
Constructing Two-Writer Atomic Registers 

Bard Bloom* 
M.I.T. Laboratory for Computer Science 

545 Technology Square, Cambridge, Mass. 02139 
ARPAnet: bardQtheory.lcs.mit.edu 

May 15, 1987 

Abstract 

In this paper, we construct a 2-writer, n-reader 
atomic memory register from two l-writer, (n + l)- 
reader atomic memory registers. There are no re- 
strictions on the size of the constructed register. The 
simulation requires only a single extra bit per real reg- 
ister, and can survive the failure of any set of readers 
and writers. This construction is a part of a system- 
atic investigation of register simulations, by several 
researchers. 

1 Introduction 

There are several models of memory registers, of 
varying strength. The most familiar is the single- 
processor memory register, as used by isolated com- 
puters. The intuition of a single-processor register 
is clear enough: a read of the register returns the 
value written by the last write to the register. We 
call this the register propedg. If the processor was 
initialized (equivalently, the first action on the reg- 
ister is a write), this property uniquely determines 
the behavior of the register, as a function of the se- 
quence of reads and writes. The object of strong 
shared memory, atomicity in particular, is to provide 
as much of the power and familiarity as possible of 
single-processor memory to the multiprocessor envi- 
ronment. 

Consider a model of memory in which each pro 
cessor has a separate channel to each shared mem- 

*This research is supported in part by the Defense Ad- 
vanced Research Projects Agency under Contract N00014-SO- 
C-0622, and in part under an NSF Graduate Fellowship. 

ory register.’ We assume that the processors using 
the register are each sequential, but completely asyn- 
chronous. Since there are several processors, the reg- 
ister may be trying to do more than one thing at a 
time. When a write overlaps some other action, the 
register property does not uniquely specify the regis- 
ter’s behavior. Which of two overlapping writes, for 
example, should be considered “the last write”? If 
a read overlaps several writes, which is the last one? 
These questions cannot be answered from first prin- 
ciples. 

Fortunately, the register property does tell what 
some actions should do. Given an action A, with no 
action overlapping it, then A should work correctly. If 
R is a read, and only reads overlap R, then R should 
return the correct value. The register should only 
contain legitimate values; a boolean-valued register 
can’t return fue or its complement tralse. 

There are several standard models for one-writer 
registers[LZ]. All of these models work correctly when 
only one processor’ is using a given memory register 
at a time; the differences between models restrict how 
the register can react when several processors are act- 
ing on it at once. 

The strongest and most commonly used of these 
models is aiomicity. Reads and writes act as if they 
do not overlap, as if they occurred in some definite 
order. The register property and this ordering of ac- 
tions determines the effect of every action. 

Atomic runs are helpful for practical purposes. 
Since all actions act as if they did not overlap, we 
need not worry about what happens on overlaps. For 
example, it is not possible for one reader, reading 
twice during a write, to get the new value on the 

‘Few if any multiprocessors have this architecture. 
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission 
of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 

0 1987 ACM O-8979 l-239-X / 87 /0008 /0249 
249 

75C 



first read and the old on the second; this sequence of 
events is impossible for non-overlapping actions, and 
therefore impossible for overlapping ones as well. 

Since shared memory of this sort is expensive, it 
seems reasonable to try to simulate it with cheaper 
kinds of shared memory. (In general, memory from a 
weaker model of computation is cheaper than from a 
stronger.) 

Register protocols are unusual among resource- 
sharing protocols, in that they provide atomicity 
(i.e., serialization) without requiring mutual exclu- 
sion. Although they are usually phrased in terms of 
memory, they can be used for any object with the 
same fundamental operations of reading and writing. 
For example, consider a collection of computers, each 
permitted to read all the others’ file systems, but only 
able to write on their own. Multi-writer register algo- 
rithms could allow them to simulate a shared file sys- 
tem. Leslie Lamport [L2] has given many simulations 
for single-writer memory. In this paper, I present 
a protocol for simulating twowriter n-reader atomic 
memory with two one-writer, n + l-reader atomic reg- 
isters. 

There are a number of properties that a good sim- 
ulation will have. No processor should have to wait 
for another’s action to use a register. The failure 
of one processor - even during a write - should 
not prevent other processors from reading or writing.2 
Shared memory is likely to be slow compared to lo- 
cal memory, so the algorithm should use the smallest 
possible number of accesses of shared memory. 

