their responses, then obtain the value from these coded
elements by inverting Φ (see Definition 31) and terminate by returning value.

Fig. 2 Read protocol of the CAS algorithm

server
state variable: A variable that is a subset of T × (W ∪ {‘null’}) × {‘pre’, ‘fin’}.

initial state: Store (t0, w0,s, ‘fin’) where s denotes the server and w0,s is the coded element corresponding to server s obtained by
apply Φ to the initial value v0.

On receipt of query message: Respond with the highest locally known tag that has a label ‘fin’, i.e., the highest tag such that the
triple (tag, ∗, ‘fin’) is at the server, where ∗ can be a coded element or ‘null’.

On receipt of pre-write message: If there is no record of the tag of the message in the list of triples stored at the server, then add the
triple in the message to the list of stored triples; otherwise ignore. Send acknowledgment.

On receipt of finalize from a writer: Let t be the tag of the message. If a triple of the form (t, ws, ‘pre’) exists in the list of
stored triples, then update it to (t, ws, ‘fin’). Otherwise add (t, ‘null’, ‘fin’) to list of stored triplesxvi. Send acknowledgment. Send
‘gossip’ message with item (t, ‘fin’) to all other servers.

On receipt of finalize from a reader: Let t be the tag of the message. If a triple of the form (t, ws, ∗) exists in the list of stored triples
where ∗ can be ‘pre’ or ‘fin’, then update it to (t, ws, ‘fin’) and send (t, ws) to the reader. Otherwise add (t, ‘null’, ‘fin’) to the
list of triples at the server and send an acknowledgment. Send ‘gossip’ message with item (t, ‘fin’) to all other servers.

On receipt of ‘gossip’ message: Let t be the tag of the message. If a triple of the form (t, x, ∗) exists in the list of stored triples
where ∗ is ‘pre’ or ‘fin’ and x is a coded element of ‘null’, then update it to (t, x, ‘fin’). Otherwise add (t, ‘null’, ‘fin’) to the list
of triples at the server.

Fig. 3 Server protocol of the CAS algorithm

4.2 Statements and proofs of correctness

We next state the main result of this section.

Theorem 1 CAS emulates shared atomic read/write mem-
ory.

To prove Theorem 1, we show atomicity, Theorem 2, and
liveness, Theorem 3.

4.2.1 Atomicity

Theorem 2 CAS(k) is atomic.

The main idea of our proof of atomicity involves defining,
on the operations of any executionβ ofCAS, a partial order≺

that satisfies the sufficient conditions for atomicity described
by Lemma 13.16 of [26]. We state these sufficient conditions
in Lemma 2 next.

Lemma 2 (Paraphrased Lemma 13.16 [26]) Suppose that
the environment is well-behaved, meaning that an operation
is invoked at a client only if no other operation was per-
formed by the client, or the client received a response to the
last operation it initiated. Let β be a (finite or infinite) execu-
tion of a read/write object, where β consists of invocations
and responses of read and write operations and where all
operations terminate. Let � be the set of all operations in β.

Suppose that ≺ is an irreflexive partial ordering of all the
operations in�, satisfying the following properties: (1) If the
response for π1 precedes the invocation for π2 in β, then it
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cannot be the case thatπ2 ≺ π1. (2) Ifπ1 is a write operation
in � and π2 is any operation in �, then either π1 ≺ π2 or
π2 ≺ π1. (3)The value returned by each read operation is the
value written by the last preceding write operation according
to ≺ (or v0, if there is no such write).

The following definitionwill be useful in defining a partial
order on operations in an execution of CAS that satisfies the
conditions of Lemma 2.

Definition 4.1 Consider an executionβ ofCASand consider
an operation π that terminates in β. The tag of operation π,

denoted as T (π), is defined as follows: If π is a read, then,
T (π) is the highest tag received in its query phase. If π is
a write, then, T (π) is the new tag formed in its pre-write
phase.

We define our partial order ≺ as follows: In any execu-
tion β of CAS, we order operations π1, π2 as π1 ≺ π2 if
(i) T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a write
and π2 is a read. We next argue that the partial ordering ≺
satisfies the conditions of 2. We first show in Lemma 3 that,
in any execution β of CAS, at any point after an operation π

terminates, the tag T (π) has been propagated with the ‘fin’
label to at least one quorum of servers. Intuitively speaking,
Lemma 3 means that if an operation π terminates, the tag
T (π) is visible to any operation that is invoked after π ter-
minates. We crystallize this intuition in Lemma 4, where we
show that any operation that is invoked after an operation π

terminates acquires a tag that is at least as large as T (π).
Using Lemma 4 we show Lemma 5, which states that the tag
acquired by each write operation is unique. Then we show
that Lemma 4 and Lemma 5 imply conditions (1) and (2) of
Lemma 2. By examination of the algorithm, we show that
CAS also satisfies condition (3) of Lemma 2.

Lemma 3 In any execution β of CAS, for an operation π

that terminates in β, there exists a quorum Q f w(π) such
that the following is true at every point of the execution β

after π terminates: Every server of Q f w(π) has (t, ∗, ‘fin’)
in its set of stored triples, where ∗ is either a coded element
or ‘null’, and t = T (π).

Proof The proof is the same whether π is a read or a write
operation. The operation π terminates after completing its
finalize phase, during which it receives responses from a
quorum, say Q fw(π), to its finalize message. This means
that every server s in Q f w(π) responded to the finalizemes-
sage from π at some point before the point of termination
of π . From the server protocol, we can observe that every
server s in Q fw(π) stores the triple (t, ∗, ‘fin’) at the point
of responding to the finalize message of π , where ∗ is either
a coded element or ‘null’. Furthermore, the server s stores
the triple at every point after the point of responding to the
finalizemessage of π and hence at every point after the point
of termination of π .

Lemma 4 Consider any execution β of CAS, and let π1, π2

be twooperations that terminate inβ. Suppose thatπ1 returns
before π2 is invoked. Then T (π2) ≥ T (π1). Furthermore, if
π2 is a write, then T (π2) > T (π1).

Proof To establish the lemma, it suffices to show that the
tag acquired in the query phase of π2, denoted as T̂ (π2),

is at least as big as T (π1), that is, it suffices to show
that T̂ (π2) ≥ T (π1). This is because, by examination of
the client protocols, we can observe that if π2 is a read,
T (π2) = T̂ (π2), and if π2 is a write, T (π2) > T̂ (π2).

To show that T̂ (π2) ≥ T (π1)we use Lemma 3.We denote
the quorumof servers that respond to the query phase ofπ2 as
Q̂(π2).Wenowargue that every server s in Q̂(π2)∩Q f w(π1)

responds to the query phase of π2 with a tag that is at least as
large as T (π1). To see this, since s is in Q fw(π1), Lemma 3
implies that s has a tag T (π1) with label ‘fin’ at the point of
termination of π1. Since s is in Q̂(π), it also responds to the
querymessage of π2, and this happens at some point after the
termination of π1 because π2 is invoked after π1 responds.
From the server protocol, we infer that server s responds to
the query message of π2 with a tag that is no smaller than
T (π1). Because of Lemma 1, there is at least one server s
in Q̂(π2) ∩ Q f w(π1) implying that operation π2 receives at
least one response in its query phase with a tag that is no
smaller than T (π1). Therefore T̂ (π2) ≥ T (π1).

Lemma 5 Let π1, π2 be write operations that terminate in
an execution β of CAS. Then T (π1) �= T (π2).

Proof Let π1, π2 be two write operations that terminate in
execution β. Let C1,C2 respectively indicate the identifiers
of the client nodes at which operations π1, π2 are invoked.
We consider two cases.
Case 1 C1 �= C2: From the write protocol, we note that
T (πi ) = (zi ,Ci ). Since C1 �= C2, we have T (π1) �= T (π2).
Case 2 C1 = C2 : Recall that operations at the same client
follow a “handshake” discipline, where a new invocation
awaits the response of a preceding invocation. This means
that one of the two operations π1, π2 should complete before
the other starts. Suppose that, without loss of generality, the
write operation π1 completes before the write operation π2

starts. Then, Lemma 4 implies that T (π2) > T (π1). This
implies that T (π2) �= T (π1).

Proof of Theorem 2 Recall that we define our ordering ≺ as
follows: in any execution β of CAS, we order operations
π1, π2 as π1 ≺ π2 if (i) T (π1) < T (π2), or (ii) T (π1) =
T (π2), π1 is a write and π2 is a read.

We first verify that the above ordering is a partial order,
that is, if π1 ≺ π2, then it cannot be that π2 ≺ π1. We prove
this by contradiction. Suppose that π1 ≺ π1 and π2 ≺ π1.
Then, by definition of the ordering, we have that T (π1) ≤
T (π2) and vice-versa, implying that T (π1) = T (π2). Since
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π1 ≺ π2 and T (π1) = T (π2), we have that π1 is a write and
π2 is a read. But a symmetric argument implies that π2 is a
write and π1 is a read, which is a contradiction. Therefore ≺
is a partial order.