2 I/O Automata (Simplified 
Lynch-Tuttle Model) 

In this paper, we will use a considerably simplified 
version of the Lynch-Tuttle I/O automaton model. 
The full model is considerably more powerful than 
required by register algorithms; see [LT] and [LM]. 
Most of the detail available in our restricted version 
is not used per se in the proofs; it is presented to give 
a flavor of a fully formal proof in this model. A pro- 
cess (e.g., a program or a register) is modeled as an 
automaton, with possibly an infinite number of states 
and infinite fanout from any state. The automaton 

2 These requirements disallow mutual exclusion algorithms, 
which delay some processes in favor of othera and are not in 
general crash-resistant. 

may be countably nondeterministic. The transitions 
of the automaton A are labeled with acfions, mem- 
bers of the automaton’s alphabet 

The automaton alphabet is divided into three sub- 
alphabets, the Inpu’., Output, and Internal alpha- 
bets. The Input and Output alphabets are sets of 
signals which the automaton can accept and produce. 
The Internal alphabet is the set of actions which other 
processors should not be allowed to see. We will 
use Internal actions to mark times at which register 
events actually take place. We insist that an I/O au- 
tomaton be inpuf-enabled; i.e., have an edge labeled 
with each input action out of every state. Thus, an 
automaton is always ready to deal, perhaps trivially, 
with any input. It may be programmed to buffer the 
input, by changing to a state with the input added 
to a queue; it may be programmed to ignore inputs 
that it is not ready to pay attention to. 

Automata may be composed into systems in the 
following way. If AI,. . . , A,, are automata with dis- 
joint sets of output actions and disjoint sets of in- 
ternal actions, their composition B has as its set of 
states the set of tuples of states of the Ai’s. B has a 
state transition from (al,. . . , a,) to (a{, . . . , oi) with 
action CY if either one component has a so-labeled 
transition and no other component moves (in which 
case a has the same classification for B that it does 
for that component), or one component has (Y as an 
input action and another has it as an output action, 
and no other component takes a step (in which case 
a is internal to B). 

An ezecuiion of an I/O automaton is an alternat- 
ing sequence of states and actions, starting with an 
initial state of the automaton and proceeding as long 
as possible (which may be infinite), such that when- 
ever siursz is a subsequence starting with a state, the 
automaton can make an al-labeled transition from sr 
to $2. A fair ezecution of the composition B is one 
in which, whenever a component Ai wants to take a 
step, it is eventually allowed to. More formally, when- 
ever the system is in a state (or, . . . , a,,) and Ai has 
an output or internal action enabled in state ai, even- 
tually the composition B takes one such action. A 
schedule of an automaton is a sequence of actions ob 
tamed by removing all the states from an execution; 
it is a finite or infinite sequence of actions taken by 
the automaton as it moves from state to state. A fair 
schedule is a schedule derived from a fair execution. 
Fair schedules correspond to the usual notion of asyn- 

250 



chronous communication: one process may take ar- 
bitrarily but finitely many steps before another takes 
one. 

An execution module, for our purposes, is a set E 
of executions. A schedule module, is a set S of sched- 
ules. Also of interest are ezternat schedules: for each 
schedule s, the subsequence of s formed by omitting 
all the internal actions of s. In particular, a protocol 
(for an arbitrary problem) is considered correct if it 
has an appropriate set of external fair schedules. 

We will talk about I/O channels between au- 
tomata. A channel that can pass signals (i.e., ac- 
tions) in the set S between automata A and B is 
simply a convention that A and B share the actions 
in S, that the actions in S are internal to the com- 
position, and that no other processors in the system 
have actions from S in their signature. 

3 Formal Model 

Let Val be a set of values that the register is to hold. 
A register can be described by a schedule module. 

Each reader and writer has a bidirectional channel to 
the register; if a computer c&n both read and write, it 
has t~lo channels. A read channel allows messages of 
the form R:,.r, (a constant signal meaning a command 
to read from channel c) to the register, and R&i,a(~) 
(a meaning that the value v E Vat was read) to the 
reader. A write channel allows messages Wft,,(v) 
(command to write) and Wini,h (acknowledgment). 
(The channei c names the source and destination; 

for example, W~~~~’ is a request from processor Wro, 
writer number 0, to read the value in register 1.) A 
process equipped with such channels and no others is 
said to have the signature of a register. 

The input-the sequence of read and write 
requests-is correct if no reader or writer initiates 
a second action before the first has finished. In our 
formalism, a sequence cr of actions is input-correct 
if there are no two requests on that channel without 
an intervening acknowledgment, A non-input-correct 
schedule is one in which case the user has used the in- 
terface to the register improperly and so any behavior 
by the register is legitimate. 

For 210 E Val, we say that a schedule Q of a system of 
automata (with the signature of a register) is atomic 
initialized to 2r0 if either it is not input-correct, or the 
following conditions hold. 

1 

2. 

There is a bijection (“matching”) between the 
requests and acknowledgments along each chan- 
nel, such that the acknowledgment correspond- 
ing to a given request is the first action along 
that channel folIowing the request. 

The reads and writes in a can be shrunk to 
points. Formally, (;Y can be extended to a se- 
quence ,B, by the addition of signals W:(u) and 
W:(v) inside the W,cl&,, -W~ni*h(V) and wZC~rt(v)- 

Wfc;lli,h pairs, precisely one signal per pair, such 
that, for each matched pair R~,~~*-R&(v), v 
is the value of the latest W:(d) preceding the 
K(v), or vo if there is no such W:(d). 

The signals q(v) and W:(v) mark the instants 
that the actions “actually occurred.” Such actions 
are called *actions or internal actions. 

If R is a system of automata, such that every fair 
schedule of R is atomic initialized to vo, then we say 
that R implements an atomic register with initial 
value VO. R is utomic if it is atomic initialized to 
some 210. (As is usual in the Lynch-Tuttle model, 
the requirement that an automaton be input-enabled 
excludes degenerate solutions by forcing a system to 
have appropriate behavior for every sequence of in- 
puts. In particular, degenerate cases such as an au- 
tomaton which never does anything are excluded.) 

This definition is a formalization in terms of se- 
quences of the usual definition ((L2]): that every read 
and write can be shrunk to a point inside its interval, 
with distinct actions shrinking to distinct points, such 
that the resulting sequence has the register property. 

We will use the term “a read” to refer to a matched 
K.r, -W~,i,,(v) pair, and similarly for a write. An 
atomic sequence may be considered a set of reads and 
writes, partially ordered by precedence. Lamport [L2] 
among others uses this formalism. 

4 Architecture of the Solution 

We present a protocol for simulating a two-writer, 
n-reader atomic register with two one-writer, n + l- 
reader atomic registers. Both the simulated and the 
real3 registers are defined as in the previous section. 

31t is somewhat deceptive to call the registers used in the 
simulation “real”. They may be simulated using more prim- 
itive regular and safe one-reader, one-writer registers, using 
protocols from Lamport [L2] and others. However, they are as 
real as anything at this level of abstraction. 

251 



R.*, Command to read. 
RXv> 
Rkd~) 

Internal (to simulated register) event marking a read of v. 
RJZ d k a ac nowledgment; Communication of the read value v to the reader. 

W:,,,(v) Command to write value o. 

WV) Internal event marking a write of o. 
WLL Acknowledgment of a write. 

Figure 1: Actions of a Register Automaton 

The architecture of the simulated register is as fol- 
lows; see also Figure 2. 

There are n+4 automata in the simulated register. 
Two of these automata, Reg, and Reg,, are l-writer, 
(n + 1)-reader atomic registers. Two others are the 
writers, called Wro and Wrl; the rest are the readers, 
named Rdl through Rd,. Each of the readers and 
writers has one channel to the outside world; these 
channels are the ports of the simulated register. The 
readers and writers are collectively known as proces- 
sors. Each processor has a channel to each of the 
real registers. The channels allow reading and writ- 
ing messages as appropriate: The readers can read 
both real registers; Wri can write to Regi and read 
(but not write) Reg,;. The external ports of the sys- 
tem give it the signature of a register. The problem 
solved in this paper is to find implementations for 
the (n+2) processes Wro, Wrl, and Rdl through Rd, 

such that the system actually is an atomic register. 
In practice, the reader and writer automata will he 

subroutines running on real processors. The requests 
are the calls to the subroutines; the acknowledgments 
are the returns. 

Certain other properties are desirable. The reading 
and writing protocols should be deterministic. Also, 
the status of one processor should. not affect that of 
another. For example, a protocol could be cobbled 
together from a fair mutual exclusion protocol. This 
would require processes to wait for each other, an un- 
desirable trait for memory. Furthermore, one proces- 
sor could crash while reading the register and block 
all further access, which is rather undesirable. Fi- 
nally, the algorithm should use as little extra memory 
as possible. The algorithm presented in this paper 
has all these properties. 

5 The Algorithm 

To simulate an atomic register with values in Val, we 

use registers Rego and Reg, with enough space to hold 
one value in Vat and a single tag bid. To construct a 
register initialized to vo, use two real registers both 
initialized to value ~0 and tag bit 0.4 Whenever a 
writer writes, it tries to make the sum of the tag bits 
equal to its own index, modulo 2. This is similar to 
Peterson’s tournament algorithm [PF]. If one writer 
is quiescent while the other writes, it is clear that the 
active writer can set the sum of the tag bits to its 
own index. 

The writers use the following code to write the 
value w. Each writer knows its own identity, i = 0 
or i = 1. If i is the index of a processor, -G (the 
complement of i) is the index of the other processor. 
The symbol $ denotes addition modulo 2. 

read t’, V' from Rcg,, 

t := (i @ t’) 

write t, v to Regi 

We say that a simulated write request Wf%,,,(v) oc- 

curs at the call to this routine, and an acknowledg- 
ment at the return. Since the routine is running on a 
sequential processor, there can never be two write re- 
quests without an intervening acknowledgment; the 
input will always be input-correct. By hypothesis, 
the real reads and writes always terminate; since the 
write routine has no loops, it too will always termi- 
nate. 