With the ordering ≺ defined as above, we now show that
the three properties of Lemma 2 are satisfied. For property
(1), consider an execution β and two distinct operations
π1, π2 in β such that π1 returns before π2 is invoked. If
π2 is a read, then Lemma 4 implies that T (π2) ≥ T (π1). By
definition of the ordering, it cannot be the case that π2 ≺ π1.
If π1 is a write, then Lemma 4 implies that T (π2) > T (π1)

and so, π1 ≺ π2. Since ≺ is a partial order, it cannot be the
case that π2 ≺ π1.

Property (2) follows from the definition of the ≺ in con-
junction with Lemma 5.

Now we show property (3): The value returned by each
read operation is the value written by the last preceding write
operation according to≺, or v0 if there is no such write. Note
that every version of the data object written in execution β

is uniquely associated with a write operation in β. Lemma 5
implies that every version of the data object being written
can be uniquely associated with tag. Therefore, to show that
a read π returns the last preceding write, we only need to
argue that the read returns the value associated with T (π).
From the write, read, and server protocols, it is clear that a
value and/or its coded elements are always paired together
with the corresponding tags at every state of every component
of the system. In particular, the read returns the value from k
coded elements by inverting the MDS codeΦ; these k coded
elements were obtained at some previous point by applying
Φ to the value associated with T (π). Therefore Defini-
tion 3.1 implies that the read returns the value associatedwith
T (π). ��

4.2.2 Liveness

We now state the liveness condition satisfied by CAS.

Theorem 3 (Liveness) CAS(k) satisfies the following live-
ness condition: if 1 ≤ k ≤ N − 2 f , then every non-failing9

operation terminates in every fair execution of CAS(k) where
the number of server failures is no bigger than f .

Proof By examination of the algorithm we observe that ter-
mination of any operation depends on termination of its
phases. So, to show liveness, we need to show that each phase
of each operation terminates. Let us first examine the query
phase of a read/write operation; note that termination of the
query phase of a client is contingent on receiving responses
from a quorum. Every non-failed server responds to a query
message with the highest locally available tag marked ‘fin’.

9 An operation is said to have failed if the client performing the opera-
tion fails after its invocation but before its termination.

Since every server is initializedwith (t0, v0, ‘fin’), every non-
failed server has at least one tag associatedwith the label ‘fin’
and hence responds to the client’s query message. Since the
client receives responses from every non-failed server, prop-
erty (ii) of Lemma 1 ensures that the query phase receives
responses from at least one quorum, and hence terminates.
We can similarly show that the pre-write phase and finalize
phase of a writer terminate. In particular, termination of each
of these phases is contingent on receiving responses from a
quorum. Their termination is guaranteed from property (ii)
of Lemma 1 in conjunction with the fact that every non-
failed server responds, at some point, to a pre-writemessage
and a finalize message from a write with an acknowledg-
ment.

It remains to show the termination of a reader’s finalize
phase. By using property (ii) of Lemma 1, we can show
that a quorum, say Q fw of servers responds to a reader’s
finalize message. For the finalize phase of a read to termi-
nate, there is an additional requirement that at least k servers
include coded elements in their responses. To show that this
requirement is satisfied, suppose that the read acquired a tag
t in its query phase. From examination of CAS, we infer
that, at some point before the point of termination of the
read’s query phase, a writer propagated a finalize message
with tag t . Let us denote by Qpw(t), the set of servers that
responded to this write’s pre-write phase. We argue that all
servers in Qpw(t) ∩ Q f w respond to the reader’s finalize
message with a coded element. To see this, let s be any
server in Qpw(t) ∩ Q f w. Since s is in Qpw(t), the server
protocol for responding to a pre-write message implies that
s has a coded element, ws , at the point where it responds
to that message. Since s is in Q f w, it also responds to the
reader’s finalize message, and this happens at some point
after it responds to the pre-write message. So it responds
with its coded element ws . From Lemma 1, it is clear that
|Qpw(t) ∩ Q f w| ≥ k implying that the reader receives at
least k coded elements in its finalize phase and hence termi-
nates.

4.3 Cost analysis

We analyze the communication costs of CAS in Theorem 4.
The theorem implies that the read and write communication
costs can bemade as small as N

N−2 f log2 |V|bits by choosing
k = N − 2 f .

Theorem 4 The write and read communication costs of the
CAS(k) are at most N/k log2 |V|bits.
Proof For either protocol, observe thatmessages carry coded
elements which have size log2 |V |

k bits. More formally, each
message is an element from T × W × {‘pre’, ‘fin’}, where,
W is a coded element corresponding to one of the N outputs
of the MDS code Φ. As described in Sect. 3, log2 |W| =
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log2 |V |
k . The only messages that incur communication costs

are the messages sent from the client to the servers in the pre-
write phase of a write and the messages sent from the servers
to a client in the finalize phase of a read. It can be seen that
the total communication cost of read and write operations of
the CAS algorithm are at most N

k log2 |V| bits.
Remark 2 It can be noted that the bound of Theorem 4 is
tight because a cost of N/k is incurred in certain worst-case
executions of CAS(k).

5 Storage-optimized variant of CAS

AlthoughCAS is efficient in terms of communication costs, it
incurs an infinite storage cost because servers can store coded
elements corresponding to an arbitrarily large number of ver-
sions. We here present a variant of the CAS algorithm called
CASwith Garbage Collection (CASGC), which has the same
communication costs as CAS and incurs a bounded storage
cost under certain reasonable conditions. CASGC achieves
a bounded storage cost by using garbage collection, i.e., by
discarding coded elements with sufficiently small tags at the
servers. CASGC is parametrized by two positive integers
denoted as k and δ, where 1 ≤ k ≤ N − 2 f ; we denote
the algorithm with parameter values k, δ by CASGC(k, δ).
Like CAS(k), we use an (N , k) MDS code in CASGC(k, δ).
The parameter δ is related to the number of coded elements
stored at each server under “normal conditions”, that is, at a
point where there are no ongoing write operations, and every
message corresponding to every write operation has been
delivered. A smaller value of δ leads to a smaller storage cost,
although it results in weaker guarantee on the termination of
a read operation. We first provide an algorithm description.
We describe the safety and liveness properties of CASGC in
Sect. 5.2 and analyze the storage cost in Sect. 5.3.

5.1 Algorithm description

The CASGC(k, δ) algorithm is essentially the same as
CAS(k) with an additional garbage collection step at the
servers. In particular, the only differences between the two
algorithms lie in the server actions on receiving a finalize
message from a writer or a reader or ‘gossip’. The server
actions in the CASGC algorithm are described in Fig. 4. In
CASGC(k, δ), each server stores the latest δ + 1 triples with
the ‘fin’ label plus the triples corresponding to later and inter-
vening operations with the ‘pre’ label. For the tags that are
older (smaller) than the latest δ+1 finalized tags received by
the server, it stores only the metadata, not the data itself. On
receiving a finalize message either from a writer or a reader,
the server performs a garbage collection step before respond-
ing to the client. The garbage collection step checks whether

the server has more than δ + 1 triples with the ‘fin’ label.
If so, it replaces the triple (t ′, x, ∗) by (t ′, ‘null’, (∗, ‘gc’))
for every tag t ′ that is smaller than all the δ + 1 highest tags
labeled ‘fin’, where ∗ is ‘pre’ or ‘fin’, and x can be a coded
element or ‘null’. If a reader requests, through a finalizemes-
sage, a coded element that is already garbage collected, the
server simply ignores this request.

5.2 Statements and proofs of correctness

We next describe the correctness conditions satisfied by
CASGC. We begin with a formal statement and proof of
atomicity of CASGC in Sect. 5.2.1. In Sect. 5.2.2, we show
that CASGC(k, δ) satisfies the following liveness condition:
in an execution where the number of servers is at most f ,
every write operation invoked at a non-failing client termi-
nates, and a read operation invoked at a non-failing client
terminates provided that the number of write operations that
are concurrent with the read is at most δ. Our notion of
concurrency in Sect. 5.2.2 is based on a new definition of
end-points, which applies for even failed operations. While
server gossip is not necessary in CAS, it plays an important
role in proving termination of read operations in CASGC.

5.2.1 Atomicity

Theorem 5 (Atomicity) CASGC is atomic.

To show the above theorem, we observe that, from the per-
spective of the clients, the only difference between CAS and
CASGC is in the server response to a read’s finalizemessage.
In CASGC, when a coded element has been garbage col-
lected, a server ignores a read’s finalize message. Atomicity
follows similarly to CAS, since, in any execution of CASGC,
operations acquire essentially the same tags as they would in
an execution of CAS. We show this formally next.