Notice that the writer writes only once, at the end 
of its protocol. This has the advantage that, at any 
time except for the instant of the atomic write, either 
nothing of the write is visible or everything is. In 
particular, if the writer crashes at some point in the 
protocol, the write either occurs or does not occur; 

‘The initial GAIT - but not the initial tag bit - of Reg, 
is irrelevant. 

252 



Real Register Channels 

Figure 2: Architecture of the Simulated Register 

it does not leave the register in an inconsistent state. 
(Dealing with failures formally would complicate the 
model slightly, and we shall not do so.) 

The readers use the following code: 

read to, uo from Reg, 
read t! , ~1 from Reg, 
r := (to et1) 
read t?, vz from Reg, 
return v:! 

As was the case for writes, simulated read requests 
are defined to occur at the start of this code, and 
their acknowledgments at the end. Notice that one 
simulated read involves three real reads. In many 
applications, the writers will be allowed to read the 
simulated register as well; that is, a single automaton’ 
is connected to one read port and one write port. The 
number of real reads that such a writer performs in 
a simulated read may be reduced to one or two by 
having the writer keep a local copy of it.s own real 
register. 

6 Correctness 

Consider any fair external schedule 01 of the system. 
Since there are no requirements on a schedule that 
contains a violation of sequentiality on any channel. 
we assume that 0: has no such violations. We will 
denote the actions by processor P on the simulated 
re ister by Wrg, 
$i 

etc.; those on real register i will be 
,,:,,. We must show that CL is atomic by inserting 

x-actions. We omit the P superscript when it is clear 
from context. 

Since a is the external schedule of the system, 
it is the schedule resulting from some execution se- 
quence a*, including the states and real actions of 
the implementing I/O automata. We will not need 
to consider the states of the processors formally, so 
we will use the sequence ,i? consisting of the actions 
in a* for the real as well as the simulated registers. 

The real registers are atomic, and therefore any 
schedule.of them can be extended by actions Qi(u) 
and W:‘(v) as given by the definition of atomicity. 
Extend /3 to a sequence y with these internal actions 
included. 

If R and W are simulated read and write respec- 
tively, we say that R reads the value written by W if 

253 



W is a write by Wri, R’s final real read reads Rcgj, 
and the *action of W’s real write is the last *action 
of any real write to Regi in 7 before the *action of 
R’s final real read. R reads the initial value if it, does 
not read the value written by any write W. 

A nonempty finite prefix 7’ of the schedule 7 is a 
listing of the history of events that have happened up 
to and including some point; we refer to such a prefix 
as a time. We write 71 < y2 for “71 is a proper prefix 
ofy2”. (U 1 k th n i e 0 er notions of time, only one action 
can happen at a time - which is to say, there is only 
one action at the end of a nonempty finite sequence 
of actions.) 

Let 7’ be a time. We say that Regi contains (vi, ti) 
after 7’ if the last W:((v:, t:)) in y’ has ti = t: and 
Vi = vi, or if no such action exists and (vi, ti) is the 
initial value for Regi. If the real registers contain 
(210, to) and (VI, t1) after y’ respectively, then we say 
that the sum of the tag bits after 7’ is to @ tl. 

Since the real registers are atomic, we will speak 
of the +-actions of real register accesses as if they 
were the whole access. For example, we say “The 
real write VVo precedes the real read RI” for “The + 
action of Wo precedes the *action of WI .” When we 
have -k-actions defined for simulated register accesses, 
we will speak of them similarly. Also, if A and B are 
distinct register accesses by the same processor (with 
or without +-actions), one of them entirely precedes 
the other and we will speak of them as such. We say 
“Wri real-reads at time T”’ for the more precise “Wri 

performs a real read with its *action occurring as 
the last element of the prefix T of y”, and use similar 
language for real-reading and simulated-writing. 

7 Proof of Correctness 

We will insert internal actions R* Rdild(~) and 

War’+ in the sequence 7 in several steps. We 
first consider only the writes, divided into “potent” 
and “impotent” writes; then we consider the reads, 
divided into “reads of potent writes”, “reads of im- 
potent writesn, and “reads of the initial value.” In 
each step, we insert, a *action between the start and 
finish of each simulated register access of the appro- 
priate type. Furthermore, for each read R we show 
that the value returned by R is the value written 
by the immediately preceding *action of a simulated 
write. 

At each stage, we will be inserting a possibly in- 
finite number of actions into a possibly infinite se- 
quence. It is essential to know that the insertions can 
be done, and that the result is a sequence containing 
all the actions ir, the original; consider adding an in- 
finite number of actions at the front of y. However, 
we will always add actions between pairs of actions 
in the original sequence; therefore we will never add 
more than n elements before the n’th element of the 
sequence. This is sufficient to guarantee that the ad- 
dition of elements is well-defined, and is in fact results 
in a sequence containing all the elements of the first 
in the correct order. 

We begin with definitions and useful lemmas. We 
say that a simulated write W by Wr; is potent if the 
sum of the tag bits immediately after the *action of 
W’s real write is i. Otherwise, it is impotent. Note 
that the potency of a write depends only on the values 
in the real registers immediately after the write; a 
write is not potent at one point in 7 and impot.ent at 
another. 

We say that one simulated write Wo is prefinished 
by another WI if the real write of WI occurs between 
the real read and the real write of Wo, and (3j WI is 
the last such write. 

Lemma 1 Every impotent write Wo is prefinided by 
precisely one write WI. 

Proof: Uniqueness of the WI follows from the def- 
inition. Let WO be a write by Wro not prefinished 
by any other write. Then, there is no real write by 
Wrl between the start and the real write of of Wo. In 
particular, the tag bit tl of Reg, has the same value 
when Wro real-reads it and when Wro real-writes to 
its register. Following the protocol, Wro chooses t,he 
bit to = tl, and writes to as the tag bit of its real 
write. So, the tag bits at the time of We’s real write 
are to = tl in Rcg, and tl in Rcg,; their mod-2 sum 
is 0, and. so WO is potent. The same argument ap- 
plies, mutatis mutandis, for Wrl. Thus, any write not 
prefinished by another is potent, i.e., any impotent 
write is prefinished by some write. 0 

Definition 1 The prefinisher of an impotent ulrife is 
the unique write which prefinishes it. 

Lemma 2 The prefinisher WI of an impotent write 
WO is poten.!. 

254 



Tl, T’ CIW Tb zw Tow 

0 1 1 1 0 

Write WA I Write Wo J 
I Write WI I 
I I 

0 0 0- 1 1 

Time 
Rego’s Tag Bit 

Wr0 

Wrl 
Rtgl’s Tag Bit 

Figure 3: Figure for Lemma 2 

Proof: Suppose that the lemma is false. Let WO be 
the first impotent, write with impotent prefinisher, in 
order of time of atomic real write. Let WI be the 
prefinisher of Wo. WI is impotent; let Wh be WI’S 
prefinisher. Let Tar and Tl, be the times of We’s and 
WI ‘8 real reads, To,, Ti, and Tl, the times of the 
real writes of W,, IV;, and WI respectively. By the 
definition of prefinishing, Ti, < TI, < TO,; since the 
processors are sequential we have T& < TO, < Tow 
and Tl, < TI, . (See Figure 3.) 

We assume that Wro is the writer of WO, exploiting 
the symmetry of the protocol. Further, suppose that 
Reg,-,‘s tag bit after the real write WO is 0; the same 
argument with 0 and 1 exchanged applies if the bit 
is 1. 

Since Wro writes the tag bit value 0, it must read 
Regl’s tag bit set to 0 at Tar. Sirke WO is impotent, 
Regl’s tag bit at time TO w must be 1. Since Regl’s 
tag bit changes between Top and To,, Wrl must real- 
write between these times. WI’S real write is the last 
real write by Wrl before Tow, and therefore Top < 

zw < Tow. 
Wrl does not write between TL, and TO,; since 

Regl’s tag bit at To, is 1, its tag bit at Tl, is 1. 
Since WI is impotent, the sum of the tag bits must 
be 0 at time Tl,. Hence the tag in Rego at time 7’1, 
is 1. Since WI writes the bit 1, it must read RegO’s 

tag bit as 0 at time Tlr. 
However, Reg,-,‘s tag bit is 1 at time Tl,. Since W; 

is the prefinisher of WI, its real write is the last real 
write to Rego before Tl w; it must write 1 as its tag 
bit. In particular, Rego’s tag bit is 1 at TL,. Since 
Wro does not write between Ti, and To,, RcgO’s tag 
bit is constantly 1 in this interval. However, WI real- 
reads tag bit 0 at time Tl,; therefore Tl, < TJ,. The 
five times are now fully ordered Tl, < Ti, c Top < 
Tl, < TO, as in Figure 3. 

Since Reg,‘s tag bit is 0 at time To,, it must be 0 
at time TI,; the tag bit is not changed until the 
real write occurs. In particular it is 0 at time TA,, 

when Wi real-writes. 
At time Ti,, Rego has tag 1 and Reg, has tag 0; 

therefore, Wi is impotent. However, we had assumed 
that Wo is the first (ordered by time of real write) 
impotent write by either writer not prefinished by 
some potent write by the other processor; and we 
have discovered that WI is another such write that 
precedes WO in this order. This contradiction proves 
the lemma for Wro and tag bit 0; the other cases are 
similar. 0 

At this point we have divided the simulated writes 
into two categories: potent and impotent writes. 
There are three categories of reads: those which read 
from potent writes, from impotent writes, and from 
the initial value. We will insert *actions for actions 
in stages in this order; for brevity, we will process all 
writes at the same time. 

7.1 Writes 

Step 1 Let 71 be 7 with a 
write inserted immediately 

*-action for each potent 
after the *-action of its 

real write, and a *-action for each impotent write Wo 
placed immediately before the jr-action in 71 of the 
write WI which prefinishes it. 