Proof (Proof) Note that, formally, CAS is an I/O automaton
formed by composing the automata of all the nodes and com-
munication channels in the system.We show atomicity in two
steps. In the first step, we construct a I/O automaton CAS′
which differs from CAS in that some of the actions of the
servers in CAS′ are non-deterministic. We show that CAS′
simulates CAS, that is, we show that from the perspective
of its external behavior (i.e., its invocations, responses and
failure events), the trace of an arbitrary execution α′ of CAS′
is the trace of an execution α of CAS. Since CAS satisfies
atomicity, α′ has atomic behavior implying that CAS′ satis-
fies atomicity. In the second step, we will show that CASGC
simulates CAS′. These two steps suffice to show that CASGC
satisfies atomicity.

We now describe CAS′. The CAS′ automaton is identical
to CAS with respect to the read and write protocols, and to
the server actions on receipt of query and pre-writemessages
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servers
state variable: A variable that is a subset of T × (W ∪ {‘null’}) × {‘pre’, ‘fin’, (‘pre’, ‘gc’), (‘fin’, ‘gc’)}
initial state: Same as in Fig. 3.

On receipt of query message: Similar to Fig. 3, respond with the highest locally available tag labeled ‘fin’, i.e., respond with the
highest tag such that the triple (tag, x, ‘fin’) or (tag, ‘null’, (‘fin’, ‘gc’)) is at the server, where x can be a coded element or
‘null’.

On receipt of a pre-write message: Perform the actions as described in Fig. 3 except the sending of an acknowledgement. Perform
garbage collection. Then send an acknowledgement.

On receipt of a finalize from a writer: Let t be the tag of the message. If a triple of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)) is
stored in the set of locally stored triples where x can be a coded element or ‘null’, then ignore the incoming message. Otherwise, if
a triple of the form (t, ws, ‘pre’) or (t, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it to (t, ws, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)).
Otherwise, add a triple of the form (t, ‘null’, ‘fin’) to the set of locally stored triples. Perform garbage collection and send an
acknowledgement. Send ‘gossip’ message with item (t, ‘fin’) to all other servers.

On receipt of a finalize message from a reader: Let t be the tag of the message. If a triple of the form (t, ws, ∗) exists in the list
of stored triples where ∗ can be ‘pre’ or ‘fin’, then update it to (t, ws, ‘fin’), perform garbage collection, and send (t, ws) to the
reader. If (t, ‘null’, (∗, ‘gc’)) exists in the list of locally available triples where ∗ can be either ‘fin’ or ‘pre’, then update it to
(t, ‘null’, (‘fin’, ‘gc’)) and perform garbage collection, but do not send a response. Otherwise add (t, ‘null’, ‘fin’) to the list of
triples at the server, perform garbage collection, and send an acknowledgment. Send ‘gossip’ message with item (t, ‘fin’) to all
other servers.

On receipt of a ‘gossip’ message: Let t denote the tag of the message. If a triple of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’))
is stored in the set of locally stored triples where x can be a coded element or ‘null’, then ignore the incoming message. Otherwise,
if a triple of the form (t, ws, ‘pre’) or (t, ‘null’, (‘pre’, ‘gc’)) is stored, then upgrade it to (t, ws, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)).
Otherwise, add a triple of the form (t, ‘null’, ‘fin’) to the set of locally stored triples. Perform garbage collection.

garbage collection: If the total number of tags of the set {t : (t, x, ∗) is stored at the server, where x ∈ W ∪ {‘null’} and ∗ ∈
{‘fin’, (‘fin’, ‘gc’)}} is no bigger than δ + 1, then return. Otherwise, let t1, t2, . . . tδ+1 denote the highest δ + 1 tags from the
set, sorted in descending order. Replace every element of the form (t , x, ∗) where t is smaller than tδ+1 by (t , ‘null’, (∗, ‘gc’))
where ∗ can be either ‘pre’ or ‘fin’ and x ∈ W ∪ {‘null’}.

Fig. 4 Server protocol for CASGC(k, δ)

and finalize messages from writers. A server’s response to
a finalize message from a read operation can be different in
CAS′ as compared toCAS. InCAS′, at the point of the receipt
of the finalizemessage at the server, the server could respond
either with the coded element, or not respond at all (even if
it has the coded element). More precisely, the server action
on receipt of a finalize message is as follows.

On receipt of finalize from a reader: Let t be the tag of the
message. If a triple of the form (t, ws, ∗) appears in the list of
stored triples where ∗ can be ‘pre’ or ‘fin’, then update it to
(t, ws, ‘fin’); nondeterminstically either send (t, ws) to the
reader or do not send any message. If no such triple appears,
add (t, ‘null’, ‘fin’) to the list of triples at the server and
send an acknowledgment. Send ‘gossip’ message with item
(t, ‘fin’) to all other servers.

We show that CAS′ “simulates” CAS10, that is, we show
that for every execution α′ of CAS′, there is an execution α

of CAS with the same external trace. We describe execution
α, step by step, as follows. In particular, for every step of

10 It is instructive to note that CAS′ does not satisfy the same liveness
properties as CAS since servers may never respond to finalize messages
from a reader in CAS′, even in a fair execution.

α′, we describe the corresponding step at α. The execution α

that we construct has the following properties:

(i) At a particular point of α, every client and server is at
the same state as the corresponding client/server at the
corresponding point of α′.

(ii) At any point of α, the set of messages in a channel con-
tains the messages in the corresponding channel at the
corresponding point of α′. A channel in α may contain
extra messages that are not contained in the correspond-
ing channel at the corresponding point in α′.

We construct execution α next. Every component in exe-
cution α has the same initial state in α and α′. For every step
of α′, if a client or channel takes an action, or if a server takes
an action in response to a query, pre-write, gossip or write’s
finalize message, or if a server sends a gossip message, then,
at the corresponding step inα, the corresponding client, chan-
nel or server takes the same action. If, in a step of α′, a server
responds to a read’s finalize message with a coded element or
an acknowledgement in α′, the server takes the same action
in α. If, in a step of α′, a server does not respond to a read’s
finalize message with a coded element even though it stores
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it, we assume that in α, the server responds to the read with
the stored coded element as per its protocol spefication in
CAS; the message containing the coded element is delayed
indefinitely in α.

Thus, in α, at every step, the client actions and states, and
the server states are the same as in α′. The only difference
is that in α, at a particular step, a server may send some
message that will be indefinitely delayed in the channels.
Since at every step, every client performs the same action in
α as in α′, the external trace of α is the same as α′. Since α is
an execution of CAS, for any execution α′ of CAS′, we have
shown that there is an execution α of CAS with the same
set of external actions. Since CAS satisfies atomicity, α has
atomic behavior. Therefore α′ is atomic, and implying that
CAS′ satisfies atomicity.

Now, we show that CASGC simulates CAS′. That is, for
every execution αgc of CASGC, we construct a correspond-
ing execution α′ of CAS′ such that α′ has the same external
behavior (i.e., the same invocations, responses and failure
events) as that of αgc.We first describe the execution α′ step-
by-step, that is, we consider a step of αgc and describe the
corresponding step of α′. We then show that the execution α′
that we have constructed is consistent with the CAS′ automa-
ton.

We construct α′ as follows. We first set the initial states
of all the components of α′ to be the same as they are in
αgc. At every step, the states of the client nodes and the mes-
sage passing system in α′ are the same as the states of the
corresponding components in the corresponding step of αgc.

A server’s responses on receipt of a message is the same in
α′ as that of the corresponding server’s response in αgc. In
particular, we note that a server’s external responses are the
same in αgc and α′ even on receipt of a reader’s finalizemes-
sage, that is, if a server ignores a reader’s finalize message
in αgc, it ignores the reader’s finalize message in α′ as well.
Similarly, if a server sends a message as a part of ‘gossip’
in αgc, it sends a message in α′ as well. The only difference
between αgc and α′ is in the change to the server’s internal
state at a point of receipt of a finalize message from a reader
or a writer. At such a point, the server may perform garbage
collection in αgc, whereas it does not perform garbage col-
lection in α′. Note that the initial state, the server’s response,
and the client states at every step of α′ are the same as the
corresponding step of αgc. Also note that a server that fails
at a step of αgc fails at the corresponding step of α′ (even
though the server states could be different in general because
of the garbage collection). Hence, at every step, the external
behavior of α′ and αgc are the same. This implies that the
external behavior of the entire execution α′ is the same as the
external behavior of αgc.

We complete the proof by noting that execution α′ consis-
tent with the CAS′ automaton. In particular, since the initial
states of all the components are the same in the CAS′ and

CASGC algorithms, the initial state of α′ is consistent with
the CAS′ automaton. Also, every step of α′ is consistent with
CAS′. Therefore, CASGC simulates CAS′. Since CAS′ is
atomic, αgc has atomic behavior. So CASGC is atomic.

5.2.2 Liveness

Showing operation termination in CASGC is more compli-
cated than CAS. This is because, in CASGC, when a reader
requests a coded element, the server may have garbage col-
lected it. The conditions for termination of a write operation
in CASGC is similar to CAS, and are stated formally in The-
orem 6. We carefully describe conditions for termination of
read operation here. Informally speaking, we show that in
an execution of CASGC(k, δ) where 1 ≤ k ≤ N − 2 f , a
read operation invoked at a non-failing client terminates in
an execution where the number of failing servers is no bigger
than f, provided that the number of writes concurrent with
the read is no bigger by δ.11 Before we proceed to formally
state our liveness conditions in Theorem 6, we give a for-
mal definition of the notion of concurrent operations in an
execution of CASGC. For any operation π that completes its
query phase, the tag of the operation T (π) is defined as in
Definition 4.1. We begin with defining the end-point of an
operation.