It is clear that +-actions of potent writes are within 
the intervals of the writes. If Wo is an impotent, write, 
its prefinisher WI is potent. WI’S +action is adjacent 
to its real write in yl. By definition of prefinishing, 
WI’S real write is between WO’S real read and real 
write. Therefore, WI’S +--action is inside WO’S interval 
as well, and so this is a legitimate assignment of times. 

7.2 Reads of Potent Writes 

It is evident from the code that a read always returns 
a value written by some write, or the initial value. It 
may read the value of an impotent write. Consider a 
very slow reader, which reads the tag bits and then 

255 



goes to sleep for a long time while the writers con- time Tw and Rs reads v at position T2 > Tu,, Wrs did 
tinue to work. When it wakes up, its tag bits have not real-write between T’, and T2. Therefore, it did 
no relevance to the current state of the register, and not perform a potent simulated write between these 
it may read from either real register, and so return times. If it perfc:med an impotent write assigned a 
the value of an impotent write. This is acceptable *action in the interval (ru, . . .To), the prefinisher of 
behavior; in step 4, we will assign such a read a time that write would also be in that interval (since the 
immediately after the *action of the impotent write. times of such writes are adjacent in 72 by construc- 

We will first choose times for all simulated reads R tion). It suffices to show that Wrl does not write in 
which return values v written by potent writes W. this interval. 

Step 2 Let 72 be Yl with * *-dhs for ed red 
Suppose that Wrl performs a write W’ of value v’ 

R of a potent write W inserted immediately after the 
after w with w’ps *action before Ro, By symmetry, 

later of the k-action for the first real read of R and 
assume that W set RegO’s tag bit to 0. Then, at 

the *-action of W in 71. If several k-actions are to be 
time T,, Reg,‘s tag bit must be 0 as well, because M 

inserted in the same position (e.g., immediately after 
is potent 

the k-action of a particular write W), we insert them 
If W’ were impotent, then W’ had to be prefinished 

in arbitrary order. 
by some write by Wro. If W prefinished W’, then W’ 
would have been assigned a time immediately before 

It is clear that we are assigning *actions to reads the time for W; this is not the case. If some later 

within the intervals of the reads. Since the reads by a write W” prefinished W’, then we would have as- 

given reader are sequential, no more than n *actions signed W’ a time immediately before W” in 71. The 

will have to be inserted in one position, and therefore +action of W”‘s is next to its real write in 71. Since 

y2 is well-defined. W”s *action is between Tw and To; therefore, W”‘s 
real write is in the same interval, This contradicts the 

Lemma 3 If R is u read of a potent write W, then fact that Wro does not real-write between T, and T2. 
the k-action of W in 72 precedes that of R, and is the SO, WI cannot be impotent. 

last *-action of any write preceding the *-action of R. Therefore W’ must be potent; Wrl must have set 

Proof: The identity Rdb of the reader makes no dif- 
Rcgl’s tag bit to 1 at the real write of W’. Since 

ference to the argument; all readers have exactly the 
W’ is potent, its *-action is adjacent to its real write 

same algorithm. There are three real reads over the 
in 71, and hence the tag bit is set to 1 before Ro. 

course of R: Ro and RI of Reg, and Reg,, and Ra 
Since Wro did not real-write between T, and T2, its 

of one of the two registers. Let TO, ‘1;) and T2 be 
tag bit is 0 over that interval. Any simulated write 

the times in 72 of these three actions; let TuI be the 
by Wrl after W’ and before 2” will real-read RegO’s 

time in y2 of W’s *action. R’s *action is the action 
tag bit of 0 and write 1 .as Regl’s tag bit. So, the 

immediately after the later of T, and To. Note that 
tag bits are 0 and 1 from the time of W’ until T2. 

Ro precedes RI precedes R2.5 There are two cases, 
In particular, the bits are set to 0 and 1 when the 

depending on the relative order of To and 7”. 
reader reads them at TO and TI. But then the reader 
would have read Reg, instead of Rtg,, which is a 

The first alternative is that TO < Tu. Since R2 contradiction 
returns the value written by the rea1 write of W, R2 
must follow the real write. Since W is potent, the 

The case that Wrl wrote W is essentially symmet- 

*-action of W immediately follows its real write. By 
ric; the preceding argument works mutatis mutandis. 
Therefore, there are no *actions of writes between T, 

construction, the +-action of R follows that of W, and To. o 
with only +-actions of other simulated reads inter- 
vening. 

The other alternative is that TO > 37,. SuPPose 7.3 Reads of Impotent Writes 
that Wro is the writer of W. Since W writes v at 

‘The proof would work with trivial changes if the reading 
Step 3 Let y3 be y2 with a *-action for each read R 

protocol performed its first two reads in parallel. In this case, of an :‘mpotent write Wo inserted immediately after 

& should be definedas the fir& read to happenin the atomic the *-&ion Of WO- 

order on real reads. 

256 



It is not immediately obvious that this is a legiti- 
mate assignment of *actions. Consider the scenario 
of Figure 4, in which the +action of Ws precedes the 
start of R. Fortunately, this scenario is impossible. 

Lemma 4 If R is a read of an impotent write Wo, 
then the *-action of Ws occurs within the interval 
ofR. 

Proof: Let Rdj be the reader of R, and To, Tl, and Tz 
the times of its real actions. By symmetry assume 
that Wro performed WO. Let WI be the prefinisher 
of WO. Let T’o and T,r be’ the times-in 72 of the 
*-actions of these simulated writes. By construction, 
To < Tr < T2 and Tao < T,l. Furthermore, there are 
no actions in 72 between TSo and Tsr. We show that 
To <Zo <T2 

Since R returns the value was written by Ws, the 
real read &I must precede the real write of Wo. The 
assignment of times to impotent writes places their 
internal actions before their real writes occur. So, 
Tso < Rz. 

We must now show TO < Tso. Suppose not; i.e., 
Tso < TO. Since T,o and T,I are consecutive, Tsl < To 
as well. The five times must be ordered Tao < T,l < 
TO < Tr < 25, as shown in Figure 4. 

We observe that We does not change the tag bit 
of Reg,. For, since WI is potent, the sum of the tag 
bits at time T,1 is 1. Since WO is impotent, the sum 
of the tag bits at T”, - the time of WO’S real write 
- is also 1. (The only other thing the sum could be 
is 0, but if it were 0 then WO would be potent). Since 
the sum of the bits does not change after WO writes, 
neither does RegO’s bit. 

At time T2, the reader reads the value written 
by Wo. Therefore, Wro does not real-write between 
times Z’:, and T2. Wrl may write several times in this 
interval; however, all such writes use the same tag bit 
as WI. RegO’s tag bit does not change in the interval 
[Tso - . .Tz], and Regl’s does not change in the inter- 
val [Tdr . . .TI]. Let to, tl be the tag bits during this 
interval, which Rdj reads at times TO, Tl respectively. 

Since Rdi following the protocol reads Rego, we 
have to $ tr = 0. By the preceding argument from 
WI’S potency, to @ 11 = 1. This is absurd. This 
contradiction shows that Ro precedes Tao; i.e., that 
the time assigned to Wo is in the interval of the 
read R. 0 

Lemma 5 If R is Q read of an impotent write WCJ, 
then the k-action of Wo in 73 precedes that of R, and 
is the last *-action of any write preceding the *-action 
of R. 

Proof: Obvious. cl 

7.4 Reads 

Lemma 6 If R 
vahe, consisting 
there are no real 
73 preceding RI. 

of the Initial Value 

is a simulated read of the initial 
of real reads Ro, RI, and Rz, then 
write actions by either processor in 

Proof: Recall that both tag bits are initialized to 0. 
If R reads from Regl, then clearly it reads from a 
write by Wrl rather than the initial value. Suppose 
that R reads from Rego. If there were a real write WO 
by Wro before R2 (which is later than RI), then RZ 
would return the value from WO’S simulated write 
rather than the initial value. Since there are no writes 
by Wro before R2, RegO’s tag bit is constantly 0 until 
at least R2. If there were a real write by Wrl be- 
fore RI, then the tag bit of Reg, would be set to 1, 
and R would have read the value written by such a 
write rather than the initial value. 0 

Step 4 Let 6 be 73 with Q jr-action inserted immedi- 
ately ajter the second real read (RI in Lemma 6) of 
each read R reading the initial value. 

7.5 Concluding the Proof 

Let E be 6 with the real actions omitted; E is the 
external schedule of a particular run of the proto- 
col with *actions of the simulated register accesses 
inserted. By construction, each *action W:(V) or 
W:(v) is between the appropriate fp~~.,-W~i~i~,(~) or 

WL(‘)-WCinisb Pair* During the construction, we 
were careful to be sure that each read returned the 
value written by the write which immediately pre- 
ceded it (ordered by *actions), or the initial value if 
no such write exists. As we have already observed, 
each call to the subroutines of the protocol returns; 
therefore, each request is eventually acknowledged. 
Therefore, cy is atomic initialized to vo as required. 
Since cy was chosen arbitrarily, this protocol imple- 
ments an atomic register. 0 

257 



I 
Pl 
-1 1% 1 

Figure 4: Timing for. Read of Impotent Write (for contradiction) 

8 Conclusions 

There are several obvious ways to try to extend this 
algorithm to more than two writers; none of them 
work. A number of researchers have investigated this 
topic, and there are two or three proposed multi- 
writer atomic register protocols [VA], [PB]. It is dif- 
ficult to design such protocols. As an example, we 
show how the natural extension of the two-writer pro- 
tocol fails. 