Definition 5.1 (End-point of a write operation) In an execu-
tion β of CASGC, the end point of a write operation π in β

is defined to be

(a) the first point of β at which a quorum of servers that do
not fail in β has tag T (π)with the ‘fin’ label, where T (π)

is the tag of the operation π , if such a point exists,
(b) the point of failure of operation π, if operation π fails

and (a) is not satisfied.

For a write operation that terminates, there is a point in the
execution where (a) is satisfied. If a write operation fails,
then either (a) or (b) is satisfied. Therefore, a write operation
that either terminates or fails has an end-point. If neither
condition (a) nor (b) is satisfied, then the write operation has
no end-point.

Definition 5.2 (End-point of a readoperation) The endpoint
of a read operation in β is defined to be the point of termi-
nation if the read returns in β. The end-point of a failed read
operation is defined to be the point of failure.

Note that a read operation that either terminates or fails has
an end-point. A read operation invoked at non-failing client
has no end-point if it does not terminate.

11 If the number of writes that are concurrent with a read operation is
larger than δ, then the read simply may not terminate.
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Definition 5.3 (Concurrent Operations) One operation is
defined to be concurrent with another operation if it is not
the case that the end point of either of the two operations is
before the point of invocation of the other operation.

We next describe the liveness property satisfied by
CASGC.

Theorem 6 (Liveness) Let 1 ≤ k ≤ N − 2 f . Consider a
fair execution β of CASGC(k, δ) where the number of server
failures is at most f . Then, every write operation invoked at
a non-failing client terminates in β. If the number of write
operations that are concurrent to a read operation is at most
δ and the read operation is invoked at a non-failing client,
then the read operation terminates in β.

The main challenge in proving Theorem 6 lies in showing
termination of read operations. In Lemma 6, we show that
if a read operation does not terminate in an execution of
CASGC(k, δ), then the number of write operations that are
concurrent with the read is larger than δ. We then use the
lemma to show Theorem 6 later in this section. We begin by
stating and proving Lemma 6.

Lemma 6 Let 1 ≤ k ≤ N−2 f . Consider any fair execution
β of CASGC(k, δ) where the number of server failures is
upper bounded by f . Let π be a read operation invoked at
a non-failing client in β that does not terminate. Then, the
number of writes that are concurrent with π is at least δ + 1.

To prove Lemma 6, we prove Lemmas 7 and 8. Lemma 7
implies that if a non-failing server receives a finalizemessage
corresponding to a tag at some point, then, eventually every
non-failing server receives a finalize message with that tag.
We note that the server gossip plays a crucial role in showing
Lemma 7. Using Lemma 7, we then show Lemma 8 which
states that if the finalize message of an operation π reaches
any non-failing server in a fair execution, then any operation
invoked at a non-failing client that begins after the endpoint
of π acquires a tag at least as large as the tag of π . Then,
using Lemma 8, we show Lemma 6.

Lemma 7 Let 1 ≤ k ≤ N − 2 f . Consider any fair execu-
tion β of CASGC(k, δ) where the number of server failures
is no bigger than f . Consider a write operation π that
acquires tag t. Suppose that at some point of β, at least
one non-failing server has a triple of the form (t, x, ‘fin’)
or (t, ‘null’, (‘fin’, ‘gc’)) where x ∈ W ∪ {‘null’}. Then
operation π has an end-point in β and at the end-point,
there is a quorum of non-failing servers each with an ele-
ment of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’)) where
x ∈ W ∪ {‘null’}.
Proof Notice that every server that receives a finalize mes-
sage with tag t invokes the ‘gossip’ protocol. If a non-failing

server s stores tag t with the ‘fin’ label at some point of
β, then from the server protocol we infer that it received a
finalize message with tag t from a client or another server
at some previous point. Since server s receives the finalize
message with tag t , every non-failing server also receives a
finalize message with tag t at some point of the execution
because of ‘gossip’. Since a server that receives a finalize
message with tag t stores the ‘fin’ label after receiving the
message, and the server does not delete the label associated
with the tag at any point, eventually, every non-failing server
stores the ‘fin’ label with the tag t . Since the number of
server failures is no bigger than f , there is a quorum of
non-failing servers that stores tag t with the ‘fin’ label at
some point of β. Therefore, operation π has an end-point
in β, with the end-point being the first point of β where a
quorum of non-failing servers have the tag t with the ‘fin’
label.

Lemma 8 Consider any execution β of CASGC(k, δ), and
consider a write operation π with tag t in β. If there is a
point in β such that at least one non-failing server s stores
an element of the form (t, x, ‘fin’) or (t, ‘null’, (‘fin’, ‘gc’))
where x ∈ W ∪ {‘null’}, then the operation π has an end-
point in β and the tag of any operation that begins after the
end point of π is at least as large as t.

Proof By Lemma 7, we know that π has an end-point in β

and at the end-point of π, there exists at least one quorum
Q(π) of non-failing servers such that each server has the tag t
with the ‘fin’ label. Furthermore, from the server protocol,we
infer that each server in quorum Q(π) has the tag t with the
‘fin’ label at every point after the end point of the operation
π .

Now, suppose operation π ′ is invoked after the end point
of π . We show that the tag acquired by operation π ′ is at
least as large as t . Denote the quorum of servers that respond
to the query phase of π ′ as Q(π ′). We now argue that every
server s in Q(π) ∩ Q(π ′) responds to the query phase of π ′
with a tag that is at least as large as t . To see this, since s is
in Q(π), it has a tag t with label ‘fin’ at the end-point of π .
Since s is in Q(π ′), it also responds to the query message
of π ′, and this happens at some point after the end-point of
π because π ′ is invoked after the end-point of π . Therefore
server s responds with a tag that is at least as large as t . This
completes the proof.

Proof (Proof of Lemma 6) Note that the termination of the
query phase of the read is contingent on receiving a quo-
rum of responses. By noting that every non-failing server
responds to the read’s querymessage,we infer fromLemma1
that the query phase terminates. It remains to consider ter-
mination of the read’s finalize phase. Consider an operation
π whose finalize phase does not terminate. We argue that
there are at least δ + 1 write operations that are concurrent
with π .
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Let t be the tag acquired by operation π . By property (ii) of
Lemma 1, we infer that a quorum, say Q f w of non-failing
servers receives the read’s finalize message. There are only
two possibilities.

(i) There is no server s in Q f w such that, at the point of
receipt of the read’s finalize message at server s, a triple
of the form (t, ‘null’, (∗, ‘gc’)) exists at the server.

(ii) There is at least one server s in Q f w such that, at the
point of receipt of the read’s finalize message at server
s, a triple of the form (t, ‘null’, (∗, ‘gc’)) exists at the
server.

In case (i), we argue in a manner that is similar to Theo-
rem 3 that the read receives responses to its finalize message
from quorum Q fw of which at least k responses include
coded elements. We repeat the argument here for complete-
ness. From examination of CASGC, we infer that, at some
point before the point of termination of the read’s query
phase, a writer propagated a finalize message with tag t .
Let us denote by Qpw(t), the set of servers that responded
to this write’s pre-write phase. We argue that all servers
in Qpw(t) ∩ Q fw respond to the reader’s finalize message
with a coded element. To see this, let s′ be any server in
Qpw(t) ∩ Q f w. Since s′ is in Qpw(t), the server protocol
for responding to a pre-write message implies that s′ has a
coded element, ws′ , at the point where it responds to that
message. Since s′ is in Q f w, it does not contain an ele-
ment of the form (t, ‘null’, (∗, ‘gc’)) implying that it has not
garbage collected the coded element at the point of receipt
of the reader’s finalize message. Therefore, it responds to
the reader’s finalizemessage, and this happens at some point
after it responds to the pre-write message. So it responds
with its coded element ws′ . From Lemma 1, it is clear that
|Qpw(t) ∩ Q f w| ≥ k implying that the reader receives
at least k coded elements in its finalize phase and hence
terminates. Therefore the finalize phase ofπ terminates, con-
tradicting our assumption that it does not. Therefore (i) is
impossible.

We next argue that in case (ii), there are at least δ+1write
operations that are concurrent with the read operation π . In
case (ii), from the server protocol of CASGC, we infer that at
the point of receipt of the reader’s finalize message at server
s, there exist tags t1, t2, . . . , tδ+1, each bigger than t , such
that a triple of the form (ti , x, ‘fin’) or (ti , ‘null’, (‘fin’, ‘gc’))
exists at the server. We infer from the write and server proto-
cols that, for every i in {1, 2, . . . , δ + 1}, a write operation,
say πi , must have committed to tag ti in its pre-write phase
before this point in β. Because s is non-failing in β, and
because t < ti , we infer from Lemma 8 that write operation
πi has an end point which is after the point of invocation
of operation π . Therefore operations π1, π2, . . . , πδ+1 are
concurrent with read operation π .