This protocol is reminiscent of Peterson’s tourna- 
ment protocol for mutual exclusion [PF]. Consider 
N = 2” writers arranged in a tournament in the same 
way. Divide the processors into pairs; each pair sim- 
ulates a two-writer register from two real one-writer 
registers. Each pair of pairs then participates in the 
protocol, and so forth. However, this does not work. 
[This counterexample is due to Leslie Lamport, per- 
sonal communication] 

Suppose that we have four processors simulating 
a shared register in this scheme. With a gain of 
generality6, we may ignore the simulation of the two- 
writer registers, and pretend that we are simulating 
a four-writer register on two real two-writer registers 
with the above protocol. Call the writers Wroo and 
Wrol, (who share real register 0) and Wrlo and Wrll 

(and share real register 1). Processor Wrlo will not 
participate in this example. The sequence of events 
is given in Figure 5. 

At the start, processor Wroo will start trying to 
write the value ‘x’. It will perform the real reads for 
its simulated write (denoted “(reads)” in the table), 
compute the tag bit that it will write, and go to sleep 
for a while. While it is asleep, Wrrr will write ‘c’; 
then Wrol will write ‘d’. At this point, Wrll’s value 
‘c’ is obsolete. Then Wr,-,o will wake up and finish 
its write. Wrll’s value will magically reappear in the 

gThis counterexample does not depend on any character- 
istics of my two-writer protocol; it works for any protocol, or 
even hardware atomic two-writer registers. 

Processor Action Reg, Reg, Value 
initial - ‘a’,0 ‘b’,O ‘a’ 
Wr00 real reads ‘a’,0 ‘b’,O ‘a’ 
Wrll sim. writes ‘a’,0 ‘c’,l ‘c’ 
Wr0l sim. writes ‘d’,l ‘c’,l ‘d’ 
Wr00 real writes ‘x),0 ‘C’J ‘c’ 

When Wrol writes, the value ‘c’ becomes obsolete. 
When Wroo finishes its write, ‘c’ reappears. 

Figure 5: Four-Writer Counterexample 

register. 
Concurrent-access register algorithms may be of 

some use to other forms of concurrency control. For 
example, many database applications demand seri- 
alizability (i.e., atomicity) of requests. Most algo- 
rithms require some form of mutual exclusion. When 
many processors are sharing memory, the protocols 
for mutual exclusion can get relatively expensive. 
Register protocols are an example of a form of mem- 
ory communication which provides atomicity without 
requiring synchronization or mutual exclusion. 

An atomic register may be considered an object 
with abstract data type register[q, admitting the op- 
erations read and write(v), with all the operations 
atomic. It would be interesting to find protocols al- 
lowing more general data types, or perhaps even ar- 
bitrary abstract data types, to be shared atomically 
without waiting. 

9 Acknowledgments 

Leslie Lamport provided much helpful criticism and 
advice, as well as the example showing the failure of 
the extension of the protocol. I would like to thank 
Nancy Lynch, Mark Tuttle, Paul Vitinyi, Jennifer 
Lund&us rf7elch, and Miller Maley, for their generous 

258 



help and perhaps excessive patience, and the first two 
for the use of their I/O Automaton model. 

10 References 

[BP] Burns, James E. and Gary L. Peterson, “Con- 
structing multi-reader atomic values from non- 
atomic values.“, Proceedings of PODC ‘87 

[CHP] P.J. Courtois, F. Heymans, and D.L. Parnas, 
“Concurrent control with ‘readers’ and ‘writ- 
ers’,” CACM 14 10 (October 1971), pp. 667- 
668. 

[Ll] L. Lamport, “A new solution to Dijkstra’s con- 
current programming problem,” CACM 17 8 
(August 1974), pp. 453-455. 

[L2] L. Lamport, “On interprocess communication, 
Parts I and II,” Distributed Computing 1 2 
(1986), pp 77-85 and 86-101. 

[LM] Nancy A. Lynch and Michael Merritt, “Intro- 
duction to the Theory of Nested Transactions”, 
MIT-LCS Technical Report MIT/LCS/TR-367. 

[LT] Nancy A. Lynch and Mark R. Tuttle, “Correct- 
ness Proofs for Distributed Algorithms”, MIT- 
LCS Technical Report, to appear. 

[P] G.L. Peterson, “Concurrent reading while writ- 
ing,” ACM TOPLAS 5 1 (January 1983), pp. 
4655. 

[PB] G.L. Peterson and J.E. Burns, “Concurrent 
Reading While Writing II: The Multi-writer 
Case )“, distributed manuscript . 

[PF] G.L. Peterson and M.J. Fischer, “Economical 
Solutions for the Critical Section Problem in 
a Distributed System”, Proc gt” STOC (May 
1977), pp. 91-97. 

[VA] P. Vitbnyi and B. Awerbuch, “Atomic shared 
register access by asynchronous hardware,” in 
Proceedings 27th IEEE Symp. on Foundations 
of Computer Science (1986), pp. 233-243. 

259 