A proof of Theorem 6 follows from Lemma 6 in a manner
that is similar to Theorem 3. We give a formal argument
here.

Proof (Proof of Theorem 6) By examination of the algo-
rithm we observe that termination of any operation depends
on termination of its phases. So, to show liveness, we
need to show that each phase of each operation terminates.
We first consider a write operation. Note that termination
of the query phase of a write operation is contingent on
receiving responses from a quorum. Every non-failed server
responds to a query message with the highest locally avail-
able tag marked ‘fin’. Since every server is initialized with
(t0, v0, ‘fin’), every non-failed server has at least one tag
associated with the label ‘fin’ and hence responds to the
writer’s query message. Since the writer receives responses
from every non-failed server, property (ii) of Lemma 1
ensures that the query phase receives responses from at least
one quorum, and hence terminates. We similarly show that
the pre-write phase and finalize phase of awriter terminate. In
particular, termination of each of these phases is contingent
on receiving responses from a quorum. Their termination is
guaranteed from property (ii) of Lemma 1 in conjunction
with the fact that every non-failed server responds, at some
point, to a pre-write message and a finalize message from a
write with an acknowledgment.

It remains to consider the termination of a read operation.
Suppose that a read operation πr invoked at a non-failing
client does not terminate. Then, from Lemma 6, we infer that
there are at least δ+1writes that are concurrent with the read.
Therefore a read operation invoked at a non-failing client
terminates if the number write operations that are concurrent
with the read operation is no larger than δ.

5.3 Bound on storage cost

We bound the storage cost of an execution of CASGC by
providing a bound on the number of coded elements stored
at a server at any particular point of the execution. In particu-
lar, in Lemma 9, we describe conditions under which coded
elements corresponding to the value of a write operation are
garbage collected at all the servers. Lemma 9 naturally leads
to a storage cost bound in Theorem 7. We begin with a def-
inition of an ω-superseded write operation for a point in an
execution, for a positive integer ω.

Definition 5.4 (ω-superseded write operation) In an exe-
cution β of CASGC, consider a write operation π that
completes its query phase. Let T (π) denote the tag of the
write. Then, the write operation is said to be ω-superseded at
a point P of the execution if there are at least ω terminating
write operations, each with a tag that is bigger than T (π),

such that every message on behalf of each of these opera-
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tions (including ‘gossip’ messages) has been delivered by
point P .

We show inLemma9 that in an executionofCASGC(k, δ),
if a write operation is (δ + 1)-superseded at a point, then, no
server stores a coded element corresponding to the opera-
tion at that point because of garbage collection. We state and
prove Lemma 9 next. We then use Lemma 9 to describe a
bound on the storage cost of any execution of CASGC(k, δ)
in Theorem 7.

Lemma 9 Consider an execution β of CASGC(k, δ) and
consider any point P of β. If a write operation π is (δ + 1)-
superseded at point P, then no non-failed server has a coded
element corresponding to the value of the write operation π

at point P.

Proof (Proof) Consider an execution β of CASGC(k, δ) and
a point P in β. Consider a write operation π that is (δ + 1)-
superseded at point P . Consider an arbitrary server s that has
not failed at point P . We show that server s does not have
a coded element corresponding to operation π at point P.

Since operation π is (δ + 1)-superseded at point P , there
exist at least δ + 1 write operations π1, π2, . . . , πδ+1 such
that, for every i ∈ {1, 2, . . . , δ + 1},

– operation πi terminates in β,

– the tag T (πi ) acquired by operation πi is larger than
T (π), and

– every message on behalf of operation πi is delivered by
point P .

Since operation πi terminates, it completes its finalize phase
where it sends a finalize message with tag T (πi ) to server
s. Furthermore, the finalize message with tag T (πi ) arrives
at server s by point P . Therefore, by point P , server s has
received at least δ+1 finalize messages, one from each oper-
ation in {πi : i = 1, 2, . . . , δ + 1}. The garbage collection
executed by the server on the receipt of the last of these final-
ize messages ensures that the coded element corresponding
to tag t does not exist at server s at point P . This completes
the proof.

Theorem 7 Consider an execution β of CASGC(k, δ) such
that, at any point of the execution, the number of writes that
have completed their query phase by that point and are not
(δ + 1)-superseded at that point is upper bounded by w. The
storage cost of the execution is at most wN

k log2 |V|.
Proof Consider an execution β where at any point of the
execution, the number of writes that have completed their
query phase by that point and are not (δ + 1)-superseded
at that point is upper bounded by w. Consider an arbitrary
point P of the executionβ, and consider a server s that is non-
failed at point P .We infer from thewrite and server protocols

that, at point P , server s does not store a coded element
corresponding to any write operation that has not completed
its query phase by point P . We also infer from Lemma 9 that
server s does not store a coded element corresponding to an
operation that is (δ + 1)-superseded at point P . Therefore,
if server s stores a coded element corresponding to a write
operation at point P , we infer that the write operation has
completed its query phase but is not (δ + 1)-superseded by
point P . By assumption on the execution β, the number of
coded elements at point P ofβ at server s is upper bounded by
w. Since each coded element has a size of 1

k log2 |V|bits and
we considered an arbitrary server s, the storage cost at point
P, summed over all the non-failed servers, is upper bounded
by wN

k log2 |V|bits. Since we considered an arbitrary point
P , the storage cost of the execution is upper bounded by wN

k
log2 |V|bits.

We note that Theorem 7 can be used to obtain a bound on
the storage cost of executions in terms of various parameters
of the system components. For instance, the theorem can be
used to obtain a bound on the storage cost in terms of an upper
bound on the delay of every message, the number of steps
for the nodes to take actions, the rate of write operations, and
the rate of failure. In particular, the above parameters can
be used to bound the number of writes that are not (δ + 1)-
superseded, which can then be used to bound the storage cost.
In an execution β of CASGC(k, δ) where there are no write
client failures, if there exists a point P where every write
operation invoked before point P has terminated, and every
message corresponding to every write operation has been
delivered before P , then the number of (δ + 1)-superseded
write operations at P is δ + 1. Therefore, the storage cost at
point P in execution β is (δ+1)N

k log2 |V|.

6 Communication cost optimal algorithm

A natural question is whether one might be able to prove
a lower bound to show that communication costs of CAS
and CASGC are optimal. Here, we describe a new “coun-
terexample algorithm” called Communication Cost Optimal
Atomic Storage (CCOAS) algorithm, which shows that such
a lower bound cannot be proved. We show in Theorem 11
that CCOAS has write and read communication costs of
N

N− f log2 |V| bits, which is smaller than the communication
costs of CAS and CASGC. Because elementary coding the-
oretic bounds imply that these costs can be no smaller than
N

N− f log2 |V| bits, CCOAS is optimal from the perspective
of communication costs. CCOAS, however, is infeasible in
practice because of certain drawbacks described later in this
section.
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6.1 Algorithm description

CCOAS resembles CAS in its structure. Like CAS(N −2 f ),
its quorumQ consists of the set of all subsets ofN that have
at least N − f elements. We also use terms “query”, “pre-
write”, and “finalize” for the various phases of operations.
We provide a formal description of CCOAS in Figs. 5, 6,
and 7. Here, we informally describe the differences between
CAS and CCOAS.

– In CCOAS, the writer uses an (N , N − f ) MDS code to
generate coded elements. Note the contrast with CAS(k)
which uses an (N , k) code, where the parameter k is at
most N − 2 f. Because we use an (N , N − f ) code in
CCOAS, the size of each coded element is equal to log2 |V |

N− f
bits, and as a consequence, the read and write communi-
cation costs are equal to N

N− f log2 |V| bits.
– In CCOAS, a reader requires N− f responseswith coded

elements for termination of its finalize phase. In CAS, in
general, at most N − 2 f responses with coded elements
are required.

– In CCOAS, the servers respond to finalizemessages from
a read with coded elements only. This is unlike CAS,
where a server that does not have a coded element cor-
responding to the tag of a reader’s finalize message at
the point of reception responds simply with an acknowl-
edgement. In CCOAS, if a server does not have a coded
element corresponding to the tag t of a reader’s final-
ize message at the point of reception, then, in addition
to adding a triple of the form (t, ‘null’, ‘fin’) to its local
storage, the server registers this read alongwith tag t in its
logs. When the corresponding coded element with tag t
arrives at a later point, the server, in addition to storing the
coded element, sends it to every reader that is registered
with tag t . We show in our proofs of correctness that, in
CCOAS, every non-failing server responds to a finalize
message from a read with a coded element at some point.

6.2 Proof of correctness and communication cost

We next describe a formal proof of the correctness of
CCOAS.

6.2.1 Atomicity

Theorem 8 CCOAS emulates shared atomic read/write me-
mory.

The main challenge in showing Theorem 8 lies in show-
ing termination of read operations, specifically to show that
every non-failing server sends a coded element in response
to a reader’s finalize message. The theorem follows from
Theorems 10 and 9, which are stated next.

Theorem 9 The CCOAS algorithm satisfies atomicity.

Proof Atomicity can be shown via a simulation relation with
CAS.We provide a brief informal sketch of the relation here.
We argue that for every execution β of CCOAS, there is an
execution β ′ of CAS with the same trace. To see this, we
note that the write protocol of CCOAS is essentially iden-
tical to the write protocol in CAS, with the only difference
between the two algorithms being the erasure code used in
the pre-write phase. Similarly, the query phase of the read
protocols of both algorithms are the same. Also note that the
server responses to messages from a writer and query mes-
sages from a reader are identical in both CAS and CCOAS.
Themain differences betweenCCOAS andCAS in the server
actions. The first difference is that, in CCOAS, the servers
do not perform ‘gossip’. The second difference is that in
CCOAS, if the server does not have a coded element cor-
responding to the tag of the reader’s finalize message, then
the server does not respond at this point. Instead, the server
sends a coded element to the reader at the point of receipt
of the pre-write message with this tag. We essentially cre-
ate β ′ from β by delaying all messages ‘gossip’ messages
indefinitely, and delaying reader’s finalize messages so that
they arrive at each server at the point of, or after the receipt
of the corresponding pre-write message by the server. This
delaying ensures that the server actions are identical in both
β and β ′.

Specifically, we create β ′ as follows. In β ′ the points of

– invocations of operations,
– sending and receipt of messages between writers and
servers,

– sending and receipt of query messages between readers
and servers,

– and sending of finalize messages from the readers

are identical to β. The server ‘gossip’ messages in β ′ are
delayed indefinitely. A crucial difference between β and β ′
lies in the points of receipt of reader’s finalize messages at
the servers. Consider a read operation that acquired tag t in
β and let P denote the point of receipt of a reader’s finalize
message to server s. Let P ′ denote the point of receipt of a pre-
write message with tag t at server s in β. Now, consider the
corresponding read operation that acquired tag t in β ′. Now,
if P precedes P ′ in β, then the reader’s finalize message with
tag t arrives at server s at P ′ in β ′, else, it arrives at point P
in β ′. This implies that server s responds to reader’s finalize
messages at the same points inβ andβ ′. Finally, we complete
our specification of β ′ by letting a server’s response to the
reader’s finalize message arrive at the client at the same point
in β ′ as in β.

Note that if an operation acquires tag t in β, the corre-
sponding operation in β ′ also acquires tag t . Also note that
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write(value)
query: Same as in CAS(N − 2f ).

pre-write: Select the largest tag from the query phase; form a new tag t by incrementing integer by 1 and adding its ‘id’. Apply an
(N, N − f)MDS code Φ to value and obtain coded elements w1, . . . , wN . Send (t, ws, ‘pre’) to every server s. Await responses
from a quorum.

finalize: Same as in CAS(N − 2f ).

Fig. 5 The write protocol of the CCOAS algorithm

read
query: Same as in CAS(N − 2f ).

finalize: Select largest tag t from the query phase. Send finalize message (t, ‘null’, ‘fin’) to all servers requesting the associated
coded elements. Await responses with coded elements from a quorum. Obtain the value by inverting Φ, and terminate by returning
value.

Fig. 6 The read protocol of the CCOAS algorithm

server
state variables: State is a subset of T × (W ∪ {‘null’}) × {‘pre’, ‘fin’} × 2C .

initial state: (t0, w0,s, ‘fin’, {}).
Response to query: Send highest locally known tag that has label ‘fin’.

Response to pre-write: If the tag t of the message is not available in the locally stored set of tuples, add the tuple (t, ws, ‘pre’, {})
to the locally stored set. If (t, ‘null’, ‘fin’, C0) exists in the locally stored set of tuple for some set of clients C0, then send (t, ws)
to every client in C0 and modify the locally stored tuple to (t, ws, ‘fin’, {}). Send acknowledgement to the writer.

Response to finalize of write: Let t denote the tag of the message. If (t, ws, ‘pre’, {}) exists in the locally stored set of tuple where
∗ can be ‘pre’ or ‘fin’, update to (t, ws, ‘fin’, {}). If no tuple exists in the locally stored set with tag t, add (t, ‘null’, ‘fin’, {}) to
the locally stored set. Send acknowledgement.

Response to finalize of read: Let t denote the tag of the message and C ∈ C denote the identifier of the client sending the message. If
(t, ws, ∗, C0) exists in the locally stored set, update the tuple as (t, ws, ‘fin’, C0) and send (t, ws) to reader. If (t, ‘null’, ‘fin’, C0)
exists at the server, update it as (t, ‘null’, ‘fin’, C0 ∪ {C}). Otherwise, add (t, ‘null’, ‘fin’, {C}) to the list of locally stored tags.

Fig. 7 The server protocol of the CCOAS algorithm. We denote the (possibly infinite) set of clients by C. The notation 2C denotes the power set
of the set of clients C

the points of invocation, responses of operations and the val-
ues returned by read operations are the same in both β and β ′.
Therefore, there exists an execution β ′ of CASwith the same
trace as an arbitrary execution β of CCOAS. Since CAS is
atomic, β ′ has atomic behavior, and so does β. Therefore,
CCOAS satisfies atomicity.

6.2.2 Liveness

We next state the liveness condition of CCOAS.

Theorem 10 CCOAS satisfies the liveness condition: in
every fair execution where the number of failing servers is
no bigger than f , every non-failing operation terminates.

To show Theorem 10, we first state and prove Lemma 10.
Informally speaking, Lemma 10 implies that every non-
failing server responds to a reader’s finalize message with
a coded element. As a consequence, every read operation
gets N − f coded elements in response to its finalize

messages. Therefore its finalize phase implying that the oper-
ation returns implying Theorem 10. We first state and prove
Lemma 10. Then we prove Theorem 10.

Lemma 10 Consider any fair execution α of CCOAS and a
server s that does not fail in α. Then, for any read operation
in α with tag t, the server s responds to the read’s finalize
message with the coded element corresponding to tag t at
some point of α.

Proof (Proof) Consider a server s that does not fail in α and
consider the point P of α where server s receives a finalize
message with tag t from a reader. Since the read operation at
the reader acquired tag t , a server s must have responded to
the read’s querymessage with tag t . Since server s responded
to the read’s query message with tag t , the server received
a ‘fin’ label from either a read or a write operation at some
point. This implies that a write operation πw with tag t com-
pleted its pre-write phase before the server responded to the
read’s query message. From the write protocol, note that this
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implies that the write operationπw sent a coded element with
tag t to every server in its pre-write phase. In particular, the
writer sent coded element ws to server s. Since the channels
are reliable and since s does not fail in α, this means that at
some point P ′ of α, the server s receives the coded element
ws . There are only two possible scenarios. First, P ′ precedes
P in α, and second, P precedes P ′. To complete the proof,
we show that, in the first scenario the server responds to the
reader’s finalize message with ws at point P , and in the sec-
ond scenario12, the server responds to the reader’s finalize
message with ws at point P ′.

In the first scenario, note that the server has a coded ele-
mentws at the point P . By examining the server protocol, we
observe that server s responds to the reader’s finalizemessage
with a coded element ws .

In the second scenario, point P ′ comes after P in α.
Because of the server protocol on receipt of the reader’s final-
ize message, server s adds a tuple of the form (t, ‘null’, ‘fin’,
C0), where C ∈ C0, to the local state at point P . Also,
note that, at point P ′, the server stores a tuple of the form
(t, ‘null’, ‘fin’, C1), where C ∈ C1. Finally, based on the
server protocol on receipt of a pre-write message, we note
that at point P ′, the server sends ws to all the clients in C1
including client C . This completes the proof.

We next prove Theorem 10.

Proof (Proof of Theorem 10) To prove liveness, it suffices
to show that in any fair execution α where at most f servers
fail, every phase of every operation terminates. The proof
of termination of a write operation, and the query phase of a
read operation is similar to CAS and omitted here for brevity.
Here, we present a proof of termination of the finalize phase
of a read in any fair execution α where at most f servers fail.

To show the termination of a read, note from Lemma 10
that in execution α, every non-failed server s responds to a
reader’s finalize message with a coded element. Because the
number of servers that fail in α is at most f , this implies that
reader obtains at least N − f messages with coded elements
in response to its finalize message. From the read protocol,
we observe that this suffices for termination of the finalize
phase of a read. This completes the proof.

6.2.3 Communication cost

We next state the communication cost of CCOAS.

Theorem 11 The write and read communication costs of
CCOAS are both equal to N

N− f log |V|.

12 Note that in this second scenario, the server does not respond with
a coded element in CAS, where the server only sends an acknowledge-
ment. In contrast to the proof here, the liveness proof of CAS involved
showing that at least k servers satisfy the condition imposed by the first
scenario.

The proof of Theorem 11 is similar to the proof of Theorem 4
and is omitted here for brevity.

6.3 Drawbacks of CCOAS

CCOAS incurs a smaller communication cost than CAS and
CASGC mainly because the reader acquires N − f coded
elements for a read operation, whereas in CAS and CASGC,
a reader acquires at most N − 2 f coded elements for an
operation. In particular, because the reader acquires N − f
coded elements, a writer uses an (N , N − f ) MDS code
in CCOAS. Since a write operation returns after getting
responses from some quorum, there are executions of our
algorithm where, at the point of termination of a write oper-
ation, only a quorum Qpw containing N − f servers have
received its pre-write messages. Now, if one of the servers
in Qpw fails after the termination of the write, then, since
a reader that intends to acquire the value written requires
N − f coded elements, it is important that at least one
of the pre-write messages sent by the writer to a server
outside of Qpw reaches the server. In other words, it is
crucial for liveness of read operations that the pre-write
messages sent by the write operation are delivered to every
non-failing server, even if some of these messages have not
been delivered at the point of termination of the write. We
use this assumption implicitly in the proof of correctness of
CCOAS.

In the standard message passing model, in a fair execu-
tion, every channel eventually delivers the messages that
are input in the channel. In particular, under the standard
definition of fairness, the channel eventually delivers all
its messages even if the any of the nodes that input the
messages fails before the message is delivered. The fact
that operation termination in CCOAS depends critically
on a reliable message delivery assumption is a significant
drawback of CCOAS. The modeling assumption of reli-
able channels is often an implicit abstraction of a lossy
channel and an underlying primitive that retransmits lost
messages until they are delivered. From a practical point
of view, however, it is not well-motivated to assume that
this underlying primitive retransmits lost messages corre-
sponding to operations that have terminated, especially if the
client performing the operation fails. The limited practical-
ity of CCOAS exposes a subtle drawback of the standard
message passing model for the study shared memory emula-
tion algorithms, especially when we aspire to have a smaller
communication costs than CASGC. CAS and CASGC do
not share the drawback of CCOAS, because in these algo-
rithms, a write operation ensures that its coded elements
reach a quorum before the point of termination. An inter-
esting future exercise is to generalize CAS and CASGC to
lossy channel models (see, for example, the model used in
[15]).
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7 Conclusions

We have proposed low-cost algorithms for atomic shared
memory emulation in asynchronous message-passing sys-
tems. We have also contributed to this body of work through
rigorous definitions and analysis of (worst-case) communi-
cation and storage costs. We have shown that our algorithms
have desirable properties in terms of the amount of commu-
nication and storage costs.

There are several relevant follow up research directions in
this topic. We list some of them below.

– In our CASGC algorithm, although we garbage collect
the coded elements, we do not garbage collect the meta-
data. In particular, in an executionwith an infinite number
of write operations, each server may store the tag and
a label for every write operation and therefore, may
store infinitely large amount of metadata. The question
of whether the metadata can be removed in the garbage
collection step without violating atomicity and liveness
of CASGC remains open.

– Our CAS and CASGC algorithms are developed in a
model with reliable channels. Our discussion in Sect. 6
reveals the importance of understanding the properties
of shared memory emulation algorithms in a model with
lossy channels. Extending CAS and CASGC to a model
with lossy channels is an important direction of future
work.

– Recently, a coding theoretic formulation inspired by the
need to ensure atomicity in storage systems has been pre-
sented in [36]. An interesting question is whether the
storage cost can be reduced through using the ideas of
[36], or through other sophisticated coding techniques.

– When erasure coding is used for shared memory emu-
lation, the communication and storage costs of var-
ious algorithms in literature depend on the number
of concurrent operations or the number of clients. In
particular, in algorithms in literature, an infinite num-
ber of incomplete/failed operations can lead to either
violations of operation termination or an infinite com-
munication or storage cost; for instance, in CASGC, an
unbounded number of failed write operations can lead to
an unbounded storage cost if they are not interspersed
with a sufficient number of operations that terminate.
A natural question is whether there exist fundamental
lower bounds that capture this behavior, or whether there
exist algorithms that can achieve low communication and
storage costs which do not grow with the degree of con-
currency in the system.

– The AWE algorithm of [7] presents an algorithm with
desirable liveness properties and storage cost even if the
number ofwrite operations that are concurrentwith a read
operation is large, provided that the number of clients is

limited. TheCASGCalgorithm, in contrast, provides rea-
sonable conditions on operation termination and storage
cost even if there are an unbounded number of clients,
provided that the number of write operations that are
concurrent with a read operation is limited. Our work
motivates that search for an algorithm that combines the
desirable properties of the AWE and CASGC algorithms.

– Generalizing CAS and CASGC to dynamic settings
possibly through modifications of RAMBO [19] is an
unexplored research direction.

Appendix A: Discussion on erasure codes

For an (N , k) code, the ratio N
k —also known as the redun-

dancy factor of the code—represents the storage cost over-
head in the classical erasure codingmodel.Much literature in
coding theory involves the design of (N , k) codes for which
the redundancy factor13 can be made as small as possible. In
the classical erasure coding model, the extent to which the
redundancy factor can be reduced depends on f—the max-
imum number of server failures that are to be tolerated. In
particular, an (N , k) MDS code, when employed to store the
value of the data object, tolerates N − k server node failures;
this is because the definition of anMDS code implies that the
data can be recovered from any k surviving nodes. Thus, for
an N -server system that uses an MDS code, we must have
k ≤ N − f , meaning that the redundancy factor is at least
N

N− f . It iswell known [32] that, given N and f , the parameter
k cannot be made larger than N − f so that the redundancy
factor is lower bounded by N

N− f for any code even if it is
not an MDS code; In fact, an MDS code can equivalently be
defined as one which attains this lower bound on the redun-
dancy factor. In coding theory, this lower bound is known as
the Singleton bound [32]. Given parameters N , k, the ques-
tion of whether an (N , k) MDS code exists depends on the
alphabet of code W . We next discuss some of the relevant
assumptions that we (implicitly) make in this paper to enable
the use of an (N , k) MDS code in our algorithms.

Assumption on |V| due to erasure coding

Recall that, in our model, each value v of a data object
belongs to a finite set V . In our system, for the use of cod-
ing, we assume that V = Wk for some finite set W and that
Φ : Wk → WN is an MDS code. Here we refine these

13 Literature in coding theory literature often studies the rate N
k of a

code, which is the reciprocal of the redundancy factor, i.e., the rate of
an (N , k) code is k

N . In this paper, we use the redundancy factor in our
discussions since it enables a somewhat more intuitive connection with
the costs of our algorithms in Theorems 13, 14, 4, 7.
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write(value)
get: Send query request to all servers, await (tag) responses from a majority of server nodes. Select the largest tag; let its integer
component be z. Form a new tag t as (z + 1, ‘id’), where ‘id’ is the identifier of the client performing the operation.

put: Send the pair (t, value) to all servers, await acknowledgment from a majority of server nodes, and then terminate.

Fig. 8 Write protocol of the ABD algorithm

assumptions using classical results from erasure coding the-
ory. In particular, the following result is useful.

Theorem 12 Consider a finite set W such that |W| ≥ N .

Then, for any integer k < N, there exists an (N , k) MDS
code Φ : Wk → WN .

One proof for the above in coding theory literature is con-
structive. Specifically, it is well known that when |W| ≥ N ,
then Φ can be constructed using the Reed-Solomon code
construction [24,31,32]. The above theorem implies that, to
employ a Reed-Solomon code over our system,we shall need
the following two assumptions:

– k divides log2 |V|, and
– log2 |V|/k ≥ log2 N .

Thus all our results are applicable under the above assump-
tions.

In fact, the first assumption above can be replaced by a
different assumption with only a negligible effect on the
communication and storage costs. Specifically, if log2 |V|
were not a multiple of k then, one could pad the value with(
� log2 |V |

k �k − log2 |V|
)
“dummy” bits, all set to 0, to ensure

that the (padded) object has a size that is multiple of k; note
that this padding is an overhead. The size of the padded object
would be � log2 |V |

k �k bits and the size of each coded element

would be � log2 |V |
k � bits. If we assume that log2 |V| � k

then, � log2 |V |
k � ≈ log2 |V |

k meaning that the padding over-
head can be neglected. Consequently, the first assumption
can be replaced by the assumption that log2 |V| � k with
only a negligible effect on the communication and storage
costs.

Appendix B: Descriptions of the ABD and LDR algo-
rithms

As baselines for our work we use the MWMR versions of
the ABD and LDR algorithms [8,16]. Here, we describe the
ABDandLDRalgorithms, and evaluate their communication
and storage costs.We present the ABD algorithm in Figs. 8, 9
and 10.We present the LDR algorithm in Figs. 11, 12 and 13.
The costs of these algorithms are stated in Theorems 13
and 14.

Theorem 13 The write and read communication costs of
ABD are respectively equal to N log |V| and 2N log |V| bits.
The storage cost is equal to N log2 |V|bits.
The LDR algorithm divides its servers into directory servers
that store metadata, and replica servers that store object val-
ues. The write protocol of LDR involves the sending of
object values to 2 f + 1 replica servers. The read protocol
is less taxing since in the worst-case, it involves retrieving
the data object values from f + 1 replica servers. We state
the communication costs of LDR next (for formal proof, see
Appendix 1.)

Theorem 14 In LDR, the write communication cost is (2 f +
1) log2 |V|bits, and the read communication cost is ( f + 1)
log2 |V|bits.
In theLDRalgorithm, each replica server stores every version
of the data object it receives.14 Therefore, the (worst-case)
storage cost of the LDR algorithm is unbounded.

Proof of Theorem 13 We first present arguments that upper
bound the communication and storage cost for every execu-
tion of the ABD algorithm. The ABD algorithm presented
here is fitted to our model. Specifically in [8,25] there is no
clear cut separation between clients and servers. However,
this separation does not change the costs of the algorithm.
Then we present worst-case executions that incur the costs
as stated in the theorem.
Upper bounds First consider the write protocol. It has two
phases, get and put. The get phase of a write involves transfer
of a tag, but not of actual data, and therefore has negligible
communication cost. In the put phase of a write, the client
sends a value from the set T × V to every server node; the
total communication cost of this phase is at most N log2 |V|
bits. Therefore the total write communication cost is at most
N log2 |V| bits. In the get phase of the read protocol, themes-
sage from the client to the servers contains only metadata,
and therefore has negligible communication cost. However,
in this phase, each of the N servers could respond to the
client with a message from T × V; therefore the total com-
munication cost of the messages involved in the get phase
is upper bounded by N log2 |V| bits. In the put phase of
the read protocol, the read sends an element of T × V to

14 This is unlike ABD where the servers store only the latest version of
the data object received.
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read
get: Send query request to all servers, await (tag, value) responses from a majority. Select a tuple with the largest tag, say (t, v).

put: Send (t, v) to all servers, await acknowledgment from a majority, and then terminate by returning the value v.

Fig. 9 Read protocol of the ABD algorithm

server
state variable: A variable which contains an element of T × V
initial state: Store the default (tag, value) pair (t0, v0).

On receipt of get message from a read: Respond with the locally available (tag, value) pair.

On receipt of get message from a write: Respond with the locally available tag.

On receipt of put message: If the tag of the message is higher than the locally available tag, store the (tag, value) pair of the
message at the server. In any case, send an acknowledgment.

Fig. 10 Server protocol of the ABD algorithm

write(value)
get-metadata: Send query request to directory servers, and await (tag, location) responses from a majority of directory servers.
Select the largest tag; let its integer component be z. Form a new tag t as (z + 1, ‘id’), where ‘id’ represents the identifier of the
client performing the operation.

put: Send (t, value) to 2f + 1 replica servers, await acknowledgment from f + 1. Record identifiers of the first f + 1 replica
servers that respond, call this set of identifiers S.

put-metadata: Send (t, S) to all directory servers, await acknowledgment from a majority, and then terminate.

Fig. 11 Write protocol of the LDR algorithm

read
get-metadata: Send query request to directory servers, and await (tag, location) responses from a majority of directory servers.
Choose a (tag, location) pair with the largest tag, let this pair be (t, S).

put-metadata: Send (t, S) to all directory servers, await acknowledgment from a majority.

get: Send get object request to any f + 1 replica servers recorded in S for tag t. Await a single response and terminate by returning
a value.

Fig. 12 Read protocol of the LDR algorithm

replica server
state variable: A variable that is subset of T × V
initial state: Store the default (tag, value) pair (t0, v0).

On receipt of put message: Add the (tag, value) pair in the message to the set of locally available pairs. Send an acknowledgment.

On receipt of get message: If the value associated with the requested tag is in the set of pairs stored locally, respond with the value.
Otherwise ignore.

directory server
state variable: A variable that is an element of T × 2R where 2R is the set of all subsets of R.

initial state: Store (t0, R), where R is the set of all replica servers.

On receipt of get-metadata message: Send the (tag, S) be the pair stored locally.

On receipt of put-metadata message: Let (t, S) be the incoming message. At the point of reception of the message, let (tag, S1) be
the pair stored locally at the server. If t is equal to the tag stored locally, then store (t, S ∪ S1) locally. If t is bigger than tag and if
|S| ≥ f + 1, then store (t, S) locally. Send an acknowledgment.

Fig. 13 Replica and directory server protocols of the LDR algorithm
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N servers. Therefore, this phase incurs a communication
cost of at most N log2 |V| bits. The total communication
cost of a read is therefore upper bounded by 2N log2 |V|
bits.

The storage cost of ABD is no bigger than N log2 |V| bits
because each server stores at most one value - the latest value
it receives.
Worst-case executions Informally speaking, due to asyn-
chrony and the possibility of failures, clients always send
requests to all servers and in the worst case, all servers
respond. Therefore the upper bounds described above are
tight.

For the write protocol, the client sends the value to all N
nodes in its put phase. So the write communication cost in an
execution where at least one write terminates is N log2 |V|
bits. For the read protocol, consider the following execution,
where there is one read operation, and one write operation
that is concurrent with this read. We will assume that none of
the N servers fail in this execution. Suppose that the writer
completes its get phase, and commits to a tag t . Note that
t is the highest tag in the system at this point. Suppose that
among the N messages that the writer sends in its put phase
with the value and tag t , Now the writer begins its put phase
where it sends N messages with the value and tag t . At least
one of these messages, say the message to server 1, arrives.
The remaining messages are delayed, i.e., they are assumed
to reach after the portion of the execution segment described
here. At this point, the read operation begins and receives
(tag, value)pairs fromall the N server nodes in its get phase.
Of these N messages, at least one message contains the tag
t and the corresponding value. Note that t is the highest tag
it receives. Therefore, the put phase of the read has to sends
N messages with the tag t and the corresponding value - one
message to each of the N servers that which responded to the
read in the get phase with an older tag.

The read protocol has two phases. The cost of a read oper-
ation in an execution is the sum of the communication costs
of the messages sent in its get phase and those sent in its
put phase. The get phase involves communication of N mes-
sages from T ×V , onemessage from each server to the client,
and therefore incurs a communication cost of N log2 |V| bits
provided that every server is active. The put phase involves
the communication of a message in T × V from the client
to every server thereby incurring a communication cost of
N log2 |V| bits as well. Therefore, in any execution where
all N servers are active, the communication cost of a read
operation is 2N log2 |V| bits and therefore the upper bound
is tight.

The storage cost is equal to N log2 |V| bits since each of
the N servers store exactly one value from V . ��

Proof of Theorem 14 Upper bounds: In LDR servers are
divided into two groups: directory servers used to man-

age object metadata, and replication servers used for object
replication. Read and write protocols have three sequentially
executed phases. The get-metadata and put-metadata phases
incur negligible communication cost since only metadata
is sent over the message-passing system. In the put phase,
the writer sends its messages, each of which is an element
from T × V, to 2 f + 1 replica servers and awaits f + 1
responses; since the responses have negligible communica-
tion cost, this phase incurs a total communication cost of at
most (2 f + 1) log2 |V| bits. The read protocol is less tax-
ing, where the reader during the get phase queries f + 1
replica servers and in the worst case, all respond with a
message containing an element from T × V thereby incur-
ring a total communication cost of at most ( f + 1) log2 |V|
bits.

Worst-case executions It is clear that in every execu-
tion where at least one writer terminates, the writer sends
out (2 f + 1) messages to replica servers that contain
the value, thus incurring a write communication cost of
(2 f + 1) log2 |V| bits. Similarly, for a read, in certain exe-
cutions, all ( f + 1) replica servers that are selected in
the put phase of the read respond to the get request from
the client. So the upper bounds derived above are tight.

��

Appendix C: Proof of Lemma 1

Proof of property (i): by the definition, each Q ∈ Q has
cardinality at least � N+k

2 �. Therefore, for Q1, Q2 ∈ Q, we
have

|Q1 ∩ Q2| = |Q1| + |Q2| − |Q1 ∪ Q2|
≥ 2

⌈
N + k

2

⌉
− |Q1 ∪ Q2|

(a)≥ 2

⌈
N + k

2

⌉
− N ≥ k,

where we have used the fact that |Q1 ∪ Q2| ≤ N in (a).
Proof of property (ii): let B be the set of all the server

nodes that fail in an execution, where |B| ≤ f . We need to
show that there exists at least one quorum set Q ∈ Q such
that Q ⊆ N − B, that is, at least one quorum survives. To
show this, because of the definition of our quorum system,
it suffices to show that |N − B| ≥ � N+k

2 �. We show this as
follows:

|N − B| ≥ N − f
(b)≥ N −

⌊
N − k

2

⌋
=

⌈
N + k

2

⌉
,

where, (b) follows because k ≤ N − 2 f implies that f ≤
� N−k

2 �.
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